The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods for data movement.
Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.
Electronic systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processor can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and division on operands via a number of operations.
A number of components in an electronic system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and data may be retrieved from the memory array and sequenced and buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and data may also be sequenced and buffered.
In many instances, the processing resources (e.g., processor and associated functional unit circuitry) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processor-in-memory device, in which a processor may be implemented internal and near to a memory (e.g., directly on a same chip as the memory array). A processing-in-memory device may save time by reducing and eliminating external communications and may also conserve power. However, data movement between and within banks of a processing-in-memory device may influence the data processing time of the processing-in-memory device.
The present disclosure includes apparatuses and methods for data movement, e.g., for processor-in-memory (PIM) structures, among other configurations described herein or otherwise. In at least one embodiment, the apparatus includes a memory device configured to couple to a host via a data bus and a control bus. A bank in the memory device includes an array of memory cells and sensing circuitry, e.g., formed on pitch with memory cells of the array, coupled to the array via a plurality of sense lines. The sensing circuitry includes a sense amplifier and a compute component coupled to a sense line and configured to implement operations. A controller in the memory device is configured to couple to the array and sensing circuitry. A shared I/O line in the memory device is configured to couple a source location to a destination location, e.g., between a pair of bank locations.
As described in more detail below, the embodiments can allow a host system to allocate a number of locations, e.g., sub-arrays (or “subarrays”) and portions of subarrays, in one or more DRAM banks to hold (e.g., store) data. A host system and a controller may perform the address resolution on an entire block of program instructions, e.g., PIM command instructions, and data and direct (e.g., control) allocation and storage of data and commands into allocated locations, e.g., subarrays and portions of subarrays within a destination (e.g., target) bank. Writing data and commands may utilize a normal DRAM write path to the DRAM device. As the reader will appreciate, while a DRAM-style PIM device is discussed with regard to examples presented herein, embodiments are not limited to a PIM DRAM implementation.
Data movement between and within PIM banks, e.g., subarrays and portions of subarrays therein, may affect whether PIM operations are completed (performed) efficiently. Accordingly, the present disclosure presents structures and processes that can increase a speed, rate, and efficiency of data movement in a PIM array by using an improved data path, e.g., a shared I/O line of a DRAM implementation, as described herein.
In previous approaches, data may be transferred from the array and sensing circuitry (e.g., via a bus comprising input/output (I/O) lines) to a processing resource external to the memory array, such as a processor, microprocessor, and/or compute engine that may be located on a host, which may comprise ALU circuitry and other functional unit circuitry configured to perform the appropriate operations. However, transferring data from a memory array and sensing circuitry to such processing resource(s) can involve significant power consumption. Even if the processing resource is located on a same chip as the memory array, significant power can be consumed in moving data out of the array to the compute circuitry, which can involve performing a sense line (which may be referred to herein as a digit line or data line) address access (e.g., firing of a column decode 152 signal) in order to transfer data from sense lines onto I/O lines (e.g., local and global I/O lines), moving the data to a periphery of the memory array, and providing the data to the compute function.
Furthermore, the circuitry of the processing resource(s) (e.g., a compute engine) may not conform to pitch rules associated with a memory array. For example, the cells of a memory array may have a 4F2 or 6F2 cell size, where “F” is a feature size corresponding to the cells. As such, the devices (e.g., logic gates) associated with ALU circuitry of previous PIM systems may not be capable of being formed on pitch with the memory cells, which can affect chip size and memory density, for example.
For example, the sensing circuitry 150 described herein can be formed on a same pitch as a pair of complementary sense lines. As an example, a pair of complementary memory cells may have a cell size with a 6F2 pitch (e.g., 3F×2F). If the pitch of a pair of complementary sense lines for the complementary memory cells is 3F, then the sensing circuitry being on pitch indicates the sensing circuitry (e.g., a sense amplifier and corresponding compute component per respective pair of complementary sense lines) is formed to fit within the 3F pitch of the complementary sense lines.
Furthermore, the circuitry of the processing resource(s) (e.g., a compute engine, such as an ALU) of various prior systems may not conform to pitch rules associated with a memory array. For example, the memory cells of a memory array may have a 4F2 or 6F2 cell size. As such, the devices (e.g., logic gates) associated with ALU circuitry of previous systems may not be capable of being formed on pitch with the memory cells (e.g., on a same pitch as the sense lines), which can affect chip size and/or memory density, for example. In the context of some computing systems and subsystems (e.g., a central processing unit (CPU)), data may be processed in a location that is not on pitch and/or on chip with memory (e.g., memory cells in the array), as described herein. The data may be processed by a processing resource associated with a host, for instance, rather than on pitch with the memory.
In contrast, a number of embodiments of the present disclosure can include the sensing circuitry 150 (e.g., including sense amplifiers 206 and/or compute components 231) and/or logic circuitry (e.g., 170, 213, and/or 560) being formed on pitch with the memory cells of the array. The sensing circuitry and/or logic circuitry can be configured for (e.g., capable of) performing compute functions (e.g., logical operations).
PIM capable device operations can use bit vector based operations. As used herein, the term “bit vector” is intended to mean a physically contiguous number of bits on a bit vector memory device (e.g., a PIM device) stored physically contiguous in a row of an array of memory cells. Thus, as used herein a “bit vector operation” is intended to mean an operation that is performed on a bit vector that is a contiguous portion of virtual address space (e.g., used by a PIM device). For example, a row of virtual address space in the PIM device may have a bit length of 16K bits (e.g., corresponding to 16K complementary pairs of memory cells in a DRAM configuration). Sensing circuitry 150, as described herein, for such a 16K bit row may include a corresponding 16K processing elements (e.g., compute components, as described herein) formed on pitch with the sense lines selectably coupled to corresponding memory cells in the 16 bit row. A compute component in the PIM device may operate as a one bit processing element on a single bit of the bit vector of the row of memory cells sensed by the sensing circuitry 150 (e.g., sensed by and/or stored in a sense amplifier paired with the compute component, as described herein).
A number of embodiments of the present disclosure include sensing circuitry (e.g., sense amplifiers 206) and compute circuitry (e.g., compute components 231) formed on pitch with sense lines of an array of memory cells. The sensing circuitry and compute circuitry are capable of performing data sensing and compute functions and storage, e.g., caching, of data local to the array of memory cells.
In order to appreciate the improved data movement techniques described herein, a discussion of an apparatus for implementing such techniques, e.g., a memory device having PIM capabilities and associated host, follows. According to various embodiments, program instructions, e.g., PIM commands, involving a memory device having PIM capabilities can distribute implementation of the PIM commands and data over multiple sensing circuitries that can implement operations and can move and store the PIM commands and data within the memory array, e.g., without having to transfer such back and forth over an A/C and data bus between a host and the memory device. Thus, data for a memory device having PIM capabilities can be accessed and used in less time and using less power. For example, a time and power advantage can be realized by increasing the speed, rate, and efficiency of data being moved around and stored in a computing system in order to process requested memory array operations (e.g., reads, writes, etc.).
In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and structural changes may be made without departing from the scope of the present disclosure.
As used herein, designators such as “X”, “Y”, “N”, “M”, etc., particularly with respect to reference numerals in the drawings, indicate that a number of the particular feature so designated can be included. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used herein, the singular forms “a”, “an”, and “the” include singular and plural referents, unless the context clearly dictates otherwise, as do “a number of”, “at least one”, and “one or more” (e.g., a number of memory arrays can refer to one or more memory arrays), whereas a “plurality of” is intended to refer to more than one of such things. Furthermore, the words “can” and “may” are used throughout this application in a permissive sense (i.e., having the potential to, being able to), not in a mandatory sense (i.e., must). The term “include,” and derivations thereof, means “including, but not limited to”. The terms “coupled” and “coupling” mean to be directly or indirectly connected physically or for access to and movement (transmission) of instructions (e.g., control signals) and data, as appropriate to the context.
The figures herein follow a numbering convention in which the first digit or digits correspond to the figure number and the remaining digits identify an element or component in the figure. Similar elements or components between different figures may be identified by the use of similar digits. For example, 108 may reference element “08” in
The system 100 can include a host 110 coupled (e.g., connected) to memory device 120, which includes the memory array 130. Host 110 can be a host system such as a personal laptop computer, a desktop computer, a tablet computer, a digital camera, a smart phone, or a memory card reader, among various other types of hosts. Host 110 can include a system motherboard and backplane and can include a number of processing resources (e.g., one or more processors, microprocessors, or some other type of controlling circuitry). The system 100 can include separate integrated circuits or both the host 110 and the memory device 120 can be on the same integrated circuit. The system 100 can be, for instance, a server system and a high performance computing (HPC) system and a portion thereof. Although the example shown in
For clarity, description of the system 100 has been simplified to focus on features with particular relevance to the present disclosure. For example, in various embodiments, the memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and NOR flash array, for instance. The memory array 130 can include memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines (which may be referred to herein as data lines or digit lines). Although a single memory array 130 is shown in
The memory device 120 can include address circuitry 142 to latch address signals provided over a data bus 156 (e.g., an I/O bus from the host 110) by I/O circuitry 144 (e.g., provided to external ALU circuitry and to DRAM DQs via local I/O lines and global I/O lines). Status and exception information can be provided from the controller 140 on the memory device 120 to a channel controller 143, for example, through a high speed interface (HSI) out-of-band bus 157, which in turn can be provided from the channel controller 143 to the host 110. Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be sensed (read) from memory array 130 by sensing voltage and current changes on sense lines (digit lines) using a number of sense amplifiers, as described herein, of the sensing circuitry 150. A sense amplifier can read and latch a page (e.g., a row) of data from the memory array 130. Additional compute circuitry, as described herein, can be coupled to the sensing circuitry 150 and can be used in combination with the sense amplifiers to sense, store, e.g., cache and buffer, and move data. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156 (e.g., a 64 bit wide data bus). The write circuitry 148 can be used to write data to the memory array 130.
Controller 140, e.g., bank control logic and sequencer, can decode signals (e.g., commands) provided by control bus 154 from the host 110. The controller 140 can control operations by issuing control signals determined from the decoded commands from the host 110. These signals can include chip enable signals, write enable signals, and address latch signals that can be used to control operations performed on the memory array 130, including data sense, data store, data move, data write, and data erase operations, among other operations. In various embodiments, the controller 140 can be responsible for executing instructions from the host 110 and accessing the memory array 130. The control signals may be executed by processing resources external to and/or internal to a memory array 130 (e.g., by compute components 231 in sensing circuitry 150, as described herein). The controller 140 can be a state machine, a sequencer, or some other type of controller. The controller 140 can control shifting data (e.g., right or left) in a row of an array, e.g., memory array 130.
Examples of the sensing circuitry 150 are described further below, e.g., in
In a number of embodiments, the sensing circuitry 150 can be used to perform operations using data stored in memory array 130 as inputs and participate in movement of the data for writing and storage operations back to a different location in the memory array 130 without transferring the data via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry 150 (e.g., by a processor associated with host 110 and other processing circuitry, such as ALU circuitry, located on device 120, such as on controller 140 or elsewhere).
In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry, e.g., in the host, via I/O lines (e.g., via local I/O lines and global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry 150 is configured to perform operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling a local I/O line and global I/O line coupled to the sensing circuitry 150, e.g., for read and/or write operations based on host commands. In contrast, the data movement operations described herein utilize a cooperative interaction between the sensing circuitry 150 and shared I/O lines 155 described herein. The sensing circuitry 150 and the shared I/O lines 155 may be formed on chip with the memory cells of the array (e.g., formed on the same chip as the memory cells in the array). Additional peripheral sense amplifier and logic 170 can be coupled to the sensing circuitry 150. The sensing circuitry 150 and the peripheral sense amplifier and logic 170 can cooperate in performing operations, according to some embodiments described herein.
As such, in a number of embodiments, circuitry external to memory array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate operations in order to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to complement and to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).
In a number of embodiments, the sensing circuitry 150 may be used to perform operations (e.g., to execute instructions) in addition to operations performed by an external processing resource (e.g., host 110). For instance, either of the host 110 and the sensing circuitry 150 may be limited to performing only certain operations and a certain number of operations.
Enabling a local I/O line and global I/O line, e.g., for read and/or write operations, can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode 152 signal) and a source/drain coupled to the local I/O line and/or global I/O line. However, embodiments are not limited to not enabling a local I/O line and global I/O line. For instance, in a number of embodiments, the sensing circuitry 150 can be used to perform operations, such as data movement, without enabling column decode lines 152 of the array. However, the local I/O line(s) and global I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the memory array 130 (e.g., to an external register).
Each column 122 is configured to be coupled to sensing circuitry 150, as described in connection with
Each of the of the subarrays 125-0, 125-1, . . . , 125-N−1 can include a plurality of rows 119 shown vertically as Y (e.g., each subarray may include 512 rows in an example DRAM bank). Example embodiments are not limited to the example horizontal and vertical orientation of columns and rows described herein or the example numbers thereof.
As shown in
As shown in
As described herein, an I/O line can be selectably shared by a plurality of partitions, subarrays, rows, and particular columns of memory cells via the sensing component stripe coupled to each of the subarrays. For example, the sense amplifier and/or compute component of each of a selectable subset of a number of columns (e.g., eight column subsets of a total number of columns) can be selectably coupled to each of the plurality of shared I/O lines for data values stored (cached) in the sensing component stripe to be moved (e.g., transferred, transported, and/or fed) to each of the plurality of shared I/O lines. Because the singular forms “a”, “an”, and “the” can include both singular and plural referents herein, “a shared I/O line” can be used to refer to “a plurality of shared I/O lines”, unless the context clearly dictates otherwise. Moreover, “shared I/O lines” is an abbreviation of “plurality of shared I/O lines”.
As shown schematically in
The shared I/O lines 155 can be utilized to increase a speed, rate, and efficiency of data movement in a PIM array, e.g., between subarrays. In at least one embodiment, using the shared I/O lines 155 provides an improved data path by providing at least a thousand bit width. In one embodiment, 2048 shared I/O lines are coupled to 16,384 columns to provide a 2048 bit width. The illustrated shared I/O lines 155 can be formed on chip with the memory cells of the array.
In some embodiments, the controller 140 may be configured to provide instructions (control signals based on commands) and data to a plurality of locations of a particular bank 121 in the memory array 130 and to the sensing component stripes 124-0, 124-1, . . . , 124-N−1 via the shared I/O lines 155 with control and data registers 151. For example, the control and data registers 151 can provide instructions to be executed using by the sense amplifiers and the compute components of the sensing circuitry 150 in the sensing component stripes 124-0, 124-1, . . . , 124-N−1.
Implementations of PIM DRAM architecture may perform processing at the sense amplifier and compute component level. Implementations of PIM DRAM architecture may allow only a finite number of memory cells to be connected to each sense amplifier (e.g., around 512 memory cells). A sensing component stripe 124 may include from around 8,000 to around 16,000 sense amplifiers. For example, a sensing component stripe 124 may be configured to couple to an array of 512 rows and around 16,000 columns. A sensing component stripe can be used as a building block to construct the larger memory. In an array for a memory device, there may be 128 sensing component stripes, which corresponds to 128 subarrays, as described herein. Hence, 512 rows times 128 sensing component stripes would yield around 66,000 rows intersected by around 16,000 columns to form around a 1 gigabit DRAM.
As such, when processing at the sense amplifier level, there are only 512 rows of memory cells available to perform logic functions with each other and it may not be possible to easily perform logic functions on multiple rows where data is coupled to different sensing component stripes. To accomplish processing of data in different subarrays coupled to different sensing component stripes, all the data to be processed is moved into the same subarray in order to be coupled to the same sensing component stripe.
However, DRAM implementations have not been utilized to move data from one sensing component stripe to another sensing component stripe. As mentioned, a sensing component stripe can contain as many as 16,000 sense amplifiers, which corresponds to around 16,000 columns or around 16,000 data values, e.g., bits, of data to be stored, e.g., cached, from each row. A DRAM DQ data bus, e.g., as shown at 156 in
In order to achieve data movement conducted with a high speed, rate, and efficiency from one sensing component stripe to another in PIM DRAM implementations, shared I/O lines 155 are described herein. For example, with 2048 shared I/O lines configured as a 2048 bit wide shared I/O line 155, movement of data from a full row, as just described, would take 8 cycles, a 32 times increase in the speed, rate, and efficiency of data movement. As such, compared other PIM DRAM implementations (e.g., relative to a 64 bit wide data path), utilization of the structures and processes described in the present disclosure saves time for data movement. In various embodiments, time may be saved, for example, by not having to read data out of one bank, bank section, and subarray thereof, storing the data, and then writing the data in another location and/or by reducing the number of cycles for data movement.
A memory cell can include a storage element (e.g., capacitor) and an access device (e.g., transistor). For instance, a first memory cell can include transistor 202-1 and capacitor 203-1, and a second memory cell can include transistor 202-2 and capacitor 203-2, etc. In this embodiment, the memory array 230 is a DRAM array of 1T1C (one transistor one capacitor) memory cells, although other embodiments of configurations can be used (e.g., 2T2C with two transistors and two capacitors per memory cell). In a number of embodiments, the memory cells may be destructive read memory cells (e.g., reading the data stored in the cell destroys the data such that the data originally stored in the cell is refreshed after being read).
The cells of the memory array 230 can be arranged in rows coupled by access (word) lines 204-X (Row X), 204-Y (Row Y), etc., and columns coupled by pairs of complementary sense lines (e.g., digit lines DIGIT(D) and DIGIT(D) shown in
Memory cells can be coupled to different digit lines and word lines. For example, a first source/drain region of a transistor 202-1 can be coupled to digit line 205-1 (D), a second source/drain region of transistor 202-1 can be coupled to capacitor 203-1, and a gate of a transistor 202-1 can be coupled to word line 204-Y. A first source/drain region of a transistor 202-2 can be coupled to digit line 205-2 (D)_, a second source/drain region of transistor 202-2 can be coupled to capacitor 203-2, and a gate of a transistor 202-2 can be coupled to word line 204-X. A cell plate, as shown in
The memory array 230 is configured to couple to sensing circuitry 250 in accordance with a number of embodiments of the present disclosure. In this embodiment, the sensing circuitry 250 comprises a sense amplifier 206 and a compute component 231 corresponding to respective columns of memory cells (e.g., coupled to respective pairs of complementary digit lines). The sense amplifier 206 can be coupled to the pair of complementary digit lines 205-1 and 205-2. The compute component 231 can be coupled to the sense amplifier 206 via pass gates 207-1 and 207-2. The gates of the pass gates 207-1 and 207-2 can be coupled to operation selection logic 213.
The operation selection logic 213 can be configured to include pass gate logic for controlling pass gates that couple the pair of complementary digit lines un-transposed between the sense amplifier 206 and the compute component 231 and swap gate logic for controlling swap gates that couple the pair of complementary digit lines transposed between the sense amplifier 206 and the compute component 231. The operation selection logic 213 can also be coupled to the pair of complementary digit lines 205-1 and 205-2. The operation selection logic 213 can be configured to control continuity of pass gates 207-1 and 207-2 based on a selected operation.
The sense amplifier 206 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell. The sense amplifier 206 can comprise a cross coupled latch, which can be referred to herein as a primary latch. In the example illustrated in
In operation, when a memory cell is being sensed (e.g., read), the voltage on one of the digit lines 205-1 (D) or 205-2 (D)_will be slightly greater than the voltage on the other one of digit lines 205-1 (D) or 205-2 (D)_. An ACT signal and an RNL* signal can be driven low to enable (e.g., fire) the sense amplifier 206. The digit lines 205-1 (D) or 205-2 (D)_having the lower voltage will turn on one of the PMOS transistor 229-1 or 229-2 to a greater extent than the other of PMOS transistor 229-1 or 229-2, thereby driving high the digit line 205-1 (D) or 205-2 (D)_having the higher voltage to a greater extent than the other digit line 205-1 (D) or 205-2 (D)_is driven high.
Similarly, the digit line 205-1 (D) or 205-2 (D)_having the higher voltage will turn on one of the NMOS transistor 227-1 or 227-2 to a greater extent than the other of the NMOS transistor 227-1 or 227-2, thereby driving low the digit line 205-1 (D) or 205-2 (D)_having the lower voltage to a greater extent than the other digit line 205-1 (D) or 205-2 (D)_is driven low. As a result, after a short delay, the digit line 205-1 (D) or 205-2 (D)_having the slightly greater voltage is driven to the voltage of the supply voltage VCC through a source transistor, and the other digit line 205-1 (D) or 205-2 (D)_is driven to the voltage of the reference voltage (e.g., ground) through a sink transistor. Therefore, the cross coupled NMOS transistors 227-1 and 227-2 and PMOS transistors 229-1 and 229-2 serve as a sense amplifier pair, which amplify the differential voltage on the digit lines 205-1 (D) and 205-2 (D)_and operate to latch a data value sensed from the selected memory cell. As used herein, the cross coupled latch of sense amplifier 206 may be referred to as a primary latch 215.
Embodiments are not limited to the sense amplifier 206 configuration illustrated in
The sense amplifier 206 can, in conjunction with the compute component 231, be operated to perform various operations using data from an array as input. In a number of embodiments, the result of an operation can be stored back to the array without transferring the data via a digit line address access (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines). As such, a number of embodiments of the present disclosure can enable performing operations and compute functions associated therewith using less power than various previous approaches. Additionally, since a number of embodiments eliminate the need to transfer data across local and global I/O lines in order to perform compute functions (e.g., between memory and discrete processor), a number of embodiments can enable an increased (e.g., faster) processing capability as compared to previous approaches.
The sense amplifier 206 can further include equilibration circuitry 214, which can be configured to equilibrate the digit lines 205-1 (D) and 205-2 (D)_. In this example, the equilibration circuitry 214 comprises a transistor 224 coupled between digit lines 205-1 (D) and 205-2 (D)_. The equilibration circuitry 214 also comprises transistors 225-1 and 225-2 each having a first source/drain region coupled to an equilibration voltage (e.g., VDD/2), where VDD is a supply voltage associated with the array. A second source/drain region of transistor 225-1 can be coupled digit line 205-1 (D), and a second source/drain region of transistor 225-2 can be coupled digit line 205-2 (D)_. Gates of transistors 224, 225-1, and 225-2 can be coupled together, and to an equilibration (EQ) control signal line 226. As such, activating EQ enables the transistors 224, 225-1, and 225-2, which effectively shorts digit lines 205-1 (D) and 205-2 (D)_ together and to the equilibration voltage (e.g., VCC/2).
Although
As described further below, in a number of embodiments, the sensing circuitry 250 (e.g., sense amplifier 206 and compute component 231) can be operated to perform a selected operation and initially store the result in one of the sense amplifier 206 or the compute component 231 without transferring data from the sensing circuitry via a local or global I/O line (e.g., without performing a sense line address access via activation of a column decode signal, for instance).
Performance of logical operations (e.g., Boolean logical functions involving data values) is fundamental and commonly used. Boolean logic functions are used in many higher level functions. Consequently, speed and power efficiencies that can be realized with improved logical operations, can translate into speed and power efficiencies of higher order functionalities.
As shown in
Data values present on the pair of complementary digit lines 305-1 and 305-2 can be loaded into the compute component 331-0 as described in connection with
The sense amplifiers 306-0, 306-1, . . . , 306-7 in
The configurations of embodiments illustrated in
The circuitry illustrated in
Controller 140 can be coupled to column select circuitry 358 to control select lines, e.g., select line 1, to access data values stored in the sense amplifiers, compute components and/or present on the pair of complementary digit lines, e.g., 305-1 and 305-2 when selection transistors 359-1, 359-2 are enabled via signals from column select line 0. Opening the selection transistors 359-1, 359-2 (e.g., as directed by the controller 140) enables coupling of sense amplifier 0306-0 and compute component 0331-0 to couple with complementary digit lines 305-1 and 305-2 of column 0 (322-0) to move data values on digit line 0 and digit line 0* for a particular row 319 stored in sense amplifier 306-0 and/or compute component 331-0. Data values from rows in each of columns 0 through 7 can similarly be selected by controller 140 coupling, via an appropriate select line, a particular combination of a sense amplifier and a compute component with a pair of complementary digit lines by opening the appropriate selection transistors.
Moreover, opening the selection transistors, e.g., selection transistors 359-1, 359-2, enables a particular sense amplifier and/or compute component, e.g., 306-0 and/or 331-0, to be coupled with a shared I/O line 355 such that the sensed (stored) data values can be placed on, e.g., transferred to, the shared I/O line 355. In some embodiments, one column at a time is selected, e.g., column 0322-0, to be coupled to a particular shared I/O line 355 to move, e.g., transfer, the sensed data values. In the example configuration of
According to various embodiments of the present disclosure, a memory device, e.g., 120 in
As described herein, the array of memory cells can include an implementation of DRAM memory cells where the controller is configured, in response to a command, to use DRAM logical and electrical interfaces to move data from the source location to the destination location via a shared I/O line. According to various embodiments, the source location can be in a first bank and the destination location can be in a second bank in the memory device and the source location can be in a first subarray of one bank in the memory device and the destination location can be in a second subarray of the same bank. According to various embodiments, the first subarray and the second subarray can be in the same section of the bank or the subarrays can be in different sections of the bank.
According to various embodiments described herein, the apparatus can be configured to move data from a source location, including a particular row (e.g., 319 in
In some embodiments, as shown in
For example, portion 462-1 of subarray 0425-0 in
As illustrated in
As described in connection with
As described in connection with
The column select circuitry, e.g., 358 in
As such, with 2048 portions of subarrays each having eight columns (e.g., subarray portion 462-1 of each of subarrays 425-0, 425-1, . . . , 425-N−1), and each configured to couple to a different shared I/O line, e.g., 455-1 through 455-M, 2048 data values (e.g., bits) could be moved to the plurality of shared I/O lines at substantially the same point in time, e.g., in parallel. Accordingly, the present disclosure describes configuring the plurality of shared I/O lines to be at least a thousand bits wide (e.g., 2048 bits wide) to increase the speed, rate, and efficiency of data movement in a DRAM implementation (e.g., relative to a 64 bit wide data path).
As illustrated in
According to various embodiments of the present disclosure, a controller, e.g., 140, can be coupled to a bank of a memory device, e.g., 121, to execute a command to move data in the bank from a source location, e.g., subarray 0425-0, to a destination location, e.g., subarray N−1 425-N−1. A bank section can, in various embodiments, include a plurality of subarrays of memory cells in the bank section, e.g., subarrays 125-0 through 125-N−1 and 425-0 through 425-N−1. The bank section can, in various embodiments, further include sensing circuitry, e.g., 150, coupled to the plurality of subarrays via a plurality of columns, e.g., 322-0 and 422-0 and 422-1, of the memory cells. The sensing circuitry can include a sense amplifier and a compute component, e.g., 206 and 231, respectively, in
The bank section can, in various embodiments, further include a shared I/O line, e.g., 155, 355, and 455-1 and 455-M, to couple the source location and the destination location to move the data. In addition, the controller can be configured to couple to the plurality of subarrays and to the sensing circuitry to perform a data write operation on the moved data to the destination location, e.g., in the bank section.
As such, the controller 140 can be configured to direct writing of the data, moved via the shared I/O lines, to particular memory cells in the destination location, e.g., to memory cells in a particular row of a subarray. Performing a data write operation as such on the moved data can be in addition to the alternative pathway, e.g., as shown in
According to various embodiments, the apparatus can include a sensing component stripe, e.g., 124 and 424, configured to include a number of a plurality of sense amplifiers and compute components that corresponds to a number of the plurality of columns of the memory cells, e.g., where each column of memory cells is configured to couple to a sense amplifier and a compute component. The number of a plurality of sensing component stripes in the bank section, e.g., 424-0 through 424-N−1, can correspond to a number of a plurality of subarrays in the bank section, e.g., 425-0 through 425-N−1.
The number of sense amplifiers and compute components can be configured to be selectably, e.g., sequentially, coupled to the shared I/O line, e.g., as shown by column select circuitry at 358-1, 358-2, 359-1, and 359-2 in
The apparatus can, in various embodiments, include a number of multiplexers, e.g., as shown at 460-1 and 460-2 in portions 462-1 through 462-M of various subarrays in
According to various embodiments described herein, an array of memory cells can include a column of memory cells having a pair of complementary sense (digit) lines, e.g., 305-1 and 305-2 in
According to some embodiments, a source sensing component stripe, e.g., 124 and 424, can include a number of sense amplifiers and compute components that can be selected and configured to send an amount of data, e.g., a number of bits, sensed from a row of the source location in parallel to a plurality of shared I/O lines. For example, in response to control signals for sequential sensing through the column select circuitry, the memory cells of selected columns of a row of the subarray can sense and store (cache) an amount of data, e.g., the number of bits, until that amount reaches a threshold and then send the data via the plurality of shared I/O lines. In some embodiments, the threshold amount of data can correspond to the at least a thousand bit width of the plurality of shared I/O lines.
In some embodiments, the source sensing component stripe can include a number of sense amplifiers and compute components that can be selected and configured to store data, e.g., bits, sensed from a row of the source location when an amount of sensed data, e.g., the number of data bits, exceeds the at least a thousand bit width of the plurality of shared I/O lines. In this embodiment, the source sensing component stripe can be configured to send the data sensed from the row of the source location when coupled to the plurality of shared I/O lines as a plurality of subsets. For example, the amount of at least a first subset of the data can correspond to the at least a thousand bit width of the plurality of shared I/O lines.
The controller can, as described herein, be configured to move the data from a selected row and a selected sense line in the source location to a selected row and a selected sense line in the destination location via the shared I/O line, e.g., in response to control signals from the controller 140. According to various embodiments, a selected row and a selected sense line in the source location (e.g., a first subarray) input to the controller can be different from a selected row and a selected sense line in the destination location (e.g., a second subarray).
As described herein, a location of the data in memory cells of the selected row and the selected sense line in a source subarray can be different from a location of the data moved to memory cells of a selected row and the selected source line in a destination subarray. For example, the source location may be a particular row and digit lines of portion 462-1 of subarray 0425-0 in
According to embodiments herein, a destination sensing component stripe, e.g., 124 and 424, can be the same as a source sensing component stripe. For example, a plurality of sense amplifiers and compute components can be selected and configured, e.g., depending on the control signal from the controller, to selectably send sensed data to the coupled shared I/O line and selectably receive the data from one of a plurality of coupled shared I/O lines, e.g., to be moved to the destination location. Selection of sense amplifiers and compute components in the destination sensing component stripe can be performed using the column select circuitry described herein, e.g., 358-1, 358-2, 359-1, and 359-2 in
The controller can, according to some embodiments, be configured to write an amount of data, e.g., a number of data bits, selectably received by the plurality of selected sense amplifiers and compute components in the destination sensing component stripe to a selected row and a selected sense line of the destination location in the destination subarray. In some embodiments, the amount of data to write corresponds to the at least a thousand bit width of a plurality of shared I/O lines.
The destination sensing component stripe can, according to some embodiments, include a plurality of selected sense amplifiers and compute components configured to store received data, e.g., bits, when an amount of received data, e.g., number of data bits, exceeds the at least a thousand bit width of the plurality of shared I/O lines. The controller can, according to some embodiments, be configured to write the stored data, e.g., the number of data bits, to a selected row and a plurality of selected sense lines in the destination location as a plurality of subsets. In some embodiments, the amount of data of at least a first subset of the written data can correspond to the at least a thousand bit width of the plurality of shared I/O lines. According to some embodiments, the controller can be configured to write the stored data, e.g., the number of data bits, to the selected row and the selected sense line in the destination location as a single set, e.g., not as subsets of data.
Embodiments of the present disclosure provide a method to increase a speed, rate, and efficiency of data movement in a PIM array by using an improved data path, e.g., a shared I/O line of a DRAM implementation. According to various embodiments as described herein, a source location and a destination location in a pair of bank locations in a memory device can be configured to couple via a plurality of shared I/O lines. A bank in the memory device can, as described herein, include an array of memory cells, sensing circuitry coupled to the array via a plurality of sense lines, the sensing circuitry including sense amplifiers and compute components configured to implement operations, and a controller coupled to the array and the sensing circuitry.
The method can include receiving a control signal from the controller to move data from the source location to the destination location, e.g., of a DRAM array of the memory cells. The method can further include moving the data from the source location to the destination location, e.g., of the DRAM array, using the sense amplifiers and compute components via the plurality of shared I/O lines.
In some embodiments, the method can include configuring 2048 shared I/O lines as a 2048 bit wide shared I/O line. According to some embodiments, a number of cycles for moving the data from a first row in the source location to a second row in the destination location can be configured by dividing a number of columns in the array intersected by a row of memory cells in the array by the 2048 bit width of the plurality of shared I/O lines. For example, an array, e.g., a bank, a bank section, and a subarray thereof, can have 16,384 columns, which can correspond to 16,384 data values in a row, which when divided by the 2048 bit width of the plurality of shared I/O lines intersecting the row can yield eight cycles, each separate cycle being at substantially the same point in time, e.g., in parallel, for movement of all the data in the row. Alternatively or in addition, a bandwidth for moving the data from a first row in the source location to a second row in the destination location can be configuring by dividing the number of columns in the array intersected by the row of memory cells in the array by the 2048 bit width of the plurality of shared I/O lines and multiplying the result by a clock rate of the controller. In some embodiments, determining a number of data values in a row of the array can be based upon the plurality of sense (digit) lines in the array.
A source location in a first subarray of memory cells can be configured to couple via a plurality of shared I/O lines to a destination location in a second subarray of memory cells, where the plurality of shared I/O lines can be configured as at least a thousand bit wide shared I/O line. The method can include configuring a first sensing component stripe, e.g., 424-0, for the first subarray, e.g., 425-0, and second sensing component stripe, e.g., 424-N−1, for second subarray, e.g., 425-N−1, to include a sense amplifier and a compute component, e.g., 406-0 and 431-0, respectively, coupled to each corresponding column of memory cells in the first and second subarrays, e.g., 422-0 through 422-X−1. A controller can be configured to couple to the memory cells of the first and second subarrays and the first and second sensing component stripes, e.g., via the column select circuitry 358-1, 358-2, 359-1, and 359-2.
The method can include moving the data from the source location in the first subarray via the plurality of shared I/O lines to the destination location in the second subarray using the first sensing component stripe for the first subarray and the second sensing component stripe for the second subarray. The first amplifier stripe for the first subarray and the second sensing component stripe for the second subarray can, accordingly to various embodiment, be configured to couple to the plurality of shared I/O lines, e.g., via the column select circuitry 358-1, 358-2, 359-1, and 359-2 in
According to some embodiments, the source location in the first subarray and the destination location in the second subarray can be in a single bank section of a memory device, e.g., as shown in
The method can, according to various embodiments, include configuring a sensing component stripe, e.g., all sensing component stripes 424-0 through 424-N−1, in each of a plurality of subarrays, e.g., subarrays 425-0 through 425-N−1, to couple to the plurality of shared I/O lines, e.g., shared I/O line 455-1. In some embodiments, the method can include coupling only one of a plurality, e.g., two, four, eight, sixteen, etc., including odd numbers, of columns of complementary sense lines at a time in the first subarray to one of the plurality of shared I/O lines using the first sensing component stripe, e.g., sensing component stripe 424-0, and coupling only one of a plurality, e.g., two, four, eight, sixteen, etc., including odd numbers, of columns of complementary sense lines at a time in the second subarray to one of the plurality of shared I/O lines using the second sensing component stripe, e.g., sensing component stripes 424-N−1.
The method can include moving the data from a number of sense amplifiers and compute components of the first sensing component stripe via the plurality of shared I/O lines to a corresponding number of sense amplifiers and compute components of the second sensing component stripe. For example, the data sensed from each sense amplifier and compute component of the source location can be moved to a corresponding sense amplifier and compute component in the destination location.
According to various embodiments, the method can include the controller selecting, e.g., opening, a first row of memory cells, which corresponds to the source location, for the first sensing component stripe to sense data stored therein, coupling, e.g., opening, the plurality of shared I/O lines to the first sensing component stripe, and coupling, e.g., opening, the second sensing component stripe to the plurality of shared I/O lines, e.g., via the column select circuitry 358-1, 358-2, 359-1, and 359-2 and the multiplexers 460-1 and 460-2. As such, the method can include moving the data in parallel from the first sensing component stripe to the second sensing component stripe via the plurality of shared I/O lines. The method can include the first sensing component stripe storing, e.g., caching, the sensed data and the second sensing component stripe storing, e.g., caching, the moved data.
The method can include the controller selecting, e.g., opening, a second row of memory cells, which corresponds to the destination location, for the second sensing component stripe, e.g., via the column select circuitry 358-1, 358-2, 359-1, and 359-2 and the multiplexers 460-1 and 460-2. The controller can then direct writing the data moved to the second sensing component stripe to the destination location in the second row of memory cells.
In a DRAM implementation, a shared I/O line can be used as a data path to move data in the memory cell array between various locations, e.g., subarrays, in the array. The shared I/O line can be shared between all sensing component stripes. In various embodiments, one sensing component stripe or one pair of sensing component stripes, e.g., coupling a source location and a destination location, can communicate with the shared I/O line at any given time. The shared I/O line is used to accomplish moving the data from one sensing component stripe to the other sensing component stripe. A row in the first sensing component stripe can be opened and the data values of the memory cells in the row can be sensed. After sensing, the first sensing component stripe can be opened to the shared I/O line, along with opening the second sensing component stripe to the same shared I/O line. The second sensing component stripe can still be in a pre-charge state, e.g., ready to accept data. After the data from the first sensing component stripe has been moved, e.g., driven, into the second sensing component stripe, the second sensing component stripe can fire, e.g., latch, the data into respective sense amplifiers and compute components. A row coupled to the second sensing component stripe can be opened, e.g., after latching the data, and the data that resides in the sense amplifiers and compute components can be written into the destination location of that row.
According to various embodiments of the present disclosure, a controller, e.g., 140 in
As such, at t1 the controller can provide a signal to enable a pre-charge of the source sensing component stripe 576 of the source subarray 525-0 to be driven low to enable, e.g., fire, the source sensing component stripe to read and store sensed data. A signal can be input at t2 to the selected source row 577 to enable a read (sense) of the data values in the memory cells of the row by the row being driven to high. A signal can be input at t3 to the sense circuitry 578, e.g., sense amplifiers and compute components, associated with the source sensing component stripe to enable sensing of the data values in the memory cells of the row by the sense circuitry being driven to high. A signal can be input at t4 to the selected source columns 579 to enable a read (sense) of the data values in the memory cells of the selected source columns of the row by the columns being driven to high.
According to various embodiments, at t3 the controller can provide a signal to enable a pre-charge of a number of shared I/O lines 581 to couple a number of shared I/O lines with the source sensing component stripe of the source subarray by being driven low. Between around t4 through t5, the sensed data can be conducted through the number of shared I/O lines 580 so as to be accessible by components of the destination subarray 525-N−1. For example, as described herein, the data from sequentially selected columns, e.g., columns 1 through 8, configured to be coupled to each of the number of shared I/O lines can be sequentially sent through the coupled number of shared I/O lines during the time period from around t4 through t5. In some embodiments, as shown at 580, the data conducted through the number of shared I/O lines can include data sensed from complementary sense lines.
The controller can provide a signal at t3 to enable a pre-charge of the destination sensing component stripe 582 of the destination subarray 525-N−1 to be driven low to enable, e.g., fire, the destination sensing component stripe to receive and store moved data by being coupled to the number of shared I/O lines 580. A signal can be input at t4 to the selected destination columns 585 to enable movement of the data values to the sense circuitry 584, e.g., sense amplifiers and compute components, associated with the destination sensing component stripe for the selected columns by the selected destination columns being driven to high. A signal can be input at is to latch the data moved to the destination sensing component stripe to be stored in the sense circuitry 584, e.g., sense amplifiers and compute components, associated with the source sensing component stripe by the sense circuitry being driven to high. A signal can be input at t6 to the selected destination row 583 to enable the data stored in the sense circuitry to be moved and written to selected memory cells thereof by being driven to high.
Various time frames can be implemented for signal conduction pathways to remain enabled, e.g., opened, before a signal is provided to disable, e.g., close, the signal conduction pathways. According to some embodiments, the data stored in the sense circuitry 584, e.g., sense amplifiers and compute components, by the sense circuitry being driven to high at t5 can remain accessible to the selected destination row 583 until a signal is input at t11 to disable the signal conduction pathway by being driven to low. As such, the signal conduction pathway for the sense circuitry 584 can be open from t5 through t11, which encompasses the time frame from t6 through t10 during which the signal conduction pathway for the selected destination row is open.
According to various embodiments of the present disclosure, a source row of a source subarray, e.g., any one of 512 rows, can be different from, e.g., need not match, a destination row of a destination subarray, where the source and destination subarrays can, in various embodiments, be in the same or different banks and bank sections of memory cells. Moreover, a selected source column, e.g., any one of eight configured to be coupled to a particular shared I/O line, can be different from, e.g., need not match, a selected destination column of a destination subarray.
While example embodiments including various combinations and configurations of sensing circuitry, sense amplifiers, compute components, sensing component stripes, shared I/O lines, column select circuitry, multiplexers, signal timing sequences, etc., have been illustrated and described herein, embodiments of the present disclosure are not limited to those combinations explicitly recited herein. Other combinations and configurations of the sensing circuitry, sense amplifiers, compute components, sensing component stripes, shared I/O lines, column select circuitry, multiplexers, signal timing sequences, etc., disclosed herein are expressly included within the scope of this disclosure.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and processes are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is Continuation of U.S. application Ser. No. 16/519,783, filed Jul. 23, 2019, which issues as U.S. Pat. No. 10,936,235 on Mar. 2, 2021, which is a Divisional of U.S. application Ser. No. 15/553,920, filed Aug. 25, 2017, which issues as U.S. Pat. No. 10,365,851 on Jul. 30, 2019, which is a National Stage Application under 35 U.S.C. § 371 of PCT Application No. PCT/US2016/020834, having an international filing date of Mar. 4, 2016, which claims priority to U.S. Provisional Application No. 62/132,058, filed Mar. 12, 2015, the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4380046 | Fung | Apr 1983 | A |
4435792 | Bechtolsheim | Mar 1984 | A |
4435793 | Ochii | Mar 1984 | A |
4727474 | Batcher | Feb 1988 | A |
4843264 | Galbraith | Jun 1989 | A |
4958378 | Bell | Sep 1990 | A |
4977542 | Matsuda et al. | Dec 1990 | A |
5023838 | Herbert | Jun 1991 | A |
5034636 | Reis et al. | Jul 1991 | A |
5040149 | Ebihara et al. | Aug 1991 | A |
5201039 | Sakamura | Apr 1993 | A |
5210850 | Kelly et al. | May 1993 | A |
5253308 | Johnson | Oct 1993 | A |
5276643 | Hoffmann et al. | Jan 1994 | A |
5325519 | Long et al. | Jun 1994 | A |
5367488 | An | Nov 1994 | A |
5379257 | Matsumura et al. | Jan 1995 | A |
5386379 | Ali-Yahia et al. | Jan 1995 | A |
5398213 | Yeon et al. | Mar 1995 | A |
5440482 | Davis | Aug 1995 | A |
5446690 | Tanaka et al. | Aug 1995 | A |
5473576 | Matsui | Dec 1995 | A |
5481500 | Reohr et al. | Jan 1996 | A |
5485373 | Davis et al. | Jan 1996 | A |
5506811 | McLaury | Apr 1996 | A |
5615404 | Knoll et al. | Mar 1997 | A |
5638128 | Hoogenboom | Jun 1997 | A |
5638317 | Fran | Jun 1997 | A |
5654936 | Cho | Aug 1997 | A |
5678021 | Pawate et al. | Oct 1997 | A |
5724291 | Matano | Mar 1998 | A |
5724366 | Furutani | Mar 1998 | A |
5751987 | Mahant-Shetti et al. | May 1998 | A |
5787458 | Miwa | Jul 1998 | A |
5818785 | Ohshima | Oct 1998 | A |
5854636 | Watanabe et al. | Dec 1998 | A |
5867429 | Chen et al. | Feb 1999 | A |
5870504 | Nemoto et al. | Feb 1999 | A |
5915084 | Wendell | Jun 1999 | A |
5935263 | Keeth et al. | Aug 1999 | A |
5986942 | Sugibayashi | Nov 1999 | A |
5991209 | Chow | Nov 1999 | A |
5991785 | Alidina et al. | Nov 1999 | A |
6005799 | Rao | Dec 1999 | A |
6009020 | Nagata | Dec 1999 | A |
6092186 | Betker et al. | Jul 2000 | A |
6122211 | Morgan et al. | Sep 2000 | A |
6125071 | Kohno et al. | Sep 2000 | A |
6130852 | Ohtani et al. | Oct 2000 | A |
6134164 | Lattimore et al. | Oct 2000 | A |
6147514 | Shiratake | Nov 2000 | A |
6151244 | Fujino et al. | Nov 2000 | A |
6157578 | Brady | Dec 2000 | A |
6163862 | Adams et al. | Dec 2000 | A |
6166942 | Vo et al. | Dec 2000 | A |
6172918 | Hidaka | Jan 2001 | B1 |
6175514 | Henderson | Jan 2001 | B1 |
6181698 | Hariguchi | Jan 2001 | B1 |
6208544 | Beadle et al. | Mar 2001 | B1 |
6212121 | Ryu et al. | Apr 2001 | B1 |
6226215 | Yoon | May 2001 | B1 |
6301153 | Takeuchi et al. | Oct 2001 | B1 |
6301164 | Manning et al. | Oct 2001 | B1 |
6304477 | Naji | Oct 2001 | B1 |
6339817 | Maesako et al. | Jan 2002 | B1 |
6389507 | Sherman | May 2002 | B1 |
6418063 | Seitsinger et al. | Jul 2002 | B1 |
6418498 | Martwick | Jul 2002 | B1 |
6466499 | Blodgett | Oct 2002 | B1 |
6510098 | Taylor | Jan 2003 | B1 |
6563754 | Lien et al. | May 2003 | B1 |
6578058 | Nygaard | Jun 2003 | B1 |
6731542 | Le et al. | May 2004 | B1 |
6754746 | Leung et al. | Jun 2004 | B1 |
6768679 | Le et al. | Jul 2004 | B1 |
6807614 | Chung | Oct 2004 | B2 |
6816422 | Hamade et al. | Nov 2004 | B2 |
6819612 | Achter | Nov 2004 | B1 |
6894549 | Eliason | May 2005 | B2 |
6943579 | Hazanchuk et al. | Sep 2005 | B1 |
6948056 | Roth et al. | Sep 2005 | B1 |
6950771 | Fan et al. | Sep 2005 | B1 |
6950898 | Merritt et al. | Sep 2005 | B2 |
6956770 | Khalid et al. | Oct 2005 | B2 |
6961272 | Schreck | Nov 2005 | B2 |
6965648 | Smith et al. | Nov 2005 | B1 |
6985394 | Kim | Jan 2006 | B2 |
6987693 | Cernea et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7028170 | Saulsbury | Apr 2006 | B2 |
7045834 | Fran et al. | May 2006 | B2 |
7054178 | Shiah et al. | May 2006 | B1 |
7061817 | Raad et al. | Jun 2006 | B2 |
7079407 | Dimitrelis | Jul 2006 | B1 |
7173857 | Kato et al. | Feb 2007 | B2 |
7187585 | Li et al. | Mar 2007 | B2 |
7196928 | Chen | Mar 2007 | B2 |
7260565 | Lee et al. | Aug 2007 | B2 |
7260672 | Gamey | Aug 2007 | B2 |
7336516 | Tran et al. | Feb 2008 | B2 |
7372715 | Han | May 2008 | B2 |
7400532 | Aritome | Jul 2008 | B2 |
7406494 | Magee | Jul 2008 | B2 |
7447720 | Beaumont | Nov 2008 | B2 |
7454451 | Beaumont | Nov 2008 | B2 |
7457181 | Lee et al. | Nov 2008 | B2 |
7535769 | Cernea | May 2009 | B2 |
7546438 | Chung | Jun 2009 | B2 |
7562198 | Noda et al. | Jul 2009 | B2 |
7574466 | Beaumont | Aug 2009 | B2 |
7602647 | Li et al. | Oct 2009 | B2 |
7663928 | Tsai et al. | Feb 2010 | B2 |
7685365 | Rajwar et al. | Mar 2010 | B2 |
7692466 | Ahmadi | Apr 2010 | B2 |
7752417 | Manczak et al. | Jul 2010 | B2 |
7791962 | Noda et al. | Sep 2010 | B2 |
7796453 | Riho et al. | Sep 2010 | B2 |
7805587 | Van Dyke et al. | Sep 2010 | B1 |
7808854 | Takase | Oct 2010 | B2 |
7827372 | Bink et al. | Nov 2010 | B2 |
7869273 | Lee et al. | Jan 2011 | B2 |
7898864 | Dong | Mar 2011 | B2 |
7924628 | Danon et al. | Apr 2011 | B2 |
7936634 | Chen et al. | May 2011 | B2 |
7937535 | Ozer et al. | May 2011 | B2 |
7957206 | Bauser | Jun 2011 | B2 |
7979667 | Mien et al. | Jul 2011 | B2 |
7996749 | Ding et al. | Aug 2011 | B2 |
8042082 | Solomon | Oct 2011 | B2 |
8045391 | Mokhlesi | Oct 2011 | B2 |
8059438 | Chang et al. | Nov 2011 | B2 |
8095825 | Hirotsu et al. | Jan 2012 | B2 |
8117462 | Snapp et al. | Feb 2012 | B2 |
8164942 | Gebara et al. | Apr 2012 | B2 |
8208328 | Hong | Jun 2012 | B2 |
8213248 | Moon et al. | Jul 2012 | B2 |
8223568 | Seo | Jul 2012 | B2 |
8238173 | Akerib et al. | Aug 2012 | B2 |
8274841 | Shimano et al. | Sep 2012 | B2 |
8279683 | Klein | Oct 2012 | B2 |
8279692 | Matsui | Oct 2012 | B2 |
8310884 | Iwai et al. | Nov 2012 | B2 |
8332367 | Bhattacherjee et al. | Dec 2012 | B2 |
8339824 | Cooke | Dec 2012 | B2 |
8339883 | Yu et al. | Dec 2012 | B2 |
8347154 | Bahali et al. | Jan 2013 | B2 |
8351292 | Matano | Jan 2013 | B2 |
8356144 | Hessel et al. | Jan 2013 | B2 |
8406033 | Lung et al. | Mar 2013 | B2 |
8417921 | Gonion et al. | Apr 2013 | B2 |
8462532 | Argyres | Jun 2013 | B1 |
8473809 | Wan et al. | Jun 2013 | B2 |
8484276 | Carlson et al. | Jul 2013 | B2 |
8495438 | Roine | Jul 2013 | B2 |
8503250 | Demone | Aug 2013 | B2 |
8526239 | Kim | Sep 2013 | B2 |
8533245 | Cheung | Sep 2013 | B1 |
8555037 | Gonion | Oct 2013 | B2 |
8599613 | Abiko et al. | Dec 2013 | B2 |
8605015 | Gullag et al. | Dec 2013 | B2 |
8625376 | Jung et al. | Jan 2014 | B2 |
8644101 | Jun et al. | Feb 2014 | B2 |
8650232 | Stortz et al. | Feb 2014 | B2 |
8873272 | Lee | Oct 2014 | B2 |
8964496 | Manning | Feb 2015 | B2 |
8971124 | Manning | Mar 2015 | B1 |
9015390 | Klein | Apr 2015 | B2 |
9047193 | Lin et al. | Jun 2015 | B2 |
9135982 | Schaefer et al. | Sep 2015 | B2 |
9165023 | Moskovich et al. | Oct 2015 | B2 |
9298545 | Ratnam et al. | Mar 2016 | B2 |
9460793 | Oh | Oct 2016 | B1 |
9607667 | Lee et al. | Mar 2017 | B1 |
20010007112 | Porterfield | Jul 2001 | A1 |
20010008492 | Higashiho | Jul 2001 | A1 |
20010010057 | Yamada | Jul 2001 | A1 |
20010028584 | Nakayama et al. | Oct 2001 | A1 |
20010043089 | Forbes et al. | Nov 2001 | A1 |
20020059355 | Peleg et al. | May 2002 | A1 |
20030132457 | Lee et al. | Jul 2003 | A1 |
20030167426 | Slobodnik | Sep 2003 | A1 |
20030222879 | Lin et al. | Dec 2003 | A1 |
20040017691 | Luk et al. | Jan 2004 | A1 |
20040066671 | Scheuerlein et al. | Apr 2004 | A1 |
20040073592 | Kim et al. | Apr 2004 | A1 |
20040073773 | Demjanenko | Apr 2004 | A1 |
20040085835 | Ahn et al. | May 2004 | A1 |
20040085840 | Vali et al. | May 2004 | A1 |
20040095826 | Perner | May 2004 | A1 |
20040154002 | Ball et al. | Aug 2004 | A1 |
20040205289 | Srinivasan | Oct 2004 | A1 |
20040240251 | Nozawa et al. | Dec 2004 | A1 |
20050015557 | Wang et al. | Jan 2005 | A1 |
20050078514 | Scheuerlein et al. | Apr 2005 | A1 |
20050097417 | Agrawal et al. | May 2005 | A1 |
20060047937 | Selvaggi et al. | Mar 2006 | A1 |
20060069849 | Rudelic | Mar 2006 | A1 |
20060146623 | Mizuno et al. | Jul 2006 | A1 |
20060149804 | Luick et al. | Jul 2006 | A1 |
20060181917 | Kang et al. | Aug 2006 | A1 |
20060215432 | Wickeraad et al. | Sep 2006 | A1 |
20060225072 | Lari et al. | Oct 2006 | A1 |
20060291282 | Liu et al. | Dec 2006 | A1 |
20070103986 | Chen | May 2007 | A1 |
20070109904 | Hong et al. | May 2007 | A1 |
20070171747 | Hunter et al. | Jul 2007 | A1 |
20070180006 | Gyoten et al. | Aug 2007 | A1 |
20070180184 | Sakashita et al. | Aug 2007 | A1 |
20070195602 | Fong et al. | Aug 2007 | A1 |
20070285131 | Sohn | Dec 2007 | A1 |
20070285979 | Turner | Dec 2007 | A1 |
20070291532 | Tsuji | Dec 2007 | A1 |
20080025073 | Arsovski | Jan 2008 | A1 |
20080037333 | Kim et al. | Feb 2008 | A1 |
20080052711 | Forin et al. | Feb 2008 | A1 |
20080137388 | Krishnan et al. | Jun 2008 | A1 |
20080165601 | Matick et al. | Jul 2008 | A1 |
20080178053 | Gorman et al. | Jul 2008 | A1 |
20080215937 | Dreibelbis et al. | Sep 2008 | A1 |
20080291760 | Ito et al. | Nov 2008 | A1 |
20090067218 | Graber | Mar 2009 | A1 |
20090154238 | Lee | Jun 2009 | A1 |
20090154273 | Borot et al. | Jun 2009 | A1 |
20090207679 | Takase | Aug 2009 | A1 |
20090231944 | Faue | Sep 2009 | A1 |
20090254697 | Akerib | Oct 2009 | A1 |
20100067296 | Li | Mar 2010 | A1 |
20100091582 | Vali et al. | Apr 2010 | A1 |
20100172190 | Lavi et al. | Jul 2010 | A1 |
20100210076 | Gruber et al. | Aug 2010 | A1 |
20100226183 | Kim | Sep 2010 | A1 |
20100308858 | Noda et al. | Dec 2010 | A1 |
20100332895 | Billing et al. | Dec 2010 | A1 |
20110002169 | Li et al. | Jan 2011 | A1 |
20110051523 | Manabe et al. | Mar 2011 | A1 |
20110063919 | Chandrasekhar et al. | Mar 2011 | A1 |
20110093662 | Walker et al. | Apr 2011 | A1 |
20110103151 | Kim et al. | May 2011 | A1 |
20110119467 | Cadambi et al. | May 2011 | A1 |
20110122695 | Li et al. | May 2011 | A1 |
20110140741 | Zerbe et al. | Jun 2011 | A1 |
20110219260 | Nobunaga et al. | Sep 2011 | A1 |
20110267883 | Lee et al. | Nov 2011 | A1 |
20110317496 | Bunce et al. | Dec 2011 | A1 |
20120005397 | Lim et al. | Jan 2012 | A1 |
20120017039 | Margetts | Jan 2012 | A1 |
20120023281 | Kawasaki et al. | Jan 2012 | A1 |
20120120705 | Mitsubori et al. | May 2012 | A1 |
20120134216 | Singh | May 2012 | A1 |
20120134225 | Chow | May 2012 | A1 |
20120134226 | Chow | May 2012 | A1 |
20120140540 | Agam et al. | Jun 2012 | A1 |
20120182798 | Hosono et al. | Jul 2012 | A1 |
20120195146 | Jun et al. | Aug 2012 | A1 |
20120198310 | Tran et al. | Aug 2012 | A1 |
20120246380 | Akerib et al. | Sep 2012 | A1 |
20120265964 | Murata et al. | Oct 2012 | A1 |
20120281486 | Rao et al. | Nov 2012 | A1 |
20120303627 | Keeton et al. | Nov 2012 | A1 |
20130003467 | Klein | Jan 2013 | A1 |
20130061006 | Hein | Mar 2013 | A1 |
20130107623 | Kavalipurapu et al. | May 2013 | A1 |
20130117541 | Choquette et al. | May 2013 | A1 |
20130124783 | Yoon et al. | May 2013 | A1 |
20130132702 | Patel et al. | May 2013 | A1 |
20130138646 | Sirer et al. | May 2013 | A1 |
20130163362 | Kim | Jun 2013 | A1 |
20130173888 | Hansen et al. | Jul 2013 | A1 |
20130205114 | Badam et al. | Aug 2013 | A1 |
20130219112 | Okin et al. | Aug 2013 | A1 |
20130227361 | Bowers et al. | Aug 2013 | A1 |
20130283122 | Anholt et al. | Oct 2013 | A1 |
20130286705 | Grover et al. | Oct 2013 | A1 |
20130326154 | Haswell | Dec 2013 | A1 |
20130332707 | Gueron et al. | Dec 2013 | A1 |
20130343140 | Sabbah | Dec 2013 | A1 |
20140119099 | Clark | May 2014 | A1 |
20140185395 | Seo | Jul 2014 | A1 |
20140215185 | Danielsen | Jul 2014 | A1 |
20140250279 | Manning | Sep 2014 | A1 |
20140344934 | Jorgensen | Nov 2014 | A1 |
20150029798 | Manning | Jan 2015 | A1 |
20150042380 | Manning | Feb 2015 | A1 |
20150063052 | Manning | Mar 2015 | A1 |
20150078108 | Cowles et al. | Mar 2015 | A1 |
20150120987 | Wheeler | Apr 2015 | A1 |
20150134713 | Wheeler | May 2015 | A1 |
20150270015 | Murphy et al. | Sep 2015 | A1 |
20150279466 | Manning | Oct 2015 | A1 |
20150324290 | Leidel | Nov 2015 | A1 |
20150325272 | Murphy | Nov 2015 | A1 |
20150356009 | Wheeler et al. | Dec 2015 | A1 |
20150356022 | Leidel et al. | Dec 2015 | A1 |
20150357007 | Manning et al. | Dec 2015 | A1 |
20150357008 | Manning et al. | Dec 2015 | A1 |
20150357019 | Wheeler et al. | Dec 2015 | A1 |
20150357020 | Manning | Dec 2015 | A1 |
20150357021 | Hush | Dec 2015 | A1 |
20150357022 | Hush | Dec 2015 | A1 |
20150357023 | Hush | Dec 2015 | A1 |
20150357024 | Hush et al. | Dec 2015 | A1 |
20150357047 | Tiwari | Dec 2015 | A1 |
20160062672 | Wheeler | Mar 2016 | A1 |
20160062673 | Tiwari | Mar 2016 | A1 |
20160062692 | Finkbeiner et al. | Mar 2016 | A1 |
20160062733 | Tiwari | Mar 2016 | A1 |
20160063284 | Tiwari | Mar 2016 | A1 |
20160064045 | La Fratta | Mar 2016 | A1 |
20160064047 | Tiwari | Mar 2016 | A1 |
20160098208 | Willcock | Apr 2016 | A1 |
20160098209 | Leidel et al. | Apr 2016 | A1 |
20160110135 | Wheeler et al. | Apr 2016 | A1 |
20160125919 | Hush | May 2016 | A1 |
20160154596 | Willcock et al. | Jun 2016 | A1 |
20160155482 | La Fratta | Jun 2016 | A1 |
20160188250 | Wheeler | Jun 2016 | A1 |
20160196142 | Wheeler et al. | Jul 2016 | A1 |
20160196856 | Tiwari et al. | Jul 2016 | A1 |
20160247549 | Takagiwa | Aug 2016 | A1 |
20160307609 | Harris et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
102141905 | Aug 2011 | CN |
104064214 | Sep 2014 | CN |
0214718 | Mar 1987 | EP |
1282130 | Feb 2003 | EP |
2026209 | Feb 2009 | EP |
0831168 | Feb 1996 | JP |
2009259193 | Mar 2015 | JP |
10-0211482 | Aug 1998 | KR |
10-2010-0134235 | Dec 2010 | KR |
10-2013-0049421 | May 2013 | KR |
201101329 | Jan 2011 | TW |
201303595 | Jan 2013 | TW |
I454910 | Oct 2014 | TW |
2001065359 | Sep 2001 | WO |
2010079451 | Jul 2010 | WO |
2013062596 | May 2013 | WO |
2013081588 | Jun 2013 | WO |
2013095592 | Jun 2013 | WO |
Entry |
---|
Draper et al., “A Prototype Processing-In-Memory (PIM) Chip for the Data-Intensive Architecture (DIVA) System”, Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 40, Issue 1, May 1, 2005, pp. 73-84. |
Extended European Search Report for related EP Application No. 16762198.6, dated Sep. 5, 2018, 9 pages. |
Office Action for related China Patent Application No. 201680012783.2, dated Mar. 4, 2020, 18 pages. |
Communication Pursuant to Article 94(3) EPC for related EP Application No. 16762198.6, dated Nov. 25, 2020, 7 pages. |
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7, Issue 3, IEEE Transactions on Dependable and Secure Computing. |
Stojmenovic, “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”, (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305. |
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html. |
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing. |
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage, 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs. |
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamtzis.com/cam/camintro. |
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41, No. 3, IEEE Journal of Solid-State Circuits. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.). |
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine. |
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures. |
Kogge, et al., “Processing In Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf. |
Draper, et al., “The Architecture of the DIVA Processing-In-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf. |
Adibi, et al., “Processing-In-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf. |
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.). |
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013, (25 pgs.). |
U.S. Appl. No. 13/774,636, entitled, “Memory as a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.). |
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.). |
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.). |
International Search Report and Written Opinion for related PCT Application No. PCT/US2016/020834, dated Jun. 29, 2016, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20210181969 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62132058 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15553920 | US | |
Child | 16519783 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16519783 | Jul 2019 | US |
Child | 17188987 | US |