This invention relates to the interferometric measurement of orthogonally polarized beams
There are various ways of practicing non-ellipsometric interferometric confocal far-field and near-field microscopy. Some of those known ways involve using heterodyne techniques and a detector having a single detector element or having a relatively small number of detector elements. Others involve using a step and stare method with a traditional homodyne detection method for the acquisition of conjugated quadratures of fields of reflected/scattered beams when a detector is used that comprises a large number of detector elements. x(φ) a cos φ. The respective conjugated quadrature of the field is a sin φ when the quadrature x(φ) of a field is expressed as |a|cos φ. The step and stare method and the traditional homodyne detection method are used in order to obtain for each detector element a set of at least four electrical interference signal values with a substrate that is stationary with respect to the respective interferometric microscope during the stare portion of the step and stare method. The set of at least four electrical interference signal values are required to obtain for each detector element conjugated quadratures of fields of a measurement beam comprising a reflected and/or scattered far-field or near-field from a spot in or on a substrate that is conjugate to the each detector element.
Still other ways of practicing interferometric ellipsometry involve using either a homodyne detection method or heterodyne techniques and a detector having a single detector element or having a relatively small number of detector elements.
It is also known to use a double homodyne detection method for non-ellipsometric applications based on using four detectors wherein each detector generates an electrical interference signal value used to determine a corresponding component of a conjugated quadratures of a field. See, for example, the discussion found in Section IV of the article by G. M D'ariano and M G. A. Paris entitled “Lower Bounds On Phase Sensitivity In Ideal And Feasible Measurements,” Phys. Rev. A 49, 3022–3036 (1994). In that case, the four detectors generate four electrical interference signal values simultaneously and each electrical interference signal value contains information relevant to one conjugated quadratures component.
Various embodiments presented herein relate to making high spatial resolution confocal and non-confocal interferometric ellipsometric measurements. Some of the embodiments involve making joint measurements of fields of scattered/reflected or transmitted orthogonally polarized beams when operating in either a relatively fast scanning mode or a step and stare mode. Other embodiments involve making joint measurements of fields of scattered/reflected or transmitted orthogonally polarized beams wherein the joint measurements of the fields comprise joint measurements of conjugated quadratures of each of the fields when also operating in either a relatively fast scanning mode or a step and stare mode.
According to one particular embodiment, at least eight electrical interference signal values (four electrical interference signal values for each of two orthogonally polarized beams) are acquired with interferometric ellipsometric confocal and non-confocal microscopy that is operating in a relatively fast scanning mode and each of the at least eight electrical interference signal values correspond to the same respective spot on or in the substrate and contain information that can be used for determining joint measurements in both spatial and temporal coordinates of conjugated quadratures of fields of scattered/reflected or transmitted orthogonally polarized beams.
Also, in accordance with the ideas presented herein, joint measurements are made of conjugated quadratures of fields of orthogonally polarized beams reflected from a measurement object in linear and angular displacement interferometers.
In addition, another implementation of the invention in the area of scanning high spatial resolution interferometric ellipsometric confocal and non-confocal microscopy uses variants of the bi- and quad-homodyne detection methods to obtain joint measurements of conjugated quadratures of fields of orthogonally polarized beams reflected/scattered or transmitted by a substrate with a detector having a large number of detector elements. For each spot in and/or on the substrate that is imaged, a corresponding set of eight electrical interference signal values is obtained. Each of the sets of eight electrical interference signal values contains information for determination of a joint measurement of respective conjugated quadratures of fields. Similarly, in the area of linear and angular displacement interferometry, joint measurements are made of conjugated quadratures of fields of orthogonally polarized beams reflected from a measurement object.
Still another implementation of the invention involves using the double homodyne detection method to make joint determinations of conjugated quadratures of fields wherein each electrical interference value contains information simultaneously about each of two orthogonal components of the conjugated quadratures in non-ellipsometric applications.
One variant of the bi-homodyne detection methods described herein obtains eight electrical interference signal values wherein each measured value of an electrical interference signal contains simultaneously information about two orthogonal components of a conjugated quadratures for each of two orthogonally polarized beams scattered/reflected or transmitted by an object. According to that variant of the bi-homodyne detection method, a single detector element is used for each electrical interference signal value obtained and the input beam to the interferometer system includes at least four frequency components with frequency differences large compared to the frequency bandwidth of the detector for a joint measurement of each of the two conjugated quadratures. Two frequency components are used to generate electrical interference signal components corresponding to conjugated quadratures of a field of a measurement beam comprising a reflected/scattered or transmitted far-field or near-field from a spot in or on a measurement object that is conjugate to a detector element. The two other frequency components are used to generate two other electrical interference signal components corresponding to a respective second conjugated quadratures of the field of an orthogonally polarized component of the measurement beam reflected/scattered or transmitted from a spot in or on the measurement object that is conjugate to the detector element. Information about each of the first and second conjugated quadratures are obtained jointly as a consequence of the four frequency components being coextensive in space and having the same temporal window function in the interferometer system. The temporal window function when operating in a scanning mode corresponds to the window function of a respective set of pulses of the input beam to the interferometer system.
A variant of the quad-homodyne detection method is also discussed which uses two detectors and an input beam to an interferometer system that includes eight coextensive measurement beams and corresponding reference beams in the interferometer system simultaneously to obtain information about two orthogonal components of a conjugated quadratures for fields of two orthogonally polarized beams scattered/reflected or transmitted by an object. One detector element is used to obtain four electrical interference signal values and the second detector element is used to obtain four other of the eight electrical interference signal values.
The eight coextensive measurement beams and corresponding reference beams are generated in the interferometer system simultaneously by using an input beam that comprises eight frequency components wherein each frequency component corresponds to a measurement and corresponding reference beam. The frequency differences of the eight frequency components are such that the eight frequency components are resolved by an analyzer into two non-overlapping beams. The two beams are incident on two different detector elements wherein each of the two beams comprises four different frequency components and the frequency differences of the four different frequency components of each of the two beams are large compared to the frequency bandwidth of the detectors. Each of the four frequency components incident on a first detector element of the two detector elements is used to generate an electrical interference signal component corresponding to a component of conjugated quadratures of fields of two orthogonal measurement beam components either reflected/scattered or transmitted in either the far-field or near-field regime from a spot in or on a measurement object that is conjugate to the detector element. The description for the second detector element with respect to four respective frequency components and components of conjugated quadratures is the same as the corresponding description with respect to the first detector element. Information about the components of the conjugated quadratures of scattered/reflected or transmitted orthogonally polarized fields are accordingly obtained jointly as a consequence of the eight frequency components being coextensive in space and having the same temporal window function in the interferometer system. The temporal window function when operating in a scanning mode corresponds to the window function of a respective set of four pulses of the input beam to the interferometer system.
Other variants of the quad-homodyne detection method are described wherein information about the components of the conjugated quadratures of fields of scattered/reflected or transmitted orthogonally polarized fields are obtained with either two pulses or in a single pulse of the input beam.
When operating in the scanning mode and using the variants of the bi- and quad-homodyne detection methods, conjugate sets of detector elements are defined and used. A conjugate set of detector elements comprise the pixels of the detector conjugate to the spot on or in the substrate at the times that the measurements are made of a corresponding set of electrical interference signal values.
For each of the frequency components of the input beam, reference and measurement beams are generated. In certain of the embodiments different phase shift combinations are introduced between the respective reference and measurement beam components by shifting the frequencies of one or more of the frequency components of the input beam for acquiring a set of eight electrical interference signal values for each spot in or on the measurement object that is imaged. In other embodiments, different phase shift combinations are introduced between the respective reference and measurement beam components by shifting the relative phase of reference and measurement beam components for one or more of the frequency components of the input beam.
In general, in one aspect, the invention features a method of making interferometric measurements of an object. The method involves: generating an input beam that includes a plurality of component beams, each of which is at a different frequency and all of which are spatially coextensive with each other, some of the components beams having a first polarization and the rest having a second polarization that is orthogonal to the first polarization; deriving a plurality of measurement beams from the plurality of component beams, each of the plurality of measurement beams being at the frequency of the component beam from which it is derived; focusing the plurality of measurement beams onto a selected spot to produce a plurality of return measurement beams; combining each of the return measurement beams of the plurality of return measurement beams with a different corresponding reference beam of a plurality of reference beams to produce a plurality of interference beams; and acquiring a plurality of electrical interference signal values for the selected spot from the plurality of interference beams.
Other embodiments include one or more of the following features. Acquiring the plurality of electrical interference signal values involves, for each of the plurality of acquired electrical signal values, introducing a different combination of phase shifts between the return measurement and reference beams that produce each of the interference beams of said plurality of interference beams. Each of the plurality of electrical interference signal values contains information simultaneously about both fields of two orthogonally polarized beams coming from the selected spot. Each of the plurality of electrical interference signal values contains information simultaneously about both conjugated quadratures of each field of the two orthogonally polarized beams scattered, reflected or transmitted by the object at the selected spot. The detector element includes a detector having a sensitivity that is characterized by a frequency bandwidth and the method further involves using frequencies for the plurality of component beams that separated from each other by at least an amount that is greater than the frequency bandwidth of the detector. The plurality of component beams includes an equal number of beams at each of said first and second polarizations. The plurality of component beams includes two beams having the first polarization and two beams having the second polarization. Alternatively, the plurality of component beams includes four beams having the first polarization and four beams having the second polarization. Introducing a different combination of phase shifts between the return measurement and reference beams that produce each of the interference beams of the plurality of interference beams involves introducing various frequency shifts into the frequencies of the beams of the plurality of component beams. Combining involves generating a plurality of interference beams that are coextensive in space and the method further involves focusing the plurality of interference beams onto a single detector element. Acquiring the plurality of electrical interference signal values from the plurality of interference beams involves acquiring eight electrical interference signal values. The method also includes from the plurality of acquired electrical interference signal values computing information about fields of orthogonally polarized beams that are scattered, reflected, or transmitted by the object at the selected spot.
In general, in another aspect, the invention features an interferometry system for making interferometric measurements of an object. The system includes: a beam generation module which during operation delivers an output beam that includes a first set of beams having a first polarization and a second set of beams having a second polarization that is orthogonal to the first polarization, wherein all of the beams of the first and second sets of beams are at a different frequency and within the output beam are coextensive in space, the beam generation module including a beam conditioner which during operation introduces a sequence of different shifts in a selected parameter of each of the beams of the first and second sets of beams, the selected parameter selected from a group consisting of phase and frequency; a detector assembly; and an interferometer constructed to produce from the output beam a first set of measurement beams having the first polarization and a second set of measurement beams having the second polarization, said interferometer further constructed to image both the first and second sets of measurement beams onto a selected spot on the object to produce therefrom corresponding first and second sets of return measurement beams, and to combine the first and second sets of return measurement beams with a plurality of corresponding reference beams to produce a first and second set of interference beams and simultaneously image the first and second sets of interference beams onto the detector assembly.
Other embodiments include one or more of the following features. The measurement beams of the first and second sets of measurement beams are coextensive in space and share the same temporal window function. The beam conditioner by introducing the sequence of different shifts in the selected parameter of each of the beams introduces a different combination of phase shifts between the return measurement and reference beams that produce each of the interference beams of the plurality of interference beams. The detector assembly includes a detector element onto which the first and second sets of interference beams are simultaneously focused to generate an electrical interference signal value, wherein the electrical interference signal value contains information simultaneously about both fields of two orthogonally polarized beams coming from the selected spot. The electrical interference signal value contains information simultaneously about both conjugated quadratures of each field of the two orthogonally polarized beams scattered, reflected or transmitted by the object at the selected spot. The detector assembly includes a detector having a sensitivity that is characterized by a frequency bandwidth and wherein the frequencies of the beams of the first and second set of beams are separated from each other by at least an amount that is greater than the frequency bandwidth of the detector. The first and second sets of beams each includes two beams. Alternatively, the first and second sets of beams each includes four beams.
One advantage of at least one embodiment is that a one-dimensional, two-dimensional or three-dimensional image of a substrate may be obtained in interferometric confocal and non-confocal far-field and near-field microscopy when operating in a scanning mode with a relatively fast scan rate. The image comprises a one-dimensional array, a two-dimensional array or a three-dimensional array of conjugated quadratures of fields of orthogonally polarized beams reflected/scattered or transmitted field by an object.
Another advantage of at least one embodiment is that information used in the determination of conjugated quadratures of fields of orthogonally polarized beams reflected/scattered or transmitted fields by a substrate are obtained jointly, i.e., simultaneously.
Another advantage of at least one embodiment is that the conjugated quadratures of fields that are obtained jointly when operating in the scanning mode and using the variants of the bi- and quad-homodyne detection methods have reduced sensitivity to effects of pinhole-to-pinhole variations in properties of a conjugate set of pinholes used in a confocal microscopy system that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage of at least one embodiment is that the conjugated quadratures of fields that are obtained jointly when operating in the scanning mode and using the variants of the bi- and quad-homodyne detection methods have reduced sensitivity to effects of pixel-to-pixel variation of properties within a set of conjugate pixels that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage of at least one embodiment is that the conjugated quadratures of fields that are obtained jointly when operating in the scanning mode and using the variants of the bi- and quad-homodyne detection methods have reduced sensitivity to effects of pulse to pulse variations of a respective set of pulses of the input beam to the interferometer system.
Another advantage of at least one embodiment is an increased through-put for an interferometric far-field or near-field confocal or non-confocal microscope with respect to the number of spots in and/or on a substrate imaged per unit time using orthogonally polarized measurement beams.
Another advantage of at least one embodiment is reduced systematic errors in a one-dimensional, a two-dimensional or a three-dimensional image of a substrate obtained in interferometric far-field and near-field confocal and non-confocal microscopy using orthogonally polarized measurement beams.
Another advantage of at least one embodiment is reduced sensitivity to vibrations in generating one-dimensional, two-dimensional or three-dimensional images of a substrate by interferometric far-field and near-field confocal and non-confocal microscopy using orthogonally polarized measurement beams.
Another advantage of at least one embodiment is reduced sensitivity to an overlay error of a spot in or on the substrate that is being imaged and a conjugate image of a conjugate pixel of a multipixel detector during the acquisition of eight electrical interference values of each spot in and/or on a substrate imaged using interferometric far-field and/or near-field confocal and non-confocal microscopy and orthogonally polarized measurement beams. Overlay errors are errors in the set of conjugate images of a respective set of conjugate detector pixels relative to the spot being imaged.
Another advantage of at least one embodiment is that in certain embodiments the phase of an input beam component does not affect values of respective measured conjugated quadratures as a result of using the variants of the bi- and quad-homodyne detection methods.
a is a diagram of an interferometric system that uses the bi-homodyne and quad-homodyne detection methods.
b is a schematic diagram of a beam-conditioner configured to operate as a four-frequency generator.
c is a schematic diagram of a section of a beam-conditioner configured to operate as a two-frequency generator.
a is a schematic diagram of a confocal microscope system.
b is a schematic diagram of catadioptric imaging system.
c is a schematic diagram of a pinhole array used in a confocal microscope system.
d is a schematic diagram of an array of microgratings used in a confocal microscope system.
High speed, high spatial resolution imaging with high signal-to-noise ratios is required for example in inspection of masks and wafers in microlithography. Two techniques for obtaining high spatial resolution imaging with orthogonally polarized measurement beams and high signal-to-noise ratios are interferometric far-field and near-field confocal microscopy. However, the high signal-to-noise ratios with the high spatial resolution imaging generally limits data rates in part by the necessity to acquire conjugated quadratures of fields of a reflected/scattered or transmitted beam for each spot in and/on a substrate being imaged. The determination of conjugated quadratures when using a measurement beam comprising orthogonally polarized components requires the measurement of at least eight electrical interference signal values for the each spots in and/or on the substrate being imaged. Acquisition of the at least eight interference signal values for the each spots places tight restrictions on how large a rate of scan can be employed in generation of a one-dimensional, a two-dimensional or three-dimensional image of the substrate having artifacts down to of the order of 30 nm in size.
The use of variants of the bi- and quad-homodyne detection methods relaxes the tight restriction and permits significantly increased through-put in high spatial resolution ellipsometric imaging that has high signal-to-noise ratios for each spot being imaged. The tight restriction is relaxed as a consequence of a joint measurement of conjugated quadratures of fields of orthogonally polarized measurement beams scattered/reflected or transmitted by an object using a conjugate set of at least eight pinholes and a conjugate set of at least eight pixels for each spot being imaged wherein the temporal window function for the measured at least eight electrical interference signal values used in the determination of one component of conjugated quadratures of the fields is the same as the temporal window function measured at least eight interference signal values used in the determination of each of the other three components of the conjugated quadratures of the fields. For the variant of the bi-homodyne detection method, the temporal window functions are made the same by using a different frequency component of an input beam for the determination of each component of the conjugated quadratures of the fields of orthogonally polarized measurement beams scattered/reflected or transmitted by an object. For the variant of the quad-homodyne detection method, the temporal window functions are made the same by using two different frequency components of an input beam for the determination of each component of the conjugated quadratures of the fields of orthogonally polarized measurement beams scattered/reflected or transmitted by an object. The set of four frequency components and the set of eight frequency components of the input beam for the bi- and quad-homodyne detection methods, respectively, are coextensive in spatial and temporal coordinates, i.e., coextensive in space and have the same temporal window functions.
Several embodiments are described that comprise interferometric confocal and non-confocal far-field ellipsometric microscopy systems, interferometric confocal and non-confocal near-field microscopy systems, and linear displacement interferometers, e.g., such as used in wavelength monitors, refractivity of gas monitors, monitors of the reciprocal dispersive power Γ of a gas, and dispersion interferometry. A general description of embodiments will first be given for interferometer systems wherein the variants of the bi- and quad-homodyne detection methods are used in interferometer systems for making joint measurements of conjugated quadratures of fields of orthogonally polarized beams beams scattered/reflected and or transmitted by a measurement object. Referring to
Reference and measurement beams may be generated in either beam-conditioner 22 from a set of beams or in interferometer 10 for each of the two or four frequency components of input beam 24. Measurement beam 30A generated in either beam-conditioner 22 or in interferometer 10 is incident on substrate 60. Measurement beam 30B is a return measurement beam generated as either a portion of measurement beam 30A reflected and/or scattered by substrate 60 or a portion of measurement beam 30A transmitted by substrate 60. Return measurement beam 30B is combined with the reference beam in interferometer 10 to form output beam 32.
Output beam 32 is detected by detector 70 to generate either one or more electrical interference signals per source pulse for the variants of the bi-homodyne or quad-homodyne detection methods, respectively and transmitted as signal 72. Detector 70 may comprise an analyzer to select common polarization states of the reference and return measurement beam components of beam 32 to form a mixed beam. Alternatively, interferometer 10 may comprise an analyzer to select common polarization states of the reference and return measurement beam components such that beam 32 is a mixed beam.
In practice, known phase shifts are introduced between the reference and measurement beam components of output beam 32 by two different techniques. In the first technique, phase shifts are introduced between corresponding reference and measurement beam components for each of the frequency components of output beam 32 as a consequence of a non-zero optical path difference between the reference and measurement beam paths in interferometer 10 and corresponding frequency shifts introduced to the frequency components of input beam 24 by beam-conditioner 22 and/or source 18 as controlled by signal 74 from electronic processor and controller 80. In the second technique, phase shifts are introduced between the reference and measurement beam components for each of the frequency components of input beam 24 by beam-conditioner 22 as controlled by signal 74 from electronic processor and controller 80.
There are different ways to configure source 18 and beam-conditioner 22 to meet the input beam requirements of different embodiments. Reference is made to
Beams 524 and 1524 are incident on beam-conditioners 510 and 1510, respectively, and exit as beams 528 and 1528, respectively. The planes of polarization of beams 528 and 1528 are parallel and orthogonal to the plane of
Beams 528 and 1528 are subsequently combined to form beam 24 by polarizing beam-splitter 532 and mirror 534. Beam 24 comprises two different frequency components with a plane of polarization parallel to the plane of
Reference is made to
Beam-conditioner 510 comprises acousto-optic modulators 1120, 1126, 1130, 1132, 1142, 1146, 1150, 1154, 1058, and 1062; beam-splitter 1168; and mirror 1166. Input beam 524 is incident on acousto-optic modulator 1120 with a plane of polarization parallel to the plane of
Acousto-optic modulators 1120 and 1126 may be of either the non-isotropic Bragg diffraction type or of the isotropic Bragg diffraction type. The frequency shifts introduced by acousto-optic modulators 1120 and 1126 are of the same sign and equal to ½ of a frequency shift Δf1, that will generate in interferometer 10 a π/2 mod 2π phase difference between a reference and a measurement beams that have a difference in frequency equal to the frequency shift. The direction of propagation of beam 1128 is parallel to the direction of propagation of beam 1124.
Continuing with
When beam 1136 is generated, beam 1136 is transmitted by acousto-optic modulator 1150 as a non-frequency shifted beam component of beam 1152 with respect to beam 1128. The frequency shift introduced by acousto-optic modulators 1120, 1126, 1132, and 1150 is Δf1 and will generate a respective relative phase shift of π/2 mod 2π between the respective reference and measurement beams in interferometer 10. The planes of polarization of the two different frequency-shifted components of beam 1152 are parallel to the plane of
Beam 1124 is incident on acousto-optic modulator 1130 and is either diffracted by acousto-optic modulator 1130 as beam 1140 or transmitted by acousto-optic modulator 1130 as beam 1138 according to control signal 74 from electronic processor and controller 80. When beam 1140 is generated, beam 1140 is diffracted by acousto-optic modulators 1154, 1158, and 1162 as a frequency shifted beam component of beam 1164. The frequency shifts introduced by acousto-optic modulators 1130, 1154, 1158, and 1162 are all in the same direction and equal to ±Δf3/2 where frequency shift Δf3 will generate in interferometer 10 a π/2 mod π phase difference between a reference and a measurement beams that have a difference in frequency equal to the frequency shift Δf3. Thus the net frequency shift introduced by acousto-optic modulators 1130, 1154, 1158, and 1162 is ±2Δf3 and will generate a relative phase shift of π mod 2π between the respective reference and measurement beams in interferometer 10. The net frequency shift introduced by acousto-optic modulators 1120, 1130, 1154, 1158, and 1162 is ±2Δf3 and will generate a respective relative phase shift of ±π mod 2π between the respective reference and measurement beams in interferometer 10.
When beam 1138 is generated, beam 1138 is transmitted by acousto-optic modulator 1162 as a non-frequency shifted beam component of beam 1164. The frequency shift introduced by acousto-optic modulators 1120, 1130, and 1162 is 0 and will generate a respective relative phase shift of 0 between the respective reference and measurement beams in interferometer 10. The planes of polarization of the frequency-shifted and non-frequency-shifted components of beam 1164 are parallel to the plane of
Beams 1152 and 1164 are combined to form beam 528. Beam 1152 is transmitted by non-polarizing beam-splitter 1168 as a component of beam 528 that has a plane of polarization parallel to the plane of
The description of beam-conditioner 1510 is the same as the corresponding portions of the description of beam-conditioner 510 except with respect to magnitudes of frequency shifts introduced by the two beam-conditioners, the control by signal 74, and to the state of polarization of respective input beams. The description of frequency shifts Δf10, Δf20, and Δf30 introduced by beam-conditioner 1510 is the same as the corresponding description of the frequency shifts Δf1, Δf2, and Δf3, respectively, introduced by beam-conditioner 510. The selection of the frequency shifts Δf1, Δf2, Δf3, Δf10, Δf20, Δf30, and the frequency difference between the two frequency components of beam 20 is made such that as noted earlier beams 528 and 1528 each comprise two different frequency components and the two frequency components of beam 528 are different from the two frequency components of beam 1528.
Examples beam-conditioners of the second technique comprise combinations of a two frequency generator and phase shifting type of beam-conditioner such as described in cited U.S. Provisional Patent Application Ser. No. 60/442,858 (ZI-47), filed Jan. 27, 2003 and in U.S. patent application Ser. No. 10/765,369, filed Jan. 27, 2004 (ZI-47), entitled“Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry,” the contents of both of which are incorporated herein by reference. In this case, beam-conditioners 510 and 1510 each comprise two frequency generator and phase shifting type beam-conditioner.
With a continuation of the description of different ways to configure source 18 and beam-conditioner 22 to meet the input beam requirements of different embodiments, source 18 will preferably comprise a pulsed source. There are a number of different ways for producing a pulsed source [see Chapter 11 entitled “Lasers”, Handbook of Optics, 1, 1995 (McGraw-Hill, New York) by W. Silfvast]. Each pulse of source 18 may comprise a single pulse or a train of pulses such as generated by a mode locked Q-switched Nd:YAG laser. A single pulse train is referenced herein as a pulse. The word“pulse” and the phrase“a pulse train” are used herein interchangeably.
Source 18 may be configured in certain embodiments to generate two or more frequencies by techniques such as described in a review article entitled “Tunable, Coherent Sources For High-Resolution VUV and XUV Spectroscopy” by B. P. Stoicheff, J. R. Banic, P. Herman, W. Jamroz, P. E. LaRocque, and R. H. Lipson in Laser Techniques for Extreme Ultraviolet Spectroscopy, T. J. McIlrath and R. R. Freeman, Eds., (American Institute of Physics) p 19 (1982) and references therein. The techniques include for example second and third harmonic generation and parametric generation such as described in the articles entitled“Generation of Ultraviolet and Vacuum Ultraviolet Radiation” by S. E. Harris, J. F. Young, A. H. Kung, D. M. Bloom, and G. C. Bjorklund in Laser Spectroscopy I, R. G. Brewer and A. Mooradi, Eds. (Plenum Press, New York) p 59, (1974) and“Generation of Tunable Picosecond VUV Radiation” by A. H. Kung, Appl. Phys. Lett. 25, p 653 (1974). The contents of the three cited articles are herein incorporated in their entirety by reference.
The output beams from source 18 comprising two or more frequency components may be combined in beam-conditioner 22 by beam-splitters to form coextensive measurement and reference beams that are either spatially separated or coextensive as required in various embodiments. When source 18 is configured to furnish two or more frequency components, the frequency shifting of the various components required in certain embodiments may be introduced in source 18 for example by frequency modulation of input beams to parametric generators and the phase shifting of reference beams relative to measurement beams in beam-conditioner 22 may be achieved by phase shifters of the optical-mechanical type comprising for example prisms or mirrors and piezoelectric translators or of the electro-optical modulator type.
The general description is continued with reference to
The conjugated quadratures of fields of return measurement beams are obtained by using a variant of the bi- or quad-homodyne detection methods such as described in commonly owned U.S. Provisional Patent Application Ser. No. 60/442,858 (ZI-47) entitled“Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered Beams by an Object in Interferometry” and in U.S. patent application Ser. No. 10/765,369, filed Jan. 27, 2004 (ZI-47) and entitled“Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry” both of which are by Henry A. Hill. The contents of both the cited U.S. Provisional Patent Application and the U.S. Patent Application are incorporated herein in their entirety by reference.
Referring to the variant of the bi-homodyne detection method used in some embodiments, a set of eight electrical interference signal values are obtained for each spot on and/or in substrate 60 being imaged. The set of eight electrical interference signal values Sj, j=1,2, . . . , 8 used for obtaining conjugated quadratures of fields for a single a spot on and/or in a substrate being imaged is represented for the bi-homodyne detection within a scale factor by the formula
where coefficient Am represents the amplitude of the reference beam corresponding to the frequency component of the input beam 24 that has the index m; coefficient Bm represent the amplitude of the background beam corresponding to reference beam Am; coefficient Cm represents the amplitude of the return measurement beam corresponding to reference beam Am; Pj represents the integrated intensity of the first frequency component of input beam 24 pulse j of a sequence of 8 pulses; and an example set of values for εm,j are listed in Table 1. There are other sets of values for εm,j that may be used wherein the other sets of values for εm,j satisfy the conditions set out in subsequent Equations (2) and (3) herein.
The change in the values of εm,j from 1 to −1 or from −1 to 1 corresponds to changes in relative phases of respective reference and measurement beams. The coefficients ξj, ξj, and ηj represent effects of variations in properties of a conjugate set of eight pinholes such as size and shape if used in the generation of the spot on and/or in substrate 60 and the sensitivities of a conjugate set of eight detector pixels corresponding to the spot on and/or in substrate 60 for the reference beam, the background beam, and the return measurement beam, respectively.
The relationships cos φA
It has also been assumed in Equation (1) that the ratios |A2|/|A1| and |A4|/|A3| are not dependent on j or on the value of Pj. In order to simplify the representation of Sj so as to project the important features without departing from either the scope or spirit of the present invention, it is also assumed in Equation (1) that the corresponding ratios of the amplitudes of the return measurement beams are not dependent on j or on the value of Pj. However, the ratios |C2|/|C1| and |C4|/|C3| will be different from the ratio |A2|/|A1| and |A4|/|A3|, respectively, when the ratios of the amplitudes of the measurement beam components corresponding to A2 and A1 are different from the ratio |A2|/|A1| and corresponding to A4 and A3 are different from the ratio |A4|/|A3|.
The change in phase φA
It is evident from inspection of Equation (1) that the components of conjugated quadratures εm,j|Cm|cos φA
Another important property is that the conjugated quadratures εm,j|Cm|cos φA
where δm,m′ is the Kronecker delta defined by
δm,m′=1 for m=m′,
δm,m′=0 for m≠m′. (4)
Information about conjugated quadratures |Cm|cos φA
where ξ′j and P′j are values used in the digital filter to represent ξj and Pj, respectively.
The parameters
need to be determined in order complete the determination of a conjugated quadratures. The parameters given in Equations (6) and (7) can be measured for example by introducing π/2 phase shifts into the relative phase of the reference beam and the measurement beam and repeating the measurement for the conjugated quadratures. The ratios of the amplitudes of the conjugated quadratures corresponding to (sin φA
respectively.
Note that certain of the factors in Equation (5) have nominal values of 8 within a scale factor, e.g.,
where δm,m′ is the Kronecker delta defined by Equation (4). The scale factors corresponds to the average value for the ratio of (ξ′j)2/(ξjηj) assuming that the average values of Pj/P′j≅1.
Certain other of the factors in Equations (5) have nominal values of zero, e.g.,
The remaining factors,
will have nominal magnitudes ranging from of approximately zero to approximately 8 times a cosine factor and either the average value of factor (Pj/P′J)(ξjζj/ξ′j2) or (Pj/P′J)(ζjηj/ξ′j2) depending on the properties respective phases. For portion of the background with phases that do not track to a first approximation the phases of the respective measurement beams, the magnitudes of all of the terms listed in the Equation (12) will be approximately zero. For the portion of the background with phases that do track to a first approximation the phases of the respective measurement beams, the magnitudes of the terms listed in Equation (12) will be approximately 8 times a cosine factor and either the average value of factor (Pj/P′J)(ξjζj/ξ′j2) or factor (Pj/P′J)(ζjηj/ξ′j2).
The two potentially largest terms in Equations (5) are generally the terms that have the factors
However, the corresponding terms are substantially eliminated in embodiments using the bi-homodyne detection method as result of the properties of the factors listed in Equation (11).
The largest contribution from effects of background is represented by the contribution to the interference term between the reference beam and the portion of the background beam generated by the measurement beam 30A. This portion of the effect of the background can be measured in embodiments of the bi-homodyne detection method by measuring the corresponding conjugated quadratures of the portion of the background with the return measurement beam component of beam 32 set equal to zero, i.e., measuring the respective electrical interference signals Sj with substrate 60 removed and with either |A2|=0 or |A1|=0 and visa versa and with either |A4|=0 or |A3|=0 and visa versa. The measured conjugated quadratures of the portion of the effect of the background can than be used to compensate for the respective background effects beneficially in an end use application if required.
Information about the largest contribution from effects of background amplitude ξjζj2AmBm and phase φA
Other techniques may be incorporated to reduce and/or compensate for the effects of background beams without departing from either the scope or spirit of the present invention such as described in commonly owned U.S. Pat. No. 5,760,901 entitled“Method And Apparatus For Confocal Interference Microscopy With Background Amplitude Reduction and Compensation,” U.S. Pat. No. 5,915,048 entitled“Method and Apparatus for Discrimination In-Focus Images from Out-of-Focus Light Signals from Background and Foreground Light Sources,” and U.S. Pat. No. 6,480,285 B1 wherein each of the three patents are by Henry A. Hill. The contents of each of the three cited patents are incorporated herein in their entirety by reference.
The selection of values for ξ′j is based on information about coefficients ξj for j=1,2, . . . , 8 that may be obtained by measuring the Sj for j=1,2, . . . , 8 with only the reference beam present in the interferometer system. In certain embodiments, this may correspond simply blocking the measurement beam components of input beam 24 and in certain other embodiments, this may correspond to simply measuring the Sj for j=1,2, . . . , 8 with substrate 60 removed. A test of the correctness of a set of values for ξ′j is the degree to which the
term in Equation (5) is zero.
Information about coefficients ξjηj for j=1,2, . . . . , 8 may be obtained for example by scanning an artifact past the respective eight conjugate spots corresponding to the respective eight conjugate detector pixels with one of the Ap≠0 and the remaining Ap=0 for p=1,2,3,4 and measuring the conjugated quadratures component 2|Ap∥Cp|cos φA
The variant of the bi-homodyne detection method is a robust technique for the determination of conjugated quadratures of fields. First, the conjugated quadratures |Cm|cos φA
are substantially zero.
Secondly, the coefficients of |Cm|cos φA
Other distinguishing features of the variant of the bi-homodyne technique are evident in Equations (5): the coefficients of the conjugated quadratures |Cm|cos φA
It is also evident that since the conjugated quadratures of fields of orthogonally polarized beams are obtained jointly when using the variant of the bi-homodyne detection method, there is a significant reduction in the potential for an error in tracking phase as a result of a phase redundancy unlike the situation possible in traditional homodyne detection of conjugated quadratures of fields.
There are a number of advantages of the variant of the bi-homodyne detection method as a consequence of the conjugated quadratures of fields of orthogonally polarized beams being jointly acquired quantities. One advantage is a reduced sensitivity the effects of an overlay error of a spot in or on the substrate that is being imaged and a conjugate image of conjugate pixel of a multipixel detector during the acquisition of eight electrical interference signal values of each spot in and/or on a substrate imaged using interferometric far-field and/or near-field confocal or non-confocal microscopy. Overlay errors are errors in the set of four conjugate images of a respective set of conjugate detector pixels relative to the spot being imaged.
Another advantage is that when operating in the scanning mode there is a reduced sensitivity to effects of pinhole-to-pinhole variations in properties of a conjugate set of pinholes used in a confocal microscopy system that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage is that when operating in the scanning mode there is a reduced sensitivity to effects of pixel-to-pixel variation of properties within a set of conjugate pixels that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage is that when operating in the scanning mode there is reduced sensitivity to effects of pulse to pulse variations of a respective conjugate set of pulses of input beam 24 to the interferometer system.
The pinholes and pixels of a multipixel detector of a set of conjugate pinholes and conjugate pixels of a multipixel detector may comprise contiguous pinholes of an array of pinholes and/or contiguous pixels of a multipixel detector or may comprise selected pinholes from an array of pinholes and pixels from an array of pixels wherein the separation between the selected pinholes is an integer number of pinhole spacings and the separation between an array of respective pixels corresponds to an integer number of pixel spacings without loss of lateral and/or longitudinal resolution and signal-to-noise ratios. The corresponding scan rate would be equal to the integer times the spacing of spots on the measurement object 60 conjugate to set of conjugate pinholes and/or set of conjugate pixels divided by the read out rate of the multipixel detector. This property permits a significant increase in through-put for an interferometric far-field or near-field confocal or non-confocal microscope with respect to the number of spots in and/or on a substrate imaged per unit time.
Referring to a variant of the quad-homodyne detection method, a set of eight electrical interference signal values are obtained for each spot on and/or in substrate 60 being imaged with four pulse trains from source 18 and beam-conditioner 22 configured to generate input beam 24 with eight frequency components. The set of eight electrical interference signal values Sn,j, n=1,2 and j=1,2,3,4, used for obtaining conjugated quadratures of fields for a single a spot on and/or in a substrate being imaged is represented for the variant of the quad-homodyne detection method within a scale factor by the formulae
where coefficient An,m represents the amplitude of the reference beam corresponding to the frequency component of the input beam 24 that has the index (n,m); coefficient Bn,m represent the amplitude of the background beam corresponding to reference beam An,m; coefficient Cn,m represents the amplitude of the return measurement beam corresponding to reference beam An,m; Pn,j represents the integrated intensity of a first frequency component of the set of frequency components corresponding to index n of input beam 24 pulse j of a sequence of 4 pulses; and an example set of values for κn,m,j are expressed in terms of κm,j as
for the example set of values for κm,j listed in Table 2.
The κm,j are orthogonal sets with respect to j, i.e.,
where δm,m′ is the Kronecker delta defined by Equation (4).
For the variant of the quad-homodyne detection method, the interferometric signal values S1,j and S2,j are measured simultaneously by two different detector pixels for each pulse j. The distribution of the output beam 32 to two different pixels of detector 70 is achieved by a dispersion or polarizing element in interferometer system 10 such as described in cited U.S. Provisional Patent Application Ser. No. 60/442,858 (47) and U.S. patent application Ser. No. 10/765,369, filed Jan. 27, 2004 (ZI-47) and entitled “Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry.” In the remaining description, m=1,2 will correspond to one polarization state of input beam 24 and m=3,4 will correspond to the second polarization state of input beam 24 without departing from the spirit or scope of the present invention. In addition, the coefficients A1,m, B1,m, and C1,m are conjugates of the coefficients A2,m, B2,m, and C2,m, respectively, for a single component of a conjugated quadrature for one of the polarization states of input beam 24.
The relationships cos φA
It has also been assumed in Equation (13) that the ratios |An,2|/|An,1| and |An,4|/|An,3| are not dependent on j or on the value of Pn,j. In order to simplify the representation of Sn,j so as to project the important features without departing from either the scope or spirit of the present invention, it is also assumed in Equation (13) that the corresponding ratios of the amplitudes of the return measurement beams are not dependent on j or on the value of Pn,j. However, the ratios |Cn,2|/|Cn,1 and |Cn,4|/|Cn,3| will be different from the ratio |An,2/|An,1| and |An,4|/An,3|, respectively, when the ratios of the amplitudes of the measurement beam components corresponding to An,2 and An,1 are different from the ratio |An,2|/|An,1| and corresponding to An,4 and An,3 are different from the ratio |An,4|/|An,3|.
The change in phase φA
It is evident from inspection of Equation (13) that the components of conjugated quadratures κm,j|Cn,m|cos φA
Information about the conjugated quadratures |C1,1|cos φA
where S is matrix comprising elements Sn,j and ξ′n,j and Pn,j′ are values used in the digital filter to represent ξn,j and Pn,j, respectively. Equation (16) is written in terms of κm,j using the definition of κn,m,j given by Equation (14) as
Using Equation (13) for expressions for Sn,j, Equation (17) is written in terms of three parts,
Fm′(S)=F1,m′(S)+F2,m′(S)+F3,m′(S) (18)
where
In order to make the properties of the quad-homodyne detection method more easily identified, it is instructive to rewrite F2,m′(S) given by Equation (20) as
where the relationships cos φA
The parameters
need to be determined in order complete the determination of a conjugated quadratures. The first set of parameters listed in Equation (23) can be measured for example by introducing π/2 phase shifts into the relative phase of the reference beams and the measurement beams and repeating the measurement for the conjugated quadratures. The ratios of the amplitudes of the conjugated quadratures corresponding to (sin φA
The second set of parameters listed in Equation (24) can be measured by operating the quad-homodyne detection method in a bi-homodyne detection method for each of the two conjugated quadratures. To operate in a bi-homodyne detection method for one of the conjugated quadratures, the amplitudes of the frequency components of input beam 24 that do not correspond to the one of the conjugated quadratures is set equal to zero and the one of the conjugated quadratures is measured for n=1 and 2. The ratio of the amplitudes of the measured conjugated quadratures for n=1 and 2 yields information such as specified in Equation (24).
Note that certain of the factors in F2,m′(S) given by Equation (20) have nominal values of 4 within scale factors, e.g.,
where δm,m′ is the Kronecker delta defined by Equation (4). The scale factors corresponds to the average values for the ratios of (ξ′1,j)2 /(ξ1,jη1,j) and (ξ′2,j)2/(ξ2,jη2,j) assuming that the average values of Pj/P′j≅1.
Certain other of the factors in F1,m′(S) given by Equation (19) have nominal values of zero, e.g.,
The remaining factors in F3,m′(S) given by Equation (21) have nominal values of zero, e.g.,
The two potentially largest terms in Equations (19) are generally the terms that have the factors
However, the corresponding terms are substantially eliminated using the quad-homodyne detection method through second order effects as result of the properties of the factors listed in Equation (27).
The largest contribution from effects of background is contained in F3,m′(S) given by Equation (21) and is represented by the contribution to the interference term between the reference beam and the portion of the background beam generated by the measurement beam 30A. This portion of the effect of the background can be measured in embodiments of the quad-homodyne detection method by measuring the corresponding conjugated quadratures of the portion of the background with the return measurement beam component of beam 32 set equal to zero, i.e., measuring the respective electrical interference signals Sj with substrate 60 removed and with either |A2,m|=0 or |A1,m|=0 and visa versa |A4|=0 |A3|=0. The measured conjugated quadratures of the portion of the effect of the background can than be used to compensate for the respective background effects beneficially in an end use application if required.
Information about the largest contribution from effects of background amplitude ξn,jζn,jAn,mBn,m and phase φAn,mBn,mκm,j, i.e., the interference term between the reference beam and the portion of background beam generated by the measurement beam 30A, may also be obtained by measuring Sn,j as a function of relative phase shift between reference beam and the measurement beam 30A with substrate 60 removed and An,p=0, p≠m, and Fourier analyzing the measured values of Sn,j. Such information can be used to help identify the origin of the respective background.
Other techniques may be incorporated into embodiments of the quad-homodyne detection method to reduce and/or compensate for the effects of background beams without departing from either the scope or spirit of the present invention such as described in cited U.S. Pat. Nos. 5,760,901, 5,915,048, and 6,480,285 B1.
The selection of values for ξ′n,j is based on information about coefficients ξn,j that may be obtained by measuring the Sn,j for n=1,2, j=1,2,3,4 with only the reference beam present in the interferometer system. In certain embodiments, this may correspond simply blocking the measurement beam components of input beam 24 and in certain other embodiments, this may correspond to simply measuring the Sn,j for n=1,2, j=1,2,3,4 with substrate 60 removed. A test of the correctness of a set of values for ξ′n,j is the degree to which the
n=1,2, terms in Equation (19) are zero.
Information about coefficients ξn,jηn,j for n=1,2, j=1,2,3,4 may be obtained for example by scanning an artifact past the respective four conjugate spots corresponding to the respective eight conjugate detector pixels with one of the An,p≠0 and the remaining An,p=0 for p=1,2,3,4 and measuring the conjugated quadratures component |An,p||Cn,p|cos φA
The variant of the quad-homodyne detection method is a robust technique for the determination of conjugated quadratures of fields. First, the conjugated quadratures |An,p||Cn,p|cos φA
n=1,2, are substantially zero.
Secondly, the coefficients of |An,p||Cn,p|cos φA
Other distinguishing features of the variant of the quad-homodyne detection method are evident in Equations (17), (19), (20), and (21): the coefficients of the conjugated quadratures |An,p||Cn,p|cos φA
It is also evident that since the conjugated quadratures of fields of orthogonally polarized beams are obtained jointly when using the variant of the quad-homodyne detection method, there is a significant reduction in the potential for an error in tracking phase as a result of a phase redundancy unlike the situation possible in traditional homodyne detection of conjugated quadratures of fields.
There are a number of advantages of the variant of the quad-homodyne detection method as a consequence of the conjugated quadratures of fields being jointly acquired quantities.
One advantage of the variant of the quad-homodyne detection method in relation to the variant of the bi-homodyne detection method is a factor of two increase in throughput.
Another advantage is a reduced sensitivity the effects of an overlay error of a spot in or on the substrate that is being imaged and a conjugate image of a pixel of a conjugate set of pixels of a multipixel detector during the acquisition of the eight electrical interference signal values of each spot in and/or on a substrate imaged using interferometric far-field and/or near-field confocal or non-confocal microscopy. Overlay errors are errors in the set of eight conjugate images of a respective set of conjugate detector pixels relative to the spot being imaged.
Another advantage is that when operating in the scanning mode there is a reduced sensitivity to effects of pinhole-to-pinhole variations in properties of a conjugate set of pinholes used in a confocal microscopy system that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage is that when operating in the scanning mode there is a reduced sensitivity to effects of pixel-to-pixel variation of properties within a set of conjugate pixels that are conjugate to a spot in or on the substrate being imaged at different times during the scan.
Another advantage is that when operating in the scanning mode there is reduced sensitivity to effects of pulse to pulse variations of a respective conjugate set of pulses of input beam 24 to the interferometer system.
The pinholes and pixels of a multipixel detector of a set of conjugate pinholes and conjugate pixels of a multipixel detector may comprise contiguous pinholes of an two arrays of pinholes and/or contiguous pixels of a multipixel detector or may comprise selected pinholes from two arrays of pinholes and pixels from arrays of pixels wherein the separation between selected pinholes is an integer number of pinhole spacings and the separation between an array of respective pixels corresponds to an integer number of pixel spacings without loss of lateral and/or longitudinal resolution and signal-to-noise ratios. The corresponding scan rate would be equal to the integer times the spacing of spots on the measurement object 60 conjugate to set of conjugate pinholes and/or set of conjugate pixels divided by the read out rate of the multipixel detector. This property permits a significant increase in through-put for an interferometric far-field or near-field confocal or non-confocal microscope with respect to the number of spots in and/or on a substrate imaged per unit time.
There is a variant of the single-homodyne detection method wherein a set of eight electrical interference signal values are obtained for each spot on and/or in substrate 60 being imaged with two pulse trains from source 18 and beam-conditioner 22. For the variant of the single-homodyne detection method, the interferometric signal values S1,j, S2,j, S3,j, and S4,j are measured simultaneously by four different detector pixels for each pulse j. The distribution of the output beam 32 to four different pixels of detector 70 is achieved by a dispersion or polarizing elements in interferometer system 10 such as described in cited U.S. Provisional Patent Application Ser. No. 60/442,858 (47) and U.S. patent application Ser. No. 10/765,369, filed Jan. 27, 2004 (ZI-47) and entitled “Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry.”
The variant of the single-homodyne detection method is equivalent to the single-homodyne detection method being used to obtain and analyze interferometric signal values, e.g., S1,j, S2,j, S3,j, and S4,j. As a result of the equivalence of each of the four portions of the variant of the single-homodyne detection method with the single-homodyne detection method, the remaining formal portions of the description of the variant of the single-homodyne detection method is the same as the corresponding portion of the description for the single-homodyne detection method.
There is a variant of the double-homodyne detection method wherein a set of eight electrical interference signal values are obtained for each spot on and/or in substrate 60 being imaged with a single pulse train from source 18 and beam-conditioner 22. For the variant of the double-homodyne detection method, the interferometric signal values S1,j, j=1,2, . . . 8, are measured simultaneously by eight different detector pixels for the single pulse. The distribution of the output beam 32 to four different pixels of detector 70 is achieved by a dispersion or polarizing elements in interferometer system 10 such as described in cited U.S. Provisional Patent Application Ser. No. 60/442,858 (ZI-47) and U.S. patent application Ser. No. 10/765,369, filed Jan. 27, 2004 (ZI-47) and entitled “Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry.”
The variant of the double-homodyne detection method is equivalent to the double-homodyne detection method being used to obtain and analyze the interferometric signal values, e.g., S1,j, j=1,2, . . . 8. As a result of the equivalence of each of the eight portions of the variant of the double-homodyne detection method with the double-homodyne detection method, the remaining formal portions of the description of the variant of the double-homodyne detection method is the same as the corresponding portion of the description of the double-homodyne detection method.
A first embodiment is shown schematically in
In the first embodiment, the difference in the optical path length of a reference beam and a measurement beam is a relatively large non-zero value, e.g. 0.2 m. The difference in the optical path length of the reference and measurement beams in interferometric measurements is normally kept a minimums value. However, in certain interferometric far-field confocal microscopes the difference in the optical path length of the reference and measurement beams is a relatively large value such as described in commonly owned U.S. Provisional Patent Application No. 60/442,982 (ZI-45) entitled “Interferometric Confocal Microscopy Incorporating Pinhole Array Beam-Splitter” and U.S. patent application Ser. No. 10/765,229, filed Jan. 27, 2004 (ZI-45) and also entitled “Interferometric Confocal Microscopy Incorporating Pinhole Array Beam-Splitter” both of which are by Henry A. Hill. The contents of both of the U.S. Provisional Patent Application and the U.S. Patent Application are incorporated herein in their entirety by reference.
The first imaging system 110 is shown schematically in
Catadioptric imaging system 110 comprises catadioptric elements 140 and 144, beam splitter 148, and convex lens 150. Surfaces 142A and 146A are convex spherical surfaces with nominally the same radii of curvature and the respective centers of curvature of surfaces 142A and 146A are conjugate points with respect to beam splitter 148. Surfaces 142B and 146B are concave spherical surfaces with nominally the same radii of curvature. The centers of curvature of surfaces 142B and 146B are the same as the centers of curvature of surfaces 146A and 142A, respectively. The center of curvature of convex lens 150 is the same as the center of curvature of surfaces 142B and 146A. The radius of curvature of surface 146B is selected so as to minimize the loss in efficiency of the imaging system 110 and to produce a working distance for imaging system 110 acceptable for an end use application. The radius of curvature of convex lens 150 is selected so that the off-axis aberrations of the catadioptric imaging system 110 are compensated. The medium of elements 140 and 144 may be for example CaF2, fused silica or commercially available glass such as SF11. The medium of convex lens 150 may be for example CaF2, fused silica, YAG, or commercially available glass such as SF11. An important consideration in the selection of the medium of elements 140 and 144 and convex lens 150 will the transmission properties for the frequencies of beam 124.
Convex lens 152 has a center of curvature the same as the center of curvature of convex lens 150. Convex lenses 150 and 152 are bonded together with pinhole beam-splitter 112 in between. Pinhole array beam-splitter 112 is shown in
Input beam 124 is reflected by mirror 154 to pinhole beam-splitter 112 where a first portion thereof is transmitted as reference beam components of output beam 130A and 130B and a second portion thereof scattered as measurement beam components of beams 126A and 126B. The measurement beam components 126A and 126B are imaged as components of beams 128A and 128B to an array of image spots in an image plane close to substrate 160. A portion of the components of beams 128A and 128B incident on substrate 160 are reflected and/or scattered as return measurement beam components of beams 128A and 128B. Return measurement beam components of beams 128A and 128B are imaged by catadioptric imaging system 110 to spots that are coincident with the pinholes of pinhole beam-splitter 112 and a portion thereof is transmitted as return measurement beam components of output beams 130A and 130B.
The description of the imaging properties of the catadioptric imaging system 110 is the same as the corresponding portion of the description of the imaging properties of a catadioptric imaging system given in cited U.S. Provisional Application No. 60/442,982 (ZI-45) and in cited U.S. patent application Ser. No. 10/765,229, filed Jan. 27, 2004 (ZI-45) entitled “Interferometric Confocal Microscopy Incorporating Pinhole Array Beam-Splitter.”
The next step is the imaging of output beams 130A and 130B by imaging system 210 to an array of spots that coincide with the pixels of a multipixel detector such as a CCD to generate an array of electrical interference signals 172. The array of electrical interference signals is transmitted to signal processor and controller 180 for subsequent processing.
The description of input beam 124 is the same as corresponding portions of the description given for input beam 24 of
The conjugated quadratures of fields of the return measurement beams are obtained using the variant of bi-homodyne detection as described in the description of
The sequence of phase shifts is generated in the first embodiment by shifting the frequencies of components of input beam 124 by beam-conditioner 122. There is a difference in optical path length between the reference beam components and the return beam components of output beams 130A and 130B and as a consequence, a change in frequencies of components of input beam 124 will generate corresponding phase shifts between the reference beam components and the return beam components of output beams 130A and 130B. For an optical path difference L between the reference beam components and the return beam components of output beams 130A and 130B, there will be for a frequency shift Δf a corresponding phase shift φ where
and c is the free space speed of light. Note that L is not a physical path length difference and depends for example on the average index of refraction of the measurement beam and the return measurement beam paths. For an example of a phase shift (φ=π/2 and a value of L=0.25 m, the corresponding frequency shift Δf=300 MHz.
Two different modes are described for the acquisition of the electrical interference signals 172. The first mode to be described is a step and stare mode wherein substrate 160 is stepped between fixed locations corresponding to locations where image information is desired. The second mode is a scanning mode. In the step and stare mode for generating a one-dimensional, a two-dimensional or a three-dimensional profile of substrate 160, substrate 160 mounted in wafer chuck 184/stage 190 is translated by stage 190. The position of stage 190 is controlled by transducer 182 according to servo control signal 178 from electronic processor and controller 180. The position of stage 190 is measured by metrology system 188 and position information acquired by metrology system 188 is transmitted to electronic processor and controller 180 to generate an error signal for use in the position control of stage 190. Metrology system 188 may comprise for example linear displacement and angular displacement interferometers and cap gauges.
Electronic processor and controller 180 translates wafer stage 190 to a desired position and then acquires a set of four electrical interference signal values corresponding. After the acquisition of the sequence of four electrical interference signals, electronic processor and controller 180 then repeats the procedure for the next desired position of stage 190. The elevation and angular orientation of substrate 160 is controlled by transducers 186A and 186B.
The second mode for the acquisition of the electrical interference signal values is next described wherein the electrical interference signal values are obtained with the position of stage 190 scanned in one or more directions. In the scanning mode, source 118 is pulsed at times controlled by signal 192 from signal processor and controller 180. Source 118 is pulsed at times corresponding to the registration of the conjugate image of pinholes of pinhole array beam-splitter 112 with positions on and/or in substrate 160 for which image information is desired.
There will be a restriction on the duration or “pulse width” of a beam pulse τp1 produced by source 120 as a result of the continuous scanning mode used in the third variant of the first embodiment. Pulse width τp1 will be a parameter that in part controls the limiting value for spatial resolution in the direction of a scan to a lower bound of
τp1V, (30)
where V is the scan speed. For example, with a value of τp1=50 nsec and a scan speed of V=0.20 m/sec, the limiting value of the spatial resolution τp1V in the direction of scan will be
τp1V=10 nm. (31)
Pulse width τp1 will also determine the minimum frequency difference that can be used in the variant of the bi-homodyne detection method. In order that there be no contributions to the electrical interference signals from interference between fields of conjugated quadratures, the minimum frequency spacing Δfmin is expressed as
For the example of τp1=50 nsec, 1/τp1=20 MHz.
The frequencies of input beam 124 are controlled by signal 174 from signal processor and controller 180 to correspond to the frequencies that will yield the desired phase shifts between the reference and return measurement beam components of output beams 130A and 130B. In the first mode for the acquisition of the electrical interference signals 172, the set of eight electrical interference signals are generated by a common pixel of detector 170. In the second mode for the acquisition of electrical interference signals 172, each set of the two sets of four electrical interference signal values are not generated by a common pixel of detector 170. Thus in the second mode of acquisition, the differences in pixel efficiency and the differences in sizes of pinholes in pinhole array beam-splitter 112 are compensated in the signal processing by signal processor and controller 180 as described in the description of the variant of the bi-homodyne detection method given with respect to
A variant of the first embodiment is described that is configured for interferometric ellipsometric measurements. The variant of the first embodiment generates joint measurements of fields of orthogonally polarized beams scattered/reflected by an object. The variant of the first embodiment comprises the apparatus and method of the first embodiment except that pinhole array 112 is replaced with an array of microgratings, i.e., pinholes 162 of
In ellipsometric measurements at large angle of incidence, the spatial resolution is generally many λ. Advantage of this is taken in the variant of the first embodiment by the replacement of a pinhole 162 with a micrograting (see
In
To reduce the numerical aperture of lens assembly 220, phase shifters 266 are added to the micrograting as shown in
The variant of the first embodiment may comprise a stop to restrict the plane of polarization of the measurement beam at substrate 60 to substantially a single value for each of the two polarization components of the input beam. The length of apertures 260 and reflecting elements 264 in a direction out of the plane of
A second embodiment comprises the interferometer system of
A third embodiment and variant thereof uses the variant of the bi- and quad-homodyne detection methods, respectively, and comprises the interferometer system of
A fourth embodiment and variant thereof uses the variant of the bi- and quad-homodyne detection methods, respectively, and comprises the interferometer system of
A fifth embodiment and variant thereof uses the bi-or quad-homodyne detection methods, respectively, and comprises the interferometer system of
A sixth embodiment and variant thereof uses the bi-or quad-homodyne detection method, respectively, and comprises the interferometer system of
A seventh embodiment and variant thereof uses the bi- or quad-homodyne detection method, respectively, comprises the interferometer system of
In other embodiments, interferometer 10 may comprise a interferometric apparatus such as described in U.S. Pat. No. 4,685,803 entitled “Method And Apparatus For The Measurement Of The Refractive Index Of A Gas” or U.S. Pat. No. 4,733,967 entitled “Apparatus Of The Measurement Of The Refractive Index Of A Gas” configured for use of the variants of either the bi- or quad-homodyne detection methods. The contents of both of the two cited U.S. Patents which are by Gary E. Sommargren are here within included in their entirety by reference. Embodiments which comprise interferometric apparatus such as described in the two cited U.S. patents represent configurations of a non-confocal type.
In other embodiments, interferometer 10 may comprise a Γ monitor such as described in U.S. Pat. No. 6,124,931 entitled “Apparatus And Methods For Measuring Intrinsic Optical Properties Of A Gas” by Henry A. Hill, the contents of which are here within incorporated in their entirety by reference. For the embodiments which comprise interferometric apparatus such as described in the cited U.S. patent, the described Γ monitor is configured for use of either the variant of the bi- or quad-homodyne detection method sand the embodiments represent configurations that are of a non-confocal type.
In yet other embodiments, interferometer 10 may comprise a wavelength monitor such as described in U.S. Patent Provisional Application No. 60/337,459 entitled “A Method For Compensation For Effects Of Non-Isotropic Gas Mixtures In Single-Wavelength And Multiple-Wavelength Dispersion Interferometry” by Henry A. Hill, the contents of which are here within incorporated in their entirety reference. For embodiments which comprise interferometric apparatus such as described in the cited U.S. patent, the wavelength monitor is configured for either the variant of the bi- or quad-homodyne detection method and the embodiments represent configurations that are of a non-confocal type.
Interferometer 10 may further comprise in other embodiments any type of interferometer, e.g., a differential plane mirror interferometer, a double-pass interferometer, a Michelson-type interferometer and/or a similar device such as is described in an article entitled “Differential Interferometer Arrangements For Distance And Angle Measurements: Principles, Advantages And Applications” by C. Zanoni, VDI Berichte Nr. 749, 93–106 (1989) configured for use of either the variant of the bi- or quad-homodyne detection methods. Interferometer 10 may also comprise a passive zero shear plane mirror interferometer as described in the commonly owned U.S. patent application Ser. No. 10/207,314 entitled “Passive Zero Shear Interferometers” or an interferometer with a dynamic beam steering element such as described in U.S. patent application with Ser. No. 09/852,369 entitled “Apparatus And Method For Interferometric Measurements Of Angular Orientation And Distance To A Plane Mirror Object” and U.S. Pat. No. 6,271,923 entitled “Interferometry System Having A Dynamic Beam Steering Assembly For Measuring Angle And Distance,” all of which are by Henry A. Hill. For the in other embodiments of the present, the described interferometers are configured for use of either the variant of the bi- or quad-homodyne detection methods. The contents of the article by Zanoni and the three cited patents by Hill are included herein in their entirety by reference. The interferometer can be designed to monitor, for example, changes in optical path length, changes in physical path length, changes in wavelength of a beam, or changes in direction of propagation of a beam.
Interferometer 10 may further comprise a dispersion interferometer such as described in U.S. Pat. No. 6,219,144 B1 entitled “Apparatus and Method for Measuring the Refractive Index and Optical Path Length Effects of Air Using Multiple-Pass Interferometry” by Henry A. Hill, Peter de Groot, and Frank C. Demarest, and U.S. Pat. No. 6,407,816 entitled “Interferometer And Method For Measuring The Refractive Index And Optical Path Length Effects Of Air” by Peter de Groot, Henry A. Hill, and Frank C. Demarest, the contents of both of the cited patents are herein incorporated in their entirety by reference. For embodiments of the present application that comprise a dispersion interferometer, the described interferometers are configured for use of either the variant of the bi- or quad-homodyne detection method.
Other embodiments are within the following claims.
This application also claims the benefit of U.S. Provisional Application No. 60/459,425, filed Apr. 1, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3628027 | Brauss | Dec 1971 | A |
3748015 | Offner | Jul 1973 | A |
4011011 | Hemstreet et al. | Mar 1977 | A |
4226501 | Shafer | Oct 1980 | A |
4272684 | Seachman | Jun 1981 | A |
4685803 | Sommargren | Aug 1987 | A |
4733967 | Sommargren | Mar 1988 | A |
5220403 | Batchelder | Jun 1993 | A |
5241423 | Chiu et al. | Aug 1993 | A |
5327223 | Korth | Jul 1994 | A |
5485317 | Perissinotto | Jan 1996 | A |
5602643 | Barrett | Feb 1997 | A |
5614763 | Womack | Mar 1997 | A |
5633972 | Walt | May 1997 | A |
5659420 | Wakai | Aug 1997 | A |
5699201 | Lee | Dec 1997 | A |
5760901 | Hill | Jun 1998 | A |
5828455 | Smith | Oct 1998 | A |
5894195 | McDermott | Apr 1999 | A |
5915048 | Hill et al. | Jun 1999 | A |
6052231 | Rosenbluth | Apr 2000 | A |
6091496 | Hill | Jul 2000 | A |
6124931 | Hill | Sep 2000 | A |
6219144 | Hill et al. | Apr 2001 | B1 |
6271923 | Hill | Aug 2001 | B1 |
6330065 | Hill | Dec 2001 | B1 |
6407816 | De Groot et al. | Jun 2002 | B1 |
6445453 | Hill | Sep 2002 | B1 |
6447122 | Kobayashi et al. | Sep 2002 | B1 |
6480285 | Hill | Nov 2002 | B1 |
6552805 | Hill | Apr 2003 | B1 |
6552852 | Hill | Apr 2003 | B1 |
6597721 | Hutchinson et al. | Jul 2003 | B1 |
6606159 | Hill | Aug 2003 | B1 |
6667809 | Hill | Dec 2003 | B1 |
6714349 | Nam | Mar 2004 | B1 |
6717736 | Hill | Apr 2004 | B1 |
6753968 | Hill | Jun 2004 | B1 |
6775009 | Hill | Aug 2004 | B1 |
6847029 | Hill | Jan 2005 | B1 |
6847452 | Hill | Jan 2005 | B1 |
6972846 | Lal et al. | Dec 2005 | B1 |
20020074493 | Hill | Jun 2002 | A1 |
20030174992 | Levene | Sep 2003 | A1 |
20040246486 | Hill | Sep 2004 | A1 |
20040201852 | Hill | Oct 2004 | A1 |
20040201853 | Hill | Oct 2004 | A1 |
20040201854 | Hill | Oct 2004 | A1 |
20040201855 | Hill | Oct 2004 | A1 |
20040202426 | Hill | Oct 2004 | A1 |
20040227950 | Hill | Nov 2004 | A1 |
20040227951 | Hill | Nov 2004 | A1 |
20040228008 | Hill | Nov 2004 | A1 |
20040257577 | Hill | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040227951 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60459425 | Apr 2003 | US |