The present technology relates to semiconductor systems, processes, and equipment. More specifically, the present technology relates to processing chambers that may include an inductively coupled plasma source within the chamber.
Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.
Etch processes may be termed wet or dry based on the materials used in the process. A wet HF etch preferentially removes silicon oxide over other dielectrics and materials. However, wet processes may have difficulty penetrating some constrained trenches and also may sometimes deform the remaining material. Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, local plasmas may damage the substrate through the production of electric arcs as they discharge.
Thus, there is a need for improved systems and methods that can be used to produce high quality devices and structures. These and other needs are addressed by the present technology.
Semiconductor processing systems and methods of the present technology may include semiconductor processing chambers including a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber may include a showerhead positioned within the chamber housing, and the showerhead may at least partially divide the interior region into a remote region and a processing region in which a substrate can be contained. The chamber may also include an inductively coupled plasma source positioned between the showerhead and the processing region. The inductively coupled plasma source may include a conductive material within a dielectric material.
In embodiments the dielectric material may be selected from the group consisting of aluminum oxide, yttrium oxide, single crystalline silicon, and quartz. Additionally, the conductive material may include a copper tube configured to receive a fluid flowed within the tube. The dielectric material may define apertures through the inductively coupled plasma source. In some embodiments the conductive material may be positioned about the apertures within the dielectric material. The apertures may be included in a uniform pattern across the dielectric material and about the conductive material. In some embodiments, the conductive material may be configured in a planar spiral pattern within the dielectric material. In other embodiments the conductive material may configured in a coil extending vertically within the dielectric material for at least two complete turns of the conductive material.
In exemplary plasma sources, the conductive material may include two conductive tubes positioned within the inductively coupled source. A first tube may be included in a first configuration within the inductively coupled source, and a second tube may be included in a second configuration within the inductively coupled source. In some embodiments the second configuration may be radially inward of the first configuration. The first configuration and the second configuration may each be coiled configurations extending vertically within the dielectric material. In other embodiments, the first configuration and the second configuration may each be a planar configuration within the same plane of the inductively coupled source. The first tube and the second tube may be coupled with an RF source, and in some embodiments the first tube and the second tube may each be coupled with the RF source through a capacitive divider. Additionally, in some embodiments the inductively coupled source may include at least two plates coupled together. Each plate of the at least two plates may define at least a portion of a channel, and the conductive material may be housed within the channel at least partially defined by each of the at least two plates.
The present technology also encompasses inductively coupled plasma sources. Exemplary sources may include a first plate defining at least a portion of a channel within the first plate. The first plate may include a dielectric material, for example. Exemplary sources may also include a conductive material seated within the at least a portion of the channel. In some embodiments the conductive material may be characterized by a spiral or coil configuration. Additionally, the conductive material may be coupled with an RF source and configured to generate a plasma across the source.
In some exemplary sources the first plate may define apertures through the first plate, and a central axis of each aperture may be normal to the at least a portion of the channel. In embodiments the source may be characterized by a thickness of at least three inches. The first plate may define at least a portion of the first channel and at least a portion of a second channel in embodiments. The conductive material may include at least a first conductive material seated within the at least a portion of the first channel and a second conductive material seated within the at least a portion of the second channel. Exemplary sources may further include a second plate coupled with the first plate enclosing the conductive material between the first plate and the second plate. In embodiments the second plate may define second apertures axially aligned with the apertures defined through the first plate.
The present technology additionally includes semiconductor processing chambers. Exemplary chambers may include a chamber housing at least partially defining an interior region of the semiconductor processing chamber. The chamber housing may include a lid assembly including an inlet for receiving precursors into the semiconductor processing chamber. The chambers may also include a pedestal within the interior region of the semiconductor processing chamber. The chambers may include a showerhead positioned within the chamber housing. In embodiments, the showerhead may be positioned between the lid assembly and the pedestal. Additionally, the chambers may include an inductively coupled plasma source positioned between the showerhead and the pedestal. The inductively coupled plasma source may include a conductive material within a dielectric material.
Such technology may provide numerous benefits over conventional systems and techniques. For example, inductive sources according to the present technology may reduce component sputtering from the electrodes. Additionally, plasma sources of the present technology may allow decoupling of plasma ion energy from ion density. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.
A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.
Several of the figures are included as schematics. It is to be understood that the figures are for illustrative purposes, and are not to be considered of scale unless specifically stated to be of scale. Additionally, as schematics, the figures are provided to aid comprehension and may not include all aspects or information compared to realistic representations, and may include additional or exaggerated material for illustrative purposes.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the letter.
The present technology includes systems and components for semiconductor processing including tuned etch processes. Certain processing chambers available may include multiple plasma mechanisms, such as one at the wafer level as well as a remote plasma source. Plasma at the wafer level may often be formed via a capacitively-coupled plasma formed between two electrodes. One or both of these electrodes may be or include additional chamber components, such as showerheads, pedestals, or chamber walls. However, even at relatively low level plasma power and chamber pressures, such as 50 W power at 20 mTorr, the induced voltage on the electrodes may be hundreds of volts. This may cause sputtering of the electrodes themselves, which may introduce the sputtered particulate material onto the wafer. These particulates may fail to allow uniformity across the wafer, and may deposit conductive material that can cause short circuiting of the finally produced circuit.
Conventional technologies may have addressed this sputtering issue by seasoning the chamber components with a polymer coating, such as a carbon-containing coating or a silicon-containing coating. Such a polymer layer may operate as a passivation layer on the surfaces of the capacitively-coupled source electrodes. However, such a coating may be difficult to apply uniformly to a showerhead or component, may not have complete coverage, and may still be degraded over time leading to the polymeric material being deposited on the wafer.
The present technology may overcome these issues by utilizing an inductively-coupled plasma (“ICP”) source within the chamber itself. The ICP source may produce voltages much lower than a capacitively-coupled plasma source of the same power, which may at least partially resolve electrode sputtering. Additionally, because the ICP source operates differently from the two plates of the capacitively-coupled source, plasma ion density and ion energy may be decoupled in exemplary chambers according to the present technology. This may allow improved plasma tuning and feature modification over conventional technologies.
Although the remaining disclosure will routinely identify specific etching processes utilizing the disclosed technology, it will be readily understood that the systems and methods are equally applicable to deposition and cleaning processes as may occur in the described chambers. Accordingly, the technology should not be considered to be so limited as for use with etching processes alone.
To transport substrates among the chambers, the transfer chamber 110 may contain a robotic transport mechanism 113. The transport mechanism 113 may have a pair of substrate transport blades 113A attached to the distal ends of extendible arms 113B, respectively. The blades 113A may be used for carrying individual substrates to and from the process chambers. In operation, one of the substrate transport blades such as blade 113A of the transport mechanism 113 may retrieve a substrate W from one of the load lock chambers such as chambers 106A-B and carry substrate W to a first stage of processing, for example, an etching process as described below in chambers 114A-D. If the chamber is occupied, the robot may wait until the processing is complete and then remove the processed substrate from the chamber with one blade 113A and may insert a new substrate with a second blade (not shown). Once the substrate is processed, it may then be moved to a second stage of processing. For each move, the transport mechanism 113 generally may have one blade carrying a substrate and one blade empty to execute a substrate exchange. The transport mechanism 113 may wait at each chamber until an exchange can be accomplished.
Once processing is complete within the process chambers, the transport mechanism 113 may move the substrate W from the last process chamber and transport the substrate W to a cassette within the load lock chambers 106A-B. From the load lock chambers 106A-B, the substrate may move into a factory interface 104. The factory interface 104 generally may operate to transfer substrates between pod loaders 105A-D in an atmospheric pressure clean environment and the load lock chambers 106A-B. The clean environment in factory interface 104 may be generally provided through air filtration processes, such as HEPA filtration, for example. Factory interface 104 may also include a substrate orienter/aligner (not shown) that may be used to properly align the substrates prior to processing. At least one substrate robot, such as robots 108A-B, may be positioned in factory interface 104 to transport substrates between various positions/locations within factory interface 104 and to other locations in communication therewith. Robots 108A-B may be configured to travel along a track system within enclosure 104 from a first end to a second end of the factory interface 104.
The processing system 100 may further include an integrated metrology chamber 117 to provide control signals, which may provide adaptive control over any of the processes being performed in the processing chambers. The integrated metrology chamber 117 may include any of a variety of metrological devices to measure various film properties, such as thickness, roughness, composition, and the metrology devices may further be capable of characterizing grating parameters such as critical dimensions, sidewall angle, and feature height under vacuum in an automated manner.
Turning now to
The chuck 250 may include a mesh 249 coupled to a high voltage DC supply 248 so that the mesh 249 may carry a DC bias potential to implement the electrostatic clamping of the substrate 202. The chuck 250 may be coupled with a first RF power source and in one such embodiment, the mesh 249 may be coupled with the first RF power source so that both the DC voltage offset and the RF voltage potentials are coupled across a thin dielectric layer on the top surface of the chuck 250. In the illustrative embodiment, the first RF power source may include a first and second RF generator 252, 253. The RF generators 252, 253 may operate at any industrially utilized frequency, however in the exemplary embodiment the RF generator 252 may operate at 60 MHz to provide advantageous directionality. Where a second RF generator 253 is also provided, the exemplary frequency may be 2 MHz.
With the chuck 250 to be RF powered, an RF return path may be provided by a first showerhead 225, which may include a dual channel showerhead. The first showerhead 225 may be disposed above the chuck to distribute a first feed gas into a first chamber region 284 defined by the first showerhead 225 and the chamber wall 240. As such, the chuck 250 and the first showerhead 225 form a first RF coupled electrode pair to capacitively energize a first plasma 270 of a first feed gas within a first chamber region 284. A DC plasma bias, or RF bias, resulting from capacitive coupling of the RF powered chuck may generate an ion flux from the first plasma 270 to the substrate 202, e.g., Ar ions where the first feed gas is Ar, to provide an ion milling plasma. The first showerhead 225 may be grounded or alternately coupled with an RF source 228 having one or more generators operable at a frequency other than that of the chuck 250, e.g., 13.56 MHz or 60 MHz. In the illustrated embodiment the first showerhead 225 may be selectably coupled to ground or the RF source 228 through the relay 227 which may be automatically controlled during the etch process, for example by a controller (not shown). In disclosed embodiments, chamber 200 may not include showerhead 225 or dielectric spacer 220, and may instead include only baffle 215 and showerhead 210 described further below.
As further illustrated in the figure, the etch chamber 200 may include a pump stack capable of high throughput at low process pressures. In embodiments, at least one turbo molecular pump 265, 266 may be coupled with the first chamber region 284 through one or more gate valves 260 and disposed below the chuck 250, opposite the first showerhead 225. The turbo molecular pumps 265, 266 may be any commercially available pumps having suitable throughput and more particularly may be sized appropriately to maintain process pressures below or about 10 mTorr or below or about 5 mTorr at the desired flow rate of the first feed gas, e.g., 50 to 500 sccm of Ar where argon is the first feedgas. In the embodiment illustrated, the chuck 250 may form part of a pedestal which is centered between the two turbo pumps 265 and 266, however in alternate configurations chuck 250 may be on a pedestal cantilevered from the chamber wall 240 with a single turbo molecular pump having a center aligned with a center of the chuck 250.
Disposed above the first showerhead 225 may be a second showerhead 210. In one embodiment, during processing, the first feed gas source, for example, Argon delivered from gas distribution system 290 may be coupled with a gas inlet 276, and the first feed gas flowed through a plurality of apertures 280 extending through second showerhead 210, into the second chamber region 281, and through a plurality of apertures 282 extending through the first showerhead 225 into the first chamber region 284. An additional flow distributor or baffle 215 having apertures 278 may further distribute a first feed gas flow 216 across the diameter of the etch chamber 200 through a distribution region 218. In an alternate embodiment, the first feed gas may be flowed directly into the first chamber region 284 via apertures 283 which are isolated from the second chamber region 281 as denoted by dashed line 223.
Chamber 200 may additionally be reconfigured from the state illustrated to perform an etching operation. A secondary electrode 205 may be disposed above the first showerhead 225 with a second chamber region 281 there between. The secondary electrode 205 may further form a lid or top plate of the etch chamber 200. The secondary electrode 205 and the first showerhead 225 may be electrically isolated by a dielectric ring 220 and form a second RF coupled electrode pair to capacitively discharge a second plasma 292 of a second feed gas within the second chamber region 281. Advantageously, the second plasma 292 may not provide a significant RF bias potential on the chuck 250. At least one electrode of the second RF coupled electrode pair may be coupled with an RF source for energizing an etching plasma. The secondary electrode 205 may be electrically coupled with the second showerhead 210. In an exemplary embodiment, the first showerhead 225 may be coupled with a ground plane or floating and may be coupled to ground through a relay 227 allowing the first showerhead 225 to also be powered by the RF power source 228 during the ion milling mode of operation. Where the first showerhead 225 is grounded, an RF power source 208, having one or more RF generators operating at 13.56 MHz or 60 MHz, for example, may be coupled with the secondary electrode 205 through a relay 207 which may allow the secondary electrode 205 to also be grounded during other operational modes, such as during an ion milling operation, although the secondary electrode 205 may also be left floating if the first showerhead 225 is powered.
A second feed gas source, such as nitrogen trifluoride, and a hydrogen source, such as ammonia, may be delivered from gas distribution system 290, and coupled with the gas inlet 276 such as via dashed line 224. In this mode, the second feed gas may flow through the second showerhead 210 and may be energized in the second chamber region 281. Reactive species may then pass into the first chamber region 284 to react with the substrate 202. As further illustrated, for embodiments where the first showerhead 225 is a multi-channel showerhead, one or more feed gases may be provided to react with the reactive species generated by the second plasma 292. In one such embodiment, a water source may be coupled with the plurality of apertures 283. Additional configurations may also be based on the general illustration provided, but with various components reconfigured. For example, flow distributor or baffle 215 may be a plate similar to the second showerhead 210, and may be positioned between the secondary electrode 205 and the second showerhead 210.
As any of these plates may operate as an electrode in various configurations for producing plasma, one or more annular or other shaped spacer may be positioned between one or more of these components, similar to dielectric ring 220. Second showerhead 210 may also operate as an ion suppression plate in embodiments, and may be configured to reduce, limit, or suppress the flow of ionic species through the second showerhead 210, while still allowing the flow of neutral and radical species. One or more additional showerheads or distributors may be included in the chamber between first showerhead 225 and chuck 250. Such a showerhead may take the shape or structure of any of the distribution plates or structures previously described. Also, in embodiments a remote plasma unit (not shown) may be coupled with the gas inlet to provide plasma effluents to the chamber for use in various processes.
In an embodiment, the chuck 250 may be movable along the distance H2 in a direction normal to the first showerhead 225. The chuck 250 may be on an actuated mechanism surrounded by a bellows 255, or the like, to allow the chuck 250 to move closer to or farther from the first showerhead 225 as a means of controlling heat transfer between the chuck 250 and the first showerhead 225, which may be at an elevated temperature of 80° C.-150° C., or more. As such, an etch process may be implemented by moving the chuck 250 between first and second predetermined positions relative to the first showerhead 225. Alternatively, the chuck 250 may include a lifter 251 to elevate the substrate 202 off a top surface of the chuck 250 by distance H1 to control heating by the first showerhead 225 during the etch process. In other embodiments, where the etch process is performed at a fixed temperature such as about 90-110°C. for example, chuck displacement mechanisms may be avoided. A system controller (not shown) may alternately energize the first and second plasmas 270 and 292 during the etching process by alternately powering the first and second RF coupled electrode pairs automatically.
The chamber 200 may also be reconfigured to perform a deposition operation. A plasma 292 may be generated in the second chamber region 281 by an RF discharge which may be implemented in any of the manners described for the second plasma 292. Where the first showerhead 225 is powered to generate the plasma 292 during a deposition, the first showerhead 225 may be isolated from a grounded chamber wall 240 by a dielectric spacer 230 so as to be electrically floating relative to the chamber wall. In the exemplary embodiment, an oxidizer feed gas source, such as molecular oxygen, may be delivered from gas distribution system 290, and coupled with the gas inlet 276. In embodiments where the first showerhead 225 is a multi-channel showerhead, any silicon-containing precursor, such as OMCTS for example, may be delivered from gas distribution system 290, and directed into the first chamber region 284 to react with reactive species passing through the first showerhead 225 from the plasma 292. Alternatively the silicon-containing precursor may also be flowed through the gas inlet 276 along with the oxidizer. Chamber 200 is included as a general chamber configuration that may be utilized for various operations discussed in reference to the present technology.
An arrangement for a faceplate according to embodiments is shown in
The plate may have a disc shape and be seated on or within the frame 410. The plate may be a conductive material such as a metal including aluminum, as well as other conductive materials that allow the plate to serve as an electrode for use in a plasma arrangement as previously described. The plate may be of a variety of thicknesses, and may include a plurality of apertures 465 defined within the plate. An exemplary arrangement as shown in
The apertures 465 may be sized or otherwise configured to allow fluids to be flowed through the apertures during operation. The apertures may be sized less than about 2 inches in various embodiments, and may be less than or about 1.5 inches, about 1 inch, about 0.9 inches, about 0.8 inches, about 0.75 inches, about 0.7 inches, about 0.65 inches, about 0.6 inches, about 0.55 inches, about 0.5 inches, about 0.45 inches, about 0.4 inches, about 0.35 inches, about 0.3 inches, about 0.25 inches, about 0.2 inches, about 0.15 inches, about 0.1 inches, about 0.05 inches, about 0.04 inches, about 0.035 inches, about 0.03 inches, about 0.025 inches, about 0.02 inches, about 0.015 inches, about 0.01 inches, etc. or less.
In some embodiments faceplate 400 may operate as an ion suppressor that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out of a chamber plasma region while allowing uncharged neutral or radical species to pass through the ion suppressor into an activated gas delivery region downstream of the ion suppressor. In embodiments, the ion suppressor may be a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor is reduced.
Turning to
With or without a remote plasma unit, the system may be configured to receive precursors or other fluids through inlet 501, which may provide access to a mixing region 511 of the processing chamber. The mixing region 511 may be separate from and fluidly coupled with the processing region 533 of the chamber. The mixing region 511 may be at least partially defined by a top of the chamber of system 500, such as chamber lid 502 or lid assembly, which may include an inlet assembly for one or more precursors, and a distribution device, such as faceplate 509 below. Faceplate 509 may be similar to the showerhead or faceplate illustrated in
For example, recombination may be affected or controlled by adjusting the number of apertures, size of the apertures, or configuration of apertures across the faceplate 509. Spacer 504, such as a ring of dielectric material may be positioned between the top of the chamber and the faceplate 509 to further define the mixing region 511. Additionally, spacer 504 may be metallic to allow electrical coupling of lid 502 and faceplate 509. Additionally, spacer 504 may not be included, and either lid 502 or faceplate 509 may be characterized by extensions or raised features to separate the two plates to define mixing region 511. As illustrated, faceplate 509 may be positioned between the mixing region 511 and the processing region 533 of the chamber, and the faceplate 509 may be configured to distribute one or more precursors through the chamber 500.
The chamber of system 500 may include one or more of a series of components that may optionally be included in disclosed embodiments. For example although faceplate 509 is described, in some embodiments the chamber may not include such a faceplate. In disclosed embodiments, the precursors that are at least partially mixed in mixing region 511 may be directed through the chamber via one or more of the operating pressure of the system, the arrangement of the chamber components, or the flow profile of the precursors.
An additional plate or device 523 may be disposed below the faceplate 509. Plate 523 may include a similar design as faceplate 509, and may have a similar arrangement as is illustrated at
The chamber of system 500 optionally may further include a gas distribution assembly 525 within the chamber. The gas distribution assembly 525, which may be similar in aspects to the dual-channel showerheads as previously described, may be located within the chamber above the processing region 533, such as between the processing region 533 and the lid 502. The gas distribution assembly 525 may be configured to deliver both a first and a second precursor into the processing region 533 of the chamber. In embodiments, the gas distribution assembly 525 may at least partially divide the interior region of the chamber into a remote region and a processing region in which substrate 555 is positioned. Although the exemplary system of
In embodiments, gas distribution assembly 525 may include an embedded heater 529, which may include a resistive heater or a temperature controlled fluid, for example. The gas distribution assembly 525 may include an upper plate and a lower plate. The plates may be coupled with one another to define a volume 527 between the plates. The coupling of the plates may be such as to provide first fluid channels 540 through the upper and lower plates, and second fluid channels 545 through the lower plate. The formed channels may be configured to provide fluid access from the volume 527 through the lower plate, and the first fluid channels 540 may be fluidly isolated from the volume 527 between the plates and the second fluid channels 545. The volume 527 may be fluidly accessible through a side of the gas distribution assembly 525, such as channel 223 as previously discussed. The channel may be coupled with an access in the chamber separate from the inlet 501 of the chamber 500. The chamber of system 500 may also include a chamber liner 535, which may protect the walls of the chamber from plasma effluents as well as material deposition, for example. The liner may be or may include a conductive material, and in embodiments may be or include an insulative material.
In some embodiments, a plasma as described earlier may be formed in a region of the chamber defined between two or more of the components previously discussed. For example, a plasma region such as a first plasma region 515, may be formed between faceplate 509 and plate 523. Spacer 510 may maintain the two devices electrically isolated from one another in order to allow a plasma field to be formed. Faceplate 509 may be electrically charged while plate 523 may be grounded or DC biased to produce a plasma field within the region defined between the plates. The plates may additionally be coated or seasoned in order to minimize the degradation of the components between which the plasma may be formed. The plates may additionally include compositions that may be less likely to degrade or be affected including ceramics, metal oxides, or other conductive materials.
Operating a conventional capacitively-coupled plasma (“CCP”) may degrade the chamber components, which may remove particles that may be inadvertently distributed on a substrate. Such particles may affect performance of devices formed from these substrates due to the metal particles that may provide short-circuiting across semiconductor substrates. However, the CCP of the disclosed technology may be operated at reduced or substantially reduced power in embodiments, and may be utilized to maintain the plasma, instead of ionizing species within the plasma region. In other embodiments the CCP may be operated to ionize precursors delivered into the region. For example, the CCP may be operated at a power level below or about 1 kW, 500 W, 250 W, 100 W, 50 W, 20 W, etc. or less. Moreover, the CCP may produce a flat plasma profile which may provide a uniform plasma distribution within the space. As such, a more uniform flow of plasma effluents may be delivered downstream to the processing region of the chamber.
The chamber of system 500 may also include an additional plasma source within the chamber housing. For example, plasma source 550 may be an inductively-coupled plasma (“ICP”) source in embodiments. As illustrated, the ICP source 550 may be included between the gas distribution assembly 525 and the pedestal 565. The ICP source 550 may be positioned above the processing region 533, and may at least partially define the processing region 533 from above. The ICP source may include a combination of materials in embodiments, or may be a single material design. As a combination, ICP source 550 may include a conductive material 554 that is included within a dielectric material 552, or contained or housed within the dielectric material 552. In embodiments the dielectric material 552 may include any number of dielectric or insulative materials. For example, dielectric material 552 may be or include aluminum oxide, yttrium oxide, quartz, single crystalline silicon, or any other insulating material that may function within the processing environment. Some materials may not operate effectively as the dielectric material 552 in embodiments in which the ICP source 550 is positioned near or partially defining the processing region. Because the ICP source 550 may be exposed to one or more precursors or plasma effluents, the choice of material for the dielectric material 552 may be related to the precursors or operations to which it will be exposed.
The conductive material 554 may be any conductive material that may carry current. Conductive material 554 may include a solid material or a hollow material, such as a tube. By utilizing a tube, for example, a fluid may be flowed through the hollow structure, which may aid in cooling of the source under charge. In embodiments the conductive material 554 may be configured to receive a fluid flowed within the tube. The fluid may be water, for example, or may be any other fluid that may not impede the function of the ICP source 550 during operation. The conductive material 554 may be any conductive material that may operate effectively at varying operating conditions. In one non-limiting example, the conductive material 554 may be copper, including a copper tube, although other conductive materials such as other metals, or conductive non-metals may be used. Conductive material 554 may be included in a number of configurations as will be discussed below. In some configurations, the conductive material may be a tube, which may be wound, spiraled, or coiled within the dielectric material 552, and thus may be located throughout the dielectric material 552, including at optional locations 558, for example. The conductive material 554 may be included in a relatively uniform or uniform configuration to produce a uniform plasma across the ICP source 550, for example.
As previously noted, ICP source 550 may be positioned below the fluid delivery sources, such as gas distribution assembly 525 as well as other diffusers, faceplates, or showerheads previously discussed. When positioned above processing region 533, or proximate wafer 555, a uniform flow of materials through ICP source 550 may be desired to provide a uniform process across wafer 555. Thus, gas that has been distributed through the chamber through other showerheads may be a relatively uniform distribution upon interacting with the ICP source 550. Accordingly, ICP source 550 may operate as a showerhead or even as a final distributor before delivery into the processing region for contact with the wafer 555. ICP source 550 may be configured to maintain a uniform or relatively uniform flow of precursors and/or plasma effluents through the chamber and into the processing region 533. Embodiments of ICP sources 550 may include apertures 556 defined in the dielectric material 552 and through the ICP source 550. Several exemplary configurations are discussed in detail below. The apertures may be spaced apart from or around the conductive material 554 contained within the dielectric material 552. In some embodiments the direction of the apertures 556 may be perpendicular to the direction of the conductive material 554 within the dielectric material 552. For example, a central axis of any one or more of the apertures 556 may be normal to an axis of the conductive material 554, such as at an entrance to the ICP source 550, or to the direction of fluid flow within the conductive material 554, or to a direction of a channel defined in the dielectric material 552 in which the conductive material 554 may be seated.
A distance between ICP source 550 and gas distribution assembly 525 may be maintained to prevent or reduce a plasma from generating between the two components. The gas distribution assembly 525 may be grounded in some embodiments, and thus with a charged ICP source 550, the gas distribution assembly 525 may cause electromagnetic losses from the ICP source 550. Accordingly, a farther distance between the two components may be desired. However, as the components are spaced further apart, it may be possible to strike a plasma within the region between the two components. Accordingly, a distance between the two components may be less than or about 1 inch in embodiments to avoid striking a plasma between the two components. In some embodiments, the distance between the two components may be less than or about 0.9 inches, less than or about 0.8 inches, less than or about 0.7 inches, less than or about 0.6 inches, less than or about 0.5 inches, less than or about 0.4 inches, less than or about 0.3 inches, less than or about 0.2 inches, less than or about 0.1 inches, or less, although a distance may be maintained between the two components to ensure uniformity of flow between the two components which may have apertures that are axially aligned, or may be specifically offset from each other.
By including an ICP source 550, such as illustrated, a lower voltage may be produced than with a capacitively coupled plasma. In a capacitively-coupled plasma, the voltage induced on the electrodes may be directly proportional to the power, and thus may generate high voltages even at reduced power. For example, an exemplary capacitive source may be operated at a relatively low power level of about 50 W and at a pressure of about 20 mTorr, but may induce a voltage of 300-400 volts on the plates of the capacitive source. This may produce the sputtering previously discussed, for example. An inductively-coupled plasma source operated at the same frequency, such as ICP source 550, for example, may produce an induced voltage less than 300 volts for example, and may be less than 250 volts, less than 200 volts, less than 175 volts, less than 150 volts, less than 125 volts, less than 100 volts, less than 90 volts, less than 80 volts, less than 70 volts, less than 60 volts, less than 50 volts, or less depending on the number of turns and other parameters.
Additionally, utilizing ICP source 550 may provide an additional advantage over a capacitively-coupled source as discussed previously with respect to
Turning to
The spiral may be included to provide a number of turns of the conductive material 610. For example, in exemplary configurations the spiral may include at least about 1 turn, and may include at least or about 2 turns, at least or about 3 turns, at least or about 4 turns, at least or about 5 turns, at least or about 6 turns, at least or about 7 turns, at least or about 8 turns or more turns depending, for example, on the size of the conductive material or dielectric material. Additionally, exemplary ICP sources may include between about 1 turn of the conductive material and about 7 turns of the conductive material, or between about 2 turns and about 4 turns. Portion 610a of conductive material 610 may extend vertically within the dielectric material 620, and may extend normal to the planar coil or spiral configuration of conductive material 610. As will be explained below, portion 610a may still be contained within the dielectric material 620 in embodiments.
The number of turns of the conductive material 610 or ICP coil may impact the power provided by the ICP source. For example, a higher number of turns of the conductive material may provide an increased power to the plasma. However, as the number of turns continues to increase, this advantage may begin to decrease. For example, as turns continue to increase, the coil may begin to compensate and induce a self-inductance, or effectively resisting itself. Accordingly, by reducing the turns below such a threshold, or minimizing the effect, as well as providing enough turns for adequate power, a balance may be established to provide acceptable ICP sources. Additionally, the configuration of the conductive material 610 may be to include similar coverage across the dielectric material 620 to provide a more uniform plasma profile through the ICP source.
ICP source 600 may also include apertures 630 defined through dielectric material 620 as previously described. The apertures may be configured to develop uniformity of a flow profile through the ICP source. In some embodiments the apertures 630 may be included in a uniform pattern across the dielectric material 620 and about the conductive material 610. As illustrated, apertures 630 are included in a spiral or coiled pattern similar to conductive material 610. Because the apertures 630 may perforate the dielectric material 620 to provide flow channels, the apertures may not be positioned in line with the conductive material. Although illustrated in a spiral pattern, the apertures may be included in additional or alternative configurations that may include a goal of providing a substantially uniform flow profile through the ICP source.
Additionally, the number of apertures 630 may be variable, and may not be adequately represented by the figure, which is included more for the pattern of apertures. The number of apertures in any pattern across the ICP source 600 may be greater than or equal to 10 apertures, greater than or equal to 50 apertures, greater than or equal to 100 apertures, greater than or equal to 500 apertures, greater than or equal to 1,000 apertures, greater than or equal to 5,000 apertures, greater than or equal to 10,000 apertures, or more depending on the size of ICP source 600 and the dimensions of the apertures. The number of apertures may also be any smaller range within these ranges, or between any two numbers included within these ranges. Similarly, the dimensions and geometries of the apertures may be similar across the ICP source 600, or may be different between apertures.
In another embodiment, the dielectric material may include a plurality of plates that each may include a portion of conductive material 610. For example, the dielectric material may include at least two plates coupled together, such as is illustrated with optional plate divisions 640, 650. As illustrated, the ICP source includes 3 plates, although additional sources may include 1 or 2 plates as well as more than 3 plates, for example. Each plate of dielectric material 620 may define at least a portion of a channel in which the conductive material may be seated in embodiments. The conductive material may then be positioned or seated within at least one plate, and then a second or additional plates may be coupled with the first plate to enclose or house the conductive material within the dielectric material 620 plates, and within the channel at least partially defined by each of the plates. Although illustrated as having the planar configuration of the conductive material within a lower plate or at a lower portion of dielectric material 620, it is to be understood that the configuration can be reversed, with the coil pattern at an upper portion of the dielectric material, and the portion 610a extending vertically down from the coiled portion before exiting the dielectric material 620.
As illustrated, the first tube 910 and the second tube 940, as well as the first configuration and the second configuration of the tubes or other conductive material, may be planar configurations. In embodiments, the first configuration and the second configuration may be within the same plane across dielectric material 920. Accordingly, the dielectric material may define at least a portion of a first channel and at least a portion of a second channel in which the two conductive materials may be seated. In other embodiments, the first configuration or first tube 910 may be on different plane of dielectric material 920 than the second configuration or second tube 940. For example, first tube 910 may be disposed vertically offset within dielectric material 920 from second tube 940.
When vertically offset, for example, the dielectric material may include three plates that each define at least a portion of a channel in which either first tube 910 or second tube 940 may be seated. A middle plate, for example, may define at least a portion of a channel in which first tube 910 is seated on a first surface of the middle plate. Additionally, the middle plate may define at least a portion of a channel in which second tube 940 is seated on a second surface of the middle plate that may be opposite the first surface. In embodiments, the first tube 910 may be covered by a first portion of dielectric material 920, and the second tube 940 may be covered by a second portion of dielectric material 920. The two portions of dielectric material may then be coupled with one another to provide the plasma source 900. In this example or any example discussed throughout the disclosure in which multiple plates may be utilized for the plasma source, the apertures may be at least partially defined through each plate of dielectric material. When coupled together, the apertures may be axially aligned.
In exemplary configurations in which two separate conductive materials or tubes are included within a dielectric material, such as with first tube 910 and second tube 940 of plasma source 900, the two materials may be individually coupled with power supplies. For example, first tube 910 may be coupled with a first RF source, and second tube 940 may be coupled with a second RF source. Additionally, the two tubes may be coupled to an RF source together. In some embodiments, the first tube and second tube may be coupled to an RF source through a capacitive divider. A capacitive divider may allow management of the ratio of energy delivered to the plasma between the two tubes by adjusting the power delivered to each of the tubes. This may allow control of the plasma density distribution. For example, tunable capacitance may allow distributions of power of 50%/50%, 40%/60%, 30%/70%, 20%/80% between the two coils, which may also then be reversed between the two coils, or any other distribution of power as would be understood to be encompassed by this configuration. Generally, whether coupled with separate RF sources operating at similar or different power levels, or an RF power with a capacitive divider, utilizing two coils may allow tuning of the plasma to adjust for uniformity of treatment operations and plasma distribution.
Turning to
Chamber 1000 may also include a showerhead or gas distribution assembly 1025. Gas distribution assembly 1025 may include an upper plate and a lower plate, which may be coupled with one another to define a volume 1027 between the plates. The coupling of the plates may be such as to provide first fluid channels 1040 through the upper and lower plates, and second fluid channels 1045 through the lower plate. The formed channels may be configured to provide fluid access from the volume 1027 through the lower plate, and the first fluid channels 1040 may be fluidly isolated from the volume 1027 between the plates and the second fluid channels 1045. In embodiments, gas distribution assembly 1025 may also include an embedded heater or heating element 1029.
Chamber 1000 may also include an additional plasma source, such as an inductively-coupled plasma (“ICP”) source 1050. ICP source 1050 may include any of the features or characteristics of other plasma sources described elsewhere in this description. ICP source 1050 may also operate similarly to any of the previously discussed plasma sources. ICP source 1050 may include a dielectric material 1052 through which apertures 1056 may be defined. ICP source 1050 may also include a first conductive material 1054 and a second conductive material 1058 included within the dielectric material 1052. The first conductive material 1054 and second conductive material 1058 may be electrically coupled with RF power in any of the configurations discussed previously including separate sources or a single source. The arrangement of apertures 1056 about the conductive materials 1058 may be any of the configurations as previously discussed, or any other arrangement around the conductive materials. ICP source 1050 may differ from some of the planar sources previously described in that ICP source 1050 may include coiled or otherwise configured conductive material that may extend vertically within the dielectric material 1052. An exemplary configuration of an ICP source 1050 is included below with respect to
First and second conductive materials 1110, 1140 may be included in a coiled or spiraled configuration within dielectric material 1120. The coils may extend vertically within dielectric material 1120 without intersecting one another. For example, the coiled configuration of second conductive material 1140 may be radially inward of the coiled configuration of first conductive material 1110. The coils may each extend vertically in a circular fashion or in some other curved geometry for a number of turns. For example, first conductive material 1110 or second conductive material 1140 may each include at least about 1 complete turn, as well as at least about 2 complete turns, at least about 3 complete turns, at least about 4 complete turns, between about 2 complete turns and about 4 complete turns, or any other number of turns based on the spatial characteristics of the dielectric material and conductive material of the plasma source 1100.
In some embodiments the first conductive material 1110 and the second conductive material 1140 may include or be characterized by the same number of turns. In some embodiments the first or second conductive materials may include a different number of turns from one another. Additionally, in some embodiments, the first conductive material 1110 may turn in the same direction as the second conductive material 1140, while in some embodiments the first conductive material 1110 and the second conductive material 1140 may turn in opposite directions from one another, such as a left-hand turn and a right-hand turn. By having additional turns compared to some planar configurations, plasma source 1100 may provide additional plasma uniformity while providing the plasma tuning of two coils.
Conductive material 1110 and conductive material 1140 are each shown to include 4 coils extending vertically within the dielectric material 1120. The coils may be packed at any distance from adjacent coils depending on the number of coils made, the thickness of the conductive material, and the thickness of the dielectric material 1120. As illustrated, first conductive material 1110 may include end portion 1112 shown hidden, and second conductive material 1140 may include end portion 1142 shown hidden. The configuration or outlay of the tubes that may be the conductive materials may be horizontally disposed as illustrated. Because of the vertical extension of the conductive materials, in embodiments the first conductive material 1110 and/or the second conductive material 1140 may also be vertically aligned at the entrance and exit of the dielectric material 1120. Additionally, the coils of first conductive material 1110 may be spaced to allow the ingress and egress of second conductive material 1140 between the coils. As illustrated, leads or inlet and exit portions of second conductive material 1140 may pass within the coils of first conductive material 1110 without the conductive materials intersecting. The coiled configuration of second conductive material 1140 may then extend within the interior or radially inward of the coiled configuration of first conductive material 1110.
The chambers and plasma sources described above may be used in one or more methods.
In some embodiments a source, such as any of the ICP sources discussed, may also maintain plasma effluents produced elsewhere. For example, the plasma sources as described may be used to generate a plasma that may tune or further enhance plasma effluents produced in a capacitively-coupled plasma upstream of the source, or in an external source, such as a remote plasma unit. In this way precursors that may have relatively short residence times, for example, may be maintained by the ICP plasma of a source near a processing region or near the wafer level.
In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present technology. Accordingly, the above description should not be taken as limiting the scope of the technology.
Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Any narrower range between any stated values or unstated intervening values in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the technology, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes a plurality of such layers, and reference to “the precursor” includes reference to one or more precursors and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise(s)”, “comprising”, “contain(s)”, “containing”, “include(s)”, and “including”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or operations, but they do not preclude the presence or addition of one or more other features, integers, components, operations, acts, or groups.
This application is a continuation of U.S. application Ser. No. 15/943,208, filed Apr. 2, 2018, which is a continuation of U.S. application Ser. No. 15/285,176, filed Oct. 4, 2016, each of which are hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3401302 | Thorpe | Sep 1968 | A |
3451840 | Hough | Jun 1969 | A |
3537474 | Rohrer | Nov 1970 | A |
3756511 | Shinroku | Sep 1973 | A |
3937857 | Brummett et al. | Feb 1976 | A |
3969077 | Hill | Jul 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4190488 | Winters | Feb 1980 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory, Jr. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4340462 | Koch | Jul 1982 | A |
4341592 | Shortes et al. | Jul 1982 | A |
4361418 | Tscheppe | Nov 1982 | A |
4361441 | Tylko | Nov 1982 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4374698 | Sanders et al. | Feb 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4600464 | Desilets et al. | Jul 1986 | A |
4610775 | Phifer | Sep 1986 | A |
4625678 | Shloya et al. | Dec 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4656076 | Vetanen et al. | Apr 1987 | A |
4668335 | Mockler | May 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4715937 | Moslehi et al. | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4786360 | Cote et al. | Nov 1988 | A |
4792378 | Rose et al. | Dec 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4820377 | Davis et al. | Apr 1989 | A |
4828649 | Davis | May 1989 | A |
4857140 | Loewenstein | Aug 1989 | A |
4867841 | Loewenstein et al. | Sep 1989 | A |
4904621 | Lowenstein et al. | Feb 1990 | A |
4913929 | Moslehi et al. | Apr 1990 | A |
4919750 | Bausmith et al. | Apr 1990 | A |
4946903 | Gardella et al. | Aug 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4991542 | Kohmura et al. | Feb 1991 | A |
4992136 | Tachi et al. | Feb 1991 | A |
4993358 | Mahawili | Feb 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5006192 | Deguchi | Apr 1991 | A |
5010842 | Oda et al. | Apr 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5028565 | Chang | Jul 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5038713 | Kawakami et al. | Aug 1991 | A |
5045244 | Marlett | Sep 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5069938 | Lorimer et al. | Dec 1991 | A |
5074456 | Degner et al. | Dec 1991 | A |
5083030 | Stavov | Jan 1992 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5180435 | Markunas et al. | Jan 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188706 | Hori et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5200016 | Namose | Apr 1993 | A |
5203911 | Sricharoenchalkit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5217559 | Moslehi | Jun 1993 | A |
5221427 | Koinuma et al. | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248371 | Maher et al. | Sep 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5266157 | Kadomura | Nov 1993 | A |
5269881 | Sekiya | Dec 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5277750 | Wolgang | Jan 1994 | A |
5279669 | Lee | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5290383 | Koshimizu | Mar 1994 | A |
5292370 | Tsai et al. | Mar 1994 | A |
5292682 | Stevens et al. | Mar 1994 | A |
5300463 | Cathey et al. | Apr 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5304250 | Sameshima et al. | Apr 1994 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328558 | Kawamura et al. | Jul 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5330578 | Sakama | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5366585 | Robertson et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5378316 | Franke et al. | Jan 1995 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okano et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413670 | Langan et al. | May 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5464499 | Moslehi | Nov 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478403 | Shinagawa et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5494494 | Mizuno et al. | Feb 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5518962 | Murao | May 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5536360 | Nguyen et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5556521 | Ghanbari | Sep 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5567243 | Foster et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5575853 | Arami et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5578161 | Auda | Nov 1996 | A |
5580385 | Paranjpe | Dec 1996 | A |
5580421 | Hiatt et al. | Dec 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5592358 | Shamouilian | Jan 1997 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5597439 | Salzman | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5614055 | Fairbairn et al. | Mar 1997 | A |
5616518 | Foo et al. | Apr 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5628829 | Foster et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5660957 | Chou et al. | Aug 1997 | A |
5661093 | Ravi et al. | Aug 1997 | A |
5670066 | Barnes et al. | Sep 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5676758 | Hasgawa et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5685946 | Fathauer et al. | Nov 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5747373 | Yu | May 1998 | A |
5753886 | Iwamura et al. | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756400 | Ye et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5772770 | Suda et al. | Jun 1998 | A |
5781693 | Balance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5788825 | Park et al. | Aug 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5792376 | Kanai et al. | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5814238 | Ashby et al. | Sep 1998 | A |
5814365 | Mahawill | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Schacham-Diamand et al. | Nov 1998 | A |
5835334 | McMillin et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5843847 | Pu et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846373 | Pirkle et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5855685 | Tobe et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5863376 | Wicker | Jan 1999 | A |
5865896 | Nowak | Feb 1999 | A |
5866483 | Shiau et al. | Feb 1999 | A |
5868897 | Ohkawa | Feb 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5883012 | Chiou | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5900163 | Yi et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5913978 | Kato et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5918116 | Chittipeddi | Jun 1999 | A |
5919332 | Koshiishi et al. | Jul 1999 | A |
5920792 | Lin | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5928528 | Kubota et al. | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5935340 | Xia et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944049 | Beyer et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5948702 | Rotondaro | Sep 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5951896 | Mahawill | Sep 1999 | A |
5953591 | Ishihara et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5963840 | Xia et al. | Oct 1999 | A |
5968379 | Zhao et al. | Oct 1999 | A |
5968587 | Frankel et al. | Oct 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5982100 | Ghanbari | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
5994209 | Yieh et al. | Nov 1999 | A |
5997649 | Hillman | Dec 1999 | A |
5997962 | Ogasawara et al. | Dec 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6007635 | Mahawill | Dec 1999 | A |
6007785 | Liou | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki et al. | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6017414 | Koemtzopoulos et al. | Jan 2000 | A |
6019848 | Kiyama et al. | Feb 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6036878 | Collins | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039834 | Tanaka et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6065425 | Takaki et al. | May 2000 | A |
6072147 | Koshiishi | Jun 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6074512 | Collins | Jun 2000 | A |
6074514 | Bjorkman et al. | Jun 2000 | A |
6077384 | Collins | Jun 2000 | A |
6077386 | Smith, Jr. et al. | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6079356 | Umotoy et al. | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6081414 | Flanigan et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6090212 | Mahawill | Jul 2000 | A |
6093457 | Okumura | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110832 | Morgan et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6114216 | Yieh et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6120640 | Shih et al. | Sep 2000 | A |
6124003 | Mikami et al. | Sep 2000 | A |
6126753 | Shinriki et al. | Oct 2000 | A |
6132512 | Horie et al. | Oct 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136165 | Moslehi | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6161576 | Maher et al. | Dec 2000 | A |
6162302 | Raghavan et al. | Dec 2000 | A |
6162370 | Hackett et al. | Dec 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174450 | Patrick et al. | Jan 2001 | B1 |
6174810 | Patrick et al. | Jan 2001 | B1 |
6174812 | Hsuing et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6176667 | Fairbairn | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6182603 | Shang et al. | Feb 2001 | B1 |
6184121 | Buchwalter et al. | Feb 2001 | B1 |
6184489 | Ito et al. | Feb 2001 | B1 |
6186091 | Chu et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6198616 | Dahimene et al. | Mar 2001 | B1 |
6200412 | Kilgore et al. | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6210486 | Mizukami et al. | Apr 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6220201 | Nowak | Apr 2001 | B1 |
6225745 | Srivastava | May 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6237527 | Kellerman et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6197151 | Kaji et al. | Jun 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6242360 | Fischer et al. | Jun 2001 | B1 |
6244211 | Nishikawa et al. | Jun 2001 | B1 |
6245396 | Nogami | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258170 | Somekh et al. | Jul 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6267074 | Okumura | Jul 2001 | B1 |
6277733 | Smith | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281072 | Li et al. | Aug 2001 | B1 |
6281135 | Han et al. | Aug 2001 | B1 |
6284146 | Kim et al. | Sep 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6303044 | Koemtzopoulos | Oct 2001 | B1 |
6303418 | Cha et al. | Oct 2001 | B1 |
6306246 | Melvin et al. | Oct 2001 | B1 |
6306772 | Lin | Oct 2001 | B1 |
6308654 | Schneider | Oct 2001 | B1 |
6308776 | Sloan | Oct 2001 | B1 |
6310755 | Busato et al. | Oct 2001 | B1 |
6312554 | Ye | Nov 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6321587 | Laush | Nov 2001 | B1 |
6322716 | Qiao et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
RE37546 | Mahawill | Feb 2002 | E |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6348407 | Gupta et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6350697 | Richardson | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6352081 | Lu et al. | Mar 2002 | B1 |
6355573 | Okumura | Mar 2002 | B1 |
6358827 | Chen et al. | Mar 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6376386 | Oshima | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383896 | Kirimura et al. | May 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6391753 | Yu | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6415736 | Hao et al. | Jul 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6418874 | Cox et al. | Jul 2002 | B1 |
6423284 | Arno | Jul 2002 | B1 |
6427623 | Ko | Aug 2002 | B2 |
6429465 | Yagi et al. | Aug 2002 | B1 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6436193 | Kasai et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6447636 | Qian | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6458718 | Todd | Oct 2002 | B1 |
6461974 | Ni et al. | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6462372 | Xia et al. | Oct 2002 | B1 |
6465051 | Sahin et al. | Oct 2002 | B1 |
6465350 | Taylor et al. | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6509283 | Thomas | Jan 2003 | B1 |
6509623 | Zhao | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6518548 | Sugaya et al. | Feb 2003 | B2 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6528751 | Hoffman et al. | Mar 2003 | B1 |
6531069 | Srivastava et al. | Mar 2003 | B1 |
6537707 | Lee | Mar 2003 | B1 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6558564 | Loewenhardt | May 2003 | B1 |
6565661 | Nguyen | May 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6572937 | Hakovirta et al. | Jun 2003 | B2 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6585851 | Ohmi et al. | Jul 2003 | B1 |
6586163 | Okabe et al. | Jul 2003 | B1 |
6596599 | Guo | Jul 2003 | B1 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6635575 | Xia et al. | Oct 2003 | B1 |
6635578 | Xu et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6656848 | Scanlan et al. | Dec 2003 | B1 |
6663715 | Yuda et al. | Dec 2003 | B1 |
6673200 | Gu et al. | Jan 2004 | B1 |
6677242 | Liu et al. | Jan 2004 | B1 |
6679981 | Pan et al. | Jan 2004 | B1 |
6688375 | Turner | Feb 2004 | B1 |
6713356 | Skotnicki et al. | Mar 2004 | B1 |
6713835 | Horak et al. | Mar 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6736147 | Satoh et al. | May 2004 | B2 |
6736987 | Cho | May 2004 | B1 |
6740247 | Han et al. | May 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6740977 | Ahn et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6756235 | Liu et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6767834 | Chung et al. | Jul 2004 | B2 |
6768079 | Kosakai | Jul 2004 | B2 |
6770166 | Fisher | Aug 2004 | B1 |
6772827 | Keller et al. | Aug 2004 | B2 |
6792889 | Nakano et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800336 | Fornsel et al. | Oct 2004 | B1 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808747 | Shih et al. | Oct 2004 | B1 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6815633 | Chen et al. | Nov 2004 | B1 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6828241 | Kholodenko et al. | Dec 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6849854 | Sainty | Feb 2005 | B2 |
6852550 | Tuttle et al. | Feb 2005 | B2 |
6852584 | Chen et al. | Feb 2005 | B1 |
6853533 | Parkhe et al. | Feb 2005 | B2 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6861097 | Goosey et al. | Mar 2005 | B1 |
6861332 | Park et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6875280 | Ikeda et al. | Apr 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6886491 | Kim et al. | May 2005 | B2 |
6892669 | Xu et al. | May 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6897532 | Schwarz et al. | May 2005 | B1 |
6900596 | Yang et al. | May 2005 | B2 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6916399 | Rozenzon | Jul 2005 | B1 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6930047 | Yamazaki | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6946033 | Tsuel et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6969619 | Winniczek | Nov 2005 | B1 |
6972840 | Gu et al. | Dec 2005 | B1 |
6995073 | Liou | Feb 2006 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7018941 | Cui et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7037846 | Srivastava et al. | May 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7052553 | Shih et al. | May 2006 | B1 |
7071532 | Geffken et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7138767 | Chen et al. | Nov 2006 | B2 |
7145725 | Hasel et al. | Dec 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7244474 | Hanawa et al. | Jul 2007 | B2 |
7252011 | Traverso | Aug 2007 | B2 |
7252716 | Kim et al. | Aug 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7274004 | Benjamin et al. | Sep 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7291360 | Hanawa et al. | Nov 2007 | B2 |
7297894 | Tsukamoto | Nov 2007 | B1 |
7316761 | Doan et al. | Jan 2008 | B2 |
7329608 | Babayan et al. | Feb 2008 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7344912 | Okoroanyanwu | Mar 2008 | B1 |
7358192 | Merry et al. | Apr 2008 | B2 |
7361865 | Maki et al. | Apr 2008 | B2 |
7364956 | Saito | Apr 2008 | B2 |
7365016 | Ouellet et al. | Apr 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7396773 | Blosse et al. | Jul 2008 | B1 |
7416989 | Liu et al. | Aug 2008 | B1 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7465953 | Koh et al. | Dec 2008 | B1 |
7468319 | Lee | Dec 2008 | B2 |
7479303 | Byun et al. | Jan 2009 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Chung et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7500445 | Zhao et al. | Mar 2009 | B2 |
7504040 | Lijima et al. | Mar 2009 | B2 |
7513214 | Okumura et al. | Apr 2009 | B2 |
7520957 | Kao et al. | Apr 2009 | B2 |
7553756 | Hayashi et al. | Jun 2009 | B2 |
7575007 | Tang et al. | Aug 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7604708 | Wood et al. | Oct 2009 | B2 |
7611980 | Wells | Nov 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7658799 | Ishikawa et al. | Feb 2010 | B2 |
7682518 | Chandrachood et al. | Mar 2010 | B2 |
7695590 | Hanawa et al. | Apr 2010 | B2 |
7708859 | Huang et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7723221 | Hayashi | May 2010 | B2 |
7749326 | Kim et al. | Jul 2010 | B2 |
7780790 | Nogami | Aug 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7806077 | Lee et al. | Oct 2010 | B2 |
7806078 | Yoshida | Oct 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7837828 | Ikeda et al. | Nov 2010 | B2 |
7845309 | Condrashoff et al. | Dec 2010 | B2 |
7867926 | Satoh et al. | Jan 2011 | B2 |
7906818 | Pekny | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7922863 | Ripley | Apr 2011 | B2 |
7932181 | Singh et al. | Apr 2011 | B2 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7976631 | Burrows | Jul 2011 | B2 |
7977249 | Liu | Jul 2011 | B1 |
7981806 | Jung | Jul 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8048811 | Feustel et al. | Nov 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8076198 | Lee et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8114245 | Ohmi et al. | Feb 2012 | B2 |
8119530 | Hori et al. | Feb 2012 | B2 |
8133349 | Panagopoulos | Mar 2012 | B1 |
8173228 | Choi et al. | May 2012 | B2 |
8183134 | Wu | May 2012 | B2 |
8187486 | Liu et al. | May 2012 | B1 |
8199454 | Koyama et al. | Jun 2012 | B2 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8216486 | Dhindsa | Jul 2012 | B2 |
8222128 | Sasaki et al. | Jul 2012 | B2 |
8252194 | Kiehlbauch et al. | Aug 2012 | B2 |
8272346 | Bettencourt et al. | Sep 2012 | B2 |
8295089 | Jeong et al. | Oct 2012 | B2 |
8298627 | Minami et al. | Oct 2012 | B2 |
8298959 | Cheshire | Oct 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8312839 | Baek | Nov 2012 | B2 |
8313610 | Dhindsa | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8329262 | Miller et al. | Dec 2012 | B2 |
8336188 | Monteen | Dec 2012 | B2 |
8343306 | Tanaka et al. | Jan 2013 | B2 |
8357435 | Lubomirsky | Jan 2013 | B2 |
8361892 | Tam et al. | Jan 2013 | B2 |
8368308 | Banna et al. | Feb 2013 | B2 |
8390980 | Sansoni et al. | Mar 2013 | B2 |
8427067 | Espiau et al. | Apr 2013 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8440523 | Guillorn et al. | May 2013 | B1 |
8466073 | Wang et al. | Jun 2013 | B2 |
8475674 | Thadani et al. | Jul 2013 | B2 |
8480850 | Tyler et al. | Jul 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8501629 | Tang et al. | Aug 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8512509 | Bera et al. | Aug 2013 | B2 |
8528889 | Sansoni et al. | Sep 2013 | B2 |
8540844 | Hudson et al. | Sep 2013 | B2 |
8551891 | Liang | Oct 2013 | B2 |
8573152 | De La Llera | Nov 2013 | B2 |
8622021 | Taylor et al. | Jan 2014 | B2 |
8623471 | Tyler et al. | Jan 2014 | B2 |
8633423 | Lin et al. | Jan 2014 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
8652298 | Dhindsa et al. | Feb 2014 | B2 |
8668836 | Mizukami et al. | Mar 2014 | B2 |
8679354 | O'Hara | Mar 2014 | B2 |
8679982 | Wang et al. | Mar 2014 | B2 |
8679983 | Wang et al. | Mar 2014 | B2 |
8691023 | Bao et al. | Apr 2014 | B2 |
8702902 | Blom et al. | Apr 2014 | B2 |
8741778 | Yang et al. | Jun 2014 | B2 |
8747610 | Chen et al. | Jun 2014 | B2 |
8747680 | Deshpande | Jun 2014 | B1 |
8748322 | Fung et al. | Jun 2014 | B1 |
8765574 | Zhang et al. | Jul 2014 | B2 |
8771536 | Zhang et al. | Jul 2014 | B2 |
8771539 | Zhang et al. | Jul 2014 | B2 |
8772888 | Jung et al. | Jul 2014 | B2 |
8778079 | Begarney et al. | Jul 2014 | B2 |
8801952 | Wang et al. | Aug 2014 | B1 |
8802572 | Nemani et al. | Aug 2014 | B2 |
8808563 | Wang et al. | Aug 2014 | B2 |
8815720 | Godet et al. | Aug 2014 | B2 |
8835316 | Yin et al. | Sep 2014 | B2 |
8846163 | Kao et al. | Sep 2014 | B2 |
8869742 | Dhindsa | Oct 2014 | B2 |
8871651 | Choi et al. | Oct 2014 | B1 |
8888087 | Okabe et al. | Nov 2014 | B2 |
8894767 | Goradia et al. | Nov 2014 | B2 |
8895449 | Zhu et al. | Nov 2014 | B1 |
8900364 | Wright | Dec 2014 | B2 |
8921234 | Liu et al. | Dec 2014 | B2 |
8927390 | Sapre et al. | Jan 2015 | B2 |
8932947 | Han et al. | Jan 2015 | B1 |
8937017 | Cheshire et al. | Jan 2015 | B2 |
8945414 | Su et al. | Feb 2015 | B1 |
8946665 | Shim et al. | Feb 2015 | B2 |
8946828 | Sun et al. | Feb 2015 | B2 |
8951429 | Liu et al. | Feb 2015 | B1 |
8956980 | Chen et al. | Feb 2015 | B1 |
8969212 | Ren et al. | Mar 2015 | B2 |
8970114 | Busche | Mar 2015 | B2 |
8980005 | Carlson et al. | Mar 2015 | B2 |
8980758 | Ling et al. | Mar 2015 | B1 |
8980763 | Wang et al. | Mar 2015 | B2 |
8992723 | Sorensen et al. | Mar 2015 | B2 |
8999656 | Jirstrom et al. | Apr 2015 | B2 |
8999839 | Su et al. | Apr 2015 | B2 |
8999856 | Zhang et al. | Apr 2015 | B2 |
9012302 | Sapre et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9023732 | Wang et al. | May 2015 | B2 |
9023734 | Chen et al. | May 2015 | B2 |
9034770 | Park et al. | May 2015 | B2 |
9040422 | Wang et al. | May 2015 | B2 |
9064815 | Zhang et al. | Jun 2015 | B2 |
9064816 | Kim et al. | Jun 2015 | B2 |
9068265 | Lubomirsky et al. | Jun 2015 | B2 |
9072158 | Ikeda et al. | Jun 2015 | B2 |
9093371 | Wang et al. | Jul 2015 | B2 |
9093389 | Nemani | Jul 2015 | B2 |
9093390 | Wang et al. | Jul 2015 | B2 |
9111877 | Chen et al. | Aug 2015 | B2 |
9111907 | Kamineni | Aug 2015 | B2 |
9114438 | Hoinkis et al. | Aug 2015 | B2 |
9117855 | Cho et al. | Aug 2015 | B2 |
9132436 | Liang et al. | Sep 2015 | B2 |
9136273 | Purayath et al. | Sep 2015 | B1 |
9144147 | Yang et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9159606 | Purayath et al. | Oct 2015 | B1 |
9165783 | Nemani et al. | Oct 2015 | B2 |
9165786 | Purayath et al. | Oct 2015 | B1 |
9184055 | Wang et al. | Nov 2015 | B2 |
9190290 | Xue et al. | Nov 2015 | B2 |
9190293 | Wang et al. | Nov 2015 | B2 |
9190302 | Ni | Nov 2015 | B2 |
9202708 | Chen et al. | Dec 2015 | B1 |
9209012 | Chen et al. | Dec 2015 | B2 |
9236265 | Korolik et al. | Jan 2016 | B2 |
9236266 | Zhang et al. | Jan 2016 | B2 |
9240315 | Hsieh et al. | Jan 2016 | B1 |
9245762 | Zhang et al. | Jan 2016 | B2 |
9263278 | Purayath et al. | Feb 2016 | B2 |
9269590 | Luere et al. | Feb 2016 | B2 |
9275834 | Park et al. | Mar 2016 | B1 |
9281384 | Takeguchi | Mar 2016 | B2 |
9287095 | Nguyen et al. | Mar 2016 | B2 |
9287134 | Wang et al. | Mar 2016 | B2 |
9293568 | Ko | Mar 2016 | B2 |
9299537 | Kobayashi et al. | Mar 2016 | B2 |
9299538 | Kobayashi et al. | Mar 2016 | B2 |
9299575 | Park et al. | Mar 2016 | B2 |
9299582 | Ingle et al. | Mar 2016 | B2 |
9299583 | Wang et al. | Mar 2016 | B1 |
9309598 | Wang et al. | Apr 2016 | B2 |
9324576 | Zhang et al. | Apr 2016 | B2 |
9343272 | Pandit et al. | May 2016 | B1 |
9343327 | Zhange et al. | May 2016 | B2 |
9349605 | Xu et al. | May 2016 | B1 |
9355856 | Wang et al. | May 2016 | B2 |
9355862 | Pandit et al. | May 2016 | B2 |
9355863 | Chen et al. | May 2016 | B2 |
9355922 | Park et al. | May 2016 | B2 |
9362130 | Ingle et al. | Jun 2016 | B2 |
9362163 | Danek et al. | Jun 2016 | B2 |
9368364 | Park et al. | Jun 2016 | B2 |
9373517 | Yang et al. | Jun 2016 | B2 |
9373522 | Wang et al. | Jun 2016 | B1 |
9378969 | Hsu et al. | Jun 2016 | B2 |
9378978 | Purayath et al. | Jun 2016 | B2 |
9384997 | Ren et al. | Jul 2016 | B2 |
9385028 | Nemani et al. | Jul 2016 | B2 |
9390937 | Chen et al. | Jul 2016 | B2 |
9396961 | Arghavani et al. | Jul 2016 | B2 |
9396989 | Purayath et al. | Jul 2016 | B2 |
9406523 | Chen et al. | Aug 2016 | B2 |
9412608 | Wang et al. | Aug 2016 | B2 |
9412752 | Yeh et al. | Aug 2016 | B1 |
9418858 | Wang et al. | Aug 2016 | B2 |
9425041 | Berry et al. | Aug 2016 | B2 |
9425058 | Kim et al. | Aug 2016 | B2 |
9431268 | Lill et al. | Aug 2016 | B2 |
9431414 | Jang et al. | Aug 2016 | B2 |
9343358 | Montgomery | Sep 2016 | B1 |
9437451 | Chen et al. | Sep 2016 | B2 |
9443749 | Smith | Sep 2016 | B2 |
9449845 | Liu et al. | Sep 2016 | B2 |
9449846 | Liu et al. | Sep 2016 | B2 |
9449850 | Wang et al. | Sep 2016 | B2 |
9460959 | Xie et al. | Oct 2016 | B1 |
9466469 | Khaja | Oct 2016 | B2 |
9472412 | Zhang et al. | Oct 2016 | B2 |
9472417 | Ingle et al. | Oct 2016 | B2 |
9478432 | Chen et al. | Oct 2016 | B2 |
9478433 | Zhou et al. | Oct 2016 | B1 |
9478434 | Wang et al. | Oct 2016 | B2 |
9493879 | Hoinkis et al. | Nov 2016 | B2 |
9496167 | Purayath et al. | Nov 2016 | B2 |
9499898 | Nguyen et al. | Nov 2016 | B2 |
9502258 | Xue et al. | Nov 2016 | B2 |
9508529 | Valcore et al. | Nov 2016 | B2 |
9520303 | Wang et al. | Dec 2016 | B2 |
9543163 | Ling et al. | Jan 2017 | B2 |
9564296 | Kobayashi et al. | Feb 2017 | B2 |
9564338 | Zhang et al. | Feb 2017 | B1 |
9576788 | Liu et al. | Feb 2017 | B2 |
9576809 | Korolik et al. | Feb 2017 | B2 |
9607856 | Wang et al. | Mar 2017 | B2 |
9613822 | Chen et al. | Apr 2017 | B2 |
9659753 | Cho et al. | May 2017 | B2 |
9659791 | Wang et al. | May 2017 | B2 |
9659792 | Wang et al. | May 2017 | B2 |
9666449 | Koval et al. | May 2017 | B2 |
9691645 | Ayers | Jun 2017 | B2 |
9704723 | Wang et al. | Jul 2017 | B2 |
9711366 | Ingle et al. | Jul 2017 | B2 |
9721789 | Yang et al. | Aug 2017 | B1 |
9728437 | Tran et al. | Aug 2017 | B2 |
9741593 | Benjaminson et al. | Aug 2017 | B2 |
9754800 | Zhang et al. | Sep 2017 | B2 |
9768034 | Xu et al. | Sep 2017 | B1 |
9773648 | Cho et al. | Sep 2017 | B2 |
9773695 | Purayath et al. | Sep 2017 | B2 |
9779956 | Zhang et al. | Oct 2017 | B1 |
9812462 | Pang et al. | Nov 2017 | B1 |
9822009 | Kagaya et al. | Nov 2017 | B2 |
9831097 | Ingle et al. | Nov 2017 | B2 |
9837249 | Kobayashi et al. | Dec 2017 | B2 |
9837284 | Chen et al. | Dec 2017 | B2 |
9837286 | Yang et al. | Dec 2017 | B2 |
9842744 | Zhang et al. | Dec 2017 | B2 |
9865484 | Citla et al. | Jan 2018 | B1 |
9881805 | Li et al. | Jan 2018 | B2 |
9885117 | Lubomirsky et al. | Feb 2018 | B2 |
9887096 | Park et al. | Feb 2018 | B2 |
9903020 | Kim et al. | Feb 2018 | B2 |
9934942 | Lubomirsky | Apr 2018 | B1 |
9941097 | Yamazawa | Apr 2018 | B2 |
9947549 | Park et al. | Apr 2018 | B1 |
9960045 | Purayath et al. | May 2018 | B1 |
9966240 | Park et al. | May 2018 | B2 |
9978564 | Liang et al. | May 2018 | B2 |
9991134 | Wang et al. | Jun 2018 | B2 |
10026621 | Ko et al. | Jul 2018 | B2 |
10032606 | Yang et al. | Jul 2018 | B2 |
10043674 | Korolik et al. | Aug 2018 | B1 |
10043684 | Arnepalli et al. | Aug 2018 | B1 |
10049891 | Wang et al. | Aug 2018 | B1 |
10062578 | Zhang et al. | Aug 2018 | B2 |
10062579 | Chen et al. | Aug 2018 | B2 |
10062585 | Lubomirsky | Aug 2018 | B2 |
10062587 | Chen et al. | Aug 2018 | B2 |
10083830 | Seino et al. | Sep 2018 | B2 |
10147620 | Benjaminson et al. | Dec 2018 | B2 |
10147736 | Linuma | Dec 2018 | B2 |
10224180 | Lubomirsky | Mar 2019 | B2 |
10269541 | Stowell | Apr 2019 | B2 |
10319739 | Purayath | Jun 2019 | B2 |
20010003014 | Yuda | Jun 2001 | A1 |
20010006093 | Tabuchi | Jul 2001 | A1 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015175 | Masuda et al. | Aug 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010023741 | Collison et al. | Sep 2001 | A1 |
20010028093 | Yamazaki et al. | Oct 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010029891 | Oh et al. | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010035124 | Okayama et al. | Nov 2001 | A1 |
20010036706 | Kitamura | Nov 2001 | A1 |
20010037856 | Park | Nov 2001 | A1 |
20010037941 | Thompson | Nov 2001 | A1 |
20010039921 | Rolfson et al. | Nov 2001 | A1 |
20010042512 | Xu et al. | Nov 2001 | A1 |
20010042799 | Kim et al. | Nov 2001 | A1 |
20010047760 | Moslehi | Dec 2001 | A1 |
20010053585 | Kikuchi et al. | Dec 2001 | A1 |
20010053610 | Athavale | Dec 2001 | A1 |
20010054381 | Umotoy et al. | Dec 2001 | A1 |
20010054387 | Frankel et al. | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020001778 | Latchford et al. | Jan 2002 | A1 |
20020009560 | Ozono | Jan 2002 | A1 |
20020009885 | Brankner et al. | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020011214 | Kamarehi et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020023899 | Khater et al. | Feb 2002 | A1 |
20020028582 | Nallan et al. | Mar 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020040764 | Kwan et al. | Apr 2002 | A1 |
20020040766 | Takahashi | Apr 2002 | A1 |
20020042192 | Tanaka et al. | Apr 2002 | A1 |
20020043690 | Doyle et al. | Apr 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020046991 | Smith et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020062954 | Getchel et al. | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020070414 | Drescher et al. | Jun 2002 | A1 |
20020073925 | Noble et al. | Jun 2002 | A1 |
20020074573 | Takeuchi et al. | Jun 2002 | A1 |
20020075624 | Wang et al. | Jun 2002 | A1 |
20020086501 | O'Donnell et al. | Jul 2002 | A1 |
20020090781 | Skotnicki et al. | Jul 2002 | A1 |
20020090835 | Chakravarti et al. | Jul 2002 | A1 |
20020094378 | O'Donnell | Jul 2002 | A1 |
20020094591 | Sill et al. | Jul 2002 | A1 |
20020096493 | Hattori | Jul 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020106845 | Chao et al. | Aug 2002 | A1 |
20020112819 | Kamarehi et al. | Aug 2002 | A1 |
20020124867 | Kim et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020129902 | Babayan et al. | Sep 2002 | A1 |
20020144657 | Chiang et al. | Oct 2002 | A1 |
20020153808 | Skotnicki et al. | Oct 2002 | A1 |
20020164885 | Lill et al. | Nov 2002 | A1 |
20020170678 | Hayashi et al. | Nov 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020179248 | Kabansky et al. | Dec 2002 | A1 |
20020182878 | Hirose et al. | Dec 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20020197823 | Yoo et al. | Dec 2002 | A1 |
20030000647 | Yudovsky et al. | Jan 2003 | A1 |
20030003757 | Naltan et al. | Jan 2003 | A1 |
20030007910 | Lazarovich et al. | Jan 2003 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030015515 | Ito et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029567 | Dhindsa et al. | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030031905 | Saito et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030066482 | Pokharna et al. | Apr 2003 | A1 |
20030071035 | Brailove | Apr 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077857 | Xia et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087488 | Fink | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030094134 | Minami et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030121609 | Ohmi et al. | Jul 2003 | A1 |
20030124465 | Lee et al. | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030127049 | Han et al. | Jul 2003 | A1 |
20030127740 | Hsu et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030136520 | Yudovsky et al. | Jul 2003 | A1 |
20030140844 | Maa et al. | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030150530 | Lin et al. | Aug 2003 | A1 |
20030152691 | Baude | Aug 2003 | A1 |
20030159307 | Sago et al. | Aug 2003 | A1 |
20030164226 | Kanno et al. | Sep 2003 | A1 |
20030168439 | Kanno et al. | Sep 2003 | A1 |
20030170945 | Igeta et al. | Sep 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030173675 | Watanabe | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030196760 | Tyler et al. | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030200929 | Otsuki | Oct 2003 | A1 |
20030205329 | Gujer et al. | Nov 2003 | A1 |
20030205479 | Lin et al. | Nov 2003 | A1 |
20030209323 | Yokogaki et al. | Nov 2003 | A1 |
20030215570 | Seutter et al. | Nov 2003 | A1 |
20030215963 | AmRhein et al. | Nov 2003 | A1 |
20030216044 | Lin et al. | Nov 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20030230385 | Bach et al. | Dec 2003 | A1 |
20040002221 | O'Donnell et al. | Jan 2004 | A1 |
20040003828 | Jackson | Jan 2004 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040018304 | Chung et al. | Jan 2004 | A1 |
20040020801 | Solling | Feb 2004 | A1 |
20040026371 | Nguyen et al. | Feb 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040033684 | Li | Feb 2004 | A1 |
20040050328 | Kumagai et al. | Mar 2004 | A1 |
20040058070 | Takeuchi et al. | Mar 2004 | A1 |
20040058293 | Nguyen et al. | Mar 2004 | A1 |
20040060514 | Janakiraman et al. | Apr 2004 | A1 |
20040061447 | Saigusa et al. | Apr 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040076529 | Gnauck et al. | Apr 2004 | A1 |
20040083967 | Yuda et al. | May 2004 | A1 |
20040087139 | Yeh et al. | May 2004 | A1 |
20040092063 | Okumura et al. | May 2004 | A1 |
20040099285 | Wange et al. | May 2004 | A1 |
20040099378 | Kim et al. | May 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040103844 | Chou et al. | Jun 2004 | A1 |
20040107908 | Collins et al. | Jun 2004 | A1 |
20040108067 | Fischione et al. | Jun 2004 | A1 |
20040108068 | Senzaki et al. | Jun 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040115947 | Fink et al. | Jun 2004 | A1 |
20040124280 | Shih et al. | Jul 2004 | A1 |
20040129671 | Ji et al. | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040140053 | Srivastava et al. | Jul 2004 | A1 |
20040144311 | Chen et al. | Jul 2004 | A1 |
20040144490 | Zhao et al. | Jul 2004 | A1 |
20040147126 | Yamashita et al. | Jul 2004 | A1 |
20040149223 | Collison et al. | Aug 2004 | A1 |
20040149387 | Kim | Aug 2004 | A1 |
20040149394 | Doan et al. | Aug 2004 | A1 |
20040152342 | Li | Aug 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040157444 | Chiu | Aug 2004 | A1 |
20040161921 | Ryu | Aug 2004 | A1 |
20040163601 | Kadotani et al. | Aug 2004 | A1 |
20040175913 | Johnson et al. | Sep 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040187787 | Dawson | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040195208 | Pavel et al. | Oct 2004 | A1 |
20040195216 | Strang | Oct 2004 | A1 |
20040200499 | Harvey | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219723 | Peng et al. | Nov 2004 | A1 |
20040219737 | Quon | Nov 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040221809 | Ohmi et al. | Nov 2004 | A1 |
20040231706 | Bhatnagar et al. | Nov 2004 | A1 |
20040237897 | Hanawa et al. | Dec 2004 | A1 |
20040238123 | Becknell et al. | Dec 2004 | A1 |
20040259367 | Constantine et al. | Dec 2004 | A1 |
20040263827 | Xu | Dec 2004 | A1 |
20050000430 | Jang et al. | Jan 2005 | A1 |
20050000432 | Keller et al. | Jan 2005 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009340 | Saijo et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050039679 | Kleshock | Feb 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050054167 | Choi et al. | Mar 2005 | A1 |
20050056218 | Sun et al. | Mar 2005 | A1 |
20050073051 | Yamamoto et al. | Apr 2005 | A1 |
20050079706 | Kumar et al. | Apr 2005 | A1 |
20050087517 | Ott et al. | Apr 2005 | A1 |
20050090078 | Ishihara | Apr 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050103267 | Hur et al. | May 2005 | A1 |
20050105991 | Hofmeister et al. | May 2005 | A1 |
20050109279 | Suzuki | May 2005 | A1 |
20050112876 | Wu | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050123690 | Derderian et al. | Jun 2005 | A1 |
20050133849 | Jeon et al. | Jun 2005 | A1 |
20050136188 | Chang | Jun 2005 | A1 |
20050145341 | Suzuki | Jul 2005 | A1 |
20050164479 | Perng et al. | Jul 2005 | A1 |
20050167394 | Liu et al. | Aug 2005 | A1 |
20050176258 | Hirose et al. | Aug 2005 | A1 |
20050178746 | Gorin | Aug 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050183666 | Tsuji et al. | Aug 2005 | A1 |
20050194094 | Yasaka | Sep 2005 | A1 |
20050196967 | Savas et al. | Sep 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050205862 | Koemtzopoulos et al. | Sep 2005 | A1 |
20050208215 | Eguchi et al. | Sep 2005 | A1 |
20050208217 | Shinriki et al. | Sep 2005 | A1 |
20050214477 | Hanawa et al. | Sep 2005 | A1 |
20050217582 | Kim et al. | Oct 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050219786 | Brown et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050224181 | Merry et al. | Oct 2005 | A1 |
20050229848 | Shinriki et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050238807 | Lin et al. | Oct 2005 | A1 |
20050239282 | Chen et al. | Oct 2005 | A1 |
20050241763 | Huang et al. | Nov 2005 | A1 |
20050251990 | Choi et al. | Nov 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266650 | Ahn et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050269030 | Kent et al. | Dec 2005 | A1 |
20050274324 | Takahashi et al. | Dec 2005 | A1 |
20050279454 | Snijders | Dec 2005 | A1 |
20050283321 | Yue et al. | Dec 2005 | A1 |
20050287688 | Won et al. | Dec 2005 | A1 |
20050287755 | Bachmann | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060005856 | Sun et al. | Jan 2006 | A1 |
20060005930 | Ikeda et al. | Jan 2006 | A1 |
20060006057 | Laermer | Jan 2006 | A1 |
20060008676 | Ebata et al. | Jan 2006 | A1 |
20060011298 | Lim et al. | Jan 2006 | A1 |
20060011299 | Condrashoff et al. | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019477 | Hanawa et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060021574 | Armour et al. | Feb 2006 | A1 |
20060021701 | Tobe et al. | Feb 2006 | A1 |
20060021703 | Umotoy et al. | Feb 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060040055 | Nguyen et al. | Feb 2006 | A1 |
20060043066 | Kamp | Mar 2006 | A1 |
20060046412 | Nguyen et al. | Mar 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060046470 | Becknell | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060054184 | Mozetic et al. | Mar 2006 | A1 |
20060054280 | Jang | Mar 2006 | A1 |
20060057828 | Omura et al. | Mar 2006 | A1 |
20060060942 | Minixhofer et al. | Mar 2006 | A1 |
20060065629 | Chen et al. | Mar 2006 | A1 |
20060073349 | Aihara et al. | Apr 2006 | A1 |
20060076108 | Holland et al. | Apr 2006 | A1 |
20060087644 | McMillin et al. | Apr 2006 | A1 |
20060090700 | Satoh et al. | May 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060097397 | Russell et al. | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060102587 | Kimura | May 2006 | A1 |
20060113038 | Gondhalekar et al. | Jun 2006 | A1 |
20060118178 | Desbiolles et al. | Jun 2006 | A1 |
20060118240 | Holber et al. | Jun 2006 | A1 |
20060121724 | Yue et al. | Jun 2006 | A1 |
20060124151 | Yamasaki et al. | Jun 2006 | A1 |
20060124242 | Kanarik et al. | Jun 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060151115 | Kim et al. | Jul 2006 | A1 |
20060157449 | Takahashi et al. | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060169327 | Shajii et al. | Aug 2006 | A1 |
20060169410 | Maeda et al. | Aug 2006 | A1 |
20060178008 | Yeh et al. | Aug 2006 | A1 |
20060183270 | Humpston | Aug 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060191479 | Mizukami et al. | Aug 2006 | A1 |
20060191637 | Zajac et al. | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060207595 | Ohmi et al. | Sep 2006 | A1 |
20060207971 | Moriya et al. | Sep 2006 | A1 |
20060210713 | Brcka | Sep 2006 | A1 |
20060210723 | Ishizaka | Sep 2006 | A1 |
20060215347 | Wakabayashi et al. | Sep 2006 | A1 |
20060216878 | Lee | Sep 2006 | A1 |
20060219360 | Iwasaki | Oct 2006 | A1 |
20060222481 | Foree | Oct 2006 | A1 |
20060226121 | Aoi | Oct 2006 | A1 |
20060228889 | Edelberg et al. | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060244107 | Sugihara | Nov 2006 | A1 |
20060245852 | Iwabuchi | Nov 2006 | A1 |
20060246217 | Weidman et al. | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060252265 | Jin et al. | Nov 2006 | A1 |
20060254716 | Mosden et al. | Nov 2006 | A1 |
20060260750 | Rueger | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20060266288 | Choi | Nov 2006 | A1 |
20060286774 | Singh et al. | Dec 2006 | A1 |
20060289384 | Pavel et al. | Dec 2006 | A1 |
20060292846 | Pinto et al. | Dec 2006 | A1 |
20070022952 | Ritchie et al. | Feb 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070025907 | Rezeq | Feb 2007 | A1 |
20070039548 | Johnson | Feb 2007 | A1 |
20070048977 | Lee et al. | Mar 2007 | A1 |
20070051471 | Kawaguchi et al. | Mar 2007 | A1 |
20070056925 | Liu et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070066084 | Wajda et al. | Mar 2007 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070077737 | Kobayashi | Apr 2007 | A1 |
20070079758 | Holland et al. | Apr 2007 | A1 |
20070090325 | Hwang et al. | Apr 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099431 | Li | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070119370 | Ma et al. | May 2007 | A1 |
20070119371 | Ma et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070128864 | Ma | Jun 2007 | A1 |
20070131274 | Stollwerck et al. | Jun 2007 | A1 |
20070145023 | Holber et al. | Jun 2007 | A1 |
20070154838 | Lee | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070169703 | Elliot et al. | Jul 2007 | A1 |
20070175861 | Hwang et al. | Aug 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070193515 | Jeon et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070207275 | Nowak et al. | Sep 2007 | A1 |
20070212288 | Holst | Sep 2007 | A1 |
20070221620 | Sakthivel et al. | Sep 2007 | A1 |
20070227554 | Satoh et al. | Oct 2007 | A1 |
20070231109 | Pak et al. | Oct 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070235134 | Limuro | Oct 2007 | A1 |
20070235136 | Enomoto et al. | Oct 2007 | A1 |
20070238199 | Yamashita | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070243685 | Jiang et al. | Oct 2007 | A1 |
20070243714 | Shin et al. | Oct 2007 | A1 |
20070254169 | Kamins et al. | Nov 2007 | A1 |
20070258186 | Matyushkin et al. | Nov 2007 | A1 |
20070259467 | Tweet et al. | Nov 2007 | A1 |
20070264820 | Liu | Nov 2007 | A1 |
20070266946 | Choi | Nov 2007 | A1 |
20070277734 | Lubomirsky et al. | Dec 2007 | A1 |
20070280816 | Kurita | Dec 2007 | A1 |
20070281106 | Lubomirsky | Dec 2007 | A1 |
20070284044 | Matsumoto et al. | Dec 2007 | A1 |
20070287292 | Li et al. | Dec 2007 | A1 |
20070296967 | Gupta et al. | Dec 2007 | A1 |
20080003836 | Nishimura et al. | Jan 2008 | A1 |
20080011424 | Yin et al. | Jan 2008 | A1 |
20080017104 | Matyushkin et al. | Jan 2008 | A1 |
20080020570 | Naik | Jan 2008 | A1 |
20080029032 | Sun et al. | Feb 2008 | A1 |
20080035608 | Thomas et al. | Feb 2008 | A1 |
20080044593 | Seo et al. | Feb 2008 | A1 |
20080044990 | Lee | Feb 2008 | A1 |
20080050538 | Hirata | Feb 2008 | A1 |
20080063810 | Park et al. | Mar 2008 | A1 |
20080075668 | Goldstein | Mar 2008 | A1 |
20080081483 | Wu | Apr 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099147 | Myo et al. | May 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080099876 | Seto | May 2008 | A1 |
20080100222 | Lewington et al. | May 2008 | A1 |
20080102570 | Fischer et al. | May 2008 | A1 |
20080102640 | Hassan et al. | May 2008 | A1 |
20080102646 | Kawaguchi et al. | May 2008 | A1 |
20080104782 | Hughes | May 2008 | A1 |
20080105555 | Iwazaki et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080121970 | Aritome | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080141941 | Augustino et al. | Jun 2008 | A1 |
20080142831 | Su | Jun 2008 | A1 |
20080153306 | Cho et al. | Jun 2008 | A1 |
20080156631 | Fair et al. | Jul 2008 | A1 |
20080156771 | Jeon et al. | Jul 2008 | A1 |
20080157225 | Datta et al. | Jul 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080169588 | Shih et al. | Jul 2008 | A1 |
20080171407 | Nakabayashi et al. | Jul 2008 | A1 |
20080173906 | Zhu | Jul 2008 | A1 |
20080176412 | Komeda | Jul 2008 | A1 |
20080178797 | Fodor et al. | Jul 2008 | A1 |
20080178805 | Paterson et al. | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080182383 | Lee et al. | Jul 2008 | A1 |
20080193673 | Paterson et al. | Aug 2008 | A1 |
20080196666 | Toshima | Aug 2008 | A1 |
20080202688 | Wu et al. | Aug 2008 | A1 |
20080202892 | Smith et al. | Aug 2008 | A1 |
20080213496 | Sun et al. | Sep 2008 | A1 |
20080216901 | Chamberlain et al. | Sep 2008 | A1 |
20080216958 | Goto et al. | Sep 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080236751 | Aramaki et al. | Oct 2008 | A1 |
20080254635 | Benzel et al. | Oct 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080264337 | Sano et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20080293248 | Park et al. | Nov 2008 | A1 |
20080317965 | Son et al. | Dec 2008 | A1 |
20090000743 | Iizuka | Jan 2009 | A1 |
20090001480 | Cheng | Jan 2009 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090004873 | Yang | Jan 2009 | A1 |
20090014127 | Shah et al. | Jan 2009 | A1 |
20090014323 | Yendler et al. | Jan 2009 | A1 |
20090014324 | Kawaguchi et al. | Jan 2009 | A1 |
20090017227 | Fu | Jan 2009 | A1 |
20090022633 | Tomosue et al. | Jan 2009 | A1 |
20090036292 | Sun et al. | Feb 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090061640 | Wong et al. | Mar 2009 | A1 |
20090072401 | Arnold et al. | Mar 2009 | A1 |
20090081878 | Dhindsa | Mar 2009 | A1 |
20090084317 | Wu et al. | Apr 2009 | A1 |
20090087960 | Cho et al. | Apr 2009 | A1 |
20090087979 | Raghuram | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090095222 | Tam et al. | Apr 2009 | A1 |
20090095621 | Kao et al. | Apr 2009 | A1 |
20090098276 | Burrows | Apr 2009 | A1 |
20090098706 | Kim et al. | Apr 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090111280 | Kao et al. | Apr 2009 | A1 |
20090117270 | Yamasaki et al. | May 2009 | A1 |
20090120464 | Rasheed et al. | May 2009 | A1 |
20090120582 | Koshimizu | May 2009 | A1 |
20090159213 | Bera et al. | Jun 2009 | A1 |
20090159588 | Morioka et al. | Jun 2009 | A1 |
20090162647 | Sun et al. | Jun 2009 | A1 |
20090170221 | Jacques et al. | Jul 2009 | A1 |
20090170331 | Cheng et al. | Jul 2009 | A1 |
20090179300 | Arai | Jul 2009 | A1 |
20090189246 | Wu et al. | Jul 2009 | A1 |
20090189287 | Yang et al. | Jul 2009 | A1 |
20090191711 | Rui et al. | Jul 2009 | A1 |
20090194233 | Tamura | Aug 2009 | A1 |
20090194508 | Ui et al. | Aug 2009 | A1 |
20090194810 | Kiyotoshi et al. | Aug 2009 | A1 |
20090197418 | Sago | Aug 2009 | A1 |
20090202721 | Nogami et al. | Aug 2009 | A1 |
20090212804 | Yamada et al. | Aug 2009 | A1 |
20090214825 | Sun et al. | Aug 2009 | A1 |
20090223928 | Colpo | Sep 2009 | A1 |
20090226633 | Laflamme et al. | Sep 2009 | A1 |
20090236314 | Chen | Sep 2009 | A1 |
20090253222 | Morisawa et al. | Oct 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090258162 | Furuta et al. | Oct 2009 | A1 |
20090269934 | Kao et al. | Oct 2009 | A1 |
20090274590 | Willwerth et al. | Nov 2009 | A1 |
20090275146 | Takano et al. | Nov 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090277587 | Lubomirsky | Nov 2009 | A1 |
20090277874 | Rui et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090286405 | Okesaku et al. | Nov 2009 | A1 |
20090293809 | Cho et al. | Dec 2009 | A1 |
20090294898 | Feustel et al. | Dec 2009 | A1 |
20090298256 | Chen et al. | Dec 2009 | A1 |
20090314309 | Sankarakrishnan et al. | Dec 2009 | A1 |
20090317978 | Higashi | Dec 2009 | A1 |
20090320756 | Tanaka | Dec 2009 | A1 |
20100000683 | Kadkhodayan et al. | Jan 2010 | A1 |
20100003406 | Lam et al. | Jan 2010 | A1 |
20100003824 | Kadkhodayan et al. | Jan 2010 | A1 |
20100006543 | Sawada et al. | Jan 2010 | A1 |
20100022030 | Ditizio | Jan 2010 | A1 |
20100025370 | Dieguez-Campo et al. | Feb 2010 | A1 |
20100037821 | Nogami | Feb 2010 | A1 |
20100039747 | Sansoni | Feb 2010 | A1 |
20100047080 | Bruce | Feb 2010 | A1 |
20100048022 | Kubota | Feb 2010 | A1 |
20100048027 | Cheng et al. | Feb 2010 | A1 |
20100055408 | Lee et al. | Mar 2010 | A1 |
20100055917 | Kim | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100062603 | Ganguly et al. | Mar 2010 | A1 |
20100072172 | Ui et al. | Mar 2010 | A1 |
20100075503 | Bencher | Mar 2010 | A1 |
20100081285 | Chen et al. | Apr 2010 | A1 |
20100089533 | Ueda et al. | Apr 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100093168 | Naik | Apr 2010 | A1 |
20100096367 | Jeon et al. | Apr 2010 | A1 |
20100098882 | Lubomirsky et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100101727 | Ji | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100116788 | Singh et al. | May 2010 | A1 |
20100119843 | Sun et al. | May 2010 | A1 |
20100129974 | Futase et al. | May 2010 | A1 |
20100130001 | Noguchi | May 2010 | A1 |
20100139889 | Kurita et al. | Jun 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100147219 | Hsieh et al. | Jun 2010 | A1 |
20100151149 | Ovshinsky | Jun 2010 | A1 |
20100164422 | Shu et al. | Jul 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100178748 | Subramanian | Jul 2010 | A1 |
20100178755 | Lee et al. | Jul 2010 | A1 |
20100180819 | Hatanaka et al. | Jul 2010 | A1 |
20100183825 | Becker et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Kim et al. | Jul 2010 | A1 |
20100187694 | Yu et al. | Jul 2010 | A1 |
20100190352 | Jaiswal | Jul 2010 | A1 |
20100197143 | Nishimura | Aug 2010 | A1 |
20100203739 | Becker et al. | Aug 2010 | A1 |
20100206483 | Sorensen et al. | Aug 2010 | A1 |
20100207195 | Fukuzumi et al. | Aug 2010 | A1 |
20100207205 | Grebs et al. | Aug 2010 | A1 |
20100213172 | Wilson | Aug 2010 | A1 |
20100224322 | Sui et al. | Sep 2010 | A1 |
20100224324 | Kasai | Sep 2010 | A1 |
20100240205 | Son | Sep 2010 | A1 |
20100243165 | Um | Sep 2010 | A1 |
20100243606 | Koshimizu | Sep 2010 | A1 |
20100244204 | Matsuoka et al. | Sep 2010 | A1 |
20100248488 | Agarwal et al. | Sep 2010 | A1 |
20100252068 | Kannan et al. | Oct 2010 | A1 |
20100258913 | Lue | Oct 2010 | A1 |
20100267224 | Choi et al. | Oct 2010 | A1 |
20100267248 | Ma et al. | Oct 2010 | A1 |
20100273290 | Kryliouk | Oct 2010 | A1 |
20100273291 | Kryliouk et al. | Oct 2010 | A1 |
20100288369 | Chang et al. | Nov 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100310785 | Sasakawa et al. | Dec 2010 | A1 |
20100314005 | Saito et al. | Dec 2010 | A1 |
20100330814 | Yokota et al. | Dec 2010 | A1 |
20110005607 | Desbiolles et al. | Jan 2011 | A1 |
20110005684 | Hayami et al. | Jan 2011 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110011338 | Chuc et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110039407 | Nishizuka | Feb 2011 | A1 |
20110045676 | Park | Feb 2011 | A1 |
20110048325 | Choie et al. | Mar 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110058303 | Migita | Mar 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110061812 | Ganguly et al. | Mar 2011 | A1 |
20110065276 | Ganguly et al. | Mar 2011 | A1 |
20110076401 | Chao et al. | Mar 2011 | A1 |
20110081782 | Liang et al. | Apr 2011 | A1 |
20110088847 | Law et al. | Apr 2011 | A1 |
20110100489 | Orito | May 2011 | A1 |
20110101335 | Yamazaki et al. | May 2011 | A1 |
20110104393 | Hilkene et al. | May 2011 | A1 |
20110111596 | Kanakasabapathy | May 2011 | A1 |
20110114601 | Lubomirsky et al. | May 2011 | A1 |
20110115378 | Lubomirsky | May 2011 | A1 |
20110124144 | Schlemm et al. | May 2011 | A1 |
20110127156 | Foad et al. | Jun 2011 | A1 |
20110133650 | Kim | Jun 2011 | A1 |
20110139748 | Donnelly et al. | Jun 2011 | A1 |
20110140229 | Rachmady et al. | Jun 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110146909 | Shi et al. | Jun 2011 | A1 |
20110147363 | Yap et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110151678 | Ashtiani et al. | Jun 2011 | A1 |
20110155181 | Inatomi | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165057 | Honda et al. | Jul 2011 | A1 |
20110165347 | Miller et al. | Jul 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110174778 | Sawada | Jul 2011 | A1 |
20110180847 | Ikeda et al. | Jul 2011 | A1 |
20110195575 | Wang | Aug 2011 | A1 |
20110198034 | Sun et al. | Aug 2011 | A1 |
20110204025 | Tahara | Aug 2011 | A1 |
20110207332 | Liu et al. | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110230008 | Lakshmanan | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110232737 | Ruletzki et al. | Sep 2011 | A1 |
20110232845 | Riker et al. | Sep 2011 | A1 |
20110244686 | Aso et al. | Oct 2011 | A1 |
20110244693 | Tamura et al. | Oct 2011 | A1 |
20110256421 | Bose et al. | Oct 2011 | A1 |
20110265884 | Xu et al. | Nov 2011 | A1 |
20110265887 | Lee et al. | Nov 2011 | A1 |
20110265951 | Xu | Nov 2011 | A1 |
20110266252 | Thadani et al. | Nov 2011 | A1 |
20110266256 | Cruse et al. | Nov 2011 | A1 |
20110266682 | Edelstein et al. | Nov 2011 | A1 |
20110278260 | Lai | Nov 2011 | A1 |
20110287633 | Lee et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20110298061 | Siddiqui et al. | Dec 2011 | A1 |
20110303146 | Nishijima | Dec 2011 | A1 |
20110304078 | Lee et al. | Dec 2011 | A1 |
20110308453 | Su et al. | Dec 2011 | A1 |
20120003782 | Byun et al. | Jan 2012 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120025289 | Liang et al. | Feb 2012 | A1 |
20120031559 | Dhindsa et al. | Feb 2012 | A1 |
20120034786 | Dhindsa et al. | Feb 2012 | A1 |
20120035766 | Shajii et al. | Feb 2012 | A1 |
20120037596 | Eto et al. | Feb 2012 | A1 |
20120040492 | Ovshinsky et al. | Feb 2012 | A1 |
20120052683 | Kim et al. | Mar 2012 | A1 |
20120055402 | Moriya et al. | Mar 2012 | A1 |
20120068242 | Shin et al. | Mar 2012 | A1 |
20120070982 | Yu et al. | Mar 2012 | A1 |
20120070996 | Hao et al. | Mar 2012 | A1 |
20120073501 | Lubomirsky et al. | Mar 2012 | A1 |
20120091108 | Lin et al. | Apr 2012 | A1 |
20120097330 | Iyengar et al. | Apr 2012 | A1 |
20120100720 | Winniczek et al. | Apr 2012 | A1 |
20120103518 | Kakimoto | May 2012 | A1 |
20120104564 | Won et al. | May 2012 | A1 |
20120119225 | Shiomi et al. | May 2012 | A1 |
20120122302 | Weidman et al. | May 2012 | A1 |
20120122319 | Shimizu | May 2012 | A1 |
20120129354 | Luong | May 2012 | A1 |
20120135576 | Lee et al. | May 2012 | A1 |
20120148369 | Michalski et al. | Jun 2012 | A1 |
20120149200 | Culp et al. | Jun 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120164839 | Nishimura | Jun 2012 | A1 |
20120171852 | Yuan et al. | Jul 2012 | A1 |
20120180954 | Yang et al. | Jul 2012 | A1 |
20120181599 | Lung | Jul 2012 | A1 |
20120182808 | Lue et al. | Jul 2012 | A1 |
20120187844 | Hoffman et al. | Jul 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120196451 | Mallick | Aug 2012 | A1 |
20120202408 | Shajii et al. | Aug 2012 | A1 |
20120208361 | Ha | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120211722 | Kellam et al. | Aug 2012 | A1 |
20120222616 | Han et al. | Sep 2012 | A1 |
20120222815 | Sabri et al. | Sep 2012 | A1 |
20120223048 | Paranjpe et al. | Sep 2012 | A1 |
20120223418 | Stowers et al. | Sep 2012 | A1 |
20120225557 | Serry et al. | Sep 2012 | A1 |
20120228642 | Aube et al. | Sep 2012 | A1 |
20120234945 | Olgado | Sep 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120238108 | Chen et al. | Sep 2012 | A1 |
20120241411 | Darling et al. | Sep 2012 | A1 |
20120247390 | Sawada et al. | Oct 2012 | A1 |
20120247670 | Dobashi et al. | Oct 2012 | A1 |
20120247671 | Sugawara | Oct 2012 | A1 |
20120247677 | Himori et al. | Oct 2012 | A1 |
20120255491 | Hahidi | Oct 2012 | A1 |
20120258600 | Godet et al. | Oct 2012 | A1 |
20120258607 | Holland et al. | Oct 2012 | A1 |
20120267346 | Kao et al. | Oct 2012 | A1 |
20120269968 | Rayner | Oct 2012 | A1 |
20120282779 | Arnold et al. | Nov 2012 | A1 |
20120285619 | Matyushkin et al. | Nov 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120291696 | Clarke | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120304933 | Mai et al. | Dec 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20120309205 | Wang et al. | Dec 2012 | A1 |
20120322015 | Kim | Dec 2012 | A1 |
20130001899 | Hwang et al. | Jan 2013 | A1 |
20130005103 | Liu et al. | Jan 2013 | A1 |
20130005140 | Jeng et al. | Jan 2013 | A1 |
20130012030 | Lakshmanan et al. | Jan 2013 | A1 |
20130012032 | Liu et al. | Jan 2013 | A1 |
20130023062 | Masuda et al. | Jan 2013 | A1 |
20130023124 | Nemani et al. | Jan 2013 | A1 |
20130023125 | Singh | Jan 2013 | A1 |
20130026135 | Kim | Jan 2013 | A1 |
20130032574 | Liu et al. | Feb 2013 | A1 |
20130034666 | Liang et al. | Feb 2013 | A1 |
20130034968 | Zhang et al. | Feb 2013 | A1 |
20130037919 | Sapra et al. | Feb 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130049592 | Yeom et al. | Feb 2013 | A1 |
20130052804 | Song | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130059448 | Marakhtanov et al. | Mar 2013 | A1 |
20130062675 | Thomas | Mar 2013 | A1 |
20130065398 | Ohsawa et al. | Mar 2013 | A1 |
20130082197 | Yang et al. | Apr 2013 | A1 |
20130084654 | Gaylord et al. | Apr 2013 | A1 |
20130087309 | Volfovski | Apr 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130095646 | Alsmeier et al. | Apr 2013 | A1 |
20130098868 | Nishimura et al. | Apr 2013 | A1 |
20130105303 | Lubomirsky et al. | May 2013 | A1 |
20130105948 | Kewley | May 2013 | A1 |
20130115372 | Pavol et al. | May 2013 | A1 |
20130118686 | Carducci et al. | May 2013 | A1 |
20130119016 | Kagoshima | May 2013 | A1 |
20130119457 | Lue et al. | May 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130130507 | Wang et al. | May 2013 | A1 |
20130133578 | Hwang | May 2013 | A1 |
20130150303 | Kungl et al. | Jun 2013 | A1 |
20130155568 | Todorow et al. | Jun 2013 | A1 |
20130161726 | Kim et al. | Jun 2013 | A1 |
20130171810 | Sun et al. | Jul 2013 | A1 |
20130175654 | Muckenhirn et al. | Jul 2013 | A1 |
20130187220 | Surthi | Jul 2013 | A1 |
20130193108 | Zheng | Aug 2013 | A1 |
20130213935 | Liao et al. | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224953 | Salinas et al. | Aug 2013 | A1 |
20130224960 | Payyapilly et al. | Aug 2013 | A1 |
20130260533 | Sapre et al. | Oct 2013 | A1 |
20130260564 | Sapre et al. | Oct 2013 | A1 |
20130276983 | Park et al. | Oct 2013 | A1 |
20130279066 | Lubomirsky et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
20130284373 | Sun et al. | Oct 2013 | A1 |
20130284374 | Lubomirsky et al. | Oct 2013 | A1 |
20130284700 | Nangoy et al. | Oct 2013 | A1 |
20130286530 | Lin et al. | Oct 2013 | A1 |
20130295297 | Chou et al. | Nov 2013 | A1 |
20130298942 | Ren et al. | Nov 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20130320550 | Kim | Dec 2013 | A1 |
20130337655 | Lee et al. | Dec 2013 | A1 |
20130343829 | Benedetti et al. | Dec 2013 | A1 |
20140004707 | Thedjoisworo et al. | Jan 2014 | A1 |
20140004708 | Thedjoisworo | Jan 2014 | A1 |
20140008880 | Miura et al. | Jan 2014 | A1 |
20140020708 | Kim et al. | Jan 2014 | A1 |
20140021673 | Chen et al. | Jan 2014 | A1 |
20140026813 | Wang et al. | Jan 2014 | A1 |
20140053866 | Baluja et al. | Feb 2014 | A1 |
20140054269 | Hudson et al. | Feb 2014 | A1 |
20140057447 | Yang et al. | Feb 2014 | A1 |
20140062285 | Chen | Mar 2014 | A1 |
20140065827 | Kang | Mar 2014 | A1 |
20140065842 | Anthis et al. | Mar 2014 | A1 |
20140076234 | Kao et al. | Mar 2014 | A1 |
20140080308 | Chen et al. | Mar 2014 | A1 |
20140080309 | Park | Mar 2014 | A1 |
20140080310 | Chen et al. | Mar 2014 | A1 |
20140083362 | Lubomirsky et al. | Mar 2014 | A1 |
20140087488 | Nam et al. | Mar 2014 | A1 |
20140097270 | Liang et al. | Apr 2014 | A1 |
20140099794 | Ingle et al. | Apr 2014 | A1 |
20140102367 | Ishibashi | Apr 2014 | A1 |
20140110061 | Okunishi | Apr 2014 | A1 |
20140124364 | Yoo et al. | May 2014 | A1 |
20140134842 | Zhang et al. | May 2014 | A1 |
20140134847 | Seya | May 2014 | A1 |
20140141621 | Ren et al. | May 2014 | A1 |
20140147126 | Yamashita et al. | May 2014 | A1 |
20140152312 | Snow et al. | Jun 2014 | A1 |
20140154668 | Chou et al. | Jun 2014 | A1 |
20140154889 | Wang et al. | Jun 2014 | A1 |
20140165912 | Kao et al. | Jun 2014 | A1 |
20140166617 | Chen | Jun 2014 | A1 |
20140166618 | Tadigadapa et al. | Jun 2014 | A1 |
20140175530 | Chien et al. | Jun 2014 | A1 |
20140175534 | Kofuji et al. | Jun 2014 | A1 |
20140186772 | Pohlers et al. | Jul 2014 | A1 |
20140190410 | Kim | Jul 2014 | A1 |
20140190632 | Kumar | Jul 2014 | A1 |
20140191388 | Chen | Jul 2014 | A1 |
20140199850 | Kim et al. | Jul 2014 | A1 |
20140199851 | Nemani et al. | Jul 2014 | A1 |
20140209245 | Yamamoto | Jul 2014 | A1 |
20140216337 | Swaminathan et al. | Aug 2014 | A1 |
20140225504 | Kaneko et al. | Aug 2014 | A1 |
20140227881 | Lubomirsky et al. | Aug 2014 | A1 |
20140234466 | Gao et al. | Aug 2014 | A1 |
20140248773 | Tsai et al. | Sep 2014 | A1 |
20140248780 | Ingle et al. | Sep 2014 | A1 |
20140251956 | Jeon et al. | Sep 2014 | A1 |
20140256131 | Wang et al. | Sep 2014 | A1 |
20140256145 | Abdallah et al. | Sep 2014 | A1 |
20140262031 | Belostotskiy et al. | Sep 2014 | A1 |
20140262038 | Wang et al. | Sep 2014 | A1 |
20140263172 | Xie et al. | Sep 2014 | A1 |
20140263272 | Duan et al. | Sep 2014 | A1 |
20140264507 | Lee et al. | Sep 2014 | A1 |
20140264533 | Simsek-Ege | Sep 2014 | A1 |
20140271097 | Wang et al. | Sep 2014 | A1 |
20140273373 | Makala et al. | Sep 2014 | A1 |
20140273406 | Wang et al. | Sep 2014 | A1 |
20140273451 | Wang et al. | Sep 2014 | A1 |
20140273462 | Simsek-Ege et al. | Sep 2014 | A1 |
20140273487 | Deshmukh | Sep 2014 | A1 |
20140273489 | Wang et al. | Sep 2014 | A1 |
20140273491 | Zhang et al. | Sep 2014 | A1 |
20140273492 | Anthis et al. | Sep 2014 | A1 |
20140273496 | Kao | Sep 2014 | A1 |
20140288528 | Py et al. | Sep 2014 | A1 |
20140302678 | Paterson et al. | Oct 2014 | A1 |
20140302680 | Singh | Oct 2014 | A1 |
20140308758 | Nemani et al. | Oct 2014 | A1 |
20140308816 | Wang et al. | Oct 2014 | A1 |
20140311581 | Belostotskiy et al. | Oct 2014 | A1 |
20140342532 | Zhu | Nov 2014 | A1 |
20140342569 | Zhu et al. | Nov 2014 | A1 |
20140349477 | Chandrashekar et al. | Nov 2014 | A1 |
20140357083 | Ling et al. | Dec 2014 | A1 |
20140361684 | Ikeda et al. | Dec 2014 | A1 |
20140363977 | Morimoto et al. | Dec 2014 | A1 |
20140363979 | Or et al. | Dec 2014 | A1 |
20150007770 | Chandrasekharan et al. | Jan 2015 | A1 |
20150011096 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014152 | Hoinkis et al. | Jan 2015 | A1 |
20150031211 | Sapre et al. | Jan 2015 | A1 |
20150037980 | Rha | Feb 2015 | A1 |
20150041430 | Yoshino et al. | Feb 2015 | A1 |
20150050812 | Smith | Feb 2015 | A1 |
20150056814 | Ling et al. | Feb 2015 | A1 |
20150060265 | Cho et al. | Mar 2015 | A1 |
20150064918 | Ranjan et al. | Mar 2015 | A1 |
20150072508 | Or et al. | Mar 2015 | A1 |
20150076110 | Wu et al. | Mar 2015 | A1 |
20150076586 | Rabkin et al. | Mar 2015 | A1 |
20150079797 | Chen et al. | Mar 2015 | A1 |
20150093891 | Zope | Apr 2015 | A1 |
20150118822 | Zhang et al. | Apr 2015 | A1 |
20150118858 | Takaba | Apr 2015 | A1 |
20150123541 | Baek et al. | May 2015 | A1 |
20150126035 | Diao et al. | May 2015 | A1 |
20150126039 | Korolik et al. | May 2015 | A1 |
20150126040 | Korolik et al. | May 2015 | A1 |
20150129541 | Wang et al. | May 2015 | A1 |
20150129545 | Ingle et al. | May 2015 | A1 |
20150129546 | Ingle et al. | May 2015 | A1 |
20150132953 | Nowling | May 2015 | A1 |
20150132968 | Ren et al. | May 2015 | A1 |
20150140827 | Kao et al. | May 2015 | A1 |
20150152072 | Cantat et al. | Jun 2015 | A1 |
20150155177 | Zhang et al. | Jun 2015 | A1 |
20150167705 | Lee et al. | Jun 2015 | A1 |
20150170879 | Nguyen et al. | Jun 2015 | A1 |
20150170920 | Purayath et al. | Jun 2015 | A1 |
20150170924 | Nguyen et al. | Jun 2015 | A1 |
20150170926 | Michalak | Jun 2015 | A1 |
20150170935 | Wang et al. | Jun 2015 | A1 |
20150170943 | Nguyen et al. | Jun 2015 | A1 |
20150171008 | Luo | Jun 2015 | A1 |
20150179464 | Wang et al. | Jun 2015 | A1 |
20150187625 | Busche et al. | Jul 2015 | A1 |
20150191823 | Banna | Jul 2015 | A1 |
20150194435 | Lee | Jul 2015 | A1 |
20150200042 | Ling et al. | Jul 2015 | A1 |
20150206764 | Wang et al. | Jul 2015 | A1 |
20150214066 | Luere et al. | Jul 2015 | A1 |
20150214067 | Zhang et al. | Jul 2015 | A1 |
20150214092 | Purayath et al. | Jul 2015 | A1 |
20150214337 | Ko et al. | Jul 2015 | A1 |
20150221479 | Chen et al. | Aug 2015 | A1 |
20150221541 | Nemani et al. | Aug 2015 | A1 |
20150228456 | Ye et al. | Aug 2015 | A1 |
20150235809 | Ito et al. | Aug 2015 | A1 |
20150235860 | Tomura et al. | Aug 2015 | A1 |
20150235863 | Chen | Aug 2015 | A1 |
20150235865 | Wang et al. | Aug 2015 | A1 |
20150235867 | Nishizuka | Aug 2015 | A1 |
20150247231 | Nguyen et al. | Sep 2015 | A1 |
20150249018 | Park et al. | Sep 2015 | A1 |
20150255481 | Baenninger et al. | Sep 2015 | A1 |
20150270140 | Gupta et al. | Sep 2015 | A1 |
20150275361 | Lubomirsky et al. | Oct 2015 | A1 |
20150275375 | Kim et al. | Oct 2015 | A1 |
20150279687 | Xue et al. | Oct 2015 | A1 |
20150294980 | Lee et al. | Oct 2015 | A1 |
20150303031 | Choi | Oct 2015 | A1 |
20150332930 | Wang et al. | Nov 2015 | A1 |
20150332953 | Futase et al. | Nov 2015 | A1 |
20150340225 | Kim et al. | Nov 2015 | A1 |
20150340371 | Lue | Nov 2015 | A1 |
20150345029 | Wang et al. | Dec 2015 | A1 |
20150357201 | Chen et al. | Dec 2015 | A1 |
20150357205 | Wang et al. | Dec 2015 | A1 |
20150371861 | Li et al. | Dec 2015 | A1 |
20150371864 | Hsu et al. | Dec 2015 | A1 |
20150371865 | Chen et al. | Dec 2015 | A1 |
20150371866 | Chen et al. | Dec 2015 | A1 |
20150380419 | Gunji-Yoneoka et al. | Dec 2015 | A1 |
20150380431 | Kanamori et al. | Dec 2015 | A1 |
20160005572 | Liang et al. | Jan 2016 | A1 |
20160005833 | Collins et al. | Jan 2016 | A1 |
20160020071 | Khaja et al. | Jan 2016 | A1 |
20160027654 | Kim et al. | Jan 2016 | A1 |
20160027673 | Wang et al. | Jan 2016 | A1 |
20160035586 | Purayath et al. | Feb 2016 | A1 |
20160035614 | Purayath et al. | Feb 2016 | A1 |
20160042920 | Cho et al. | Feb 2016 | A1 |
20160042968 | Purayath et al. | Feb 2016 | A1 |
20160043099 | Purayath et al. | Feb 2016 | A1 |
20160056167 | Wang et al. | Feb 2016 | A1 |
20160056235 | Lee et al. | Feb 2016 | A1 |
20160064212 | Thedjoisworo et al. | Mar 2016 | A1 |
20160064233 | Wang et al. | Mar 2016 | A1 |
20160079062 | Zheng et al. | Mar 2016 | A1 |
20160079072 | Wang et al. | Mar 2016 | A1 |
20160086772 | Khaja | Mar 2016 | A1 |
20160086807 | Park et al. | Mar 2016 | A1 |
20160086808 | Zhang et al. | Mar 2016 | A1 |
20160086815 | Pandit et al. | Mar 2016 | A1 |
20160086816 | Wang et al. | Mar 2016 | A1 |
20160093505 | Chen et al. | Mar 2016 | A1 |
20160093506 | Chen et al. | Mar 2016 | A1 |
20160093737 | Li et al. | Mar 2016 | A1 |
20160099173 | Agarwal et al. | Apr 2016 | A1 |
20160104606 | Park et al. | Apr 2016 | A1 |
20160109863 | Valcore et al. | Apr 2016 | A1 |
20160117425 | Povolny et al. | Apr 2016 | A1 |
20160118227 | Valcore et al. | Apr 2016 | A1 |
20160118268 | Ingle et al. | Apr 2016 | A1 |
20160118396 | Rabkin et al. | Apr 2016 | A1 |
20160126118 | Chen et al. | May 2016 | A1 |
20160133480 | Ko et al. | May 2016 | A1 |
20160136660 | Song | May 2016 | A1 |
20160141419 | Baenninger et al. | May 2016 | A1 |
20160148805 | Jongbloed et al. | May 2016 | A1 |
20160148821 | Singh et al. | May 2016 | A1 |
20160163512 | Lubomirsky | Jun 2016 | A1 |
20160163513 | Lubomirsky | Jun 2016 | A1 |
20160172216 | Marakhtanov et al. | Jun 2016 | A1 |
20160181112 | Xue et al. | Jun 2016 | A1 |
20160181116 | Berry et al. | Jun 2016 | A1 |
20160189933 | Kobayashi et al. | Jun 2016 | A1 |
20160190147 | Kato et al. | Jun 2016 | A1 |
20160196969 | Berry et al. | Jul 2016 | A1 |
20160196984 | Lill et al. | Jul 2016 | A1 |
20160196985 | Tan et al. | Jul 2016 | A1 |
20160203958 | Arase et al. | Jul 2016 | A1 |
20160204009 | Nguyen et al. | Jul 2016 | A1 |
20160208395 | Ooshima | Jul 2016 | A1 |
20160218018 | Lieu et al. | Jul 2016 | A1 |
20160222522 | Wang et al. | Aug 2016 | A1 |
20160225651 | Tran et al. | Aug 2016 | A1 |
20160225652 | Tran et al. | Aug 2016 | A1 |
20160237570 | Tan et al. | Aug 2016 | A1 |
20160240353 | Nagami | Aug 2016 | A1 |
20160240389 | Zhang et al. | Aug 2016 | A1 |
20160240402 | Park et al. | Aug 2016 | A1 |
20160260588 | Park et al. | Sep 2016 | A1 |
20160260616 | Li et al. | Sep 2016 | A1 |
20160260619 | Zhang et al. | Sep 2016 | A1 |
20160284556 | Ingle et al. | Sep 2016 | A1 |
20160293398 | Danek et al. | Oct 2016 | A1 |
20160293438 | Zhou et al. | Oct 2016 | A1 |
20160300694 | Yang et al. | Oct 2016 | A1 |
20160307772 | Choi et al. | Oct 2016 | A1 |
20160307773 | Lee et al. | Oct 2016 | A1 |
20160314961 | Liu et al. | Oct 2016 | A1 |
20160314985 | Yang et al. | Oct 2016 | A1 |
20160319452 | Eidschun et al. | Nov 2016 | A1 |
20160340781 | Thomas et al. | Nov 2016 | A1 |
20160343548 | Howald et al. | Nov 2016 | A1 |
20160358793 | Okumura et al. | Dec 2016 | A1 |
20170011922 | Tanimura et al. | Jan 2017 | A1 |
20170040175 | Xu et al. | Feb 2017 | A1 |
20170040180 | Xu et al. | Feb 2017 | A1 |
20170040190 | Benjaminson et al. | Feb 2017 | A1 |
20170040191 | Benjaminson et al. | Feb 2017 | A1 |
20170040207 | Purayath | Feb 2017 | A1 |
20170040214 | Lai et al. | Feb 2017 | A1 |
20170053808 | Kamp et al. | Feb 2017 | A1 |
20170062184 | Tran | Mar 2017 | A1 |
20170110290 | Kobayashi et al. | Apr 2017 | A1 |
20170110335 | Yang et al. | Apr 2017 | A1 |
20170110475 | Liu et al. | Apr 2017 | A1 |
20170133202 | Berry | May 2017 | A1 |
20170178894 | Stone et al. | Jun 2017 | A1 |
20170178899 | Kabansky et al. | Jun 2017 | A1 |
20170178924 | Chen et al. | Jun 2017 | A1 |
20170194128 | Lai et al. | Jul 2017 | A1 |
20170207088 | Kwon et al. | Jul 2017 | A1 |
20170226637 | Lubomirsky et al. | Aug 2017 | A1 |
20170229287 | Xu et al. | Aug 2017 | A1 |
20170229289 | Lubomirsky et al. | Aug 2017 | A1 |
20170229291 | Singh et al. | Aug 2017 | A1 |
20170229293 | Park et al. | Aug 2017 | A1 |
20170229326 | Tran et al. | Aug 2017 | A1 |
20170229328 | Benjaminson et al. | Aug 2017 | A1 |
20170229329 | Benjaminson et al. | Aug 2017 | A1 |
20170236691 | Liang et al. | Aug 2017 | A1 |
20170236694 | Eason et al. | Aug 2017 | A1 |
20170250193 | Huo | Aug 2017 | A1 |
20170294445 | Son et al. | Oct 2017 | A1 |
20170309509 | Tran et al. | Oct 2017 | A1 |
20170338133 | Tan et al. | Nov 2017 | A1 |
20170338134 | Tan et al. | Nov 2017 | A1 |
20170373082 | Sekine et al. | Dec 2017 | A1 |
20180005850 | Citla et al. | Jan 2018 | A1 |
20180006050 | Watanabe et al. | Jan 2018 | A1 |
20180025900 | Park et al. | Jan 2018 | A1 |
20180069000 | Bergendahl et al. | Mar 2018 | A1 |
20180076031 | Yan et al. | Mar 2018 | A1 |
20180076044 | Choi et al. | Mar 2018 | A1 |
20180076083 | Ko et al. | Mar 2018 | A1 |
20180080124 | Bajaj et al. | Mar 2018 | A1 |
20180082861 | Citla et al. | Mar 2018 | A1 |
20180096818 | Lubomirsky | Apr 2018 | A1 |
20180096819 | Lubomirsky et al. | Apr 2018 | A1 |
20180096821 | Lubomirsky et al. | Apr 2018 | A1 |
20180096865 | Lubomirsky et al. | Apr 2018 | A1 |
20180102255 | Chen et al. | Apr 2018 | A1 |
20180102256 | Chen et al. | Apr 2018 | A1 |
20180102259 | Wang et al. | Apr 2018 | A1 |
20180130818 | Kim et al. | May 2018 | A1 |
20180138049 | Ko et al. | May 2018 | A1 |
20180138055 | Xu et al. | May 2018 | A1 |
20180138075 | Kang et al. | May 2018 | A1 |
20180138085 | Wang et al. | May 2018 | A1 |
20180175051 | Lue et al. | Jun 2018 | A1 |
20180182633 | Pandit et al. | Jun 2018 | A1 |
20180182777 | Cui et al. | Jun 2018 | A1 |
20180223437 | George et al. | Aug 2018 | A1 |
20180226223 | Lubomirsky | Aug 2018 | A1 |
20180226230 | Kobayashi et al. | Aug 2018 | A1 |
20180226259 | Choi et al. | Aug 2018 | A1 |
20180226278 | Arnepalli et al. | Aug 2018 | A1 |
20180226425 | Purayath | Aug 2018 | A1 |
20180226426 | Purayath | Aug 2018 | A1 |
20180240654 | Park et al. | Aug 2018 | A1 |
20180261516 | Lin et al. | Sep 2018 | A1 |
20180261686 | Lin et al. | Sep 2018 | A1 |
20180366351 | Lubomirsky | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1124364 | Jun 1996 | CN |
1847450 | Oct 2006 | CN |
101236893 | Aug 2008 | CN |
101378850 | Mar 2009 | CN |
102893705 | Jan 2013 | CN |
1675160 | Jun 2006 | EP |
S59-126778 | Jul 1984 | JP |
S62-45119 | Feb 1987 | JP |
63301051 | Dec 1988 | JP |
H01-200627 | Aug 1989 | JP |
H02-114525 | Apr 1990 | JP |
H07-153739 | Jun 1995 | JP |
H08-31755 | Feb 1996 | JP |
H08-107101 | Apr 1996 | JP |
H08-264510 | Oct 1996 | JP |
H09-260356 | Oct 1997 | JP |
2001-313282 | Nov 2001 | JP |
2001-332608 | Nov 2001 | JP |
2002-075972 | Mar 2002 | JP |
2002-083869 | Mar 2002 | JP |
2003-174020 | Jun 2003 | JP |
2003-282591 | Oct 2003 | JP |
2004-508709 | Mar 2004 | JP |
2004-296467 | Oct 2004 | JP |
2005-050908 | Feb 2005 | JP |
2006-041039 | Feb 2006 | JP |
2006-066408 | Mar 2006 | JP |
2008-288560 | Nov 2008 | JP |
4191137 | Dec 2008 | JP |
2009-141343 | Jun 2009 | JP |
2009-530871 | Aug 2009 | JP |
2009-239056 | Oct 2009 | JP |
2010-180458 | Aug 2010 | JP |
2011-508436 | Mar 2011 | JP |
2011-518408 | Jun 2011 | JP |
4763293 | Aug 2011 | JP |
2011-171378 | Sep 2011 | JP |
2012-019164 | Jan 2012 | JP |
2012-019194 | Jan 2012 | JP |
2012-512531 | May 2012 | JP |
2013-243418 | Dec 2013 | JP |
5802323 | Oct 2015 | JP |
2016-111177 | Jun 2016 | JP |
2000-0008278 | Feb 2000 | KR |
2000-0064946 | Nov 2000 | KR |
2001-0056735 | Jul 2001 | KR |
2003-0023964 | Mar 2003 | KR |
2003-0054726 | Jul 2003 | KR |
2003-0083663 | Oct 2003 | KR |
100441297 | Jul 2004 | KR |
2005-0007143 | Jan 2005 | KR |
2005-0042701 | May 2005 | KR |
2005-0049903 | May 2005 | KR |
2006-0080509 | Jul 2006 | KR |
1006-41762 | Nov 2006 | KR |
2006-0127173 | Dec 2006 | KR |
100663668 | Jan 2007 | KR |
100678696 | Jan 2007 | KR |
100712727 | Apr 2007 | KR |
2007-0079870 | Aug 2007 | KR |
2008-0063988 | Jul 2008 | KR |
100843236 | Jul 2008 | KR |
2009-0040869 | Apr 2009 | KR |
2009-0128913 | Dec 2009 | KR |
10-2010-0013980 | Feb 2010 | KR |
2010-0093358 | Aug 2010 | KR |
2011-0086540 | Jul 2011 | KR |
2011-0114538 | Oct 2011 | KR |
2011-0126675 | Nov 2011 | KR |
2012-0022251 | Mar 2012 | KR |
2012-0082640 | Jul 2012 | KR |
2016-0002543 | Jan 2016 | KR |
2006-12480 | Apr 2006 | TW |
200709256 | Mar 2007 | TW |
2007-35196 | Sep 2007 | TW |
2011-27983 | Aug 2011 | TW |
2012-07919 | Feb 2012 | TW |
2012-13594 | Apr 2012 | TW |
2012-33842 | Aug 2012 | TW |
2008-112673 | Sep 2008 | WO |
2009-084194 | Jul 2009 | WO |
2010-010706 | Jan 2010 | WO |
2010-113946 | Oct 2010 | WO |
2011-027515 | Mar 2011 | WO |
2011-031556 | Mar 2011 | WO |
2011-070945 | Jun 2011 | WO |
2011-095846 | Aug 2011 | WO |
2011-149638 | Dec 2011 | WO |
2012-050321 | Apr 2012 | WO |
2012-118987 | Sep 2012 | WO |
2012-125656 | Sep 2012 | WO |
2012-148568 | Nov 2012 | WO |
2013-118260 | Aug 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20190198291 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15943208 | Apr 2018 | US |
Child | 16291494 | US | |
Parent | 15285176 | Oct 2016 | US |
Child | 15943208 | US |