The present disclosure relates generally to the field of semiconductor devices, and particular to a bonded assembly of a logic die and at least one memory die containing conductive via structures for providing electrical connections to electrically conductive layers and methods for forming the same.
A three-dimensional memory device including three-dimensional vertical NAND strings having one bit per cell are disclosed in an article by T. Endoh et al., titled “Novel Ultra High Density Memory With A Stacked-Surrounding Gate Transistor (S-SGT) Structured Cell”, IEDM Proc. (2001) 33-36.
According to an aspect of the present disclosure, a bonded assembly includes first memory die bonded to a logic die. The first memory die includes a first alternating stack of first insulating layers and first electrically conductive layers, first memory openings vertically extending through the first alternating stack, first memory opening fill structures located within the first memory openings and containing a respective vertical stack of first memory elements and a respective vertical semiconductor channel, electrically conductive first side-contact via structures vertically extending through each layer within the first alternating stack and contacting a sidewall of a respective one of the first electrically conductive layers, and first memory-side bonding pads. The logic die includes a peripheral circuitry configured to control operation of the first memory die, logic-side metal interconnect structures, and logic-side bonding pads that are bonded to the first memory-side bonding pads.
According to another aspect of the present disclosure, a method of forming a bonded assembly comprises providing a first memory die comprising a first alternating stack of first insulating layers and first electrically conductive layers, first memory openings vertically extending through the first alternating stack, first memory opening fill structures located within the first memory openings and comprising a respective vertical stack of first memory elements and a respective vertical semiconductor channel, electrically conductive first side-contact via structures vertically extending through each layer within the first alternating stack and contacting a sidewall of a respective one of the first electrically conductive layers, and first memory-side bonding pads; providing a logic die comprising a peripheral circuitry configured to control operation of the first memory die, logic-side metal interconnect structures, and logic-side bonding pads; and forming the bonded assembly by bonding the logic-side bonding pads to the first memory-side bonding pads.
According to an embodiment of the present disclosure, a bonded assembly comprises: a first memory die comprising a first alternating stack of first insulating layers and first electrically conductive layers, first memory opening fill structures located within first memory openings that vertically extend through the first alternating stack and comprising a respective vertical stack of first memory elements, a first stepped dielectric material portion contacting horizontal stepped surfaces of the first alternating stack, and first column-shaped conductive via structures comprising a respective conductive shaft portion vertically extending through a respective subset of the first electrically conductive layers, a respective conductive base portion connected to a first end of the respective conductive shaft portion, and a respective conductive capital portion connected to a second end of the respective conductive shaft portion and contacting the horizontal stepped surface of a respective one of the first electrically conductive layers; and a logic die comprising a driver circuit, logic-side metal interconnect structures embedded within logic-side dielectric material layers, and logic-side bonding pads that are bonded to the first column-shaped conductive via structures.
According to another embodiment of the present disclosure, a method for forming a bonded assembly is provided, which comprises: providing a first memory die, wherein the first memory die comprises a first alternating stack of first insulating layers and first electrically conductive layers, first memory opening fill structures located within first memory openings that vertically extend through the first alternating stack and comprising a respective vertical stack of first memory elements, a first stepped dielectric material portion contacting horizontal stepped surfaces of the first alternating stack, and first column-shaped conductive via structures comprising a respective conductive shaft portion vertically extending through a respective subset of the first electrically conductive layers, a respective conductive base portion connected to a first end of the respective conductive shaft portion, and a respective conductive capital portion connected to a second end of the respective conductive shaft portion and contacting the horizontal stepped surface of a respective one of the first electrically conductive layers; providing a logic die comprising a driver circuit, logic-side metal interconnect structures embedded within logic-side dielectric material layers, and logic-side bonding pads; and bonding the logic-side bonding pads to the conductive base portions of the first column-shaped conductive via structures.
The performance of a memory package may be enhanced by bonding at least one memory die with a logic die including a peripheral circuitry for operating the three-dimensional memory array(s) within the at least one memory die. Embodiments of the present disclosure are directed to a bonded assembly of a logic die and at least one memory die containing conductive via structures for providing electrical connections to electrically conductive layers and methods for forming the same, the various aspects of which are described herein in detail.
The drawings are not drawn to scale. Multiple instances of an element may be duplicated where a single instance of the element is illustrated, unless absence of duplication of elements is expressly described or clearly indicated otherwise. Ordinals such as “first,” “second,” and “third” are employed merely to identify similar elements, and different ordinals may be employed across the specification and the claims of the instant disclosure. The term “at least one” element refers to all possibilities including the possibility of a single element and the possibility of multiple elements
The same reference numerals refer to the same element or similar element. Unless otherwise indicated, elements having the same reference numerals are presumed to have the same composition and the same function. Unless otherwise indicated, a “contact” between elements refers to a direct contact between elements that provides an edge or a surface shared by the elements. If two or more elements are not in direct contact with each other or among one another, the two elements are “disjoined from” each other or “disjoined among” one another. As used herein, a first element located “on” a second element can be located on the exterior side of a surface of the second element or on the interior side of the second element. As used herein, a first element is located “directly on” a second element if there exist a physical contact between a surface of the first element and a surface of the second element. As used herein, a first element is “electrically connected to” a second element if there exists a conductive path consisting of at least one conductive material between the first element and the second element. As used herein, a “prototype” structure or an “in-process” structure refers to a transient structure that is subsequently modified in the shape or composition of at least one component therein.
As used herein, a first surface and a second surface are “vertically coincident” with each other if the second surface overlies or underlies the first surface and there exists a vertical plane or a substantially vertical plane that includes the first surface and the second surface. A substantially vertical plane is a plane that extends straight along a direction that deviates from a vertical direction by an angle less than 5 degrees. A vertical plane or a substantially vertical plane is straight along a vertical direction or a substantially vertical direction, and may, or may not, include a curvature along a direction that is perpendicular to the vertical direction or the substantially vertical direction.
As used herein, a “memory level” or a “memory array level” refers to the level corresponding to a general region between a first horizontal plane (i.e., a plane parallel to the top surface of the substrate) including topmost surfaces of an array of memory elements and a second horizontal plane including bottommost surfaces of the array of memory elements. As used herein, a “through-stack” element refers to an element that vertically extends through a memory level.
As used herein, a “semiconducting material” refers to a material having electrical conductivity in the range from 1.0×10−5 S/m to 1.0×105 S/m. As used herein, a “semiconductor material” refers to a material having electrical conductivity in the range from 1.0×10−5 S/m to 1.0 S/m in the absence of electrical dopants therein, and is capable of producing a doped material having electrical conductivity in a range from 1.0 S/m to 1.0×105 S/m upon suitable doping with an electrical dopant. As used herein, an “electrical dopant” refers to a p-type dopant that adds a hole to a valence band within a band structure, or an n-type dopant that adds an electron to a conduction band within a band structure. As used herein, a “conductive material” refers to a material having electrical conductivity greater than 1.0×105 S/m. As used herein, an “insulator material” or a “dielectric material” refers to a material having electrical conductivity less than 1.0×10−5 S/m. As used herein, a “heavily doped semiconductor material” refers to a semiconductor material that is doped with electrical dopant at a sufficiently high atomic concentration to become a conductive material either as formed as a crystalline material or if converted into a crystalline material through an anneal process (for example, from an initial amorphous state), i.e., to have electrical conductivity greater than 1.0×105 S/m. A “doped semiconductor material” may be a heavily doped semiconductor material, or may be a semiconductor material that includes electrical dopants (i.e., p-type dopants and/or n-type dopants) at a concentration that provides electrical conductivity in the range from 1.0×10−5 S/m to 1.0×105 S/m. An “intrinsic semiconductor material” refers to a semiconductor material that is not doped with electrical dopants. Thus, a semiconductor material may be semiconducting or conductive, and may be an intrinsic semiconductor material or a doped semiconductor material. A doped semiconductor material may be semiconducting or conductive depending on the atomic concentration of electrical dopants therein. As used herein, a “metallic material” refers to a conductive material including at least one metallic element therein. All measurements for electrical conductivities are made at the standard condition.
Generally, a semiconductor package (or a “package”) refers to a unit semiconductor device that may be attached to a circuit board through a set of pins or solder balls. A semiconductor package may include a semiconductor chip (or a “chip”) or a plurality of semiconductor chips that are bonded throughout, for example, by flip-chip bonding or another chip-to-chip bonding. A package or a chip may include a single semiconductor die (or a “die”) or a plurality of semiconductor dies. A die is the smallest unit that may independently execute external commands or report status. Typically, a package or a chip with multiple dies is capable of simultaneously executing as many number of external commands as the total number of dies therein. Each die includes one or more planes. Identical concurrent operations may be executed in each plane within a same die, although there may be some restrictions. In case a die is a memory die, i.e., a die including memory elements, concurrent read operations, concurrent write operations, or concurrent erase operations may be performed in each plane within a same memory die. In a memory die, each plane contains a number of memory blocks (or “blocks”), which are the smallest unit that may be erased by in a single erase operation. Each memory block contains a number of pages, which are the smallest units that may be selected for programming. A page is also the smallest unit that may be selected to a read operation.
Referring to
The optional planar conductive material layer 6, if present, provides a high conductivity conduction path for electrical current that flows into, or out of, the in-process source-level material layers 10′. The optional planar conductive material layer 6 includes a conductive material such as a metal or a heavily doped semiconductor material. The optional planar conductive material layer 6, for example, may include a tungsten layer having a thickness in a range from 3 nm to 100 nm, although lesser and greater thicknesses can also be employed. A metal nitride layer (not shown) may be provided as a diffusion barrier layer on top of the planar conductive material layer 6. The planar conductive material layer 6 may function as a special source line in the completed device. The optional planar conductive material layer 6 can include a metallic compound material such as a conductive metallic nitride (e.g., Tin) and/or a metal (e.g., W). The thickness of the optional planar conductive material layer 6 may be in a range from 5 nm to 100 nm, although lesser and greater thicknesses can also be employed.
The in-process source-level material layers 10′ can include various layers that are subsequently modified to form source-level material layers. The source-level material layers, upon formation, include a buried source layer that functions as a common source region for vertical field effect transistors of a three-dimensional memory device. In one embodiment, the in-process source-level material layer 10′ can include, from bottom to top, a lower source layer 112, a lower sacrificial liner 103, a source-level sacrificial layer 104, an upper sacrificial liner 105, an upper source layer 116, a source-level insulating layer 117, and an optional source selective level conductive layer 118.
The lower source layer 112 and the upper source layer 116 can include a doped semiconductor material such as doped polysilicon or doped amorphous silicon. The conductivity type of the lower source layer 112 and the upper source layer 116 can be the opposite of the conductivity of vertical semiconductor channels to be subsequently formed. For example, if the vertical semiconductor channels to be subsequently formed have a doping of a first conductivity type, the lower source layer 112 and the upper source layer 116 have a doping of a second conductivity type that is the opposite of the first conductivity type. The thickness of each of the lower source layer 112 and the upper source layer 116 can be in a range from 10 nm to 300 nm, such as from 20 nm to 150 nm, although lesser and greater thicknesses can also be employed.
The source-level sacrificial layer 104 includes a sacrificial material that can be removed selective to the lower sacrificial liner 103 and the upper sacrificial liner 105. In one embodiment, the source-level sacrificial layer 104 can include a semiconductor material such as undoped amorphous silicon or a silicon-germanium alloy with an atomic concentration of germanium greater than 20%. The thickness of the source-level sacrificial layer 104 can be in a range from 30 nm to 400 nm, such as from 60 nm to 200 nm, although lesser and greater thicknesses can also be employed.
The lower sacrificial liner 103 and the upper sacrificial liner 105 include materials that can function as an etch stop material during removal of the source-level sacrificial layer 104. For example, the lower sacrificial liner 103 and the upper sacrificial liner 105 can include silicon oxide, silicon nitride, and/or a dielectric metal oxide. In one embodiment, each of the lower sacrificial liner 103 and the upper sacrificial liner 105 can include a silicon oxide layer having a thickness in a range from 2 nm to 30 nm, although lesser and greater thicknesses can also be employed.
The source-level insulating layer 117 includes a dielectric material such as silicon oxide. The thickness of the source-level insulating layer 117 can be in a range from 20 nm to 400 nm, such as from 40 nm to 200 nm, although lesser and greater thicknesses can also be employed. The optional source selective level conductive layer 118 can include a conductive material that can be employed as a source-select-level gate electrode. For example, the optional source-select-level conductive layer 118 can include a doped semiconductor material such as doped polysilicon or doped amorphous silicon that can be subsequently converted into doped polysilicon by an anneal process. The thickness of the optional source-level conductive layer 118 can be in a range from 30 nm to 200 nm, such as from 60 nm to 100 nm, although lesser and greater thicknesses can also be employed.
The optional planar conductive material layer 6 and the in-process source-level material layers 10′ may be patterned to provide openings in areas in which through-stack contact via structures and through-dielectric contact via structures are to be subsequently formed. Patterned portions of the stack of the planar conductive material layer 6 and the in-process source-level material layers 10′ are present in each memory array region 100 in which three-dimensional memory stack structures are to be subsequently formed. In one embodiment, openings in the optional planar conductive material layer 6 and the in-process source-level material layers 10′ can be formed within the area of a staircase region 200 in which contact via structures contacting word line electrically conductive layers are to be subsequently formed. In one embodiment, additional openings in the optional planar conductive material layer 6 and the in-process source-level material layers 10′ can be formed within the area of a memory array region 100, in which a three-dimensional memory array including memory stack structures is to be subsequently formed. An additional dielectric material may be deposited around the patterned planar conductive material layer 6 and the in-process source-level material layers 10′, and can be incorporated into the dielectric buffer layer 768. An optional peripheral region 400 that is subsequently filled with a field dielectric material portion can be provided adjacent to the staircase region 200.
Referring to
The first-tier alternating stack can include first insulating layers 132 as the first material layers, and first spacer material layers as the second material layers. In one embodiment, the first spacer material layers can be sacrificial material layers that are subsequently replaced with electrically conductive layers. In another embodiment, the first spacer material layers can be electrically conductive layers that are not subsequently replaced with other layers. While the present disclosure is described employing embodiments in which sacrificial material layers are replaced with electrically conductive layers, embodiments in which the spacer material layers are formed as electrically conductive layers (thereby obviating the need to perform replacement processes) are expressly contemplated herein.
In one embodiment, the first material layers and the second material layers can be first insulating layers 132 and first sacrificial material layers 142, respectively. In one embodiment, each first insulating layer 132 can include a first insulating material, and each first sacrificial material layer 142 can include a first sacrificial material. An alternating plurality of first insulating layers 132 and first sacrificial material layers 142 is formed over the in-process source-level material layers. As used herein, a “sacrificial material” refers to a material that is removed during a subsequent processing step.
As used herein, an alternating stack of first elements and second elements refers to a structure in which instances of the first elements and instances of the second elements alternate. Each instance of the first elements that is not an end element of the alternating plurality is adjoined by two instances of the second elements on both sides, and each instance of the second elements that is not an end element of the alternating plurality is adjoined by two instances of the first elements on both ends. The first elements may have the same thickness there amongst, or may have different thicknesses. The second elements may have the same thickness there amongst, or may have different thicknesses. The alternating plurality of first material layers and second material layers may begin with an instance of the first material layers or with an instance of the second material layers, and may end with an instance of the first material layers or with an instance of the second material layers. In one embodiment, an instance of the first elements and an instance of the second elements may form a unit that is repeated with periodicity within the alternating plurality.
The first-tier alternating stack (132, 142) can include first insulating layers 132 composed of the first material, and first sacrificial material layers 142 composed of the second material, which is different from the first material. The first material of the first insulating layers 132 can be at least one insulating material. Insulating materials that can be employed for the first insulating layers 132 include, but are not limited to silicon oxide (including doped or undoped silicate glass), silicon nitride, silicon oxynitride, organ silicate glass (OSG), spin-on dielectric materials, dielectric metal oxides that are commonly known as high dielectric constant (high-k) dielectric oxides (e.g., aluminum oxide, hafnium oxide, etc.) and silicates thereof, dielectric metal oxynitrides and silicates thereof, and organic insulating materials. In one embodiment, the first material of the first insulating layers 132 can be silicon oxide.
The second material of the first sacrificial material layers 142 is a sacrificial material that can be removed selective to the first material of the first insulating layers 132. As used herein, a removal of a first material is “selective to” a second material if the removal process removes the first material at a rate that is at least twice the rate of removal of the second material. The ratio of the rate of removal of the first material to the rate of removal of the second material is herein referred to as a “selectivity” of the removal process for the first material with respect to the second material.
The first sacrificial material layers 142 may comprise an insulating material, a semiconductor material, or a conductive material. The second material of the first sacrificial material layers 142 can be subsequently replaced with electrically conductive electrodes which can function, for example, as control gate electrodes of a vertical NAND device. In one embodiment, the first sacrificial material layers 142 can be material layers that comprise silicon nitride.
In one embodiment, the first insulating layers 132 can include silicon oxide, and sacrificial material layers can include silicon nitride sacrificial material layers. The first material of the first insulating layers 132 can be deposited, for example, by chemical vapor deposition (CVD). For example, if silicon oxide is employed for the first insulating layers 132, tetraethyl orthosilicate (TEOS) can be employed as the precursor material for the CVD process. The second material of the first sacrificial material layers 142 can be formed, for example, CVD or atomic layer deposition (ALD).
The thicknesses of the first insulating layers 132 and the first sacrificial material layers 142 can be in a range from 20 nm to 50 nm, although lesser and greater thicknesses can be employed for each first insulating layer 132 and for each first sacrificial material layer 142. The number of repetitions of the pairs of a first insulating layer 132 and a first sacrificial material layer 142 can be in a range from 2 to 1,024, and typically from 8 to 256, although a greater number of repetitions can also be employed. In one embodiment, each first sacrificial material layer 142 in the first-tier alternating stack (132, 142) can have a uniform thickness that is substantially invariant within each respective first sacrificial material layer 142.
A first insulating cap layer 170 is subsequently formed over the alternating stack (132, 142). The first insulating cap layer 170 includes a dielectric material, which can be any dielectric material that can be employed for the first insulating layers 132. In one embodiment, the first insulating cap layer 170 includes the same dielectric material as the first insulating layers 132. The thickness of the insulating cap layer 170 can be in a range from 20 nm to 300 nm, although lesser and greater thicknesses can also be employed.
Referring to
Referring to
An inter-tier dielectric layer 180 may be optionally deposited over the first-tier structure (132, 142, 165, 170). The inter-tier dielectric layer 180 includes a dielectric material such as silicon oxide. In one embodiment, the inter-tier dielectric layer 180 can include a doped silicate glass having a greater etch rate than the material of the first insulating layers 132 (which can include an undoped silicate glass). For example, the inter-tier dielectric layer 180 can include phospholipase glass. The thickness of the inter-tier dielectric layer 180 can be in a range from 30 nm to 300 nm, although lesser and greater thicknesses can also be employed.
Referring to
In one embodiment, the chemistry of the anisotropic etch process employed to etch through the materials of the first-tier alternating stack (132, 142) can alternate to optimize etching of the first and second materials in the first-tier alternating stack (132, 142). The anisotropic etch can be, for example, a series of reactive ion etches or a single etch (e.g., CF4/O2/Ar etch). The sidewalls of the first-tier memory openings 149 can be substantially vertical, or can be tapered. Subsequently, the patterned lithographic material stack can be subsequently removed, for example, by ashing.
Optionally, the portions of the first-tier memory openings 149 at the level of the inter-tier dielectric layer 180 can be laterally expanded by an isotropic etch.
Referring to
Portions of the deposited sacrificial material can be removed from above the first insulating cap layer 170 (and the optional inter-tier dielectric layer 180, if present). For example, the sacrificial fill material layer can be recessed to a top surface of the first insulating cap layer 170 (and the optional inter-tier dielectric layer 180) employing a planarization process. The planarization process can include a recess etch, chemical mechanical planarization (CMP), or a combination thereof. The top surface of the first insulating layer 170 (and optionally layer 180 if present) can be employed as an etch stop layer or a planarization stop layer. Each remaining portion of the sacrificial material in a first-tier memory opening 149 constitutes a sacrificial memory opening fill portion 148. The top surfaces of the sacrificial memory opening fill portions 148 can be coplanar with the top surface of the inter-tier dielectric layer 180 (or the first insulating cap layer 170 if the inter-tier dielectric layer 180 is not present). The sacrificial memory opening fill portion 148 may, or may not, include cavities therein.
Referring to
In one embodiment, the third material layers can be second insulating layers 232 and the fourth material layers can be second spacer material layers that provide vertical spacing between each vertically neighboring pair of the second insulating layers 232. In one embodiment, the third material layers and the fourth material layers can be second insulating layers 232 and second sacrificial material layers 242, respectively. The third material of the second insulating layers 232 may be at least one insulating material. The fourth material of the second sacrificial material layers 242 may be a sacrificial material that can be removed selective to the third material of the second insulating layers 232. The second sacrificial material layers 242 may comprise an insulating material, a semiconductor material, or a conductive material. The fourth material of the second sacrificial material layers 242 can be subsequently replaced with electrically conductive electrodes which can function, for example, as control gate electrodes of a vertical NAND device.
In one embodiment, each second insulating layer 232 can include a second insulating material, and each second sacrificial material layer 242 can include a second sacrificial material. In this case, the second stack (232, 242) can include an alternating plurality of second insulating layers 232 and second sacrificial material layers 242. The third material of the second insulating layers 232 can be deposited, for example, by chemical vapor deposition (CVD). The fourth material of the second sacrificial material layers 242 can be formed, for example, CVD or atomic layer deposition (ALD).
The third material of the second insulating layers 232 can be at least one insulating material. Insulating materials that can be employed for the second insulating layers 232 can be any material that can be employed for the first insulating layers 132. The fourth material of the second sacrificial material layers 242 is a sacrificial material that can be removed selective to the third material of the second insulating layers 232. Sacrificial materials that can be employed for the second sacrificial material layers 242 can be any material that can be employed for the first sacrificial material layers 142. In one embodiment, the second insulating material can be the same as the first insulating material, and the second sacrificial material can be the same as the first sacrificial material.
The thicknesses of the second insulating layers 232 and the second sacrificial material layers 242 can be in a range from 20 nm to 50 nm, although lesser and greater thicknesses can be employed for each second insulating layer 232 and for each second sacrificial material layer 242. The number of repetitions of the pairs of a second insulating layer 232 and a second sacrificial material layer 242 can be in a range from 2 to 1,024, and typically from 8 to 256, although a greater number of repetitions can also be employed. In one embodiment, each second sacrificial material layer 242 in the second stack (232, 242) can have a uniform thickness that is substantially invariant within each respective second sacrificial material layer 242.
Second stepped surfaces in the second stepped area can be formed in the staircase region 200 employing a same set of processing steps as the processing steps employed to form the first stepped surfaces in the first stepped area with suitable adjustment to the pattern of at least one masking layer. A second retro-stepped dielectric material portion 265 can be formed over the second stepped surfaces in the staircase region 200.
A second insulating cap layer 270 can be subsequently formed over the second alternating stack (232, 242). The second insulating cap layer 270 includes a dielectric material that is different from the material of the second sacrificial material layers 242. In one embodiment, the second insulating cap layer 270 can include silicon oxide. In one embodiment, the first and second sacrificial material layers (142, 242) can comprise silicon nitride.
Generally speaking, at least one alternating stack of insulating layers (132, 232) and spacer material layers (such as sacrificial material layers (142, 242)) can be formed over the in-process source-level material layers 10′, and at least one retro-stepped dielectric material portion (165, 265) can be formed over the staircase regions on the at least one alternating stack (132, 142, 232, 242).
Optionally, drain-select-level isolation structures 72 can be formed through a subset of layers in an upper portion of the second-tier alternating stack (232, 242). The second sacrificial material layers 242 that are cut by the select-drain-level shallow trench isolation structures 72 correspond to the levels in which drain-select-level electrically conductive layers are subsequently formed. The drain-select-level isolation structures 72 include a dielectric material such as silicon oxide. The drain-select-level isolation structures 72 can laterally extend along a first horizontal direction hd1, and can be laterally spaced apart along a second horizontal direction hd2 that is perpendicular to the first horizontal direction hd1.
Referring to
Referring to
Referring to
Referring to
Non-limiting examples of dielectric metal oxides include aluminum oxide (Al2O3), hafnium oxide (HfO2), lanthanum oxide (LaO2), yttrium oxide (Y2O3), tantalum oxide (Ta2O5), silicates thereof, nitrogen-doped compounds thereof, alloys thereof, and stacks thereof. The dielectric metal oxide layer can be deposited, for example, by chemical vapor deposition (CVD), atomic layer deposition (ALD), pulsed laser deposition (PLD), liquid source misted chemical deposition, or a combination thereof. The thickness of the dielectric metal oxide layer can be in a range from 1 nm to 20 nm, although lesser and greater thicknesses can also be employed. The dielectric metal oxide layer can subsequently function as a dielectric material portion that blocks leakage of stored electrical charges to control gate electrodes. In one embodiment, the blocking dielectric layer 52 includes aluminum oxide. In one embodiment, the blocking dielectric layer 52 can include multiple dielectric metal oxide layers having different material compositions.
Alternatively or additionally, the blocking dielectric layer 52 can include a dielectric semiconductor compound such as silicon oxide, silicon oxynitride, silicon nitride, or a combination thereof. In one embodiment, the blocking dielectric layer 52 can include silicon oxide. In this case, the dielectric semiconductor compound of the blocking dielectric layer 52 can be formed by a conformal deposition method such as low pressure chemical vapor deposition, atomic layer deposition, or a combination thereof. The thickness of the dielectric semiconductor compound can be in a range from 1 nm to 20 nm, although lesser and greater thicknesses can also be employed. Alternatively, the blocking dielectric layer 52 can be omitted, and a backside blocking dielectric layer can be formed after formation of backside recesses on surfaces of memory films to be subsequently formed.
Subsequently, the charge storage layer 54 can be formed. In one embodiment, the charge storage layer 54 can be a continuous layer or patterned discrete portions of a charge trapping material including a dielectric charge trapping material, which can be, for example, silicon nitride. Alternatively, the charge storage layer 54 can include a continuous layer or patterned discrete portions of a conductive material such as doped polysilicon or a metallic material that is patterned into multiple electrically isolated portions (e.g., floating gates), for example, by being formed within lateral recesses into sacrificial material layers (142, 242). In one embodiment, the charge storage layer 54 includes a silicon nitride layer. In one embodiment, the sacrificial material layers (142, 242) and the insulating layers (132, 232) can have vertically coincident sidewalls, and the charge storage layer 54 can be formed as a single continuous layer.
In another embodiment, the sacrificial material layers (142, 242) can be laterally recessed with respect to the sidewalls of the insulating layers (132, 232), and a combination of a deposition process and an anisotropic etch process can be employed to form the charge storage layer 54 as a plurality of memory material portions that are vertically spaced apart. While the present disclosure is described employing an embodiment in which the charge storage layer 54 is a single continuous layer, embodiments are expressly contemplated herein in which the charge storage layer 54 is replaced with a plurality of memory material portions (which can be charge trapping material portions or electrically isolated conductive material portions) that are vertically spaced apart.
The charge storage layer 54 can be formed as a single charge storage layer of homogeneous composition, or can include a stack of multiple charge storage layers. The multiple charge storage layers, if employed, can comprise a plurality of spaced-apart floating gate material layers that contain conductive materials (e.g., metal such as tungsten, molybdenum, tantalum, titanium, platinum, ruthenium, and alloys thereof, or a metal silicide such as tungsten silicide, molybdenum silicide, tantalum silicide, titanium silicide, nickel silicide, cobalt silicide, or a combination thereof) and/or semiconductor materials (e.g., polycrystalline or amorphous semiconductor material including at least one elemental semiconductor element or at least one compound semiconductor material). Alternatively or additionally, the charge storage layer 54 may comprise an insulating charge trapping material, such as one or more silicon nitride segments. Alternatively, the charge storage layer 54 may comprise conductive nanoparticles such as metal nanoparticles, which can be, for example, ruthenium nanoparticles. The charge storage layer 54 can be formed, for example, by chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), or any suitable deposition technique for storing electrical charges therein. The thickness of the charge storage layer 54 can be in a range from 2 nm to 20 nm, although lesser and greater thicknesses can also be employed.
The tunneling dielectric layer 56 includes a dielectric material through which charge tunneling can be performed under suitable electrical bias conditions. The charge tunneling may be performed through hot-carrier injection or by Fowler-Nordheim tunneling induced charge transfer depending on the mode of operation of the monolithic three-dimensional NAND string memory device to be formed. The tunneling dielectric layer 56 can include silicon oxide, silicon nitride, silicon oxynitride, dielectric metal oxides (such as aluminum oxide and hafnium oxide), dielectric metal oxynitride, dielectric metal silicates, alloys thereof, and/or combinations thereof. In one embodiment, the tunneling dielectric layer 56 can include a stack of a first silicon oxide layer, a silicon oxynitride layer, and a second silicon oxide layer, which is commonly known as an ONO stack. In one embodiment, the tunneling dielectric layer 56 can include a silicon oxide layer that is substantially free of carbon or a silicon oxynitride layer that is substantially free of carbon. The thickness of the tunneling dielectric layer 56 can be in a range from 2 nm to 20 nm, although lesser and greater thicknesses can also be employed. The stack of the blocking dielectric layer 52, the charge storage layer 54, and the tunneling dielectric layer 56 constitutes a memory film 50 that stores memory bits.
The semiconductor channel material layer 60L includes a semiconductor material such as at least one elemental semiconductor material, at least one III-V compound semiconductor material, at least one II-VI compound semiconductor material, at least one organic semiconductor material, or other semiconductor materials known in the art. In one embodiment, the semiconductor channel material layer 60L includes amorphous silicon or polysilicon. The semiconductor channel material layer 60L can be formed by a conformal deposition method such as low pressure chemical vapor deposition (LPCVD). The thickness of the semiconductor channel material layer 60L can be in a range from 2 nm to 10 nm, although lesser and greater thicknesses can also be employed. A cavity 49′ is formed in the volume of each memory opening 49 that is not filled with the deposited material layers (52, 54, 56, 60L).
Referring to
Referring to
Each remaining portion of the doped semiconductor material having a doping of the second conductivity type constitutes a drain region 63. The drain regions 63 can have a doping of a second conductivity type that is the opposite of the first conductivity type. For example, if the first conductivity type is p-type, the second conductivity type is n-type, and vice versa. The dopant concentration in the drain regions 63 can be in a range from 5.0×1019/cm3 to 2.0×1021/cm3, although lesser and greater dopant concentrations can also be employed. The doped semiconductor material can be, for example, doped polysilicon.
Each remaining portion of the semiconductor channel material layer 60L constitutes a vertical semiconductor channel 60 through which electrical current can flow when a vertical NAND device including the vertical semiconductor channel 60 is turned on. A tunneling dielectric layer 56 is surrounded by a charge storage layer 54, and laterally surrounds a vertical semiconductor channel 60. Each adjoining set of a blocking dielectric layer 52, a charge storage layer 54, and a tunneling dielectric layer 56 collectively constitute a memory film 50, which can store electrical charges with a macroscopic retention time. In some embodiments, a blocking dielectric layer 52 may not be present in the memory film 50 at this step, and a blocking dielectric layer may be subsequently formed after formation of backside recesses. As used herein, a macroscopic retention time refers to a retention time suitable for operation of a memory device as a permanent memory device such as a retention time in excess of 24 hours.
Each combination of a memory film 50 and a vertical semiconductor channel 60 within a memory opening 49 constitutes a memory stack structure 55. The memory stack structure 55 is a combination of a vertical semiconductor channel 60, a tunneling dielectric layer 56, a plurality of memory elements comprising portions of the charge storage layer 54, and an optional blocking dielectric layer 52. Each combination of a memory stack structure 55, a dielectric core 62, and a drain region 63 within a memory opening 49 constitutes a memory opening fill structure 58. The in-process source-level material layers 10′, the first-tier structure (132, 142, 170, 165), the second-tier structure (232, 242, 270, 265), the inter-tier dielectric layer 180, and the memory opening fill structures 58 collectively constitute a memory-level assembly.
Referring to
Referring to
Through-stack via cavities can be formed with the memory array region 100, for example, by applying and patterning of a photoresist layer to form openings therein, and by anisotropically etching the portions of the first contact level dielectric layer 280, the alternating stacks (132, 146, 232, 246), and the dielectric buffer layer 768 that underlie the openings in the photoresist layer. In one embodiment, each of the through-stack via cavities can be formed within a respective three-dimensional memory array so that each through-stack via cavities is laterally surrounded by memory opening fill structures 58. In one embodiment, one or more of the through-stack via cavities can be formed through the drain-select-level isolation structures 72. However, other locations may also be selected. In one embodiment, the first-through-stack via cavities can be formed within areas of openings in the in-process source-level material layers 10′ and the optional planar conductive material layer 6.
A dielectric material is deposited in the through-stack via cavities. The dielectric material can include a silicon-oxide based material such as undoped silicate glass, doped silicate glass, or a flowable oxide material. The dielectric material can be deposited by a conformal deposition method such as chemical vapor deposition or spin coating. A void may be formed within an unfilled portion of each through-stack via cavity. Excess portion of the deposited dielectric material may be removed from above a horizontal plane including the top surface of the first contact level dielectric layer 280, for example, by chemical mechanical planarization or a recess etch. Each remaining dielectric material portion filling a respective one of the through-stack via cavity constitutes a through-stack insulating material portion 576. The through-stack insulating material portions 576 contact sidewalls of the alternating stacks (132, 146, 232, 246).
Referring to
The various contact via cavities (183, 483, 583) that are formed through the memory-level assembly include staircase region via cavities 183 that extends through a respective one of the horizontal surfaces of the stepped surfaces in the staircase region 200, peripheral region via cavities 483 that extend through the retro-stepped dielectric material portions (265, 165) in the peripheral region 400, and array region via cavities 583 that are formed through a respective one of the through-stack insulating material portions 576 in the memory array region 100. In one embodiment, each of the various contact via cavities (183, 483, 583) can be a cylindrical via cavity. As used herein, a “cylindrical via cavity” refers to a via cavity having only a straight sidewall or straight sidewalls such that each straight sidewall is vertical or substantially vertical. As used herein, a surface is “substantially vertical” if the taper angle of the surface with respect to a vertical direction is less than 5 degrees. Each staircase region via cavity 183 is a cylindrical via cavity that extends through a second retro-stepped dielectric material portion 265 and a subset of layers within the second alternating stack (232, 242) and the first alternating stack (132, 142) and over the first carrier substrate 908. A top surface of a respective one of the first carrier substrate 908 can be physically exposed at the bottom of each of the various contact via cavities (183, 483, 583).
Referring to
In one embodiment, the retro-stepped dielectric material portions (165, 265) can include a same dielectric material or a similar dielectric material as the insulating layers (132, 232). For example, the first and second insulating layers (132, 232) can include undoped silicate glass, and the retro-stepped dielectric material portions (165, 265) can include undoped silicate glass or doped silicate glass. In this case, the ribbed via cavities 183′ can be formed from the cylindrical staircase region via cavities 183 by etching materials of the retro-stepped dielectric material portions (165, 265) and the insulating layers (132, 232) selective to the spacer material layers (i.e., the first and second sacrificial material layers (142, 242)).
In one embodiment, the dielectric materials of the first contact level dielectric layer 270, the first and second insulating cap layers (170, 270), the first and second retro-stepped dielectric material portions (165, 265), and the insulating layers (132, 232) can comprise silicon oxide materials (such as undoped silicate glass and various doped silicate glasses), and the first and second sacrificial material layers (142, 242) can include a sacrificial material that is not a silicate glass material (such as silicon nitride or a semiconductor material). In this case, the isotropic etch process can etch the dielectric materials of the first contact level dielectric layer 270, the first and second insulating cap layers (170, 270), the first and second retro-stepped dielectric material portions (165, 265), and the insulating layers (132, 232) can be etched selective to the materials of the first and second sacrificial material layers (142, 242) to form the ribbed via cavities 183′.
In one embodiment, the spacer material layers of the alternating stacks (132, 142, 232, 242) can include sacrificial material layers (142, 242) that are composed of silicon nitride, and the insulating layers (132, 232) and the retro-stepped dielectric material portions (265, 165) can include silicon oxide materials. In this case, the retro-stepped dielectric material portions (165, 265) and each insulating layer (132, 232) physically exposed to the staircase region via cavities 183 can be isotropically recessed by a wet etch process employing hydrofluoric acid. Each ribbed via cavity 183′ can include a ribbed cavity region extending through the alternating stacks (132, 142, 232, 242), an overlying cavity laterally surrounded by the second retro-stepped dielectric material portion 265 and optionally by the first retro-stepped dielectric material portion 165 (in case the ribbed via cavity 183′ extends only through the first-tier alternating stack (132, 142) and does not extend through the second-tier alternating stack (232, 242)), an underlying cavity that underlies the alternating stacks (132, 142, 232, 242), and annular recesses AR, or rib regions, formed at levels of insulating layers (132, 232) in the subset of layers within the alternating stacks (132, 142, 232, 242) through which the ribbed via cavity 183′ vertically extends.
Each of the peripheral region via cavities 483 and the array region via cavities 583 can be isotropically expanded laterally to form expanded peripheral region via cavities 483′ and expanded array region via cavities 583′. In one embodiment, the dielectric materials of the first contact level dielectric layer 280, the first and second insulating cap layers (170, 270), the first and second retro-stepped dielectric material portions (165, 265), and the insulating layers (132, 232) can include a same dielectric material such as undoped silicate glass, and the peripheral region via cavities 483′ and the expanded array region via cavities 583′ can be cylindrical cavities. Alternatively, the dielectric materials of the first contact level dielectric layer 280, the first and second insulating cap layers (170, 270), the first and second retro-stepped dielectric material portions (165, 265), and the insulating layers (132, 232) can have different etch rates during the isotropic etch process, and the peripheral region via cavities 483′ and expanded array region via cavities 583′ may include lateral steps having a lesser lateral dimension than the recess distance by which the sacrificial material layers (142, 242) are laterally recessed.
Referring to
Referring to
Each remaining portion of the sacrificial material filling the voids constitutes a sacrificial via fill material portion (16, 484, 584). The sacrificial via fill material portions (16, 484, 584) include staircase region sacrificial via fill material portions 16 formed in the staircase region via cavities, peripheral region sacrificial via fill material portions 484 formed in the peripheral region via cavities, and array region sacrificial via fill material portions 584 formed in the array region via cavities. Each remaining portion of the conformal dielectric via liner 486L in the various via cavities constitute a conformal insulating liner (84, 486, 586). The conformal insulating liners (84, 486, 586) include staircase region conformal dielectric via liners 84, peripheral region conformal insulating liners 486, and array region conformal insulating liners 586. Each staircase region conformal dielectric via liner 84 can include neck portion 84N that vertically extends through a respective subset of the layers in the alternating stacks (132, 142, 232, 242), an upper cylindrical portion 84U extending through the first contact level dielectric layer 280 and the second retro-stepped dielectric material portion 265 and optionally through the first retro-stepped dielectric material portion 165, a lower cylindrical portion 84L that extends through the bottommost first insulating layer 132 and the dielectric buffer layer 768, and a bottom portion that contacts a top surface of the substrate material layer 909. Each adjoining set of a staircase region conformal dielectric via liner 84 and a staircase region sacrificial via fill material portion 16 constitutes a staircase region sacrificial via structure 36.
Referring to
The backside trenches 79 extend along the first horizontal direction hd1, and thus, are elongated along the first horizontal direction hd1. The backside trenches 79 can be laterally spaced among one another along a second horizontal direction hd2, which can be perpendicular to the first horizontal direction hd1. The backside trenches 79 can extend through the memory array region 100 (which may extend over a memory plane) and the staircase region 200. The backside trenches 79 can laterally divide the memory-level assembly into memory blocks.
Backside trench spacers 74 can be formed on sidewalls of the backside trenches 79 by conformal deposition of a dielectric spacer material and an anisotropic etch of the dielectric spacer material. The dielectric spacer material is a material that can be removed selective to the materials of first and second insulating layers (132, 232). For example, the dielectric spacer material can include silicon nitride. The lateral thickness of the backside trench spacers 74 can be in a range from 4 nm to 60 nm, such as from 8 nm to 30 nm, although lesser and greater thicknesses can also be employed.
Referring to
Referring to
Referring to
The layer stack including the lower source layer 112, the source contact layer 114, and the upper source layer 116 constitutes a buried source layer (112, 114, 116), which functions as a common source region that is connected each of the vertical semiconductor channels 60 and has a doping of the second conductivity type. The average dopant concentration in the buried source layer (112, 114, 116) can be in a range from 5.0×1019/cm3 to 2.0×1021/cm3, although lesser and greater dopant concentrations can also be employed. The set of layers including the buried source layer (112, 114, 116), the source-level insulating layer 117, and the optional source selective level conductive layer 118 constitutes source level layers 10, which replaced the in-process source level layers 10′.
Referring to
Referring to
The isotropic etch process can be a wet etch process employing a wet etch solution, or can be a gas phase (dry) etch process in which the etchant is introduced in a vapor phase into the backside trench 79. For example, if the first and second sacrificial material layers (142, 242) include silicon nitride, the etch process can be a wet etch process in which the first exemplary structure is immersed within a wet etch tank including phosphoric acid, which etches silicon nitride selective to silicon oxide, silicon, and various other materials employed in the art. In case the sacrificial material layers (142, 242) comprise a semiconductor material, a wet etch process (which may employ a wet etchant such as a KOH solution) or a dry etch process (which may include gas phase HCl) may be employed.
Each of the first and second backside recesses (143, 243) can be a laterally extending cavity having a lateral dimension that is greater than the vertical extent of the cavity. In other words, the lateral dimension of each of the first and second backside recesses (143, 243) can be greater than the height of the respective backside recess (143, 243). A plurality of first backside recesses 143 can be formed in the volumes from which the material of the first sacrificial material layers 142 is removed. A plurality of second backside recesses 243 can be formed in the volumes from which the material of the second sacrificial material layers 242 is removed. Each of the first and second backside recesses (143, 243) can extend substantially parallel to the top surface of the substrate 908. A backside recess (143, 243) can be vertically bounded by a top surface of an underlying insulating layer (132 or 232) and a bottom surface of an overlying insulating layer (132 or 232). In one embodiment, each of the first and second backside recesses (243, 243) can have a uniform height throughout.
Referring to
At least one conductive material can be deposited in the plurality of backside recesses (243, 243), on the sidewalls of the backside trench 79, and over the first contact level dielectric layer 280. The at least one conductive material can include at least one metallic material, i.e., an electrically conductive material that includes at least one metallic element.
A plurality of first electrically conductive layers 146 can be formed in the plurality of first backside recesses 243, a plurality of second electrically conductive layers 246 can be formed in the plurality of second backside recesses 243, and a continuous metallic material layer (not shown) can be formed on the sidewalls of each backside trench 79 and over the first contact level dielectric layer 280. Thus, the first and second sacrificial material layers (142, 242) can be replaced with the first and second conductive material layers (146, 246), respectively. Specifically, each first sacrificial material layer 142 can be replaced with an optional portion of the backside blocking dielectric layer and a first electrically conductive layer 146, and each second sacrificial material layer 242 can be replaced with an optional portion of the backside blocking dielectric layer and a second electrically conductive layer 246. A backside cavity is present in the portion of each backside trench 79 that is not filled with the continuous metallic material layer.
The metallic material can be deposited by a conformal deposition method, which can be, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), electroless plating, electroplating, or a combination thereof. The metallic material can be an elemental metal, an intermetallic alloy of at least two elemental metals, a conductive nitride of at least one elemental metal, a conductive metal oxide, a conductive doped semiconductor material, a conductive metal-semiconductor alloy such as a metal silicide, alloys thereof, and combinations or stacks thereof. Non-limiting exemplary metallic materials that can be deposited in the backside recesses include tungsten, tungsten nitride, titanium, titanium nitride, tantalum, tantalum nitride, cobalt, and ruthenium. In one embodiment, the metallic material can comprise a metal such as tungsten and/or metal nitride. In one embodiment, the metallic material for filling the backside recesses can be a combination of titanium nitride layer and a tungsten fill material. In one embodiment, the metallic material can be deposited by chemical vapor deposition or atomic layer deposition.
Residual conductive material can be removed from inside the backside trenches 79. Specifically, the deposited metallic material of the continuous metallic material layer can be etched back from the sidewalls of each backside trench 79 and from above the first contact level dielectric layer 280, for example, by an anisotropic or isotropic etch. Each remaining portion of the deposited metallic material in the first backside recesses constitutes a first electrically conductive layer 146. Each remaining portion of the deposited metallic material in the second backside recesses constitutes a second electrically conductive layer 246. Each electrically conductive layer (146, 246) can be a conductive line structure.
A subset of the second electrically conductive layers 246 located at the levels of the drain-select-level isolation structures 72 constitutes drain select gate electrodes. A subset of the electrically conductive layer (146, 246) located underneath the drain select gate electrodes can function as combinations of a control gate and a word line located at the same level. The control gate electrodes within each electrically conductive layer (146, 246) are the control gate electrodes for a vertical memory device including the memory stack structure 55.
Each of the memory stack structures 55 comprises a vertical stack of memory elements located at each level of the electrically conductive layers (146, 246). A subset of the electrically conductive layers (146, 246) can comprise word lines for the memory elements. The memory-level assembly is located over the substrate material layer 909. The memory-level assembly includes at least one alternating stack (132, 146, 232, 246) and memory stack structures 55 vertically extending through the at least one alternating stack (132, 146, 232, 246). Each of the at least one an alternating stack (132, 146, 232, 246) includes alternating layers of respective insulating layers (132 or 232) and respective electrically conductive layers (146 or 246). The at least one alternating stack (132, 146, 232, 246) comprises staircase regions that include terraces in which each underlying electrically conductive layer (146, 246) extends farther along the first horizontal direction hd1 than any overlying electrically conductive layer (146, 246) in the memory-level assembly.
Referring to
Referring to
As used herein, a “column-shaped” element refers to an element that has a general shape of a Doric column, i.e., an element that has a shaft portion that extends with a straight sidewall or a tapered sidewall, a capital portion having a greater lateral dimension than the shaft portion and overlying the shaft portion, and a base portion having a greater lateral dimension than the shaft portion and underlying the shaft portion. Each staircase region conformal dielectric via liner 84 can include neck portion 84N that surrounds the shaft portion and vertically extends through a respective subset of the layers in the alternating stacks (132, 142, 232, 242), an upper cylindrical portion 84U that surrounds the capital portion and extends through the first contact level dielectric layer 280 and the second retro-stepped dielectric material portion 265 and optionally through the first retro-stepped dielectric material portion 165, a lower cylindrical portion 84L that surrounds the base portion and extends through the bottommost first insulating layer 132 and the dielectric buffer layer 768, and a bottom portion that contacts a top surface of the substrate material layer 909.
Referring to
Each staircase region conformal dielectric via liner 84 can be divided into a ribbed insulating liner 842 and a cylindrical insulating liner 844. Each ribbed insulating liner 842 includes a neck portion 84N that continuously extends from a topmost electrically conductive layer (146 and/or 246) within a subset of the electrically conductive layers (146 and/or 246) to a bottommost electrically conductive layer (146 and/or 246) within the subset of the electrically conductive layers (146 and/or 246), laterally-protruding annular rib regions 842F having annular shapes, a cylindrical portion 842C having a cylindrical shape and underlying the alternating stack (132, 146, 232, 246), and an annular region 842A adjoining a bottom portion of the cylindrical portion 842C and having an annular shape. Outer sidewalls of the laterally-protruding annular rib regions 842F can be cylindrical. Each cylindrical insulating liner (e.g., spacer) 844 can be embedded within the second retro-stepped dielectric material portion 265, and may be embedded within the first retro-stepped dielectric material portion 165. A top surface of the substrate material layer 909 can be physically exposed by the anisotropic etch process underneath each column-shaped void 85.
The anisotropic etch removes horizontal portions of the peripheral region conformal insulating liners 486 and array region conformal insulating liners 586. A peripheral region cylindrical void 485 can be formed within each peripheral region via cavity, and an array region cylindrical void 585 can be formed within each array region via cavity. A top surface of the substrate material layer 909 can be physically exposed by the anisotropic etch process underneath the peripheral region cylindrical voids 485 and the array region cylindrical voids 585.
Referring to
Each combination of a metallic liner 86A and a metal fill portion 86B filling a column-shaped void 85 constitutes a column-shaped conductive via structure 86C. Each column-shaped conductive via structure 86C can include a conductive shaft portion 86S extending through a set of electrically conductive layers (146, 246), a conductive capital portion 86P overlying the conductive shaft portion 86S and contacting a topmost electrically conductive layer (146 or 246) whose top surface is exposed in each column-shaped void 85, a conductive base portion 86B underlying the bottommost electrically conductive layer 146 within the set of electrically conductive layers (146, 246), and a downward-protruding portion 86R that protrudes downward from the conductive base portion 86B. An encapsulated void 86V may be present within each conductive base portion 86B due to the conformal nature of the deposition process employed to deposit the conductive material(s) of the column-shaped conductive via structures 86C. The conductive capital portion 86P and the conductive base portion 86B have greater lateral extents than the conductive shaft portion 86S within each column-shaped conductive via structure 86C. In one embodiment, each column-shaped conductive via structure 86C comprises a respective conductive shaft portion 86S having a first width w1; a respective conductive base portion 86B having a second width w2 that is greater than then the first width w1; and a respective conductive capital portion 86P having a third width w3 that is greater than the first width w1. The third width w3 may be the same as, greater than or less than the second width w2 depending on material compositions of the retro-stepped dielectric material portions (165, 265) and the dielectric buffer layer 768.
Each column-shaped conductive via structure 86C is formed directly on the top surface of the topmost electrically conductive layer (146 or 246) among the set of electrically conductive layers (146, 246) through which the respective column-shaped conductive via structure 86C extends. Each electrically conductive layer (146, 246) within the subset of the electrically conductive layers (146, 246) other than the topmost electrically conductive layer (146 or 246) is electrically isolated from the column-shaped conductive via structure 86C by a ribbed insulating liner 842. Each column-shaped conductive via structure 86C is formed on inner sidewalls of a ribbed insulating liner 842 and a cylindrical insulating liner 844. At least one of the column-shaped conductive via structures 86C can be formed directly on a top surface of the substrate material layer 909.
Each combination of a metallic liner 86A and a metal fill portion 86B filling a peripheral region cylindrical void 485 constitutes a peripheral region contact via structure 488. Each combination of a metallic liner 86A and a metal fill portion 86B filling an array region cylindrical void 585 constitutes an array region contact via structure 588. Each of the peripheral region contact via structures 488 and the array region contact via structures 588 can contact the substrate material layer 909. Each electrically conductive layer (146, 246) can include a conductive metallic liner 146A and a conductive fill material portion 146B.
Each combination of a column-shaped conductive via structure 86C, a ribbed insulating liner 842, and a cylindrical insulating liner 844 located within a staircase region via cavity constitutes a laterally-insulated via structure 86. Each laterally-insulated via structure 86 includes a respective column-shaped conductive via structure 86 as a conductive via structure, and include a respective ribbed insulating liner 842 and a respective cylindrical insulating liner 844 as a laterally insulating structure. The gap between the ribbed insulating liner 842 and the cylindrical insulating liner 844 provides an annular electrically conductive path at which the column-shaped conductive via structure 86C and an electrically conductive layer (146 or 246) makes a surface-to-surface contact.
Referring to
Referring to
Referring to
In one embodiment, the first memory die 1000 comprises a first alternating stack (132, 146, 232, 246) of first insulating layers 132, 232 and first electrically conductive layers 146, 246, first memory opening fill structures 58 located within first memory openings 49 that vertically extend through the first alternating stack (132, 146, 232, 246) and comprising a respective vertical stack of first memory elements, a first stepped dielectric material portion (165, 265) contacting stepped surfaces of the first alternating stack (132, 146, 232, 246), and first column-shaped conductive via structures 86C comprising a respective conductive shaft portion 86S vertically extending through a respective subset of the first electrically conductive layers 146, 246, a respective conductive base portion 86B connected to a first end of the respective conductive shaft portion 86S, and a respective conductive capital portion 86P connected to a second end of the respective conductive shaft portion 86S and contacting an annular horizontal surface of a respective one of the first electrically conductive layers 146, 246.
Referring to
Referring to
In case the first column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 comprise copper, a touch-up polishing process may be employed so that physically exposed surfaces of the logic-side bonding pads 788 to the first column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 comprise copper surfaces that may be subsequently employed for copper-to-copper bonding.
Referring to
The logic die 700 can be bonded to the first memory die 1000. The logic die 700 can be attached to the substrate side of the first memory die 1000 by bonding the logic-side bonding pads 788 to the first column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 of the first memory die 1000. Metal-to-metal bonding (such as copper to copper bonding) or hybrid bonding (such as metal to metal and dielectric to dielectric bonding) can be employed to bond the logic-side bonding pads 788 to the first column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 of the first memory die 1000. In one embodiment, each of the logic-side bonding pads 788, the first column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 may comprise copper, and copper-to-copper bonding may be employed.
In one embodiment, a first subset of the logic-side bonding pads 788 can be bonded to the conductive base portions 86B of the first column-shaped conductive via structures 86C via metal-to-metal bonding. A second subset of the logic-side bonding pads 788 can be bonded to planar end surfaces of the peripheral region contact via structures 488 via metal-to-metal bonding. A third subset of the logic-side bonding pads 788 can be bonded to planar end surfaces of the array region contact via structures 588 via metal-to-metal bonding. In case hybrid bonding is employed, dielectric-to-dielectric bonding (such as oxide-to-oxide bonding) can be formed between the logic-side dielectric material layers 760 and the dielectric buffer layer 768 in the first memory die 1000. The first memory die 1000 can be attached directly to the logic die 700.
Referring to
A second memory die 1002 may be provided. In one embodiment, the second memory die 1002 comprises a second alternating stack (32, 46) of second insulating layers 32 and second electrically conductive layers 46, second memory opening fill structures 158 located within second memory openings that vertically extend through the second alternating stack (32, 46) and comprising a respective vertical stack of second memory elements, a second stepped dielectric material portion (165, 265) contacting stepped surfaces of the second alternating stack (32, 46).
The second memory die 1002 may be formed in the same manner as the first memory die 1000, and includes column-shaped conductive via structures 86C (which are hereafter referred to as second column-shaped conductive via structures 86C), the peripheral region contact via structures 488, and the array region contact via structures 588. In one embodiment, the second memory die 1002 comprises second column-shaped conductive via structures 86C comprising a respective conductive shaft portion 86S vertically extending through a respective subset of the second electrically conductive layers 46, a respective conductive base portion 86B connected to a first end of the respective conductive shaft portion 86S, and a respective conductive capital portion 86P connected to a second end of the respective conductive shaft portion 86S and contacting an annular horizontal surface of a respective one of the second electrically conductive layers 46. According to an aspect of the present disclosure, the pattern of the second column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 in the second memory die 1002 may be the same as the pattern of the first memory-side bonding pads 98 of the first memory die 1000.
The second memory die 1002 can be bonded to the first memory die 1000. For example, metal-to-metal bonding can be induced between the first memory-side bonding pads 98 of the first memory die 1000 and the set of the second column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 in the second memory die 1002. For example, copper-to-copper bonding may be employed between the first memory-side bonding pads 98 of the first memory die 1000 and the set of the second column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 in the second memory die 1002.
In one embodiment, a first subset of the memory-side bonding pads 98 of the first memory die 1000 can be bonded to the conductive base portions 86B of the second column-shaped conductive via structures 86C of the second memory die 1002 via metal-to-metal bonding. A second subset of the memory-side bonding pads 98 of the first memory die 1000 can be bonded to planar end surfaces of the peripheral region contact via structures 488 of the second memory die 1002 via metal-to-metal bonding. A third subset of the memory-side bonding pads 98 of the first memory die 1000 can be bonded to planar end surfaces of the array region contact via structures 588 of the second memory die 1002 via metal-to-metal bonding. In case hybrid bonding is employed, dielectric-to-dielectric bonding (such as oxide-to-oxide bonding) can be formed between the memory-side dielectric material layers 90 of the first memory die 1000 and the dielectric buffer layer 768 in the second memory die 1002. The second memory die 1002 can be attached directly to the first memory die 1000.
In one embodiment, the second column-shaped conductive via structures 86C are electrically connected to a respective one of the first column-shaped conductive via structures 86C. In one embodiment, the first memory die 1000 comprises first memory-side metal interconnect structures 92 embedded within first memory-side dielectric material layers 90 and first memory-side bonding pads 98 electrically connected to the first memory-side metal interconnect structures 92; and the conductive base portions 86B of the second column-shaped conductive via structures 86C are bonded to the first memory-side bonding pads 98. The peripheral region contact via structures 488 and/or the array region contact via structures 588 in the first and the second memory die (1000, 1002) may be used to electrically connect the semiconductor devices in the driver circuit 720 in the logic die 700 to external voltage source(s).
In an alternative embodiment shown in
A backside insulating layer 790 can be deposited on the backside surface of the logic-side semiconductor material layer 712 as thinned by the thinning process. The backside insulating layer 790 includes an insulating material such as silicon oxide, and can have a thickness in a range from 500 nm to 5 microns. Backside bonding structures 798 can be formed in the backside insulating layer 790 such that each backside bonding structure 798 contacts a horizontal surface of a respective one of the laterally-isolated through-substrate via structures 934. Thus, each backside bonding structure 798 is located on the backside of the logic-side semiconductor material layer 712 (which is the semiconductor substrate of the logic die 700), and is electrically connected to a respective one of the laterally-isolated through-substrate via structures 934. The backside bonding structure 798 may be used to electrically connect the semiconductor devices in the driver circuit 720 in the logic die 700 to external voltage source(s).
According to various embodiments of the present disclosure and referring collectively to
In one embodiment, the logic-side bonding pads 788 are bonded to the conductive base portions 86B of the first column-shaped conductive via structures 86C; the respective conductive shaft portion 86S has a first width w1; the respective conductive base portion 86B has a second width w2 that is greater than then the first width w1; and the respective conductive capital portion 86P has a third width w3 that is greater than the first width w1. In one embodiment, the conductive base portions 86B of the first column-shaped conductive via structures 86C are more proximal to the logic die 700 than any of the first electrically conductive layers (146, 246) within the first alternating stack (132, 146, 232, 246) is to the logic die 700. In one embodiment, the logic-side bonding pads 788 are bonded to the conductive base portions 86B of the first column-shaped conductive via structures 86C via metal-to-metal bonding. In one embodiment, the conductive capital portions 86P of the first column-shaped conductive via structures 86C are laterally surrounded by the first stepped dielectric material portion (165, 265).
In one embodiment, each conductive shaft portion 86S of the first column-shaped conductive via structures 86C is laterally surrounded by a respective ribbed insulating liner 842 including laterally-protruding portions located at levels of a subset of the first insulating layers 32. In one embodiment, the respective ribbed insulating liner 842 laterally surrounds a conductive base portion 86B of a respective one of the first column-shaped conductive via structures 86C. In one embodiment, each conductive capital portion 86P of the first column-shaped conductive via structures 86C is laterally surrounded by a respective cylindrical insulating liner 844 comprising a same insulating material as the ribbed insulating liners 842.
In one embodiment, the bonded assembly comprises a second memory die 1002 that is bonded to the first memory die 1000 and comprising a second alternating stack (32, 46) of second insulating layers 32 and second electrically conductive layers 46, second memory opening fill structures 158 located within second memory openings 49 that vertically extend through the second alternating stack (32, 46) and comprising a respective vertical stack of second memory elements, a second stepped dielectric material portion (165, 265) contacting horizontal stepped surfaces of the second alternating stack (32, 46), and second column-shaped conductive via structures 86C comprising a respective conductive shaft portion 86S vertically extending through a respective subset of the second electrically conductive layers 46, a respective conductive base portion 86B connected to a first end of the respective conductive shaft portion 86S, and a respective conductive capital portion 86P connected to a second end of the respective conductive shaft portion 86S and contacting the horizontal stepped surface of a respective one of the second electrically conductive layers 46. In one embodiment, the second column-shaped conductive via structures 86C are electrically connected to a respective one of the first column-shaped conductive via structures 86C.
In one embodiment, the first memory die 1000 comprises first memory-side metal interconnect structures 92 embedded within first memory-side dielectric material layers 90 and first memory-side bonding pads 98 electrically connected to the first memory-side metal interconnect structures 92; and the conductive base portions 86B of the second column-shaped conductive via structures 86C are bonded to the first memory-side bonding pads 98.
In one embodiment, the first memory die 1000 comprises a semiconductor material layer 10 located on the first alternating stack; the first memory opening fill structures 58 further comprise a respective vertical semiconductor channel 60 having an end that is electrically connected to the semiconductor material layer 10; and the semiconductor material layer 10 has a lesser vertical extent than the conductive base portions of the first column-shaped conductive via structures 86C.
Referring to
For example, metal-to-metal bonding can be induced between the first memory-side bonding pads 98 of the first memory die 1000 and the second memory-side bonding pads 98 of the second memory die 1002. For example, copper-to-copper bonding may be employed between the first memory-side bonding pads 98 of the first memory die 1000 and the second memory-side bonding pads 98 of the second memory die 1002. In case hybrid bonding is employed, dielectric-to-dielectric bonding (such as oxide-to-oxide bonding) can be formed between the memory-side dielectric material layers 90 of the first memory die 1000 and the memory-side dielectric material layers 90 in the second memory die 1002. The second memory die 1002 can be attached directly to the first memory die 1000.
In the first alternative configuration of the first exemplary structure, the first memory die 1000 comprises first memory-side metal interconnect structures 92 embedded within first memory-side dielectric material layers 90 and first memory-side bonding pads 98 electrically connected to the first memory-side metal interconnect structures 92; the second memory die 1002 comprises second memory-side metal interconnect structures 92 embedded within second memory-side dielectric material layers 90 and second memory-side bonding pads 98 electrically connected to the second memory-side metal interconnect structures 92; and the second memory-side bonding pads 98 are bonded to the first memory-side bonding pads 98.
In one embodiment, end surfaces of the second column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 can be physically exposed after bonding the second memory die 1002 to the first memory die 1000. Optionally, an additional memory die (not shown) may be bonded to the second memory die 1002 such that bonding structures in the additional memory die are bonded to a respective one of the second column-shaped conductive via structures 86C, the peripheral region contact via structures 488, and the array region contact via structures 588 of the second memory die 1002.
Referring to
Referring to
In one embodiment, the metallic bonding structures of the second memory die 1002 that face the third memory die 1003 may comprise second memory-side bonding pads 98, and the metallic bonding structures of the third memory die 1003 that face the second memory die 1002 may comprise third memory-side bonding pads 98.
In another embodiment, the metallic bonding structures of the second memory die 1002 that face the third memory die 1003 may comprise second memory-side bonding pads 98, and the metallic bonding structures of the third memory die 1003 that face the second memory die 1002 may comprise third column-shaped conductive via structures 86C, peripheral region contact via structures 488, and array region contact via structures 588 that are located in the third memory die 1003.
In one embodiment, the metallic bonding structures of the second memory die 1002 that face the third memory die 1003 may comprise second column-shaped conductive via structures 86C, peripheral region contact via structures 488, and array region contact via structures 588 that are located in the second memory die 1002, and the metallic bonding structures of the third memory die 1003 that face the second memory die 1002 may comprise third memory-side bonding pads 98.
In another embodiment, the metallic bonding structures of the second memory die 1002 that face the third memory die 1003 may comprise second column-shaped conductive via structures 86C, peripheral region contact via structures 488, and array region contact via structures 588 that are located in the second memory die 1002, and the metallic bonding structures of the third memory die 1003 that face the second memory die 1002 may comprise third column-shaped conductive via structures 86C, peripheral region contact via structures 488, and array region contact via structures 588 that are located in the third memory die 1003.
The various embodiments of the present disclosure may be employed to provide zia-style column-shaped conductive via structures 86C, which may be employed as bonding structures. These bonding structures provide a more compact memory die 1000 and permit use of a higher thermal budget to form the logic die 700 prior to bonding the logic die to the memory die 1000.
Referring to
At least one alternating stack of insulating layers 32 and spacer material layers can be formed over the substrate material layer 9. The spacer material layers may be formed as sacrificial material layers 42 that are subsequently replaced with electrically conductive layers, or may be formed as electrically conductive layers. While embodiments in which sacrificial material layers 42 are employed to form at least one alternating stack (32, 42) are described, other embodiments are expressly contemplated herein in which the spacer material layers are formed as electrically conductive layers (thereby obviating the need to perform replacement processes).
Each insulating layer 32 can include an insulating material, and each sacrificial material layer 42 can include a sacrificial material. An alternating plurality of insulating layers 32 and sacrificial material layers 42 is formed over the in-process source-level material layers. As used herein, a “sacrificial material” refers to a material that is removed during a subsequent processing step.
Insulating materials that can be employed for the insulating layers 32 include, but are not limited to silicon oxide (including doped or undoped silicate glass), silicon nitride, silicon oxynitride, organosilicate glass (OSG), spin-on dielectric materials, dielectric metal oxides that are commonly known as high dielectric constant (high-k) dielectric oxides (e.g., aluminum oxide, hafnium oxide, etc.) and silicates thereof, dielectric metal oxynitrides and silicates thereof, and organic insulating materials. In one embodiment, the first material of the insulating layers 32 can be silicon oxide.
The sacrificial material of the sacrificial material layers 42 comprises a material can be removed selective to the first material of the insulating layers 32. As used herein, a removal of a first material is “selective to” a second material if the removal process removes the first material at a rate that is at least twice the rate of removal of the second material. The ratio of the rate of removal of the first material to the rate of removal of the second material is herein referred to as a “selectivity” of the removal process for the first material with respect to the second material.
The sacrificial material layers 42 may comprise an insulating material, a semiconductor material, or a conductive material. The second material of the sacrificial material layers 42 can be subsequently replaced with electrically conductive electrodes which can function, for example, as control gate electrodes of a vertical NAND device. In one embodiment, the sacrificial material layers 42 can be material layers that comprise silicon nitride.
In one embodiment, the insulating layers 32 can include silicon oxide, and sacrificial material layers can include silicon nitride sacrificial material layers. The first material of the insulating layers 32 can be deposited, for example, by chemical vapor deposition (CVD). For example, if silicon oxide is employed for the insulating layers 32, tetraethylorthosilicate (TEOS) can be employed as the precursor material for the CVD process. The second material of the sacrificial material layers 42 can be formed, for example, CVD or atomic layer deposition (ALD).
The thicknesses of the insulating layers 32 and the sacrificial material layers 42 can be in a range from 20 nm to 50 nm, although lesser and greater thicknesses can be employed for each insulating layer 32 and for each sacrificial material layer 42. The number of repetitions of the pairs of an insulating layer 32 and a sacrificial material layer 42 can be in a range from 2 to 1,024, and typically from 8 to 256, although a greater number of repetitions can also be employed. In one embodiment, each sacrificial material layer 42 in the vertically alternating sequence (32, 42) can have a uniform thickness that is substantially invariant within each respective sacrificial material layer 42. The topmost layer among the insulating layers 32 is herein referred to as a topmost insulating layer 32T. The bottommost layer among the insulating layers 32 is herein referred to as a bottommost insulating layer 32B.
Referring to
The memory openings 49 are openings that are formed in the memory array region 100 through each layer within the first alternating stack (32, 42) and are subsequently employed to form memory stack structures therein. The bottom surfaces of the memory openings 49 can be recessed surfaces of the lower source-level semiconductor layer 112. Thus, each memory opening 49 can be formed through the source-level sacrificial layer 104, and may have a bottom surface between a horizontal plane including the bottom surface of the lower source-level semiconductor layer 112 and a horizontal plane including the top surface of the lower source-level semiconductor layer 112.
In one embodiment, the memory openings 49 can be formed as clusters that are laterally spaced apart from each other along the second horizontal direction hd2. Each cluster of memory openings 49 can include a respective two-dimensional array of memory openings 49 having a first pitch along one horizontal direction and a second pitch along another horizontal direction. In one embodiment, the direction of the first memory structure pitch can be the first horizontal direction hd1 (e.g., word line direction) and the direction of the second memory structure pitch can be the second horizontal direction hd2 (e.g., bit line direction), or vice versa.
Referring to
Referring to
Subsequently, the memory material layer 54 can be formed. Generally, the memory material layer may comprise any memory material such as a charge storage material, a ferroelectric material, a phase change material, or any material that can store data bits in the form of presence or absence of electrical charges, a direction of electric polarization, ferroelectric resistivity, or another measurable physical parameter. In one embodiment, the memory material layer 54 can be a continuous layer or patterned discrete portions of a charge trapping material including a dielectric charge trapping material, which can be, for example, silicon nitride. Alternatively, the memory material layer 54 can include a continuous layer or patterned discrete portions of a conductive material such as doped polysilicon or a metallic material that is patterned into multiple electrically isolated portions (e.g., floating gates), for example, by being formed within lateral recesses into sacrificial material layers 42. In one embodiment, the memory material layer 54 includes a silicon nitride layer. In one embodiment, the sacrificial material layers 42 and the insulating layers 32 can have vertically coincident sidewalls, and the memory material layer 54 can be formed as a single continuous layer.
In another embodiment, the sacrificial material layers 42 can be laterally recessed with respect to the sidewalls of the insulating layers 32, and a combination of a deposition process and an anisotropic etch process can be employed to form the memory material layer 54 as a plurality of memory material portions that are vertically spaced apart. While an embodiment is described in which the memory material layer 54 is a single continuous layer, embodiments are expressly contemplated herein in which the memory material layer 54 is replaced with a plurality of memory material portions (which can be charge trapping material portions or electrically isolated conductive material portions) that are vertically spaced apart. The memory material layer 54 can be formed, for example, by chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), or any suitable deposition technique for storing electrical charges therein. The thickness of the memory material layer 54 can be in a range from 2 nm to 20 nm, although lesser and greater thicknesses can also be employed.
Generally, any vertical stack of memory elements known in the art may replace the memory material layer 54. The vertical stack of memory elements can be formed at levels of the sacrificial material layers 42 within each memory opening 49, and may be formed as portions of a continuous memory material layer, or may be formed as discrete memory material portions.
The optional dielectric liner 56, if present, includes a dielectric material. In one embodiment, the optional dielectric liner 56 comprises a tunneling dielectric layer through which charge tunneling can be performed under suitable electrical bias conditions. The charge tunneling may be performed through hot-carrier injection or by Fowler-Nordheim tunneling induced charge transfer depending on the mode of operation of the monolithic three-dimensional NAND string memory device to be formed. The optional dielectric liner 56 can include silicon oxide, silicon nitride, silicon oxynitride, dielectric metal oxides (such as aluminum oxide and hafnium oxide), dielectric metal oxynitride, dielectric metal silicates, alloys thereof, and/or combinations thereof. In one embodiment, the optional dielectric liner 56 can include a stack of a first silicon oxide layer, a silicon oxynitride layer, and a second silicon oxide layer, which is commonly known as an ONO stack. In one embodiment, the optional dielectric liner 56 can include a silicon oxide layer that is substantially free of carbon or a silicon oxynitride layer that is substantially free of carbon. The thickness of the optional dielectric liner 56 can be in a range from 2 nm to 20 nm, although lesser and greater thicknesses can also be employed. The stack of the blocking dielectric layer 52, the memory material layer 54, and the optional dielectric liner 56 constitutes a memory film 50 that stores memory bits.
The semiconductor channel material layer 60L includes a semiconductor material such as at least one elemental semiconductor material, at least one III-V compound semiconductor material, at least one II-VI compound semiconductor material, at least one organic semiconductor material, or other semiconductor materials known in the art. In one embodiment, the semiconductor channel material layer 60L includes amorphous silicon or polysilicon. The semiconductor channel material layer 60L can be formed by a conformal deposition method such as low pressure chemical vapor deposition (LPCVD). The thickness of the semiconductor channel material layer 60L can be in a range from 2 nm to 10 nm, although lesser and greater thicknesses can also be employed. A cavity 49′ is formed in the volume of each memory opening 49 that is not filled with the deposited material layers (52, 54, 56, 60L).
Referring to
Referring to
Each remaining portion of the doped semiconductor material having a doping of the second conductivity type constitutes a drain region 63. The drain regions 63 can have a doping of a second conductivity type that is the opposite of the first conductivity type. For example, if the first conductivity type is p-type, the second conductivity type is n-type, and vice versa. The dopant concentration in the drain regions 63 can be in a range from 5.0×1018/cm3 to 2.0×1021/cm3, although lesser and greater dopant concentrations can also be employed. The doped semiconductor material can be, for example, doped polysilicon.
Each remaining portion of the semiconductor channel material layer 60L constitutes a vertical semiconductor channel 60 through which electrical current can flow when a vertical NAND device including the vertical semiconductor channel 60 is turned on. An optional dielectric liner 56 is surrounded by a memory material layer 54, and laterally surrounds a vertical semiconductor channel 60. Each adjoining set of a blocking dielectric layer 52, a memory material layer 54, and a optional dielectric liner 56 collectively constitute a memory film 50, which can store electrical charges with a macroscopic retention time. In some embodiments, a blocking dielectric layer 52 may not be present in the memory film 50 at this step, and a blocking dielectric layer may be subsequently formed after formation of backside recesses. As used herein, a macroscopic retention time refers to a retention time suitable for operation of a memory device as a permanent memory device such as a retention time in excess of 24 hours.
Each combination of a memory film 50 and a vertical semiconductor channel 60 within a memory opening 49 constitutes a memory stack structure 55. The memory stack structure 55 is a combination of a vertical semiconductor channel 60, a optional dielectric liner 56, a plurality of memory elements comprises portions of the memory material layer 54, and an optional blocking dielectric layer 52. Each combination of a memory stack structure 55, a dielectric core 62, and a drain region 63 within a memory opening 49 constitutes a memory opening fill structure 58.
Referring to
Referring to
The patterned hard mask layer 22 may comprise arrays of mask openings 21. Each array of mask openings 21 comprises a plurality of openings that are located between a respective strip region that laterally extends along the first horizontal direction hd1. Generally, the arrays of mask openings 21 may be laterally spaced apart along the second horizontal direction hd2. Each array of mask openings 21 may be laterally offset along the first horizontal direction hd1 from a respective array of memory opening fill structures 58 located in the memory array region 100. The patterned hard mask layer 22 may be composed of a hard mask material. A hard mask material refers to a non-ashable mask material, i.e., a material that cannot be removed employing normal ashing processes. In contrast, a photoresist material is an ashable material, and thus, is not a hard mask material. In one embodiment, the patterned hard mask layer 22 may comprise a metallic material (such as TiN, TaN, WN, Ti, Ta, W, Ru, etc.) and/or an inorganic dielectric material (such as silicon nitride, silicon carbide, silicon carbide nitride, or at least one dielectric metal oxide material). The thickness of the patterned hard mask layer 22 may be in a range from 100 nm to 1,000 nm, although lesser and greater thicknesses may also be employed.
Referring to
For each i-th iteration of the combination of an etch mask formation process and an anisotropic etch process for which the integer i runs from 1 to N, an i-th masking layer, such as an i-th photoresist, can be applied over the patterned hard mask layer 22, and can be lithographically patterned to form openings therethrough. The areas of the pattern of the openings in the i-th masking layer includes areas of an i-th subset of the mask openings 21 in the patterned hard mask layer 22. In one embodiment, the i-th subset of the mask openings 21 may comprise about one half of all i-th subset of the mask openings 21.
An i-th anisotropic etch process can be performed to transfer the pattern of the openings in the i-th masking layer through a respective set of F(i) insulating layers 32 and F(i) sacrificial material layers 42 within each opening in the i-th masking layer. In one embodiment, each function F(i) may have a different positive integer value for each integer value i. In one embodiment, the value of each function F(i) may be positive integers that are integer powers of 2. In an illustrative example, F(i) may be 2(i−1). In another example, F(i) may be 2(N−i). In yet another example, the set of all values for F(i), 0<i<N+1, may include all integer powers of 2 between 1 and 2N−1 in any order. In still another example, the set of all values of F(i) may include any set of non-overlapping positive integers less than 2N−1.
In one embodiment, the insulating layers 32 can include silicon oxide and the sacrificial material layers 42 can include a sacrificial material such as silicon nitride. In this case, an anisotropic etch process that etches F(i) pairs of insulating layers 32 and sacrificial material layers 42 can include F(i) iterations of a first anisotropic etch step that etches the sacrificial material of the sacrificial material layers 42 selective to silicon oxide, and a second anisotropic etch step that etches silicon oxide selective to the sacrificial material of the sacrificial material layers 42. The i-th subset of the in-process contact openings 83 can be vertically extended through a respective contiguous set of F(i) sacrificial material layers 42 and F(i) insulating layers 32. The i-th subset of the in-process contact openings 83 can be vertically extended through a respective contiguous set of F(i) sacrificial material layers 42 and F(i) insulating layers 32. The i-th masking layer can be subsequently removed, for example, by ashing and/or selective etching.
Generally, the masking patterns for the N masking layers (which may be N patterned photoresist layers) and the set of values for F(i), 0<i<N+1, may be selected such that via openings, which are herein referred to as in-process contact openings 83, that are formed underneath the mask openings 21 in the patterned photoresist layer have different depths. In one embodiment, the masking patterns for the N masking layers (which may be N patterned photoresist layers) and the set of values for F(i), 0<i<N+1, may be selected such that each sacrificial material layer 42 other than the bottommost sacrificial material layer 42 is physically exposed to a respective in-process contact opening 83 within each array of in-process contact openings 83 that underlie a respective array of mask openings 21. Each array of in-process contact openings 83 may be formed between a respective pair of strip regions in the patterned hard mask layer 22 that are free of any mask opening 21 therein.
Generally, at least one alternating stack of insulating layers 32 and sacrificial material layers 42 can be formed over the substrate 8, and in-process contact openings 83 can be formed through the at least one alternating stack (32, 42). According to an aspect of the present disclosure, each of the in-process contact openings 85 vertically extends through a respective first subset of layers within the alternating stack (32, 42).
Referring to
Referring to
Referring to
Referring to
In an illustrative example, the sacrificial material layers 42 may be composed of a silicon nitride material, and the annular sacrificial spacers 94 may be formed by oxidation of physically exposed surface portions of the sacrificial material layers 42. The oxidation process may comprise a thermal oxidation process or a plasma oxidation process. In this case, the annular sacrificial spacers 94 may comprise silicon oxide and/or silicon oxynitride. In one embodiment, the annular sacrificial spacers 94 may be formed by oxidation of tubular surface portions of physically exposed spacer material layers, which may be embodied as the sacrificial material layers 42.
In an alternative example, the sacrificial material layers 42 may be isotropically recessed relative to the insulating layers 32 to form annular recesses which have a smaller lateral width (i.e., thickness) than that of the finned annular cavities 81A. A dielectric fill material may be conformally deposited in the annular recesses, and an anisotropic etch process may be performed to remove portions of the dielectric fill material that are deposited outside the volumes of the annular recesses. Portions of the dielectric fill material that fill the annular recesses constitute the annular sacrificial spacers 94.
The lateral thickness of each annular sacrificial spacer 94 may be less than the lateral thickness of each first annular dielectric spacer 82A. As used herein, a lateral thickness of an annular element refers to a lateral distance between an inner sidewall and an outer sidewall. In one embodiment, the lateral thickness of each annular sacrificial spacer 94 may be less than the lateral thickness of each first annular dielectric spacer 82A by at least 30%, such as 50% to 300%. In one embodiment, the lateral thickness of each annular sacrificial spacer 94 may be in range from 1 nm to 20 nm, such as from 2 nm to 10 nm, although lesser and greater lateral thicknesses may also be employed.
Referring to
Referring to
Referring to
Generally, a combination of a contact opening 85 and a vertical stack of annular dielectric spacers 82 and an annular sacrificial spacer 94 can be formed through at least one alternating stack (32, 42) of insulating layers 32 and spacer material layers underneath each mask opening 21 in the patterned hard mask layer 22. In one embodiment, plural annular dielectric spacers 82 and one annular sacrificial spacer 94 may be exposed in each contact opening 85. For a subset of the combinations of a respective contact opening 85 and a respective vertical stack of annular dielectric spacers 82 and a respective annular sacrificial spacer 94, the vertical stack of annular dielectric spacers 82 may comprise at least one upper annular dielectric spacer 82A overlying the annular sacrificial spacer 94, and at least one lower annular dielectric spacer 82B underlying the annular sacrificial spacer 94. One of the spacer material layers (such as the sacrificial material layer 42) may be laterally spaced from the contact opening 85 by the annular sacrificial spacer 94.
In one embodiment, the lateral thickness of each annular sacrificial spacer 94 may be less than the lateral thickness of each annular dielectric spacers 82 (i.e., 82A and 82B). In one embodiment, the lateral thickness of each annular sacrificial spacer 94 may be less than the lateral thickness of each annular dielectric spacers 82 (e.g., first and second annular dielectric spacers (82A, 82B)) by at least 30%, such as 50% to 300%. In one embodiment, a top surface of the substrate material layer 9 may be physically exposed underneath the contact opening 85.
Referring to
Referring to
Referring to
In one embodiment, the lengthwise backside trenches 79L can laterally extend along the first horizontal direction hd1 and can be laterally spaced apart from each other along the second horizontal direction hd2 that is perpendicular to the first horizontal direction hd1. The memory opening fill structures 58 can be arranged in rows that extend along the first horizontal direction hd1. Multiple rows of memory opening fill structures 58 can be located between each neighboring pair of lengthwise backside trenches 79L. The photoresist layer can be removed, for example, by ashing.
Referring to
The isotropic etch process can be a wet etch process employing a wet etch solution, or can be a gas phase (dry) etch process in which the etchant is introduced in a vapor phase into the backside trenches 79. For example, if the sacrificial material layers 42 include silicon nitride, the etch process can be a wet etch process in which the second exemplary structure is immersed within a wet etch tank including phosphoric acid, which etches silicon nitride selective to silicon oxide, silicon, and various other materials employed in the art.
Each of the backside recesses 43 can be a laterally extending cavity having a lateral dimension that is greater than the vertical extent of the cavity. In other words, the lateral dimension of each of the backside recesses 43 can be greater than the height of the respective backside recess 43. Each of the backside recesses 43 can laterally extend substantially parallel to the top surface of the substrate 8. A backside recess 43 can be vertically bounded by a top surface of an underlying insulating layer 32 and a bottom surface of an overlying insulating layer 32. In one embodiment, each of the backside recesses 43 can have a uniform height throughout.
Unetched remaining portions of the sacrificial material layers 42 may remain in the connection region 400. The remaining portions of the sacrificial material layers 42 comprise dielectric material layers, and may be hereafter referred to as dielectric material plates 42′.
Referring to
A metallic barrier layer 46A can be deposited in the backside recesses 43, peripheral portions of the backside trenches 79, and over the contact-level dielectric layer 80. The metallic barrier layer 46A includes an electrically conductive metallic material that can function as a diffusion barrier layer and/or adhesion promotion layer for a metallic fill material to be subsequently deposited. The metallic barrier layer 46A can include a conductive metallic nitride material such as TiN, TaN, MoN, WN, or a stack thereof, or can include a conductive metallic carbide material such as TiC, TaC, WC, or a stack thereof. In one embodiment, the metallic barrier layer 46A can be deposited by a conformal deposition process such as chemical vapor deposition (CVD) or atomic layer deposition (ALD). The thickness of the metallic barrier layer 46A can be in a range from 2 nm to 8 nm, such as from 3 nm to 6 nm, although lesser and greater thicknesses can also be employed. In one embodiment, the metallic barrier layer 46A can consist essentially of a conductive metal nitride such as TiN.
A metal fill material is deposited in the plurality of backside recesses 43, on the sidewalls of the at least one the backside trench 79, and over the top surface of the contact-level dielectric layer 80 to form a metallic fill material layer 46B. The metallic fill material can be deposited by a conformal deposition method, which can be, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), electroless plating, electroplating, or a combination thereof. In one embodiment, the metallic fill material layer 46B can consist essentially of at least one elemental metal. The at least one elemental metal of the metallic fill material layer 46B can be selected, for example, from tungsten, cobalt, ruthenium, titanium, and tantalum. In one embodiment, the metallic fill material layer 46B can consist essentially of a single elemental metal. In one embodiment, the metallic fill material layer 46B can be deposited employing a fluorine-containing precursor gas such as WF6. In one embodiment, the metallic fill material layer 46B can be a tungsten layer including a residual level of fluorine atoms as impurities. The metallic fill material layer 46B is spaced from the insulating layers 32 and the memory opening fill structures 58 by the metallic barrier layer 46A, which is a metallic barrier layer that blocks diffusion of fluorine atoms therethrough.
An etch back process can be performed to remove portions of the metallic fill material layer 46B and the metallic barrier layer 46A from inside the backside trenches 79 and from above the contact-level dielectric layer 80. The etch back process may comprise an isotropic etch process and/or an anisotropic etch process. Each combination of a remaining portion of the metallic barrier layer 46A and a remaining portion of the metallic fill material layer 46B that remain in a respective backside recess 43 constitutes an electrically conductive layer 46. The backside blocking dielectric layer 44 may or may not remain in the backside trenches 79.
Each electrically conductive layer 46 includes a portion of the metallic barrier layer 46A and a portion of the metallic fill material layer 46B that are located between a vertically neighboring pair of dielectric material layers such as a pair of insulating layers 32. Each sacrificial material layer 42 can be replaced with an electrically conductive layer 46. Generally, at least one alternating stack (32, 46) of insulating layers 32 and electrically conductive layers 46 can be formed over the substrate 8.
Referring to
An anisotropic etch is performed to remove horizontal portions of the insulating material layer from above the contact-level dielectric layer 80 and at the bottom of each backside trench 79. Each remaining portion of the insulating material layer constitutes an insulating spacer 74. A backside cavity is present within a volume surrounded by each insulating spacer 74.
A backside contact via structure 76 can be formed within each backside cavity. Each backside contact via structure 76 can fill a respective cavity. Each contact via structures 76 can be formed by depositing at least one conductive material in a remaining unfilled volume (i.e., a backside cavity) of the backside trenches 79. For example, the at least one conductive material can include a conductive liner and a conductive fill material portion. The conductive liner can include a conductive metallic liner such as TiN, TaN, MoN, WN, TiC, TaC, WC, an alloy thereof, or a stack thereof. The thickness of the conductive liner can be in a range from 3 nm to 30 nm, although lesser and greater thicknesses can also be employed. The conductive fill material portion can include a metal or a metallic alloy. For example, the conductive fill material portion can include W, Cu, Al, Co, Ru, Ni, an alloy thereof, or a stack thereof.
The at least one conductive material can be planarized employing the contact-level dielectric layer 80 overlying the alternating stack (32, 46) as a stopping layer. If chemical mechanical planarization (CMP) process is employed, the contact-level dielectric layer 80 can be employed as a CMP stopping layer. Each remaining continuous portion of the at least one conductive material in the backside trenches 79 constitutes a backside contact via structure 76.
Referring to
Referring to
Referring to
A cylindrical sidewall of an electrically conductive layer 46 can be physically exposed around each volume from which a combination of an annular sacrificial spacer 94 and a vertical cylindrical portion of a backside blocking dielectric layer 44 is removed. Each contact opening 29 can be laterally expanded by the at least one isotropic etch process. Each contact opening 29 can be laterally bounded by a respective generally-cylindrical sidewall, which may have a straight vertical cross-sectional profile or a laterally-undulating vertical cross-sectional profile depending on whether physically exposed cylindrical sidewalls of the insulating layers 32 are vertically coincident with inner cylindrical sidewalls of the annular dielectric spacers 82. Generally, the inner cylindrical sidewalls of the annular dielectric spacers 82 may be located at, inside or outside a cylindrical vertical plane including physically exposed cylindrical sidewalls of the insulating layers 32 around each contact opening 29. Generally, a cylindrical sidewall of one of the electrically conductive layers 46 can be physically exposed at each level from which an annular sacrificial spacer 94 is removed. In one embodiment, each of the electrically conductive layers 46 may be physically exposed within each group of cylindrical openings 29 located in a memory block between a neighboring pair of backside trench fill structures (74, 76) located within a respective neighboring pair of lengthwise backside trenches 79L.
Referring to
In one embodiment, each side-contact via structure 96 may comprise a metallic barrier layer 96A comprising a metallic barrier material, and a metallic fill material portion 96B comprising a metallic fill material. In one embodiment, one, a plurality, or each, of the side-contact via structures 96 may comprise an encapsulated cavity (i.e., air gap) 89 that is free of any solid phase material therein. Alternatively, at least one etch back process may be employed in conjunction with multiple deposition processes to prevent formation of, or to reduce the sizes of, the encapsulated cavities 89. Each contiguous combination of a side-contact via structure 96 and a vertical stack of annular dielectric spacers 82 is herein referred to as a layer contact assembly 28.
In one embodiment, an entirety of an interface between one, a plurality, and/or each, of the side-contact via structures 96 and a respective one of the electrically conductive layers 46 may be located within a respective cylindrical vertical plane. In one embodiment, the side-contact via structures 96 do not contact any horizontal surface of the electrically conductive layers 46.
In one embodiment, a vertical stack of annular dielectric spacers 82 may laterally surround each side-contact via structure 96. For each side-contact via structure 96, each electrically conductive layer 46 within the at least one alternating stack (32, 46) except a respective one of the electrically conductive layers 46 can be laterally spaced from, and can be electrically isolated from, the side-contact via structure 96 by a respective one of the annular dielectric spacers 82. In one embodiment, for each side-contact via structure 96, each of the annular dielectric spacers 82 comprises a respective outer cylindrical sidewall that is laterally offset outward from a respective inner cylindrical sidewall by a respective lateral offset distance that is independent of an azimuthal angle from a vertical axis VA passing through a geometrical center GC of the side-contact via structure 96. All lateral offset distances of the annular dielectric spacers 82 can be the same. A geometrical center of an element refers to the center of gravity of a hypothetical object occupying the same volume as the element and having a uniform density throughout.
In one embodiment, for each side-contact via structure 96, each of the insulating layers 32 within the at least one alternating stack (32, 46) comprises a respective cylindrical sidewall that contacts the side-contact via structure 96.
In one embodiment, backside blocking dielectric layers 44 can be located between each vertically neighboring pair of an insulating layer 32 and an electrically conductive layer 46 within the at least one alternating stack (32, 46). In one embodiment, each side-contact via structure 96 can be in contact with two cylindrical surface segments of horizontally extending backside blocking dielectric layers 44. Each of the two cylindrical surface segments may have a height that is the same as the thickness of the backside blocking dielectric layers 44.
In one embodiment, each of the electrically conductive layers 46 comprises a respective combination of a metallic barrier liner 46A and a metallic fill material portion 46B. In one embodiment, each side-contact via structure 96 may be in contact with a metallic barrier liner 46A of a respective one of the electrically conductive layers 46, and is laterally spaced from a metallic fill material portion 46B of the respective one of the electrically conductive layers 46 by the respective metallic barrier liner 46A.
Each side-contact via structure 96 may be laterally surrounded by a respective vertical stack of annular dielectric spacers 82. The side-contact via structure 96 is in contact with an inner cylindrical sidewall of each annular dielectric spacer 82 within the vertical stack of annular dielectric spacers 82.
Each side-contact via structure 96 can vertically extend through each layer within the at least one alternating stack (32, 46) and can contact a sidewall of one respective electrically conductive layer 46.
Referring to
Referring to
Generally, drain-side metal interconnect structures 380 can be configured to provide electrical connection to and/or between the various electrical nodes of the three-dimensional memory device including the electrically conductive layers 46 and the memory opening fill structures 58. Drain-side bonding pads 388 can be formed in the topmost level of the drain-side dielectric material layers 360. The drain-side bonding pads 388 can be formed on or within a topmost dielectric layer of the drain-side dielectric material layers 360. The drain-side bonding pads 388 are a first subset of memory-side bonding pads that are formed on the drain side. The memory-side bonding pads refer to bonding pads formed on a memory die.
Referring to
Referring to
Subsequently, a sequence of etch processes can be performed to remove horizontally-extending portions of the memory films 50 that are more distal from the upper dielectric material layers 360 than the most distal portions of the vertical semiconductor channels 60 located within the alternating stack (32, 46). For example, portions of the dielectric liners 56, the memory material layers 54, and the blocking dielectric layers 52 that are proximal to the source cavities 13 can be sequentially removed by wet etch processes. Thus, end portions of the memory films 50 can be removed. A bottommost surface of each vertical semiconductor channel 60 (when viewed in an orientation of
Referring to
In one embodiment, each source region 15 can be formed below a level of a bottommost electrically conductive strip 46. Each source region 15 contacts a bottom end portion of a respective vertical semiconductor channel 60. In one embodiment, each source region 15 may be in direct contact with an annular bottommost surface of a respective memory film 50. In one embodiment, each source region 15 contacts a bottommost horizontally-extending surface of a respective vertical semiconductor channel 60.
Source-side metal interconnect structures 480 and source-side dielectric material layers 460 may be formed over the bottommost insulating layer 32B and the source regions 15. A subset of the source-side metal interconnect structures 480 is electrically connected to the source regions 15. The source-side metal interconnect structures 480 underlie the alternating stack (32, 46) (when viewed in an orientation of
Source-side bonding pads 488 may be formed within the source-side dielectric material layers 460. The source-side bonding pads 488 may be electrically connected to the source-side metal interconnect structures 480. A subset of the source-side bonding pads 488 can be electrically connected to the source regions 15. The second exemplary structure comprises a memory die 900, which comprises all structures between and including the drain-side bonding pads 388 and the source-side bonding pads 488.
In one embodiment, the connection via structures 388 vertically extend through the dielectric material plates 42′ within the alternating stack (32, 46), and provide electrical connection between a respective one of the drain-side bonding pads 388 and one of the source-side bonding pads 488 through the respective one of the drain-side metal interconnect structures 380 and the respective one of the source-side metal interconnect structures 480.
Referring to
Generally, a first memory die 900A and a second memory die 900B can be provided. The first memory die 900A comprises a first alternating stack (32, 46) of first insulating layers 32 and first electrically conductive layers 46, first memory openings 49 vertically extending through the first alternating stack (32, 46), first memory opening fill structures 58 located within the first memory openings 49 and comprising a respective vertical stack of first memory elements (e.g., memory cells located in the memory film 50 at the levels of the first electrically conductive layers 46) and a first vertical semiconductor channel 60, first side-contact via structures 96 vertically extending through each layer within the first alternating stack (32, 46), and first memory-side bonding pads (388 or 488). A first subset of the first memory-side bonding pads (388 or 488) is electrically connected to the first side-contact via structures 96 through first metal interconnect structures (380 or 480). Each of the first side-contact via structures 96 contacts a sidewall of a respective first electrically conductive layer 46 of the first electrically conductive layers 46. The second memory die 900B comprises a second alternating stack (32, 46) of second insulating layers 32 and second electrically conductive layers 46, second memory openings 49 vertically extending through the second alternating stack (32, 46), second memory opening fill structures 58 located within the second memory openings 49 and comprising a respective vertical stack of second memory elements and a second vertical channel 60, second side-contact via structures 96 vertically extending through each layer within the second alternating stack (32, 46), and second memory-side bonding pads (388 or 488). A second subset of the second memory-side bonding pads (388 or 488) is electrically connected to the second side-contact via structures 96 through second metal interconnect structures (380 or 480). Each of the second side-contact via structures 96 contacts a sidewall of a respective second electrically conductive layer 46 of the second electrically conductive layers 46.
While an embodiment is described employing two memory dies 900 that are bonded to each other, embodiments are expressly contemplated herein in which three or more memory dies 900 are bonded to each other.
Referring to
Generally, the logic-side semiconductor devices 720 comprise a control circuitry configured to control operation of the vertical stack of memory elements (e.g., memory cells) within each memory opening fill structure 58 in the memory die 900. The logic-side semiconductor devices 720 may be electrically connected to the logic-side bonding pads 788 through the logic-side metal interconnect structures 780. Thus, the logic-side bonding pads 788 are electrically connected to the logic-side semiconductor devices 720 through the logic-side metal interconnect structures 780.
The logic die 700 can be attached to a memory die 900 such as the first memory die 900A, for example, by bonding the memory-side bonding pads (which may be drain-side bonding pads 388 or source-side bonding pads 488) with the logic-side bonding pads 788. For example, the memory-side bonding pads (388 or 488) can be bonded with the logic-side bonding pads 788 by metal-to-metal bonding, such as copper-to-copper bonding. In some embodiments, hybrid bonding may be employed, in which contacting surfaces of the drain-side dielectric material layers 960 and the logic-side dielectric material layers 760 are bonded through dielectric-to-dielectric bonding (such as oxide-to-oxide bonding).
In the illustrated configuration of
Referring to
Referring to
In the first memory die 900A, the first electrically conductive layers 46 comprise at least one first drain-side select gate electrode 46DA located closest to the drain regions 63, at least one first source-side select gate electrode 46SA located closest to the source regions 15, and a plurality of first word lines 46WA located between the first source-side and drain-side select gate electrodes (46SA, 46DA). In the second memory die 900B, the second electrically conductive layers 46 comprise at least one second drain-side select gate electrode 46DB located closest to the drain regions 63, at least one second source-side select gate electrode 46SB located closest to the source regions 15, and a plurality of second word lines 46WB located between the second source-side and drain-side select gate electrodes (46SB, 46DB).
A first subset 96WA of the first side-contact via structures 96 in the first memory die 900A is electrically connected to a first subset 96WB of the second side-contact via structures 96 in the second memory die 900B and to the peripheral circuitry 720, such that the peripheral circuitry 720 simultaneously controls pairs of a respective first word line 46WA in the first memory die 900A and a respective corresponding second word line 46WB in the second memory die 900B. The first and second word lines (46WA, 46WB) may be located at the same distance from the respective source-side select gate electrodes (46SA, 46SB) in the respective memory dies (900A, 900B) (i.e., they may be the same “numbered” from word lines).
Further, a second subset (96SA, 96DA) of the first side-contact via structures 96 in the first memory die 900A are electrically connected to and are configured to control the respective source-side and drain-side select gate electrodes (46SA, 46DA). Likewise, a second subset (96SB, 96DB) of the second side-contact via structures 96 in the second memory die 900B are electrically connected to and are configured to control the respective source-side and drain-side select gate electrodes (46SB, 46DB). The second subset (96SA, 96DA) of the first side-contact via structures 96 are not electrically connected to the second subset (96SB, 96DB) of the second side-contact via structures 96, such that the peripheral circuitry 720 is configured to control the first source-side and drain-side select gate electrodes (46SA, 46DA) separately from the second source-side and drain-side select gate electrodes (46SB, 46DB).
While an embodiment is described in which the logic die 700 is attached to an assembly of multiple memory dies 900, embodiments are expressly contemplated herein in which a logic die 700 is attached to a memory die (such as a first memory die 900A), and the assembly of the logic die 700 and the memory die 900 is subsequently attached to another memory die 900. Generally, the order of bonding among the various dies (700, 900) may be changed as needed.
Generally, a first memory die 900A is provided, which comprises a first alternating stack (32, 46) of first insulating layers 32 and first electrically conductive layers 46, first memory openings 49 vertically extending through the first alternating stack (32, 46), first memory opening fill structures 58 located within the first memory openings 49 and comprising a respective vertical stack of first memory elements and a vertical semiconductor channel 60, and first memory-side bonding pads (388 or 488). A logic die 700 can be provided, which comprises a peripheral circuitry 720 configurated to control operation of the first memory die 900A, logic-side metal interconnect structures 780, and logic-side bonding pads 788. A bonded assembly can be formed by bonding the logic-side bonding pads 788 to the first memory-side bonding pads (388 or 488).
A second memory die 900B is provided, which comprises a second alternating stack (32, 46) of second insulating layers 32 and second electrically conductive layers 46, second memory openings 49 vertically extending through the second alternating stack (32, 46), second memory opening fill structures 58 located within the second memory openings 49 and comprising a respective vertical stack of second memory elements and vertical semiconductor channel 60, and second memory-side bonding pads (388 or 488). The second memory die 900B can be attached to the first memory die 900A by bonding the second memory-side bonding pads (388 or 488) to the first backside bonding pads (488 or 388).
Referring to all drawings and according to various embodiments of the present disclosure, a bonded assembly comprises: a first memory die 900A comprising a first alternating stack (32, 46) of first insulating layers 32 and first electrically conductive layers 46, first memory openings 49 vertically extending through the first alternating stack (32, 46), first memory opening fill structures 58 located within the first memory openings 49 and comprising a respective vertical stack of first memory elements (e.g., portions of the memory film 50) and vertical semiconductor channel 60, first side-contact via structures 96 vertically extending through each layer within the first alternating stack (32, 46), and contacting sidewall of a respective one of the first electrically conductive layers 46, and first memory-side bonding pads (388 or 488); and a logic die 700 comprising a peripheral circuitry 720 configured to control operation of the first memory die 900A, logic-side metal interconnect structures 780, and logic-side bonding pads 788 that are bonded to the first memory-side bonding pads (388 or 488).
In one embodiment, each of the first side-contact via structures 96 is electrically isolated from all first electrically conductive layers 46 other than the respective one of the first electrically conductive layers 46.
In one embodiment, the first memory die 900A further comprises first vertical stacks of annular dielectric spacers 82, wherein each first vertical stack of annular dielectric spacers 82 laterally surrounds a respective one of the first side-contact via structures 96.
In one embodiment, each first vertical stack of annular dielectric spacers 82 contacts all of the first electrically conductive layers 46 other than a respective first one of the electrically conductive layers 46.
In one embodiment, a lateral offset distance between an inner cylindrical sidewall and an outer cylindrical sidewall is the same for each annular dielectric spacer 82 within the first vertical stacks of annular dielectric spacers 82.
In one embodiment, each of the first side-contact via structures 96 contacts each of the first insulating layers 32 within the first alternating stack (32, 46).
In one embodiment, first memory die 900A further comprises first backside blocking dielectric layers 44 located between each vertically neighboring pair of a first insulating layer 32 and a first electrically conductive layer 46 within the first alternating stack (32, 46), wherein each of the first backside blocking dielectric layers 44 comprises a respective pair of cylindrical surface segments in contact with a respective one of the first side-contact via structures 96.
In one embodiment, the first memory die 900A further comprises: a vertical stack of first dielectric material plates 42′ located at levels of the first electrically conductive layers 46 and vertically interlaced with the first insulating layers 32; and connection via structures 386 vertically extending through the vertical stack of first dielectric material plates 42′, wherein a subset of the first memory-side bonding pads (388 or 488) is electrically connected to the connection via structures 386.
In one embodiment, the bonded assembly comprises a second memory die 900B that is bonded to the first memory die 900A and comprising a second alternating stack (32, 46) of second insulating layers 32 and second electrically conductive layers 46, second memory openings 49 vertically extending through the second alternating stack (32, 46), second memory opening fill structures 58 located within the second memory openings 49 and comprising a respective vertical stack of second memory elements and a second vertical semiconductor channel 60, and second memory-side bonding pads (388 or 488), wherein the first memory die 900A further comprises first backside bonding pads (i.e., the other ones of the bonding pads 488 or 388) that are bonded to the second memory-side bonding pads (388 or 488).
In one embodiment, the second memory die 900B comprises second side-contact via structures 96 vertically extending through each layer within the second alternating stack (32, 46); each of the second side-contact via structures 96 contacts a sidewall of a respective one of the second electrically conductive layers 46.
In various embodiments of the present disclosure a common peripheral circuitry 720 located on a logic die 700 is shared between multiple three-dimensional memory arrays located in multiple memory dies 900. A first subset of the side-contact via structures 96 may be electrically connected across the multiple memory dies 900 to enable sharing of a word line driver between different corresponding word lines located in different memory dies. In contrast, a second subset of the side-contact via structures 96 which contact the select gate electrodes are not electrically connected across multiple memory dies 900, such that the select gate electrodes in each memory die are operated independently.
Although the foregoing refers to particular embodiments, it will be understood that the disclosure is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the disclosure. Compatibility is presumed among all embodiments that are not alternatives of one another. The word “comprise” or “include” contemplates all embodiments in which the word “consist essentially of” or the word “consists of” replaces the word “comprise” or “include,” unless explicitly stated otherwise. Where an embodiment using a particular structure and/or configuration is illustrated in the present disclosure, it is understood that the present disclosure may be practiced with any other compatible structures and/or configurations that are functionally equivalent provided that such substitutions are not explicitly forbidden or otherwise known to be impossible to one of ordinary skill in the art. All of the publications, patent applications and patents cited herein are incorporated herein by reference in their entirety.
This application is a continuation-in-part (CIP) application of U.S. application Ser. No. 17/822,182 filed on Aug. 25, 2022, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17822182 | Aug 2022 | US |
Child | 18062807 | US |