Apparatus and method for electrostatic discharge protection

Abstract
Embodiments of the invention provide a substrate and a method for constructing a substrate with electrostatic discharge protection. The substrate includes an edge surface with at least one plated castellation capable of conducting electrostatic discharge. The at least one plated castellation is connected to a circuit trace on at least one of the bottom surface and the top surface of the substrate. The method includes punching holes along at least a portion of a perimeter of each of a plurality of substrates in a substrate array, plating the holes with a conductive material, and cutting each of the plurality of substrates along cut lines that bisect at least some of the holes.
Description
BACKGROUND

Electrostatic discharge (ESD) is a serious problem for many types of solid state electronics, such as integrated circuits (ICs). Electronic components such as ICs can be exposed to ESD from various different sources, such as the human body, assembly equipment, or basic packaging materials. Contact between the sources and a grounded IC can generate large enough currents through the IC to significantly damage its internal circuitry.


The effects of ESD create special problems with touch electronics, i.e., electronics intended for touching by the body. For example, electronic fingerprint sensors allow a user to swipe or press a finger over some portion of the circuit in order to read the user's fingerprint. It would be impractical or inconvenient for a user to have to ground his or her body prior to touching the sensor in order to dissipate an electrostatic charge.


Conventional fingerprint sensors include a silicon chip with an exposed surface for receiving human touch. These fingerprint sensors can be easily damaged physically or mechanically because of the exposed surface, reducing the durability and/or reliability of the sensor. The conventional fingerprint sensors as well as newer, more advanced “flexible” fingerprint sensors, which enable a user to swipe a finger across a polyimide surface without directly contacting the sensor circuitry, are both susceptible to ESD damage. For example, electrostatic charge can build up on the polyimide surface of the flexible fingerprint sensor as a user swipes his or her finger. This charge can continue to increase in potential until the path of least resistance is found and the charge dissipated. In certain cases, the charge can discharge to the sensor circuitry, causing damage to sensitive electronic components such as IC input/output cells.


The current ESD protection used in the fingerprint sensor industry uses a metal ring surrounding the perimeter of the sensor. This arrangement requires an additional metal layer in the sensor manufacture, thus increasing the cost of the sensor. The inventions disclosed herein teach a new kind of ESD protection for touch electronics that reduces the manufacture cost and increase the durability of the electronics.


SUMMARY

Some embodiments of the invention provide a substrate capable of receiving electrostatic discharge. The substrate includes an edge surface including at least one plated castellation capable of conducting the electrostatic discharge. The substrate also includes a bottom surface, a top surface, and a circuit trace along at least one of the bottom surface and the top surface, the circuit trace electrically connected to the at least one plated castellation.


Some embodiments of the invention provide a method of constructing a substrate with electrostatic discharge protection. The method includes providing a substrate array including a plurality of substrates, punching holes along at least a portion of a perimeter of each of the plurality of substrates, and plating the holes with a conductive material. The method also includes cutting each of the plurality of substrates along cut lines that bisect at least some of the holes and connecting the conductive material on each of the plurality of substrates to a known potential.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a fingerprint sensing circuit according to one embodiment of the invention.



FIG. 2 is a perspective bottom view of a top substrate of the fingerprint sensing circuit of FIG. 1.



FIG. 3 is a perspective top view of a top substrate of the fingerprint sensing circuit of FIG. 1.



FIG. 4 is a bottom view of a bottom substrate of the fingerprint sensing circuit of FIG. 1.



FIG. 5 is a top view of a top substrate of the fingerprint sensing circuit of FIG. 1.



FIG. 6A is a top view of the fingerprint sensing circuit of FIG. 1.



FIG. 6B is an exploded side view of the fingerprint sensor of FIG. 1.



FIG. 6C is another side view of the fingerprint sensing circuit of FIG. 1.



FIG. 7 is a top view of a substrate array for use with a fingerprint sensing circuit according to one embodiment of the invention.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.



FIG. 1 illustrates a fingerprint sensing circuit 10 according to one embodiment of the invention. The fingerprint sensing circuit 10 can have a two-substrate architecture including a top substrate 12 and a bottom substrate 14. The top substrate 12 can be constructed of a flexible or rigid material suitable for applying a circuit thereon. In one embodiment, the top substrate 12 can be constructed of a flexible polyimide material, such as Kapton®, with a thickness of between about 5 and about 100 micrometers. The bottom substrate 18 can be a conventional printed circuit board (PCB).



FIGS. 2 and 3 illustrate the top substrate 12. The top substrate 12 can have a circuit side 16, as shown in FIG. 2, and a sensing side 18, as shown in FIG. 3. The circuit side 16 of the top substrate 12 can be attached to the bottom substrate 14 via a chip-on-flex (COF) process, wire bonding, anisotropic conductive film (ACF), etc.


In some embodiments, the fingerprint sensing circuit 10 can include an image sensor 20 to detect the ridges and valleys of a fingerprint as a finger moves across the image sensor 20. The fingerprint sensing circuit 10 can also include a velocity sensor 22 to detect the speed of a finger moving across the image sensor 20. The image sensor 20 and/or the velocity sensor 22 can be bonded to the circuit side 16 of the fingerprint sensing circuit 10. For example, the image sensor 20 and/or the velocity sensor 22 can be constructed of conductive traces (e.g., copper traces) printed or applied to the circuit side 16 using a lithographic technique, as shown in FIG. 2. In some embodiments, the image sensor 20 can be implemented as an array of capacitive sensors capable of sensing the ridges and valleys of a finger as it travels over the sensor 20. In addition, the velocity sensor 22 can be implemented using two or more capacitive detectors at intervals along the direction of travel of the finger.


Fingerprint information sensed by the image sensor 20 and the velocity sensor 22 can be transmitted to one or more sensor integrated circuits (ICs) 24 connected to the circuit side 16 of the top substrate 12. The sensor IC 24 can be bonded to the top substrate 12 using a suitable technique such as a chip-on-flex (COF) process, wirebond, flip chip, anisotropic conductive film (ACF) adhesive, underfil, glob-top, etc. The sensor IC 24 can include drive and sense electronics for interpreting the fingerprint information from the image sensor 20 and the velocity sensor 22. In one embodiment, the sensor IC 24 can be a silicon chip or die. In addition, in some embodiments, the image sensor 20 and the velocity sensor 22 can be contained within the sensor IC 24 (e.g., rather than being positioned external to the sensor IC 24, as described above).


During use, a user's finger can be swiped along the sensing side 18 of the top substrate 12. On the circuit side 16 of the top substrate 12, the image sensor 20 and the velocity sensor 22 can detect changes in capacitance as the finger is swiped. As a result of having a separate sensing side 18 and circuit side 16, the top substrate 12 can substantially electrically and mechanically isolate the user's finger from the image sensor 20, the velocity sensor 22, and the sensor IC 24, thereby providing some degree of protection from electrostatic discharge (ESD) and mechanical abrasion.


In some embodiments, the top substrate 12 can include interconnect pads 26 that allow the sensor IC 24 to interface with the bottom substrate 14. The bottom substrate 14 can include, for example, power supply circuitry, external communication circuitry, etc. for the sensor IC 24. FIG. 4 illustrates the bottom substrate 14 according to one embodiment of the invention. As shown in FIG. 4, the underside of the bottom substrate 14 can include a ball grid array (BGA) 28 to electrically connect the fingerprint sensing circuit 10 to a substrate of a product.


In one embodiment, the fingerprint sensing circuit 10 can have a single-substrate architecture, where the single substrate has a sensing side and an opposite circuit side. Thus, the substrate can include a sensor IC on its circuit side and a user's finger can be swiped along the opposite, or sensing side. As the user's finger is swiped along the sensing side, the sensor IC, with separate or integral image and velocity sensors, can detect the user's fingerprint through the substrate using techniques such as capacitive, thermal, radio frequency (RF), infrared (IR), light-gathering, and/or ultrasonic techniques. The single substrate can also include other circuitry, such as power supply circuitry, external communications circuitry, etc. on its circuit side.


In another embodiment, the fingerprint sensing circuit 10 can have a single-substrate architecture, where the single substrate has a combined circuit and sensing side. Thus, the substrate can include a sensor IC on the same side that the user's finger is swiped. An epoxy “glob-top” over the sensing side can protect the sensor IC from mechanical damage and/or contamination. The sensor IC, including an integral image sensor and/or a velocity sensor, can sense and collect fingerprint information by coming in direct contact with the user's finger through the epoxy. The sensor IC can detect the user's fingerprint using techniques such as capacitive, thermal, RF, IR, light-gathering and/or ultrasonic techniques.


In yet another embodiment, the fingerprint sensing circuit 10 can have a single-substrate or two-substrate architecture, where both sides of the top substrate can include sensing circuitry. The top substrate can include an image sensor and a velocity sensor on the sensing side (i.e., same side that the user's finger is swiped). An epoxy glob-top or an ink layer can be applied over the sensing side to protect the image sensor and the velocity sensor from mechanical damage and/or contamination. The sensor IC can be applied to the opposite, circuit side. The image sensor and the velocity sensor can sense fingerprint information by coming in direct contact with the user's finger through the epoxy or ink layer and transmit the fingerprint information to the sensor IC through, for example, RF transmissions. Other circuitry, or a bottom substrate, can also be coupled to the circuit side of the top substrate.


In some embodiments, the one or more substrates of the fingerprint sensing circuit 10 (i.e., the substrate of the single-substrate architecture or one or both of the substrates of the two-substrate architecture) can include a plated portion around its outside edge surface. The plated portion can be plated with a conductive plating (e.g., copper, aluminum, gold, nickel, etc.) and can be connected to a circuit trace along a top, bottom, or inner surface of the one or more substrates. The circuit trace can be connected to a low impedance path to a known potential, such as power source ground. As a result, the outside edge of the one or more substrates can allow a controlled path for ESD to be removed from the fingerprint sensing circuit 10 (i.e., from the plated portion, along the circuit trace, to power source ground).


For example, ESD can build up on the sensing side as a user swipes his or her finger. This charge can continue to increase in potential until the path of least resistance is found and the charge dissipated. The plated outside edge and the circuit trace can create the shortest discharge path for ESD, thus preventing ESD from discharging to the sensor IC or any other components of the circuit side or bottom substrate and potentially damaging them. In some embodiments, the plated portion can completely surround the outside edge of the one or more substrates. In other embodiments, the plated portion can partially surround the outside edge of the one or more substrates. In addition, the plated portion can extend down the entire thickness, or only a portion of the thickness, of the outside edge of the one or more substrates.


In one embodiment, the plated portion can be in the form of plated castellations 30, or perforations. For example, FIGS. 4-6C illustrate a fingerprint sensing circuit with the two-substrate architecture according to one embodiment of the invention. As shown in FIGS. 6B and 6C, the substrates 12, 14 can include the plated castellations 30 down their outside edge surfaces 32. The castellations 30 can be interconnected by a circuit trace 34 along a top surface of the top substrate 12, as shown in FIG. 5, and/or a bottom surface of the bottom substrate 12, as shown in FIG. 4. The circuit trace 34 can be connected to power source ground. As a result, the plated castellations 30 and the circuit trace can create the shortest discharge path for ESD. In one embodiment, each of the plated castellations 30 can be directly connected to power source ground, rather than interconnected through the circuit trace.


In some embodiments, the castellations 30 can completely surround the outside edge 32 of one or both of the substrates 12, 14 at a constant or varying pitch. In other embodiments, the castellations 30 can partially surround the outside edge 32 of one or both of the substrates 12, 14. FIGS. 4 and 5 illustrate the castellations with a smooth, semi-circular cross-section. In other embodiments, the castellations can have semi-circular, semi-square, semi-rectangular, and/or semi-triangular cross-sections.


In some embodiments, multiple substrates can be created from a single substrate array 36. For example, FIG. 7 illustrates a substrate array 36 including nine separate substrates 12 (and/or substrates 14) for nine fingerprint sensing circuits 10. As shown in FIG. 7, prior to stamping out individual substrates 12, via holes 38 can be punched around a perimeter of each substrate 12 and plated. In some embodiments, the via holes 38 can be punched and plated around only a portion of the perimeter of each substrate 12 (not shown). In addition, the via holes 38 can be all through holes, all blind holes, or some combination of through holes and blind holes. Further, the via holes 38 can have a circular cross-section, as shown in FIG. 7, or a square, rectangular, and/or triangular cross-section.


After the via holes 38 have been punched and plated around each perimeter, the substrates 12 can be cut or stamped out. Cut lines 40 made by the cutting or stamping mechanism can divide the via holes 38, thereby creating the castellations 30, as shown in FIG. 5. Accordingly, each castellation 30 can be a fraction of a via hole 38. For example, FIG. 5 shows some castellations 30 created from via holes 38 that have been bisected and some castellations 30 created from via holes 38 that have been quartered (e.g., at corners of the substrate 12). After the via holes 38 are punched, and before or after the substrates 12 are stamped from the substrate array 36, other layers or coatings 42, such as an epoxy glob-top or an ink layer, can be coupled to the substrate 12, as shown in FIGS. 6A-6C. When the fingerprint sensing circuit 10 is viewed from above, as shown in FIG. 6A, the coating 42 can substantially hide the castellations 30.


The fingerprint sensing circuits 10 described above can be applied to products other than fingerprint sensors, such as sensing circuits for touchpads and molded plastics having a variety of shapes and contours. In addition, the plated outside edge or castellation method described above can be applied to various other devices to protect circuitry from ESD. For example, the plated outside edge or castellation method can be used to protect sensitive circuitry associated with devices intended for human touch, including but not limited to PCBs for touch pads, touch screens, touch panels, keyboards, keypads, mice, joysticks, trackballs, etc., which can be collectively referred to as “touch electronics circuits” herein.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A biometric sensor comprising: a flexible substrate comprising a sensing side surface and a sensing element side surface opposing the sensing side surface;a biometric sensor portion comprising biometric image sensing elements formed on the sensing element side surface forming at least part of a biometric sensor array sensing capacitively induced changes induced by a biometric in the vicinity of the biometric image sensing elements;a biometric sensor controller integrated circuit mounted to the flexible substrate on the sensing side surface of the flexible substrate;an edge surface of the flexible substrate including at least one conductively plated perforation in the flexible substrate; andan electro-static discharge element formed on or as part of the flexible substrate and electrically connected to the at least one conductively plated perforation.
  • 2. The sensor of claim 1 wherein the at least one conductively plated perforation is plated with a conductive material including one of copper, aluminum, nickel, and gold.
  • 3. The sensor of claim 1 wherein the at least one conductively plated perforation comprises a plurality of conductively plated perforations positioned on the periphery of the flexible substrate.
  • 4. The sensor of claim 3 wherein at least one of the plurality of conductively plated perforations is electrically connected to a known potential.
  • 5. The sensor of claim 1 further comprising at least one biometric image sensing element formed on the sensing side surface of the flexible substrate remote from the biometric sensor controller integrated circuit and electrically coupled to the biometric sensor controller integrated circuit, wherein the at least one biometric image sensing element transmits information to the biometric sensor controller integrated circuit.
  • 6. The sensor of claim 5 wherein the biometric comprises a fingerprint.
  • 7. The sensor of claim 6 wherein the sensing side surface provides an area for a finger to be swiped.
  • 8. A method of constructing a biometric sensor comprising: providing a flexible substrate comprising a sensing side surface and a sensing element side surface opposing the sensing side surface;providing a biometric sensor portion comprising biometric image sensing elements formed on the sensing element side surface forming at least part of a biometric sensor array sensing capacitively induced changes induced by a biometric in the vicinity of the biometric image sensing elements;providing a biometric sensor controller integrated circuit mounted to the flexible substrate on the sensing side surface of the flexible substrate;punching via holes at least partially through the flexible substrate along at least a portion of a perimeter of the flexible substrate;plating the via holes with a conductive material; andelectrically connecting the plating of at least some of the vias holes to an electrostatic discharge element formed on or as part of the flexible substrate.
  • 9. The method of claim 8 and further comprising the electrostatic discharge element comprising an electric trace element formed on one of the sensing side or the sensing element side of the flexible substrate.
  • 10. The method of claim 9 and further comprising the electric trace element connected to a power source ground.
  • 11. The method of claim 8 and further comprising electrically connecting a sensor controller integrated circuit to one of the sensing side or the sensing element side of the flexible substrate.
  • 12. The method of claim 8 and further comprising attaching the flexible substrate to another substrate having a ball grid array on a bottom surface of the another substrate.
  • 13. The method of claim 8 wherein the via holes are punched along the entire perimeter of flexible substrate.
  • 14. The method of claim 12 wherein the flexible substrate and the another substrate are coupled together.
  • 15. A method of constructing a biometric sensor having electrostatic discharge protection, the method comprising: providing a flexible substrate comprising a sensing side surface and a sensing element side surface opposing the sensing side surface;providing a biometric sensor portion comprising biometric image sensing elements formed on the sensing element side surface forming at least part of a biometric sensor array sensing capacitively induced changes induced by a biometric in the vicinity of the biometric image sensing elements;providing a biometric sensor controller integrated circuit mounted to the flexible substrate on the sensing side surface of the flexible substrate;punching holes along at least a portion of a perimeter of the flexible substrate and at least partially through the flexible substrate;plating the holes with a conductive material;electrically connecting the plating of at least some of the vias holes to an electrostatic discharge element formed on or as part of the flexible substrate;cutting each of the plurality of substrates along cut lines that bisect at least some of the holes; andconnecting the electrostatic discharge element to a known potential.
  • 16. The method of claim 15 and further comprising the electrostatic discharge element connecting the conductive material to a known potential comprising an electric trace element formed in or on the flexible substrate.
  • 17. The method of claim 15 and further comprising the biometric comprising a fingerprint from a finger of a user placed in the vicinity of the sensing side surface of the flexible substrate.
  • 18. The method of claim 15 wherein the holes are punched along one side of a perimeter of the flexible substrate.
  • 19. The apparatus of claim 1 further comprising: the biometric comprising a fingerprint from a finger of a user placed or swiped in the vicinity of the sensing side surface of the flexible substrate.
  • 20. The method of claim 8 further comprising: the biometric comprising a fingerprint from a finger of a user placed or swiped in the vicinity of the sensing side surface of the flexible substrate.
US Referenced Citations (453)
Number Name Date Kind
3593319 Barber Jul 1971 A
4151512 Rigannati et al. Apr 1979 A
4225850 Chang et al. Sep 1980 A
4310827 Asai Jan 1982 A
4353056 Tsikos Oct 1982 A
4405829 Rivest et al. Sep 1983 A
4525859 Bowles et al. Jun 1985 A
4550221 Mabusth Oct 1985 A
4580790 Doose Apr 1986 A
4582985 Lofberg Apr 1986 A
4675544 Shrenk Jun 1987 A
4758622 Gosselin Jul 1988 A
4817183 Sparrow Mar 1989 A
5076566 Kriegel Dec 1991 A
5079949 Tamori Jan 1992 A
5109427 Yang Apr 1992 A
5140642 Hsu et al. Aug 1992 A
5270949 Atherton et al. Dec 1993 A
5305017 Gerpheide Apr 1994 A
5319323 Fong Jun 1994 A
5325442 Knapp Jun 1994 A
5359243 Norman Oct 1994 A
5420936 Fitzpatrick et al. May 1995 A
5422807 Mitra et al. Jun 1995 A
5429006 Tamori Jul 1995 A
5456256 Schneider et al. Oct 1995 A
5515738 Tamori May 1996 A
5543591 Gillespie et al. Aug 1996 A
5569901 Bridgelall et al. Oct 1996 A
5623552 Lane Apr 1997 A
5627316 De Winter et al. May 1997 A
5650842 Maase et al. Jul 1997 A
5717777 Wong et al. Feb 1998 A
5781651 Hsiao et al. Jul 1998 A
5801681 Sayag Sep 1998 A
5818956 Tuli Oct 1998 A
5828773 Setlak et al. Oct 1998 A
5838306 O'Connor Nov 1998 A
5844287 Hassan et al. Dec 1998 A
5848176 Hara et al. Dec 1998 A
5850450 Schweitzer et al. Dec 1998 A
5852670 Setlak et al. Dec 1998 A
5864296 Upton Jan 1999 A
5887343 Salatino et al. Mar 1999 A
5892824 Beatson et al. Apr 1999 A
5903225 Schmitt et al. May 1999 A
5915757 Tsuyama et al. Jun 1999 A
5920384 Borza Jul 1999 A
5920640 Salatino et al. Jul 1999 A
5940526 Setlak et al. Aug 1999 A
5963679 Setlak Oct 1999 A
5995630 Borza Nov 1999 A
5999637 Toyoda et al. Dec 1999 A
6002389 Kasser Dec 1999 A
6002815 Immega et al. Dec 1999 A
6011859 Kalnitsky et al. Jan 2000 A
6016355 Dickinson et al. Jan 2000 A
6052475 Upton Apr 2000 A
6067368 Setlak et al. May 2000 A
6073343 Petrick et al. Jun 2000 A
6076566 Lowe Jun 2000 A
6088585 Schmitt et al. Jul 2000 A
6098175 Lee Aug 2000 A
6118318 Fifield et al. Sep 2000 A
6134340 Hsu et al. Oct 2000 A
6157722 Lerner et al. Dec 2000 A
6161213 Lofstrom Dec 2000 A
6175407 Santor Jan 2001 B1
6182076 Yu et al. Jan 2001 B1
6182892 Angelo et al. Feb 2001 B1
6185318 Jain et al. Feb 2001 B1
6234031 Suga May 2001 B1
6241288 Bergenek et al. Jun 2001 B1
6259108 Antonelli et al. Jul 2001 B1
6289114 Mainguet Sep 2001 B1
6292272 Okauchi et al. Sep 2001 B1
6317508 Kramer et al. Nov 2001 B1
6320394 Tartagni Nov 2001 B1
6325285 Baratelli Dec 2001 B1
6327376 Harkin Dec 2001 B1
6330345 Russo et al. Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6333989 Borza Dec 2001 B1
6337919 Duton Jan 2002 B1
6343162 Saito et al. Jan 2002 B1
6346739 Lepert et al. Feb 2002 B1
6347040 Fries et al. Feb 2002 B1
6357663 Takahashi et al. Mar 2002 B1
6360004 Akizuki Mar 2002 B1
6362633 Tartagni Mar 2002 B1
6392636 Ferrari et al. May 2002 B1
6399994 Shobu Jun 2002 B2
6400836 Senior Jun 2002 B2
6408087 Kramer Jun 2002 B1
6459804 Mainguet Oct 2002 B2
6473072 Comiskey et al. Oct 2002 B1
6481294 Zellner et al. Nov 2002 B2
6509501 Eicken et al. Jan 2003 B2
6512381 Kramer Jan 2003 B2
6525547 Hayes Feb 2003 B2
6525932 Ohnishi et al. Feb 2003 B1
6535622 Russo et al. Mar 2003 B1
6539101 Black Mar 2003 B1
6546122 Russo Apr 2003 B1
6580816 Kramer et al. Jun 2003 B2
6597289 Sabatini Jul 2003 B2
6628812 Setlak et al. Sep 2003 B1
6631201 Dickinson et al. Oct 2003 B1
6643389 Raynal et al. Nov 2003 B1
6672174 Deconde et al. Jan 2004 B2
6710461 Chou et al. Mar 2004 B2
6738050 Comiskey et al. May 2004 B2
6741729 Bjorn et al. May 2004 B2
6757002 Oross et al. Jun 2004 B1
6766040 Catalano et al. Jul 2004 B1
6785407 Tschudi et al. Aug 2004 B1
6799275 Bjorn Sep 2004 B1
6836230 Le Pailleur et al. Dec 2004 B2
6838905 Doyle Jan 2005 B1
6862942 Kawahata Mar 2005 B2
6873356 Kanbe et al. Mar 2005 B1
6886104 McClurg et al. Apr 2005 B1
6897002 Teraoka et al. May 2005 B2
6898299 Brooks May 2005 B1
6924496 Manansala Aug 2005 B2
6937748 Schneider et al. Aug 2005 B1
6941001 Bolle et al. Sep 2005 B1
6941810 Okada Sep 2005 B2
6950540 Higuchi Sep 2005 B2
6959874 Bardwell Nov 2005 B2
6963626 Shaeffer et al. Nov 2005 B1
6970584 O'Gorman et al. Nov 2005 B2
6980672 Saito et al. Dec 2005 B2
6983882 Cassone Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7020591 Wei et al. Mar 2006 B1
7030860 Hsu et al. Apr 2006 B1
7031670 May Apr 2006 B2
7035443 Wong Apr 2006 B2
7042535 Katoh et al. May 2006 B2
7043061 Hamid et al. May 2006 B2
7043644 DeBruine May 2006 B2
7046230 Zadesky et al. May 2006 B2
7064743 Nishikawa Jun 2006 B2
7099496 Benkley, III Aug 2006 B2
7110574 Haruki et al. Sep 2006 B2
7110577 Tschud Sep 2006 B1
7113622 Hamid Sep 2006 B2
7126389 McRae et al. Oct 2006 B1
7129926 Mathiassen et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7146024 Benkley Dec 2006 B2
7146026 Russon et al. Dec 2006 B2
7146029 Manansala Dec 2006 B2
7184581 Johansen et al. Feb 2007 B2
7190209 Kang et al. Mar 2007 B2
7190816 Mitsuyu et al. Mar 2007 B2
7194392 Tuken et al. Mar 2007 B2
7197168 Russo Mar 2007 B2
7200250 Chou Apr 2007 B2
7251351 Mathiassen et al. Jul 2007 B2
7258279 Schneider et al. Aug 2007 B2
7260246 Fujii Aug 2007 B2
7263212 Kawabe Aug 2007 B2
7263213 Rowe Aug 2007 B2
7289649 Walley et al. Oct 2007 B1
7290323 Deconde et al. Nov 2007 B2
7308122 McClurg et al. Dec 2007 B2
7321672 Sasaki et al. Jan 2008 B2
7356169 Hamid Apr 2008 B2
7360688 Harris Apr 2008 B1
7369685 DeLeon May 2008 B2
7379569 Chikazawa et al. May 2008 B2
7408135 Fujeda Aug 2008 B2
7409876 Ganapathi et al. Aug 2008 B2
7412083 Takahashi Aug 2008 B2
7424618 Roy et al. Sep 2008 B2
7447339 Mimura et al. Nov 2008 B2
7447911 Chou et al. Nov 2008 B2
7460697 Erhart et al. Dec 2008 B2
7463756 Benkley, III Dec 2008 B2
7474772 Russo et al. Jan 2009 B2
7505611 Fyke Mar 2009 B2
7505613 Russo Mar 2009 B2
7565548 Fiske et al. Jul 2009 B2
7574022 Russo Aug 2009 B2
7596832 Hsieh et al. Oct 2009 B2
7599530 Boshra Oct 2009 B2
7616787 Boshra Nov 2009 B2
7634117 Cho Dec 2009 B2
7643950 Getzin et al. Jan 2010 B1
7646897 Fyke Jan 2010 B2
7681232 Nordentoft et al. Mar 2010 B2
7689013 Shinzaki Mar 2010 B2
7706581 Drews et al. Apr 2010 B2
7733697 Picca et al. Jun 2010 B2
7734074 Setlak et al. Jun 2010 B2
7751601 Benkley Jul 2010 B2
7826645 Cayen Nov 2010 B1
7843438 Onoda Nov 2010 B2
7848798 Martinsen et al. Dec 2010 B2
7899216 Watanabe et al. Mar 2011 B2
7953258 Dean et al. May 2011 B2
8005276 Dean et al. Aug 2011 B2
8031916 Abiko et al. Oct 2011 B2
8063734 Conforti Nov 2011 B2
8077935 Geoffroy et al. Dec 2011 B2
8107212 Nelson et al. Jan 2012 B2
8116540 Dean et al. Feb 2012 B2
8131026 Benkley et al. Mar 2012 B2
8165355 Benkley et al. Apr 2012 B2
8175345 Gardner May 2012 B2
8204281 Satya et al. Jun 2012 B2
8224044 Benkley Jul 2012 B2
8229184 Benkley Jul 2012 B2
8276816 Gardner Oct 2012 B2
8278946 Thompson Oct 2012 B2
8290150 Erhart et al. Oct 2012 B2
8315444 Gardner Nov 2012 B2
8331096 Garcia Dec 2012 B2
8358815 Benkley et al. Jan 2013 B2
8374407 Benkley et al. Feb 2013 B2
8391568 Satyan Mar 2013 B2
8447077 Benkley et al. May 2013 B2
RE44440 Getzin et al. Aug 2013 E
8520913 Dean et al. Aug 2013 B2
20010026636 Mainget Oct 2001 A1
20010030644 Allport Oct 2001 A1
20010036299 Senior Nov 2001 A1
20010043728 Kramer et al. Nov 2001 A1
20020014530 Iihama Feb 2002 A1
20020025062 Black Feb 2002 A1
20020061125 Fujii May 2002 A1
20020064892 Lepert et al. May 2002 A1
20020067845 Griffis Jun 2002 A1
20020073046 David Jun 2002 A1
20020089044 Simmons et al. Jul 2002 A1
20020089410 Janiak et al. Jul 2002 A1
20020096731 Wu et al. Jul 2002 A1
20020122026 Bergstrom Sep 2002 A1
20020126516 Jeon Sep 2002 A1
20020133725 Roy et al. Sep 2002 A1
20020152048 Hayes Oct 2002 A1
20020181749 Matsumoto et al. Dec 2002 A1
20030002717 Hamid Jan 2003 A1
20030002719 Hamid et al. Jan 2003 A1
20030021495 Cheng Jan 2003 A1
20030035570 Benkley Feb 2003 A1
20030063782 Acharya et al. Apr 2003 A1
20030068072 Hamid Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030095096 Robbin et al. May 2003 A1
20030095690 Su et al. May 2003 A1
20030102874 Lane et al. Jun 2003 A1
20030123714 O'Gorman et al. Jul 2003 A1
20030141959 Keogh et al. Jul 2003 A1
20030147015 Katoh et al. Aug 2003 A1
20030161510 Fuji Aug 2003 A1
20030161512 Mathiassen et al. Aug 2003 A1
20030169228 Mathiassen et al. Sep 2003 A1
20030174871 Yoshioka et al. Sep 2003 A1
20030186157 Teraoka et al. Oct 2003 A1
20030209293 Sako et al. Nov 2003 A1
20030224553 Manansala Dec 2003 A1
20040012773 Puttkammer Jan 2004 A1
20040017934 Kocher et al. Jan 2004 A1
20040021786 Nakamura et al. Feb 2004 A1
20040022001 Chu et al. Feb 2004 A1
20040042642 Bolle et al. Mar 2004 A1
20040050930 Rowe Mar 2004 A1
20040066613 Leitao Apr 2004 A1
20040076313 Bronstein et al. Apr 2004 A1
20040081339 Benkley, III Apr 2004 A1
20040096086 Miyasaka et al. May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040120400 Linzer Jun 2004 A1
20040125993 Zhao et al. Jul 2004 A1
20040129787 Saito et al. Jul 2004 A1
20040136612 Meister et al. Jul 2004 A1
20040155752 Radke Aug 2004 A1
20040172339 Snelgrove et al. Sep 2004 A1
20040179718 Chou Sep 2004 A1
20040184641 Nagasaka et al. Sep 2004 A1
20040188838 Okada et al. Sep 2004 A1
20040190761 Lee Sep 2004 A1
20040208346 Baharav et al. Oct 2004 A1
20040208347 Baharav et al. Oct 2004 A1
20040208348 Baharav et al. Oct 2004 A1
20040213441 Tschudi Oct 2004 A1
20040215689 Dooley et al. Oct 2004 A1
20040228505 Sugimoto Nov 2004 A1
20040228508 Shigeta Nov 2004 A1
20040240712 Rowe et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050031174 Ryhanen et al. Feb 2005 A1
20050036665 Higuchi Feb 2005 A1
20050047485 Khayrallah et al. Mar 2005 A1
20050100196 Scott et al. May 2005 A1
20050100938 Hoffmann et al. May 2005 A1
20050103611 Holscher May 2005 A1
20050109835 Jacoby et al. May 2005 A1
20050110103 Setlak May 2005 A1
20050111708 Chou May 2005 A1
20050123176 Ishii et al. Jun 2005 A1
20050129291 Boshra Jun 2005 A1
20050136200 Durell et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050139685 Kozlay Jun 2005 A1
20050162402 Watanachote Jul 2005 A1
20050169503 Howell et al. Aug 2005 A1
20050174015 Scott et al. Aug 2005 A1
20050210271 Chou et al. Sep 2005 A1
20050219200 Weng Oct 2005 A1
20050220329 Payne et al. Oct 2005 A1
20050231213 Chou et al. Oct 2005 A1
20050238212 Du et al. Oct 2005 A1
20050244038 Benkley Nov 2005 A1
20050244039 Geoffroy et al. Nov 2005 A1
20050247559 Frey et al. Nov 2005 A1
20050249386 Juh Nov 2005 A1
20050258952 Utter et al. Nov 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060006224 Modi Jan 2006 A1
20060055500 Burke et al. Mar 2006 A1
20060057756 Sato et al. Mar 2006 A1
20060066572 Yumoto et al. Mar 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060083411 Benkley Apr 2006 A1
20060110537 Huang et al. May 2006 A1
20060140461 Kim et al. Jun 2006 A1
20060144953 Takao Jul 2006 A1
20060170528 Funushige et al. Aug 2006 A1
20060181521 Perreault et al. Aug 2006 A1
20060182319 Setlak et al. Aug 2006 A1
20060187200 Martin Aug 2006 A1
20060210082 Devadas et al. Sep 2006 A1
20060214512 Iwata Sep 2006 A1
20060214767 Carrieri Sep 2006 A1
20060239514 Watanabe et al. Oct 2006 A1
20060249008 Luther Nov 2006 A1
20060259873 Mister Nov 2006 A1
20060261174 Zellner et al. Nov 2006 A1
20060267125 Huang et al. Nov 2006 A1
20060267385 Steenwyk et al. Nov 2006 A1
20060271793 Devadas et al. Nov 2006 A1
20060285728 Leung et al. Dec 2006 A1
20060287963 Steeves et al. Dec 2006 A1
20070031011 Erhart et al. Feb 2007 A1
20070036400 Watanabe et al. Feb 2007 A1
20070057763 Blattner et al. Mar 2007 A1
20070058843 Theis et al. Mar 2007 A1
20070067828 Bychkov Mar 2007 A1
20070076926 Schneider et al. Apr 2007 A1
20070076951 Tanaka et al. Apr 2007 A1
20070086634 Setlak et al. Apr 2007 A1
20070090312 Stallinga et al. Apr 2007 A1
20070138299 Mitra Jun 2007 A1
20070154072 Taraba et al. Jul 2007 A1
20070160269 Kuo Jul 2007 A1
20070180261 Akkermans et al. Aug 2007 A1
20070196002 Choi et al. Aug 2007 A1
20070198141 Moore Aug 2007 A1
20070198435 Siegal et al. Aug 2007 A1
20070228154 Tran Oct 2007 A1
20070237366 Maletsky Oct 2007 A1
20070237368 Bjorn et al. Oct 2007 A1
20070248249 Stoianov Oct 2007 A1
20070290124 Neil et al. Dec 2007 A1
20080002867 Mathiassen et al. Jan 2008 A1
20080013805 Sengupta et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080049987 Champagne et al. Feb 2008 A1
20080049989 Iseri et al. Feb 2008 A1
20080063245 Benkley et al. Mar 2008 A1
20080069412 Champagne et al. Mar 2008 A1
20080126260 Cox et al. May 2008 A1
20080169345 Keane et al. Jul 2008 A1
20080170695 Adler et al. Jul 2008 A1
20080175450 Scott et al. Jul 2008 A1
20080178008 Takahashi et al. Jul 2008 A1
20080179112 Qin et al. Jul 2008 A1
20080185429 Saville Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080205714 Benkley et al. Aug 2008 A1
20080219521 Benkley et al. Sep 2008 A1
20080222049 Loomis et al. Sep 2008 A1
20080223925 Saito et al. Sep 2008 A1
20080226132 Gardner Sep 2008 A1
20080238878 Wang Oct 2008 A1
20080240523 Benkley et al. Oct 2008 A1
20080240537 Yang et al. Oct 2008 A1
20080244277 Orsini et al. Oct 2008 A1
20080267462 Nelson et al. Oct 2008 A1
20080279373 Erhart et al. Nov 2008 A1
20080317290 Tazoe Dec 2008 A1
20090001999 Douglas Jan 2009 A1
20090130369 Huang et al. May 2009 A1
20090140838 Newman et al. Jun 2009 A1
20090153297 Gardner Jun 2009 A1
20090154779 Satyan et al. Jun 2009 A1
20090155456 Benkley et al. Jun 2009 A1
20090169071 Bond et al. Jul 2009 A1
20090174974 Huang et al. Jul 2009 A1
20090212902 Haddock Aug 2009 A1
20090218698 Lam Sep 2009 A1
20090237135 Ramaraju et al. Sep 2009 A1
20090252384 Dean et al. Oct 2009 A1
20090252385 Dean et al. Oct 2009 A1
20090252386 Dean et al. Oct 2009 A1
20090279742 Abiko Nov 2009 A1
20090319435 Little et al. Dec 2009 A1
20090324028 Russo Dec 2009 A1
20100026451 Erhart et al. Feb 2010 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100083000 Kesanupalli et al. Apr 2010 A1
20100117794 Adams et al. May 2010 A1
20100119124 Satyan May 2010 A1
20100123675 Ippel May 2010 A1
20100127366 Bond et al. May 2010 A1
20100176823 Thompson et al. Jul 2010 A1
20100176892 Thompson et al. Jul 2010 A1
20100177940 Thompson et al. Jul 2010 A1
20100180136 Thompson et al. Jul 2010 A1
20100189314 Benkley et al. Jul 2010 A1
20100208953 Gardner et al. Aug 2010 A1
20100244166 Shibuta et al. Sep 2010 A1
20100272329 Benkley Oct 2010 A1
20100284565 Benkley et al. Nov 2010 A1
20110002461 Erhart et al. Jan 2011 A1
20110018556 Le et al. Jan 2011 A1
20110083018 Kesanupalli et al. Apr 2011 A1
20110083170 Kesanupalli et al. Apr 2011 A1
20110090047 Patel Apr 2011 A1
20110102567 Erhart May 2011 A1
20110102569 Erhart May 2011 A1
20110175703 Benkley Jul 2011 A1
20110176037 Benkley Jul 2011 A1
20110182486 Valfridsson et al. Jul 2011 A1
20110221942 Taura Sep 2011 A1
20110298711 Dean et al. Dec 2011 A1
20110304001 Erhart et al. Dec 2011 A1
20120044639 Garcia Feb 2012 A1
20120148122 Dean Jun 2012 A1
20120189166 Russo Jul 2012 A1
20120189172 Russo Jul 2012 A1
20120206586 Gardner Aug 2012 A1
20120256280 Ehart Oct 2012 A1
20120257032 Benkley Oct 2012 A1
20120308092 Benkley et al. Dec 2012 A1
20130021044 Thompson et al. Jan 2013 A1
20130094715 Benkley et al. Apr 2013 A1
20130177220 Erhart et al. Jul 2013 A1
Foreign Referenced Citations (76)
Number Date Country
2213813 Oct 1973 DE
0791899 Aug 1997 EP
0791899 Aug 1997 EP
0791899 Aug 1997 EP
0929028 Jan 1998 EP
0973123 Jan 2000 EP
1018697 Jul 2000 EP
1139301 Oct 2001 EP
1531419 May 2005 EP
1533759 May 2005 EP
1536368 Jun 2005 EP
1538548 Jun 2005 EP
1624399 Feb 2006 EP
1775674 Apr 2007 EP
1939788 Jul 2008 EP
2331613 May 1999 GB
2480919 Dec 2011 GB
2487661 Aug 2012 GB
2489100 Sep 2012 GB
2490192 Oct 2012 GB
2474999 Feb 2013 GB
01094418 Apr 1989 JP
04158434 Jun 1992 JP
2003256820 Sep 2003 JP
2005011002 Jan 2005 JP
2005242856 Sep 2005 JP
2006053768 Jun 2006 JP
2007305097 Nov 2007 JP
3569804 Sep 2009 JP
200606745 Feb 2006 TW
200606746 Feb 2006 TW
200614092 May 2006 TW
200617798 Jun 2006 TW
200620140 Jun 2006 TW
200629167 Aug 2006 TW
WO 9003620 Apr 1990 WO
WO 9858342 Dec 1998 WO
WO 99028701 Jun 1999 WO
WO 99043258 Sep 1999 WO
WO 9946724 Sep 1999 WO
WO 0122349 Mar 2001 WO
WO 0159558 Aug 2001 WO
WO 0194902 Dec 2001 WO
WO 0194902 Dec 2001 WO
WO 0247018 Jun 2002 WO
WO 0247018 Jun 2002 WO
WO 02061668 Aug 2002 WO
WO 02077907 Oct 2002 WO
WO 03063054 Jul 2003 WO
WO 03075210 Sep 2003 WO
WO 2004066194 Aug 2004 WO
WO 2004066693 Aug 2004 WO
WO 20050104012 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2006040724 Apr 2006 WO
WO 2006041780 Apr 2006 WO
WO 2007011607 Jan 2007 WO
WO 2008033264 Mar 2008 WO
WO 2008033264 Mar 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008137287 Nov 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009029257 Jun 2009 WO
WO 2009079219 Jun 2009 WO
WO 2009079221 Jun 2009 WO
WO 2009079257 Jun 2009 WO
WO 2009079262 Jun 2009 WO
WO 2010034036 Mar 2010 WO
WO 2010036445 Apr 2010 WO
WO 2010143597 Dec 2010 WO
WO 2011088248 Jan 2011 WO
WO2011088252 Jan 2011 WO
WO 2011053797 May 2011 WO
Non-Patent Literature Citations (14)
Entry
Matsumoto et al., Impact of Artificial “Gummy” Fingers on Fingerprint Systesm, SPIE 4677 (2002), reprinted from cryptome.org.
Maltoni, “Handbook of Fingerprint Recognition”, XP002355942 Springer, New York, USA, Jun. 2003 pp. 65-69.
Vermasan, et al., “A500 dpi AC Capacitive Hybrid Flip-Chip CMOS ASIC/Sensor Module for Fingerprint, Navigation, and Pointer Detection With On-Chip Data Processing”, IEEE Journal of Solid State Circuits, vol. 38, No. 12, Dec. 2003, pp. 2288-2294.
Ratha, et al. “Adaptive Flow Orientation Based Feature Extractionin Fingerprint Images,” Pattern Recognition, vol. 28 No. 11, 1657-1672, Nov. 1995.
Ratha, et al., “A Real Time Matching System for Large Fingerprint Databases,” IEEE, Aug. 1996.
Suh, et al., “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions”, Computer Architecture, 2005, ISCA '05, Proceedings, 32nd International Symposium, Jun. 2005 (MIT Technical Report CSAIL CSG-TR-843, 2004.
Rivest, et al., “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”, Communication of the ACM, vol. 21 (2), pp. 120-126. (1978).
Hiltgen, et al., “Secure Internet Banking Authentication”, IEEE Security and Privacy, IEEE Computer Society, New York, NY, US, Mar. 1, 2006, pp. 24-31, XP007908655, ISSN: 1540-7993.
Hegt, “Analysis of Current and Future Phishing Attacks on Internet Banking Services”, Mater Thesis. Techische Universiteit Eindhoven—Department of Mathematics and Computer Science May 31, 2008, pp. 1-149, XP002630374, Retrieved from the Internet: URL:http://alexandria.tue.nl/extral/afstversl/wsk-i/hgt2008.pdf [retrieved on Mar. 29, 2011] pp. 127-134, paragraph 6.2.
Gassend, et al., “Controlled Physical Random Functions”, In Proceedings of the 18th Annual Computer Security Conference, Las Vegas, Nevada, Dec. 12, 2002.
Bellagiodesigns.Com (Internet Archive Wayback Machine, www.bellagiodesigns.com date: Oct. 29, 2005).
Closed Loop Systems, The Free Dictionary, http://www.thefreedictionary.com/closed-loop+system (downloaded Dec. 1, 2011).
Feedback: Electronic Engineering, Wikipedia, p. 5 http://en.wikipedia.org/wiki/Feedback#Electronic—engineering (downloaded Dec. 1, 2011).
Galy et al. (Jul. 2007) “A full fingerprint verification system for a single-line sweep sensor.” IEEE Sensors J., vol. 7 No. 7, pp. 1054-1065.
Related Publications (1)
Number Date Country
20110214924 A1 Sep 2011 US