AAV delivery of nucleobase editors

Information

  • Patent Grant
  • 11306324
  • Patent Number
    11,306,324
  • Date Filed
    Friday, October 13, 2017
    7 years ago
  • Date Issued
    Tuesday, April 19, 2022
    2 years ago
Abstract
Provided herein are methods of delivering “split” Cas9 protein or nucleobase editors into a cell, e.g., via a recombinant adeno-associated virus (rAAV), to form a complete and functional Cas9 protein or nucleobase editor. The Cas9 protein or the nucleobase editor is split into two sections, each fused with one part of an intein system (e.g., intein-N and intein-C encoded by dnaEn and dnaEc, respectively). Upon co-expression, the two sections of the Cas9 protein or nucleobase editor are ligated together via intein-mediated protein splicing. Recombinant AAV vectors and particles for the delivery of the split Cas9 protein or nucleobase editor, and methods of using such AAV vectors and particles are also provided.
Description
REFERENCE TO THE SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 20, 2021, is named H082470246US02-SEQ-EPG and is 4,251,499 bytes in size.


BACKGROUND

Precise genome targeting technologies using the CRISPR/Cas9 system have recently been explored in a wide range of applications, including gene therapy. A major limitation to the application of Cas9 and Cas9-based genome-editing agents in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV).


SUMMARY

Described herein are systems, compositions, kits, and methods for delivering a Cas9 protein or a nucleobase editor to cells, e.g., via recombinant adeno-associated virus vectors. Typically a Cas9 protein or a nucleobase editor is “split” into an N-terminal portion and a C-terminal portion. The N-terminal portion or C-terminal portion of a Cas9 protein or a nucleobase editor may be fused to one member of the intein system, respectively. The resulting fusion proteins, when delivered on separate vectors (e.g., separate rAAV vectors) into one cell and co-expressed, may be joined to form a complete and functional Cas9 protein or nucleobase editor (e.g., via intein-mediated protein splicing). Further provided herein are empirical testing of regulatory elements in the delivery vectors for high expression levels of the split Cas9 protein or the nucleobase editor.


Some aspects of the present disclosure provide compositions comprising: (i) a first nucleotide sequence encoding a N-terminal portion of a Cas9 protein fused at its C-terminus to an intein-N; and (ii) a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the Cas9 protein, wherein the first nucleotide sequence or second nucleotide sequence is operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization signal.


In some embodiments, the N-terminal portion of the Cas9 protein comprises a portion of any one of SEQ ID NOs: 1-275 and 394-397 that corresponds to amino acids 1-573 or 1-637 of SEQ ID NO: 1. In some embodiments, the C-terminal portion of the Cas9 protein comprises a portion of any one of SEQ ID NOs: 1-275 and 394-397 that corresponds to amino acids 574-1368 or 638-1368 of SEQ ID NO: 1. In some embodiments, the intein-N comprises the amino acid sequence as set forth in SEQ ID NO: 350-351 and 354-355. In some embodiments, the intein-C comprises the amino acid sequence as set forth in SEQ ID NO: 352-353 and 356-357.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a nucleotide encoding a guide RNA (gRNA) operably linked to a promoter.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a transcriptional terminator. In some embodiments, the transcriptional terminator is the transcriptional terminator from a bGH gene, hGH gene, or SV40 gene. In some embodiments, the transcriptional terminator is the transcriptional terminator from a bGH gene.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a woodchuck hepatitis posttranscriptional regulatory element (WPRE) inserted 5′ of the transcriptional terminator.


In some embodiments, the bipartite nuclear localization signal comprises an amino acid sequence selected from the group consisting of: KRPAATKKAGQAKKKK (SEQ ID NO: 344), KKTELQTTNAENKTKKL (SEQ ID NO: 345), KRGINDRNFWRGENGRKTR (SEQ ID NO: 346), and RKSGKIAAIVVKRPRK (SEQ ID NO: 347). In some embodiments, the bipartite nuclear localization signal comprises the amino acid sequence as set forth in SEQ ID NO: 344.


In some embodiments, the Cas9 protein is a catalytically inactive Cas9 (dCas9) or a Cas9 nickase (nCas9), and wherein the first nucleotide sequence of (i) further comprises a nucleotide sequence encoding a nucleobase modifying enzyme fused to the N-terminus of the N-terminal portion of the Cas9 protein.


In some embodiments, the Cas9 protein is a catalytically inactive Cas9 (dCas9) or a Cas9 nickase (nCas9), and wherein the second nucleotide sequence of (ii) further comprises a nucleotide sequence encoding a nucleobase modifying enzyme fused to the C-terminus of the C-terminal portion of the Cas9 protein.


In some embodiments, the nucleobase modifying enzyme is a deaminase. In some embodiments, the deaminase is a cytosine deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the second nucleotide sequence of (ii) further comprises a nucleotide sequence encoding a uracil glycosylase inhibitor (UGI) fused at the 3′ end of the second nucleotide sequence. In some embodiments, the first nucleotide sequence of (i) further comprises a nucleotide sequence encoding a uracil glycosylase inhibitor (UGI) at the 5′ end of the first nucleotide sequence. In some embodiments, the UGI comprises the amino acids sequence of SEQ ID NOs: 299-302.


In some embodiments, the first nucleotide sequence and the second nucleotide sequence are on different vectors. In some embodiments, the each of the different vectors is a genome of a recombinant adeno-associated virus (rAAV). In some embodiments, each vector is packaged in a rAAV particle.


Other aspects of the present disclosure provide compositions comprising: (i) a first recombinant adeno associated virus (rAAV) particle comprising a first nucleotide sequence encoding a N-terminal portion of a Cas9 protein fused at its C-terminus to an intein-N; and (ii) a second recombinant adeno associated virus (rAAV) particle comprising a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the Cas9 protein, wherein the first nucleotide sequence or second nucleotide sequence is operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization sign.


Cells comprising the compositions described herein are provided. In some embodiments, the N-terminal portion of the Cas9 protein and the C-terminal portion of the Cas9 protein are joined together to form the Cas9 protein. In some embodiments, the cell is a prokaryotic cell. In some embodiments, the cell is a bacterial cell. In some embodiments, the cell is a eukaryotic cell. In some embodiments, the cell is a yeast cell, a plant cell, or a mammalian cell. In some embodiments, the cell is a human cell.


Further provided herein are kits comprising the any of the compositions described herein.


Some aspects of the present disclosure provide compositions comprising: (i) a first nucleotide sequence encoding a N-terminal portion of a nucleobase editor fused at its C-terminus to an intein-N; and (ii) a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the nucleobase editor.


In some embodiments, the intein-N comprises the amino acid sequence as set forth in SEQ ID NO: 350-351 and 354-355. In some embodiments, the intein-C comprises the amino acid sequence as set forth in SEQ ID NO: 352-353 and 356-357. In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a nucleotide encoding a guide RNA (gRNA) operably linked to a promoter.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a transcriptional terminator. In some embodiments, the transcriptional terminator is a transcriptional terminator from a bGH gene, hGH gene, or SV40 gene. In some embodiments, the transcriptional terminal is from a bGH gene.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence further comprises a woodchuck hepatitis posttranscriptional regulatory element (WPRE) inserted 5′ of the transcriptional terminator.


In some embodiments, the first nucleotide sequence or second nucleotide sequence are operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization signal. In some embodiments, the bipartite nuclear localization signal comprises an amino acid sequence selected from the group consisting of: KRPAATKKAGQAKKKK (SEQ ID NO: 344), KKTELQTTNAENKTKKL (SEQ ID NO: 345), KRGINDRNFWRGENGRKTR (SEQ ID NO: 346), and RKSGKIAAIVVKRPRK (SEQ ID NO: 347). In some embodiments, the bipartite nuclear localization signal comprises the amino acid sequence as set forth in SEQ ID NO: 344.


In some embodiments, the nucleobase editor comprises a cytosine deaminase fused to the N-terminus of a catalytically inactive Cas9 or a Cas9 nickase. In some embodiments, the cytosine deaminase is selected from the group consisting of: APOBEC1, APOBEC3, AID, and pmCDA1. In some embodiments, the nucleobase editor further comprises a uracil glycosylase inhibitor (UGI). In some embodiments, the UGI comprises the amino acids sequence of SEQ ID NOs: 299-302.


In some embodiments, the first nucleotide sequence and the second nucleotide sequence are on different vectors. In some embodiments, each of the different vectors is a genome of a recombinant adeno-associated virus (rAAV). In some embodiments, the vector is packaged in a rAAV particle.


Other aspects of the present disclosure provide compositions comprising: (i) a first recombinant adeno associated virus (rAAV) particle comprising a first nucleotide sequence encoding a N-terminal portion of a nucleobase editor fused at its C-terminus to an intein-N; and (ii) a second recombinant adeno associated virus (rAAV) particle comprising a second nuclei acid encoding an intein-C fused to the N-terminus of a C-terminal portion of the nucleobase editor.


Cells comprising any of the compositions described herein are provided. In some embodiments, the N-terminal portion of the nucleobase editor and the C-terminal portion of the nucleobase editor are joined together to form the nucleobase editor. In some embodiments, the cell is a prokaryotic cell. In some embodiments, the cell is a bacterial cell. In some embodiments, the cell is an eukaryotic cell. In some embodiments, the cell is a yeast cell, a plant cell, or a mammalian cell. In some embodiments, the cell is a human cell.


Further provided herein are kits comprising any of the compositions described herein.


Yet other aspects of the present disclosure provide methods comprising: contacting a cell with any of the compositions described herein, wherein the contacting results in the delivery of the first nucleotide sequence and the second nucleotide sequence into the cell, and wherein the N-terminal portion of the nucleobase editor and the C-terminal portion of the nucleobase editor are joined to form a nucleobase editor.


Yet other aspects of the present disclosure provide methods comprising: administering to a subject in need there of a therapeutically effective amount of any of the compositions described herein. In some embodiments, the subject has a disease or disorder.


In some embodiments, the disease or disorder is selected from the group consisting of: cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), chronic obstructive pulmonary disease (COPD), Charcot-Marie-Toot disease type 4J., neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy, hereditary lymphedema, familial Alzheimer's disease, prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), and desmin-related myopathy (DRM).


The details of certain embodiments of the invention are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the invention will be apparent from the Definitions, Examples, Figures, and Claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute a part of this Application, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.



FIGS. 1A-1C are graphs showing a “split nucleobase editor” for delivery into cells using recombinant adeno associated virus (rAAV) vectors. FIG. 1A is a schematic representation of how the nucleobase editor is split into two portions. FIG. 1B shows that AAV-delivered split nucleobase editor can undergo protein splicing upon expression of the two halves in cells to form a complete nucleobase editor that has comparable activity to a nucleobase editor expressed as a whole. FIG. 1C shows the formation of a complete nucleobase editor from the two halves via protein splicing mediated by DnaE intein.



FIG. 2 shows that U1118 cells were efficiently transfected by AAV2 containing nucleic acids encoding mCherry. Different viral titers were tested (2.5-10 μl at 4.5×1011 vg/ml*) and all resulted in efficient transfection of U118 cells. *vg/ml means viral genome-containing particles per microliter.



FIGS. 3A-3B are graphs showing high throughput sequence (HTS) results of nucleobase editing by rAAV-delivered split nucleobase editor in U118 and HEK cells. Lipid-transfected nucleobase editor was used as a control. A sgRNA targeting R37 in the PRNP gene was used, and the PRNP gene locus was sequenced. FIG. 3A shows the HTS reads, and FIG. 3B summarizes the base editing results.



FIG. 4 is a graph showing the optimization of the transcriptional terminator used in the AAV constructs encoding the split nucleobase editor. Transcriptional terminators of different sizes and origins were tested. bGH transcriptional terminator is relatively short and efficiently terminates transcription comparably to longer terminator sequences. It was therefore chosen to be used in the downstream experiments.



FIGS. 5A-5B are graphs showing the results of nucleobase editing with long term (up to 15 days) transduction of AAV encoding the split nucleobase editor in mouse astrocytes expressing human ApoE4 cDNA. The target base is in the codon for arginine 112 and arginine 158 in ApoE4, which is converted to a cysteine upon base editing. FIG. 5A shows that the editing of arginine 158 increases overtime when the mouse astrocytes were transduced at 1010 vg, while editing of arginine 112 remained minimal. The nucleotide sequence 3′ of the codon for arginine 158 sequence features a flanking NGG PAM allowing for high activity by SpCas9 (with guide sequence GAAGCGCCTGGCAGTGTACC, SEQ ID NO: 348), while the nucleotide sequence 3′ of the codon for arginine 112 contains a flanking NAG PAM which does not allow for high activity (with guide sequence GACGTGCGCGGCCGCCTGGTG, SEQ ID NO: 349). FIG. 5B shows cells transduced with rAAV encoding mCherry at 1010 vg (control).



FIG. 6 is a schematic representation of the optimization of the nuclear localization signal in AAV constructs encoding the split nucleobase editor. The nuclear localization signal controls nuclear import, which must occur for reconstituted nucleobase editor to associate with genomic DNA as a prerequisite for editing, and is a potential rate-limiting step in the process. This schematic shows that the NLS (and NLS optimization) is critical for the nucleobase editor to be imported into the nucleus.



FIG. 7 is a graph showing the results of base editing using different rAAV split nucleobase editor constructs containing different nuclear localization signals (NLS).



FIGS. 8A-8B are graphs showing the editing of DNMT1 gene in dissociated mouse cortical neurons using an AAV encoded split nucleobase editor.



FIG. 9A-9B are graphs showing the editing of DNMT1 gene in mouse Neuro-2a cell line using either an AAV encoded split nucleobase editor, or a lipid transfected DNA encoded nucleobase editor.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


As used herein, the term “Cas9,” “Cas9 protein,” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein (e.g., Cas9 nucleases from a variety of bacterial species), a fragment, a variant (e.g., a catalytically inactive Cas9 or a Cas9 nickase), or a fusion protein (e.g., a Cas9 fused to another protein domain) thereof. A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements, and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (mc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. Non-limiting examples of Cas9 proteins and their respective amino acid sequence are provided in Example 1.


A nuclease-inactive Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., (2013) Cell. 28; 152(5):1173-83, incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013). Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9):833-838, incorporated herein by reference).


In some embodiments, a Cas9 nickase is used as part of the nucleobase editor. A Cas9 nickase is able to cleave one strand of the double strand DNA. A Cas9 nickase may be generated by introducing an inactivating mutation into either the HNH domain or the RuvC1 domain. For example, an inactivating mutation (D10A) may be introduced in the RuvC1 domain of the S. pyogenes Cas9, while the HNH domain remains active, i.e., the residue at position 840 remains a histidine. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence. One skilled in the art is able to identify the catalytic residues in the RuvC1 and HNH domains of any known Cas9 proteins and introduce inactivating mutations to generate a corresponding dCas9 or nCas9.


A “split Cas9 protein” or “split Cas9” refers to a Cas9 protein that is provided as an N-terminal portion (also referred to as an N-terminal half) and a C-terminal portion (also referred to as a C-terminal half) encoded by two separate nucleotide sequences. The polypeptides corresponding to the N-terminal portion and the C-terminal portion of the Cas9 protein may be combined (joined) to form a complete Cas9 protein. A Cas9 protein is known to consist of a bi-lobed structure linked by a disordered linker (e.g., as described in Nishimasu et al., Cell, Volume 156, Issue 5, pp. 935-949, 2014, incorporated herein by reference). In some embodiments, the “split” occurs between the two lobes, generating two portions of a Cas9 protein, each containing one lobe.


An “intein” is a segment of a protein that is able to excise itself and join the remaining portions (the exteins) with a peptide bond in a process known as protein splicing. Inteins are also referred to as “protein introns.” The process of an intein excising itself and joining the remaining portions of the protein is herein termed “protein splicing” or “intein-mediated protein splicing.” In some embodiments, an intein of a precursor protein (an intein containing protein prior to intein-mediated protein splicing) comes from two genes. Such intein is referred to herein as a split intein. For example, in cyanobacteria, DnaE, the catalytic subunit α of DNA polymerase III, is encoded by two separate genes, dnaE-n and dnaE-c. The intein encoded by the dnaE-n gene is herein referred as “intein-N.” The intein encoded by the dnaE-c gene is herein referred as “intein-C.”


Other intein systems may also be used. For example, a synthetic intein based on the dnaE intein, the Cfa-N and Cfa-C intein pair, has been described (e.g., in Stevens et al., J Am Chem Soc. 2016 Feb. 24; 138(7):2162-5, incorporated herein by reference). Non-limiting examples of intein pairs that may be used in accordance with the present disclosure include: Cfa DnaE intein, Ssp GyrB intein, Ssp DnaX intein, Ter DnaE3 intein, Ter ThyX intein, Rma DnaB intein and Cne Prp8 intein (e.g., as described in U.S. Pat. No. 8,394,604, incorporated herein by reference.


Exemplary nucleotide and amino acid sequences of inteins are provided.









DnaE Intein-N DNA:


(SEQ ID NO: 350)


TGCCTGTCATACGAAACCGAGATACTGACAGTAGAATATGGCCTTCTGCC





AATCGGGAAGATTGTGGAGAAACGGATAGAATGCACAGTTTACTCTGTCG





ATAACAATGGTAACATTTATACTCAGCCAGTTGCCCAGTGGCACGACCGG





GGAGAGCAGGAAGTATTCGAATACTGTCTGGAGGATGGAAGTCTCATTAG





GGCCACTAAGGACCACAAATTTATGACAGTCGATGGCCAGATGCTGCCTA





TAGACGAAATCTTTGAGCGAGAGTTGGACCTCATGCGAGTTGACAACCTT





CCTAAT





DnaE Intein-N Protein:


(SEQ ID NO: 351)


CLSYETEILTVEYGLLPIGKIVEKRIECTVYSVDNNGNIYTQPVAQWHDR





GEQEVFEYCLEDGSLIRATKDHKFMTVDGQMLPIDEIFERELDLMRVDNL





PN





DnaE Intein-C DNA:


(SEQ ID NO: 352)


ATGATCAAGATAGCTACAAGGAAGTATCTTGGCAAACAAAACGTTTATGA





TATTGGAGTCGAAAGAGATCACAACTTTGCTCTGAAGAACGGATTCATAG





CTTCTAAT





Intein-C:


(SEQ ID NO: 353)


MIKIATRKYLGKQNVYDIGVERDHNFALKNGFIASN





Cfa-N DNA:


(SEQ ID NO: 354)


TGCCTGTCTTATGATACCGAGATACTTACCGTTGAATATGGCTTCTTGCC





TATTGGAAAGATTGTCGAAGAGAGAATTGAATGCACAGTATATACTGTAG





ACAAGAATGGTTTCGTTTACACACAGCCCATTGCTCAATGGCACAATCGC





GGCGAACAAGAAGTATTTGAGTACTGTCTCGAGGATGGAAGCATCATACG





AGCAACTAAAGATCATAAATTCATGACCACTGACGGGCAGATGTTGCCAA





TAGATGAGATATTCGAGCGGGGCTTGGATCTCAAACAAGTGGATGGATTG





CCA





Cfa-N Protein:


(SEQ ID NO: 355)


CLSYDTEILTVEYGFLPIGKIVEERIECTVYTVDKNGFVYTQPIAQWHNR





GEQEVFEYCLEDGSIIRATKDHKFMTTDGQMLPIDEIFERGLDLKQVDGL





P





Cfa-C DNA:


(SEQ ID NO: 356)


ATGAAGAGGACTGCCGATGGATCAGAGTTTGAATCTCCCAAGAAGAAGAG





GAAAGTAAAGATAATATCTCGAAAAAGTCTTGGTACCCAAAATGTCTATG





ATATTGGAGTGGAGAAAGATCACAACTTCCTTCTCAAGAACGGTCTCGTA





GCCAGCAAC





Cfa-C Protein:


(SEQ ID NO: 357)


MKRTADGSEFESPKKKRKVKIISRKSLGTQNVYDIGVEKDHNFLLKNGLV





ASN






Intein-N and intein-C may be fused to the N-terminal portion of the split Cas9 and the C-terminal portion of the split Cas9, respectively, for the joining of the N-terminal portion of the split Cas9 and the C-terminal portion of the split Cas9. For example, in some embodiments, an intein-N is fused to the C-terminus of the N-terminal portion of the split Cas9, i.e., to form a structure of N—[N-terminal portion of the split Cas9]-[intein-N]—C. In some embodiments, an intein-C is fused to the N-terminus of the C-terminal portion of the split Cas9, i.e., to form a structure of N-[intein-C]—[C-terminal portion of the split Cas9]-C. The mechanism of intein-mediated protein splicing for joining the proteins the inteins are fused to (e.g., split Cas9) is known in the art, e.g., as described in Shah et al., Chem Sci. 2014; 5(1):446-461, incorporated herein by reference.


Herein, a “nucleobase editor” refers to a protein that edits a nucleotide base. “Edit” refers to the conversion of one nucleobase to another (e.g., A to G, A to C, A to T, C to T, C to G, C to A, G to A, G to C, G to T, T to A, T to C, T to G). In some embodiments, a nucleobase editor is a macromolecule or macromolecular complex that results primarily (e.g., more than 80%, more than 85%, more than 90%, more than 95%, more than 99%, more than 99.9%, or 100%) in the conversion of a nucleobase in a polynucleic acid sequence into another nucleobase (i.e., a transition or transversion) using a combination of 1) a nucleotide-, nucleoside-, or nucleobase-modifying enzyme and 2) a nucleic acid binding protein that can be programmed to bind to a specific nucleic acid sequence.


In some embodiments, the nucleobase editor comprises a DNA binding domain (e.g., a programmable DNA binding domain such as a dCas9 or nCas9) that directs it to a target sequence. In some embodiments, the nucleobase editor comprises a nucleobase modifying enzyme fused to a programmable DNA binding domain (e.g., a dCas9 or nCas9). A “nucleobase modifying enzyme” is an enzyme that can modify a nucleobase and convert one nucleobase to another (e.g., a deaminase such as a cytosine deaminase or a adenosine deaminase). In some embodiments, the nucleobase editor may target cytosine (C) bases in a nucleic acid sequence and convert the C to thymine (T) base. In some embodiments, the C to T editing is carried out by a deaminase, e.g., a cytosine deaminase. Base editors that can carry out other types of base conversions (e.g., adenosine (A) to guanine (G), C to G) are also contemplated.


Nucleobase editors that convert a C to T, in some embodiments, comprise a cytosine deaminase. A “cytosine deaminase” refers to an enzyme that catalyzes the chemical reaction “cytosine+H2O→uracil+NH3” or “5-methyl-cytosine+H2O→thymine+NH3.” As it may be apparent from the reaction formula, such chemical reactions result in a C to U/T nucleobase change. In the context of a gene, such a nucleotide change, or mutation, may in turn lead to an amino acid change in the protein, which may affect the protein's function, e.g., loss-of-function or gain-of-function. In some embodiments, the C to T nucleobase editor comprises a dCas9 or nCas9 fused to a cytosine deaminase. In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the dCas9 or nCas9. In some embodiments, the nucleobase editor further comprises a domain that inhibits uracil glycosylase, and/or a nuclear localization signal. Such nucleobase editors have been described in the art, e.g., in U.S. Pat. No. 9,068,179, US Patent Application Publications US 2015/0166980, published Jun. 18, 2015; US 2015/0166981, published Jun. 18, 2015; US 2015/0166982, published Jun. 18, 2015; US 2015/0166984, published Jun. 18, 2015; and US2015/0165054, published Jun. 18, 2015; and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; U.S. Ser. No. 62/279,346, filed Jan. 15, 2016; U.S. Ser. No. 62/311,763, filed Mar. 22, 2016; U.S. Ser. No. 62/322,178, filed Apr. 13, 2016; U.S. Ser. No. 62/357,352, filed Jun. 30, 2016; U.S. Ser. No. 62,370,700, filed Aug. 3, 2016; U.S. Ser. No. 62/398,490, filed Sep. 22, 2016; and U.S. Ser. No. 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016, US patent application U.S. Ser. No. 15/311,852, filed Oct. 22, 2016; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which is incorporated herein by reference.


In some embodiments, a nucleobase editor converts an A to G. In some embodiments, the nucleobase editor comprises an adenosine deaminase. An “adenosine deaminase” is an enzyme involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues. Its primary function in humans is the development and maintenance of the immune system. An adenosine deaminase catalyzes hydrolytic deamination of adenosine (forming inosine, which base pairs as G) in the context of DNA. There are no known adenosine deaminases that act on DNA. Instead, known adenosine deaminase enzymes only act on RNA (tRNA or mRNA). Evolved deoxyadenosine deaminase enzymes that accept DNA substrates and deaminate dA to deoxyinosine and here use in adenosine nucleobase editos have been described, e.g., in US provisional application, U.S. Ser. No. 62/370,684, filed Aug. 3, 2016; US provisional application, U.S. Ser. No. 62/370,684, filed Feb. 3, 2017, US provisional application, U.S. Ser. No. 62/473,714, filed Mar. 20, 2017, and PCT Application PCT/US2017/045381, filed Aug. 3, 2017; each of which is incorporated herein by reference. Non-limiting examples of evolved adenosine deaminases that accept DNA as substrates are provided in Example 1.


In some embodiments, the adenosine deaminase is E. coli TadA (SEQ ID NO: 314). The possible mutations in ecTadA and constructs expressing nucleobase editors comprising the modified ecTadA are provided in Table 2. The sequences of exemplary EcTadA mutants and nucleotibase editors comprising such mutants are provided in Example 1.









TABLE 2







EcTadA mutants for A to G nucleobase editor









Name
Construct Architecture
Mutations in TadA





pNMG-142
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
wild-type


pNMG-143
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108N


pNMG-144
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N


pNMG-145
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108G


pNMG-146
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
R107C_D108N


pNMG-147
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108V


pNMG-155
pCMV_ecTadA_XTEN_dead Cas9_SGGS_UGI_NLS
D108N


pNMG-156
pCMV_ecTadA_XTEN_nCas9_SGGS_UGI_SGGS_NLS
D108N


pNMG-157
pCMV_ecTadA_XTEN_dead
D108G



Cas9_SGGS_UGI_SGGS_NLS


pNMG-158
pCMV_ecTadA_XTEN_nCas9_SGGS_UGI_SGGS_NLS
D108G


pNMG-160
pCMV_ecTadA_XTEN_nCas9_SGGS_AAG*(E125Q)_SGGS
D108N



NLS


pNMG-161
pCMV_ecTadA_XTEN_Cas9n_SGGS_EndoV*(D35A)_NLS
D108N


pNMG-162
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_D108N_S127S_D147Y_Q154H


pNMG-163
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_R24W_D108N_N127S_D147Y_E155V


pNMG-164
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108N_D147Y_E155V


pNMG-165
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_D108N_S127S


pNMG-171
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
wild-type


pNMG-172
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
D108N


pNMG-173
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_D108N_N127S_D147Y_Q154H


pNMG-174
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_R24W_D108N_N127S_D147Y_E155V


pNMG-175
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
D108N_D147Y_E155V


pNMG-176
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_D108N_S127S


pNMG-177
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-178
pCMV_ecTadA_XTEN_Cas9n_SGGS_UGI_SGGS_NLS
D108N_D147Y_E155V


pNMG-179
pCMV_ecTadA_XTEN_Cas9n_SGGS_AAG*(E125Q)_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-180
pCMV_ecTadA_XTEN_Cas9n_SGGS_UGI_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-181
pCMV_ecTadA_XTEN_Cas9n_SGGS_AAG*(E125Q)_SGGS
D108N_D147Y_E155V



NLS


pNMG-182
pCMV_ecTadA_SGGS_nCas9_SGGS_NLS
D108N_D147Y_E155V


pNMG-183
pCMV_ecTadA_(SGGS)2-XTEN-
D108N_D147Y_E155V



(SGGS)2_nCas9_SGGS_NLS


pNMG-235
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(E125A)_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-236
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(E125Q)_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-237
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(wt)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-238
pCMV_AAG*(E125A)_XTEN_ecTadA_XTEN_Cas9n_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-239
pCMV_AAG*(wt)_XTEN_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-240
pCMV_ecTadA_XTEN_Cas9n_XTEN_EndoV*(D35A)_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-241
pCMV_ecTadA_XTEN_Cas9n_XTEN_EndoV*(wt)_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-242
pCMV_EndoV*(D35A)_XTEN_ecTadA_XTEN_Cas9n_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-243
pCMV_EndoV*(wt)_XTEN_ecTadA_XTEN_Cas9n_SGGS
A106V_D108N_D147Y_E155V



NLS


pNMG-247
pCMV_ecTadA_XTEN_Cas9(wild-type)_SGGS_NLS
wild-type


pNMG-248
pCMV_ecTadA_XTEN_Cas9(wild-type)_SGGS_NLS
D108N_D147Y_E155V


pNMG-249
pCMV_ecTadA_XTEN_Cas9_(wild-type)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-250
pCMV_ecTadA_XTEN_Cas9 (wild-
D108N_D147Y_E155V



type)_SGGS_UGI_SGGS_NLS


pNMG-251
pCMV_ecTadA_XTEN_Cas9 (wild-
A106V_D108N_D147Y_E155V



type)_SGGS_AAG*(E125Q)_SGGS_NLS


pNMG-274
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
wild-type


pNMG-275
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
A106V_D108N_D147Y_E155V


pNMG-276
pCMV_ecTadA-(SGGS)2-XTEN-
(wild-type) + (wild-type)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS


pNMG-277
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-278
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108Q_D147Y_E155V


pNMG-279
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108M_D147Y_E155V


pNMG-280
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108L_D147Y_E155V


pNMG-281
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108K_D147Y_E155V


pNMG-282
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108I_D147Y_E155V


pNMG-283
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108F_D147Y_E155V


pNMG-284
pCMV_ecTadA_LONGER LINKER (92
(wild-type) + (A106V_D108N_D147Y_E155V)



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS


pNMG-285
pCMV_ecTadA_LONGER LINKER (92
(A106V_D108N_D147Y_E155V) +



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y)


pNMG-285b
pCMV_ecTadA_LONGER LINKER (92
(A106V_D108N_D147Y_E155V) +



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-286
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
A106V_D108M_D147Y_E155V


pNMG-287
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN-nCas9 (S. aureus)_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-289
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_UGI_NLS
(A106V_D108N_D147Y_E155V)


pNMG-290
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V)



(SGGS)2_nCas9_SGGS_UGI_NLS


pNMG-293
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
E59A_A106V_D108N_D147Y_E155V


pNMG-294
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
E59A


pNMG-295
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
E59A


pNMG-296
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
E59A cat dead_A106V_D108N_D147Y_E155V


pNMG-297
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) + (wild-type)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS


pNMG-298
pCMV_ecTadA-(SGGS)2-XTEN-
(D108M_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(D108M_D147Y_E155V)


pNMG-320
pCMV_ecTadA-(SGGS)2-XTEN-
(wild-type) + (A106V_D108N_D147Y_E155V)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS


pNMG-321
pCMV_ecTadA-(SGGS)2-XTEN-
(E59A_A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-322
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(E59A_A106V_D108N_D147Y_E155V)


pNMG-335
pCMV_TadA3p-XTEN-TadA2p-XTEN-nCas9-NLS
wild-type


pNMG-336
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-337
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N_D147Y_E155V



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-338
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-339
pCMV_ecTadA-(SGGS)2-XTEN-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y) +



(SGGS)2_ecTadA_(SGGS)2-XTEN-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y)



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-340
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V)



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-341
pCMV_ecTadA-(SGGS)2-XTEN-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2_ecTadA_(SGGS)2-XTEN-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS


pNMG-345
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
wild-type




aureusTadA-(SGGS)2-XTEN-(SGGS)2-




nCas9_SGGS_NLS


pNMG-346
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
(D108N) + (D108N)




aureusTadA-(SGGS)2-XTEN-(SGGS)2-




nCas9_SGGS_NLS


pNMG-347
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
(D107A_D018N) + (D107A_D108N)




aureusTadA-(SGGS)2-XTEN-(SGGS)2-




nCas9_SGGS_NLS


pNMG-348
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
(G26P_D107A_D108N) + (G26P_D107A_D108N)




aureusTadA-(SGGS)2-XTEN-(SGGS)2-




nCas9_SGGS_NLS


pNMG-349
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
(G26P_D107A_D108N_S142A) +




aureusTadA-(SGGS)2-XTEN-(SGGS)2-

(G26P_D107A_D108N_S142A)



nCas9_sGGS_NLS


pNMG-350
pCMV_S. aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.
(D104A_D108N_S142A) +




aureusTadA-(SGGS)2-XTEN-(SGGS)2-

(D107A_D108N_S142A)



nCas9_SGGS_NLS


pNMG-351
pCMV_ecTadA_(SGGS)2-XTEN-
(R26G_L84F_A106V_R107H_D108N_H123Y_A142N



(SGGS)2_nCas9_SGGS_NLS
A143D_D147Y_E155V_I156F)


pNMG-352
pCMV_ecTadA_(SGGS)2-XTEN-
(E25G_R26G_L84F_A106V_R107H_D108N_H123Y



(SGGS)2_nCas9_SGGS_NLS
A142N_A143D_D147Y_E155V_I156F)


pNMG-353
pCMV_ecTadA_(SGGS)2-XTEN-
(E25D_R26G_L84F_A106V_R107K_D108N_H123Y



(SGGS)2_nCas9_SGGS_NLS
A142N_A143G_D147Y_E155V_I156F)


pNMG-354
pCMV_ecTadA_(SGGS)2-XTEN-
(R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2_nCas9_SGGS_NLS
E155V_I156F)


pNMG-355
pCMV_ecTadA_(SGGS)2-XTEN-
(E25M_R26G_L84F_A106V_R107P_D108N_H123Y



(SGGS)2_nCas9_SGGS_NLS
A142N_A143D_D147Y_E155V_I156F)


pNMG-356
pCMV_ecTadA_(SGGS)2-XTEN-
(R26C_L84F_A106V_R107H_D108N_H123Y_A142N



(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F)


pNMG-357
pCMV_ecTadA_(SGGS)2-XTEN-
(L84F_A106V_D108N_H123Y_A142N_A143L_D147Y



(SGGS)2_nCas9_SGGS_NLS
E155V_I156F)


pNMG-358
pCMV_ecTadA_(SGGS)2-XTEN-
(R26G_L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2_nCas9_SGGS_NLS
E155V_I156F)


pNMG-359
pCMV_ecTadA_(SGGS)2-XTEN-
(E25A_R26G_L84F_A106V_R107N_D108N_H123Y



(SGGS)2_nCas9_SGGS_NLS
A142N_A143E_D147Y_E155V_I156F)


pNMG-360
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26G_L84F_A106V_R107H_D108N_H123Y_A142N



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A143D_D147Y_E155V_I156F) +




(R26G_L84F_A106V_R107H_D108N_H123Y_A142N




A143D_D147Y_E155V_I156F)


pNMG-361
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25G_R26G_L84F_A106V_R107H_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A142N_A143D_D147Y_E155V_I156F) X 2


pNMG-362
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25D_R26G_L84F_A106V_R107K_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A142N_A143G_D147Y_E155V_I156F) X 2


pNMG-363
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) X 2


pNMG-364
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25M_R26G_L84F_A106V_R107P_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A142N_A143D_D147Y_E155V_I156F) X 2


pNMG-365
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26C_L84F_A106V_R107H_D108N_H123Y_A142N



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) X 2


pNMG-366
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_A142N_A143L_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) X 2


pNMG-367
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26G_L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) X 2


pNMG-368
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25A_R26G_L84F_A106V_R107N_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A142N_A143E_D147Y_E155V_I156F) X 2


pNMG-369
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y)


pNMG-370
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(A106V_D108N_D147Y_E155V) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-371
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-372
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N_A142N_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-373
pCMV_ecTadA_(SGGS)2-XTEN-
R26G_A106V_D108N_A142N_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-374
pCMV_ecTadA_(SGGS)2-XTEN-
E25D_R26G_A106V_R107K_D108N_A142N_A143G



(SGGS)2_Cas9n_SGGS_NLS
D147Y_E155V


pNMG-375
pCMV_ecTadA_(SGGS)2-XTEN-
R26G_A106V_D108N_R107H_A142N_A143D



(SGGS)2_Cas9n_SGGS_NLS
D147Y_E155V


pNMG-376
pCMV_ecTadA_(SGGS)2-XTEN-
E25D_R26G_A106V_D108N_A142N_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-377
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_R107K_D108N_A142N_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-378
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N_A142N_A143G_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-379
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N_A142N_A143L_D147Y_E155V



(SGGS)2_Cas9n_SGGS_NLS


pNMG-382
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-383
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
R26G_A106V_D108N_A142N_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-384
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
E25D_R26G_A106V_R107K_D108N_A142N



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A143G_D147Y_E155V X 2


pNMG-385
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
R26G_A106V_D108N_R107H_A142N_A143D



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V X 2


pNMG-386
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
E25D_R26G_A106V_D108N_A142N_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-387
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_R107K_D108N_A142N_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-388
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_A143G_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-389
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_A143L_D147Y_E155V X 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-391
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_R51L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F_K157N


pNMG-392
pCMV_ecTadA_(SGGS)2-XTEN-
N37T_P48T_M70L_L84F_A106V_D108N_H123Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_I49V_E155V_I156F


pNMG-393
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K161T


pNMG-394
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_D147Y_Q154H



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-395
pCMV_ecTadA_(SGGS)2-XTEN-
N72S_L84F_A106V_D108N_H123Y_S146R_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-396
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_P48L_L84F_A106V_D108N_H123Y_E134G



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F


pNMG-397
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K157N


pNMG-398
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_S146C_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-399
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146R_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K161T


pNMG-400
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_R51H_D77G_L84F_A106V_D108N_H123Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F


pNMG-401
pCMV_ecTadA_(SGGS)2-XTEN-
R51L_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K157N


pNMG-402
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_K157N) x 2


pNMG-403
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37T_P48T_M70L_L84F_A106V_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_I49V_E155V_I156F) x 2


pNMG-404
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37S_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F_K161T) x 2


pNMG-405
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
Q154H_E155V_I156F) x 2


pNMG-406
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N72S_L84F_A106V_D108N_H123Y_S146R



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-407
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_P48L_L84F_A106V_D108N_H123Y_E134G



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-408
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
I156F_K157N) x 2


pNMG-409
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-410
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_S146R_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F_K161T) x 2


pNMG-411
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37S_R51H_D77G_L84F_A106V_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-412
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R51L_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
I156F_K157N) x 2


pNMG-440
pCMV_ecTadA_(SGGS)2-XTEN-
D24G_Q71R_L84F_H96L_A106V_D108N_H123Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F_K160E


pNMG-441
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_G67V_L84F_A106V_D108N_H123Y_S146T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F


pNMG-442
pCMV_ecTadA_(SGGS)2-XTEN-
Q71L_L84F_A106V_D108N_H123Y_L137M_A143E



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F


pNMG-443
pCMV_ecTadA_(SGGS)2-XTEN-
E25G_L84F_A106V_D108N_H123Y_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_Q159L


pNMG-444
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A91T_F104I_A106V_D108N_H123Y_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-445
pCMV_ecTadA_(SGGS)2-XTEN-
N72D_L84F_A106V_D108N_H123Y_G125A



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F


pNMG-446
pCMV_ecTadA_(SGGS)2-XTEN-
P48S_L84F_S97C_A106V_D108N_H123Y_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-447
pCMV_ecTadA_(SGGS)2-XTEN-
W23G_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-448
pCMV_ecTadA_(SGGS)2-XTEN-
D24G_P48L_Q71R_L84F_A106V_D108N_H123Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
D147Y_E155V_I156F_Q159L


pNMG-449
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(D24G_Q71R_L84F_H96L_A106V_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_K160E) x 2


pNMG-450
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_G67V_L84F_A106V_D108N_H123Y_S146T



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-451
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(Q71L_L84F_A106V_D108N_H123Y_L137M



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
A143E_D147Y_E155V_I156F) x 2


pNMG-452
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25G_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F_Q159L) x 2


pNMG-453
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A91T_F104I_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) x 2


pNMG-454
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N72D_L84F_A106V_D108N_H123Y_G125A



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) x 2


pNMG-455
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_L84F_S97C_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) x 2


pNMG-456
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(W23G_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) x 2


pNMG-457
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(D24G_P48L_Q71R_L84F_A106V_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_Q159L) x 2


pNMG-473
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F


pNMG-474
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) x 2


pNMG-475
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-typet) + (A106V_D108N_D147Y_E155V)



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-476
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-477
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-478
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(N37S_L84F_A106V_D108N_H123Y_D147Y




E155V_I156F_K161T)


pNMG-479
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146R_D147Y




E155V_I156F_K161T)


pNMG-480
pCMV_ecTadA_(SGGS)2-XTEN-
wild-type



(SGGS)2_Cas9n_SGGS_NLS


pNMG-481
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N



(SGGS)2_Cas9n_SGGS_NLS


pNMG-482
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
wild-type + wild-type



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-483
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(A106V_D108N) x 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-484
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) + (A106V_D108N)



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


pNMG-485
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_R51L_L84F_A106V_D108N_H123Y_A142N



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
S146C_D147Y_E155V_I156F_K157N


pNMG-486
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_L84F_A106V_D108N_H123Y_A142N_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F_K161T


pNMG-487
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS


pNMG-488
pCMV_ecTadA_(SGGS)2-XTEN-
R51L_L84F_A106V_D108N_H123Y_S146C_D147Y



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
E155V_I156F_K157N_K161T


pNMG-489
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K161T


pNMG-490
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K157N_K160E_K161T


pNMG-491
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS
I156F_K157N_K160E


pNMG-492
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_A142N_D147Y




E155V_I156F)


pNMG-493
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(D24G_Q71R_L84F_H96L_A106V_D108N_H123Y




D147Y_E155V_I156F_K160E)


pNMG-494
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_A142N




S146C_D147Y_E155V_I156F_K157N)


pNMG-495
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(N37S_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F_K161T)


pNMG-496
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_D147Y_E155V_I156F)


pNMG-497
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N_K161T)


pNMG-498
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y




E155V_I156F_K161T)


pNMG-499
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y




E155V_I156F_K157N_K160E_K161T)


pNMG-500
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y




E155V_I156F_K157N_K160E)


pNMG-513
pCMV_ecTadA-92 a.a.-ecTadA-32
(wt) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V




I156F)


pNMG-514
pCMV_ecTadA-92 a.a.-ecTadA-32
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-515
pCMV_ecTadA-92 a.a.-ecTadA-64
(wt) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-516
pCMV_ecTadA-92 a.a.-ecTadA-64
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-517
pCMV_ecTadA-32 a.a.-ecTadA-64
(wt) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-518
pCMV_ecTadA-32 a.a.-ecTadA-64
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-519
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74Q


pNMG-520
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74Q




L84F_A106V_D108N_H123Y_D147Y_E155V_I156F


pNMG-521
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74A_L84F_A106V_D108N_H123Y_D147Y_E155V




I156F


pNMG-522
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R98Q


pNMG-523
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R129Q


pNMG-524
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R74Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-525
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R74Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R74Q_L84F_A106V_D108N_H123Y_D147Y




E155V_I156F)


pNMG-526
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R74A_L84F_A106V_D108N_H123Y_D147Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
E155V_I156F) +




(R74A_L84F_A106V_D108N_H123Y_D147Y




E155V_I156F)


pNMG-527
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R98Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_R98Q_A106V_D108N_H123Y_D147Y




E155V_I156F)


pNMG-528
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R129Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_R129Q_D147Y




E155V_I156F)


pNMG-529
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-530
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_K157N) +




(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-543
pCMV_ecTadA-(SGGS)2-XTEN-
(P48S_L84F_A106V_D108N_H123Y_A142N



(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F)


pNMG-544
pCMV_ecTadA-(SGGS)2-XTEN-
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N



(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_L157N)


pNMG-545
pCMV_ecTadA-(SGGS)2-XTEN-
P48S_A142N



(SGGS)2_nCas9_SGGS_NLS


pNMG-546
pCMV_ecTadA-(SGGS)2-XTEN-
P48T_I49V_A142N



(SGGS)2_nCas9_SGGS_NLS


pNMG-547
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F)


pNMG-548
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_L84F_A106V_D108N_H123Y_A142N



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F) +




(P48S_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F))


pNMG-549
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F))


pNMG-550
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V




I156F)


pNMG-551
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F_L157N)


pNMG-552
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D147Y_E155V_I156F_L157N) +




(P48T_I49V_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F_L157N)


pNMG-553
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N




D147Y_E155V_I156F_L157N)


pNMG-554
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V




I156F)


pNMG-555
pCMV_ecTadA-24 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-556
pCMV_ecTadA-24 a.a. linker-ecTadA- 32 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-557
pCMV_ecTadA-24 a.a. linker-ecTadA- 40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-558
pCMV_ecTadA- 32 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-559
pCMV_ecTadA- 32 a.a. linker-ecTadA- 40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-560
pCMV_ecTadA- 40 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-561
pCMV_ecTadA- 40 a.a. linker-ecTadA- 32 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-562
pCMV_ecTadA- 40 a.a. linker-ecTadA- 40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-563
pCMV_ecTadA- 24 a.a. linker_nCas9_SGGS_NLS
wild-type


pNMG-564
pCMV_ecTadA- 24 a.a. linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C




D147Y_E155V_I156F_K157N)


pNMG-565
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2_nCas9_XTEN_MBD4_SGGS_NLS
D147Y_E155V_I156F_K157N)


pNMG-566
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C



(SGGS)2_nCas9_XTEN_TDG_SGGS_NLS
D147Y_E155V_I156F_K157N)


pNMG-572
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_E155V_I156F_K157N)


pNMG-573
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y




S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-574
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-575
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N




H123Y_A142N_S146C_D147Y_E155V_I156F




K157N)


pNMG-576
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_E155V_I156F_K157N)


pNMG-577
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y




S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-578
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-579
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N




H123Y_A142N_S146C_D147Y_E155V_I156F




K157N)


pNMG-580
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
S146C_D147Y_E155V_I156F_K157N) +




(H36L_P48S_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_E155V_I156F_K157N)


pNMG-581
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_E155V_I156F_K157N)


pNMG-583
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




A142N_S146C_D147Y_E155V_I156F_K157N)


pNMG-586
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_E155V_I156F_K157N)


pNMG-588
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-603
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-604
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-605
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146R_D147Y_E155V_I156F_K161T)


pNMG-606
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_R152H_E155V_I156F_K157N)


pNMG-607
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-608
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-609
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_A142A_S146C_D147Y_E155V_I156F




K157N)


pNMG-610
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_A142A_S146C_D147Y_R152P_E155V




I156F_K157N)


pNMG-611
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-612
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-613
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146R_D147Y_E155V_I156F_K161T)


pNMG-614
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_R152H_E155V_I156F_K157N)


pNMG-615
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-616
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-617
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_A142A_S146C_D147Y_E155V_I156F




K157N)


pNMG-618
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_A142A_S146C_D147Y_R152P_E155V




I156F_K157N)


pNMG-619
pCMV_ecTadA- 32 a.a.-_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-620
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-621
pCMV_ecTadA- 32 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-622
pCMV_ecTadA- 32 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y




A142N_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-623
pCMV_ecTadA- 32 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)


pNMG-624
pCMV_ecTadA- 32 a.a. linker-ecTadA- 24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N




H123Y_S146C_D147Y_R152P_E155V_I156F




K157N)









In some embodiments, the A to G nucleobase editor comprises a dCas9 or nCas9 fused to an adenosine deaminase. Such nucleobase editors are described in US provisional application, U.S. Ser. No. 62/370,684, filed Aug. 3, 2016; US provisional application, U.S. Ser. No. 62/370,684, filed Feb. 3, 2017, US provisional application, U.S. Ser. No. 62/473,714, filed Mar. 20, 2017, and PCT Application PCT/US2017/045381, filed Aug. 3, 2017; each of which is incorporated herein by reference.


In some embodiments, an A to G nucleobase editor comprises the structure of NH2-[second adenosine deaminase]-[first adenosine deaminase]-[dCas9]-COOH. In some embodiments, the second adenosine deaminase is a wile-type ecTadA (SEQ ID NO: 314). In some embodiments, the a linker is used between each domain. In some embodiments, the linker is 32 amino acids long and comprises the amino acid sequence of SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 384).


In some embodiments, the adenosine deaminase comprises one or more of a W23X, H36X, N37X, P48X, I49X, R51X, N72X, L84X, S97X, A106X, D108X, H123X, G125X, A142X, S146X, D147X, R152X, E155X, I156X, K157X, and/or K161X mutation in SEQ ID NO: 314, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of W23L, W23R, H36L, P48S, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, R152P, E155V, I156F, and/or K157N mutation in SEQ ID NO: 314, or one or more corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve mutations selected from H36X, P48X, R51X, L84X, A106X, D108X, H123X, S146X, D147X, E155X, I156X, and K157X in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve mutations selected from H36L, P48S, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V, I156F, and K157N in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of a H36L, P48S, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V, I156F, and K157N mutation in SEQ ID NO: 314, or corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, or thirteen mutations selected from H36X, P48X, R51X, L84X, A106X, D108X, H123X, A142X, S146X, D147X, E155X, I156X, and K157X in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, or thirteen mutations selected from H36L, P48S, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, E155V, I156F, and K157N in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of a H36L, P48S, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, E155V, I156F, and K157N mutation in SEQ ID NO: 314, or corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen mutations selected from W23X, H36X, P48X, R51X, L84X, A106X, D108X, H123X, A142X, S146X, D147X, E155X, I156X, and K157X in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen mutations selected from W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, E155V, I156F, and K157N in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of a W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, E155V, I156F, and K157N mutation in SEQ ID NO: 314, or corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen mutations selected from W23X, H36X, P48X, R51X, L84X, A106X, D108X, H123X, A142X, S146X, D147X, R152X, E155X, I156X, and K157X in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen mutations selected from W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, R152P, E155V, I156F, and K157N in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of a W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, R152P, E155V, I156F, and K157N mutation in SEQ ID NO: 314, or corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen mutations selected from W23X, H36X, P48X, R51X, L84X, A106X, D108X, H123X, S146X, D147X, R152X, E155X, I156X, and K157X in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen mutations selected from W23R, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, R152P, E155V, I156F, and K157N in SEQ ID NO: 314, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises or consists of a W23R, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, R152P, E155V, I156F, and K157N mutation in SEQ ID NO: 314, or corresponding mutations in another adenosine deaminase.


In some embodiments, a nucleobase editor converts a C to G. Such nucleobase editors are described in US provisional application, U.S. Ser. No. 62/470,175, filed Mar. 10, 2017, US provisional application, U.S. Ser. No. 62/470,175, filed Mar. 10, 2017 incorporated herein by reference.


Non-limiting, exemplary types of nucleobase editors (including C to T, A to G, and C to G nucleobase editors) and their respective sequences are provided in Example 1. In some embodiments, the nucleobase editor is a variant of the nucleobase editors described herein. For example, in some embodiments, the nucleobase editor is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a nucleobase editor described herein (exemplary sequences are provided in Example 1). In some embodiments, the nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than any of the nucleobase editors provided herein. In some embodiments, the nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 500 amino acids, no more than 450 amino acids, no more than 400 amino acids, no more than 350 amino acids, no more than 300 amino acids, no more than 250 amino acids, no more than 200 amino acids, no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids longer or shorter) than any of the nucleobase editors provided herein.


A “deaminase” refers to an enzyme that catalyzes the removal of an amine group from a molecule, or deamination, for example, through hydrolysis. In some embodiments, the deaminase is a cytidine deaminase, catalyzing the deamination of cytidine (C) to uridine (U), deoxycytidine (dC) to deoxyuridine (dU), or 5-methyl-cytidine to thymidine (T, 5-methyl-U), respectively. Subsequent DNA repair mechanisms ensure that a dU is replaced by T, as described in Komor et al. (Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), which is incorporated herein by reference). In some embodiments, the deaminase is a cytosine deaminase, catalyzing and promoting the conversion of cytosine to uracil (e.g., in RNA) or thymine (e.g., in DNA). In some embodiments, the deaminase is an adenosine deaminase that converts an A to G. In some embodiments, the deaminase is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is a variant of a naturally-occurring deaminase from an organism, and the variants do not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism. In some embodiments, the deaminase comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than any of the deaminases provided herein. In some embodiments, the deaminase comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 100 amino acids, no more than 90 amino acids, no more than 80 amino acids, no more than 70 amino acids, no more than 60 amino acids, no more than 50 amino acids, no more than 40 amino acids, no more than 30 amino acids, no more than 20 amino acids, no more than 10 amino acids, no more than 5 amino acids, no more than 2 amino acids, longer or shorter) than any of the deaminases provided herein.


A “split nucleobase editor” refers to a nucleobase editor that is provided as an N-terminal portion (also referred to as a N-terminal half) and a C-terminal portion (also referred to as a C-terminal half) encoded by two separate nucleic acids. The polypeptides corresponding to the N-terminal portion and the C-terminal portion of the nucleobase editor may be combined to form a complete nucleobase editor. In some embodiments, for a nucleobase editor that comprises a dCas9 or nCas9, the “split” is located in the dCas9 or nCas9 domain, at positions as described herein in the split Cas9. Accordingly, in some embodiments, the N-terminal portion of the nucleobase editor contains the N-terminal portion of the split Cas9, and the C-terminal portion of the nucleobase editor contains the C-terminal portion of the split Cas9. Similarly, intein-N or intein-C may be fused to the N-terminal portion or the C-terminal portion of the nucleobase editor, respectively, for the joining of the N- and C-terminal portions of the nucleobase editor to form a complete nucleobase editor.


Two proteins or protein domains are considered to be “fused” when a peptide bond is formed linking the two proteins or two protein domains. In some embodiments, a linker (e.g., a peptide linker) is present between the two proteins or two protein domains. The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linke are also contemplated.


A “uracil glycosylase inhibitor (UGI)” refers to a protein that inhibits the activity of uracil-DNA glycosylase. Suitable UGI proteins for use in accordance with the present disclosure include, for example, those published in Wang et al., J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., J. Mol. Biol. 287:331-346(1999), each of which is incorporated herein by reference. Non-limiting, exemplary proteins that may be used as a UGI of the present disclosure and their respective sequences are provided in Example 1. In some embodiments, the UGI is a variant of a naturally-occurring deaminase from an organism, and the variants do not occur in nature. For example, in some embodiments, the UGI is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring UGI from an organism or any UGIs provided herein (e.g., in Example 1). In some embodiments, the UGI comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than any of the UGIs provided herein. In some embodiments, the UGI comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 20 amino acids, no more than 15 amino acids, no more than 10 amino acids, no more than 5 amino acids, no more than 2 amino acids longer or shorter) than any of the UGIs provided herein.


A gRNA is a component of the CRISPR/Cas system. A “gRNA” (guide ribonucleic acid) herein refers to a fusion of a CRISPR-targeting RNA (crRNA) and a trans-activation crRNA (tracrRNA), providing both targeting specificity and scaffolding/binding ability for Cas9 nuclease. A “crRNA” is a bacterial RNA that confers target specificity and requires tracrRNA to bind to Cas9. A “tracrRNA” is a bacterial RNA that links the crRNA to the Cas9 nuclease and typically can bind any crRNA. The sequence specificity of a Cas DNA-binding protein is determined by gRNAs, which have nucleotide base-pairing complementarity to target DNA sequences. The native gRNA comprises a 20 nucleotide (nt) Specificity Determining Sequence (SDS), which specifies the DNA sequence to be targeted, and is immediately followed by a 80 nt scaffold sequence, which associates the gRNA with Cas9. In some embodiments, an SDS of the present disclosure has a length of 15 to 100 nucleotides, or more. For example, an SDS may have a length of 15 to 90, 15 to 85, 15 to 80, 15 to 75, 15 to 70, 15 to 65, 15 to 60, 15 to 55, 15 to 50, 15 to 45, 15 to 40, 15 to 35, 15 to 30, or 15 to 20 nucleotides. In some embodiments, the SDS is 20 nucleotides long. For example, the SDS may be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. At least a portion of the target DNA sequence is complementary to the SDS of the gRNA. For Cas9 to successfully bind to the DNA target sequence, a region of the target sequence is complementary to the SDS of the gRNA sequence and is immediately followed by the correct protospacer adjacent motif (PAM) sequence (e.g., NGG for Cas9 and TTN, TTTN, or YTN for Cpf1). In some embodiments, an SDS is 100% complementary to its target sequence. In some embodiments, the SDS sequence is less than 100% complementary to its target sequence and is, thus, considered to be partially complementary to its target sequence. For example, a targeting sequence may be 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% complementary to its target sequence. In some embodiments, the SDS of template DNA or target DNA may differ from a complementary region of a gRNA by 1, 2, 3, 4 or 5 nucleotides.


In addition to the SDS, the gRNA comprises a scaffold sequence (corresponding to the tracrRNA in the native CRISPR/Cas system) that is required for its association with Cas9 (referred to herein as the “gRNA handle”). In some embodiments, the gRNA comprises a structure 5′-[SDS]-[gRNA handle]-3′. In some embodiments, the scaffold sequence comprises the nucleotide sequence of 5′-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguc cguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 358). Other non-limiting, suitable gRNA handle sequences that may be used in accordance with the present disclosure are listed in Table 1.









TABLE 1







Guide RNA Handle Sequences











SEQ




ID


Organism
gRNA handle sequence
NO






S. pyogenes

GUUUAAGAGCUAUGCUGGAAAGCCACGGUGAAA
359



AAGUUCAACUAUUGCCUGAUCGGAAUAAAUUUG




AACGAUACGACAGUCGGUGCUUUUUUU







S. pyogenes

GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAA
360



GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCAC




CGAGUCGGUGCUUUUUU







S.

GUUUUUGUACUCUCAAGAUUCAAUAAUCUUGCA
361



thermophilus

GAAGCUACAAAGAUAAGGCUUCAUGCCGAAAUC



CRISPR1
AACACCCUGUCAUUUUAUGGCAGGGUGUUUU







S.

GUUUUAGAGCUGUGUUGUUUGUUAAAACAACA
362



thermophilus

CAGCGAGUUAAAAUAAGGCUUAGUCCGUACUCA



CRISPR3
ACUUGAAAAGGUGGCACCGAUUCGGUGUUUUU







C. jejuni

AAGAAAUUUAAAAAGGGACUAAAAUAAAGAGU
363



UUGCGGGACUCUGCGGGGUUACAAUCCCCUAAA




ACCGCUUUU







F. novicida

AUCUAAAAUUAUAAAUGUACCAAAUAAUUAAU
364



GCUCUGUAAUCAUUUAAAAGUAUUUUGAACGG




ACCUCUGUUUGACACGUCUGAAUAACUAAAA







S.

UGUAAGGGACGCCUUACACAGUUACUUAAAUCU
365



thermophilus2

UGCAGAAGCUACAAAGAUAAGGCUUCAUGCCGA




AAUCAACACCCUGUCAUUUUAUGGCAGGGUGUU




UUCGUUAUUU







M. mobile

UGUAUUUCGAAAUACAGAUGUACAGUUAAGAA
366



UACAUAAGAAUGAUACAUCACUAAAAAAAGGCU




UUAUGCCGUAACUACUACUUAUUUUCAAAAUAA




GUAGUUUUUUUU







L. innocua

AUUGUUAGUAUUCAAAAUAACAUAGCAAGUUA
367



AAAUAAGGCUUUGUCCGUUAUCAACUUUUAAUU




AAGUAGCGCUGUUUCGGCGCUUUUUUU







S. pyogenes

GUUGGAACCAUUCAAAACAGCAUAGCAAGUUAA
368



AAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU




GGCACCGAGUCGGUGCUUUUUUU







S. mutans

GUUGGAAUCAUUCGAAACAACACAGCAAGUUAA
369



AAUAAGGCAGUGAUUUUUAAUCCAGUCCGUACA




CAACUUGAAAAAGUGCGCACCGAUUCGGUGCUU




UUUUAUUU







S.

UUGUGGUUUGAAACCAUUCGAAACAACACAGCG
370



thermophilus

AGUUAAAAUAAGGCUUAGUCCGUACUCAACUUG




AAAAGGUGGCACCGAUUCGGUGUUUUUUUU







N. 

ACAUAUUGUCGCACUGCGAAAUGAGAACCGUUG
371



meningitidis

CUACAAUAAGGCCGUCUGAAAAGAUGUGCCGCA




ACGCUCUGCCCCUUAAAGCUUCUGCUUUAAGGG




GCA







P. multocida

GCAUAUUGUUGCACUGCGAAAUGAGAGACGUUG
372



CUACAAUAAGGCUUCUGAAAAGAAUGACCGUAA




CGCUCUGCCCCUUGUGAUUCUUAAUUGCAAGGG




GCAUCGUUUUU









In some embodiments, the guide RNA is about 15-120 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more contiguous nucleotides that is complementary to a target sequence. Sequence complementarity refers to distinct interactions between adenine and thymine (DNA) or uracil (RNA), and between guanine and cytosine.


A “protospacer adjacent motif” (PAM) is typically a sequence of nucleotides located adjacent to (e.g., within 10, 9, 8, 7, 6, 5, 4, 3, 3, or 1 nucleotide(s) of a target sequence). A PAM sequence is “immediately adjacent to” a target sequence if the PAM sequence is contiguous with the target sequence (that is, if there are no nucleotides located between the PAM sequence and the target sequence). In some embodiments, a PAM sequence is a wild-type PAM sequence. Examples of PAM sequences include, without limitation, NGG, NGR, NNGRR(T/N), NNNNGATT, NNAGAAW, NGGAG, NAAAAC, AWG, and CC. In some embodiments, a PAM sequence is obtained from Streptococcus pyogenes (e.g., NGG or NGR). In some embodiments, a PAM sequence is obtained from Staphylococcus aureus (e.g., NNGRR(T/N)). In some embodiments, a PAM sequence is obtained from Neisseria meningitidis (e.g., NNNNGATT). In some embodiments, a PAM sequence is obtained from Streptococcus thermophilus (e.g., NNAGAAW or NGGAG). In some embodiments, a PAM sequence is obtained from Treponema denticola (e.g., NAAAAC). In some embodiments, a PAM sequence is obtained from Escherichia coli (e.g., AWG). In some embodiments, a PAM sequence is obtained from Pseudomonas auruginosa (e.g., CC). Other PAM sequences are contemplated. A PAM sequence is typically located downstream (i.e., 3′) from the target sequence, although in some embodiments a PAM sequence may be located upstream (i.e., 5′) from the target sequence.


A “nuclear localization signal” or “NLS” refers to as an amino acid sequence that “tags” a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines or arginines exposed on the protein surface. One or more NLS may be added to the N- or C-terminus of a protein, or internally (e.g., between two protein domains). For example, one or more NLS may be added to the N- or C-terminus of a nucleobase editor, or between the Cas9 and the deaminase in a nucleobase editor. In some embodiments, 1, 2, 3, 4, 5, or more NLS may be added. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., PCT/EP2000/011690, filed Nov. 23, 2000, the contents of which are incorporated herein by reference for its disclosure of exemplary nuclear localization sequences. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 373) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 374). In some embodiments, a linker is inserted between the Cas9 and the deaminase.


An NLS can be classified as monopartite or bipartite. A non-limiting example of a monopartite NLS is the sequence PKKKRKV (SEQ ID NO: 373) in the SV40 Large T-antigen. A bipartite NLS typically contains two clusters of basic amino acids, separated by a spacer of about 10 amino acids. One non-limiting example of a bipartite NLS is the NLS of nucleoplasmin,











(SEQ ID NO: 344)



KRPAATKKAGQAKKKK (spacer underlined).







In some embodiments, the NLS used in accordance with the present disclosure is the NLS of nucleoplasmin comprising the amino acid sequence of KRPAATKKAGQAKKKK (SEQ ID NO: 344). Other bipartite NLSs that may be used in accordance with the present disclosure include, without limitation: SV40 bipartite NLS (KRTADGSEFESPKKKRKV (SEQ ID NO: 375), e.g., as described in Hodel et al., J Biol Chem. 2001 Jan. 12; 276(2):1317-25, incorporated herein by reference); Kanadaptin bipartite NLS (KKTELQTTNAENKTKKL (SEQ ID NO: 345), e.g., as described in Hubner et al., Biochem J. 2002 Jan. 15; 361(Pt 2):287-96, incorporated herein by reference); influenza A nucleoprotein bipartite NLS (KRGINDRNFWRGENGRKTR (SEQ ID NO: 346), e.g., as described in Ketha et al., BMC Cell Biology. 2008; 9:22, incorporated herein by reference); and ZO-2 bipartite NLS (RKSGKIAAIVVKRPRK (SEQ ID NO: 347), e.g., as described in Quiros et al., Nusrat A, ed. Molecular Biology of the Cell. 2013; 24(16):2528-2543, incorporated herein by reference).


The nucleotide sequence encoding an NLS is “operably linked” to the nucleotide sequence encoding a protein to which the NLS is fused (e.g., a Cas9 or a nucleobase editor) when two coding sequences are “in-frame with each other” and are translated as a single polypeptide fusing two sequences.


Nucleic acids of the present disclosure may include one or more genetic elements. A “genetic element” refers to a particular nucleotide sequence that has a role in nucleic acid expression (e.g., promoter, enhancer, terminator) or encodes a discrete product of an engineered nucleic acid (e.g., a nucleotide sequence encoding a guide RNA, a protein and/or an RNA interference molecule).


A “promoter” refers to a control region of a nucleic acid sequence at which initiation and rate of transcription of the remainder of a nucleic acid sequence are controlled. A promoter may also contain sub-regions at which regulatory proteins and molecules may bind, such as RNA polymerase and other transcription factors. Promoters may be constitutive, inducible, activatable, repressible, tissue-specific, or any combination thereof. A promoter drives expression or drives transcription of the nucleic acid sequence that it regulates. Herein, a promoter is considered to be “operably linked” when it is in a correct functional location and orientation in relation to a nucleic acid sequence it regulates to control (“drive”) transcriptional initiation and/or expression of that sequence.


A promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment of a given gene or sequence. Such a promoter is referred to as an “endogenous promoter.” In some embodiments, a coding nucleic acid sequence may be positioned under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with the encoded sequence in its natural environment. Such promoters may include promoters of other genes; promoters isolated from any other cell; and synthetic promoters or enhancers that are not “naturally occurring” such as, for example, those that contain different elements of different transcriptional regulatory regions and/or mutations that alter expression through methods of genetic engineering that are known in the art. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including polymerase chain reaction (PCR).


In some embodiments, promoters used in accordance with the present disclosure are “inducible promoters,” which are promoters that are characterized by regulating (e.g., initiating or activating) transcriptional activity when in the presence of, influenced by or contacted by an inducer signal. An inducer signal may be endogenous or a normally exogenous condition (e.g., light), compound (e.g., chemical or non-chemical compound) or protein that contacts an inducible promoter in such a way as to be active in regulating transcriptional activity from the inducible promoter. Thus, a “signal that regulates transcription” of a nucleic acid refers to an inducer signal that acts on an inducible promoter. A signal that regulates transcription may activate or inactivate transcription, depending on the regulatory system used. Activation of transcription may involve directly acting on a promoter to drive transcription or indirectly acting on a promoter by inactivation a repressor that is preventing the promoter from driving transcription. Conversely, deactivation of transcription may involve directly acting on a promoter to prevent transcription or indirectly acting on a promoter by activating a repressor that then acts on the promoter.


A “transcriptional terminator” is a nucleic acid sequence that causes transcription to stop. A transcriptional terminator may be unidirectional or bidirectional. It is comprised of a DNA sequence involved in specific termination of an RNA transcript by an RNA polymerase. A transcriptional terminator sequence prevents transcriptional activation of downstream nucleic acid sequences by upstream promoters. A transcriptional terminator may be necessary in vivo to achieve desirable expression levels or to avoid transcription of certain sequences. A transcriptional terminator is considered to be “operably linked to” a nucleotide sequence when it is able to terminate the transcription of the sequence it is linked to.


The most commonly used type of terminator is a forward terminator. When placed downstream of a nucleic acid sequence that is usually transcribed, a forward transcriptional terminator will cause transcription to abort. In some embodiments, bidirectional transcriptional terminators are provided, which usually cause transcription to terminate on both the forward and reverse strand. In some embodiments, reverse transcriptional terminators are provided, which usually terminate transcription on the reverse strand only.


In prokaryotic systems, terminators usually fall into two categories (1) rho-independent terminators and (2) rho-dependent terminators. Rho-independent terminators are generally composed of palindromic sequence that forms a stem loop rich in G-C base pairs followed by several T bases. Without wishing to be bound by theory, the conventional model of transcriptional termination is that the stem loop causes RNA polymerase to pause, and transcription of the poly-A tail causes the RNA:DNA duplex to unwind and dissociate from RNA polymerase.


In eukaryotic systems, the terminator region may comprise specific DNA sequences that permit site-specific cleavage of the new transcript so as to expose a polyadenylation site. This signals a specialized endogenous polymerase to add a stretch of about 200 A residues (polyA) to the 3′ end of the transcript. RNA molecules modified with this polyA tail appear to more stable and are translated more efficiently. Thus, in some embodiments involving eukaryotes, a terminator may comprise a signal for the cleavage of the RNA. In some embodiments, the terminator signal promotes polyadenylation of the message. The terminator and/or polyadenylation site elements may serve to enhance output nucleic acid levels and/or to minimize read through between nucleic acids.


Terminators for use in accordance with the present disclosure include any terminator of transcription described herein or known to one of ordinary skill in the art. Examples of terminators include, without limitation, the termination sequences of genes such as, for example, the bovine growth hormone terminator, and viral termination sequences such as, for example, the SV40 terminator, spy, yejM, secG-leuU, thrLABC, rrnB T1, hisLGDCBHAFI, metZWV, rrnC, xapR, aspA and arcA terminator. In some embodiments, the termination signal may be a sequence that cannot be transcribed or translated, such as those resulting from a sequence truncation.


A “Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE)” is a DNA sequence that, when transcribed creates a tertiary structure enhancing expression. Commonly used in molecular biology to increase expression of genes delivered by viral vectors. WPRE is a tripartite regulatory element with gamma, alpha, and beta components. The full WPRE sequence is 609 bp long:









(SEQ ID NO: 376)


GCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTG





GTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTA





ATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTC





CTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTG





TCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACT





GGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTT





CCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCT





GCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCG





GGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGAT





TCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGG





ACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTT





CGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCA





TCGATACCG.






An “adeno-associated virus” or “AAV” is a virus which infects humans and some other primate species. The wild-type AAV genome is a single-stranded deoxyribonucleic acid (ssDNA), either positive- or negative-sensed. The genome comprises two inverted terminal repeats (ITRs), one at each end of the DNA strand, and two open reading frames (ORFs): rep and cap between the ITRs. The rep ORF comprises four overlapping genes encoding Rep proteins required for the AAV life cycle. The cap ORF comprises overlapping genes encoding capsid proteins: VP1, VP2 and VP3, which interact together to form the viral capsid. VP1, VP2 and VP3 are translated from one mRNA transcript, which can be spliced in two different manners: either a longer or shorter intron can be excised resulting in the formation of two isoforms of mRNAs: a ˜2.3 kb- and a ˜2.6 kb-long mRNA isoform. The capsid forms a supramolecular assembly of approximately 60 individual capsid protein subunits into a non-enveloped, T-1 icosahedral lattice capable of protecting the AAV genome. The mature capsid is composed of VP1, VP2, and VP3 (molecular masses of approximately 87, 73, and 62 kDa respectively) in a ratio of about 1:1:10.


rAAV particles may comprise a nucleic acid vector (e.g., a recombinant genome), which may comprise at a minimum: (a) one or more heterologous nucleic acid regions comprising a sequence encoding a protein or polypeptide of interest (e.g., a split Cas9 or split nucleobase) or an RNA of interest (e.g., a gRNA), or one or more nucleic acid regions comprising a sequence encoding a Rep protein; and (b) one or more regions comprising inverted terminal repeat (ITR) sequences (e.g., wild-type ITR sequences or engineered ITR sequences) flanking the one or more nucleic acid regions (e.g., heterologous nucleic acid regions). In some embodiments, the nucleic acid vector is between 4 kb and 5 kb in size (e.g., 4.2 to 4.7 kb in size). In some embodiments, the nucleic acid vector further comprises a region encoding a Rep protein. In some embodiments, the nucleic acid vector is circular. In some embodiments, the nucleic acid vector is single-stranded. In some embodiments, the nucleic acid vector is double-stranded. In some embodiments, a double-stranded nucleic acid vector may be, for example, a self-complimentary vector that contains a region of the nucleic acid vector that is complementary to another region of the nucleic acid vector, initiating the formation of the double-strandedness of the nucleic acid vector.


The terms “nucleic acid,” and “polynucleotide,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome (e.g., an engineered viral vector), an engineered vector, or fragment thereof, or a synthetic DNA, RNA, or DNA/RNA hybrid, optionally including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA or DNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), which are incorporated herein by reference.


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent (e.g., mouse, rat). In some embodiments, the subject is a domesticated animal. In some embodiments, the subject is a sheep, a goat, a cow, a cat, or a dog. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence. The fusion proteins (e.g., base editors) described herein are made recombinantly. Recombinant technology is familiar to those skilled in the art.


The term “pharmaceutically-acceptable carrier” means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.).


“A therapeutically effective amount” as used herein refers to the amount of each therapeutic agent (e.g., nucleobase editor, rAAV) described in the present disclosure required to confer therapeutic effect on the subject, either alone or in combination with one or more other therapeutic agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual subject parameters including age, physical condition, size, gender, and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a subject may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons. Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage. For example, therapeutic agents that are compatible with the human immune system, such as polypeptides comprising regions from humanized antibodies or fully human antibodies, may be used to prolong half-life of the polypeptide and to prevent the polypeptide being attacked by the host's immune system.


“A subject in need thereof” refers to an individual who has a disease, a sign and/or symptom of a disease, or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease. In some embodiments, the subject is a mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is human. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a companion animal. A “companion animal” refers to pets and other domestic animals. Non-limiting examples of companion animals include dogs and cats; livestock, such as horses, cattle, pigs, sheep, goats, and chickens; and other animals, such as mice, rats, guinea pigs, and hamsters.


The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Provided herein, are compositions (e.g., vectors, recombinant viruses) and kits comprising nucleic acids encoding split Cas9 proteins or nucleobase editors, and methods of delivering a nucleobase editor or a Cas9 protein into a cell using such nucleic acids. The N-terminal portion and C-terminal portion of a nucleobase editor or a Cas9 protein are encoded on separate nucleic acids and delivered into a cell, e.g., a via recombinant adeno-associated virus (rAAV particles) delivery. The polypeptides corresponding to the N-terminal portion and C-terminal portions of the nucleobase editor or Cas9 protein may be joined to form a complete nucleobase editor or Cas9 protein, e.g., via intein-mediated protein splicing.


Accordingly, some aspects of the present disclosure relate to compositions comprising (i) a first nucleotide sequence encoding an N-terminal portion of a Cas9 protein fused at its C-terminus to an intein-N; and (ii) a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the Cas9 protein, wherein the first nucleotide sequence or second nucleotide sequence is operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization signal (NLS).


The Cas9 protein encoded by the first and second nucleotide sequence is herein referred as a “split Cas9.” The Cas9 protein is known to have a N-terminal lobe and a C-terminal lobe linked by a disordered linker (e.g., as described in Nishimasu et al., Cell, Volume 156, Issue 5, pp. 935-949, 2014, incorporated herein by reference). In some embodiments, the N-terminal portion of the split Cas9 protein comprises the N-terminal lobe of a Cas9 protein. In some embodiments, the C-terminal portion of the split Cas9 comprises the C-terminal lobe of a Cas9 protein. In some embodiments, the N-terminal portion of the split Cas9 comprises a portion of any one of SEQ ID NO: 1-275 and 394-397 that corresponds to amino acids 1-(550-650) in SEQ ID NO: 1. “1-(550-650)” means starting from amino acid 1 and ending anywhere between amino acid 550-650 (inclusive). For example, the N-terminal portion of the split Cas9 may comprise a portion of any one of SEQ ID NOs: 1-275 and 394-397 that corresponds to amino acids 1-550, 1-551, 1-552, 1-553, 1-554, 1-555, 1-556, 1-557, 1-558, 1-559, 1-560, 1-561, 1-562, 1-563, 1-564, 1-565, 1-566, 1-567, 1-568, 1-569, 1-570, 1-571, 1-572, 1-573, 1-574, 1-575, 1-576, 1-577, 1-578, 1-579, 1-580, 1-581, 1-582, 1-583, 1-584, 1-585, 1-586, 1-587, 1-588, 1-589, 1-590, 1-591, 1-592, 1-593, 1-594, 1-595, 1-596, 1-597, 1-598, 1-599, 1-600, 1-601, 1-602, 1-603, 1-604, 1-605, 1-606, 1-607, 1-608, 1-609, 1-610, 1-611, 1-612, 1-613, 1-614, 1-615, 1-616, 1-617, 1-618, 1-619, 1-620, 1-621, 1-622, 1-623, 1-624, 1-625, 1-626, 1-627, 1-628, 1-629, 1-630, 1-631, 1-632, 1-633, 1-634, 1-635, 1-636, 1-637, 1-638, 1-639, 1-640, 1-641, 1-642, 1-643, 1-644, 1-645, 1-646, 1-647, 1-648, 1-649, or 1-650 in SEQ ID NO: 1. In some embodiments, the N-terminal portion of the split Cas9 protein comprises a portion of any one of SEQ ID NOs: 1-275 and 394-397 that corresponds to amino acids 1-573 or 1-637 of SEQ ID NO: 1.


The C-terminal portion of the split Cas9 can be joined with the N-terminal portion of the split Cas9 to form a complete Cas9 protein. In some embodiments, the C-terminal portion of the Cas9 protein starts from where the N-terminal portion of the Cas9 protein ends. As such, in some embodiments, the C-terminal portion of the split Cas9 comprises a portion of any one of SEQ ID NO: 1-275 and 394-397 that corresponds to amino acids (551-651)-1368 of SEQ ID NO: 1. “(551-651)-1368” means starting at an amino acid between amino acids 551-651 (inclusive) and ending at amino acid 1368. For example, the C-terminal portion of the split Cas9 may comprise a portion of any one of SEQ ID NO: 1-275 and 394-397 that corresponds to amino acid 551-1368, 552-1368, 553-1368, 554-1368, 555-1368, 556-1368, 557-1368, 558-1368, 559-1368, 560-1368, 561-1368, 562-1368, 563-1368, 564-1368, 565-1368, 566-1368, 567-1368, 568-1368, 569-1368, 570-1368, 571-1368, 572-1368, 573-1368, 574-1368, 575-1368, 576-1368, 577-1368, 578-1368, 579-1368, 580-1368, 581-1368, 582-1368, 583-1368, 584-1368, 585-1368, 586-1368, 587-1368, 588-1368, 589-1368, 590-1368, 591-1368, 592-1368, 593-1368, 594-1368, 595-1368, 596-1368, 597-1368, 598-1368, 599-1368, 600-1368, 601-1368, 602-1368, 603-1368, 604-1368, 605-1368, 606-1368, 607-1368, 608-1368, 609-1368, 610-1368, 611-1368, 612-1368, 613-1368, 614-1368, 615-1368, 616-1368, 617-1368, 618-1368, 619-1368, 620-1368, 621-1368, 622-1368, 623-1368, 624-1368, 625-1368, 626-1368, 627-1368, 628-1368, 629-1368, 630-1368, 631-1368, 632-1368, 633-1368, 634-1368, 635-1368, 636-1368, 637-1368, 638-1368, 639-1368, 640-1368, 641-1368, 642-1368, 643-1368, 644-1368, 645-1368, 646-1368, 647-1368, 648-1368, 649-1368, 650-1368, or 651-1368 of SEQ ID NO: 1. In some embodiments, the C-terminal portion of the split Cas9 protein comprises a portion of any one of SEQ ID NO: 1-275 and 394-397 that corresponds to amino acids 574-1368 or 638-1368 of SEQ ID NO: 1.


Cas9 variants may also be delivered to cells using the methods described herein. For example, a Cas9 variant may also be “split” as described herein. A Cas9 variant may comprise an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 sequences provided herein. In some embodiments, the Cas9 variant comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than any of the Cas9 proteins provided herein (e.g., in Example 1). In some embodiments, the UGI comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids, or no more than 2 amino acids longer or shorter) than any of the Cas9 proteins provided herein.


In some embodiments, the N-terminal portion of a split Cas9 comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the corresponding portion of any one of the Cas9 sequences provided herein (e.g., in Example 1). In some embodiments, the N-terminal portion of the split Cas9 comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than the corresponding portion of any of the Cas9 proteins provided herein. In some embodiments, the N-terminal portion of the split Cas9 comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids, or no more than 2 amino acids longer or shorter) than the corresponding portion of any of the Cas9 proteins provided herein.


In some embodiments, the C-terminal portion of a split Cas9 comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the corresponding portion of any one of the Cas9 sequences provided herein (e.g., in Example 1). In some embodiments, the C-terminal portion of the split Cas9 comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than the corresponding portion of any of the Cas9 proteins provided herein. In some embodiments, the C-terminal portion of the split Cas9 comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids, or no more than 2 amino acids longer or shorter) than the corresponding portion of any of the Cas9 proteins provided herein.


In some embodiments, the Cas9 variant is a dCas9 or nCas9. In some embodiments, the N-terminal portion of the split Cas9 comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1. In some embodiments, the N-terminal portion of the split Cas9 comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1 and the C-terminal portion of the split Cas9 comprises a mutation corresponding to a H840A mutation in SEQ ID NO:1. In some embodiments, the N-terminal portion of the split Cas9 comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and the C-terminal portion of the split Cas9 comprises a histidine at the position corresponding to position 840 in SEQ ID NO:1.


In some embodiments, to join the N-terminal portion of the Cas9 protein and the C-terminal portion of the Cas9 protein, an intein system may be used. In some embodiments, the N-terminal portion of the Cas9 is fused to an intein-N. In some embodiments, the intein-N is fused to the C-terminus of the N-terminal portion of the Cas9 to form a structure of NH2—[N-terminal portion of Cas9]-[intein-N]—COOH. In some embodiments, the intein-N is encoded by the dnaE-n gene. In some embodiments, the intein-N comprises the amino acid sequence of any one of SEQ ID NOs: 350-351 and 354-355. In some embodiments, the C-terminal portion of the Cas9 is fused to an intein-C, and the intein-C is fused to the N-terminus of the C-terminal portion of the Cas9 to form a structure of NH2-[intein-C]—[C-terminal portion of Cas9]-COOH. In some embodiments, the intein-C is encoded by the dnaE-c gene. In some embodiments, the intein-C comprises the amino acid sequence of any one of SEQ ID NOs: 352-353 and 356-357. Other split intein systems may also be used in the present disclosure and are known in the art.


Split nucleobase editors may be used in the present disclosure. Some aspects of the present disclosure relate to compositions comprising (i) a first nucleotide sequence encoding an N-terminal portion of a nucleobase editor fused at its C-terminus to an intein-N; and (ii) a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the nucleobase editor.


Nucleobase editor variants are contemplated. For example, a nucleobase editor variant may also be “split” as described herein. A nucleobase editor variant may comprise an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the nucleobase editor sequences (SEQ ID NOs: X-X) provided herein.


In some embodiments, the N-terminal portion of a split nucleobase editor comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the corresponding portion of any one of the nucleobase editors provided herein (e.g., in Example 1). In some embodiments, the N-terminal portion of the split nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than the corresponding portion of any of the nucleobase editors provided herein. In some embodiments, the N-terminal portion of the split nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids, or no more than 2 amino acids longer or shorter) than the corresponding portion of any of the nucleobase editors provided herein.


In some embodiments, the C-terminal portion of a split nucleobase editor comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the corresponding portion of any one of the nucleobase editors provided herein (e.g., in Example 1). In some embodiments, the C-terminal portion of the split nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 30%, no more than 25%, no more than 20%, no more than 15%, no more than 10%, no more than 5%, no more than 1% longer or shorter) than the corresponding portion of any of the nucleobase editors provided herein. In some embodiments, the C-terminal portion of the split nucleobase editor comprises an amino acid sequence that is shorter or longer in length (e.g., by no more than 200 amino acids, no more than 150 amino acids, no more than 100 amino acids, no more than 50 amino acids, no more than 10 amino acids, no more than 5 amino acids, or no more than 2 amino acids longer or shorter) than the corresponding portion of any of the nucleobase editors provided herein.


As described herein, the N-terminal portion of a nucleobase editor comprises the N-terminal portion of a nuclease-inactive Cas9 protein (dCas9) or a Cas9 nickase (nCas9). In some embodiments, the N-terminal portion of a nucleobase editor further comprises a nucleobase modifying enzyme (e.g., nucleases, nickases, recombinases, deaminases, DNA repair enzymes, DNA damage enzymes, dismutases, alkylation enzymes, depurination enzymes, oxidation enzymes, pyrimidine dimer forming enzymes, integrases, transposases, polymerases, ligases, helicases, photolyases, glycosylases, epigenetic modifiers such as methylases, acetylases, methyltransferase, demethylase, etc.). In some embodiments, the nucleobase modifying enzyme is a deaminase (e.g., a cytosine deaminase or an adenosine deaminase, or functional variants thereof). In some embodiments, the nucleobase modifying enzyme is fused to the N-terminus of the N-terminal portion of the split dCas9 or split nCas9. In some embodiments, the N-terminal portion of the nucleobase editor has of the structure: NH2-[nucleobase modifying enzyme]-[N-terminal portion of dCas9 or nCas9]-COOH. In some embodiments, the N-terminal portion of the nucleobase editor is fused to an intein N. In some embodiments, the intein-N is fused to the C-terminus of the N-terminal portion of the nucleobase editor.


In some embodiments, the first nucleotide sequence encodes a polypeptide comprising the structure NH2-[nucleobase modifying enzyme]-[N-terminal portion of dCas9 or nCas9]-[intein-N]—COOH.


In some embodiments, the C-terminal portion of the nucleobase editor comprises the C-terminal portion of a nuclease-inactive Cas9 protein (dCas9) or a Cas9 nickase (nCas9). In some embodiments, the nucleobase modifying enzyme is fused to the C-terminus of the C-terminal portion of the split dCas9 or split nCas9. In some embodiments, the C-terminal portion of the nucleobase editor is of the structure: NH2—[C-terminal portion of dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH. In some embodiments, the C-terminal portion of the nucleobase editor comprises an intein-C fused to the C-terminal portion of the Cas9 protein. In some embodiments, the intein-C is fused to the N-terminus of the C-terminal portion of the nucleobase editor. In some embodiments, the second nucleotide sequence encodes a polypeptide of the structure: NH2-[intein-C]—[C-terminal portion of the Cas9 protein]-COOH.


In some embodiments, the N-terminal portion of a split nucleobase editor further comprises an inhibitor of uracil glycosylase (UGI). In some embodiments, the first nucleotide sequence encodes a polypeptide of the structure: NH2-[UGI]-[nucleobase modifying enzyme]-[N-terminal portion of dCas9 or nCas9]-[intein-N]. In some embodiments, the first nucleotide sequence encodes a polypeptide is of the structure: NH2-[nucleobase modifying enzyme]-[UGI]-[N-terminal portion of dCas9 or nCas9]-[intein-N].


In some embodiments, the C-terminal portion of a split nucleobase editor further comprises an enzyme that inhibits the activity of uracil glycosylase (UGI). In some embodiments, the second nucleotide sequence encodes a polypeptide of the structure: NH2-[intein-C]—[C-terminal portion of dCas9 or nCas9]-[UGI]-COOH. In some embodiments, the second nucleotide sequence encodes a polypeptide of the structure: NH2-[intein-C]—[C-terminal portion of dCas9 or nCas9]-[nucleobase modifying enzyme]-[UGI]-COOH. In some embodiments, the second nucleotide sequence encodes a polypeptide of the structure: NH2-[intein-C]—[C-terminal portion of dCas9 or nCas9]-[UGI]-[nucleobase modifying enzyme]-COOH.


In some embodiments, when the N-terminal portion and the C-terminal portion of the nucleobase are joined, to form a complete split nucleobase editor. In some embodiments, the split nucleobase editor may comprise any one of the following structures:

    • NH2-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-[UGI]-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-[UGI]-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-[dCas9 or nCas9]-[UGI]-COOH
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-[UGI]-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-[UGI]-[nucleobase modifying enzyme]-COOH or
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-[UGI]-COOH.


In some embodiments, the first nucleotide sequence or the second nucleotide sequence (encoding either the split Cas9 protein or the split nucleobase editor) is operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization signal (NLS). For example, the first nucleotide sequence may be operably linked to a nucleotide sequence encoding one or more (e.g., 2, 3, 4, 5, or more) bipartite NLS. In some embodiments, the second nucleotide sequence may be operably linked to a nucleotide sequence encoding one or more (e.g., 2, 3, 4, 5, or more) bipartite NLSs. As such, the split Cas9 or split nucleobase editor formed by joining the N-terminal portion and the C-terminal portion may comprise one or more bipartite NLSs. For example, the split Cas9 or split nucleobase editor may comprise any one of the following structures (bNLS means one or more bipartite nuclear localization signals):

    • NH2-bNLS-[Cas9]-COOH
    • NH2-[Cas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[UGI]-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-[UGI]-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-[UGI]-[nucleobase modifying enzyme]-bNLS[dCas9 or nCas9]-COOH
    • NH2-[UGI]-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[UGI]-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[UGI]-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-[UGI]-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[UGI]-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[UGI]-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[UGI]-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[UGI]-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-[UGI]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[UGI]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[UGI]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[UGI]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[nucleobase modifying enzyme]-[UGI]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-[dCas9 or nCas9]-bNLS—COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-[UGI]-COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-[UGI]-COOH
    • NH2-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS-[UGI]-COOH
    • NH2-[nucleobase modifying enzyme]-[dCas9 or nCas9]-[UGI]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-[UGI]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS-[UGI]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-[UGI]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-[UGI]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-[dCas9 or nCas9]-bNLS-[UGI]-bNLS—COOH
    • NH2-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-bNLS—COOH
    • NH2-bNLS-[nucleobase modifying enzyme]-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[UGI]-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-[UGI]-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-[UGI]-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-[UGI]-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[UGI]-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[UGI]-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[UGI]-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-[UGI]-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[UGI]-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[UGI]-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[UGI]-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[UGI]-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-[UGI]-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-bNLS-[UGI]-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-[UGI]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-[UGI]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS[UGI]-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-[UGI]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-[UGI]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-[dCas9 or nCas9]-bNLS-[UGI]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[UGI]-bNLS-[nucleobase modifying enzyme]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-[UGI]-COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-[UGI]-COOH
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS-[UGI]-COOH
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-[UGI]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-[UGI]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS-[UGI]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-[UGI]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-[UGI]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-COOH
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-[UGI]-bNLS—COOH
    • NH2-bNLS-[dCas9 or nCas9]-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS—COOH
    • NH2-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS—COOH or
    • NH2-bNLS-[dCas9 or nCas9]-bNLS-[nucleobase modifying enzyme]-bNLS-[UGI]-bNLS—COOH


Herein, “NH2—” represents the N-terminus of a protein or polypeptide, and “—COOH” represents the C-terminus of a protein or polypeptide. “]-[” represents a peptide bond or a linker. In some embodiments, linkers may be used to link any of the protein or protein domains described herein. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In some embodiments, the linker is a polypeptide or based on amino acids. In some embodiments, the linker is not peptide-like. In some embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In some embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In some embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In some embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In some embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In some embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In some embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In some embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In some embodiments, the linker comprises a polyethylene glycol moiety (PEG). In some embodiments, the linker comprises amino acids. In some embodiments, the linker comprises a peptide. In some embodiments, the linker comprises an aryl or heteroaryl moiety. In some embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 377), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence: SGGS (SEQ ID NO: 378). In some embodiments, a linker comprises the amino acid sequence: (SGGS)n (SEQ ID NO: 379), (GGGS)n(SEQ ID NO: 380), (GGGGS)n (SEQ ID NO: 381), (G). (SEQ ID NO: 390), (EAAAK)n (SEQ ID NO: 382), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 377), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, inclusive, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, the linker comprises the amino acid sequence: SGSETPGTSESATPES (SEQ ID NO: 377), and SGGS (SEQ ID NO: 378). In some embodiments, the linker comprises the amino acid sequence: SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 383). In some embodiments, a linker comprises the amino acid sequence: SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 384). In some embodiments, a linker comprises the amino acid sequence:









(SEQ ID NO: 385)


GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSP





TSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGG





SGGS.






In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 343). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 391). In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGSSG GS (SEQ ID NO: 392). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence









(SEQ ID NO: 393)


PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEG





TSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATS.






In some embodiments, the first and second nucleotide sequences are on the same nucleic acid vector. In some embodiments, the first and second nucleotide sequences are on different nucleic acid vectors. In some embodiments, the vector is a plasmid. In some embodiments, the nucleic acid vector is a recombinant genome of a adeno-associated virus (rAAV). In some embodiments, the nucleic acid vector is the genome of an adeno-associated virus packaged in a rAAV particle. In some embodiments, the first and/or the second nucleotide sequence is operably linked to a promoter. In some embodiments, the nucleic acid vector further comprise a nucleotide sequence encoding one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) gRNAs operably linked to a promoter. In some embodiments, the promoter is a constitutive promoter. In some embodiments, the promoter is an inducible promoter.


An inducible promoter of the present disclosure may be induced by (or repressed by) one or more physiological condition(s), such as changes in light, pH, temperature, radiation, osmotic pressure, saline gradients, cell surface binding, and the concentration of one or more extrinsic or intrinsic inducing agent(s). An extrinsic inducer signal or inducing agent may comprise, without limitation, amino acids and amino acid analogs, saccharides and polysaccharides, nucleic acids, protein transcriptional activators and repressors, cytokines, toxins, petroleum-based compounds, metal containing compounds, salts, ions, enzyme substrate analogs, hormones, or combinations thereof.


Inducible promoters of the present disclosure include any inducible promoter described herein or known to one of ordinary skill in the art. Examples of inducible promoters include, without limitation, chemically/biochemically-regulated and physically-regulated promoters such as alcohol-regulated promoters, tetracycline-regulated promoters (e.g., anhydrotetracycline (aTc)-responsive promoters and other tetracycline-responsive promoter systems, which include a tetracycline repressor protein (tetR), a tetracycline operator sequence (tetO) and a tetracycline transactivator fusion protein (tTA)), steroid-regulated promoters (e.g., promoters based on the rat glucocorticoid receptor, human estrogen receptor, moth ecdysone receptors, and promoters from the steroid/retinoid/thyroid receptor superfamily), metal-regulated promoters (e.g., promoters derived from metallothionein (proteins that bind and sequester metal ions) genes from yeast, mouse and human), pathogenesis-regulated promoters (e.g., induced by salicylic acid, ethylene or benzothiadiazole (BTH)), temperature/heat-inducible promoters (e.g., heat shock promoters), and light-regulated promoters (e.g., light responsive promoters from plant cells). Other inducible promoter systems are known in the art and may be used in accordance with the present disclosure.


In some embodiments, inducible promoters of the present disclosure function in prokaryotic cells (e.g., bacterial cells). Examples of inducible promoters for use prokaryotic cells include, without limitation, bacteriophage promoters (e.g. Pls1con, T3, T7, SP6, PL) and bacterial promoters (e.g., Pbad, PmgrB, Ptrc2, Plac/ara, Ptac, Pm), or hybrids thereof (e.g. PLlacO, PLtetO). Examples of bacterial promoters for use in accordance with the present disclosure include, without limitation, positively regulated E. coli promoters, such as positively regulated σ70 promoters (e.g., inducible pBad/araC promoter, Lux cassette right promoter, modified lamdba Prm promote, plac Or2-62 (positive), pBad/AraC with extra REN sites, pBad, P(Las) TetO, P(Las) CIO, P(Rhl), Pu, FecA, pRE, cadC, hns, pLas, pLux), σS promoters (e.g., Pdps), σ32 promoters (e.g., heat shock), and σ54 promoters (e.g., glnAp2); negatively regulated E. coli promoters such as negatively regulated σ70 promoters (e.g., Promoter (PRM+), modified lamdba Prm promoter, TetR-TetR-4C P(Las) TetO, P(Las) CIO, P(Lac) IQ, RecA_DlexO_DLacO1, dapAp, FecA, Pspac-hy, pcI, plux-cI, plux-lac, CinR, CinL, glucose controlled, modified Pr, modified Prm+, FecA, Pcya, rec A (SOS), Rec A (SOS), EmrR_regulated, BetI_regulated, pLac_lux, pTet_Lac, pLac/Mnt, pTet/Mnt, LsrA/cI, pLux/cI, LacI, LacIQ, pLacIQ1, pLas/cI, pLas/Lux, pLux/Las, pRecA with LexA binding site, reverse BBa_R0011, pLacI/ara-1, pLacIq, rrnB P1, cadC, hns, PfhuA, pBad/araC, nhaA, OmpF, RcnR), σS promoters (e.g., Lutz-Bujard LacO with alternative sigma factor σ38), σ32 promoters (e.g., Lutz-Bujard LacO with alternative sigma factor σ32), and σ54 promoters (e.g., glnAp2); negatively regulated B. subtilis promoters such as repressible B. subtilis σA promoters (e.g., Gram-positive IPTG-inducible, Xyl, hyper-spank) and σB promoters. Other inducible microbial promoters may be used in accordance with the present disclosure.


In some embodiments, inducible promoters of the present disclosure function in eukaryotic cells (e.g., mammalian cells). Examples of inducible promoters for use eukaryotic cells include, without limitation, chemically-regulated promoters (e.g., alcohol-regulated promoters, tetracycline-regulated promoters, steroid-regulated promoters, metal-regulated promoters, and pathogenesis-related (PR) promoters) and physically-regulated promoters (e.g., temperature-regulated promoters and light-regulated promoters).


Recombinant Adeno-Associated Virus (rAAV)


Some aspects of the present disclosure relate to using recombinant adeno-associated virus vectors for the delivery of a split Cas9 protein or a split nucleobase editor into a cell. The N-terminal portion of the Cas9 protein or the nucleobase editor and the C-terminal portion of the Cas9 protein or the nucleobase editor are delivered by separate rAAV vectors or particles into the same cell, since the full-length Cas9 protein or nucleobase editors exceeds the packaging limit of rAAV (˜4.9 kb).


As such, in some embodiments, a composition for delivering the split Cas9 protein or split nucleobase editor into a cell (e.g., a mammalian cell, a human cell) is provided. In some embodiments, the composition of the present disclosure comprises: (i) a first recombinant adeno-associated virus (rAAV) particle comprising a first nucleotide sequence encoding a N-terminal portion of a Cas9 protein or nucleobase editor fused at its C-terminus to an intein-N; and (ii) a second recombinant adeno-associated virus (rAAV) particle comprising a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the Cas9 protein or nucleobase editor. The rAAV particles of the present disclosure comprise a rAAV vector (i.e., a recombinant genome of the rAAV) encapsidated in the viral capsid proteins.


In some embodiments, the rAAV vector comprises: (1) a heterologous nucleic acid region comprising the first or second nucleotide sequence encoding the N-terminal portion or C-terminal portion of a split Cas9 protein or a split nucleobase editor in any form as described herein, (2) one or more nucleotide sequences comprising a sequence that facilitates expression of the heterologous nucleic acid region (e.g., a promoter), and (3) one or more nucleic acid regions comprising a sequence that facilitate integration of the heterologous nucleic acid region (optionally with the one or more nucleic acid regions comprising a sequence that facilitates expression) into the genome of a cell. In some embodiments, viral sequences that facilitate integration comprise Inverted Terminal Repeat (ITR) sequences. In some embodiments, the first or second nucleotide sequence encoding the N-terminal portion or C-terminal portion of a split Cas9 protein or a split nucleobase editor is flanked on each side by an ITR sequence. In some embodiments, the nucleic acid vector further comprises a region encoding an AAV Rep protein as described herein, either contained within the region flanked by ITRs or outside the region. The ITR sequences can be derived from any AAV serotype (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) or can be derived from more than one serotype. In some embodiments, the ITR sequences are derived from AAV2 or AAV6.


ITR sequences and plasmids containing ITR sequences are known in the art and commercially available (see, e.g., products and services available from Vector Biolabs, Philadelphia, Pa.; Cellbiolabs, San Diego, Calif.; Agilent Technologies, Santa Clara, Ca; and Addgene, Cambridge, Mass.; and Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Kessler P D, Podsakoff G M, Chen X, McQuiston S A, Colosi P C, Matelis L A, Kurtzman G J, Byrne B J. Proc Natl Acad Sci USA. 1996 Nov. 26; 93(24):14082-7; and Curtis A. Machida. Methods in Molecular Medicine™. Viral Vectors for Gene Therapy Methods and Protocols. 10.1385/1-59259-304-6:201 © Humana Press Inc. 2003. Chapter 10. Targeted Integration by Adeno-Associated Virus. Matthew D. Weitzman, Samuel M. Young Jr., Toni Cathomen and Richard Jude Samulski; U.S. Pat. Nos. 5,139,941 and 5,962,313, all of which are incorporated herein by reference). Exemplary ITR sequences are provided below.









AAV2:


(SEQ ID NO: 386)


TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACC





AAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGC





GAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT





AAV3:


(SEQ ID NO: 387)


TTGGCCACTCCCTCTATGCGCACTCGCTCGCTCGGTGGGGCCTGGCGACC





AAAGGTCGCCAGACGGACGTGCTTTGCACGTCCGGCCCCACCGAGCGAGC





GAGTGCGCATAGAGGGAGTGGCCAACTCCATCACTAGAGGTATGGC





AAV5:


(SEQ ID NO: 388)


CTCTCCCCCCTGTCGCGTTCGCTCGCTCGCTGGCTCGTTTGGGGGGGTGG





CAGCTCAAAGAGCTGCCAGACGACGGCCCTCTGGCCGTCGCCCCCCCAAA





CGAGCCAGCGAGCGAGCGAACGCGACAGGGGGGAGAGTGCCACACTCTCA





AGCAAGGGGGTTTTGTA





AAV6:


(SEQ ID NO: 389)


TTGCCCACTCCCTCTATGCGCGCTCGCTCGCTCGGTGGGGCCTGCGGACC





AAAGGTCCGCAGACGGCAGAGCTCTGCTCTGCCGGCCCCACCGAGCGAGC





GAGCGCGCATAGAGGGAGTGGGCAACTCCATCACTAGGGGTA






In some embodiments, the rAAV vector of the present disclosure comprises one or more regulatory elements to control the expression of the heterologous nucleic acid region (e.g., promoters, transcriptional terminators, and/or other regulatory elements). In some embodiments, the first and/or second nucleotide sequence is operably linked to one or more (e.g., 1, 2, 3, 4, 5, or more) transcriptional terminators. Non-limiting examples of transcriptional terminators that may be used in accordance with the present disclosure include transcription terminators of the bovine growth hormone gene (bGH), human growth hormone gene (hGH), SV40, CW3, ϕ, or combinations thereof. The efficiencies of several transcriptional terminators have been tested to determine their respective effects in the expression level of the split Cas9 protein or the split nucleobase editor (e.g., see FIG. 4). In some embodiments, the transcriptional terminator used in the present disclosure is a bGH transcriptional terminator. In some embodiments, the rAAV vector further comprises a Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). In some embodiments, the WPRE is inserted 5′ of the transcriptional terminator.


In some embodiments, the composition comprising the rAAV particle (in any form contemplated herein) further comprises a pharmaceutically acceptable carrier. In some embodiments, the composition is formulated in appropriate pharmaceutical vehicles for administration to human or animal subjects.


Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as “excipient”, “carrier”, “pharmaceutically acceptable carrier” or the like are used interchangeably herein.


Methods of Use


Other aspects of the present disclosure provide methods of delivering the split Cas9 protein or the split nucleobase editor into a cell to form a complete and functional Cas9 protein or nucleobase editor. For example, in some embodiments, a cell is contacted with a composition described herein (e.g., compositions comprising nucleotide sequences encoding the split Cas9 or the split nucleobase editor or AAV particles containing nucleic acid vectors comprising such nucleotide sequences). In some embodiments, the contacting results in the delivery of such nucleotide sequences into a cell, wherein the N-terminal portion of the Cas9 protein or the nucleobase editor and the C-terminal portion of the Cas9 protein or the nucleobase editor are expressed in the cell and are joined to form a complete Cas9 protein or a complete nucleobase editor.


The split Cas9 protein or split nucleobase editor delivered using the methods described herein preferably have comparable activity compared to the original Cas9 protein or nucleobase editor (i.e., unsplit protein delivered to a cell or expressed in a cell as a whole). For example, the split Cas9 protein or split nucleobase editor retains at least 50% (e.g., at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%) of the activity of the original Cas9 protein or nucleobase editor. In some embodiments, the split Cas9 protein or split nucleobase editor is more active (e.g., 2-fold, 5-fold, 10-fold, 100-fold, 1000-fold, or more) than that of an original Cas9 protein or nucleobase editor.


The compositions described herein may be administered to a subject in need thereof in a therapeutically effective amount to treat and/or prevent a disease or disorder the subject is suffering from. Any disease or disorder that maybe treated and/or prevented using CRISPR/Cas9-based genome-editing technology may be treated by the split Cas9 protein or the split nucleobase editor described herein. It is to be understood that, if the nucleotide sequences encoding the split Cas9 protein or the nucleobase editor does not further encode a gRNA, a separate nucleic acid vector encoding the gRNA may be administered together with the compositions described herein.


Exemplary suitable diseases and disorders include, without limitation, [[The following diseases were included in the C to T editor application. Please indicate any that are still relevant and could be treated using an adenosine deaminase.]]cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria—e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene (T>C mutation)—see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS)—e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation)—see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK)—e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation)—see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD)—e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α1-antitrypsin or residue 78 in the unprocessed form or a homologous residue (T>C mutation)—see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type 4J—e.g., isoleucine to threonine mutation at position 41 or a homologous residue in FIG. 4 (T>C mutation)—see, e.g., Lenk et al., PLoS Genetics. 2011; 7: e1002104; neuroblastoma (NB)—e.g., leucine to proline mutation at position 197 or a homologous residue in Caspase-9 (T>C mutation)—see, e.g., Kundu et al., 3 Biotech. 2013, 3:225-234; von Willebrand disease (vWD)—e.g., cysteine to arginine mutation at position 509 or a homologous residue in the processed form of von Willebrand factor, or at position 1272 or a homologous residue in the unprocessed form of von Willebrand factor (T>C mutation)—see, e.g., Lavergne et al., Br. J. Haematol. 1992, see also accession number P04275 in the UNIPROT database; 82: 66-72; myotonia congenital—e.g., cysteine to arginine mutation at position 277 or a homologous residue in the muscle chloride channel gene CLCN1 (T>C mutation)—see, e.g., Weinberger et al., The J. of Physiology. 2012; 590: 3449-3464; hereditary renal amyloidosis—e.g., stop codon to arginine mutation at position 78 or a homologous residue in the processed form of apolipoprotein AII or at position 101 or a homologous residue in the unprocessed form (T>C mutation)—see, e.g., Yazaki et al., Kidney Int. 2003; 64: 11-16; dilated cardiomyopathy (DCM)—e.g., tryptophan to Arginine mutation at position 148 or a homologous residue in the FOXD4 gene (T>C mutation), see, e.g., Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; hereditary lymphedema—e.g., histidine to arginine mutation at position 1035 or a homologous residue in VEGFR3 tyrosine kinase (A>G mutation), see, e.g., Irrthum et al., Am. J. Hum. Genet. 2000; 67: 295-301; familial Alzheimer's disease—e.g., isoleucine to valine mutation at position 143 or a homologous residue in presenilin1 (A>G mutation), see, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431; Prion disease—e.g., methionine to valine mutation at position 129 or a homologous residue in prion protein (A>G mutation)—see, e.g., Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; chronic infantile neurologic cutaneous articular syndrome (CINCA)—e.g., Tyrosine to Cysteine mutation at position 570 or a homologous residue in cryopyrin (A>G mutation)—see, e.g., Fujisawa et. al. Blood. 2007; 109: 2903-2911; and desmin-related myopathy (DRM)—e.g., arginine to glycine mutation at position 120 or a homologous residue in αβ crystallin (A>G mutation)—see, e.g., Kumar et al., J. Biol. Chem. 1999; 274: 24137-24141. The entire contents of all references and database entries is incorporated herein by reference.


Suitable routes of administrating the composition for pain suppression include, without limitation: topical, subcutaneous, transdermal, intradermal, intralesional, intraarticular, intraperitoneal, intravesical, transmucosal, gingival, intradental, intracochlear, transtympanic, intraorgan, epidural, intrathecal, intramuscular, intravenous, intravascular, intraosseus, periocular, intratumoral, intracerebral, parenteral, and intracerebroventricular administration.


The compositions of this disclosure may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent, i.e., a carrier or vehicle.


Treatment of a disease or disorder includes delaying the development or progression of the disease, or reducing disease severity. Treating the disease does not necessarily require curative results.


As used therein, “delaying” the development of a disease means to defer, hinder, slow, retard, stabilize, and/or postpone progression of the disease. This delay can be of varying lengths of time, depending on the history of the disease and/or individuals being treated. A method that “delays” or alleviates the development of a disease, or delays the onset of the disease, is a method that reduces probability of developing one or more symptoms of the disease in a given time frame and/or reduces extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a number of subjects sufficient to give a statistically significant result.


“Development” or “progression” of a disease means initial manifestations and/or ensuing progression of the disease. Development of the disease can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset.


As used herein “onset” or “occurrence” of a disease includes initial onset and/or recurrence. Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the isolated polypeptide or pharmaceutical composition to the subject, depending upon the type of disease to be treated or the site of the disease.


Kits


The compositions of the present disclosure may be assembled into kits. In some embodiments, the kit comprises nucleic acid vectors for the expression of the nucleobase editors described herein. In some embodiments, the kit further comprises appropriate guide nucleotide sequences (e.g., gRNAs) or nucleic acid vectors for the expression of such guide nucleotide sequences, to target the Cas9 protein or nucleobase editor to the desired target sequence.


The kit described herein may include one or more containers housing components for performing the methods described herein and optionally instructions for use. Any of the kit described herein may further comprise components needed for performing the assay methods. Each component of the kits, where applicable, may be provided in liquid form (e.g., in solution) or in solid form, (e.g., a dry powder). In certain cases, some of the components may be reconstitutable or otherwise processible (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water), which may or may not be provided with the kit.


In some embodiments, the kits may optionally include instructions and/or promotion for use of the components provided. As used herein, “instructions” can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products, which can also reflect approval by the agency of manufacture, use or sale for animal administration. As used herein, “promoted” includes all methods of doing business including methods of education, hospital and other clinical instruction, scientific inquiry, drug discovery or development, academic research, pharmaceutical industry activity including pharmaceutical sales, and any advertising or other promotional activity including written, oral and electronic communication of any form, associated with the disclosure. Additionally, the kits may include other components depending on the specific application, as described herein.


The kits may contain any one or more of the components described herein in one or more containers. The components may be prepared sterilely, packaged in a syringe and shipped refrigerated. Alternatively it may be housed in a vial or other container for storage. A second container may have other components prepared sterilely. Alternatively the kits may include the active agents premixed and shipped in a vial, tube, or other container.


The kits may have a variety of forms, such as a blister pouch, a shrink wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kits may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in the art. The kits may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric, such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration, etc.


Host Cells


Cells that may contain any of the compositions described herein include prokaryotic cells and eukaryotic cells. The methods described herein are used to deliver a Cas9 protein or a nucleobase editor into a eukaryotic cell (e.g., a mammalian cell, such as a human cell). In some embodiments, the cell is in vitro (e.g., cultured cell. In some embodiments, the cell is in vivo (e.g., in a subject such as a human subject). In some embodiments, the cell is ex vivo (e.g., isolated from a subject and may be administered back to the same or a different subject).


Mammalian cells of the present disclosure include human cells, primate cells (e.g., vero cells), rat cells (e.g., GH3 cells, OC23 cells) or mouse cells (e.g., MC3T3 cells). There are a variety of human cell lines, including, without limitation, human embryonic kidney (HEK) cells, HeLa cells, cancer cells from the National Cancer Institute's 60 cancer cell lines (NCI60), DU145 (prostate cancer) cells, Lncap (prostate cancer) cells, MCF-7 (breast cancer) cells, MDA-MB-438 (breast cancer) cells, PC3 (prostate cancer) cells, T47D (breast cancer) cells, THP-1 (acute myeloid leukemia) cells, U87 (glioblastoma) cells, SHSY5Y human neuroblastoma cells (cloned from a myeloma) and Saos-2 (bone cancer) cells. In some embodiments, rAAV vectors are delivered into human embryonic kidney (HEK) cells (e.g., HEK 293 or HEK 293T cells). In some embodiments, rAAV vectors are delivered into stem cells (e.g., human stem cells) such as, for example, pluripotent stem cells (e.g., human pluripotent stem cells including human induced pluripotent stem cells (hiPSCs)). A stem cell refers to a cell with the ability to divide for indefinite periods in culture and to give rise to specialized cells. A pluripotent stem cell refers to a type of stem cell that is capable of differentiating into all tissues of an organism, but not alone capable of sustaining full organismal development. A human induced pluripotent stem cell refers to a somatic (e.g., mature or adult) cell that has been reprogrammed to an embryonic stem cell-like state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells (see, e.g., Takahashi and Yamanaka, Cell 126 (4): 663-76, 2006, incorporated by reference herein). Human induced pluripotent stem cell cells express stem cell markers and are capable of generating cells characteristic of all three germ layers (ectoderm, endoderm, mesoderm).


Additional non-limiting examples of cell lines that may be used in accordance with the present disclosure include 293-T, 293-T, 3T3, 4T1, 721, 9L, A-549, A172, A20, A253, A2780, A2780ADR, A2780cis, A431, ALC, B16, B35, BCP-1, BEAS-2B, bEnd.3, BHK-21, BR 293, BxPC3, C2C12, C3H-10T1/2, C6, C6/36, Cal-27, CGR8, CHO, CML T1, CMT, COR-L23, COR-L23/5010, COR-L23/CPR, COR-L23/R23, COS-7, COV-434, CT26, D17, DH82, DU145, DuCaP, E14Tg2a, EL4, EM2, EM3, EMT6/AR1, EMT6/AR10.0, FM3, H1299, H69, HB54, HB55, HCA2, Hepa1c1c7, High Five cells, HL-60, HMEC, HT-29, HUVEC, J558L cells, Jurkat, JY cells, K562 cells, KCL22, KG1, Ku812, KYO1, LNCap, Ma-Mel 1, 2, 3 . . . 48, MC-38, MCF-10A, MCF-7, MDA-MB-231, MDA-MB-435, MDA-MB-468, MDCK II, MG63, MONO-MAC 6, MOR/0.2R, MRC5, MTD-1A, MyEnd, NALM-1, NCI-H69/CPR, NCI-H69/LX10, NCI-H69/LX20, NCI-H69/LX4, NIH-3T3, NW-145, OPCN/OPCT Peer, PNT-1A/PNT 2, PTK2, Raji, RBL cells, RenCa, RIN-5F, RMA/RMAS, S2, Saos-2 cells, Sf21, Sf9, SiHa, SKBR3, SKOV-3, T-47D, T2, T84, THP1, U373, U87, U937, VCaP, WM39, WT-49, X63, YAC-1 and YAR cells.


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present disclosure to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

In order that the invention described herein may be more fully understood, the following examples are set forth. The synthetic examples described in this application are offered to illustrate the compounds and methods provided herein and are not to be construed in any way as limiting their scope.


Example 1: Amino Acid Sequences of Cas9 Proteins and Nucleobase Editor

Non-limiting examples of suitable Cas9 proteins and variants, and nucleobase editors and variants are provided. The disclosure provides Cas9 variants, for example, Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterisk, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 2-275 and 394-397, is a D.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 1 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT (accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt)), with the following parameters. Alignment parameters: Gap penalties −11, −1; End-Gap penalties −5, −1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.











S. pyogenes Cas9 wild type (NCBI Reference Sequence: NC_002737.2,




Uniprot Reference Sequence: Q99ZW2)


(SEQ ID NO: 1)



MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRI





DLSQLGGD






S. pyogenes dCas9 (D10A and H840A)



(SEQ ID NO: 2)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRI





DLSQLGGD






S. pyogenes Cas9 Nickase (D10A)



(SEQ ID NO: 3)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRI





DLSQLGGD





VRER-nCas9 (D10A/D1135V/G1218R/R1335E/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 4)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASARELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRI





DLSQLGGD





VQR-nCas9 (D10A/D1135V/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 5)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETR





IDLSQLGGD





EQR-nCas9 (D10A/D1135E/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 6)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR






YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR





LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY





ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP





FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP





NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE





CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLPEDREMIEERLKTYAHLFDDK





VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG





DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTR





SDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITK





HVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIK





KYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYS





VLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML





ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADAN





LDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETR





IDLSQLGGD





KKH-nCas9 (D10A/E782K/N968K/R1015H) S. aureus Cas9 Nickase


(SEQ ID NO: 7)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLLF






DYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSK





ALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKLAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEG





PGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQII





ENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQ





QKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEE





IIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEN





SKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYAT





RGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDK





AKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKD





DKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGN





YLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLD





VIKKENYYLVNSKCYLEAKKLKKISNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYL





ENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG 






Streptococcus thermophilus CRISPR1 Cas9 (St1Cas9) Nickase (D9A)



(SEQ ID NO: 8)



MSDLVLGLAIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLTRRKKHRRVRLNRLFEE






SGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVKENSKQ





LETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEFINRYLEI





LTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTV





PTETKKLSKEQKNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLE





TLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGWHNFSVKL





MMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEYGDFD





NIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQG





ERCLYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDAWSFRE





LKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQEHFRAHKIDTKVSVVRG





QFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVF





KAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIKDIYTQDGYD





AFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGP





EIKSLKYYDSKLGNHIDITPKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQ





EKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEA





LIKVLGNVANSGQCKKGLGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF






Streptococcus thermophilus CRISPR3Cas9 (St3Cas9) Nickase (D10A)



(SEQ ID NO: 9)



MTKPYSIGLAIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTARRR






YTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHLRKYLA





DSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDLSLENSKQLEEIVKDK





ISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLETLLGYIGDDYSD





VFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGY





AGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQEMRAILDKQAKFY





PFLAKNKERIEKILTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYLPE





EKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDKRKVTDKDIIEYLHAIYGYD





GIELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKLS





RRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDALSFKKKIQKAQIIGDEDKGNIKEV





VKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMARENQYTNQGKSNSQQRLKRLEKSLKELGSKI





LKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVSSA





SNRGKSDDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNLTKAERGGLLPEDKAGFIQRQLVETRQITKHVA





RLLDEKFNNKKDENNRAVRTVKIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVIASALLKKYPK





LEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSISLADGRVIERPLIEVNEETGESVWNKESDLATV





RRVLSYPQVNVVKKVEEQNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSFA





VLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKDIELIIELPKYSLFELSDGSRRMLASILS





TNNKRGEIHKGNQIFLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGK





LLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVT





GLYETRIDLAKLGEG






S. aureus Cas9 wild type



(SEQ ID NO: 10)



MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLLF






DYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSK





ALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKLAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEG





PGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQII





ENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQ





QKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEE





IIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEN





SKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYAT





RGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDK





AKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDD





KGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNY





LTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVI





KKENYYLVNSKCYLEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLE





NMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG






S. aureus Cas9 Nickase (D10A)



(SEQ ID NO: 11)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLLF






DYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSK





ALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKLAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEG





PGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQII





ENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQ





QKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEE





IIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYLVDHIIPRSVSFDNSFNNKVLVKQEEN





SKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYAT





RGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDK





AKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDD





KGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNY





LTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVI





KKENYYLVNSKCYLEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLE





NMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG






Streptococcus thermophilus wild type CRISPR3 Cas9 (St3Cas9)



(SEQ ID NO: 12)



MTKPYSIGLDIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTARRR






YTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHLRKYLA





DSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDLSLENSKQLEEIVKDK





ISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLETLLGYIGDDYSD





VFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGY





AGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQEMRAILDKQAKFY





PFLAKNKERIEKILTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYLPE





EKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDKRKVTDKDIIEYLHAIYGYD





GIELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKLS





RRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDALSFKKKIQKAQIIGDEDKGNIKEV





VKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMARENQYTNQGKSNSQQRLKRLEKSLKELGSKI





LKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVSSA





SNRGKSDDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNLTKAERGGLLPEDKAGFIQRQLVETRQITKHVA





RLLDEKFNNKKDENNRAVRTVKIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVIASALLKKYPK





LEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSISLADGRVIERPLIEVNEETGESVWNKESDLATV





RRVLSYPQVNVVKKVEEQNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSFA





VLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKDIELIIELPKYSLFELSDGSRRMLASILS





TNNKRGEIHKGNQIFLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGK





LLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVT





GLYETRIDLAKLGEG






Streptococcus thermophilus CRISPR1 Cas9 wild type (St1Cas9)



(SEQ ID NO: 13)



MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLTRRKKHRRVRLNRLFEE






SGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVKENSKQ





LETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEFINRYLEI





LTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTV





PTETKKLSKEQKNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLE





TLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGWHNFSVKL





MMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEYGDFD





NIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQG





ERCLYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDAWSFRE





LKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQEHFRAHKIDTKVSVVRG





QFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVF





KAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIKDIYTQDGYD





AFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGP





EIKSLKYYDSKLGNHIDITPKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQ





EKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEA





LIKVLGNVANSGQCKKGLGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF





CasX from Sulfolobus islandicus (strain REY15A).


(SEQ ID NO: 14)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAERRGKAKKKKGEEG






ETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYKFGRSPGMVERT





RRVKLEVEPHYLIMAAAGWVLTRLGKAKVSEGDYVGVNVFTPTRGILYSLIQNVNGIVPGIKPETAFGLWI





ARKVVSSVTNPNVSVVSIYTISDAVGQNPTTINGGFSIDLTKLLEKRDLLSERLEAIARNALSISSNMRERYIV





LANYIYEYLTGSKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





CasY from Sulfolobus islandicus (strain REY15A).


(SEQ ID NO: 15)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAERRGKAKKKKGEEG






ETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYEFGRSPGMVERT





RRVKLEVEPHYLIIAAAGWVLTRLGKAKVSEGDYVGVNVFTPTRGILYSLIQNVNGIVPGIKPETAFGLWIA





RKVVSSVTNPNVSVVRIYTISDAVGQNPTTINGGFSIDLTKLLEKRYLLSERLEAIARNALSISSNMRERYIVL





ANYIYEYLTGSKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





Wild type Francisella novicida Cpf1 (D917, E1006, and D1255 are bolded


and underlined)


(SEQ ID NO: 16)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 D917A (A917, E1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 17)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 E1006A (D917, A1006, and D1255 are bolded



and underlined)


(SEQ ID NO: 18)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 D1255A (D917, E1006, and A1255 are bolded



and underlined)


(SEQ ID NO: 19)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 D917A/E1006A (A917, A1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 20)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 D917A/D1255A (A917, E1006, and A1255 are



bolded and underlined)


(SEQ ID NO: 21)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 E1006A/D1255A (D917, A1006, and A1255 are



bolded and underlined)


(SEQ ID NO: 22)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN






Francisella novicida Cpf1 D917A/E1006A/D1255A (A917, A1006, and A1255



are bolded and underlined)


(SEQ ID NO: 23)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCISED






LLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQS





KDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYE





SLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNG





ENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKE





QELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQG





KKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKI





RNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGE





GYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSK





GRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIK





DKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNI





IGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFK





RGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTS





KICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFR





NSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTEL





DYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQ





NRNN





Wild type Natronobacterium gregoryi Argonaute


(SEQ ID NO: 24)



MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQDNGERRYITLWKNTTPKDVFTYDY






ATGSTYIFTNIDYEVKDGYENLTATYQTTVENATAQEVGTTDEDETFAGGEPLDHHLDDALNETPDDAETE





SDSGHVMTSFASRDQLPEWTLHTYTLTATDGAKTDTEYARRTLAYTVRQELYTDHDAAPVATDGLMLLT





PEPLGETPLDLDCGVRVEADETRTLDYTTAKDRLLARELVEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDE





FDLHERYDLSVEVGHSGRAYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYRPRRGHIVWGLRDECATD





SLNTLGNQSVVAYHRNNQTPINTDLLDAIEAADRRVVETRRQGHGDDAVSFPQELLAVEPNTHQIKQFASD





GFHQQARSKTRLSASRCSEKAQAFAERLDPVRLNGSTVEFSSEFFTGNNEQQLRLLYENGESVLTFRDGAR





GAHPDETFSKGIVNPPESFEVAVVLPEQQADTCKAQWDTMADLLNQAGAPPTRSETVQYDAFSSPESISLN





VAGAIDPSEVDAAFVVLPPDQEGFADLASPTETYDELKKALANMGIYSQMAYFDRFRDAKIFYTRNVALG





LLAAAGGVAFTTEHAMPGDADMFIGIDVSRSYPEDGASGQINIAATATAVYKDGTILGHSSTRPQLGEKLQ





STDVRDIMKNAILGYQQVTGESPTHIVIHRDGFMNEDLDPATEFLNEQGVEYDIVEIRKQPQTRLLAVSDVQ





YDTPVKSIAAINQNEPRATVATFGAPEYLATRDGGGLPRPIQIERVAGETDIETLTRQVYLLSQSHIQVHNST





ARLPITTAYADQASTHATKGYLVQTGAFESNVGFL





Cas9 variant with decreased electrostatic interactions between the


Cas9 and DNA backbone


(SEQ ID NO: 25)



DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY






TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVD





STDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLS





KSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAD





LFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYA





GYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNE





KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF





DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVM





KQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDS





LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSD





KNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHV





AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYP





KLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVW





DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS





AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLD





KVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDL





SQLGGD 





CasY (ncbi.nlm.nih.gov/protein/APG80656.1)


>APG80656.1 CRISPR-associated protein CasY [uncultured Parcubacteria


group bacterium]


(SEQ ID NO: 26)



MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTVPREIVSAINDDYVGLYGLSNFDDL






YNAEKRNEEKVYSVLDFWYDCVQYGAVFSYTAPGLLKNVAEVRGGSYELTKTLKGSHLYDELQIDKVIKF





LNKKEISRANGSLDKLKKDIIDCFKAEYRERHKDQCNKLADDIKNAKKDAGASLGERQKKLFRDFFGISEQ





SENDKPSFTNPLNLTCCLLPFDTVNNNRNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFSNFL





GEGFLGRLRENKITELKKAMMDITDAWRGQEQEEELEKRLRILAALTIKLREPKFDNHWGGYRSDINGKLS





SWLQNYINQTVKIKEDLKGHKKDLKKAKEMINRFGESDTKEEAVVSSLLESIEKIVPDDSADDEKPDIPAIAI





YRRFLSDGRLTLNRFVQREDVQEALIKERLEAEKKKKPKKRKKKSDAEDEKETIDFKELFPHLAKPLKLVP





NFYGDSKRELYKKYKNAAIYTDALWKAVEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFSVYRRFNTDK





WKPIVKNSFAPYCDIVSLAENEVLYKPKQSRSRKSAAIDKNRVRLPSTENIAKAGIALARELSVAGFDWKDL





LKKEEHEEYIDLIELHKTALALLLAVTETQLDISALDFVENGTVKDFMKTRDGNLVLEGRFLEMFSQSIVFS





ELRGLAGLMSRKEFITRSAIQTMNGKQAELLYIPHEFQSAKITTPKEMSRAFLDLAPAEFATSLEPESLSEKS





LLKLKQMRYYPHYFGYELTRTGQGIDGGVAENALRLEKSPVKKREIKCKQYKTLGRGQNKIVLYVRSSYY





QTQFLEWFLHRPKNVQTDVAVSGSFLIDEKKVKTRWNYDALTVALEPVSGSERVFVSQPFTIFPEKSAEEE





GQRYLGIDIGEYGIAYTALEITGDSAKILDQNFISDPQLKTLREEVKGLKLDQRRGTFAMPSTKIARIRESLV





HSLRNRIHHLALKHKAKIVYELEVSRFEEGKQKIKKVYATLKKADVYSEIDADKNLQTTVWGKLAVASEIS





ASYTSQFCGACKKLWRAEMQVDETITTQELIGTVRVIKGGTLIDAIKDFMRPPIFDENDTPFPKYRDFCDKH





HISKKMRGNSCLFICPFCRANADADIQASQTIALLRYVKEEKKVEDYFERFRKLKNIKVLGQMKKI





High-fidelity Cas9 domain


(SEQ ID NO: 394)



DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY






TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVD





STDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLS





KSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAD





LFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYA





GYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNE





KVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF





DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVM





KQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDS





LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSD





KNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHV





AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYP





KLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVW





DKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS





AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLD





KVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDL





SQLGGD





C2c1 (uniprot.org/uniprot/TOD7A2#)


sp|T0D7A2|C2C1_ALIAG CRISPR-associated endonuclease C2c1 OS =



Alicyclobacillus acidoterrestris (strain ATCC 49025/DSM 3922/CIP 106132/



NCIMB 13137/GD3B) GN = c2c1 PE = 1 SV = 1


(SEQ ID NO: 395)



MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQECDKTAEECK






AELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFLSPLADKDAVGGLGI





AKAGNKPRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPL





RKGQAVRTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQD





MKEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIKNVQRRNTRRFGSHDLFAKL





AEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLGGNLHQYTFLFNEFGE





RRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDNLLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCR





RDQLAHMHRRRGARDVYLNVSVRVQSQSEARGERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDD





GKLGSEGLLSGLRVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPG





ETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSWAKLIEQPVDAANHMTPDWREAFEN





ELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDWRKDVRSGERPKIRGYAKDVVGGNSIEQIEY





LERQYKFLKSWSFFGKVSGQVIRAEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGK





WVAKYPPCQLILLEELSEYQFNNDRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDAR





TGAPGIRCRRVPARCTQEHNPEPFPWWLNKFVVEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHA





DLNAAQNLQQRLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKK





RRKVFAQEKLSEEEAELLVEADEAREKSVVLMRDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVP





LQDSACENTGDI





C2c2 (uniprot.org/uniprot/PODOC6)


>sp|P0DOC6|C2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS =



Leptotrichia shahii (strain DSM 19757/CCUG 47503/CIP 107916/JCM



16776/LB37) GN = c2c2 PE = 1 SV = 1


(SEQ ID NO: 396)



MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKIDNNKFIRKYINYKKNDNILKE






FTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIEAYGKSEKLKALGITKKKIIDEAIRQGITKDDKKIE





IKRQENEEEIEIDIRDEYTNKTLNDCSIILRIIENDELETKKSIYEIFKNINMSLYKIIEKIIENETEKVFENRYY





EEHLREKLLKDDKIDVILTNFMEIREKIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKILNINVDLTVEDIA





DFVIKELEFWNITKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKKDKIVKFFVENIKNNSIK





EKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNFDSKKFSKKSDEEKELYKIIYRYLKGRIEKIL





VNEQKVRLKKMEKIEIEKILNESILSEKILKRVKQYTLEHIMYLGKLRHNDIDMTTVNTDDFSRLHAKEELD





LELITFFASTNMELNKIFSRENINNDENIDFFGGDREKNYVLDKKILNSKIKIIRDLDFIDNKNNITNNFIRKFT





KIGTNERNRILHAISKERDLQGTQDDYNKVINIIQNLKISDEEVSKALNLDVVFKDKKNIITKINDIKISEENN





NDIKYLPSFSKVLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVNKELYKKLILEDDLEENESKNIFLQELKK





TLGNIDEIDENIIENYYKNAQISASKGNNKAIKKYQKKVIECYIGYLRKNYEELFDFSDFKMNIQEIKKQIKDI





NDNKTYERITVKTSDKTIVINDDFEYIISIFALLNSNAVINKIRNRFFATSVWLNTSEYQNIIDILDEIMQLNTL





RNECITENWNLNLEEFIQKMKEIEKDFDDFKIQTKKEIFNNYYEDIKNNILTEFKDDINGCDVLEKKLEKIVIF





DDETKFEIDKKSNILQDEQRKLSNINKKDLKKKVDQYIKDKDQEIKSKILCRIIFNSDFLKKYKKEIDNLIED





MESENENKFQEIYYPKERKNELYIYKKNLFLNIGNPNFDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEID





AILKNLNDKLNGYSKEYKEKYIKKLKENDDFFAKNIQNKNYKSFEKDYNRVSEYKKIRDLVEFNYLNKIES





YLIDINWKLAIQMARFERDMHYIVNGLRELGIIKLSGYNTGISRAYPKRNGSDGFYTTTAYYKFFDEESYKK





FEKICYGFGIDLSENSEINKPENESIRNYISHFYIVRNPFADYSIAEQIDRVSNLLSYSTRYNNSTYASVFEVFK





KDVNLDYDELKKKFKLIGNNDILERLMKPKKVSVLELESYNSDYIKNLIIELLTKIENTNDTL





C2c3, translated from >CEPX01008730.1 marine metagenome genome assembly


TARA_037_MES_0.1-0.22, contig TARA_037_MES_0.1-0.22 scaffold22115_1,


whole genome shotgun sequence.


(SEQ ID NO: 397)



MRSNYHGGRNARQWRKQISGLARRTKETVFTYKFPLETDAAEIDFDKAVQTYGIAEGVGHGSLIGLVCAF






HLSGFRLFSKAGEAMAFRNRSRYPTDAFAEKLSAIMGIQLPTLSPEGLDLIFQSPPRSRDGIAPVWSENEVRN





RLYTNWTGRGPANKPDEHLLEIAGEIAKQVFPKFGGWDDLASDPDKALAAADKYFQSQGDFPSIASLPAAI





MLSPANSTVDFEGDYIAIDPAAETLLHQAVSRCAARLGRERPDLDQNKGPFVSSLQDALVSSQNNGLSWLF





GVGFQHWKEKSPKELIDEYKVPADQHGAVTQVKSFVDAIPLNPLFDTTHYGEFRASVAGKVRSWVANYW





KRLLDLKSLLATTEFTLPESISDPKAVSLFSGLLVDPQGLKKVADSLPARLVSAEEAIDRLMGVGIPTAADIA





QVERVADEIGAFIGQVQQFNNQVKQKLENLQDADDEEFLKGLKIELPSGDKEPPAINRISGGAPDAAAEISE





LEEKLQRLLDARSEHFQTISEWAEENAVTLDPIAAMVELERLRLAERGATGDPEEYALRLLLQRIGRLANR





VSPVSAGSIRELLKPVFMEEREFNLFFHNRLGSLYRSPYSTSRHQPFSIDVGKAKAIDWIAGLDQISSDIEKAL





SGAGEALGDQLRDWINLAGFAISQRLRGLPDTVPNALAQVRCPDDVRIPPLLAMLLEEDDIARDVCLKAFN





LYVSAINGCLFGALREGFIVRTRFQRIGTDQIHYVPKDKAWEYPDRLNTAKGPINAAVSSDWIEKDGAVIKP





VETVRNLSSTGFAGAGVSEYLVQAPHDWYTPLDLRDVAHLVTGLPVEKNITKLKRLTNRTAFRMVGASSF





KTHLDSVLLSDKIKLGDFTIIIDQHYRQSVTYGGKVKISYEPERLQVEAAVPVVDTRDRTVPEPDTLFDHIVA





IDLGERSVGFAVFDIKSCLRTGEVKPIHDNNGNPVVGTVAVPSIRRLMKAVRSHRRRRQPNQKVNQTYSTA





LQNYRENVIGDVCNRIDTLMERYNAFPVLEFQIKNFQAGAKQLEIVYGS






An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 1|WP_010922251|gi 499224711|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 27|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 28|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 29|5AXW_A|gi 924443546|Staphylococcus aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.













S1
1
--MDKK-YSIGLD*IGTNSVGNAVITDEYKVPSKKFKVLGNTDRHSIKKNLI--GALLFDSG--ETAEATRLKRTARRRYT
73



S2
1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLL--GALLFDSG--ETAEATRLKRTARRRYT
74


S3
1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT
73


S4
1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRLFKEANVENNEGRRSKRGARRLKR
61





S1
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL
153


S2
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTFDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL
154


S3
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL
153


S4
62
RRRHRIQRVKKLL--------------------------FDYNLLTD--------HSELSGINPYEARVKGLSQKLSEEE
107





S1
154
IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233


S2
155
VYLALAHMIKFRGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234


S3
154
IYLALAHMIKYRGHFLYEEAFDIKNNDIQKIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
233


S4
108
FSAALLHLAKRRG----------------------VHNVNEVEEDT----------------------------------
131





S1
234
KNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT
313


S2
235
KNTLFGNLIALALGLQPNFKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST
314


S3
234
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST
313


S4
132
-----GNELS------------------TKEQISRN--------------------------------------------
144





S1
314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391


S2
315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKILIDGSDYFLD
394


S3
314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQDKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391


S4
145
----SKALEEKYVAELQ-------------------------------------------------LERLKKDG------
165





S1
392
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVFPLARGNSRFAWMTRKSEE
471


S2
395
KIEREDFLRKQRTFDNGSIPHQIHLQEMMAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474


S3
392
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471


S4
166
--EVRGSINRFKTSD--------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
472
TITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL
551


S2
475
KITPWNFDKVIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH
553


S3
472
AIRPWNFEEIVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQGLDSGQKKQIVNQ
552


S4
228
DIKEW---------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN
289





S1
552
LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR--FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628


S2
554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632


S3
552
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEFMDDAKNEAILEN(VHTLTIFED
627


S4
290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
629
REMIEERLKTYAHLFDDKVMEQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
707


S2
633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNFMQLINDDTLPPFQI
711


S3
628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNFMQLINDDGLSFKEI
706


S4
364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE-----LWHTNDNQIAIFNRLKLVP----------
428





S1
708


embedded image


781


S2
712


embedded image


784


S3
707


embedded image


779


S4
429


embedded image


505





S1
782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850


S2
785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----HDIDH*IIPQAFIKDD


860


S3
780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINGLSS----YDIDH*IIPQAFIKDD


852


S4
506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSPDN


570





S1
851


embedded image


922


S2
861


embedded image


932


S3
853


embedded image


924


S4
571


embedded image


650





S1
923


embedded image


1002


S2
933


embedded image


1012


S3
925


embedded image


1004


S4
651


embedded image


712


S1
1003


embedded image


1077


S2
1013


embedded image


1083


S3
1005


embedded image


1081


S4
713


embedded image


764





S1
1078


embedded image


1149


S2
1084


embedded image


1158


S3
1082


embedded image


1156


S4
765


embedded image


835





S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG
1223


S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASAELQKG
1232


S3
1157
EKGKKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG
1230


S4
836
DPQYQKLK----------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH------
1297


S2
1233
NEMVLPGYLVELLYHAHRADNF----NSTEYLVYVSEHKKEFEKVLSCFEDFANLYVDVEKNLSKIRAVADSM-------
301


S3
1231
NEIVLPVYLTTLLYHSKNVHKL------DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSYLYADN------
1299


S4
908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT-------GLYETRI----DLSQL
1365


S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT-------GLYETRI----DLSKL
1369


S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT-------GLYETWI----DLSKL
1367


S4
980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368


S2
1370
GEE
1372


S3
1368
GED
1370


S4
1056
G--
1056






The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 1 and 27-29 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 1 that correspond to the residues identified in SEQ ID NOs: 1 and 27-29 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 1 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 1, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 1 (S1) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 1 (S1) are H850A for S2, H842A for S3, and H560A for S4.


A total of 250 Cas9 sequences (SEQ ID NOs: 1 and 27-275) from different species are provided. Amino acid residues corresponding to residues 10 and 840 of SEQ ID NO: 1 may be identified in the same manner as outlined above. All of these Cas9 sequences may be used in accordance with the present disclosure.















WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 1


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 27


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 28


5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus Aureus] SEQ ID NO: 29


WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 30


WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 31


WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 32


WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 33


WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 34


WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 35


WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 36


WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 37


WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 38


WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 39


WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 40


WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 41


WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 42


WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 43


WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 44


WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 45


WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 46


WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 47


WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 48


WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 49


WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 50


WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 51


WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 52


BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes] SEQ ID NO: 53


KGE60162.1
hypothetical protein MGAS2111_0903 [Streptococcus pyogenes MGAS2111] SEQ ID NO: 54


KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447] SEQ ID NO: 55


WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 56


WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 57


WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 58


WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 59


WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 60


WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 61


WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 62


WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 63


WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 64


WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 65


WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 66


WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 67


WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 68


WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 69


WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 70


WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 71


WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 72


WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 73


WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 74


WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 75


WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 76


WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 77


WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 78


WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 79


WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 80


WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 81


WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 82


WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 83


WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 84


WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 85


WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 86


WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 87


WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 88


WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 89


WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 90


WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 91


CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 92


CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 93


KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 94


KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 95


KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 96


KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 97


WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 98


WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 99


WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 100


WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 101


WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 102


WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 103


WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 104


AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P] SEQ ID NO: 105


EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B] SEQ ID NO: 106


CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112] SEQ ID NO: 107


WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 108


WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 109


WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus] SEQ ID NO: 110


GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5] SEQ ID NO: 111


WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi] SEQ ID NO: 112


WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis] SEQ ID NO: 113


WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 114


WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 115


WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 116


WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 117


WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 118


WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 119


WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 120


WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae] SEQ ID NO: 121


WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 122


WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 123


WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 124


WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus] SEQ ID NO: 125


WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 126


WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 127


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 128


WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius] SEQ ID NO: 129


WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae] SEQ ID NO: 130


AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 131


AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 132


ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1] SEQ ID NO: 133


AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1] SEQ ID NO: 134


ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius] SEQ ID NO: 135


WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis] SEQ ID NO: 136


WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 137


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 138


WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 139


WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 140


WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 141


WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 142


WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 143


WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 144


WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 145


WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 146


WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 147


WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 148


WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 149


WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 150


WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 151


WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 152


WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 153


WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 154


WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 155


WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 156


WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 157


WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 158


WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 159


WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 160


WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 161


WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 162


WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 163


WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 164


WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 165


WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 166


WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 167


WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 168


WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 169


WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 170


WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 171


WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 172


WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 173


WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 174


WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 175


WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 176


WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 177


WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 178


WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 179


WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 180


WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 181


WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 182


WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 183


EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4] SEQ ID NO: 184


WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 185


WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 186


WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis] SEQ ID NO: 187


WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis] SEQ ID NO: 188


WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae] SEQ ID NO: 189


WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 190


WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 191


WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 192


WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus] SEQ ID NO: 193


EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026] SEQ ID NO: 194


WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 195


WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 196


WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. F0441] SEQ ID NO: 197


CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10] SEQ ID NO: 198


WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334] SEQ ID NO: 199


WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056] SEQ ID NO: 200


WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 201


WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 202


WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 203


WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 204


WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis] SEQ ID NO: 205


WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta] SEQ ID NO: 206


WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai] SEQ ID NO: 207


AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196] SEQ ID NO: 208


WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11] SEQ ID NO: 209


AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p (bhsp68-Cas9 )] SEQ ID NO: 210


WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum] SEQ ID NO: 211


WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 212


WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 213


EMS75795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655] SEQ ID NO: 214


WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 215


WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 216


WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 217


WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 218


WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 219


WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 220


WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 221


WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 222


WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 223


WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 224


WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 225


WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 226


WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 227


WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 228


WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 229


WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 230


WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 231


WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 232


WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 233


WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 234


WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 235


WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 236


WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 237


WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus] SEQ ID NO: 238


WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii] SEQ ID NO: 239


WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola] SEQ ID NO: 240


WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AMI] SEQ ID NO: 241


WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum] SEQ ID NO: 242


AII16583.1
Cas9 endonuclease [Expression vector pCas9] SEQ ID NO: 243


WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 244


WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 245


KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis] SEQ ID NO: 246


WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus] SEQ ID NO: 247


AKP02966.1
hypothetical protein ABB45_04605 [Lactobacillus farciminis] SEQ ID NO: 248


WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 249


WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 250


EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091] SEQ ID NO: 251


EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL S4-378] SEQ ID NO: 252


WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii] SEQ ID NO: 253


EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596] SEQ ID NO: 254


WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 255


WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 256


WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 257


WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 258


WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 259


WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 260


WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 261


WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 262


WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 263


WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 264


AKI42028.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 265


AKI50529.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 266


EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208] SEQ ID NO: 267


WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri] SEQ ID NO: 268


AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H] SEQ ID NO: 269


CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis] SEQ ID NO: 270


WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis] SEQ ID NO: 271


AGZ01981.1
Cas9 endonuclease [synthetic construct] SEQ ID NO: 272


AKA60242.1
nuclease deficient Cas9 [synthetic construct] SEQ ID NO: 273


AKS40380.1
Cas9 [Synthetic plasmid pFC330] SEQ ID NO: 274


4UN5_B
Cas9, Chain B, Crystal Structure SEQ ID NO: 275









Non-limiting examples of suitable cytosine deaminase domains are provided.










Human AID



(SEQ ID NO: 276)



MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFLRYISDWD






LDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIAIMT





FKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





Mouse AID


(SEQ ID NO: 277)



MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCHVELLFLRYISDWD






LDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIGIMT





FKDYFYCWNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEVDDLRDAFRMLGF





Dog AID


(SEQ ID NO: 278)



MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGCHVELLFLRYISDWD






LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAARLYFCEDRKAEPEGLRRLHRAGVQIAIMT





FKDYFYCWNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





Bovine AID


(SEQ ID NO: 279)



MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCHVELLFLRYISDWD






LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTARLYFCDKERKAEPEGLRRLHRAGVQIAIM





TFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





Mouse APOBEC-3


(SEQ ID NO: 280)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIH






AEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQQNL





CRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSN





ICLTKGLPETRFCVEGRRMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEK





GKQHAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCS





LWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLRRIKESWGLQDLVNDFGNLQLGP





PMS





Rat APOBEC-3


(SEQ ID NO: 281)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIHA






EICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQNLC





RLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNI





CLTKGLPETRFCVERRRVHLLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKG





KQHAEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSL





WQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLHRIKESWGLQDLVNDFGNLQLGPP





MS






Rhesusmacaque APOBEC-3G



(SEQ ID NO: 282)



MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKYHPEMRFLRWFHKW






RQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRGGPH





ATMKIMNYNEFQDCWNKFVDGRGKPFKPRNNLPKHYTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQ





HETYLCYKVERLHNDTWVPLNQHRGFLRNQAPNIHGFPKGRHAELCFLDLIPFWKLDGQQYRVTCFTSWS





PCFSCAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCWDTFVDRQGR





PFQPWDGLDEHSQALSGRLRAI


(italic: nucleic acid editing domain; underline: cytoplasmic


localization signal)





Chimpanzee APOBEC-3G


(SEQ ID NO: 283)



MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSKLKYHPEMRF






FHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQ





KRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNFNNELW





VRGRHETYLCYEVERLHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRVT





CFTSWSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSEFKHCWDTFV





DHQGCPFQPWDGLEEHSQALSGRLRAILQNQGN





Green monkey APOBEC-3G


(SEQ ID NO: 284)



MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLYPEAKDHPEMKFL






HWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRILCQ





ERGGPHATMKIMNYNEFQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNK





PWVSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQAPDRHGFPKGRHAELCFLDLIPFWKLDDQQYRV





TCFTSWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYSEFEYCWDTF





VDRQGRPFQPWDGLDEHSQALSGRLRAI





Human APOBEC-3G


(SEQ ID NO: 285)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFF






HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQ





KRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPW





VRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVT





CFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVD





HQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN





Human APOBEC-3F


(SEQ ID NO: 286)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQVYSQPEHHAEMCF






LSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRLSQA





GARVKIMDDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRK





AYGRNESWLCFTMEVVKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWS





PCPECAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCWENFVYNDD





EPFKPWKGLKYNFLFLDSKLQEILE





Human APOBEC-3B


(SEQ ID NO: 287)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGQVYFKPQYHAEM






CFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALCRLSQ





AGARVTIMDYEEFAYCWENFVYNEGQQFMPWYKFDENYAFLHRTLKEILRYLMDPDTFTFNFNNDPLVL





RRRQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWF





ISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFEYCWDTF





VYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN





Human APOBEC-3C:


(SEQ ID NO: 288)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCHAER






CFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQ





EGVAVEIMDYEDFKYCWENFVYNDNEPFKPWKGLKTNFRLLKRRLRESLQ





Human APOBEC-3A:


(SEQ ID NO: 289)



MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFYGRH






AELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQ





MLRDAGAQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN





Human APOBEC-3H:


(SEQ ID NO: 290)



MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEICFINEIKSMGLDET






QCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQQKGLRLLCGSQVPVEVMGFPKF





ADCWENFVDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCDAEV





Human APOBEC-3D


(SEQ ID NO: 291)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGPVLPKRQSNHRQE






VYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLYYYRD





RDWRWVLLRLHKAGARVKIMDYEDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAM





YPHIFYFHFKNLLKACGRNESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHCHAERCFLSWFCDDILSPN





TNYEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKIMGYKDF





VSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ





Human APOBEC-1


(SEQ ID NO: 292)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS






ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI





MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC





HYQTIPPHILLATGLIHPSVAWR





Mouse APOBEC-1


(SEQ ID NO: 293)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNTSNHVEVNFLEKFTT






ERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVTIQIM





TEQEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITLQTCHYQ





RIPPHLLWATGLK





Rat APOBEC-1


(SEQ ID NO: 294)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIM





TEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQ





RLPPHILWATGLK






Petromyzonmarinus CDA1 (pmCDA1)



(SEQ ID NO: 295)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV





Human APOBEC3G D316R_D317R


(SEQ ID NO: 296)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFF






HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQ





KRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPW





VRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVT





CFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVD





HQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN





Human APOBEC3G chain A


(SEQ ID NO: 297)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ





Human APOBEC3G chain A D120R_D121R


(SEQ ID NO: 298)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ






Nonlimiting, exemplary uracil glycosylase inhibitor sequences are provided.









Bacillus phage PBS2 (Bacteriophage PBS2)


Uracil-DNA glycosylase inhibitor


(SEQ ID NO: 299)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES





TDENVMLLTSDAPEYKPWALVIQDSNGENKIKML






Erwiniatasmaniensis SSB (themostable single-



stranded DNA binding protein)


(SEQ ID NO: 300)


MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETK





EKTEWHRVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTT





EVVVNVGGTMQMLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGGNQFSGG





AQQQARPQQQPQQNNAPANNEPPIDFDDDIP





UdgX (binds to uracil in DNA but does not excise)


(SEQ ID NO: 301)


MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMI





GEQPGDKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKHFKFTR





AAGGKRRIHKTPSRTEVVACRPWLIAEMTSVEPDVVVLLGATAAKALLGN





DFRVTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERESAFAGLVDD





LRVAADVRP





UDG (catalytically inactive human UDG, binds to


uracil in DNA but does not excise)


(SEQ ID NO: 302)


MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPEESGDAAAIPAKK





APAGQEEPGTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGESWKK





HLSGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTWTQMCDIKDVKVVI





LGQEPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIEDFVHPGHGD





LSGWAKQGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVSWLNQNSNGLV





FLLWGSYAQKKGSAIDRKRHHVLQTAHPSPLSVYRGFFGCRHFSKTNELL





QKSGKKPIDWKEL






Non-limiting examples of C to T nucleobase editors are provided.










His6-rAPOBEC1-XTEN-dCas9 for Escherichia coli expression



(SEQ ID NO: 303)



MGSSHHHHHHMSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH






VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLI





SSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTI





ALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVE





EDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD





VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY





DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNRE





DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS





EETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLK





SDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH





KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD





QELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQR





KFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF





FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESI





LPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF





LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN





EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-NLS for mammalian expression


(SEQ ID NO: 304)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





hAPOBEC1-XTEN-dCas9-NLS for Mammalian expression


(SEQ ID NO: 305)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS






ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI





MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC





HYQTIPPHILLATGLIHPSVAWRSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVL





GNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLV





EEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNS





DVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNF





KSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR





YDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNR





EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK





SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL





KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGR





HKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYV





DQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ





RKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF





RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK





YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK





ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPI





DFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-UGI-NLS


(SEQ ID NO: 306)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD





ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





rAPOBEC1-XTEN-Cas9 nickase-UGI-NLS


(BE3, SEQ ID NO: 307)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTITL





FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQ





LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN





QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYD





VDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN





NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTE





ITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIAR





KKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKK





DLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDI





LVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





pmCDA1-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 308)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVELYLRDNPGQFTINWYSSWSPCADCALKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVELVIGNKPESDILVHTAYDESTDEN





VMLLTSDAPEYKPWALVIQDSNGENKIKML





pmCDA1-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 309)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENV





MLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





huAPOBEC3G-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 310)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSMTN





LSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSN





GENKIKML





huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 311)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV





huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 312)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV





High fidelity nucleobase editor


(SEQ ID NO: 313)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





ALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSLEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGD





rAPOBEC1-XTEN-SaCas9n-UGI-NLS)


(SEQ ID NO: 399)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGR






RSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGV







HNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQK







AYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNA







LNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYH







DIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE







LWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELARE







KNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNY







EVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYL







LEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNK







GYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKD







YKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQ







KLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLS







LKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYLVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELY







RVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG






SGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWAL





VIQDSNGENKIKMLSGGSPKKKRKV





rAPOBEC1-XTEN-SaCas9n-UGI-NLS


(SEQ ID NO: 400)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGR






RSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGV







HNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQK







AYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNA







LNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYH







DIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE







LWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELARE







KNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNY







EVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYL







LEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNK







GYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKD







YKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQ







KLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLS







LKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKNDLIKINGELY







RVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG






SGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWAL





VIQDSNGENKIKMLSGGSPKKKRKV





Nucleobase Editor 4-SSB


(SEQ ID NO: 401)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSASRGVNKVILVGNLGQDPEVRYMPNGGAV





ANITLATSESWRDKATGEMKEQTEWHRVVLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQSGQDRYT





TEVVVNVGGTMQMLGGRQGGGAPAGGNIGGGQPQGGWGQPQQPQGGNQFSGGAQSRPQQSAPAAPSNE





PPMDFDDDIPFSGGSPKKKRKV





Nucleobase Editor 4-(GGS)3


(SEQ ID NO: 402)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIG





NKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





Nucleobase Editor 4-XTEN


(SEQ ID NO: 403)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGSETPGTSESATPESTNLSDIIEKETGKQLVIQESILMLPEE





VEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





Nucleobase Editor 4-32aa linker


(SEQ ID NO: 404)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKK





FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL





TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS





MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLV





KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW





MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGM





RKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGK





TILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK





VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGR





DMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNA





KLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSK





LVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK





ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG





GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFE





KNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLK





GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESIL





MLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRK





V





Nucleobase Editor 4-2X UGI


(SEQ ID NO: 405)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD





ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSTNLSDIIEKETGKQLVIQESILMLP





EEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





Nucleobase Editor 4


(SEQ ID NO: 406)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKK





FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL





TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS





MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLV





KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW





MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGM





RKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGK





TILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK





VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGR





DMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNA





KLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSK





LVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK





ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG





GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFE





KNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLK





GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSTNLSDIIEKETGKQ





LVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGG





SGGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKP





WALVIQDSNGENKIKMLSGGSPKKKRKV






Non-limiting examples evolved adenosine deaminases that accept DNA as substrates are provided.










ecTadA



(SEQ ID NO: 314)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (D108N)


(SEQ ID NO: 315)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (D108G)


(SEQ ID NO: 316)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (D108V)


(SEQ ID NO: 317)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (H8Y, D108N, N127S)


(SEQ ID NO: 318)



SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (H8Y, D108N, N127S, E155D)


(SEQ ID NO: 319)



SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILAD





ECAALLSDFFRMRRQDIKAQKKAQSSTD





ecTadA (H8Y, D108N, N127S, E155G)


(SEQ ID NO: 320)



SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILAD





ECAALLSDFFRMRRQGIKAQKKAQSSTD





ecTadA (H8Y, D108N, N127S, E155V)


(SEQ ID NO: 321)



SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILAD





ECAALLSDFFRMRRQVIKAQKKAQSSTD





ecTadA (A106V, D108N, D147Y, and E155V)


(SEQ ID NO: 322)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVIKAQKKAQSSTD





ecTadA (A106V, D108N, D147Y, and E155V)


(SEQ ID NO: 407)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVIKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V, I156F)


(SEQ ID NO: 408)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (S2A, I49F, A106V, D108N, D147Y, E155V)


(SEQ ID NO: 409)




AEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPFGRHDPTAHAEIMALRQGGLV







MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVIKAQKKAQSSTD





ecTadA (H8Y, A106T, D108N, N127S, K160S)


(SEQ ID NO: 410)



SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGTRNAKTGAAGSLMDVLHHPGMSHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQSKAQSSTD





ecTadA (R26G, L84F, A106V, R107H, D108N, H123Y, A142N, A143D,


D147Y, E155V, I156F)


(SEQ ID NO: 411)



SEVEFSHEYWMRHALTLAKRAWDEGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNDLLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (E25G, R26G, L84F, A106V, R107H, D108N, H123Y, A142N,


A143D, D147Y, E155V, I156F)


(SEQ ID NO: 412)



SEVEFSHEYWMRHALTLAKRAWDGGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNDLLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (E25D, R26G, L84F, A106V, R107K, D108N, H123Y, A142N,


A143G, D147Y, E155V, I156F)


(SEQ ID NO: 413)



SEVEFSHEYWMRHALTLAKRAWDDGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVKNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNGLLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (R26Q, L84F, A106V, D108N, H123Y, A142N, D147Y, E155V,


I156F)


(SEQ ID NO: 414)



SEVEFSHEYWMRHALTLAKRAWDEQEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (E25M, R26G, L84F, A106V, R107P, D108N, H123Y, A142N,


A143D, D147Y, E155V, I156F)


(SEQ ID NO: 415)



SEVEFSHEYWMRHALTLAKRAWDMGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVPNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNDLLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (R26C, L84F, A106V, R107H, D108N, H123Y, A142N, D147Y,


E155V, I156F)


(SEQ ID NO: 416)



SEVEFSHEYWMRHALTLAKRAWDECEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (L84F, A106V , D108N, H123Y, A142N, A143L, D147Y, E155V,


I156F)


(SEQ ID NO: 417)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNLLLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (R26G, L84F, A106V, D108N, H123Y, A142N, D147Y, E155V,


I156F)


(SEQ ID NO: 418)



SEVEFSHEYWMRHALTLAKRAWDEGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (R51H, L84F, A106V, D108N, H123Y, D147Y, E155V, I156F,


K157N)


(SEQ ID NO: 419)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGHHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFNAQKKAQSSTD





ecTadA (E25A, R26G, L84F, A106V, R107N, D108N, H123Y, A142N,


A143E, D147Y, E155V, I156F)


(SEQ ID NO: 420)



SEVEFSHEYWMRHALTLAKRAWDAGEVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVNNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECNELLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V, I156F)


(SEQ ID NO: 421)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (N37T, P48T, L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F)


(SEQ ID NO: 422)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHTNRVIGEGWNRTIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (N37S, L84F, A106V, D108N, H123Y, D147Y, E155V, I156F)


(SEQ ID NO: 423)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHSNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (H36L, L84F, A106V, D108N, H123Y, D147Y, E155V, I156F)


(SEQ ID NO: 424)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, S146R, D147Y, E155V, I156F)


(SEQ ID NO: 425)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLRYFFRMRRQVFKAQKKAQSSTD





ecTadA (H36L, P48L, L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F)


(SEQ ID NO: 426)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRLIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (H36L, L84F, A106V, D108N, H123Y, D147Y, E155V, K57N,


I156F)


(SEQ ID NO: 427)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLSYFFRMRRQVFNAQKKAQSSTD





ecTadA (H36L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V,


I156F)


(SEQ ID NO: 428)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLCYFFRMRRQVFKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, S146R, D147Y, E155V, I156F)


(SEQ ID NO: 429)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLRYFFRMRRQVFKAQKKAQSSTD





ecTadA (N375, R51H, L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F


(SEQ ID NO: 430)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHSNRVIGEGWNRPIGHHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (R51L, L84F, A106V, D108N, H123Y, D147Y, E155V, I156F,


K157N


(SEQ ID NO: 431)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGLHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFNAQKKAQSSTD





saTadA (wt)


(SEQ ID NO: 432)



MGSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGS






WRLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGADDPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACS





TLLTTFFKNLRANKKSTN





saTadA (D108N)


(SEQ ID NO: 433)



GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGSW






RLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGADNPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACST





LLTTFFKNLRANKKSTN





saTadA (D107A_D108N)


(SEQ ID NO: 434)



GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGSW






RLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACST





LLTTFFKNLRANKKSTN





saTadA (G26P_D107A_D108N)


(SEQ ID NO: 435)



GSHMTNDIYFMTLAIEEAKKAAQLPEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGSW






RLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACST





LLTTFFKNLRANKKSTN





saTadA (G26P_D107A_D108N_S142A)


(SEQ ID NO: 436)



GSHMTNDIYFMTLAIEEAKKAAQLPEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGSW






RLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACAT





LLTTFFKNLRANKKSTN





saTadA (D107A_D108N_S142A)


(SEQ ID NO: 437)



GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGSW






RLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACAT





LLTTFFKNLRANKKSTN





ecTadA (P48S)


(SEQ ID NO: 438)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRSIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (P48T)


(SEQ ID NO: 439)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRTIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (P48A)


(SEQ ID NO: 440)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRAIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (A142N)


(SEQ ID NO: 441)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECNALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (W23R)


(SEQ ID NO: 442)



SEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADE





CAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (W23L)


(SEQ ID NO: 443)



SEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADE





CAALLSDFFRMRRQEIKAQKKAQSSTD





ecTadA (R152P)


(SEQ ID NO: 444)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMPRQEIKAQKKAQSSTD





ecTadA (R152H)


(SEQ ID NO: 445)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILAD





ECAALLSDFFRMHRQEIKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V, I156F)


(SEQ ID NO: 446)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLSYFFRMRRQVFKAQKKAQSSTD





ecTadA (H36L, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y,


E155V, I156F, K157N)


(SEQ ID NO: 447)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGLHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLCYFFRMRRQVFNAQKKAQSSTD





ecTadA (H36L, P48S, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y,


E155V, I156F, K157N)


(SEQ ID NO: 448)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRSIGLHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLCYFFRMRRQVFNAQKKAQSSTD





ecTadA (H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y,


E155V, I156F, K157N)


(SEQ ID NO: 449)



SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLV






MQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD





ECAALLCYFFRMRRQVFNAQKKAQSSTD





ecTadA (W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C,


D147Y, R152P, E155V, I156F, K157N)


(SEQ ID NO: 450)



SEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLCYFFRMPRQVFNAQKKAQSSTD





ecTadA (W23R, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C,


D147Y, R152P, E155V, I156F, K157N)


(SEQ ID NO: 479)



SEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVM






QNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE





CAALLCYFFRMPRQVFNAQKKAQSSTD






Staphylococcus aureus TadA:



(SEQ ID NO: 451)



MGSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQQPTAHAEHIAIERAAKVLGS






WRLEGCTLYVTLEPCVMCAGTIVMSRIPRVVYGADDPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACS





TLLTTFFKNLRANKKSTN






Bacillus subtilis TadA:



(SEQ ID NO: 452)



MTQDELYMKEAIKEAKKAEEKGEVPIGAVLVINGEIIARAHNLRETEQRSIAHAEMLVID






EACKALGTWRLEGATLYVTLEPCPMCAGAVVLSRVEKVVFGAFDPKGGCSGTLMNLLQEERFNHQAEVV





SGVLEEECGGMLSAFFRELRKKKKAARKNLSE






Salmonella typhimurium (S. typhimurium) TadA:



(SEQ ID NO: 453)



MPPAFITGVTSLSDVELDHEYWMRHALTLAKRAWDEREVPVGAVLVHNHRVIGEGWNRPIGRHDPTAHA






EIMALRQGGLVLQNYRLLDTTLYVTLEPCVMCAGAMVHSRIGRVVFGARDAKTGAAGSLIDVLHHPGMN





HRVEIIEGVLRDECATLLSDFFRMRRQEIKALKKADRAEGAGPAV






Shewanella putrefaciens (S. putrefaciens) TadA:



(SEQ ID NO: 454)



MDEYWMQVAMQMAEKAEAAGEVPVGAVLVKDGQQIATGYNLSISQHDPTAHAEILCLRSAGKKLENYR






LLDATLYITLEPCAMCAGAMVHSRIARVVYGARDEKTGAAGTVVNLLQHPAFNHQVEVTSGVLAEACSA





QLSRFFKRRRDEKKALKLAQRAQQGIE






Haemophilus influenzae F3031 (H. influenzae) TadA:



(SEQ ID NO: 455)



MDAAKVRSEFDEKMMRYALELADKAEALGEIPVGAVLVDDARNIIGEGWNLSIVQSDPTAHAEIIALRNG






AKNIQNYRLLNSTLYVTLEPCTMCAGAILHSRIKRLVFGASDYKTGAIGSRFHFFDDYKMNHTLEITSGVLA





EECSQKLSTFFQKRREEKKIEKALLKSLSDK






Caulobacter crescentus (C. crescentus) TadA:



(SEQ ID NO: 456)



MRTDESEDQDHRMMRLALDAARAAAEAGETPVGAVILDPSTGEVIATAGNGPIAAHDPTAHAEIAAMRA






AAAKLGNYRLTDLTLVVTLEPCAMCAGAISHARIGRVVFGADDPKGGAVVHGPKFFAQPTCHWRPEVTG





GVLADESADLLRGFFRARRKAKI






Geobacter sulfurreducens (G. sulfurreducens) TadA:



(SEQ ID NO: 457)



MSSLKKTPIRDDAYWMGKAIREAAKAAARDEVPIGAVIVRDGAVIGRGHNLREGSNDPSAHAEMIAIRQA






ARRSANWRLTGATLYVTLEPCLMCMGAIILARLERVVFGCYDPKGGAAGSLYDLSADPRLNHQVRLSPGV





CQEECGTMLSDFFRDLRRRKKAKATPALFIDERKVPPEP






Non-limiting examples of A to G nucleobase editors are provided.










ecTadA(wt)-XTEN-nCas9-NLS



(SEQ ID NO: 323)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





ecTadA(D108N)-XTEN-nCas9-NLS:


(mammalian construct, active on NA, A to G editing, SEQ ID NO: 324)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





ecTadA(D108G)-XTEN-nCas9-NLS:


(mammalian construct, active on DNA, A to G editing, SEQ ID NO: 325)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





ecTadA(D108V)-XTEN-nCas9-NLS:


(mammalian construct, active on DNA, A to G editing, SEQ ID NO: 326)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





ecTadA(D108N)-XTEN-nCas9-UGI-NLS


(BE3 analog of A to G editor, SEQ ID NO: 327)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKK





RKV





ecTadA(D108G)-XTEN-nCas9-UGI-NLS


(BE3 analog of A to G editor, SEQ ID NO: 328):


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKK





RKV





ecTadA(D108V)-XTEN-nCas9-UGI-NLS


(BE3 analog of A to G editor, SEQ ID NO: 329):


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKK





RKV





ecTadA(D108N)-XTEN-dCas9-UGI-NLS


(mammalian cells, BE2 analog of A to G editor, SEQ ID NO: 330):


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKK





RKV





ecTadA(D108G)-XTEN-dCas9-UGI-NLS


(mammalian cells, BE2 analog of A to G editor, SEQ ID NO: 331):


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKK





RKV





ecTadA(D108V)-XTEN-dCas9-UGI-NLS


(mammalian cells, BE2 analog of A to G editor, SEQ ID NO: 332):


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQE





SILMLPEEVELVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKM





LSGGSPKKKRKV





ecTadA(D108N)-XTEN-nCas9-AAG(E125Q)-NLS - cat. alkyladenosine


glycosylase


(SEQ ID NO: 333)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSKGHLTRLGLEFFDQPAVP





LARAFLGQVLVRRLPNGTELRGRIVETQAYLGPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFC





MNISSQGDGACVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQALAINKSFDQRDLAQ





DEAVWLERGPLEPSEPAVVAAARVGVGHAGEWARKPLRFYVRGSPWVSVVDRVAEQDTQASGGSPKKK





RKV





ecTadA(D108G)-XTEN-nCas9-AAG(E125Q)-NLS - cat. alkyladenosine


glycosylase


(SEQ ID NO: 334)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSKGHLTRLGLEFFDQPAVP





LARAFLGQVLVRRLPNGTELRGRIVETQAYLGPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFC





MNISSQGDGACVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQALAINKSFDQRDLAQ





DEAVWLERGPLEPSEPAVVAAARVGVGHAGEWARKPLRFYVRGSPWVSVVDRVAEQDTQASGGSPKKK





RKV





ecTadA(D108V)-XTEN-nCas9-AAG(E125Q)-NLS - cat. alkyladenosine


glycosylase


(SEQ ID NO: 335)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSKGHLTRLGLEFFDQPAVP





LARAFLGQVLVRRLPNGTELRGRIVETQAYLGPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFC





MNISSQGDGACVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQALAINKSFDQRDLAQ





DEAVWLERGPLEPSEPAVVAAARVGVGHAGEWARKPLRFYVRGSPWVSVVDRVAEQDTQASGGSPKKK





RKV





ecTadA(D108N)-XTEN-nCas9-EndoV(D35A)-NLS: contains cat.


endonuclease V


(SEQ ID NO: 336)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSDLASLRAQQIELASSVIRE





DRLDKDPPDLIAGAAVGFEQGGEVTRAAMVLLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWE





MLSQKPDLVFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSEPGALAPLMDKGEQLAW





VWRSKARCNPLFIATGHRVSVDSALAWVQRCMKGYRLPEPTRWADAVASERPAFVRYTANQPSGGSPKK





KRKV





ecTadA(D108G)-XTEN-nCas9-EndoV (D35A)-NLS: contains cat.


endonuclease V


(SEQ ID NO: 337)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSDLASLRAQQIELASSVIRE





DRLDKDPPDLIAGAAVGFEQGGEVTRAAMVLLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWE





MLSQKPDLVFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSEPGALAPLMDKGEQLAW





VWRSKARCNPLFIATGHRVSVDSALAWVQRCMKGYRLPEPTRWADAVASERPAFVRYTANQPSGGSPKK





KRKV





ecTadA(D108V)-XTEN-nCas9-EndoV(D35A)-NLS: contains cat.


endonuclease V


(SEQ ID NO: 338)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSDLASLRAQQIELASSVIRE





DRLDKDPPDLIAGAAVGFEQGGEVTRAAMVLLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWE





MLSQKPDLVFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSEPGALAPLMDKGEQLAW





VWRSKARCNPLFIATGHRVSVDSALAWVQRCMKGYRLPEPTRWADAVASERPAFVRYTANQPSGGSPKK





KRKV





Variant resulting from first round of evolution (in bacteria) ecTadA


(H8Y_D108N_N127S)-XTEN-dCas9


(SEQ ID NO: 339)


MSEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





Enriched variants from second round of evolution (in bacteria) ecTadA


(H8Y_D108N_N127S_E155X)-XTEN-dCas9; X = D, G or V


(SEQ ID NO: 340)


MSEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILA





DECAALLSDFFRMRRQXIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





pNMG-160: ecTadA(D108N)-XTEN-nCas9-GGS-AAG*(E125Q)-GGS-NLS


(SEQ ID NO: 341)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGSKGHLTRLGLEFFDQPAVPL





ARAFLGQVLVRRLPNGTELRGRIVETQAYLGPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFCM





NISSQGDGACVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQALAINKSFDQRDLAQD





EAVWLERGPLEPSEPAVVAAARVGVGHAGEWARKPLRFYVRGSPWVSVVDRVAEQDTQAGGSPKKKRK





V





pNMG-161: ecTadA(D108N)-XTEN-nCas9-GGS-EndoV*(D35A)-GGS-NLS


(SEQ ID NO: 342)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGL





VMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILA





DECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVP





SKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPL





SASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEEL





LVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF





AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTE





GMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK





DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL





VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQN





GRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLL





NAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK





SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI





GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEK





LKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN





LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGSDLASLRAQQIELASSVIRE





DRLDKDPPDLIAGAAVGFEQGGEVTRAAMVLLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWE





MLSQKPDLVFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSEPGALAPLMDKGEQLAW





VWRSKARCNPLFIATGHRVSVDSALAWVQRCMKGYRLPEPTRWADAVASERPAFVRYTANQPGGSPKKK





RKV





pNMG-371: ecTadA(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)-SGGS-SGGS-


XTEN-SGGS-SGGS-ecTadA(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)-SGGS-


SGGS-XTEN-SGGS-SGGS-nCas9-SGGS-NLS


(SEQ ID NO: 458)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHA





EIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGS





LMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQVFKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





HNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRM





RRQVFKAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-616 amino acid sequence: ecTadA(wild type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


S146C_D147Y_R152P_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_


nCas9_SGGS_NLS


(SEQ ID NO: 459)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-624 amino acid sequence: ecTadA(wild type)-32 a.a. linker-


ecTadA(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_


R152P_E155V_I156F_K157N)-24 a.a. linker_nCas9_SGGS_NLS


(SEQ ID NO: 460)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRIC





YLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED





AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM





IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE





KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVT





VKQLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL





TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL





DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT





VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL





TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA





GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA





TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV





NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR





MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE





QISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID





RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-476 amino acid sequence (evolution #3 hetero dimer, wt


TadA + TadA evo #3 mutations): ecTadA(wild-type)-(SGGS)2-


XTEN-(SGGS)2-ecTadA(L84F_A106V_D108N_H123Y_D147Y_E155V_


I156F)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 461)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





HNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRM





RRQVFKAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-477 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_


E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 462)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRPIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-558 amino acid sequence: ecTadA(wild-type)-32 a.a.


linker-ecTadA(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_


E155V_I156F_K157N)-24 a.a. linker_nCas9_SGGS_NLS


(SEQ ID NO: 463)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRPIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRIC





YLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED





AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM





IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE





KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVT





VKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL





TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL





DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT





VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL





TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA





GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA





TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV





NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR





MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE





QISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID





RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-576 amino acid sequence: ecTadA(wild-type)-(SGGS)2-


XTEN-(SGGS)2-ecTadA(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_


S146C_D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_


GGS_NLS


(SEQ ID NO: 464)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRSIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-577 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_


A142N_D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_


NLS


(SEQ ID NO: 465)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRSIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-586 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_


D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 466)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-588 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS )2-ecTadA(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_


A142N_D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_


NLS


(SEQ ID NO: 467)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-620 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


S146C_D147Y_R152P_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_


nCas9_GGS_NLS


(SEQ ID NO: 468)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-617 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


A142A_S146C_D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_


nCas9_GGS_NLS


(SEQ ID NO: 469)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-618 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


A142A_S146C_D147Y_R152P_E155V_I156F_K157N)-(SGGS)2-XTEN-


(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 470)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-620 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-


(SGGS)2-ecTadA(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


S146C_D147Y_R152P_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_


nCas9_GGS_NLS


(SEQ ID NO: 471)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-621 amino acid sequence: ecTadA(wild-type)-32 a.a.


linker-ecTadA(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_


D147Y_R152P_E155V_I156F_K157N)-24 a.a. linker_nCas9_GGS_NLS


(SEQ ID NO: 472)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRIC





YLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED





AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM





IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE





KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVT





VKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL





TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL





DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT





VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL





TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA





GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA





TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV





NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR





MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE





QISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID





RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-622 amino acid sequence: ecTadA(wild-type)-32 a.a.


linker-ecTadA(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_


S146C_D147Y_R152P_E155V_I156F_K157N)-24 a.a. linker_nCas9_


GGS_NLS


(SEQ ID NO: 473)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRIC





YLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED





AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM





IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE





KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVT





VKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL





TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL





DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT





VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL





TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA





GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA





TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV





NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR





MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE





QISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID





RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





pNMG-623 amino acid sequence: ecTadA(wild-type)-32 a.a.


linker-ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_


S146C_D147Y_R152P_E155V_I156F_K157N)-24 a.a. linker_nCas9_


GGS_NLS


(SEQ ID NO: 474)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRIC





YLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED





AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM





IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILE





KMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVT





VKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVL





TLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL





DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT





VKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL





TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA





GFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA





TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQV





NIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR





MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIE





QTSEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID





RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





ABE6.3 ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-


ecTadA(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_


E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 475)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRSIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV*





ABE7.8 ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-


ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_


D147Y_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 476)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV*





ABE7.9 ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-


ecTadA(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_


S146C_D147Y_R152P-_E155V_I156F_K157N)-(SGGS)2-XTEN-


(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 477)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV*





ABE7.10 ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-


ecTadA(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_


R152P-_E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 478)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLV





LNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRM





PRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYT





RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP





TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYN





QLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKS





NFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK





DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER





MTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD





KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA





IKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL





GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV*





ABE6.4: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-


ecTadA(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_


E155V_I156F_K157N)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 480)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAH





AEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAG





SLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGG





SSGSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLV





LNNRVIGEGWNRSIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGA





MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRM





RRQVFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGT





NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY





TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY





PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT





KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIE





RMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIR





DKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP





AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKE





LGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD





DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS





EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL





VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






Example 2: AAV Delivery of Split Nucleobase Editor

This study was designed to show that a nucleobase editor may be delivered by recombinant AAV (rAAV) in two sections, which may be joined to form a complete and active nucleobase editor in cells via protein splicing. Different elements of the rAAV constructs were tested for optimized nucleobase editor expression and activity.


Recombinant AAV (rAAV) is widely used for transgene delivery. Transgenes were inserted into the AAV genome between the inverted terminal repeat (ITR) sequences and packaged into AAV viral particles, which are used to transduce a host cell (e.g., mammalian cell, human cell). However, there is a limitation on the size of the transgene that may be packaged into rAAV, typically approximately 4.9 kilobases. Nucleic acids encoding a nucleobase editor (e.g., cytosine deaminase-dCas9-UGI) typically exceed the packaging limit of rAAV. As described herein, the nucleic acids encoding a nucleobase editor were split (see FIG. 1A), and each section was packaged into a separate rAAV particle. The two sections of the nucleobase editor were delivered to the cells and can be ligated to form a complete nucleobase editor via protein splicing (e.g., mediated by an intein, such as the DnaE intein; see FIG. 1C). The ligated, complete nucleobase editor was active in editing target bases (see FIG. 1B). The rAAV constructs encoding the split nucleobase editors were tested in different cell lines, e.g., U118 and HEK293T, and are active in editing the target base (see FIGS. 3A-3B and FIGS. 5A-5B).


Different transcriptional terminators and nuclear localization signals (NLS) were tested in the rAAV constructs to optimize the expression and activity of the nucleobase editors (see FIGS. 4, 6, and 7).


Example 3: Editing of DNMT1 Gene in Mouse Neuron Using AAV Encoded Split Nucleobase Editor

This study was designed to test the base editing activity of an AAV encoded split nucleobase editor in vivo. A split nucleobase editor as shown in FIG. 1A was used. The amino acid sequence of the linker between the dCas9 domain and the deaminase domain is SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 384). A guide RNA targeting a well-characterized site in the DNMT1 gene was selected. It was expected that the cells would be able to tolerate the editing. These experiments aim to determine whether AAV encoded split base editor can edit the locus in vitro or in vivo in several cell types including primary neurons.


In one experiment, AAV vectors encoding the split nucleobase editor and a guide RNA targeting DNMT1 were used to transduce dissociated mouse cortical neurons, two days after the cortical neurons were isolated and cultured. The neurons were harvested 16 days post transduction and the DNMT1 gene was sequenced (FIG. 8A) to determine editing efficiency as well as off-target effects. An editing efficiency of 17.34% (C to T editing, darker grey in FIG. 8B) was detected, while only 0.82% of undesired editing (C to G or C to A change, lighter grey in FIG. 8B) was detected.


In another experiment, cultured mouse Neuro-2 cells were either transduced with AAV vectors encoding the split nucleobase editor and a guide RNA targeting DNMT1, or transfected with lipid-encapsulated DNA encoding the nucleobase editor and guide RNA, allowing direct comparison of editing efficiency using different delivery methods of the nucleobase editor (FIG. 9A). An editing efficiency of 5.96% (C to T editing, dark grey in FIG. 9B) was observed for AAV encoded split nucleobase editor, while an editing efficiency of 27.3% (C to T editing, dark grey in FIG. 9B) was observed for lipid-transfected DNA encoded nucleobase editor. The amount of undesired products was 0.15% for AAV encoded split nucleobase editor and 1.3% for lipid-transfected DNA encoded nucleobase editor (C to G or C to A change, lighter grey in FIG. 9B).


EQUIVALENTS AND SCOPE

In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


Furthermore, the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in haec verba herein.


It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the invention can be excluded from any claim, for any reason, whether or not related to the existence of prior art.


Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above Description, but rather is as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present invention, as defined in the following claims.

Claims
  • 1. A composition comprising: (i) a first nucleotide sequence encoding an N-terminal portion of a nucleobase editor fused at its C-terminus to an intein-N; and(ii) a second nucleotide sequence encoding an intein-C fused to the N-terminus of a C-terminal portion of the nucleobase editor, wherein the nucleobase editor comprises a deaminase fused to a CRISPR/Cas programmable DNA binding protein domain, wherein the N-terminal portion and the C-terminal portion may be joined to form the complete nucleobase editor.
  • 2. The composition of claim 1, wherein the deaminase is a cytosine deaminase.
  • 3. The composition of claim 1, wherein the deaminase is an adenosine deaminase.
  • 4. The composition of claim 1, wherein the intein-N comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 351 and 355.
  • 5. The composition of claim 1, wherein the intein-C comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 353 and 357.
  • 6. The composition of claim 1, wherein the first nucleotide sequence or the second nucleotide sequence further comprises a nucleotide encoding a guide RNA (gRNA) operably linked to a promoter.
  • 7. The composition of claim 1, wherein the first nucleotide sequence or second nucleotide sequence are operably linked to a nucleotide sequence encoding at least one bipartite nuclear localization signal.
  • 8. The composition of claim 7, wherein the bipartite nuclear localization signal comprises an amino acid sequence selected from the group consisting of:
  • 9. The composition of claim 8, wherein the bipartite nuclear localization signal comprises the amino acid sequence as set forth in SEQ ID NO: 344.
  • 10. The composition of claim 1, wherein the nucleobase editor comprises a cytosine deaminase fused to the N-terminus of a catalytically inactive Cas9 or a Cas9 nickase.
  • 11. The composition of claim 10, wherein the cytosine deaminase is selected from the group consisting of: APOBEC1, APOBEC3, activation induced deaminase (AID), and pmCDA1.
  • 12. The composition of claim 10, wherein the nucleobase editor further comprises a uracil glycosylase inhibitor (UGI).
  • 13. The composition of claim 12, wherein the second nucleotide sequence of (ii) further comprises a nucleotide sequence encoding the uracil glycosylase inhibitor (UGI) at the 3′ end of the second nucleotide sequence.
  • 14. The composition of claim 12, wherein the first nucleotide sequence of (i) further comprises a nucleotide sequence encoding the uracil glycosylase inhibitor (UGI) at the 5′ end of the first nucleotide sequence.
  • 15. The composition of claim 12, wherein the UGI comprises the amino acid sequence of any one of SEQ ID NOs: 299-302.
  • 16. The composition of claim 12, wherein the UGI comprises an amino acid sequence having at least 95% identity to any of the sequences set forth in SEQ ID NOs: 299-302.
  • 17. The composition of claim 1, wherein the first nucleotide sequence and the second nucleotide sequence are on different vectors.
  • 18. The composition of claim 17, wherein each of the different vectors is a genome of a recombinant adeno-associated virus (rAAV).
  • 19. The composition of claim 18, wherein each of the different vectors are packaged in a rAAV particle.
  • 20. The composition of claim 1, wherein the nucleobase editor comprises an amino acid sequence having at least 90% identity to any of the sequences set forth in SEQ ID NOs: 303-313 or 399-406.
  • 21. The composition of claim 20, wherein the nucleobase editor comprises the amino acid sequence set forth in SEQ ID NO: 399.
  • 22. The composition of claim 1, wherein the nucleobase editor comprises an amino acid sequence having at least 90% identity to any of the sequences set forth in SEQ ID NOs: 323-342, 458-478, or 480.
  • 23. The composition of claim 22, wherein the nucleobase editor comprises the amino acid sequence set forth in SEQ ID NO: 478.
  • 24. The composition of claim 1, wherein the first nucleotide sequence or the second nucleotide sequence further comprises a transcriptional terminator.
  • 25. The composition of claim 24, wherein the transcriptional terminator is a transcriptional terminator from a bGH gene, hGH gene, or SV40 gene.
  • 26. The composition of claim 25, wherein the transcriptional terminator is from a bGH gene.
  • 27. The composition of claim 24, wherein the first nucleotide sequence or the second nucleotide sequence further comprises a woodchuck hepatitis posttranscriptional regulatory element (WPRE) inserted 5′ of the transcriptional terminator.
  • 28. An isolated cell comprising the composition of claim 1.
  • 29. The isolated cell of claim 28 further comprising the N-terminal portion of the nucleobase editor encoded by the first nucleotide sequence of the composition and the C-terminal portion of the nucleobase editor encoded by the second nucleotide sequence of the composition joined together to form the nucleobase editor.
  • 30. The isolated cell of claim 28, wherein the cell is a human cell.
  • 31. The composition of claim 1, wherein the deaminase is fused to the N-terminus of the CRISPR/Cas programmable DNA binding protein domain.
  • 32. The composition of claim 1, wherein the nucleobase editor comprises a cytosine deaminase fused to the N-terminus of a Cpf1 protein.
  • 33. A method comprising: contacting a cell with the composition of claim 1, wherein the contacting results in the delivery of the first nucleotide sequence and the second nucleotide sequence into the cell.
  • 34. A method comprising: administering to a subject in need thereof a therapeutically effective amount of the composition of claim 1.
  • 35. The method of claim 34, wherein the subject has a disease or disorder.
  • 36. The method of claim 35, wherein the disease or disorder is selected from the group consisting of cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), chronic obstructive pulmonary disease (COPD), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy, hereditary lymphedema, familial Alzheimer's disease, prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), and desmin-related myopathy (DRM).
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional applications, U.S. Ser. No. 62/408,575, filed Oct. 14, 2016, and U.S. Ser. No. 62/475,780, filed Mar. 23, 2017, each of which is incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with government support under GM118062 and EB022376 awarded by the National Institutes of Health. The Government has certain rights in the invention.

US Referenced Citations (458)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4186183 Steck et al. Jan 1980 A
4217344 Vanlerberghe et al. Aug 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4261975 Fullerton et al. Apr 1981 A
4485054 Mezei et al. Nov 1984 A
4501728 Geho et al. Feb 1985 A
4663290 Weis et al. May 1987 A
4737323 Martin et al. Apr 1988 A
4774085 Fidler Sep 1988 A
4797368 Carter et al. Jan 1989 A
4837028 Allen Jun 1989 A
4873316 Meade et al. Oct 1989 A
4880635 Janoff et al. Nov 1989 A
4889818 Gelfand et al. Dec 1989 A
4897355 Eppstein et al. Jan 1990 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
4946787 Eppstein et al. Aug 1990 A
4965185 Grischenko et al. Oct 1990 A
5017492 Kotewicz et al. May 1991 A
5047342 Chatterjee Sep 1991 A
5049386 Eppstein et al. Sep 1991 A
5079352 Gelfand et al. Jan 1992 A
5139941 Muzyczka et al. Aug 1992 A
5173414 Lebkowski et al. Dec 1992 A
5223409 Ladner et al. Jun 1993 A
5244797 Kotewicz et al. Sep 1993 A
5270179 Chatterjee Dec 1993 A
5374553 Gelfand et al. Dec 1994 A
5405776 Kotewicz et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5449639 Wei et al. Sep 1995 A
5496714 Comb et al. Mar 1996 A
5512462 Cheng Apr 1996 A
5580737 Polisky et al. Dec 1996 A
5614365 Tabor et al. Mar 1997 A
5658727 Barbas et al. Aug 1997 A
5668005 Kotewicz et al. Sep 1997 A
5677152 Birch et al. Oct 1997 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5830430 Unger et al. Nov 1998 A
5834247 Comb et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5962313 Podsakoff et al. Oct 1999 A
5981182 Jacobs, Jr. Nov 1999 A
6057153 George et al. May 2000 A
6063608 Kotewicz et al. May 2000 A
6156509 Schellenberger Dec 2000 A
6183998 Ivanov et al. Feb 2001 B1
6429298 Ellington et al. Aug 2002 B1
6453242 Eisenberg et al. Sep 2002 B1
6479264 Louwrier Nov 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6589768 Kotewicz et al. Jul 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6610522 Kotewicz et al. Aug 2003 B1
6689558 Case Feb 2004 B2
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7078208 Smith et al. Jul 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7479573 Chu et al. Jan 2009 B2
7595179 Chen et al. Sep 2009 B2
7670807 Lampson et al. Mar 2010 B2
7794931 Breaker et al. Sep 2010 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8440431 Voytas et al. May 2013 B2
8440432 Voytas et al. May 2013 B2
8450471 Voytas et al. May 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8586363 Voytas et al. Nov 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8697853 Voytas et al. Apr 2014 B2
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8846578 McCray et al. Sep 2014 B2
8889418 Zhang et al. Nov 2014 B2
8900814 Yasukawa et al. Dec 2014 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9023594 Liu et al. May 2015 B2
9068179 Liu et al. Jun 2015 B1
9163284 Liu et al. Oct 2015 B2
9181535 Liu et al. Nov 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9267127 Liu et al. Feb 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9394537 Liu et al. Jul 2016 B2
9458484 Ma et al. Oct 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9534210 Park et al. Jan 2017 B2
9580698 Xu et al. Feb 2017 B1
9637739 Siksnys et al. May 2017 B2
9737604 Liu et al. Aug 2017 B2
9738693 Telford et al. Aug 2017 B2
9771574 Liu et al. Sep 2017 B2
9783791 Hogrefe et al. Oct 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840538 Telford et al. Dec 2017 B2
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9840702 Collingwood et al. Dec 2017 B2
9850521 Braman et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9932567 Xu et al. Apr 2018 B1
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10150955 Lambowitz et al. Dec 2018 B2
10167457 Liu et al. Jan 2019 B2
10179911 Liu et al. Jan 2019 B2
10189831 Arrington et al. Jan 2019 B2
10202658 Parkin et al. Feb 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10336997 Liu et al. Jul 2019 B2
10358670 Janulaitis et al. Jul 2019 B2
10392674 Liu et al. Aug 2019 B2
10407697 Doudna et al. Sep 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
10597679 Liu et al. Mar 2020 B2
10612011 Liu et al. Apr 2020 B2
10682410 Liu et al. Jun 2020 B2
10704062 Liu et al. Jul 2020 B2
10745677 Maianti et al. Aug 2020 B2
10858639 Liu et al. Dec 2020 B2
10912833 Liu et al. Feb 2021 B2
10947530 Liu et al. Mar 2021 B2
10954548 Liu et al. Mar 2021 B2
11046948 Liu et al. Jun 2021 B2
11053481 Liu et al. Jul 2021 B2
20030082575 Schultz et al. May 2003 A1
20030087817 Cox et al. May 2003 A1
20030096337 Hillman et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20030119764 Loeb et al. Jun 2003 A1
20030167533 Yadav et al. Sep 2003 A1
20030203480 Kovesdi et al. Oct 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20040203109 Lal et al. Oct 2004 A1
20050136429 Guarente et al. Jun 2005 A1
20050222030 Allison Oct 2005 A1
20050260626 Lorens Nov 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070264692 Liu et al. Nov 2007 A1
20070269817 Shapero Nov 2007 A1
20080051317 Church et al. Feb 2008 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20080220502 Schellenberger et al. Sep 2008 A1
20090130718 Short May 2009 A1
20090215878 Tan et al. Aug 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100273857 Thakker et al. Oct 2010 A1
20100305197 Che Dec 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110016540 Weinstein et al. Jan 2011 A1
20110059160 Essner et al. Mar 2011 A1
20110059502 Chalasani Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110177495 Liu et al. Jul 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20130059931 Petersen-Mahrt et al. Mar 2013 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20130345064 Liu et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140201858 Ostertag et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140273234 Zhang et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu et al. Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Loque et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150275202 Liu et al. Oct 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20150344549 Muir Dec 2015 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160040155 Maizels et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160264934 Giallourakis et al. Sep 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160298136 Chen et al. Oct 2016 A1
20160304846 Liu et al. Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160319262 Doudna et al. Nov 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340622 Abdou Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160348096 Liu et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160355796 Davidson et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009224 Liu et al. Jan 2017 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170275665 Silas et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170283831 Zhang et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180080051 Sheikh et al. Mar 2018 A1
20180087046 Badran et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127759 Lu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179503 Maianti et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237758 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180258418 Kim Sep 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180298391 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20190010481 Joung et al. Jan 2019 A1
20190055543 Tran et al. Feb 2019 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190233847 Savage et al. Aug 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190256842 Liu et al. Aug 2019 A1
20190264202 Church et al. Aug 2019 A1
20190276816 Liu et al. Sep 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
20200063127 Lu et al. Feb 2020 A1
20200071722 Liu et al. Mar 2020 A1
20200109398 Rubens et al. Apr 2020 A1
20200172931 Liu et al. Jun 2020 A1
20200181619 Tang et al. Jun 2020 A1
20200190493 Liu et al. Jun 2020 A1
20200216833 Liu et al. Jul 2020 A1
20200255868 Liu et al. Aug 2020 A1
20200277587 Liu et al. Sep 2020 A1
20200323984 Liu et al. Oct 2020 A1
20200399619 Maianti et al. Dec 2020 A1
20210054416 Liu et al. Feb 2021 A1
20210115428 Maianti et al. Apr 2021 A1
20210196809 Maianti et al. Jul 2021 A1
20210198330 Liu et al. Jul 2021 A1
20210214698 Liu et al. Jul 2021 A1
Foreign Referenced Citations (1598)
Number Date Country
2012244264 Nov 2012 AU
2012354062 Jul 2014 AU
215252023 Nov 2015 AU
215101792 Jan 2016 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2 852 593 Nov 2015 CA
1069962 Mar 1993 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105602987 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107148882 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177625 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
1072367369 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619829 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441519 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
208034188 Nov 2018 CN
109 517 841 Mar 2019 CN
0264166 Apr 1988 EP
2 604 255 Jun 2013 EP
2840140 Feb 2015 EP
2 966 170 Jan 2016 EP
3 009 511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3 115 457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
3450553 Dec 2019 EP
2 528 177 Jan 2016 GB
2 531 454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-033344 Feb 2010 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-531909 Dec 2012 JP
101584933 Jan 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 9002809 Mar 1990 WO
WO 9116024 Oct 1991 WO
WO 9117271 Nov 1991 WO
WO 9117424 Nov 1991 WO
WO 9206188 Apr 1992 WO
WO 9206200 Apr 1992 WO
WO 9324641 Dec 1993 WO
WO 9418316 Aug 1994 WO
WO 94026877 Nov 1994 WO
WO 9604403 Feb 1996 WO
WO 9610640 Apr 1996 WO
WO 9832845 Jul 1998 WO
WO 2001036452 May 2001 WO
WO-200138547 May 2001 WO
WO-2002059296 Aug 2002 WO
WO-2002068676 Sep 2002 WO
WO-2002103028 Dec 2002 WO
WO-2004007684 Jan 2004 WO
WO-2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO-2006002547 Jan 2006 WO
WO-2006042112 Apr 2006 WO
WO-2007025097 Mar 2007 WO
WO 07066923 Jun 2007 WO
WO-2007136815 Nov 2007 WO
WO-2007143574 Dec 2007 WO
WO 08005529 Jan 2008 WO
WO-2008108989 Sep 2008 WO
WO 2009098290 Aug 2009 WO
WO-2009134808 Nov 2009 WO
WO-2010011961 Jan 2010 WO
WO 2010028347 Mar 2010 WO
WO-2010054108 May 2010 WO
WO-2010054154 May 2010 WO
WO-2010068289 Jun 2010 WO
WO-2010075424 Jul 2010 WO
WO-2010102257 Sep 2010 WO
WO-2010129019 Nov 2010 WO
WO-2010129023 Nov 2010 WO
WO-2010132092 Nov 2010 WO
WO-2010144150 Dec 2010 WO
WO-2011002503 Jan 2011 WO
WO-2011017293 Feb 2011 WO
WO-2011053868 May 2011 WO
WO-2011053982 May 2011 WO
WO 2011068810 Jun 2011 WO
WO-2011075627 Jun 2011 WO
WO-2011091311 Jul 2011 WO
WO-2011109031 Sep 2011 WO
WO-2011143124 Nov 2011 WO
WO 2011147590 Dec 2011 WO
WO 2011159369 Dec 2011 WO
WO-2012054726 Apr 2012 WO
WO-2012065043 May 2012 WO
WO 2012088381 Jun 2012 WO
WO-2012125445 Sep 2012 WO
WO-2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO-2012158985 Nov 2012 WO
WO-2012158986 Nov 2012 WO
WO-2012164565 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO-2013012674 Jan 2013 WO
WO-2013013105 Jan 2013 WO
WO-2013013105 Jan 2013 WO
WO 2013039857 Mar 2013 WO
WO 2013039861 Mar 2013 WO
WO 2013045632 Apr 2013 WO
WO 2013047844 Apr 2013 WO
WO-2013066438 May 2013 WO
WO 2013086441 Jun 2013 WO
WO 2013086444 Jun 2013 WO
WO-2013098244 Jul 2013 WO
WO-2013119602 Aug 2013 WO
WO-2013126794 Aug 2013 WO
WO-2013130824 Sep 2013 WO
WO-2013141680 Sep 2013 WO
WO-2013142578 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO-2013160230 Oct 2013 WO
WO-2013166315 Nov 2013 WO
WO-2013169398 Nov 2013 WO
WO-2013169802 Nov 2013 WO
WO-2013176772 Nov 2013 WO
WO-2013176915 Nov 2013 WO
WO-2013176916 Nov 2013 WO
WO-2013181440 Dec 2013 WO
WO-2013186754 Dec 2013 WO
WO-2013188037 Dec 2013 WO
WO-2013188522 Dec 2013 WO
WO-2013188638 Dec 2013 WO
WO-2013192278 Dec 2013 WO
WO-2013142378 Jan 2014 WO
WO 2014004336 Jan 2014 WO
WO-2014005042 Jan 2014 WO
WO-2014011237 Jan 2014 WO
WO-2014011901 Jan 2014 WO
WO-2014018423 Jan 2014 WO
WO-2014020608 Feb 2014 WO
WO-2014022120 Feb 2014 WO
WO-2014022702 Feb 2014 WO
WO-2014036219 Mar 2014 WO
WO-2014039513 Mar 2014 WO
WO-2014039523 Mar 2014 WO
WO 2014039585 Mar 2014 WO
WO-2014039684 Mar 2014 WO
WO-2014039692 Mar 2014 WO
WO-2014039702 Mar 2014 WO
WO-2014039872 Mar 2014 WO
WO-2014039970 Mar 2014 WO
WO-2014041327 Mar 2014 WO
WO-2014043143 Mar 2014 WO
WO-2014047103 Mar 2014 WO
WO 2014055782 Apr 2014 WO
WO-2014059173 Apr 2014 WO
WO-2014059255 Apr 2014 WO
WO-2014059255 Apr 2014 WO
WO-2014065596 May 2014 WO
WO-2014066505 May 2014 WO
WO-2014068346 May 2014 WO
WO-2014070887 May 2014 WO
WO-2014071006 May 2014 WO
WO-2014071219 May 2014 WO
WO-2014071235 May 2014 WO
WO-2014072941 May 2014 WO
WO-2014081729 May 2014 WO
WO-2014081730 May 2014 WO
WO-2014081855 May 2014 WO
WO-2014082644 Jun 2014 WO
WO-2014085261 Jun 2014 WO
WO-2014085593 Jun 2014 WO
WO-2014085830 Jun 2014 WO
WO-2014089212 Jun 2014 WO
WO-2014089290 Jun 2014 WO
WO-2014089348 Jun 2014 WO
WO-2014089513 Jun 2014 WO
WO-2014089533 Jun 2014 WO
WO-2014089541 Jun 2014 WO
WO-2014093479 Jun 2014 WO
WO-2014093595 Jun 2014 WO
WO-2014093622 Jun 2014 WO
WO-2014093635 Jun 2014 WO
WO-2014093655 Jun 2014 WO
WO-2014093661 Jun 2014 WO
WO-2014093694 Jun 2014 WO
WO-2014093701 Jun 2014 WO
WO-2014093709 Jun 2014 WO
WO-2014093712 Jun 2014 WO
WO-2014093718 Jun 2014 WO
WO-2014093736 Jun 2014 WO
WO-2014093768 Jun 2014 WO
WO-2014093852 Jun 2014 WO
WO-2014096972 Jun 2014 WO
WO-2014099744 Jun 2014 WO
WO-2014099750 Jun 2014 WO
WO-2014104878 Jul 2014 WO
WO-2014110006 Jul 2014 WO
WO-2014110552 Jul 2014 WO
WO-2014113493 Jul 2014 WO
WO-2014123967 Aug 2014 WO
WO-2014124226 Aug 2014 WO
WO-2014125668 Aug 2014 WO
WO-2014127287 Aug 2014 WO
WO-2014128324 Aug 2014 WO
WO-2014128659 Aug 2014 WO
WO-2014130706 Aug 2014 WO
WO-2014130955 Aug 2014 WO
WO-2014131833 Sep 2014 WO
WO-2014138379 Sep 2014 WO
WO-2014143381 Sep 2014 WO
WO-2014144094 Sep 2014 WO
WO-2014144155 Sep 2014 WO
WO-2014144288 Sep 2014 WO
WO-2014144592 Sep 2014 WO
WO-2014144761 Sep 2014 WO
WO-2014144951 Sep 2014 WO
WO-2014145599 Sep 2014 WO
WO-2014145736 Sep 2014 WO
WO-2014150624 Sep 2014 WO
WO-2014152432 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO-2014153118 Sep 2014 WO
WO-2014153470 Sep 2014 WO
WO 2014158593 Oct 2014 WO
WO-2014161821 Oct 2014 WO
WO-2014164466 Oct 2014 WO
WO-2014165177 Oct 2014 WO
WO-2014165349 Oct 2014 WO
WO-2014165612 Oct 2014 WO
WO-2014165707 Oct 2014 WO
WO-2014165825 Oct 2014 WO
WO-2014172458 Oct 2014 WO
WO-2014172470 Oct 2014 WO
WO-2014172489 Oct 2014 WO
WO-2014173955 Oct 2014 WO
WO-2014182700 Nov 2014 WO
WO-2014183071 Nov 2014 WO
WO-2014184143 Nov 2014 WO
WO-2014184741 Nov 2014 WO
WO-2014184744 Nov 2014 WO
WO-2014186585 Nov 2014 WO
WO-2014186686 Nov 2014 WO
WO-2014190181 Nov 2014 WO
WO-2014191128 Dec 2014 WO
WO-2014191518 Dec 2014 WO
WO-2014191521 Dec 2014 WO
WO-2014191525 Dec 2014 WO
WO-2014191527 Dec 2014 WO
WO-2014193583 Dec 2014 WO
WO-2014194190 Dec 2014 WO
WO-2014197568 Dec 2014 WO
WO-2014199358 Dec 2014 WO
WO-2014200659 Dec 2014 WO
WO-2014201015 Dec 2014 WO
WO-2014204578 Dec 2014 WO
WO-2014204723 Dec 2014 WO
WO-2014204724 Dec 2014 WO
WO-2014204725 Dec 2014 WO
WO-2014204726 Dec 2014 WO
WO-2014204727 Dec 2014 WO
WO-2014204728 Dec 2014 WO
WO-2014204729 Dec 2014 WO
WO-2014205192 Dec 2014 WO
WO-2014207043 Dec 2014 WO
WO-2014197748 Dec 2014 WO
WO-2015002780 Jan 2015 WO
WO-2015004241 Jan 2015 WO
WO-2015006290 Jan 2015 WO
WO-2015006294 Jan 2015 WO
WO-2015006437 Jan 2015 WO
WO-2015006498 Jan 2015 WO
WO-2015007194 Jan 2015 WO
WO-2015010114 Jan 2015 WO
WO-2015011483 Jan 2015 WO
WO-2015013583 Jan 2015 WO
WO-2015006747 Jan 2015 WO
WO-2015017866 Feb 2015 WO
WO-2015018503 Feb 2015 WO
WO-2015021353 Feb 2015 WO
WO-2015021426 Feb 2015 WO
WO-2015021990 Feb 2015 WO
WO-2015024017 Feb 2015 WO
WO-2015024986 Feb 2015 WO
WO-2015026883 Feb 2015 WO
WO-2015026885 Feb 2015 WO
WO-2015026886 Feb 2015 WO
WO-2015026887 Feb 2015 WO
WO-2015027134 Feb 2015 WO
WO-2015028969 Mar 2015 WO
WO-2015030881 Mar 2015 WO
WO-2015031619 Mar 2015 WO
WO-2015031775 Mar 2015 WO
WO-2015032494 Mar 2015 WO
WO-2015033293 Mar 2015 WO
WO-2015034872 Mar 2015 WO
WO-2015034885 Mar 2015 WO
WO-2015035136 Mar 2015 WO
WO-2015035139 Mar 2015 WO
WO-2015035162 Mar 2015 WO
WO-2015040075 Mar 2015 WO
WO-2015040402 Mar 2015 WO
WO-2015042585 Mar 2015 WO
WO-2015048577 Apr 2015 WO
WO-2015048690 Apr 2015 WO
WO-2015048707 Apr 2015 WO
WO-2015048801 Apr 2015 WO
WO-2015049897 Apr 2015 WO
WO-2015051191 Apr 2015 WO
WO-2015052133 Apr 2015 WO
WO-2015052231 Apr 2015 WO
WO-2015052335 Apr 2015 WO
WO-2015053995 Apr 2015 WO
WO-2015054253 Apr 2015 WO
WO-2015054315 Apr 2015 WO
WO-2015057671 Apr 2015 WO
WO-2015057834 Apr 2015 WO
WO-2015057852 Apr 2015 WO
WO-2015057976 Apr 2015 WO
WO-2015057980 Apr 2015 WO
WO-2015059265 Apr 2015 WO
WO-2015065964 May 2015 WO
WO-2015066119 May 2015 WO
WO-2015066634 May 2015 WO
WO-2015066636 May 2015 WO
WO-2015066637 May 2015 WO
WO-2015066638 May 2015 WO
WO-2015066643 May 2015 WO
WO-2015069682 May 2015 WO
WO-2015070083 May 2015 WO
WO-2015070193 May 2015 WO
WO-2015070212 May 2015 WO
WO-2015071474 May 2015 WO
WO-2015073683 May 2015 WO
WO-2015073867 May 2015 WO
WO-2015073990 May 2015 WO
WO-2015075056 May 2015 WO
WO-2015075154 May 2015 WO
WO-2015075175 May 2015 WO
WO-2015075195 May 2015 WO
WO-2015075557 May 2015 WO
WO-2015077058 May 2015 WO
WO-2015077290 May 2015 WO
WO-2015077318 May 2015 WO
WO-2015079056 Jun 2015 WO
WO-2015079057 Jun 2015 WO
WO-2015086795 Jun 2015 WO
WO-2015086798 Jun 2015 WO
WO-2015088643 Jun 2015 WO
WO-2015089046 Jun 2015 WO
WO-2015089077 Jun 2015 WO
WO-2015089277 Jun 2015 WO
WO-2015089351 Jun 2015 WO
WO-2015089354 Jun 2015 WO
WO-2015089364 Jun 2015 WO
WO-2015089406 Jun 2015 WO
WO-2015089419 Jun 2015 WO
WO-2015089427 Jun 2015 WO
WO-2015089462 Jun 2015 WO
WO-2015089465 Jun 2015 WO
WO-2015089473 Jun 2015 WO
WO-2015089486 Jun 2015 WO
WO-2015095804 Jun 2015 WO
WO-2015099850 Jul 2015 WO
WO-2015100929 Jul 2015 WO
WO-2015103057 Jul 2015 WO
WO-2015103153 Jul 2015 WO
WO-2015105928 Jul 2015 WO
WO-2015108993 Jul 2015 WO
WO-2015109752 Jul 2015 WO
WO-2015110474 Jul 2015 WO
WO-2015112790 Jul 2015 WO
WO-2015112896 Jul 2015 WO
WO-2015113063 Jul 2015 WO
WO-2015114365 Aug 2015 WO
WO-2015115903 Aug 2015 WO
WO-2015116686 Aug 2015 WO
WO-2015116969 Aug 2015 WO
WO-2015117021 Aug 2015 WO
WO-2015117041 Aug 2015 WO
WO-2015117081 Aug 2015 WO
WO-2015118156 Aug 2015 WO
WO-2015119941 Aug 2015 WO
WO-2015121454 Aug 2015 WO
WO-2015122967 Aug 2015 WO
WO-2015123339 Aug 2015 WO
WO-2015124715 Aug 2015 WO
WO-2015124718 Aug 2015 WO
WO-2015126927 Aug 2015 WO
WO-2015127428 Aug 2015 WO
WO-2015127439 Aug 2015 WO
WO-2015129686 Sep 2015 WO
WO-2015131101 Sep 2015 WO
WO-2015133554 Sep 2015 WO
WO 2015134121 Sep 2015 WO
WO-2015134812 Sep 2015 WO
WO-2015136001 Sep 2015 WO
WO-2015138510 Sep 2015 WO
WO-2015138739 Sep 2015 WO
WO-2015138855 Sep 2015 WO
WO-2015138870 Sep 2015 WO
WO-2015139008 Sep 2015 WO
WO-2015139139 Sep 2015 WO
WO-2015143046 Sep 2015 WO
WO-2015143177 Sep 2015 WO
WO-2015145417 Oct 2015 WO
WO-2015148431 Oct 2015 WO
WO-2015148670 Oct 2015 WO
WO-2015148680 Oct 2015 WO
WO-2015148761 Oct 2015 WO
WO-2015148860 Oct 2015 WO
WO-2015148863 Oct 2015 WO
WO-2015153760 Oct 2015 WO
WO-2015153780 Oct 2015 WO
WO-2015153789 Oct 2015 WO
WO-2015153791 Oct 2015 WO
WO-2015153889 Oct 2015 WO
WO-2015153940 Oct 2015 WO
WO-2015155341 Oct 2015 WO
WO-2015155686 Oct 2015 WO
WO-2015157070 Oct 2015 WO
WO-2015157534 Oct 2015 WO
WO-2015159068 Oct 2015 WO
WO-2015159086 Oct 2015 WO
WO-2015159087 Oct 2015 WO
WO-2015160683 Oct 2015 WO
WO-2015161276 Oct 2015 WO
WO-2015163733 Oct 2015 WO
WO-2015164740 Oct 2015 WO
WO-2015164748 Oct 2015 WO
WO-2015165274 Nov 2015 WO
WO-2015165275 Nov 2015 WO
WO-2015165276 Nov 2015 WO
WO-2015166272 Nov 2015 WO
WO-2015167766 Nov 2015 WO
WO-2015167956 Nov 2015 WO
WO-2015168125 Nov 2015 WO
WO-2015168158 Nov 2015 WO
WO-2015168404 Nov 2015 WO
WO-2015168547 Nov 2015 WO
WO-2015168800 Nov 2015 WO
WO-2015171603 Nov 2015 WO
WO-2015171894 Nov 2015 WO
WO-2015171932 Nov 2015 WO
WO-2015172128 Nov 2015 WO
WO-2015173436 Nov 2015 WO
WO-2015175642 Nov 2015 WO
WO-2015179540 Nov 2015 WO
WO-2015183025 Dec 2015 WO
WO-2015183026 Dec 2015 WO
WO-2015183885 Dec 2015 WO
WO-2015184259 Dec 2015 WO
WO-2015184262 Dec 2015 WO
WO-2015184268 Dec 2015 WO
WO-2015188056 Dec 2015 WO
WO-2015188065 Dec 2015 WO
WO-2015188094 Dec 2015 WO
WO-2015188109 Dec 2015 WO
WO-2015188132 Dec 2015 WO
WO-2015188135 Dec 2015 WO
WO-2015188191 Dec 2015 WO
WO-2015189693 Dec 2015 WO
WO-2015191693 Dec 2015 WO
WO-2015191899 Dec 2015 WO
WO-2015191911 Dec 2015 WO
WO-2015193858 Dec 2015 WO
WO-2015195547 Dec 2015 WO
WO-2015195621 Dec 2015 WO
WO-2015195798 Dec 2015 WO
WO-2015198020 Dec 2015 WO
WO-2015200334 Dec 2015 WO
WO-2015200378 Dec 2015 WO
WO-2015200555 Dec 2015 WO
WO-2015200805 Dec 2015 WO
WO-2016001978 Jan 2016 WO
WO-2016004010 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO-2016007347 Jan 2016 WO
WO-2016007604 Jan 2016 WO
WO-2016007948 Jan 2016 WO
WO-2016011080 Jan 2016 WO
WO-2016011210 Jan 2016 WO
WO-2016011428 Jan 2016 WO
WO-2016012544 Jan 2016 WO
WO-2016012552 Jan 2016 WO
WO-2016014409 Jan 2016 WO
WO-2016014565 Jan 2016 WO
WO-2016014794 Jan 2016 WO
WO-2016014837 Jan 2016 WO
WO-2016016119 Feb 2016 WO
WO-2016016358 Feb 2016 WO
WO-2016019144 Feb 2016 WO
WO-2016020399 Feb 2016 WO
WO-2016021972 Feb 2016 WO
WO-2016021973 Feb 2016 WO
WO-2016022363 Feb 2016 WO
WO-2016022866 Feb 2016 WO
WO-2016022931 Feb 2016 WO
WO-2016025131 Feb 2016 WO
WO-2016025469 Feb 2016 WO
WO-2016025759 Feb 2016 WO
WO-2016026444 Feb 2016 WO
WO-2016028682 Feb 2016 WO
WO-2016028843 Feb 2016 WO
WO-2016028887 Feb 2016 WO
WO-2016033088 Mar 2016 WO
WO-2016033230 Mar 2016 WO
WO-2016033246 Mar 2016 WO
WO-2016033298 Mar 2016 WO
WO-2016035044 Mar 2016 WO
WO-2016036754 Mar 2016 WO
WO-2016037157 Mar 2016 WO
WO-2016040030 Mar 2016 WO
WO-2016040594 Mar 2016 WO
WO-2016044182 Mar 2016 WO
WO-2016044416 Mar 2016 WO
WO-2016046635 Mar 2016 WO
WO-2016049024 Mar 2016 WO
WO-2016049163 Mar 2016 WO
WO-2016049230 Mar 2016 WO
WO-2016049251 Mar 2016 WO
WO-2016049258 Mar 2016 WO
WO-2016053397 Apr 2016 WO
WO-2016054326 Apr 2016 WO
WO-2016057061 Apr 2016 WO
WO-2016057821 Apr 2016 WO
WO-2016057835 Apr 2016 WO
WO-2016057850 Apr 2016 WO
WO-2016057951 Apr 2016 WO
WO-2016057961 Apr 2016 WO
WO-2016061073 Apr 2016 WO
WO-2016061374 Apr 2016 WO
WO-2016061481 Apr 2016 WO
WO-2016061523 Apr 2016 WO
WO-2016064894 Apr 2016 WO
WO-2016069282 May 2016 WO
WO-2016069283 May 2016 WO
WO-2016069591 May 2016 WO
WO 2016069774 May 2016 WO
WO-2016069910 May 2016 WO
WO-2016069912 May 2016 WO
WO-2016070037 May 2016 WO
WO-2016070070 May 2016 WO
WO-2016070129 May 2016 WO
WO-2016072399 May 2016 WO
WO-2016072936 May 2016 WO
WO-2016073433 May 2016 WO
WO-2016073559 May 2016 WO
WO-2016073990 May 2016 WO
WO-2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO-2016077273 May 2016 WO
WO-2016077350 May 2016 WO
WO-2016080097 May 2016 WO
WO-2016080795 May 2016 WO
WO-2016081923 May 2016 WO
WO-2016081924 May 2016 WO
WO-2016082135 Jun 2016 WO
WO-2016083811 Jun 2016 WO
WO-2016084084 Jun 2016 WO
WO-2016084088 Jun 2016 WO
WO-2016086177 Jun 2016 WO
WO-2016089433 Jun 2016 WO
WO-2016089866 Jun 2016 WO
WO-2016089883 Jun 2016 WO
WO-2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO-2016094845 Jun 2016 WO
WO-2016094867 Jun 2016 WO
WO-2016094872 Jun 2016 WO
WO-2016094874 Jun 2016 WO
WO-2016094880 Jun 2016 WO
WO-2016094888 Jun 2016 WO
WO-2016097212 Jun 2016 WO
WO-2016097231 Jun 2016 WO
WO-2016097751 Jun 2016 WO
WO-2016099887 Jun 2016 WO
WO-2016100272 Jun 2016 WO
WO-2016100389 Jun 2016 WO
WO-2016100568 Jun 2016 WO
WO-2016100571 Jun 2016 WO
WO-2016100951 Jun 2016 WO
WO-2016100955 Jun 2016 WO
WO-2016100974 Jun 2016 WO
WO-2016103233 Jun 2016 WO
WO-2016104716 Jun 2016 WO
WO-2016106236 Jun 2016 WO
WO-2016106239 Jun 2016 WO
WO-2016106244 Jun 2016 WO
WO-2016106338 Jun 2016 WO
WO-2016108926 Jul 2016 WO
WO-2016109255 Jul 2016 WO
WO-2016109840 Jul 2016 WO
WO-2016110214 Jul 2016 WO
WO-2016110453 Jul 2016 WO
WO-2016110511 Jul 2016 WO
WO-2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO-2016112242 Jul 2016 WO
WO-2016112351 Jul 2016 WO
WO-2016112963 Jul 2016 WO
WO 2016113357 Jul 2016 WO
WO-2016114972 Jul 2016 WO
WO-2016115179 Jul 2016 WO
WO-2016115326 Jul 2016 WO
WO-2016115355 Jul 2016 WO
WO-2016116032 Jul 2016 WO
WO-2016120480 Aug 2016 WO
WO-2016123071 Aug 2016 WO
WO-2016123230 Aug 2016 WO
WO-2016123243 Aug 2016 WO
WO-2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO-2016130600 Aug 2016 WO
WO-2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO-2016132122 Aug 2016 WO
WO-2016133165 Aug 2016 WO
WO-2016135507 Sep 2016 WO
WO-2016135557 Sep 2016 WO
WO-2016135558 Sep 2016 WO
WO-2016135559 Sep 2016 WO
WO-2016137774 Sep 2016 WO
WO-2016137949 Sep 2016 WO
WO-2016141224 Sep 2016 WO
WO-2016141893 Sep 2016 WO
WO-2016142719 Sep 2016 WO
WO-2016145150 Sep 2016 WO
WO-2016148994 Sep 2016 WO
WO-2016149484 Sep 2016 WO
WO-2016149547 Sep 2016 WO
WO-2016150336 Sep 2016 WO
WO-2016150855 Sep 2016 WO
WO-2016154016 Sep 2016 WO
WO-2016154579 Sep 2016 WO
WO-2016154596 Sep 2016 WO
WO-2016155482 Oct 2016 WO
WO-2016161004 Oct 2016 WO
WO-2016161207 Oct 2016 WO
WO-2016161260 Oct 2016 WO
WO-2016161380 Oct 2016 WO
WO-2016161446 Oct 2016 WO
WO-2016164356 Oct 2016 WO
WO-2016164797 Oct 2016 WO
WO-2016166340 Oct 2016 WO
WO-2016167300 Oct 2016 WO
WO 2016168631 Oct 2016 WO
WO-2016170484 Oct 2016 WO
WO-2016172359 Oct 2016 WO
WO-2016172727 Oct 2016 WO
WO-2016174056 Nov 2016 WO
WO-2016174151 Nov 2016 WO
WO-2016174250 Nov 2016 WO
WO-2016176191 Nov 2016 WO
WO-2016176404 Nov 2016 WO
WO-2016176690 Nov 2016 WO
WO-2016177682 Nov 2016 WO
WO-2016178207 Nov 2016 WO
WO-2016179038 Nov 2016 WO
WO-2016179112 Nov 2016 WO
WO-2016181357 Nov 2016 WO
WO-2016182893 Nov 2016 WO
WO-2016182917 Nov 2016 WO
WO-2016182959 Nov 2016 WO
WO-2016183236 Nov 2016 WO
WO-2016183298 Nov 2016 WO
WO-2016183345 Nov 2016 WO
WO-2016183402 Nov 2016 WO
WO-2016183438 Nov 2016 WO
WO-2016183448 Nov 2016 WO
WO-2016184955 Nov 2016 WO
WO-2016184989 Nov 2016 WO
WO-2016185411 Nov 2016 WO
WO-2016186745 Nov 2016 WO
WO-2016186772 Nov 2016 WO
WO-2016186946 Nov 2016 WO
WO-2016186953 Nov 2016 WO
WO-2016187717 Dec 2016 WO
WO-2016187904 Dec 2016 WO
WO-2016191684 Dec 2016 WO
WO-2016191869 Dec 2016 WO
WO-2016196273 Dec 2016 WO
WO-2016196282 Dec 2016 WO
WO-2016196308 Dec 2016 WO
WO-2016196361 Dec 2016 WO
WO-2016196499 Dec 2016 WO
WO-2016196539 Dec 2016 WO
WO-2016196655 Dec 2016 WO
WO-2016196805 Dec 2016 WO
WO-2016196887 Dec 2016 WO
WO-2016197132 Dec 2016 WO
WO-2016197133 Dec 2016 WO
WO-2016197354 Dec 2016 WO
WO-2016197355 Dec 2016 WO
WO-2016197356 Dec 2016 WO
WO-2016197357 Dec 2016 WO
WO-2016197358 Dec 2016 WO
WO-2016197359 Dec 2016 WO
WO-2016197360 Dec 2016 WO
WO-2016197361 Dec 2016 WO
WO-2016197362 Dec 2016 WO
WO-2016198361 Dec 2016 WO
WO-2016198500 Dec 2016 WO
WO-2016200263 Dec 2016 WO
WO-2016201047 Dec 2016 WO
WO-2016201138 Dec 2016 WO
WO-2016201152 Dec 2016 WO
WO-2016201153 Dec 2016 WO
WO-2016201155 Dec 2016 WO
WO-2016205276 Dec 2016 WO
WO-2016205613 Dec 2016 WO
WO-2016205623 Dec 2016 WO
WO-2016205680 Dec 2016 WO
WO-2016205688 Dec 2016 WO
WO-2016205703 Dec 2016 WO
WO-2016205711 Dec 2016 WO
WO-2016205728 Dec 2016 WO
WO-2016205745 Dec 2016 WO
WO-2016205749 Dec 2016 WO
WO-2016205759 Dec 2016 WO
WO-2016205764 Dec 2016 WO
WO-2017001572 Jan 2017 WO
WO-2017001988 Jan 2017 WO
WO-2017004261 Jan 2017 WO
WO-2017004279 Jan 2017 WO
WO-2017004616 Jan 2017 WO
WO-2017005807 Jan 2017 WO
WO-2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO-2017011519 Jan 2017 WO
WO-2017011721 Jan 2017 WO
WO-2017011804 Jan 2017 WO
WO-2017015015 Jan 2017 WO
WO-2017015101 Jan 2017 WO
WO 2017015545 Jan 2017 WO
WO-2017015567 Jan 2017 WO
WO-2017015637 Jan 2017 WO
WO-2017017016 Feb 2017 WO
WO-2017019867 Feb 2017 WO
WO-2017019895 Feb 2017 WO
WO-2017023803 Feb 2017 WO
WO-2017023974 Feb 2017 WO
WO-2017024047 Feb 2017 WO
WO-2017024319 Feb 2017 WO
WO-2017024343 Feb 2017 WO
WO-2017024602 Feb 2017 WO
WO-2017025323 Feb 2017 WO
WO-2017027423 Feb 2017 WO
WO-2017028768 Feb 2017 WO
WO-2017029664 Feb 2017 WO
WO-2017031360 Feb 2017 WO
WO-2017031483 Feb 2017 WO
WO-2017035416 Mar 2017 WO
WO-2017040348 Mar 2017 WO
WO-2017040511 Mar 2017 WO
WO-2017040709 Mar 2017 WO
WO-2017040786 Mar 2017 WO
WO-2017040793 Mar 2017 WO
WO-2017040813 Mar 2017 WO
WO-2017043573 Mar 2017 WO
WO-2017043656 Mar 2017 WO
WO-2017044419 Mar 2017 WO
WO-2017044776 Mar 2017 WO
WO-2017044857 Mar 2017 WO
WO 2017048390 Mar 2017 WO
WO-2017049129 Mar 2017 WO
WO-2017050963 Mar 2017 WO
WO-2017053312 Mar 2017 WO
WO-2017053431 Mar 2017 WO
WO-2017053713 Mar 2017 WO
WO-2017053729 Mar 2017 WO
WO-2017053753 Mar 2017 WO
WO-2017053762 Mar 2017 WO
WO-2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO-2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO-2017062605 Apr 2017 WO
WO-2017062723 Apr 2017 WO
WO-2017062754 Apr 2017 WO
WO-2017062855 Apr 2017 WO
WO-2017062886 Apr 2017 WO
WO-2017062983 Apr 2017 WO
WO-2017064439 Apr 2017 WO
WO-2017064546 Apr 2017 WO
WO-2017064566 Apr 2017 WO
WO-2017066175 Apr 2017 WO
WO-2017066497 Apr 2017 WO
WO-2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017066781 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO-2017068377 Apr 2017 WO
WO-2017069829 Apr 2017 WO
WO-2017070029 Apr 2017 WO
WO-2017070032 Apr 2017 WO
WO-2017070169 Apr 2017 WO
WO-2017070284 Apr 2017 WO
WO-2017070598 Apr 2017 WO
WO-2017070605 Apr 2017 WO
WO-2017070632 Apr 2017 WO
WO-2017070633 Apr 2017 WO
WO-2017072590 May 2017 WO
WO-2017074526 May 2017 WO
WO-2017074962 May 2017 WO
WO-2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO-2017075475 May 2017 WO
WO-2017077135 May 2017 WO
WO-2017077329 May 2017 WO
WO-2017078751 May 2017 WO
WO-2017079400 May 2017 WO
WO-2017079428 May 2017 WO
WO-2017079673 May 2017 WO
WO-2017079724 May 2017 WO
WO-2017081097 May 2017 WO
WO-2017081288 May 2017 WO
WO-2017083368 May 2017 WO
WO-2017083722 May 2017 WO
WO-2017083766 May 2017 WO
WO-2017087395 May 2017 WO
WO-2017090724 Jun 2017 WO
WO-2017091510 Jun 2017 WO
WO-2017091630 Jun 2017 WO
WO-2017092201 Jun 2017 WO
WO-2017093370 Jun 2017 WO
WO 2017093969 Jun 2017 WO
WO-2017095111 Jun 2017 WO
WO-2017096041 Jun 2017 WO
WO-2017096237 Jun 2017 WO
WO-2017100158 Jun 2017 WO
WO-2017100431 Jun 2017 WO
WO-2017104404 Jun 2017 WO
WO-2017105251 Jun 2017 WO
WO-2017105350 Jun 2017 WO
WO-2017105991 Jun 2017 WO
WO-2017106414 Jun 2017 WO
WO-2017106528 Jun 2017 WO
WO-2017106537 Jun 2017 WO
WO-2017106569 Jun 2017 WO
WO-2017106616 Jun 2017 WO
WO-2017106657 Jun 2017 WO
WO-2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO-2017112620 Jun 2017 WO
WO-2017115268 Jul 2017 WO
WO-2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO-2017118720 Jul 2017 WO
WO-2017123609 Jul 2017 WO
WO-2017123910 Jul 2017 WO
WO-2017124086 Jul 2017 WO
WO-2017124100 Jul 2017 WO
WO-2017124652 Jul 2017 WO
WO-2017126987 Jul 2017 WO
WO-2017127807 Jul 2017 WO
WO-2017131237 Aug 2017 WO
WO-2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO-2017136520 Aug 2017 WO
WO-2017136629 Aug 2017 WO
WO-2017136794 Aug 2017 WO
WO-2017139264 Aug 2017 WO
WO-2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO-2017142835 Aug 2017 WO
WO-2017142999 Aug 2017 WO
WO-2017143042 Aug 2017 WO
WO 2017147056 Aug 2017 WO
WO-2017147278 Aug 2017 WO
WO-2017147432 Aug 2017 WO
WO-2017147446 Aug 2017 WO
WO-2017147555 Aug 2017 WO
WO-2017132580 Aug 2017 WO
WO-2017151444 Sep 2017 WO
WO 2017151719 Sep 2017 WO
WO-2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO-2017157422 Sep 2017 WO
WO-2017158153 Sep 2017 WO
WO-2017160689 Sep 2017 WO
WO-2017160752 Sep 2017 WO
WO-2017160890 Sep 2017 WO
WO-2017161068 Sep 2017 WO
WO-2017165826 Sep 2017 WO
WO-2017165862 Sep 2017 WO
WO-2017172644 Oct 2017 WO
WO-2017172645 Oct 2017 WO
WO-2017172860 Oct 2017 WO
WO-2017173004 Oct 2017 WO
WO-2017173054 Oct 2017 WO
WO-2017173092 Oct 2017 WO
WO-2017174329 Oct 2017 WO
WO-2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO-2017178590 Oct 2017 WO
WO-2017180694 Oct 2017 WO
WO-2017180711 Oct 2017 WO
WO-2017180915 Oct 2017 WO
WO-2017180926 Oct 2017 WO
WO-2017181107 Oct 2017 WO
WO-2017181735 Oct 2017 WO
WO-2017182468 Oct 2017 WO
WO-2017184334 Oct 2017 WO
WO-2017184768 Oct 2017 WO
WO-2017184786 Oct 2017 WO
WO-2017186550 Nov 2017 WO
WO-2017189308 Nov 2017 WO
WO-2017189336 Nov 2017 WO
WO 2017190041 Nov 2017 WO
WO-2017190257 Nov 2017 WO
WO-2017190664 Nov 2017 WO
WO-2017191210 Nov 2017 WO
WO 2017191274 Nov 2017 WO
WO-2017192172 Nov 2017 WO
WO-2017192512 Nov 2017 WO
WO-2017192544 Nov 2017 WO
WO-2017192573 Nov 2017 WO
WO-2017193029 Nov 2017 WO
WO-2017193053 Nov 2017 WO
WO-2017196768 Nov 2017 WO
WO-2017197038 Nov 2017 WO
WO-2017197238 Nov 2017 WO
WO-2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO-2017205290 Nov 2017 WO
WO-2017205423 Nov 2017 WO
WO-2017207589 Dec 2017 WO
WO-2017208247 Dec 2017 WO
WO-2017209809 Dec 2017 WO
WO-2017213896 Dec 2017 WO
WO-2017213898 Dec 2017 WO
WO-2017214460 Dec 2017 WO
WO-2017216392 Dec 2017 WO
WO-2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO-2017219027 Dec 2017 WO
WO-2017219033 Dec 2017 WO
WO-2017220751 Dec 2017 WO
WO-2017222370 Dec 2017 WO
WO-2017222773 Dec 2017 WO
WO-2017222834 Dec 2017 WO
WO-2017223107 Dec 2017 WO
WO-2017223330 Dec 2017 WO
WO-2018000657 Jan 2018 WO
WO-2018002719 Jan 2018 WO
WO-2018005117 Jan 2018 WO
WO-2018005289 Jan 2018 WO
WO-2018005691 Jan 2018 WO
WO-2018005782 Jan 2018 WO
WO-2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO-2018009520 Jan 2018 WO
WO-2018009562 Jan 2018 WO
WO-2018009822 Jan 2018 WO
WO-2018013821 Jan 2018 WO
WO 2018013932 Jan 2018 WO
WO-2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018021878 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049073 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018067846 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018085414 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018089664 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018142364 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018149915 Aug 2018 WO
WO 2018152197 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018176009 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018189184 Oct 2018 WO
WO 2018191388 Oct 2018 WO
WO 2018195402 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213351 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2019005884 Jan 2019 WO
WO 2019005886 Jan 2019 WO
WO 2019010384 Jan 2019 WO
WO 2019023680 Jan 2019 WO
WO 2019051097 Mar 2019 WO
WO 2019079347 Apr 2019 WO
WO 2019084062 May 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019123430 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019139951 Jul 2019 WO
WO 2019147014 Aug 2019 WO
WO 2019226953 Nov 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020028555 Feb 2020 WO
WO 2020041751 Feb 2020 WO
WO 2020051360 Mar 2020 WO
WO 2020086908 Apr 2020 WO
WO 2020092453 May 2020 WO
WO 2020102659 May 2020 WO
WO 2020154500 Jul 2020 WO
WO 2020181178 Sep 2020 WO
WO 2020181180 Sep 2020 WO
WO 2020181193 Sep 2020 WO
WO 2020181195 Sep 2020 WO
WO 2020181202 Sep 2020 WO
WO 2020191153 Sep 2020 WO
WO 2020191171 Sep 2020 WO
WO 2020191233 Sep 2020 WO
WO 2020191234 Sep 2020 WO
WO 2020191239 Sep 2020 WO
WO 2020191241 Sep 2020 WO
WO 2020191242 Sep 2020 WO
WO 2020191243 Sep 2020 WO
WO 2020191245 Sep 2020 WO
WO 2020191246 Sep 2020 WO
WO 2020191248 Sep 2020 WO
WO 2020191249 Sep 2020 WO
WO 2020210751 Oct 2020 WO
WO 2020214842 Oct 2020 WO
Non-Patent Literature Citations (1567)
Entry
Fine et al in “Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes” (Scientific Reports, vol. 5, No. 1, Jul. 1, 2015). (Year: 2015).
Truong et al in “Development of an intein-mediated split-Cas9 system for gene therapy” (Nucleic Acids Research vol. 43, No. 13, Jul. 27, 2015, pp. 6450-6458). (Year: 2015).
Score result for SEQ 355 to WO2017032580 (Muir, Shah, et al) (Year: 2016).
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al.
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi:10.1038/mt.2011.190. Epub Oct. 4, 2011.
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p. 5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Cargill et al.,Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chavez et al., Therapeutic applications of the PhiC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review.
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/GB-2008-9-6-229. Epub Jun. 17, 2008.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
Genbank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Harris et al., RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. Nov. 2002;10(5):1247-53.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
HSU et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
International Preliminary Report on Patentability for PCT/US2012/047778, dated Feb. 6, 2014.
International Preliminary Report on patentability for PCT/US2014/050283, dated Feb. 18, 2016.
International Preliminary Report on Patentability for PCT/US2014/052231, dated Mar. 3, 2016.
International Preliminary Report on Patentability for PCT/US2014/054247, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/054291, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/070038, dated Jun. 23, 2016.
International Preliminary Report on Patentability for PCT/US2015/042770, dated Dec. 19, 2016.
International Preliminary Report on Patentability for PCT/US2015/058479, dated May 11, 2017.
International Preliminary Report on Patentability or PCT/US2014/054252, dated Mar. 17, 2016.
International Search Report and Written Opinion for PCT/US2012/047778, dated May 30, 2013.
International Search Report and Written Opinion for PCT/US2014/050283, dated Nov. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Dec. 4, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Jan. 30, 2015 (Corrected Version).
International Search Report and Written Opinion for PCT/US2014/054247, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/054252, dated Mar. 5, 2015.
International Search Report and Written Opinion for PCT/US2014/054291, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/070038, dated Apr. 14, 2015.
International Search Report and Written Opinion for PCT/US2015/042770, dated Feb. 23, 2016.
International Search Report and Written Opinion for PCT/US2015/058479, dated Feb. 11, 2016.
International Search Report and Written Opinion for PCT/US2016/058344, dated Apr. 20, 2017.
International Search Report and Written Opinion for PCT/US2017/045381, dated Oct. 26, 2017.
International Search Report and Written Opinion for PCT/US2017/046144, dated Oct. 10, 2017.
International Search Report for PCT/US2013/032589, dated Jul. 26, 2013.
Invitation to Pay Additional Fees for PCT/US2014/054291, dated Dec. 18, 2014.
Invitation to Pay Additional Fees for PCT/US2016/058344, dated Mar. 1, 2017.
Invitation to Pay Additional Fees for PCT/US2017/48390, dated Nov. 7, 2017.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
LU et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027 .
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Partial Supplementary European Search Report for Application No. EP 12845790.0, dated Mar. 18, 2015.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Pluciennik et al., PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Smith et al., Expression of a dominant negative retinoic acid receptorγ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Supplementary European Search Report for Application No. EP 12845790.0, dated Oct. 12, 2015.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015.
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci U S A. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Common. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein All stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that acton RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al.
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi:10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
International Preliminary Report on Patentability for PCT/US2018/021880, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021664, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021878, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/024208, dated Oct. 3, 2019.
International Search Report for PCT/US2018/048969, dated Jul. 31, 2019.
International Prelminary Report on Patentability for PCT/US2018/048969, dated Mar. 12, 2020.
International Preliminary Report on Patentability for PCT/US2018/032460, dated Nov. 21, 2019.
International Search Report and Written Opinion for PCT/US2018/044242, dated Nov. 21, 2019.
International Preliminary Report on Patentability for PCT/US2018/044242, dated Feb. 6, 2020.
Partial European Search Report for Application No. EP 19187331.4, dated Dec. 19, 2019.
Extended European Search Report for EP 19181479.7, dated Oct. 31, 2019.
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al.
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi:10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Li et al., Base editing with a Cpfl-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Riechmann et al.,. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi: 10.1038/nature11017.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
Extended European Search Report for EP18199195.1, dated Feb. 12, 2019.
Extended European Search Report for EP 15830407.1, dated Mar. 2, 2018.
International Preliminary Report on Patentability for PCT/US2016/058344, dated May 3, 2018.
International Search Report for PCT/US2018/025887, dated Jun. 21, 2018.
International Preliminary Report on Patentability for PCT/US2014/048390, dated Mar. 7, 2019.
International Search Report and Written Opinion for PCT/US2017/068114, dated Mar. 20, 2018.
International Preliminary Report on Patentability for PCT/US2017/068114, dated Jul. 4, 2019.
International Search Report and Written Opinion for PCT/US2017/068105, dated Apr. 4, 2018.
International Preliminary Report on Patentability for PCT/US2017/068105, dated Jul. 4, 2019.
International Search Report for PCT/US2018/021880, dated Jun. 20, 2018.
International Preliminary Report on Patentability for PCT/US2017/046144, dated Feb. 21, 2019.
International Preliminary Report on Patentability for PCT/US2017/045381, dated Feb. 14, 2019.
International Search Report for PCT/US2018/021664, dated Jun. 21, 2018.
International Search Report and Written Opinion for PCT/US2017/056671, dated Feb. 20, 2018.
International Preliminary Report on Patentability for PCT/US2017/056671, dated Apr. 25, 2019.
Invitation to Pay Additional Fees for PCT/US2018/021878, dated Jun. 8, 2018.
International Search Report for PCT/US2018/021878, dated Aug. 20, 2018.
International Search Report for PCT/US2018/024208, dated Aug. 23, 2018.
International Search Report for PCT/US2018/032460, dated Jul. 11, 2018.
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291.
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02.
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020.
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014.
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834.
Genbank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages.
Harrington et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839?842. doi:10.1136/bmj.329.7470.839.
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018.
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452.
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017.
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008.
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104.
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009; 109(5):1948-98. doi: 10.1021/cr030183i.
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry . . . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016.
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86.
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251.
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013.
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016.
Pospsílová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081.
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534.
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016.
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104.
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33.
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18.
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017.
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015.
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012.
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49.
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8.
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645.
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858.
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al.
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al.
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al.
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al.
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al.
U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al.
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al.
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al.
U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al.
U.S. Appl. No. 16/374,634, filed Apr. 30, 2019, Liu et al.
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al.
U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al.
U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al.
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al.
U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al.
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al.
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al.
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al.
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16,324,476, filed Feb. 8, 2019, Liu et al.
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al.
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al.
U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al.
U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al.
U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al.
U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al.
U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al.
U.S. Appl. No. 17/160,329, filed Jan. 27, 2021, Liu et al.
U.S. Appl. No. 17/130,812, filed Dec. 22, 2020, Liu et al.
U.S. Appl. No. 17/148,059, filed Jan. 13, 2021, Liu et al.
U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al.
U.S. Appl. No. 17/289,665, filed Apr. 28, 2021, Liu et al.
U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Shen et al.
U.S. Appl. No. 17/425,261, filed Jul. 22, 2021, Kim et al.
U.S. Appl. No. 17/259,147, filed Jan. 8, 2021, Liu et al.
U.S. Appl. No. 17/270,396, filed Feb. 22, 2021, Liu et al.
U.S. Appl. No. 17/273,688, filed Mar. 4, 2021, Liu et al.
U.S. Appl. No. 17/288,504, filed Apr. 23, 2021, Liu et al.
U.S. Appl. No. 17/219,590, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/219,635, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/219,672, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/294,287, filed May 14, 2021, Liu et al.
European Search and Examination Report for EP 17794468.3, dated Apr. 8, 2021.
Singapore Search Report and Written Opinion for SG11201903089R, dated Aug. 7, 2020.
[No Author Listed] NCBI Accession No. XP_015843220.1. C ->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540.
[No Author Listed] NCBI Accession No. XP_021505673.1. C ->U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541.
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14.
Abudayyeh et al., A cytosine deaminase for programmable single-base RNA editing. Science. Jul. 26, 2019;365(6451):382-386. doi: 10.1126/science.aax7063. Epub Jul. 11, 2019.
Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017.
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x.
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016.
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n.
Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015.
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20.
Aik et al., Structure of human RNA N?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014.
Aird et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. May 31, 2018;1:54. doi: 10.1038/s42003-018-0054-2.
Akcakaya et al., In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. Sep. 2018;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub Sep. 12, 2018.
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x.
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011.
Alarcón et al., HNRNPA2B1 is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015.
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015.
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2.
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013.
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known ?-gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013.
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15.
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20.
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762.
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016.
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005.
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699.
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29.
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i.
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868.
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013.
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018.
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015.
Arbab et al., Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. Jul. 23, 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub Jun. 12, 2020.
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008.
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015.
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016.
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.61638.113. Epub Oct. 31, 2013.
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731.
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x.
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198.
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013.
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016.
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425.
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015.
Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018;14:2067-2085. doi: 10.2147/NDT.S165445.
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013.
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34.
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6.
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004.
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012.
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5.
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852.
Bartosovic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19):11356-11370. doi: 10.1093/nar/gkx778.
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007.
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34.
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002.
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5.
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604.
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014.
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010.
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999.
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005.
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110.
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex VIVO in VIVO gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015.
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4.
Bessen et al., High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat Commun. Apr. 26, 2019;10(1):1937. doi: 10.1038/s41467-019-09987-0.
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20.
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x.
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017.
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657.
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7.
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92.
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315.
Blau et al., A proliferation switch for genetically?modified?cells. PNAS Apr. 1, 1997 94 (7)3076-3081; https://doi.org/10.1073/pnas.94.7.3076.
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52.
Bodi et al., Yeast m6A Methylated mRNAs are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090.
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95.
Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289.
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006.
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615.
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015.
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217.
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667.
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9.
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0.
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990.
Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014.
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006.
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992.
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIH-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012.
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Buskirk et al., In vivo evolution of an RNA-based transcriptional activator. Chem Biol. Jun. 2003;10(6):533-40. doi: 10.1016/s1074-5521(03)00109-1.
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473.
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28.
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33.
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3.
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-598. https://doi.org/10.1021/ja990929n.
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537.
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003.
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570.
Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016.
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021.
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results.
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590.
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010.
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x.
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038.
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015.
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007.
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005.
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252.
Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019.
Chan et al., Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55-61. doi:10.1016/j.cbpa.2015.02.010.
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029.
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23.
Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017.
Chen et al., A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11399-404. doi: 10.1073/pnas.1101046108. Epub Jun. 22, 2011.
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016.
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information.
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014.
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999.
Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020.
Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016.
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005.
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567.
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109.
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159.
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587.
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4.
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968.
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994.
Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s13059-018-1459-4.
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016.
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841.
Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012.
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437.
Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3.
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092.
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-l-62703-293-3_8.
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005.
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313.
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85.
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework:? A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b.
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017.
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561.
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1.
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63.
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404.
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016.
Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059.
Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018.
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9.
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91.
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390.
Dandage et al., beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics. Jun. 2019;212(2):377-385. doi: 10.1534/genetics.119.302089. Epub Apr. 1, 2019.
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3.
Das et al.,The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032.
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009.
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762.
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5.
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003.
De Wit et al., The Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18.
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856.
DeKosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016.
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011.
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015.
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013.
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013.
Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013.
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015.
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013.
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12.
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M.
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w.
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c.
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112.
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006.
Dorr et al., Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A. Sep. 16, 2014;111(37):13343-8. doi: 10.1073/pnas.1411179111. Epub Sep. 3, 2014.
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1998 1;12(5):745-54.
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84.
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. Aug. 15, 1991;88(16):7160-4.
Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527.
Dunbar et al., Gene therapy comes of age. Science. Jan. 12, 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672.
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French.
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11.
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912.
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002.
Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223.
Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. Mar. 2018;17(3):e12428. doi: 10.1111/gbb.12428. Epub Nov. 17, 2017.
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92.
England, Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9.
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2.
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972.
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091.
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103.
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359.
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923.
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016.
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5.
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006.
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9.
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2.
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014.
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2.
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132.
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5.
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888.
Fischbach et al., Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A. Jul. 17, 2007;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub Jul. 9, 2007.
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x.
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998.
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259.
Flynn et al., CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. Oct. 2015;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub Jun. 19, 2015. Including supplementary figures and data.
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014.
Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, ?Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16.
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x.
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006.
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941.
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8.
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15.
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0.
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018.
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22.
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014.
Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017.
Gapinske et al., CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol. Aug. 15, 2018;19(1):107. doi: 10.1186/s13059-018-1482-5.
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005.
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608.
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018.
Gearing, Addgene blog. CRISPR 101: Cas9 nickase design and homology directed repair. 2018. pp. 1-12. https://blog.addgene.org/crispr-101-cas9-nickase-design-and-homlogy-directed-repair. Last retrieved online Jun. 25, 2021.
Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018.
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993.
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994.
Genbank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages.
Genbank Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page.
Genbank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NM 001319224. Umar et al., Apr. 21, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NP_955579.1. Chen et al., Aug. 13, 2018. 5 pages.
Genbank Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_031386437. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_031589969.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages.
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010.
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271.
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975.
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417.
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146.
Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1):15432. doi: 10.1038/s41598-017-15648-3.
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009.
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3.
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82.
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002.
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006.
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011.
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8.
Gou et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56.
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003.
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017. doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001.
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4.
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775.
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122.
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006.
Grünewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-l 161-z. Epub Apr. 17, 2019.
Gumulya et al., Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J. Jan. 1, 2017;474(1):1-19. doi: 10.1042/BCJ20160507.
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3.
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013.
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007.
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130.
Haapaniemi et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub Jun. 11, 2018.
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995; 199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14.
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Intl Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibiol8/webprogram/paper544785.html. Retrieved Jun. 29, 2020.
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018.
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000.
Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620.
Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017.
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540.
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4.
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x.
Hector et al., CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. Dec. 15, 2017;3(6):e200. doi: 10.1212/NXG.0000000000000200.
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203.
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001.
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659.
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466.
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010.
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015.
Higgs et al., Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. Aug. 19, 2008;105(33):11595-6. doi: 10.1073/pnas.0806633105. Epub Aug. 11, 2008.
Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032.
Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281.
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016.
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79.
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810.
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages.
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information.
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0.
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110.
Hwang et al., Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4.
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5.
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12.
Ihry et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. Jul. 2018;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub Jun. 11, 2018.
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53.
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x.
Imanishi et al., Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). Nov. 30, 2017;53(96):12930-12933. doi: 10.1039/c7cc07699a.
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30.
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0.
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007.
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x.
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006.
Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8.
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015.
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3.
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403.
Jeong et al., Measurement of deoxyinosine adduct: Can it be a reliable tool to assess oxidative or nitrosative DNA damage? Toxicol Lett. Oct. 17, 2012;214(2):226-33. doi: 10.1016/j.toxlet.2012.08.013. Epub Aug. 23, 2012.
Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017.
Jin et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. Apr. 19, 2019;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub Feb. 28, 2019.
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992.
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120.
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005.
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9.
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4.
Jusiak et al., Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth Biol. Jan. 18, 2019;8(1):16-24. doi: 10.1021/acssynbio.8b00089. Epub Jan. 9, 2019.
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6.
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8.
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604.
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28 2013; 153(1):71-85. doi: 10.1016/j.cell.2013.02.036.
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1.
Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017.
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002.
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130.
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012.
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2.
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013.
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93.
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126.
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058.
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886.
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006.
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085.
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082.
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010.
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273.
Kim et al., Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. Apr. 2019;37(4):430-435. doi: 10.1038/s41587-019-0050-1. Epub Mar. 4, 2019.
Kim et al., An anionic human protein mediates cationic liposome delivery of genome editing proteins into mammalian cells. Nat Commun. Jul. 2, 2019;10(1):2905. doi: 10.1038/s41467-019-10828-3.
Kim et al., Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu Rev Biochem. Jun. 20, 2019;88:191-220. doi: 10.1146/annurev-biochem-013118-111730. Epub Mar. 18, 2019.
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011.
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016.
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x.
Kim et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3.
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551.
Klapacz et al., Frameshift mutagenesis and micro satellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038.
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x.
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9.
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2019.
Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017.
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018.
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013.
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015.
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720.
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017.
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014.
Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018.
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4.
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265.
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793.
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019.
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125.
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015.
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951.
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996.
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583.
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190.
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905.
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722.
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7.
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076.
Kwart et al., Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017.
Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. Nov. 23, 2017;8(1):1723. doi: 10.1038/s41467-017-01650-w. Erratum in: Nat Commun. Jan. 16, 2018;9(1):303.
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46.
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236.
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013.
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002.
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275.
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055.
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991.
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013.
Lee et al., Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub Aug. 9, 2018.
Lee et al., Simultaneous targeting of linked loci in mouse embryos using base editing. Sci Rep. Feb. 7, 2019;9(1):1662. doi: 10.1038/s41598-018-33533-5.
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111.
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312.
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109.
Lee et al., Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun. Nov. 15, 2018;9(1):4804. doi: 10.1038/s41467-018-07322-7.
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
Lei et al., Site-specificity of serine integrase demonstrated by the attB sequence preference of ?BT1 integrase. FEBS Lett. Apr. 2018;592(8):1389-1399. doi: 10.1002/1873-3468.13023. Epub Mar. 25, 2018.
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018.
Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017.
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887.
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016.
Lewis et al., RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. Mar. 2017;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub Feb. 1, 2017.
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015.
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009.
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109.
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036.
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009.
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323.
Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(11):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017.
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.
Lienert et al., Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013.
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06.
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003.
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013.
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h.
Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. Author manuscript entitled CRISPR-CasX is an RNA-dominated enzyme active for human genome editing.
Liu et al., Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J. Nov. 29, 2019;18:35-44. doi: 10.1016/j.csbj.2019.11.006.
Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018.
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056.
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi: 10.1146/annurev.biochem.73.012803.092453.
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007.
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2.
Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234.
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 2013.
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905.
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467.
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017.
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x.
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015.
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012.
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26.
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5.
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6.
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649.
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015.
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010.
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006.
Ma et al., In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45.
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014.
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895.
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150.
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006.
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438.
Maji et al., A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. May 2, 2019;177(4):1067-1079.e19. doi: 10.1016/j.cell.2019.04.009.
Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033.
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20.
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006).
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012.
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014.
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1.
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012.
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787.
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4.
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075.
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2): 1-13. doi: 10.1016/s0378-1119(99)00103-1.
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61.
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016.
May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017.
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080.
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508.
McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014.
McKenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev.169730.
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016.
McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009.
McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008.
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716.
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016.
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009.
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27.
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012.
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105.
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014.
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0.
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299.
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5): 1588-96. doi: 10.1093/nar/gkj514.
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991.
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0.
Mills et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543.
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007.
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L.
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858.
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549.
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5.
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018. Including Supplemental Information.
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013.
Molla et al., CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. Oct. 2019;37(10):1121-1142. doi: 10.1016/j.tibtech.2019.03.008. Epub Apr. 14, 2019.
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013.
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x.
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705.
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116.
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007.
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468.
Myerowitz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9.
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151.
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R.
Nahar et al., A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb). Mar. 7, 2018;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub Feb. 16, 2018.
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560.
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292.
Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas.1715952114. Epub Nov. 6, 2017.
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011.
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016.
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014.
Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018.
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016.
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91.
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013.
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953.
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016.
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052.
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49.
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6.
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300.
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53.
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002.
Olorunniji et al., Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15.
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112.
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91.
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010.
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015.
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237.
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9.
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032.
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050.
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j.
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33.
Packer et al., Methods for the directed evolution of proteins. Nat Rev Genet. Jul. 2015;16(7):379-94. doi: 10.1038/nrg3927. Epub Jun. 9, 2015.
Packer et al., Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun. Oct. 16, 2017;8(1):956. doi: 10.1038/s41467-017-01055-9.
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi: 10.1126/science.1207339.
Paiva et al., Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. Jun. 2019;50:111-119. doi: 10.1016/j.cbpa.2019.02.022. Epub Apr. 17, 2019.
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016.
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262.
Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475.
Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57.
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012.
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013.
Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390.
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761.
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8.
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346.
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2.
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103.
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8.
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289.
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268.
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513.
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007.
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71.
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x.
Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017.
Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z.
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8.
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9.
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016; 113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016.
Ramamurthy et al., Identification of immunogenic B-cell epitope peptides of rubella virus E1 glycoprotein towards development of highly specific immunoassays and/or vaccine. Conference Abstract. 2019.
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018.
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008.
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009.
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15.
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51.
Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017.
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311.
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49.
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717.
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
Rees et al., Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4.
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839.
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021.
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567.
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x.
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013.
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015.
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957.
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007.
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013.
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35.
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064.
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096.
Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018.
Roundtree et al.,YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311.
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x.
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108.
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531.
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011.
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399.
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013.
Ryu et al., Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. Jul. 2018;36(6):536-539. doi: 10.1038/nbt.4148. Epub Apr. 27, 2018.
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015.
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989.
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002.
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873.
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453.
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7.
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941.
Savic et al., Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. May 29, 2018;7:e33761. doi: 10.7554/eLife.33761.
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3.
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5.
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4.
Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5):170077. doi: 10.1098/rsob.170077.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo.
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386.
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419.
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746.
Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/rna.064063.117. Epub Jan. 18, 2018.
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2.
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′->P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73.
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638.
Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8.
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0.
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007.
Setten et al., The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. Jun. 2019;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26): 16205-9. doi: 10.1074/jbc.273.26.16205.
Sha et al., Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. May 2017;26(5):910-924. doi: 10.1002/pro.3148. Epub Mar. 24, 2017.
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013.
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015.
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553.
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018.
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004.
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018.
Shen, Data processing, Modeling and Analysis scripts for CRISPR-inDelphi. GitHub—maxwshen/indelphi-dataprocessinganalysis at 6b68e3cec73c9358fef6e5f178a935f3c2a4118f. Apr. 10, 2018. Retrieved online via https://github.com/maxwshen/indelphi-sataprocessinganalysis/tree/6b68e3cec73c9358fef6e5f178a935f3c2a4118f Last retrieved on Jul. 26, 2021. 2 pages.
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014.
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016.
Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017.
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464.
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260.
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0.
Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017.
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234.
Silva et al., Selective disruption of the DNA polymerase III α-βcomplex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012.
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013.
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778.
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010.
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434.
Smargon et al., Cas13b is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub Jan. 5, 2017.
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156.
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4.
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014.
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o.
Song et al., Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng. Jan. 2020;4(1):125-130. doi: 10.1038/s41551-019-0357-8. Epub Feb. 25, 2019.
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918.
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04.
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805.
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365.
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3.
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100.
Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017.
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007.
Stella et al., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. Jun. 22, 2017;546(7659):559-563. doi: 10.1038/nature22398. Epub May 31, 2017.
Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. Jun. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6. Epub Mar. 27, 2017.
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015.
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150.
Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci USA. Aug. 8, 2017;114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017.
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4.
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019.
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724.
Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019.
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017.
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016.
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011.
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015.
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018.
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b.
Takimoto et al., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol. Jul. 15, 2011;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011.
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378.
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014.
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944.
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016.
Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018.
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003.
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808.
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013.
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997.
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276.
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3):162-7. doi: 10.1002/gene.10211.
Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019.
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007.
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442.
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498.
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012.
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803.
Toro et al., On the Origin and Evolutionary Relationships of the Reverse Transcriptases Associated With Type III CRISPR-Cas Systems. Front Microbiol. Jun. 15, 2018;9:1317. doi: 10.3389/fmicb.2018.01317.
Toro et al., The Reverse Transcriptases Associated with CRISPR-Cas Systems. Sci Rep. Aug. 2, 2017;7(1):7089. doi: 10.1038/s41598-017-07828-y.
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6.
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009.
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072.
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251.
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016.
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data.
Tsai et al., CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017.
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496.
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004.
Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018.
Uniprot Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092.
UniProtein A0A1V6. Dec. 11, 2019.
Uniprotkb Submission; Accession No. F0NH53. May 3, 2011. 4 pages.
Uniprotkb Submission; Accession No. F0NN87. May 3, 2011. 4 pages.
Uniprotkb Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages.
Uniprotkb Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages.
Uniprotkb Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages.
Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006.
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015.
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (NY). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149.
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016.
Van Wijk et al., Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. Apr. 2004;74(4):738-44. doi: 10.1086/383096. Epub Mar. 10, 2004.
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006.
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004.
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1.
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208.
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003.
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160.
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009.
Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980.
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004.
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol Struct. 2006;35:225-49. Review.
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8.
Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013.
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009.
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014.
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013.
Wang et al., Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016.
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c.
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014.
Weinert et al., Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. Apr. 19, 2019;364(6437):286-289. doi: 10.1126/science.aav9023. Epub Apr. 18, 2019.
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014.
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9.
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91.
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5.
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016.
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017.
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006.
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989.
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823.
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33.
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.
Winter et al., Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov. Aug. 20, 2019;5:41. doi: 10.1038/s41421-019-0109-7.
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61.
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005.
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88.
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879.
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7.
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015.
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016.
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5.
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226.
Wu et al., Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. Dec. 2017;47:67-76. doi: 10.1016/j.sbi.2017.05.011. Epub Jun. 16, 2017.
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017.
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013.
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016.
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012.
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62.
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388.
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87.
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22.
Xu et al., PTMD: A Database of Human Disease-associated Post-translational Modifications. Genomics Proteomics Bioinformatics. Aug. 2018;16(4):244-251. doi: 10.1016/j.gpb.2018.06.004. Epub Sep. 21, 2018.
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014.
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53.
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32.
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja980776o.
Yan et al., Cas13d is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018.
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002.
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x.
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013.
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014.
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7.
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6.
Yang, Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. Feb. 2011;44(1):1-93. doi: 10.1017/S0033583510000181. Epub Sep. 21, 2010.
Yang, Paml 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007.
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23.
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008.
Yeh et al., In vivo base editing of post-mitotic sensory cells. Nat Commun. Jun. 5, 2018;9(1):2184. doi: 10.1038/s41467-018-04580-3.
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252.
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010.
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26.
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010.
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016.
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014.
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009.
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46.
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013.
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217.
Zhang et al., Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev. Jul. 1, 2018;98(3):1205-1240. doi: 10.1152/physrev.00046.2017.
Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015.
Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/rna.063479.117. Epub Nov. 6, 2017.
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016.
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016.
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012.
Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. CommunBiol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5.
Zheng et al., Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep. Sep. 4, 2018;8(1):13211. doi: 10.1038/s41598-018-31394-6.
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015.
Zhou et al., Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. Jul. 2019;571(7764):275-278. doi: 10.1038/s41586-019-1314-0. Epub Jun. 10, 2019.
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804.
Zhou et al., Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther. Nov. 2018;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub May 9, 2018.
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497.
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014.
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6.
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999.
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133.
Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019.
Related Publications (1)
Number Date Country
20180127780 A1 May 2018 US
Provisional Applications (2)
Number Date Country
62475780 Mar 2017 US
62408575 Oct 2016 US