Claims
- 1. A composition, comprising:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; and a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 1.1, and wherein the first dissolution rate is measured prior the composition being exposed to about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure.
- 2. The composition of claim 1, wherein the photoacid generator is selected from an onium salt photoacid generator, an iodonium photoacid generator, a sulfonium photoacid generator, a non-ionic photoacid generator, and combinations thereof.
- 3. The composition of claim 1, wherein the photoacid generator is an iodonium photoacid generator.
- 4. The composition of claim 1, wherein the photoacid generator is a sulfonium photoacid generator.
- 5. The composition of claim 1, wherein the polymer resin is selected from polynorbornene, polyacrylate, polystyrene, polycarbonate, polyether, polyester, co-polymers of each, tri-polymers of each, heteropolymers, and combinations thereof.
- 6. The composition of claim 1, wherein polymer resin is a polynorbornene.
- 7. The composition of claim 6, wherein the polynorbornene is a bis-trifluoromethyl carbinol substituted polynorbornene.
- 8. The composition of claim 1, wherein the photoacid generator is an iodonium photoacid generator and the polynorbornene is a bis-trifluoromethyl carbinol substituted polynorbornene.
- 9. The composition of claim 8, the iodonium photoacid generator is about 0.0005 to 25% by weight percent of the composition and the bis-trifluoromethyl carbinol substituted polynorbornene is from about 0.05 to 50% by weight of the composition.
- 10. The composition of claim 1, the photoacid generator is about 0.0005 to 25% by weight percent of the composition and the polymer resin is from about 0.05 to 25% by weight of the composition.
- 11. The composition of claim 1, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 2.
- 12. The composition of claim 1, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 3.
- 13. The composition of claim 1, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 4.
- 14. The composition of claim 1, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 20.
- 15. The composition of claim 1, wherein the photoacid generator is a iodonium photoacid generator and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 20.
- 16. The composition of claim 1, wherein the photoacid generator is an iodonium photoacid generator and the polynorbornene is a bis-trifluoromethyl carbinol substituted polynorbornene and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 20.
- 17. The composition of claim 1 wherein the photoacid generator is an iodonium photoacid generator and the polynorbornene is a bis-trifluoromethyl carbinol substituted polynorbornene and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 3.
- 18. A composition, consisting essentially of:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 1.1, and wherein the first dissolution rate is measured prior the composition being exposed to about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure; and a solvent.
- 19. The composition of claim 18, wherein the polymer resin is selected from polynorbornene, polyacrylate, polystyrene, polycarbonate, polyether, polyester, co-polymers of each, tri-polymers of each, heteropolymers, and combinations thereof.
- 20. The composition of claim 18, wherein the photoacid generator is selected from an onium salt photoacid generator, an iodonium photoacid generator, a sulfonium photoacid generator, a non-ionic photoacid generator, and combinations thereof.
- 21. The composition of claim 18, wherein the photoacid generator is selected from an iodonium photoacid generator and a sulfonium photoacid generator and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 2.
- 22. The composition of claim 18, wherein the photoacid generator is selected from an iodonium photoacid generator and a sulfonium photoacid generator, wherein the polymer resin is a bis-trifluoromethyl carbinol substituted polynorbornene, and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 3.
- 23. The composition of claim 18, wherein the photoacid generator is an iodonium photoacid generator and the polymer resin is a bis-trifluoromethyl carbinol substituted polynorbornene and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 4.
- 24. The composition of claim 18, wherein the photoacid generator is an iodonium photoacid generator and the polymer resin is a polynorbornene and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 27.
- 25. The composition of claim 18, wherein the photoacid generator is an iodonium photoacid generator and the polynorbornene is a bis-trifluoromethyl carbinol substituted polynorbornene.
- 26. The composition of claim 25, wherein the photoacid generator is selected from di-(p-t-butyl) phenyliodonium bis(perfluoromethanesulfonyl) imide (DTBPI-N1), di-(p-t-butyl) phenyliodonium bis(perfluoroethanesulfonyl) imide (DTBPI-N2), di-(p-t-butyl) phenyliodonium bis(perfluoropropanesulfonyl) imide (DTBPI-N3), di-(p-t-butyl) phenyliodonium bis(perfluoromethanesulfonyl) imide -tris(perfluoromethanesulfonyl) methide (DTPBI-C1), bis(p-tert-butylphenyl)iodonium antimonate, and combinations thereof.
- 27. A method for forming a pattern, comprising:
disposing a photoresist onto a surface, wherein the photoresist includes:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; and a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 1.1, and wherein the first dissolution rate is measured prior the composition being exposed to about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure; disposing a photomask onto the photoresist; exposing the photoresist through the photomask to optical energy about 1 to 450 nm energy; and removing portions of the photoresist exposed through the photomask.
- 28. The method of claim 27, wherein exposing includes exposing the photoresist to optical energies selected from about 10 to 15 nm, about 110 to 140 nm, and about 150 to 160 nm.
- 29. The method of claim 27, wherein exposing includes exposing the photoresist to optical energies selected from about 190 to 200 nm and about 240 to 260.
- 30. A method of producing an article of manufacture comprising:
applying a photoresist on a wafer substrate, wherein the photoresist includes:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; and a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 2, and wherein the first dissolution rate is measured prior the composition-being exposed-to-about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure; and exposing the photoresist to a patterned activating radiation and developing the exposed photoresist to provide a photoresist relief image.
- 31. The method of claim 30, wherein the photoacid generator is an iodonium photoacid generator and the polymer resin is a polynorbornene and wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 20.
- 32. A process for forming a resist pattern comprising:
applying a photoresist on a wafer substrate, wherein the photoresist includes:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; and a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 3, and wherein the first dissolution rate is measured prior the composition being exposed- to about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure; and exposing the photoresist coating layer to patterned activating radiation of about 1 to 450 nm energy.
- 33. A method of forming the relief image on the substrate, comprising:
applying a photoresist on a substrate, wherein the photoresist includes:
a polymer resin, wherein the polymer resin does not substantially absorb about 1 to 450 nanometer (nm) wavelength energy; and a photoacid generator, wherein the photoacid generator does substantially absorb about 1 to 450 nanometer (nm) wavelength energy, wherein the composition has a ratio of a first dissolution rate and a second dissolution rate of greater than about 4, and wherein the first dissolution rate is measured prior the composition being exposed to about 1 to 450 nm energy and the second dissolution rate is measured after the composition is exposed to about 1 to 450 nm energy without post thermal exposure; imagewise exposing the photoresist to form imaged and non-imaged areas; and developing the exposed photoresist layer having imaged and non-imaged areas to form the relief image on the substrate.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to co-pending U.S. Provisional Application entitled “Use of Photoacid Generators as Dissolution Rate Modifiers for Advanced Photoresist Materials” having Ser. No.60/476,432, filed on Jun. 6, 2003, which is entirely incorporated herein by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60476432 |
Jun 2003 |
US |