COMPOSITIONS AND METHODS TO TREAT BIETTI CRYSTALLINE DYSTROPHY

Abstract
Viral vectors to deliver a heterologous CYP4V2 gene to the retina, e.g., RPE cells of the retina, are provided herein to treat subjects with Bietti crystalline dystrophy.
Description
BACKGROUND

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder in which numerous small, yellow or white crystalline-like deposits of lipid accumulate in the retina, which is followed by chorioretinal atrophy and progressive vision loss. Subjects with BCD typically begin noticing vision problems in their teens or twenties. They often experience night blindness in addition to a reduction in visual acuity. They also usually lose areas of vision, most often peripheral vision. Color vision may also be impaired.


The vision problems may worsen at different rates in each eye, and the severity and progression of symptoms varies widely among affected subjects, even within the same family. However, most subjects with BCD become legally blind by 40 or 50 years of age. Most affected subjects retain some degree of vision, usually in the center of the visual field, although it is typically blurry and cannot be corrected by prescription lenses.


BCD is caused by mutations in the CYP4V2 gene. The gene, located on the long arm of human chromosome 4, encodes cytochrome P450 family 4 subfamily V member 2. As a member of the cytochrome P450 family of enzymes, the w-hydroxylase is involved in lipid metabolism, specifically oxidation of polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). At least 80 different CYP4V2 gene mutations have been identified in subjects with BCD (Zhang et al., Mol Vis 24:700-711, 2018). CYP4V2 gene mutations that cause BCD impair or eliminate the function of the enzyme and are believed to affect lipid breakdown. However, it is unknown how they lead to the specific signs and symptoms of BCD.


BCD is estimated to affect approximately 65,000 people worldwide (Xiao et al., Biochem Biophys Res Comm 409:181-186, 2011; and Mataftsi et al., Retina 24:416-426, 2004). It is more common in people of East Asian descent, especially those of Chinese and Japanese background. Currently, there is no treatment available for BCD.


SUMMARY

The present invention relates generally to recombinant viral vectors and methods of using recombinant viral vectors to express proteins in the retina, e.g., retinal pigment epithelium (RPE) cells, of subjects suffering from retinal diseases and blindness, e.g., BCD.


The present invention, in one aspect, relates to viral vectors that are capable of delivering a heterologous gene to the retina. The present invention also relates to viral vectors that are capable of directing a heterologous gene to the retina, e.g., RPE cells of the retina.


The present invention further relates to viral vectors that are recombinant adeno-associated viral vectors (rAAV). In certain embodiments the rAAV viral vector may be selected from among any AAV serotype known in the art, including without limitation, AAV1 to AAV12. In certain embodiments, the rAAV vector capsid is an AAV8 serotype. In certain other embodiments, the rAAV vector capsid is an AAV9 serotype. In certain embodiments, the rAAV vector capsid is an AAV2 serotype. In certain embodiments, the rAAV vector capsid is an AAV5 serotype. In certain embodiments, the rAAV vector is a novel synthetic AAV serotype derived from modified wild-type AAV capsid sequences.


In one aspect, viral vectors are provided, wherein the viral vectors comprise a vector genome comprising, in a 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a polyadenylation (polyA) signal sequence; and


(v) a 3′ ITR.


In one embodiment, the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) an intron;


(iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(v) a polyA signal sequence; and


(vi) a 3′ ITR.


In some embodiments, the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a regulatory element;


(v) a polyA signal sequence; and


(vi) a 3′ ITR.


In one embodiment, the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) an intron;


(iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(v) a regulatory element;


(vi) a polyA signal sequence; and


(vii) a 3′ ITR.


In some embodiments, the vector genome comprises a length greater than or about 4.1 kb and less than or about 4.9 kb. In another embodiments, the vector genome comprises a length less than or about 5 kb.


In one embodiment, the vector genome comprises a stuffer sequence positioned between the polyA signal sequence and the 3′ ITR. In some embodiments, the stuffer sequence is between about 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-1,000, 1,000-1,500, 1,500-2,000, 2,000-2,500, or 2,500-3,000 nucleotides in length.


In one embodiment, the 5′ ITR comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:1.


In some embodiments, the promoter is a ubiquitous promoter, e.g., a cytomegalovirus (CMV) promoter, CBA promoter, or CAG promoter, e.g., wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:2, SEQ ID NO:3, or SEQ ID NO:4.


In one embodiment, the promoter is a retinal pigment epithelium (RPE)-specific promoter, e.g., a ProC2 promoter, VMD2 promoter, CYP4V2 promoter, or RPE65 promoter, e.g., wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, or SEQ ID NO:8, and promotes expression of the CYP4V2 preferentially in RPE cells, e.g., human RPE cells.


The present invention hence provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO: 5 or a nucleic acid sequence having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to said nucleic acid sequence of SEQ ID NO: 5. The isolated nucleic acid of SEQ ID NO: 5 leads to the expression in human or NHP retinal cells, e.g., human or NHP RPE cells, of a gene operatively linked to the nucleic acid sequence of SEQ ID NO: 5.


In some embodiments, the CYP4V2 coding sequence comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, or SEQ ID NO:49.


In one embodiment, the polyA signal sequence comprises a bovine growth hormone or simian virus 40 polyA nucleotide sequence, e.g., wherein the polyA signal sequence comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:18 or SEQ ID NO:19.


In some embodiments, the 3′ ITR comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:22.


In one embodiment, the intron comprises a human growth hormone, simian virus 40, or human beta gobin intron sequence, e.g., wherein the intron comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:9, SEQ ID NO:10, or SEQ ID NO:11.


In some embodiments, the regulatory element comprises a hepatitis B virus or woodchuck hepatitis virus sequence, e.g., wherein the regulatory element comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:16 or SEQ ID NO:17.


In one embodiment, the vector genome comprises a Kozak sequence positioned immediately upstream of the recombinant nucleotide sequence comprising the CYP4V2 coding sequence, e.g., wherein the Kozak sequence comprises the nucleotide sequence of SEQ ID NO:12, SEQ ID NO:51, SEQ ID NO:52, or SEQ ID NO:53.


In some embodiments, the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22.


In one embodiment, the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 9, 14, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 9, 14, 19, and 22.


In some embodiments, the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 16, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 14, 16, 19, and 22.


In one embodiment, the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


ii) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


iii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


iv) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


v) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


vi) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


vii) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


viii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


ix) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


x) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xi) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xii) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xiii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xiv) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xv) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


xvi) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


xvii) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


xviii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


xix) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


xx) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


xxi) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


xxii) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


xxv) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector comprises an adeno-associated virus (AAV) serotype 8, 9, 2, or 5 capsid. In one embodiment, the AAV8 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:24, 25, and 26, respectively. In some embodiments, the AAV8 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:23. In one embodiment, the AAV9 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:28, 29, and 30, respectively. In some embodiments, the AAV9 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:27. In one embodiment, the AAV2 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:32, 33, and 34, respectively. In some embodiments, the AAV2 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:31. In one embodiment, the AAV5 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:36, 37, and 38, respectively. In some embodiments, the AAV5 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:35.


In another aspect, the present disclosure provides compositions comprising a viral vector described herein. In one embodiment, the compositions further comprise a pharmaceutically acceptable excipient. In some embodiments, the compositions are for use in treating a subject with BCD, e.g., for use in improving visual acuity in a subject with BCD.


Also provided herein is a method of expressing a heterologous CYP4V2 gene in a retinal cell, wherein the method comprises contacting the retinal cell with a viral vector described herein. In some embodiments, the retinal cell is a RPE cell.


In another aspect, a method of treating a subject with Bietti crystalline dystrophy (BCD) is provided, wherein the method comprises administering to the subject an effective amount of a composition comprising a viral vector described herein, e.g., wherein the composition further comprises a pharmaceutically acceptable excipient.


In yet another aspect, a method of improving visual acuity, improving visual function or functional vision, or inhibiting decline of visual function or functional vision in a subject with BCD is provided, wherein the method comprises administering to the subject an effective amount of a composition comprising a viral vector described herein, e.g., wherein the composition further comprises a pharmaceutically acceptable excipient.


In one aspect, a nucleic acid comprising a gene cassette is provided, wherein the gene cassette comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a polyA signal sequence; and


(v) a 3′ ITR.


In one embodiment, the nucleic acid comprising the gene cassette is a plasmid.


In some embodiments, the gene cassette comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


Definitions

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention pertains.


The term “capsid” refers to the protein coat of the virus or viral vector. The term “AAV capsid” refers to the protein coat of the adeno-associated virus (AAV), which is composed of a total of 60 subunits; each subunit is an amino acid sequence, which can be viral protein 1 (VP1), VP2, or VP3 (Muzyczka N and Berns K I (2001) Chapter 69, Fields Virology. Lippincott Williams & Wilkins).


The term “gene cassette” refers to a manipulatable fragment of DNA carrying, and capable of expressing, one or more genes or coding sequences of interest, for example, between one or more sets of restriction sites, though straddling restriction sites are not required. A gene cassette, or a portion thereof, can be transferred from one DNA sequence (often in a plasmid vector) to another by cutting the fragment out using restriction enzymes and ligating it back into a new context, for example, into a new plasmid backbone.


The term “heterologous gene” or “heterologous nucleotide sequence” will typically refer to a gene or nucleotide sequence that is not naturally-occurring in the virus. Alternatively, a heterologous gene or heterologous nucleotide sequence may refer to a viral sequence that is placed into a non-naturally occurring environment (e.g., by association with a promoter with which it is not naturally associated in the virus).


The terms “inverted terminal repeat” or “ITR” refer to a stretch of nucleotide sequences that exist in adeno-associated viruses (AAV) and/or recombinant adeno-associated viral vectors (rAAV) that can form a T-shaped palindromic structure, which is required for completing wild-type AAV lytic and latent life cycles (Muzyczka N and Berns K I (2001) Chapter 69, Fields Virology. Lippincott Williams & Wilkins). In rAAV, these sequences play a functional role in genome packaging and in second-strand synthesis.


The term “operably linked” refers to a functional relationship between two or more polynucleotide (e.g., DNA) segments. Typically, the term refers to the functional relationship of a transcriptional regulatory sequence to a sequence to be transcribed. For example, a promoter or enhancer sequence is operably linked to a coding sequence if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribable sequence are contiguous to the transcribable sequence, i.e., they are cis-acting. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.


As used herein, the term “percent sequence identity” refers to the degree of identity between any given query sequence and a subject sequence. A subject sequence typically has a length that is from about 80 percent to 250 percent of the length of the query sequence, e.g., 82, 85, 87, 89, 90, 93, 95, 97, 99, 100, 105, 110, 115, or 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, or 250 percent of the length of the query sequence. To determine the percent identity of two nucleotide sequences, or of two amino acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleotide sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The nucleotides or amino acid residues at corresponding nucleotide positions or amino acid positions are then compared. When a position in the first sequence is occupied by the same nucleotide or amino acid residue as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein, nucleotide or amino acid “identity” is equivalent to nucleotide or amino acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences.


In another embodiment, the percent identity of two amino acid sequences can be assessed as a function of the conservation of amino acid residues within the same family of amino acids (e.g., positive charge, negative charge, polar and uncharged, hydrophobic) at corresponding positions in both amino acid sequences (e.g., the presence of an alanine residue in place of a valine residue at a specific position in both sequences shows a high level of conservation, but the presence of an arginine residue in place of an aspartate residue at a specific position in both sequences shows a low level of conservation). For purposes of the present invention, the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


The term “promoter” refers to a sequence that regulates transcription of an operably linked gene, or nucleotide sequence encoding a protein. Promoters provide the sequence sufficient to direct transcription, as well as, the recognition sites for RNA polymerase and other transcription factors required for efficient transcription and can direct cell specific expression. In addition to the sequence sufficient to direct transcription, a promoter sequence of the invention can also include sequences of other regulatory elements that are involved in modulating transcription (e.g., enhancers, minimal promoters, Kozak sequences, and introns). Examples of promoters known in the art and useful in the viral vectors described herein include ubiquitous promoters such as the CMV promoter (e.g., SEQ ID NO:2), CBA promoter (e.g., SEQ ID NO:3), and CAG promoter (e.g., SEQ ID NO:4). Alternatively, a RPE-specific promoter may be used to target expression of CYP4V2 preferentially in RPE cells of the retina. Examples of RPE-specific promoters include a ProC2 promoter (e.g., SEQ ID NO:5), and VMD2 promoter (SEQ ID NO:6). In some embodiments, the CYP4V2 promoter (SEQ ID NO:7) or RPE65 promoter (SEQ ID NO:8) can be used as a RPE-specific promoter. In addition, standard techniques are known in the art for creating functional promoters by mixing and matching known regulatory elements. “Truncated promoters” may also be generated from promoter fragments or by mixing and matching fragments of known regulatory elements.


The term “CYP4V2” refers to cytochrome P450 family 4 subfamily V member 2. The human CYP4V2 gene is found on chromosome 4 and has the nucleotide coding sequence as set out, for example, in SEQ ID NO:13. In one embodiment, a codon-optimized sequence of the human CYP4V2 gene can be used. One example of such a codon-optimized CYP4V2 gene has the nucleotide coding sequence as set out in SEQ ID NO:14. The “CYP4V2 gene product” is the protein encoded by a CYP4V2 gene. In one embodiment, an exemplary human CYP4V2 gene product has an amino acid sequence as set out in SEQ ID NO:15. In one embodiment, a CYP4V2 coding sequence encodes the amino acid sequence of SEQ ID NO:15 or a functional variant or fragment thereof. Examples of CYP4V2 coding sequences and CYP4V2 gene products from other species can be found in Table 2 (e.g., SEQ ID NOs:39-50). The term “CYP4V2 coding sequence” or “CYP4V2 GENE CDS” or “CYP4V2 CDS” refers to a nucleotide sequence that encodes a CYP4V2 gene product. One of skill in the art will understand that a CYP4V2 coding sequence may include any nucleotide sequence that encodes a CYP4V2 gene product or a functional variant or fragment thereof. In one embodiment, the CYP4V2 coding sequence encodes the amino acid sequence of SEQ ID NO:15, 40, 42, 44, 46, 48, 50, or a functional variant or fragment thereof. The CYP4V2 coding sequence may or may not include intervening regulatory elements (e.g., introns, enhancers, or other non-coding sequences).


The term “subject” includes human and non-human animals. Non-human animals include all vertebrates (e.g., mammals and non-mammals) such as, non-human primates (e.g., cynomolgus monkey), mice, rats, sheep, dogs, cows, chickens, amphibians, and reptiles. Except when noted, the terms “patient” or “subject” are used herein interchangeably.


As used herein, the term “treating” or “treatment” of any disease or disorder (e.g., BCD) refers to ameliorating the disease or disorder such as by slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof. “Treating” or “treatment” can also refer to alleviating or ameliorating at least one physical parameter, including those that may not be discernible by the subject. “Treating” or “treatment” can also refer to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. More specifically, “treatment” of BCD means any action that results in the improvement or preservation of visual function, functional vision, retinal anatomy, and/or Quality of Life in a subject having BCD. As used herein, “treatment” may mean any manner in which one or more of the symptoms of BCD are ameliorated or otherwise beneficially altered. As used herein, amelioration of the symptoms of BCD refers to any lessening, whether permanent or temporary, lasting or transient, that can be attributed to or associated with treatment by the compositions and methods of the present invention. “Preventing or “prevention” as used herein, refers to preventing or delaying the onset or development or progression of the disease or disorder. “Prevention” as it relates to BCD means any action that prevents or slows a worsening in visual function, functional vision, retinal anatomy, Quality of Life, and/or a BCD disease parameter, as described below, in a patient with BCD and at risk for said worsening. Methods for assessing treatment and/or prevention of disease are known in the art and described herein below.


The term “virus vector” or “viral vector” is intended to refer to a non-wild-type recombinant viral particle (e.g., a parvovirus, etc.) that functions as a gene delivery vehicle and which comprises a recombinant viral genome packaged within a viral (e.g., AAV) capsid. A specific type of virus vector may be a “recombinant adeno-associated virus vector”, or “rAAV vector”. The recombinant viral genome packaged in the viral vector is also referred to herein as the “vector genome”.





DESCRIPTION OF DRAWINGS


FIG. 1 are photomicrographs showing ChR2d-eGFP expression in flatmounts of the posterior eyecup. Eyecups were isolated from PFA-fixed eyes, cut into petals, and analyzed for eGFP fluorescence.



FIG. 2A and FIG. 2B are graphs showing mRNA expression levels of ChR2d-eGFP as measured by ddPCR. Fold change in expression relative to TM073 is shown for both the (FIG. 2A) posterior eyecup and (FIG. 2B) neural retina. ChR2d-eGFP expression was normalized to Rab7 control expression for each sample.



FIG. 3 shows confocal images of a NHP retina infected with AAV-ProC2-CatCh-GFP.



FIGS. 3A and 3B: retina sections showing CatCh-GFP (green or gray area in a grayscale image at the top) and nuclear stain (Hoechst, white). FIG. 3C: confocal images of AAV-infected retinas (top view), CatCh-GFP (black). FIGS. 3D and 3E: quantification of CatCh-GFP+ cell density as a percentage of target cell-type or cell class density; values are the mean±s.e.m. from n=10 confocal images. Quantification of AAV-targeting specificity is shown as a percentage of the major (black) cell types among cells expressing the transgene. T, temporal retina quarter; N, nasal retina quarter.





DETAILED DESCRIPTION

The present disclosure is based in part on the discovery that expression of CYP4V2 from recombinant adeno-associated viral vectors (rAAV) having a combination of selected promoter, AAV genome, and capsid serotype provides a potent and efficacious treatment for BCD, e.g., to subjects with a mutation in their CYP4V2 gene (Table 1). Accordingly, the present disclosure provides recombinant viral vectors that direct expression of the CYP4V2 coding sequence to the retina, viral vector compositions, plasmids useful for generating the viral vectors, methods of delivering a CYP4V2 coding sequence to the retina, methods of expressing a CYP4V2 coding sequence in RPE cells of the retina, and methods of use of such viral vectors.









TABLE 1







CYP4V2 mutations associated with BCD










Nucleotide change
Polypeptide change







c.31C > T
p.Q11X



c.64C > G
p.L22V



c.65T > A
p.L22H



c.71T > C
p.L24P



c.130T > A
p.W44R



c.134A > C
p.Q45P



c.181G > A
p.G61S



c.197T > G
p.M66R



c.215 − 2A > G
Splicing acceptor



c.219T > A
p.F73L



c.237G > T
p.E79D



c.253C > T
p.R85C



c.254G > A
p.R85H



c.283G > A
p.G95R



c.328 − 1G > A
Exon3del



c.332T > C
p.I111T



c.335T > G
p.L112X - termination



c.367A > G
p.M123V



c.368T > G
p.M123R



c.400G > T
p.G134X - termination



c.413 + 2T > G
Mis-splicing - Splicing acceptor



c.677T > A
p.M226L



c.694C > T
p.R232X (substitution - nonsense)



c.732G > A
p.W244X



c.791del T
deletion



c.801 + 5G > A
Exon6del



c.802 − 9A > G
Altered splicing



c.802 − 8_810del17insGC
Mis-splicing - Splicing acceptor



c.838G > T
p.E280X



c.958C > T
p.R320X



c.992A > C
p.H331P



c.994G > A
p.D332N



c.1020G > A
p.W340X



c.1027T > G
p.Y343D



c.1061 − 1062insA
frameshift



c.1091 − 2A > G
Mis-splicing - Splicing acceptor



c.1168C > T
p.R390C



c.1169G > A
p.R390H



c.1187C > T
p.P396L



c.1198C > T
p.R400C



c.1199G > A
p.R400H



c.1216T > C
p.C406R



c.1278G > T
p.L426F



c.1400G > A
p.C467Y



c.1508G > A
p.G503E










Except as otherwise indicated, standard methods known to those skilled in the art may be used for the construction of recombinant parvovirus and rAAV vectors, using recombinant plasmids carrying a viral gene cassette, packaging plasmids expressing the parvovirus rep and/or cap sequences, as well as transiently and stably transfected packaging cells. Such techniques are known to those skilled in the art. (e.g., Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed. (Cold Spring Harbor, N.Y., 1989); Choi et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (2007)).


When a viral vector expresses a particular protein or activity, it is not necessary that the relevant gene(s) be identical to the corresponding gene(s) found in nature or disclosed herein. So long as the protein is functional, it may be used in accordance with one aspect of the present invention. One of skill in the art could readily determine if a CYP4V2 coding sequence encodes a functional w-hydroxylase by detecting hydroxylase activity. Briefly, a protein of interest is mixed with fatty acids and other required factors and incubated to allow the hydroxylation reaction to occur. Then, the hydroxylated fatty acids can be measured by mass spectrometry. See, e.g., a functional assay, as described in Nakano et al., Drug Metab Dispos 37:2119-2122, 2009. Very high sequence identity with the natural protein, however, is generally preferred. For instance, large deletions (e.g., greater than about 50 amino acids) should generally be avoided according to certain embodiments of the invention. Therefore, skilled practitioners will appreciate that the present viral vector sequences can vary from the sequences described herein. In some embodiments, the viral nucleotide or amino acid sequence has greater than or about 80% identity to the sequences provided herein, e.g., greater than or about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to the sequences provided herein.


In some embodiments, a sequence change is a conservative substitution. Such a change includes substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered “conservative” in particular environments (see, e.g., Table III of US 20110201052; pages 13-15 “Biochemistry” 2nd Ed. Stryer ed (Stanford University); Henikoff et al., Proc Natl Acad Sci USA 89:10915-10919, 1992; Lei et al., J Biol Chem 270:11882-11886, 1995).


Viral Vectors

The present invention is related to viral vectors that direct expression of a heterologous gene to the retina. In certain aspects of the invention, expression is directed preferentially to RPE cells of the retina. A variety of viral vectors known in the art may be adapted by one of skill in the art for use in the present invention, for example, recombinant adeno-associated viruses, recombinant adenoviruses, recombinant retroviruses, recombinant poxviruses, and recombinant baculoviruses.


In particular, it is contemplated that the viral vector of the invention may be a recombinant adeno-associated (rAAV) vector. AAVs are small, single-stranded DNA viruses that require helper virus to facilitate efficient replication (Muzyczka N and Berns K I (2001) Chapter 69, Fields Virology. Lippincott Williams & Wilkins). The viral vector comprises a vector genome and a protein capsid. The viral vector capsid may be supplied from any of the AAV serotypes known in the art, including presently identified human and non-human AAV serotypes and AAV serotypes yet to be identified (see, e.g., Choi et al., Curr Gene Ther 5:299-310, 2005; Schmidt et al., J Virol 82:1399-1406, 2008; U.S. Pat. Nos. 9,193,956; 9,186,419; 8,632,764; 8,663,624; 8,927,514; 8,628,966; 8,263,396; 8,734,809; 8,889,641; 8,632,764; 8,691,948; 8,299,295; 8,802,440; 8,445,267; 8,906,307; 8,574,583; 8,067,015; 7,588,772; 7,867,484; 8,163,543; 8,283,151; 8,999,678; 7,892,809; 7,906,111; 7,259,151; 7,629,322; 7,220,577; 8,802,080; 7,198,951; 8,318,480; 8,962,332; 7,790,449; 7,282,199; 8,906,675; 8,524,446; 7,712,893; 6,491,907; 8,637,255; 7,186,522; 7,105,345; 6,759,237; 6,984,517; 6,962,815; 7,749,492; 7,259,151; and 6,156,303; U.S. Publication Nos. 2013/0295614; 2015/0065562; 2014/0364338; 2013/0323226; 2014/0359799; 2013/0059732; 2014/0037585; 2014/0056854; 2013/0296409; 2014/0335054 2013/0195801; 2012/0070899; 2011/0275529; 2011/0171262; 2009/0215879; 2010/0297177; 2010/0203083; 2009/0317417; 2009/0202490; 2012/0220492; 2006/0292117; and 2004/0002159; European Publication Numbers 2692731 AI; 2383346 BI; 2359865 BI; 2359866 BI; 2359867 BI; and 2357010 BI; 1791858 BI; 1668143 BI; 1660678 BI; 1664314 BI; 1496944 BI; 1456383 BI; 2341068 BI; 2338900 BI; 1456419 BI; 1310571 BI; 1456383 BI; 1633772 BI; and 1135468 BI; and PCT Publication Nos. WO 2014/124282; WO 2013/170078; WO 2014/160092; WO 2014/103957; WO 2014/052789; WO 2013/174760; WO 2013/123503; WO 2011/038187; WO 2008/124015; and WO 2003/054197).


For the purposes of the disclosure herein, AAV refers to the virus itself and derivatives thereof. Except where otherwise indicated, the terminology refers to all subtypes or serotypes and both replication-competent and recombinant forms. The term “AAV” includes, without limitation, AAV type 1 (AAV1), AAV type 2 (AAV2), AAV type 3A (AAV3A), AAV type 3B (AAV3B), AAV type 4 (AAV4), AAV type 5 (AAV5), AAV type 6 (AAV6), AAV type 7 (AAV7), AAV type 8 (AAV8), AAV type 9 (AAV9), AAV type 10 (AAV 10 or AAVrh10), avian AAV, bovine AAV, canine AAV, caprine AAV, equine AAV, primate AAV, non-primate AAV, and ovine AAV. “Primate AAV” refers to AAV that infect primates, “non-primate AAV” refers to AAV that infect non-primate mammals, “bovine AAV” refers to AAV that infect bovine mammals, etc.


The genomic sequences of various serotypes of AAV, as well as the sequences of the native inverted terminal repeats (ITRs), Rep proteins, and capsid subunits are known in the art. Such sequences may be found in the literature or in public databases such as GenBank.


See, e.g., GenBank Accession Numbers NC_002077.1 (AAV1), AF063497.1 (AAV1), NC_001401.2 (AAV2), AF043303.1 (AAV2), J01901.1 (AAV2), U48704.1 (AAV3A), NC_001729.1 (AAV3A), AF028705.1 (AAV3B), NC_0.001829.1 (AAV4), U89790.1 (AAV4), NC_006152.1 (AA5), AF085716.1 (AAV-5), AF028704.1 (AAV6), NC_006260.1 (AAV7), AF513851.1 (AAV7), AF513852.1 (AAV8) NC_006261.1 (AAV8), AY530579.1 (AAV9), AAT46337 (AAV10), and AA088208 (AAVrh10); the disclosures of which are incorporated by reference herein for teaching AAV nucleic acid and amino acid sequences. See also, e.g., Srivastava et al., J Virol. 45:555-564, 1983; Chiorini et al., J Virol 71:6823-6833, 1998; Chiorini et al., J Virol 73:1309-1319, 1999; Bantel-Schaal et al., J Virol 73:939-947, 1999; Xiao et al., J Virol 73:3994-4003, 1999; Muramatsu et al., Virology 221:208-217, 1996; Shade et al., J Virol 58:921-936, 1986; Gao et al., Proc Natl Acad Sci USA 99:11854-11859, 2002; PCT Publication Nos. WO 00/28061, WO 99/61601, and WO 98/11244; and U.S. Pat. No. 6,156,303.


Virus capsids may be mixed and matched with other vector components to form a hybrid pseudotype viral vector, for example the ITRs and capsid of the viral vector may come from different AAV serotypes. In one aspect, the ITRs can be from an AAV2 serotype while the capsid is from, for example, an AAV8, AAV9, AAV2, or AAV5 serotype. In addition, one of skill in the art will recognize that the vector capsid may also be a mosaic capsid (e.g., a capsid composed of a mixture of capsid proteins from different serotypes), or even a chimeric capsid (e.g., a capsid protein containing a foreign or unrelated protein sequence for generating markers and/or altering tissue tropism). It is contemplated that the viral vector of the invention may comprise an AAV8 capsid (e.g., SEQ ID NOs:24, 25, and 26, encoded by, for example, SEQ ID NO:23). It is also contemplated that the viral vector of the invention may comprise an AAV9 capsid (e.g., SEQ ID NOs:28, 29, and 30, encoded by, for example, SEQ ID NO:27). It is also contemplated that the viral vector of the invention may comprise an AAV2 capsid (e.g., SEQ ID NOs:32, 33, and 34, encoded by, for example, SEQ ID NO:31). It is further contemplated that the invention may comprise an AAV5 capsid (e.g., SEQ ID NOs:36, 37, and 38, encoded by, for example, SEQ ID NO:35).


In one aspect, the AAV is a self-complementary adeno-associated virus (scAAV).


In further particular aspects, the vector genome, e.g., single stranded vector genome, has a length greater than or about 4.1 kb and less than or about 4.9 kb, e.g., greater than or about 4.2 kb and less than or about 4.9 kb, greater than or about 4.3 kb and less than or about 4.9 kb, greater than or about 4.4 kb and less than or about 4.9 kb, greater than or about 4.5 kb and less than or about 4.9 kb, greater than or about 4.6 kb and less than or about 4.9 kb, greater than or about 4.7 kb and less than or about 4.9 kb, greater than or about 4.8 kb and less than or about 4.9 kb, greater than or about 4.1 kb and less than or about 4.8 kb, greater than or about 4.1 kb and less than or about 4.7 kb, greater than or about 4.1 kb and less than or about 4.6 kb, greater than or about 4.1 kb and less than or about 4.5 kb, greater than or about 4.1 kb and less than or about 4.4 kb, greater than or about 4.1 kb and less than or about 4.3 kb, greater than or about 4.1 kb and less than or about 4.2 kb, greater than or about 4.2 kb and less than or about 4.8 kb, greater than or about 4.3 kb and less than or about 4.7 kb, greater than or about 4.4 kb and less than or about 4.6 kb, about 4.1 kb, about 4.2 kb, about 4.3 kb, about 4.4 kb, about 4.5 kb, about 4.6 kb, about 4.7 kb, about 4.8 kb, or about 4.9 kb.


In certain aspects, the invention is related to a vector genome, e.g., single stranded vector genome, comprising, in the 5′ to 3′ direction: (i) a 5′ ITR, (ii) a promoter, (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, (iv) a polyadenylation (polyA) signal sequence, and (v) a 3′ ITR. In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR, (ii) a promoter, (iii) an intron, (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, (v) a polyA signal sequence, and (vi) a 3′ ITR. In some embodiments, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR, (ii) a promoter, (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, (iv) a regulatory element, (v) a polyA signal sequence, and (vi) a 3′ ITR. In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR, (ii) a promoter, (iii) an intron, (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, (v) a regulatory element, (vi) a polyA signal sequence, and (vii) a 3′ ITR. Elements of the vector can have sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to the sequences described in Table 2.









TABLE 2







Nucleotide and amino acid sequences


of viral vector elements











SEQUENCE IDENTIFIER




(SEQ ID NO:)



ELEMENT
AND SEQUENCE






5′ ITR
1




CTGCGCGCTCGCTC




GCTCACTGAGGCCGC




CCGGGCAAAGCCCGG




GCGTCGGGCGACCTT




TGGTCGCCCGGCCTC




AGTGAGCGAGCGAGC




GCGCAGAGAGGGAGT




GGCCAACTCCATCAC




TAGGGGTTCCT






CMV promoter
2




TGTTTACATAACTTA




CGGTAAATGGCCCGC




CTGGCTGACCGCCCA




ACGACCCCCGCCCAT




TGACGTCAATAATGA




CGTATGTTCCCATAG




TAACGCCAATAGGGA




CTTTCCATTGACGTC




AATGGGTGGACTATT




TACGGTAAACTGCCC




ACTTGGCAGTACATC




AAGTGTATCATATGC




CAAGTACGCCCCCTA




TTGACGTCAATGACG




GTAAATGGCCCGCCT




GGCATTATGCCCAGT




ACATGACCTTATGGG




ACTTTCCTACTTGGC




AGTACATCTACGTAT




TAGTCATCGCTATTA




CCATGGTGATGCGGT




TTTGGCAGTACATCA




ATGGGCGTGGATAGC




GGTTTGACTCACGGG




GATTTCCAAGTCTCC




ACCCCATTGACGTCA




ATGGGAGTTTGTTTT




GGCACCAAAATCAAC




GGGACTTTCCAAAAT




GTCGTAACAACTCCG




CCCCATTGACGCAAA




TGGGCGGTAGGCGTG




TACGGTGGGAGGTCT




ATATAGCAGAGCTCT




CTGGCTAACTAGAGA




ACCACTGCTTACTGG




CTTAG






CBA promoter
3




CGTTACATAACTTAC




GGTAAATGGCCCGCC




TGGCTGACCGCCCAA




CGACCCCCGCCCATT




GACGTCAATAATGAC




GTATGTTCCCATAGT




AACGCCAATAGGGAC




TTTCCATTGACGTCA




ATGGGTGGAGTATTT




ACGGTAAACTGCCCA




CTTGGCAGTACATCA




AGTGTATCATATGCC




AAGTACGCCCCCTAT




TGACGTCAATGACGG




TAAATGGCCCGCCTG




GCATTATGCCCAGTA




CATGACCTTATGGGA




CTTTCCTACTTGGCA




GTACATCTACTCGAG




GCCACGTTCTGCTTC




ACTCTCCCCATCTCC




CCCCCCTCCCCACCC




CCAATTTTGTATTTA




TTTATTTTTTAATTA




TTTTGTGCAGCGATG




GGGGCGGGGGGGGGG




GGGGGGCGCGCGCCA




GGCGGGGCGGGGCGG




GGCGAGGGGCGGGGC




GGGGCGAGGCGGAGA




GGTGCGGCGGCAGCC




AATCAGAGCGGCGCG




CTCCGAAAGTTTCCT




TTTATGGCGAGGCGG




CGGCGGCGGCGGCCC




TATAAAAAGCGAAGC




GCGCGGCGGGCGGGA




G






CAG promoter
4




GACATTGATTATTGA




CTAGTTATTAATAGT




AATCAATTACGGGGT




CATTAGTTCATAGCC




CATATATGGAGTTCC




GCGTTACATAACTTA




CGGTAAATGGCCCGC




CTGGCTGACCGCCCA




ACGACCCCCGCCCAT




TGACGTCAATAATGA




CGTATGTTCCCATAG




TAACGCCAATAGGGA




CTTTCCATTGACGTC




AATGGGTGGACTATT




TACGGTAAACTGCCC




ACTTGGCAGTACATC




AAGTGTATCATATGC




CAAGTACGCCCCCTA




TTGACGTCAATGACG




GTAAATGGCCCGCCT




GGCATTATGCCCAGT




ACATGACCTTATGGG




ACTTTCCTACTTGGC




AGTACATCTACGTAT




TAGTCATCGCTATTA




CCATGGGTCGAGGTG




AGCCCCACGTTCTGC




TTCACTCTCCCCATC




TCCCCCCCCTCCCCA




CCCCCAATTTTGTAT




TTATTTATTTTTTAA




TTATTTTGTGCAGCG




ATGGGGGCGGGGGGG




GGGGGGGCGCGCGCC




AGGCGGGGCGGGGCG




GGGCGAGGGGCGGGG




CGGGGCGAGGCGGAG




AGGTGCGGCGGCAGC




CAATCAGAGCGGCGC




GCTCCGAAAGTTTCC




TTTTATGGCGAGGCG




GCGGCGGCGGCGGCC




CTATAAAAAGCGAAG




CGCGCGGCGGGCGGG




AGTCGCTGCGTTGCC




TTCGCCCCGTGCCCC




GCTCCGCGCCGCCTC




GCGCCGCCCGCCCCG




GCTCTGACTGACCGC




GTTACTCCCACAGGT




GAGCGGGCGGGACGG




CCCTTCTCCTCCGGG




CTGTAATTAGCGCTT




GGTTTAATGACGGCT




CGTTTCTTTTCTGTG




GCTGCGTGAAAGCCT




TAAAGGGCTCCGGGA




GGGCCCTTTGTGCGG




GGGGGAGCGGCTCGG




GGGGTGCGTGCGTGT




GTGTGTGCGTGGGGA




GCGCCGCGTGCGGCC




CGCGCTGCCCGGCGG




CTGTGAGCGCTGCGG




GCGCGGCGCGGGGCT




TTGTGCGCTCCGCGT




GTGCGCGAGGGGAGC




GCGGCCGGGGGCGGT




GCCCCGCGGTGCGGG




GGGGCTGCGAGGGGA




ACAAAGGCTGCGTGC




GGGGTGTGTGCGTGG




GGGGGTGAGCAGGGG




GTGTGGGCGCGGCGG




TCGGGCTGTAACCCC




CCCCTGCACCCCCCT




CCCCGAGTTGCTGAG




CACGGCCCGGCTTCG




GGTGCGGGGCTCCGT




GCGGGGCGTGGCGCG




GGGCTCGCCGTGCCG




GGCGGGGGGTGGCGG




CAGGTGGGGGTGCCG




GGCGGGGCGGGGCCG




CCTCGGGCCGGGGAG




GGCTCGGGGGAGGGG




CGCGGCGGCCCCCGG




AGCGCCGGCGGCTGT




CGAGGCGCGGCGAGC




CGCAGCCATTGCCTT




TTATGGTAATCGTGC




GAGAGGGCGCAGGGA




CTTCCTTTGTCCCAA




ATCTGTGCGGAGCCG




AAATCTGGGAGGCGC




CGCCGCACCCCCTCT




AGCGGGCGCGGGGCG




AAGCGGTGCGGCGCC




GGCAGGAAGGAAATG




GGCGGGGAGGGCCTT




CGTGCGTCGCCGCGC




CGCCGTCCCCTTCTC




CCTCTCCAGCCTCGG




GGCTGTCCGCGGGGG




GACGGCTGCCTTCGG




GGGGGACGGGGCAGG




GCGGGGTTCGGCTTC




TGGCGTGTGACCGGC




GGCTCTAGAGCCTCT




GCTAACCATGTTCAT




GCCTTCTTCTTTTTC




CTACAG






ProC2 promoter
5




TCAAGCCTCCTACCG




CCTTTGTTATGCAAA




CATATCAAACGCCCT




CCTTTGTTATGCAAA




AGGGCTGGAACGGGG




CCTTTGTTATGCAAA




TCGCCCTCCCCGATC




CCTTTGTTATGCAAA




TTTGACGAATTCCCA




CCTTTGTTATGCAAA




CAAATCTCCTACCCT




CCTTTGTTATGCAAA




GTGAGAGGGGCTGCA




CCTTTGTTATGCAAA




ATGOGGCCCCTGAGA




CCTTTGTTATGCAAA




AACCATGTACGOTTG




OCTTTGTTATGCAAA




CCGOCTGTTGCTTGG




CCTTTGTTATGCAAA




GCCACGOGATTGGCG




CCTTTGTTATGCAAA




GCTCGGTTATGTACA




CCTTTGTTATGCAAA




GCTACTTTAAACTTG




CCTTTGTTATGCAAA




TCACGACCTGACCGT




CCTTTGTTATGCAAA




AACGGTTGAAATAGT




CCTTTGTTATGCAAA




ATGATATTGAATAGT




CCTTTGTTATGCAAA




AATTTAGATGCCGAC




CCTTTGTTATGCAAA




GGAATGGGCGTGCTG




CCTTTGTTATGCAAA




TTTTCGCTGCGACAG




CCTTTGTTATGCAAA




CATGOTCGCCACTCA




CCTTTGTTATGCAAA




GGTCTAACAATGACC




CCTTTGTTATGCAAA




CTACGTGGAATAGAT




CCTTTGTTATGCAAA




COCCGAGTTTTTGAA




CCTTTGTTATGCAAA




ATCAGTAACTTCATT




CCTTTGTTATGCAAA




ATGTGACTTAACCTC




CCTTTGTTATGCAAA




GCTCGAGATCTGCGA




TCTGCATCTCAATTA




GTCAGCAACCATAGT




CCCGCCCCTAACTCC




GCCCATCCCGCCCCT




AACTCCGCCCAGTTC




CGCCCATTCTCCGCC




CCATCGCTGACTAAT




TTTTTTTATTTATGC




AGAGGCCGAGGCCGC




CTCGGCCTCTGAGCT




ATTCCAGAAGTAGTG




AGGAGGCTTTTTTGG




AGGCCTAGGCTTTTG




CAAA






VMD2 promoter
6




TACGTAATTCTGTCA




TTTTACTAGGGTGAT




GAAATTCCCAAGCAA




CACCATCCTTTTCAG




ATAAGGGCACTGAGG




CTGAGAGAGGAGCTG




AAACCTACCCGGCGT




CACCACACACAGGTG




GCAAGGCTGGGACCA




GAAACCAGGACTGTT




GACTGCAGCCCGGTA




TTCATTCTTTCCATA




GCCCACAGGGCTGTC




AAAGACCCCAGGGCC




TAGTCAGAGGCTOCT




CCTTCCTGGAGAGTT




CCTGGCACAGAAGTT




GAAGCTCAGCACAGC




CCCCTAACCCCCAAC




TCTCTCTGCAAGGCC




TCAGGGGTCAGAACA




CTGGTGGAGCAGATC




CTTTAGCCTCTGGAT




TTTAGGGCCATGGTA




GAGGGGGTGTTGOCC




TAAATTOCAGCCCTG




GTCTCAGCCCAACAC




CCTCCAAGAAGAAAT




TAGAGGGGCCATGGC




CAGGCTGTGCTAGCC




GTTGCTTCTGAGCAG




ATTACAAGAAGGGAC




TAAGACAAGGACTCC




TTTGTGGAGGTCCTG




GCTTAGGGAGTCAAG




TGACGGCGGCTCAGC




ACTCACGTGGGCAGT




GCCAGCCTCTAAGAG




TGGGCAGGGGCACTG




GCCACAGAGTCCCAG




GGAGTCCCACCAGCC




TAGTCGCCAGACC






CYP4V2 promoter
7




CATTACTTTACACAC




TCCGTTCTGCAACTT




GTTTTGTTCACTTGC




TATTTCACGTCAGCC




CATGCAGATGACTTA




AAACAAATTCAAATG




GAGAAAAGCCTTAGG




CATGTTTTTCTCTGC




ACTAAAGAGGCCCTG




CAGGTGGCTGTGGCC




AACTTATGCAGTGGC




TTCGAGTGAACGAAC




GTAATTAGTAATTAA




GCAAAGCGGGCATCC




AGGACATTCAGTTTC




ATCTTCCTGGCACTT




TAGTGTTTAGGAAGG




GCCTGGCCTCTCGGG




GAGCGACACTCCTCG




CCCGGCCACTTTGTA




AGAAGCATCGAGCGT




GGAAAAGGGGCTGGG




GTCAGCACTGGGGCC




CTCTGCCGGGAAGAG




AGACTGGCGGCCAGC




ACACGCGTCTOCCCA




GGCTGAAATGGGGCA




CCCTCTCGCGGCCCT




TCCCTCCCTTCCCGG




GCTGGGTGGCAGGTC




TTGGCTCTTCTGCGA




GTACCCCGCGGCTGC




GGTCTCCCGGCACCC




GCTGAGCAGCCTCGC




CCGCCTTCCTCTCCC




ACCCGCCCCTGCGTG




CTCTCCGGGGCTCCG




GCTTCCTCGGTCTGG




TGCOTGGTGOGTATT




TTGGAAAATACCTGG




CTCATAACCACCTCA




TTGAGCTCCCAGTGT




CCCAGTGGGCCAGCG




GACACACACGGGTAG




CTGACTTCCCTAACG




TGTCCCCAAAGCCTC




CCTGGATTACAGCGC




CCGCTGCTCCATGTG




ACCCCGCGGGAGCCA




GGACGCGCCCCGCCT




CCCGGGGCTGCAAGT




TGCGCAGGGAGCGAG




CGATGCGCAGCAGAG




CTGGGCTCCGAGCCG




GATGCGCCTTCCTTT




CCTCTCCAGAGCAGG




CTGCCCGCCCGCGGA




ATCCCGCACGTAGAG




CAACCTCGCAGCACC




CTCAGAACAGCCCCG




CTGGGGCGCGCCGGG




CTGCCGCGGTGACCT




TTCCGACGCCCCTGA




CCCCGCATCCGGAGG




CGGCCGGAAGTGTCG




CCGGCCTCCTCCCGG




CGCAGCCTCC






RPE65 promoter
8




CGCGTTACGTAATAT




TTATTGAAGTTTAAT




ATTGTGTTTGTGATA




CAGAAGTATTTGCTT




TAATTCTAAATAAAA




ATTTTATGCTTTTAT




TGCTGGTTTAAGAAG




ATTTGGATTATCCTT




GTACTTTGAGGAGAA




GTTTCTTATTTGAAA




TATTTTGGAAACAGG




TCTTTTAATGTGGAA




AGATAGATATTAATC




TCCTCTTCTATTACT




CTCCAAGATCCAACA




AAAGTGATTATACCC




CCCAAAATATGATGG




TAGTATCTTATACTA




CCATCATTTTATAGG




CATAGGGCTCTTAGC




TGCAAATAATGGAAC




TAACTCTAATAAAGC




AGAACGCAAATATTG




TAAATATTAGAGAGC




TAACAATCTCTGGGA




TGGCTAAAGGATGGA




GCTTGGAGGCTACCC




AGCCAGTAACAATAT




TCCGGGCTCCACTGT




TGAATGGAGACACTA




CAACTGCCTTGGATG




GGCAGAGATATTATG




GATGCTAAGCCCCAG




GTGCTACCATTAGGA




CTTCTACCACTGTCC




CTAACGGGTGGAGCC




CATCACATGCCTATG




CCCTCACTGTAAGGA




AATGAAGCTACTGTT




GTATATCTTGGGAAG




CACTTGGATTAATTG




TTATACAGTTTTGTT




GAAGAAGACCCCTAG




GGTAAGTAGCCATAA




CTGCACACTAAATTT




AAAATTGTTAATGAG




TTTCTCAAAAAAAAT




GTTAAGGTTGTTAGC




TGGTATAGTATATAT




CTTGCCTGTTTTCCA




AGGACTTCTTTGGGC




AGTACCTTGTCTGTG




CTGGCAAGCAACTGA




GACTTAATGAAAGAG




TATTGGAGATATGAA




TGAATTGATGCTGTA




TACTCTCAGAGTGCC




AAACATATACCAATG




GACAAGAAGGTGAGG




CAGAGAGCAGACAGG




CATTAGTGACAAGCA




AAGATATGCAGAATT




TCATTCTCAGCAAAT




CAAAAGTCCTCAACC




TGGTTGGAAGAATAT




TGGCACTGAATGGTA




TCAATAAGGTTGCTA




GAGAGGGTTAGAGGT




GCACAATGTGCTTCC




ATAACATTTTATACT




TCTCCAATCTTAGCA




CTAATCAAACATGGT




TGAATACTTTGTTTA




CTATAACTCTTACAG




AGTTATAAGATCTGT




GAAGACAGGGACAGG




GACAATACCCATCTC




TGTCTGGTTCATAGG




TGGTATGTAATAGAT




ATTTTTAAAAATAAG




TGAGTTAATGAATGA




GGGTGAGAATGAAGG




CACAGAGGTATTAGG




GGGAGGTGGGCCCCA




GAGAATGGTGCCAAG




GTCCAGTGGGGTGAC




TGGGATCAGCTCAGG




CCTGACGCTGGCCAC




TCCCACCTAGCTCCT




TTCTTTCTAATCTGT




TCTCATTCTCCTTGG




GAAGGATTGAGGTCT




CTGGAAAACAGCCAA




ACAACTGTTATGGGA




ACAGCAAGCCCAAAT




AAAGCCAAGCATCAG




GGGGATCTGAGAGCT




GAAAGCAACTTCTGT




TCCCCCTCCCTCAGC




TGAAGGGGTGGGGAA




GGGCTCCCAAAGCCA




TAACTCCTTTTAAGG




GATTTAGAAGGCATA




AAAAGGCCCCTGGCT




GAGAACTTCCTTCTT




CATTCTGCAGTTGGT




G






Human growth
9



hormone (hGH)
TTCGAACAGGTAAGC



intron
GCCCCTAAAATCCCT




TTGGGCACAATGTGT




CCTGAGGGGAGAGGC




AGCGACCTGTAGATG




GGACGGGGGCACTAA




CCCTCAGGTTTGGGG




CTTCTGAATGTGAGT




ATCGCCATGTAAGCC




CAGTATTTGGCCAAT




CTCAGAAAGCTCCTG




GTCCCTGGAGGGATG




GAGAGAGAAAAACAA




ACAGCTCCTGGAGCA




GGGAGAGTGCTGGCC




TCTTGCTCTCCGGCT




CCCTCTGTTGCCCTC




TGGTTTCTCCCCAGG




TT






Simian Virus 40
10



(SV40) intron
AACTGAAAAACCAGA




AAGTTAACTGGTAAG




TTTAGTCTTTTTGTC




TTTTATTTCAGGTCC




CGGATCCGGTGGTGG




TGCAAATCAAAGAAC




TGCTCCTCAGTGGAT




GTTGCCTTTACTTCT




AGGCCTGTACGGAAG




TGTTACTTCTGCTCT




AAAAGCTGCGGAATT




GTACCCGCCCCGGGA




TCC






Human beta
11



gobin intron
CGAATCCCGGCCGGG




AACGGTGCATTGGAA




CGCGGATTCCCCGTG




CCAAGAGTGACGTAA




GTACCGCCTATAGAG




TCTATAGGCCCACAA




AAAATGCTTTCTTCT




TTTAATATACTTTTT




TGTTTATCTTATTTC




TAATACTTTCCCTAA




TCTCTTTCTTTCAGG




GCAATAATGATACAA




TGTATCATGCCTCTT




TGCACCATTCTAAAG




AATAACAGTGATAAT




TTCTGGGTTAAGGCA




ATAGCAATATTTCTG




CATATAAATATTTCT




GCATATAAATTGTAA




CTGATGTAAGAGGTT




TCATATTGCTAATAG




CAGCTACAATCCAGC




TACCATTCTGCTTTT




ATTTTATGGTTGGGA




TAAGGCTGGATTATT




CTGAGTCCAAGCTAG




GCCCTTTTGCTAATC




ATGTTCATACCTCTT




ATCTTCCTCCCACAG




CTCCTGGGCAACGTG




CTGGTCTGTGTGCTG




GCCCATCACTTTGGC




AAAGAATTGGGAT






Kozak sequence
12




GCCACC







Homo sapiens

13



CYP4V2
ATGGCGGGGCTCTGG



Wild-type ODS
CTGGGGCTCGTGTGG



NM_207352.4
CAGAAGCTGCTGCTG




TGGGGCGCGGCGAGT




GCCCTTTCCCTGGCC




GGCGCCAGTCTGGTC




CTGAGCCTGCTGCAG




AGGGTGGCGAGCTAC




GCGCGGAAATGGCAG




CAGATGCGGCCCATC




CCCACGGTGGCCCGC




GCCTACCCACTGGTG




GGCCACGCGCTGCTG




ATGAAGCCGGACGGG




CGAGAATTTTTTCAG




CAGATCATTGAGTAC




ACAGAGGAATACCGC




CACATGCCGCTGCTG




AAGCTCTGGGTCGGG




CCAGTGCCCATGGTG




GCCCTTTATAATGCA




GAAAATGTGGAGGTA




ATTTTAACTAGTTCA




AAGCAAATTGACAAA




TCCTCTATGTACAAG




TTTTTAGAACCATGG




CTTGGCCTAGGACTT




CTTACAAGTACTGGA




AACAAATGGCGCTCC




AGGAGAAAGATGTTA




ACACCCACTTTCCAT




TTTACCATTCTGGAA




GATTTCTTAGATATC




ATGAATGAACAAGCA




AATATATTGGTTAAG




AAACTTGAAAAACAC




ATTAACCAAGAAGCA




TTTAACTGCTTTTTT




TACATCACTCTTTGT




GCCTTAGATATCATC




TGTGAAACAGCTATG




GGGAAGAATATTGGT




GCTCAAAGTAATGAT




GATTCCGAGTATGTC




CGTGCAGTTTATAGA




ATGAGTGAGATGATA




TTTCGAAGAATAAAG




ATGCCCTGGCTTTGG




CTTGATCTCTGGTAC




CTTATGTTTAAAGAA




GGATGGGAACACAAA




AAGAGCCTTCAGATC




CTACATACTTTTACC




AACAGTGTCATCGCT




GAACGGGCCAATGAA




ATGAACGCCAATGAA




GACTGTAGAGGTGAT




GGCAGGGGCTCTGCC




CCCTCCAAAAATAAA




CGCAGGGCCTTTCTT




GACTTGCTTTTAAGT




GTGACTGATGACGAA




GGGAACAGGCTAAGT




CATGAAGATATTCGA




GAAGAAGTTGACACC




TTCATGTTTGAGGGG




CACGATACAACTGCA




GCTGCAATAAACTGG




TCCTTATACCTGTTG




GGTTCTAACCCAGAA




GTCCAGAAAAAAGTG




GATCATGAATTGGAT




GACGTGTTTGGGAAG




TCTGACCGTCCCGCT




ACAGTAGAAGACCTG




AAGAAACTTCGGTAT




CTGGAATGTGTTATT




AAGGAGACCCTTCGC




CTTTTTCCTTCTGTT




CCTTTATTTGCCCGT




AGTGTTAGTGAAGAT




TGTGAAGTGGCAGGT




TACAGAGTTCTAAAA




GGCACTGAAGCCGTC




ATCATTCCCTATGCA




TTGCACAGAGATCCG




AGATACTTCCCCAAC




CCCGAGGAGTTCCAG




CCTGAGCGGTTCTTC




CCCGAGAATGCACAA




GGGCGCCATCCATAT




GCCTACGTGCCCTTC




TCTGCTGGCCCCAGG




AACTGTATAGGTCAA




AAGTTTGCTGTGATG




GAAGAAAAGACCATT




CTTTCGTGCATCCTG




AGGCACTTTTGGATA




GAATCCAACCAGAAA




AGAGAAGAGCTTGGT




CTAGAAGGACAGTTG




ATTCTTCGTCCAAGT




AATGGCATCTGGATC




AAGTTGAAGAGGAGA




AATGCAGATGAACGC




TAA






Codon-
14



optimized
ATGGCCGGACTGTGG



CYP4V2
CTGGGACTGGTCTGG



sequence
CAGAAGTTATTACTG




TGGGGAGCTGCCTCC




GCTCTGTCTTTAGCT




GGAGCTTCTTTAGTG




CTGTCTTTACTGCAG




AGGGTCGCCTCCTAT




GCTAGGAAGTGGCAG




CAGATGAGGCCTATT




CCTACCGTGGCCAGA




GCCTATCCTTTAGTG




GGCCACGCTCTGCTG




ATGAAACCCGACGGA




AGGGAGTTCTTCCAG




CAGATCATCGAGTAC




ACCGAAGAGTACAGA




CACATGCCTTTACTG




AAACTGTGGGTGGGA




CCCGTTCCTATGGTG




GCTTTATACAATGCC




GAGAATGTGGAGGTG




ATTTTAACCAGCAGC




AAGCAGATCGACAAG




TCCAGCATGTATAAG




TTTTTAGAGCCTTGG




CTCGGTTTAGGACTG




CTGACCTCCACTGGT




AATAAGTGGAGGTCT




CGTAGGAAAATGCTG




ACCCCCACCTTTCAC




TTCACCATTTTAGAG




GACTTTTTAGATATC




ATGAACGAGCAAGCT




AACATTTTAGTGAAG




AAGCTCGAAAAGCAC




ATTAACCAAGAAGCT




TTCAACTGTTTTTTC




TACATCACTTTATGC




GCCCTCGATATCATC




TGCGAGACAGCCATG




GGCAAGAACATTGGC




GCTCAGAGCAACGAC




GATTCCGAGTACGTG




AGGGCTGTCTACAGA




ATGAGCGAGATGATC




TTCAGAAGAATCAAG




ATGCCTTGGCTGTGG




CTGGACCTCTGGTAT




TTAATGTTTAAGGAA




GGCTGGGAGCATAAG




AAGTCTTTACAGATT




TTACATACATTTACC




AACAGCGTGATCGCC




GAGAGGGCCAATGAA




ATGAACGCCAACGAG




GATTGTCGTGGCGAC




GGAAGAGGCTCCGCT




CCTTCCAAGAACAAG




AGGAGAGCCTTTTTA




GATCTCTTATTATCC




GTGACAGACGATGAG




GGCAATAGGCTGAGC




CACGAGGACATCAGA




GAAGAGGTGGACACC




TTCATGTTCGAGGGA




CACGACACAACCGCC




GCCGCCATCAATTGG




TCTTTATATTTACTC




GGCAGCAACCCCGAG




GTGCAAAAAAAGGTC




GACCACGAGCTCGAC




GACGTGTTCGGCAAG




AGCGATCGTCCCGCC




ACAGTGGAAGATTTA




AAGAAGCTGAGGTAT




CTCGAGTGCGTGATC




AAAGAGACTTTAAGA




CTGTTCCCCAGCGTG




CCTCTGTTTGCTCGT




TCCGTGTCCGAAGAC




TGCGAGGTGGCTGGA




TATCGTGTCCTCAAG




GGCACCGAGGCCGTG




ATCATTCCCTACGCC




CTCCATCGTGATCCC




AGATACTTCCCCAAT




CCCGAGGAGTTCCAG




CCCGAAAGGTTCTTC




CCCGAAAACGCTCAA




GGCAGACACCCTTAC




GCTTACGTGCCTTTC




TCCGCCGGCCCTCGT




AACTGCATTGGCCAG




AAATTCGCCGTCATG




GAGGAAAAGACCATT




TTATCTTGTATTTTA




AGGCACTTCTGGATC




GAAAGCAATCAGAAA




AGGGAGGAACTCGGT




TTAGAAGGACAGCTG




ATTTTAAGACCCAGC




AACGGCATTTGGATC




AAGCTGAAGAGGAGG




AACGCCGACGAGAGG




TGA







Homo sapiens

15



CYP4V2
MAGLWLGLVWQKLLL



Gene Product
WGAASALSLAGASLV



NP_997235.3
LSLLQRVASYARKWQ




QMRPIPTVARAYPLV




GHALLMKPDGREFFQ




QIIEYTEEYRHMPLL




KLWVGPVPMVALYNA




ENVEVILTSSKQIDK




SSMYKFLEPWLGLGL




LTSTGNKWRSRRKML




TPTFHFTILEDFLDI




MNEQANILVKKLEKH




INQEAFNCFFYITLC




ALDIICETAMGKNIG




AQSNDDSEYVRAVYR




MSEMIERRIKMPWLW




LDLWYLMFKEGWEHK




KSLQILHTFTNSVIA




ERANEMNANEDCRGD




GRGSAPSKNKRRAFL




DLLLSVTDDEGNRLS




HEDIREEVDTFMFEG




HDTTAAAINWSLYLL




GSNPEVQKKVDHELD




DVFGKSDRPATVEDL




KKLRYLECVIKETLR




LFPSVPLFARSVSED




CEVAGYRVLKGTEAV




IIPYALHRDPRYFPN




PEEFQPERFFPENAQ




GRHPYAYVPFSAGPR




NCIGQKFAVMEEKTI




LSCILRHFWIESNQK




REELGLEGQLILRPS




NGIWIKLKRRNADER






Hepatitis B
16



virus
TAAACAGGCCTATTG



regulatory
ATTGGAAAGTATGTC



element
AACGAATTGTGGGTC



(HPRE)
TTTTGGGGTTTGCTG




CCCCTTTTACGCAAT




GTGGATATCCTGCTT




TAATGCCTTTATATG




CATGTATACAAGCAA




AACAGGCTTTTACTT




TCTCGCCAACTTACA




AGGCCTTTCTAAGTA




AACAGTATCTGACCC




TTTACCCCGTTGCTC




GGCAACGGCCTGGTC




TGTGCCAAGTGTTTG




CTGACGCAACCCCCA




CTGGTTGGGGCTTGG




CCATAGGCCATCAGC




GCATGCGTGGAACCT




TTGTGTCTCCTCTGC




CGATCCATACTGCGG




AACTCCTAGCCGCTT




GTTTTGCTCGCAGCA




GGTCTGGAGCGAAAC




TCATCGGGACTGACA




ATTCTGTCGTGCTCT




CCCGCAAGTATACAT




CGTTTCCAGGGCTGC




TAGGCTGTGCTGCCA




ACTGGATCCTGCGCG




GGACGTCCTTTGTTT




ACGTCCCGTCGGCGC




TGAATCCCGCGGACG




ACCCCTCCCGGGGCC




GCTTGGGGCTCTACC




GCCCGCTTCTCCGTC




TGCCGTACCGACCGA




CCACGGGGCGCACCT




CTCTTTACGCGGACT




CCCCGTCTGTGCCTT




CTCATCTGCCGGACC




GTGTGCACTTCGCTT




CACCTCTGCACGTCG




CATGGAGACCACCGT




GAACGCCCACCGGAA




CCTGCCCAAGGTCTT




GCATAAGAGGACTCT




TGGACTTTCAGCAAT




GTCAACTCGA






Woodchuck
17



hepatitis
TCAACCTCTGGATTA



virus
CAAAATTTGTGAAAG



regulatory
ATTGACTGGTATTCT



element
TAACTATGTTGCTCC



(WPRE)
TTTTACGCTATGTGG




ATACGCTGCTTTAAT




GCCTTTGTATCATGC




TATTGCTTCCCGTAT




GGCTTTCATTTTCTC




CTCCTTGTATAAATC




CTGGTTGCTGTCTCT




TTATGAGGAGTTGTG




GCCCGTTGTCAGGCA




ACGTGGCGTGGTGTG




CACTGTGTTTGCTGA




CGCAACCCCCACTGG




TTGGGGCATTGCCAC




CACCTGTCAGCTCCT




TTCCGGGACTTTCGC




TTTCCCCCTCCCTAT




TGCCACGGCGGAACT




CATCGCCGCCTGCCT




TGCCCGCTGCTGGAC




AGGGGCTCGGCTGTT




GGGCACTGACAATTC




CGTGGTGTTGTCGGG




GAAATCATCGTCCTT




TCCTTGGCTGCTCGC




CTGTGTTGCCACCTG




GATTCTGCGCGGGAC




GTCCTTCTGCTACGT




CCCTTCGGCCCTCAA




TCCAGCGGACCTTCC




TTCCCGCGGCCTGCT




GCCGGCTCTGCGGCC




TCTTCCGCGTCTTCG




CCTTCGCCCTCAGAC




GAGTCGGATCTCCCT




TTGGGCCGCCTCCCC




GCA






Bovine Growth
18



Hormone (bGH)
GATCTGGATGATGAC



polyA signal
GACAAGTGAGGATCC



sequence
CTGTGCCTTCTAGTT




GCCAGCCATCTGTTG




TTTGCCCCTCCCCCG




TGCCTTCCTTGACCC




TGGAAGGTGCCACTC




CCACTGTCCTTTCCT




AATAAAATGAGGAAA




TTGCATCGCATTGTC




TGAGTAGGTGTCATT




CTATTCTGGGGGGTG




GGGTGGGGCAGGACA




GCAAGGGGGAGGATT




GGGAAGAGAATAGCA




GGCATGCTGGGGAGA




ATTCA






Simian Virus 40
19



(SV40) polyA
GATCATAATCAGCCA



signal
TACCACATTTGTAGA



sequence
GGTTTTACTTGCTTT




AAAAAACCTCCCACA




CCTCCCCCTGAACCT




GAAACATAAAATGAA




TGCAATTGTTGTTGT




TAACTTGTTTATTGC




AGCTTATAATGGTTA




CAAATAAAGCAATAG




CATCACAAATTTCAC




AAATAAAGCATTTTT




TTCACTGCATTCTAG




TTGTGGTTTGTCCAA




ACTCATCAATGTATC




TTATCATGTCT






SYNUCLEIN
20



INTRONIC
GGGCCCCGGTGTTAT



SEQUENCE AS
CTCATTCTTTTTTCT



STUFFER
CCTCTGTAAGTTGAC



SEQUENCE
ATGTGATGTGGGAAC




AAAGGGGATAAAGTC




ATTATTTTGTGCTAA




AATCGTAATTGGAGA




GGACCTCCTGTTAGC




TGGGCTTTCTTCTAT




TTATTGTGGTGGTTA




CTGGAGTTCCTTCTT




CTAGTTTTAGGATAT




ATATATATATTTTTT




TTTTTTCTTTCCCTG




AAGATATAATAATAT




ATATACTTCTGAAGA




TTGAGATTTTTAAAT




TAGTTGTATTGAAAA




CTAGCTAATCAGCAA




TTTAAGGCTAGCTTG




AGACTTATGTCTTGA




ATTTGTTTTTGTAGG




CTCCAAAACCAAGGA




GGGAGTGGTGCATGG




TGTGGCAACAGGTAA




GCTCCATTGTGCTTA




TATCCAAAGATGATA




TTTAAAGTATCTAGT




GATTAGTGTGGCCCA




GTATTCAAGATTCCT




ATGAAATTGTAAAAC




AATCACTGAGCATTC




TAAGAACATATCAGT




CTTATTGAAACTGAA




TTCTTTATAAAGTAT




TTTTAAAAAGGTAAA




TATTGATTATAAATA




AAAAATATACTTGCC




AAGAATAATGAGGGC




TTTGAATTGATAAGC




TATGTTTAATTTATA




GTAAGTGGGCATTTA




AATATTCTGACCAAA




AATGTATTGACAAAC




TGCTGACAAAAATAA




AATGTGAATATTGCC




ATAATTTTAAAAAAA




GAGTAAAATTTCTGT




TGATTACAGTAAAAT




ATTTTGACCTTAAAT




TATGTTGATTACAAT




ATTCCTTTGATAATT




CAGAGTGCATTTCAG




GAAACACCCTTGGAC




AGTCAGTAAATTGTT




TATTGTATTTATCTT




TGTATTGTTATGGTA




TAGCTATTTGTACAA




ATATTATTGTGCAAT




TATTACATTTCTGAT




TATATTATTCATTTG




GCCTAAATTTACCAA




GAATTTGAACAAGTC




AATTAGGTTTACAAT




CAAGAAATATCAAAA




ATGATGAAAAGGATG




ATAATCATCATCAGA




TGTTGAGGAAGATGA




CGATGAGAGTGCCAG




AAATAGAGAAATCAA




AGGAGAACCAAAATT




TAACAAATTAAAAGC




CCACAGACTTGCTGT




AATTAAGTTTTCTGT




TGTAAGTACTCCACG




TTTCCTGGCAGATGT




GGTGAAGCAAAAGAT




ATAATCAGAAATATA




ATTTATATGATCGGA




AAGCATTAAACACAA




TAGTGCCTATACAAA




TAAAATGTTCCTATC




ACTGACTTCTAAAAT




GGAAATGAGGACAAT




GATATGGGAATCTTA




ATACAGTGTTGTGGA




TAGGACTAAAAACAC




AGGAGTCAGATCTTC




TTGGTTCAACTTCCT




GCTTACTCCTTACCA




GCTGTGTGTTTTTTG




CAAGGTTCTTCACCT




CTATGTGATTTAGCT




TCCTCATCTATAAAA




TAATTCAGTGAATTA




ATGTACACAAAACAT




CTGGAAAACAAAAGC




AAACAATATGTATTT




TATAAGTGTTACTTA




TAGTTTTATAGTGAA




CTTTCTTGTGCAACA




TTTTTACAACTAGTG




GAGAAAAATATTTCT




TTAAATGAATACTTT




TGATTTAAAAATCAG




AGTGTAAAAATAAAA




CAGACTCCTTTGAAA




CTAGTTCTGTTAGAA




GTTAATTGTGCACCT




TTAATGGGCTCTGTT




GCAATCCAACAGAGA




AGTAGTTAAGTAAGT




GGACTATGATGGCTT




CTAGGGACCTCCTAT




AAATATGATATTGTG




AAGCATGATTATAAT




AAGAACTAGATAACA




GACAGGTGGAGACTC




CACTATCTGAAGAGG




GTCAACCTAGATGAA




TGGTGTTCCATTTAG




TAGTTGAGGAAGAAC




CCATGAGGTTTAGAA




AGCAGACAAGCATGT




GGCAAGTTCTGGAGT




CAGTGGTAAAAATTA




AAGAACCCAACTATT




ACTGTCACCTAATGA




TCTAATGGAGACTGT




GGAGATGGGCTGCAT




TTTTTTAATCTTCTC




CAGAATGCCAAAATG




TAAACACATATCTGT




GTGTGTGTGTGTGTG




TGTGTGTGTGTGTGA




GAGAGAGAGAGAGAG




AGAGAGAGACTGAAG




TTTGTACAATTAGAC




ATTTTATAAAATGTT




TTCTGAAGGACAGTG




GCTCACAATCTTAAG




TTTCTAACATTGTAC




AATGTTGGGAGACTT




TGTATACTTTATTTT




CTCTTTAGCATATTA




AGGAATCTGAGATGT




CCTACAGTAAAGAAA




TTTGCATTACATAGT




TAAAATCAGGGTTAT




TCAAACTTTTTGATT




ATTGAAACCTTTCTT




CATTAGTTACTAGGG




TTGAATGAAACTAGT




GTTCCACAGAAAACT




ATGGGAAATGTTGCT




AGGCAGTAAGGACAT




GGTGATTTCAGCATG




TGCAATATTTACAGC




GATTGCACCCATGGA




CCACCCTGGCAGTAG




TGAAATAACCAAAAA




TGCTGTCATAACTAG




TATGGCTATGAGAAA




CACATTGGG






RLBP1 INTRONIC
21



SEQUENCE AS
ATTCTCCAGGTTGAG



STUFFER
CCAGACCAATTTGAT



SEQUENCE
GGTAGATTTAGCAAA




TAAAAATACAGGACA




CCCAGTTAAATGTGA




ATTTCCGATGAACAG




CAAATACTTTTTTAG




TATTAAAAAAGTTCA




CATTTAGGCTCACGC




CTGTAATCCCAGCAC




TTTGGGAGGCCGAGG




CAGGCAGATCACCTG




AGGTCAGGAGTTCGA




GACCAGCCTGGCCAA




CATGGTGAAACCCCA




TCTCCACTAAAAATA




CCAAAAATTAGCCAG




GCGTGCTGGTGGGCA




CCTGTAGTTCCAGCT




ACTCAGGAGGCTAAG




GCAGGAGAATTGCTT




GAACCTGGGAGGCAG




AGGTTGCAGTGAGCT




GAGATCGCACCATTG




CACTCTAGCCTGGGC




GACAAGAACAAAACT




CCATCTCAAAAAAAA




AAAAAAAAAAAAAGT




TCACATTTAACTGGG




CATTCTGTATTTAAT




TGGTAATCTGAGATG




GCAGGGAACAGCATC




AGCATGGTGTGAGGG




ATAGGCATTTTTTCA




TTGTGTACAGCTTGT




AAATCAGTATTTTTA




AAACTCAAAGTTAAT




GGCTTGGGCATATTT




AGAAAAGAGTTGCCG




CACGGACTTGAACCC




TGTATTCCTAAAATC




TAGGATCTTGTTCTG




ATGGTCTGCACAACT




GGCTGGGGGTGTCCA




GCCACTGTCCCTCTT




GCCTGGGCTCCCCAG




GGCAGTTCTGTCAGC




CTCTCCATTTCCATT




CCTGTTCCAGCAAAA




CCCAACTGATAGCAC




AGCAGCATTTCAGCC




TGTCTACCTCTGTGC




CCACATACCTGGATG




TCTACCAGCCAGAAA




GGTGGCTTAGATTTG




GTTCCTGTGGGTGGA




TTATGGCCCCCAGAA




CTTCCCTGTGCTTGC




TGGGGGTGTGGAGTG




GAAAGAGCAGGAAAT




GGGGGACCCTCCGAT




ACTCTATGGGGGTCC




TCCAAGTCTCTTTGT




GCAAGTTAGGGTAAT




AATCAATATGGAGCT




AAGAAAGAGAAGGGG




AACTATGCTTTAGAA




CAGGACACTGTGCCA




GGAGCATTGCAGAAA




TTATATGGTTTTCAC




GACAGTTCTTTTTGG




TAGGTACTGTTATTA




TCCTCAGTTTGCAGA




TGAGGAAACTGAGAC




CCAGAAAGGTTAAAT




AACTTGCTAGGGTCA




CACAAGTCATAACTG




ACAAAGCCTGATTCA




AACCCAGGTCTCCCT




AACCTTTAAGGTTTC




TATGACGCCAGCTCT




CCTAGGGAGTTTGTC




TTCAGATGTCTTGGC




TCTAGGTGTCAAAAA




AAGACTTGGTGTCAG




GCAGGCATAGGTTCA




AGTCCCAACTCTGTC




ACTTACCAACTGTGA




CTAGGTGATTGAACT




GACCATGGAACCTGG




TCACATGCAGGAGCA




GGATGGTGAAGGGTT




CTTGAAGGCACTTAG




GCAGGACATTTAGGC




AGGAGAGAAAACCTG




GAAACAGAAGAGCTG




TCTCCAAAAATACCC




ACTGGGGAAGCAGGT




TGTCATGTGGGCCAT




GAATGGGACCTGTTC




TGG






3′ ITR
22




AGGAACCCCTAGTGA




TGGAGTTGGCCACTC




CCTCTCTGCGCGCTC




GCTCGCTCACTGAGG




CCGGGCGACCAAAGG




TCGCCCGACGCCCGG




GCTTTGCCCGGGCGG




CCTCAGTGAGCGAGC




GAGCGCGCAG






AAV8 Capsid
23



Coding Sequence
ATGGCTGCCGATGGT




TATCTTCCAGATTGG




CTCGAGGACAACCTC




TCTGAGGGCATTCGC




GAGTGGTGGGCGCTG




AAACCTGGAGCCCCG




AAGCCCAAAGCCAAC




CAGCAAAAGCAGGAC




GACGGCCGGGGTCTG




GTGCTTCCTGGCTAC




AAGTACCTCGGACCC




TTCAACGGACTCGAC




AAGGGGGAGCCCGTC




AACGCGGCGGACGCA




GCGGCCCTCGAGCAC




GACAAGGCCTACGAC




CAGCAGCTGCAGGCG




GGTGACAATCCGTAC




CTGCGGTATAACCAC




GCCGACGCCGAGTTT




CAGGAGCGTCTGCAA




GAAGATACGTCTTTT




GGGGGCAACCTCGGG




CGAGCAGTCTTCCAG




GCCAAGAAGCGGGTT




CTCGAACCTCTCGGT




CTGGTTGAGGAAGGC




GCTAAGACGGCTCCT




GGAAAGAAGAGACCG




GTAGAGCCATCACCC




CAGCGTTCTCCAGAC




TCCTCTACGGGCATC




GGCAAGAAAGGCCAA




CAGCCCGCCAGAAAA




AGACTCAATTTTGGT




CAGACTGGCGACTCA




GAGTCAGTTCCAGAC




CCTCAACCTCTCGGA




GAACCTCCAGCAGCG




CCCTCTGGTGTGGGA




CCTAATACAATGGCT




GCAGGCGGTGGCGCA




CCAATGGCAGACAAT




AACGAAGGCGCCGAC




GGAGTGGGTAGTTCC




TCGGGAAATTGGCAT




TGCGATTCCACATGG




CTGGGCGACAGAGTC




ATCACCACCAGCACC




CGAACCTGGGCCCTG




CCCACCTACAACAAC




CACCTCTACAAGCAA




ATCTCCAACGGGACA




TCGGGAGGAGCCACC




AACGACAACACCTAC




TTCGGCTACAGCACC




CCCTGGGGGTATTTT




GACTTTAACAGATTC




CACTGCCACTTTTCA




CCACGTGACTGGCAG




CGACTCATCAACAAC




AACTGGGGATTCCGG




CCCAAGAGACTCAGC




TTCAAGCTCTTCAAC




ATCCAGGTCAAGGAG




GTCACGCAGAATGAA




GGCACCAAGACCATC




GCCAATAACCTCACC




AGCACCATCCAGGTG




TTTACGGACTCGGAG




TACCAGCTGCCGTAC




GTTCTCGGCTCTGCC




CACCAGGGCTGCCTG




CCTCCGTTCCCGGCG




GACGTGTTCATGATT




CCCCAGTACGGCTAC




CTAACACTCAACAAC




GGTAGTCAGGCCGTG




GGACGCTCCTCCTTC




TACTGCCTGGAATAC




TTTCCTTCGCAGATG




CTGAGAACCGGCAAC




AACTTCCAGTTTACT




TACACCTTCGAGGAC




GTGCCTTTCCACAGC




AGCTACGCCCACAGC




CAGAGCTTGGACCGG




CTGATGAATCCTCTG




ATTGACCAGTACCTG




TACTACTTGTCTCGG




ACTCAAACAACAGGA




GGCACGGCAAATACG




CAGACTCTGGGCTTC




AGCCAAGGTGGGCCT




AATACAATGGCCAAT




CAGGCAAAGAACTGG




CTGCCAGGACCCTGT




TACCGCCAACAACGC




GTCTCAACGACAACC




GGGCAAAACAACAAT




AGCAACTTTGCCTGG




ACTGCTGGGACCAAA




TACCATCTGAATGGA




AGAAATTCATTGGCT




AATCCTGGCATCGCT




ATGGCAACACACAAA




GACGACGAGGAGCGT




TTTTTTCCCAGTAAC




GGGATCCTGATTTTT




GGCAAACAAAATGCT




GCCAGAGACAATGCG




GATTACAGCGATGTC




ATGCTCACCAGCGAG




GAAGAAATCAAAACC




ACTAACCCTGTGGCT




ACAGAGGAATACGGT




ATCGTGGCAGATAAC




TTGCAGCAGCAAAAC




ACGGCTCCTCAAATT




GGAACTGTCAACAGC




CAGGGGGCCTTACCC




GGTATGGTCTGGCAG




AACCGGGACGTGTAC




CTGCAGGGTCCCATC




TGGGCCAAGATTCCT




CACACGGACGGCAAC




TTCCACCCGTCTCCG




CTGATGGGCGGCTTT




GGCCTGAAACATCCT




CCGCCTCAGATCCTG




ATCAAGAACACGCCT




GTACCTGCGGATCCT




CCGACCACCTTCAAC




CAGTCAAAGCTGAAC




TCTTTCATCACGCAA




TACAGCACCGGACAG




GTCAGCGTGGAAATT




GAATGGGAGCTGCAG




AAGGAAAACAGCAAG




CGCTGGAACCCCGAG




ATCCAGTACACCTCC




AACTACTACAAATCT




ACAAGTGTGGACTTT




GCTGTTAATACAGAA




GGCGTGTACTCTGAA




CCCCGCCCCATTGGC




ACCCGTTACCTCACC




CGTAATCTGTAA






AAV8 Capsid
24



Sequence (VP1)
MAADGYLPDWLEDNL




SEGIREWWALKPGAP




KPKANQQKQDDGRGL




VLPGYKYLGPFNGLD




KGEPVNAADAAALEH




DKAYDQQLQAGDNPY




LRYNHADAEFQERLQ




EDTSFGGNLGRAVFQ




AKKRVLEPLGLVEEG




AKTAPGKKRPVEPSP




QRSPDSSTGIGKKGQ




QPARKRLNFGQTGDS




ESVPDPQPLGEPPAA




PSGVGPNTMAAGGGA




PMADNNEGADGVGSS




SGNWHCDSTWLGDRV




ITTSTRTWALPTYNN




HLYKQISNGTSGGAT




NDNTYFGYSTPWGYF




DFNRFHCHFSPRDWQ




RLINNNWGFRPKRLS




FKLFNIQVKEVTQNE




GTKTIANNLTSTIQV




FTDSEYQLPYVLGSA




HQGCLPPFPADVFMI




PQYGYLTLNNGSQAV




GRSSFYCLEYFPSQM




LRTGNNFQFTYTFED




VPFHSSYAHSQSLDR




LMNPLIDQYLYYLSR




TQTTGGTANTQTLGF




SQGGPNTMANQAKNW




LPGPCYRQQRVSTTT




GQNNNSNFAWTAGTK




YHLNGRNSLANPGIA




MATHKDDEERFFPSN




GILIFGKQNAARDNA




DYSDVMLTSEEEIKT




TNPVATEEYGIVADN




LQQQNTAPQIGTVNS




QGALPGMVWQNRDVY




LQGPIWAKIPHTDGN




FHPSPLMGGFGLKHP




PPQILIKNTPVPADP




PTTFNQSKLNSFITQ




YSTGQVSVEIEWELQ




KENSKRWNPEIQYTS




NYYKSTSVDFAVNTE




GVYSEPRPIGTRYLT




RNL






AAV8 Capsid
25



Sequence (VP2)
MAPGKKRPVEPSPQR




SPDSSTGIGKKGQQP




ARKRLNFGQTGDSES




VPDPQPLGEPPAAPS




GVGPNTMAAGGGAPM




ADNNEGADGVGSSSG




NWHCDSTWLGDRVIT




TSTRTWALPTYNNHL




YKQISNGTSGGATND




NTYFGYSTPWGYFDF




NRFHCHFSPRDWQRL




INNNWGFRPKRLSFK




LFNIQVKEVTQNEGT




KTIANNLTSTIQVFT




DSEYQLPYVLGSAHQ




GCLPPFPADVFMIPQ




YGYLTLNNGSQAVGR




SSFYCLEYFPSQMLR




TGNNFQFTYTFEDVP




FHSSYAHSQSLDRLM




NPLIDQYLYYLSRTQ




TTGGTANTQTLGFSQ




GGPNTMANQAKNWLP




GPCYRQQRVSTTTGQ




NNNSNFAWTAGTKYH




LNGRNSLANPGIAMA




THKDDEERFFPSNGI




LIFGKQNAARDNADY




SDVMLTSEEEIKTTN




PVATEEYGIVADNLQ




QQNTAPQIGTVNSQG




ALPGMVWQNRDVYLQ




GPIWAKIPHTDGNFH




PSPLMGGFGLKHPPP




QILIKNTPVPADPPT




TFNQSKLNSFITQYS




TGQVSVEIEWELQKE




NSKRWNPEIQYTSNY




YKSTSVDFAVNTEGV




YSEPRPIGTRYLTRN




L






AAV8 Capsid
26



Sequence (VP3)
MAAGGGAPMADNNEG




ADGVGSSSGNWHCDS




TWLGDRVITTSTRTW




ALPTYNNHLYKQISN




GTSGGATNDNTYFGY




STPWGYFDFNRFHCH




FSPRDWQRLINNNWG




FRPKRLSFKLFNIQV




KEVTQNEGTKTIANN




LTSTIQVFTDSEYQL




PYVLGSAHQGCLPPF




PADVFMIPQYGYLTL




NNGSQAVGRSSFYCL




EYFPSQMLRTGNNFQ




FTYTFEDVPFHSSYA




HSQSLDRLMNPLIDQ




YLYYLSRTQTTGGTA




NTQTLGFSQGGPNTM




ANQAKNWLPGPCYRQ




QRVSTTTGQNNNSNF




AWTAGTKYHLNGRNS




LANPGIAMATHKDDE




ERFFPSNGILIFGKQ




NAARDNADYSDVMLT




SEEEIKTTNPVATEE




YGIVADNLQQQNTAP




QIGTVNSQGALPGMV




WQNRDVYLQGPIWAK




IPHTDGNFHPSPLMG




GFGLKHPPPQILIKN




TPVPADPPTTFNQSK




LNSFITQYSTGQVSV




EIEWELQKENSKRWN




PEIQYTSNYYKSTSV




DFAVNTEGVYSEPRP




IGTRYLTRNL






AAV9 Capsid
27



Coding Sequence
ATGGCTGCCGATGGT




TATCTTCCAGATTGG




CTCGAGGACAACCTT




AGTGAAGGAATTCGC




GAGTGGTGGGCTTTG




AAACCTGGAGCCCCT




CAACCCAAGGCAAAT




CAACAACATCAAGAC




AACGCTCGAGGTCTT




GTGCTTCCGGGTTAC




AAATACCTTGGACCC




GGCAACGGACTCGAC




AAGGGGGAGCCGGTC




AACGCAGCAGACGCG




GCGGCCCTCGAGCAC




GACAAGGCCTACGAC




CAGCAGCTCAAGGCC




GGAGACAACCCGTAC




CTCAAGTACAACCAC




GCCGACGCCGAGTTC




CAGGAGCGGCTCAAA




GAAGATACGTCTTTT




GGGGGCAACCTCGGG




CGAGCAGTCTTCCAG




GCCAAAAAGAGGCTT




CTTGAACCTCTTGGT




CTGGTTGAGGAAGCG




GCTAAGACGGCTCCT




GGAAAGAAGAGGCCT




GTAGAGCAGTCTCCT




CAGGAACCGGACTCC




TCCGCGGGTATTGGC




AAATCGGGTGCACAG




CCCGCTAAAAAGAGA




CTCAATTTCGGTCAG




ACTGGCGACACAGAG




TCAGTCCCAGACCCT




CAACCAATCGGAGAA




CCTCCCGCAGCCCCC




TCAGGTGTGGGATCT




CTTACAATGGCTTCA




GGTGGTGGCGCACCA




GTGGCAGACAATAAC




GAAGGTGCCGATGGA




GTGGGTAGTTCCTCG




GGAAATTGGCATTGC




GATTCCCAATGGCTG




GGGGACAGAGTCATC




ACCACCAGCACCCGA




ACCTGGGCCCTGCCC




ACCTACAACAATCAC




CTCTACAAGCAAATC




TCCAACAGCACATCT




GGAGGATCTTCAAAT




GACAACGCCTACTTC




GGCTACAGCACCCCC




TGGGGGTATTTTGAC




TTCAACAGATTCCAC




TGCCACTTCTCACCA




CGTGACTGGCAGCGA




CTCATCAACAACAAC




TGGGGATTCCGGCCT




AAGCGACTCAACTTC




AAGCTCTTCAACATT




CAGGTCAAAGAGGTT




ACGGACAACAATGGA




GTCAAGACCATCGCC




AATAACCTTACCAGC




ACGGTCCAGGTCTTC




ACGGACTCAGACTAT




CAGCTCCCGTACGTG




CTCGGGTCGGCTCAC




GAGGGCTGCCTCCCG




CCGTTCCCAGCGGAC




GTTTTCATGATTCCT




CAGTACGGGTATCTG




ACGCTTAATGATGGA




AGCCAGGCCGTGGGT




CGTTCGTCCTTTTAC




TGCCTGGAATATTTC




CCGTCGCAAATGCTA




AGAACGGGTAACAAC




TTCCAGTTCAGCTAC




GAGTTTGAGAACGTA




CCTTTCCATAGCAGC




TACGCTCACAGCCAA




AGCCTGGACCGACTA




ATGAATCCACTCATC




GACCAATACTTGTAC




TATCTCTCAAAGACT




ATTAACGGTTCTGGA




CAGAATCAACAAACG




CTAAAATTCAGTGTG




GCCGGACCCAGCAAC




ATGGCTGTCCAGGGA




AGAAACTACATACCT




GGACCCAGCTACCGA




CAACAACGTGTCTCA




ACCACTGTGACTCAA




AACAACAACAGCGAA




TTTGCTTGGCCTGGA




GCTTCTTCTTGGGCT




CTCAATGGACGTAAT




AGCTTGATGAATCCT




GGACCTGCTATGGCC




AGCCACAAAGAAGGA




GAGGACCGTTTCTTT




CCTTTGTCTGGATCT




TTAATTTTTGGCAAA




CAAGGAACTGGAAGA




GACAACGTGGATGCG




GACAAAGTCATGATA




ACCAACGAAGAAGAA




ATTAAAACTACTAAC




CCGGTAGCAACGGAG




TCCTATGGACAAGTG




GCCACAAACCACCAG




AGTGCCCAAGCACAG




GCGCAGACCGGCTGG




GTTCAAAACCAAGGA




ATACTTCCGGGTATG




GTTTGGCAGGACAGA




GATGTGTACCTGCAA




GGACCCATTTGGGCC




AAAATTCCTCACACG




GACGGCAACTTTCAC




CCTTCTCCGCTGATG




GGAGGGTTTGGAATG




AAGCACCCGCCTCCT




CAGATCCTCATCAAA




AACACACCTGTACCT




GCGGATCCTCCAACG




GCCTTCAACAAGGAC




AAGCTGAACTCTTTC




ATCACCCAGTATTCT




ACTGGCCAAGTCAGC




GTGGAGATCGAGTGG




GAGCTGCAGAAGGAA




AACAGCAAGCGCTGG




AACCCGGAGATCCAG




TACACTTCCAACTAT




TACAAGTCTAATAAT




GTTGAATTTGCTGTT




AATACTGAAGGTGTA




TATAGTGAACCCCGC




CCCATTGGCACCAGA




TACCTGACTCGTAAT




CTGTAA






AAV9 Capsid
28



Sequence (VP1)
MAADGYLPDWLEDNL




SEGIREWWALKPGAP




QPKANQQHQDNARGL




VLPGYKYLGPGNGLD




KGEPVNAADAAALEH




DKAYDQQLKAGDNPY




LKYNHADAEFQERLK




EDTSFGGNLGRAVFQ




AKKRLLEPLGLVEEA




AKTAPGKKRPVEQSP




QEPDSSAGIGKSGAQ




PAKKRLNFGQTGDTE




SVPDPQPIGEPPAAP




SGVGSLTMASGGGAP




VADNNEGADGVGSSS




GNWHCDSQWLGDRVI




TTSTRTWALPTYNNH




LYKQISNSTSGGSSN




DNAYFGYSTPWGYFD




FNRFHCHFSPRDWQR




LINNNWGFRPKRLNF




KLFNIQVKEVTDNNG




VKTIANNLTSTVQVF




TDSDYQLPYVLGSAH




EGCLPPFPADVFMIP




QYGYLTLNDGSQAVG




RSSFYCLEYFPSQML




RTGNNFQFSYEFENV




PFHSSYAHSQSLDRL




MNPLIDQYLYYLSKT




INGSGQNQQTLKFSV




AGPSNMAVQGRNYIP




GPSYRQQRVSTTVTQ




NNNSEFAWPGASSWA




LNGRNSLMNPGPAMA




SHKEGEDRFFPLSGS




LIFGKQGTGRDNVDA




DKVMITNEEEIKTTN




PVATESYGQVATNHQ




SAQAQAQTGWVQNQG




ILPGMVWQDRDVYLQ




GPIWAKIPHTDGNFH




PSPLMGGFGMKHPPP




QILIKNTPVPADPPT




AFNKDKLNSFITQYS




TGQVSVEIEWELQKE




NSKRWNPEIQYTSNY




YKSNNVEFAVNTEGV




YSEPRPIGTRYLTRN




L






AAV9 Capsid
29



Sequence (VP2)
TAPGKKRPVEQSPQE




PDSSAGIGKSGAQPA




KKRLNFGQTGDTESV




PDPQPIGEPPAAPSG




VGSLTMASGGGAPVA




DNNEGADGVGSSSGN




WHCDSQWLGDRVITT




STRTWALPTYNNHLY




KQISNSTSGGSSNDN




AYFGYSTPWGYFDFN




RFHCHFSPRDWQRLI




NNNWGFRPKRLNFKL




FNIQVKEVTDNNGVK




TIANNLTSTVQVFTD




SDYQLPYVLGSAHEG




CLPPFPADVFMIPQY




GYLTLNDGSQAVGRS




SFYCLEYFPSQMLRT




GNNFQFSYEFENVPF




HSSYAHSQSLDRLMN




PLIDQYLYYLSKTIN




GSGQNQQTLKFSVAG




PSNMAVQGRNYIPGP




SYRQQRVSTTVTQNN




NSEFAWPGASSWALN




GRNSLMNPGPAMASH




KEGEDRFFPLSGSLI




FGKQGTGRDNVDADK




VMITNEEEIKTTNPV




ATESYGQVATNHQSA




QAQAQTGWVQNQGIL




PGMVWQDRDVYLQGP




IWAKIPHTDGNFHPS




PLMGGFGMKHPPPQI




LIKNTPVPADPPTAF




NKDKLNSFITQYSTG




QVSVEIEWELQKENS




KRWNPEIQYTSNYYK




SNNVEFAVNTEGVYS




EPRPIGTRYLTRNL






AAV9 Capsid
30



Sequence (VP3)
MASGGGAPVADNNEG




ADGVGSSSGNWHCDS




QWLGDRVITTSTRTW




ALPTYNNHLYKQISN




STSGGSSNDNAYFGY




STPWGYFDFNRFHCH




FSPRDWQRLINNNWG




FRPKRLNFKLFNIQV




KEVTDNNGVKTIANN




LTSTVQVFTDSDYQL




PYVLGSAHEGCLPPF




PADVFMIPQYGYLTL




NDGSQAVGRSSFYCL




EYFPSQMLRTGNNFQ




FSYEFENVPFHSSYA




HSQSLDRLMNPLIDQ




YLYYLSKTINGSGQN




QQTLKFSVAGPSNMA




VQGRNYIPGPSYRQQ




RVSTTVTQNNNSEFA




WPGASSWALNGRNSL




MNPGPAMASHKEGED




RFFPLSGSLIFGKQG




TGRDNVDADKVMITN




EEEIKTTNPVATESY




GQVATNHQSAQAQAQ




TGWVQNQGILPGMVW




QDRDVYLQGPIWAKI




PHTDGNFHPSPLMGG




FGMKHPPPQILIKNT




PVPADPPTAFNKDKL




NSFITQYSTGQVSVE




IEWELQKENSKRWNP




EIQYTSNYYKSNNVE




FAVNTEGVYSEPRPI




GTRYLTRNL






AAV2 Capsid
31



Coding Sequence
ATGGCTGCCGATGGT




TATCTTCCAGATTGG




CTCGAGGACACTCTC




TCTGAAGGAATAAGA




CAGTGGTGGAAGCTC




AAACCTGGCCCACCA




CCACCAAAGCCCGCA




GAGCGGCATAAGGAC




GACAGCAGGGGTCTT




GTGCTTCCTGGGTAC




AAGTACCTCGGACCC




TTCAACGGACTCGAC




AAGGGAGAGCCGGTC




AACGAGGCAGACGCC




GCGGCCCTCGAGCAC




GACAAAGCCTACGAC




CGGCAGCTCGACAGC




GGAGACAACCCGTAC




CTCAAGTACAACCAC




GCCGACGCGGAGTTT




CAGGAGCGCCTTAAA




GAAGATACGTCTTTT




GGGGGCAACCTCGGA




CGAGCAGTCTTCCAG




GCGAAAAAGAGGGTT




CTTGAACCTCTGGGC




CTGGTTGAGGAACCT




GTTAAGACGGCTCCG




GGAAAAAAGAGGCCG




GTAGAGCACTCTCCT




GTGGAGCCAGACTCC




TCCTCGGGAACCGGA




AAGGCGGGCCAGCAG




CCTGCAAGAAAAAGA




TTGAATTTTGGTCAG




ACTGGAGACGCAGAC




TCAGTACCTGACCCC




CAGCCTCTCGGACAG




CCACCAGCAGCCCCC




TCTGGTCTGGGAACT




AATACGATGGCTACA




GGCAGTGGCGCACCA




ATGGCAGACAATAAC




GAGGGCGCCGACGGA




GTGGGTAATTCCTCG




GGAAATTGGCATTGC




GATTCCACATGGATG




GGCGACAGAGTCATC




ACCACCAGCACCCGA




ACCTGGGCCCTGCCC




ACCTACAACAACCAC




CTCTACAAACAAATT




TCCAGCCAATCAGGA




GCCTCGAACGACAAT




CACTACTTTGGCTAC




AGCACCCCTTGGGGG




TATTTTGACTTCAAC




AGATTCCACTGCCAC




TTTTCACCACGTGAC




TGGCAAAGACTCATC




AACAACAACTGGGGA




TTCCGACCCAAGAGA




CTCAACTTCAAGCTC




TTTAACATTCAAGTC




AAAGAGGTCACGCAG




AATGACGGTACGACG




ACGATTGCCAATAAC




CTTACCAGCACGGTT




CAGGTGTTTACTGAC




TCGGAGTACCAGCTC




CCGTACGTCCTCGGC




TCGGCGCATCAAGGA




TGCCTCCCGCCGTTC




CCAGCAGACGTCTTC




ATGGTGCCACAGTAT




GGATACCTCACCCTG




AACAACGGGAGTCAG




GCAGTAGGACGCTCT




TCATTTTACTGCCTG




GAGTACTTTCCTTCT




CAGATGCTGCGTACC




GGAAACAACTTTACC




TTCAGCTACACTTTT




GAGGACGTTCCTTTC




CACAGCAGCTACGCT




CACAGCCAGAGTCTG




GACCGTCTCATGAAT




CCTCTCATCGACCAG




TACCTGTATTACTTG




AGCAGAACAAACACT




CCAAGTGGAACCACC




ACGCAGTCAAGGCTT




CAGTTTTCTCAGGCC




GGAGCGAGTGACATT




CGGGACCAGTCTAGG




AACTGGCTTCCTGGA




CCCTGTTACCGCCAG




CAGCGAGTATCAAAG




ACATCTGCGGATAAC




AACAACAGTGAATAC




TCGTGGACTGGAGCT




ACCAAGTACCACCTC




AATGGCAGAGACTCT




CTGGTGAATCCGGGC




CCGGCCATGGCAAGC




CACAAGGACGATGAA




GAAAAGTTTTTTCCT




CAGAGCGGGGTTCTC




ATCTTTGGGAAGCAA




GGCTCAGAGAAAACA




AATGTGGACATTGAA




AAGGTCATGATTACA




GACGAAGAGGAAATC




AGGACAACCAATCCC




GTGGCTACGGAGCAG




TATGGTTCTGTATCT




ACCAACCTCCAGAGA




GGCAACAGACAAGCA




GCTACCGCAGATGTC




AACACACAAGGCGTT




CTTCCAGGCATGGTC




TGGCAGGACAGAGAT




GTGTACCTTCAGGGG




CCCATCTGGGCAAAG




ATTCCACACACGGAC




GGACATTTTCACCCC




TCTCCCCTCATGGGT




GGATTCGGACTTAAA




CACCCTCCTCCACAG




ATTCTCATCAAGAAC




ACCCCGGTACCTGCG




AATCCTTCGACCACC




TTCAGTGCGGCAAAG




TTTGCTTCCTTCATC




ACACAGTACTCCACG




GGACAGGTCAGCGTG




GAGATCGAGTGGGAG




CTGCAGAAGGAAAAC




AGCAAACGCTGGAAT




CCCGAAATTCAGTAC




ACTTCCAACTACAAC




AAGTCTGTTAATGTG




GACTTTACTGTGGAC




ACTAATGGCGTGTAT




TCAGAGCCTCGCCCC




ATTGGCACCAGATAC




CTGACTCGTAATCTG




TAA






AAV2 Capsid
32



Sequence (VP1)
MAADGYLPDWLEDTL




SEGIRQWWKLKPGPP




PPKPAERHKDDSRGL




VLPGYKYLGPFNGLD




KGEPVNEADAAALEH




DKAYDRQLDSGDNPY




LKYNHADAEFQERLK




EDTSFGGNLGRAVFQ




AKKRVLEPLGLVEEP




VKTAPGKKRPVEHSP




VEPDSSSGTGKAGQQ




PARKRLNFGQTGDAD




SVPDPQPLGQPPAAP




SGLGTNTMATGSGAP




MADNNEGADGVGNSS




GNWHCDSTWMGDRVI




TTSTRTWALPTYNNH




LYKQISSQSGASNDN




HYFGYSTPWGYFDFN




RFHCHFSPRDWQRLI




NNNWGFRPKRLNFKL




FNIQVKEVTQNDGTT




TIANNLTSTVQVFTD




SEYQLPYVLGSAHQG




CLPPFPADVFMVPQY




GYLTLNNGSQAVGRS




SFYCLEYFPSQMLRT




GNNFTFSYTFEDVPF




HSSYAHSQSLDRLMN




PLIDQYLYYLSRTNT




PSGTTTQSRLQFSQA




GASDIRDQSRNWLPG




PCYRQQRVSKTSADN




NNSEYSWTGATKYHL




NGRDSLVNPGPAMAS




HKDDEEKFFPQSGVL




IFGKQGSEKTNVDIE




KVMITDEEEIRTTNP




VATEQYGSVSTNLQR




GNRQAATADVNTQGV




LPGMVWQDRDVYLQG




PIWAKIPHTDGHFHP




SPLMGGFGLKHPPPQ




ILIKNTPVPANPSTT




FSAAKFASFITQYST




GQVSVEIEWELQKEN




SKRWNPEIQYTSNYN




KSVNVDFTVDTNGVY




SEPRPIGTRYLTRNL






AAV2 Capsid
33



Sequence (VP2)
MAPGKKRPVEHSPVE




PDSSSGTGKAGQQPA




RKRLNFGQTGDADSV




PDPQPLGQPPAAPSG




LGTNTMATGSGAPMA




DNNEGADGVGNSSGN




WHCDSTWMGDRVITT




STRTWALPTYNNHLY




KQISSQSGASNDNHY




FGYSTPWGYFDFNRF




HCHFSPRDWQRLINN




NWGFRPKRLNFKLFN




IQVKEVTQNDGTTTI




ANNLTSTVQVFTDSE




YQLPYVLGSAHQGCL




PPFPADVFMVPQYGY




LTLNNGSQAVGRSSF




YCLEYFPSQMLRTGN




NFTFSYTFEDVPFHS




SYAHSQSLDRLMNPL




IDQYLYYLSRTNTPS




GTTTQSRLQFSQAGA




SDIRDQSRNWLPGPC




YRQQRVSKTSADNNN




SEYSWTGATKYHLNG




RDSLVNPGPAMASHK




DDEEKFFPQSGVLIF




GKQGSEKTNVDIEKV




MITDEEEIRTTNPVA




TEQYGSVSTNLQRGN




RQAATADVNTQGVLP




GMVWQDRDVYLQGPI




WAKIPHTDGHFHPSP




LMGGFGLKHPPPQIL




IKNTPVPANPSTTFS




AAKFASFITQYSTGQ




VSVEIEWELQKENSK




RWNPEIQYTSNYNKS




VNVDFTVDTNGVYSE




PRPIGTRYLTRNL






AAV2 Capsid
34



Sequence (VP3)
MATGSGAPMADNNEG




ADGVGNSSGNWHCDS




TWMGDRVITTSTRTW




ALPTYNNHLYKQISS




QSGASNDNHYFGYST




PWGYFDFNRFHCHFS




PRDWQRLINNNWGFR




PKRLNFKLFNIQVKE




VTQNDGTTTIANNLT




STVQVFTDSEYQLPY




VLGSAHQGCLPPFPA




DVFMVPQYGYLTLNN




GSQAVGRSSFYCLEY




FPSQMLRTGNNFTFS




YTFEDVPFHSSYAHS




QSLDRLMNPLIDQYL




YYLSRTNTPSGTTTQ




SRLQFSQAGASDIRD




QSRNWLPGPCYRQQR




VSKTSADNNNSEYSW




TGATKYHLNGRDSLV




NPGPAMASHKDDEEK




FFPQSGVLIFGKQGS




EKTNVDIEKVMITDE




EEIRTTNPVATEQYG




SVSTNLQRGNRQAAT




ADVNTQGVLPGMVWQ




DRDVYLQGPIWAKIP




HTDGHFHPSPLMGGF




GLKHPPPQILIKNTP




VPANPSTTFSAAKFA




SFITQYSTGQVSVEI




EWELQKENSKRWNPE




IQYTSNYNKSVNVDF




TVDTNGVYSEPRPIG




TRYLTRNL






AAV5 Capsid
35



Coding Sequence
ATGTCTTTTGTTGAT




CACCCTCCAGATTGG




TTGGAAGAAGTTGGT




GAAGGTCTTCGCGAG




TTTTTGGGCCTTGAA




GCGGGCCCACCGAAA




CCAAAACCCAATCAG




CAGCATCAAGATCAA




GCCCGTGGTCTTGTG




CTGCCTGGTTATAAC




TATCTCGGACCCGGA




AACGGTCTCGATCGA




GGAGAGCCTGTCAAC




AGGGCAGACGAGGTC




GCGCGAGAGCACGAC




ATCTCGTACAACGAG




CAGCTTGAGGCGGGA




GACAACCCCTACCTC




AAGTACAACCACGCG




GACGCCGAGTTTCAG




GAGAAGCTCGCCGAC




GACACATCCTTCGGG




GGAAACCTCGGAAAG




GCAGTCTTTCAGGCC




AAGAAAAGGGTTCTC




GAACCTTTTGGCCTG




GTTGAAGAGGGTGCT




AAGACGGCCCCTACC




GGAAAGCGGATAGAC




GACCACTTTCCAAAA




AGAAAGAAGGCTCGG




ACCGAAGAGGACTCC




AAGCCTTCCACCTCG




TCAGACGCCGAAGCT




GGACCCAGCGGATCC




CAGCAGCTGCAAATC




CCAGCCCAACCAGCC




TCAAGTTTGGGAGCT




GATACAATGTCTGCG




GGAGGTGGCGGCCCA




TTGGGCGACAATAAC




CAAGGTGCCGATGGA




GTGGGCAATGCCTCG




GGAGATTGGCATTGC




GATTCCACGTGGATG




GGGGACAGAGTCGTC




ACCAAGTCCACCCGA




ACCTGGGTGCTGCCC




AGCTACAACAACCAC




CAGTACCGAGAGATC




AAAAGCGGCTCCGTC




GACGGAAGCAACGCC




AACGCCTACTTTGGA




TACAGCACCCCCTGG




GGGTACTTTGACTTT




AACCGCTTCCACAGC




CACTGGAGCCCCCGA




GACTGGCAAAGACTC




ATCAACAACTACTGG




GGCTTCAGACCCCGG




TCCCTCAGAGTCAAA




ATCTTCAACATTCAA




GTCAAAGAGGTCACG




GTGCAGGACTCCACC




ACCACCATCGCCAAC




AACCTCACCTCCACC




GTCCAAGTGTTTACG




GACGACGACTACCAG




CTGCCCTACGTCGTC




GGCAACGGGACCGAG




GGATGCCTGCCGGCC




TTCCCTCCGCAGGTC




TTTACGCTGCCGCAG




TACGGTTACGCGACG




CTGAACCGCGACAAC




ACAGAAAATCCCACC




GAGAGGAGCAGCTTC




TTCTGCCTAGAGTAC




TTTCCCAGCAAGATG




CTGAGAACGGGCAAC




AACTTTGAGTTTACC




TACAACTTTGAGGAG




GTGCCCTTCCACTCC




AGCTTCGCTCCCAGT




CAGAACCTCTTCAAG




CTGGCCAACCCGCTG




GTGGACCAGTACTTG




TACCGCTTCGTGAGC




ACAAATAACACTGGC




GGAGTCCAGTTCAAC




AAGAACCTGGCCGGG




AGATACGCCAACACC




TACAAAAACTGGTTC




CCGGGGCCCATGGGC




CGAACCCAGGGCTGG




AACCTGGGCTCCGGG




GTCAACCGCGCCAGT




GTCAGCGCCTTCGCC




ACGACCAATAGGATG




GAGCTCGAGGGCGCG




AGTTACCAGGTGCCC




CCGCAGCCGAACGGC




ATGACCAACAACCTC




CAGGGCAGCAACACC




TATGCCCTGGAGAAC




ACTATGATCTTCAAC




AGCCAGCCGGCGAAC




CCGGGCACCACCGCC




ACGTACCTCGAGGGC




AACATGCTCATCACC




AGCGAGAGCGAGACG




CAGCCGGTGAACCGC




GTGGCGTACAACGTC




GGCGGGCAGATGGCC




ACCAACAACCAGAGC




TCCACCACTGCCCCC




GCGACCGGCACGTAC




AACCTCCAGGAAATC




GTGCCCGGCAGCGTG




TGGATGGAGAGGGAC




GTGTACCTCCAAGGA




CCCATCTGGGCCAAG




ATCCCAGAGACGGGG




GCGCACTTTCACCCC




TCTCCGGCCATGGGC




GGATTCGGACTCAAA




CACCCACCGCCCATG




ATGCTCATCAAGAAC




ACGCCTGTGCCCGGA




AATATCACCAGCTTC




TCGGACGTGCCCGTC




AGCAGCTTCATCACC




CAGTACAGCACCGGG




CAGGTCACCGTGGAG




ATGGAGTGGGAGCTC




AAGAAGGAAAACTCC




AAGAGGTGGAACCCA




GAGATCCAGTACACA




AACAACTACAACGAC




CCCCAGTTTGTGGAC




TTTGCCCCGGACAGC




ACCGGGGAATACAGA




ACCACCAGACCTATC




GGAACCCGATACCTT




ACCCGACCCCTTTAA






AAV5 Capsid
36



Sequence (VP1)
MSFVDHPPDWLEEVG




EGLREFLGLEAGPPK




PKPNQQHQDQARGLV




LPGYNYLGPGNGLDR




GEPVNRADEVAREHD




ISYNEQLEAGDNPYL




KYNHADAEFQEKLAD




DTSFGGNLGKAVFQA




KKRVLEPFGLVEEGA




KTAPTGKRIDDHFPK




RKKARTEEDSKPSTS




SDAEAGPSGSQQLQI




PAQPASSLGADTMSA




GGGGPLGDNNQGADG




VGNASGDWHCDSTWM




GDRVVTKSTRTWVLP




SYNNHQYREIKSGSV




DGSNANAYFGYSTPW




GYFDFNRFHSHWSPR




DWQRLINNYWGFRPR




SLRVKIFNIQVKEVT




VQDSTTTIANNLTST




VQVFTDDDYQLPYVV




GNGTEGCLPAFPPQV




FTLPQYGYATLNRDN




TENPTERSSFFCLEY




FPSKMLRTGNNFEFT




YNFEEVPFHSSFAPS




QNLFKLANPLVDQYL




YRFVSTNNTGGVQFN




KNLAGRYANTYKNWF




PGPMGRTQGWNLGSG




VNRASVSAFATTNRM




ELEGASYQVPPQPNG




MTNNLQGSNTYALEN




TMIFNSQPANPGTTA




TYLEGNMLITSESET




QPVNRVAYNVGGQMA




TNNQSSTTAPATGTY




NLQEIVPGSVWMERD




VYLQGPIWAKIPETG




AHFHPSPAMGGFGLK




HPPPMMLIKNTPVPG




NITSFSDVPVSSFIT




QYSTGQVTVEMEWEL




KKENSKRWNPEIQYT




NNYNDPQFVDFAPDS




TGEYRTTRPIGTRYL




TRPL






AAV5 Capsid
37



Sequence (VP2)
TAPTGKRIDDHFPKR




KKARTEEDSKPSTSS




DAEAGPSGSQQLQIP




AQPASSLGADTMSAG




GGGPLGDNNQGADGV




GNASGDWHCDSTWMG




DRVVTKSTRTWVLPS




YNNHQYREIKSGSVD




GSNANAYFGYSTPWG




YFDFNRFHSHWSPRD




WQRLINNYWGFRPRS




LRVKIFNIQVKEVTV




QDSTTTIANNLTSTV




QVFTDDDYQLPYVVG




NGTEGCLPAFPPQVF




TLPQYGYATLNRDNT




ENPTERSSFFCLEYF




PSKMLRTGNNFEFTY




NFEEVPFHSSFAPSQ




NLFKLANPLVDQYLY




RFVSTNNTGGVQFNK




NLAGRYANTYKNWFP




GPMGRTQGWNLGSGV




NRASVSAFATTNRME




LEGASYQVPPQPNGM




TNNLQGSNTYALENT




MIFNSQPANPGTTAT




YLEGNMLITSESETQ




PVNRVAYNVGGQMAT




NNQSSTTAPATGTYN




LQEIVPGSVWMERDV




YLQGPIWAKIPETGA




HFHPSPAMGGFGLKH




PPPMMLIKNTPVPGN




ITSFSDVPVSSFITQ




YSTGQVTVEMEWELK




KENSKRWNPEIQYTN




NYNDPQFVDFAPDST




GEYRTTRPIGTRYLT




RPL






AAV5 Capsid
38



Sequence (VP3)
MSAGGGGPLGDNNQG




ADGVGNASGDWHCDS




TWMGDRVVTKSTRTW




VLPSYNNHQYREIKS




GSVDGSNANAYFGYS




TPWGYFDFNRFHSHW




SPRDWQRLINNYWGF




RPRSLRVKIFNIQVK




EVTVQDSTTTIANNL




TSTVQVFTDDDYQLP




YVVGNGTEGCLPAFP




PQVFTLPQYGYATLN




RDNTENPTERSSFEC




LEYFPSKMLRTGNNF




EFTYNFEEVPFHSSF




APSQNLFKLANPLVD




QYLYRFVSTNNTGGV




QFNKNLAGRYANTYK




NWFPGPMGRTQGWNL




GSGVNRASVSAFATT




NRMELEGASYQVPPQ




PNGMTNNLQGSNTYA




LENTMIFNSQPANPG




TTATYLEGNMLITSE




SETQPVNRVAYNVGG




QMATNNQSSTTAPAT




GTYNLQEIVPGSVWM




ERDVYLQGPIWAKIP




ETGAHFHPSPAMGGF




GLKHPPPMMLIKNTP




VPGNITSFSDVPVSS




FITQYSTGQVTVEME




WELKKENSKRWNPEI




QYTNNYNDPQFVDFA




PDSTGEYRTTRPIGT




RYLTRPL







Macaca mulatta

39



(RHESUS MONKEY)
ATGGCGGGCATCTGG



CYP4V2 ODS
CTGGGGCTCGTGTGG



NM_001193838.1
CAGAAGCTGCTGCTG




TGGGGCGCGGCGAGT




GCCGTGTCCCTGGCC




GGCGCCAGTCTGGTC




CTGAGCCTGCTGCAG




AGGGTGGCGAGCTAC




GTGAGGAAATGGCAG




CAGATGCGGCCCATC




CCCACGGTGGCCCGC




GCCTACCCACTGGTG




GGCCACGCGCTGCTG




ATGAAGCGGGACGGG




CGAGAATTTTTTCAG




CAGATCATTGAGTAC




ACAGAGGAATACCGC




CACATGCCACTCCTG




AAGCTCTGGGTCGGG




CCGGTGCCCATGGTG




GCCCTTTATAATGCA




GAAAATGTGGAGGTA




ATTTTAACTAGTTCA




AAGCAAATTGACAAA




TCCTCTATGTACAAG




TTTTTAGAACCATGG




CTTGGCCTAGGACTT




CTTACAAGTACTGGA




AACAAATGGCGCTCC




AGGAGAAAGATGTTA




ACACCCACTTTCCAT




TTTACCATTCTGGAA




GATTTCTTAGATATC




ATGAATGAACAAGCA




AATATATTGGTTAAG




AAACTTGAAAAACAT




GTTAACCAAGAAGCA




TTTAACTGCTTTGTT




TACATCACTCTTTGT




GCCTTAGATATCATC




TGTGAAACAGCTATG




GGGAAGAATATTGGT




GCTCAAAGTAACGAT




GATTCCGAGTATGTC




CGTGCAGTTTATAGA




ATGAGTGAGATGATA




TTTCGAAGAATAAAG




ATGCCGTGGCTTTGG




CTTGACCTCTGGTAC




CTTATGTTTAAAGAG




GGATGGGAACACAAA




AAGAGCCTTAAGATC




CTACATGCTTTTACC




AACAATGTTATCGCT




GAACGGGCCAATGAA




ATGAACGTGGATGAA




GACTGTAGAGGTGAT




GGCAGGGACTCCGCC




CCCTCCAAAAATAAA




CGCAGGGCCTTTCTT




GACTTGCTTTTAAGT




GTGACTGACGACGAA




GGGAACAGGCTAAGT




CATGAAGATATTCGA




GAAGAAGTTGACACC




TTCATGTTTGAGGGC




CACGACACAACTGCA




GCTGCAATGAACTGG




TCCTTATACCTGTTG




GGGTCTAACCCAGAA




GTCCAGAAAAAAGTG




GACCATGAACTGGAT




GACGTGTTTGGGAGG




TCTGACCGTCCCGCT




ACTGTAGAAGACCTG




AAGAAACTTCGGTAT




CTGGAATGTGTTATT




AAGGAGACCCTTCGC




CTTTTTCCTTCTGTT




CCTTTATTTGCCCGC




AGTGTTAGTGAAGAT




TGTGAAGTGGCAGGT




TACAGAGTTCTGAAA




GGCACTGAAGCCGTC




ATCATTCCCTATGCA




TTGCATAGAGATCCA




AGATACTTCCCCAAC




CCTGAGGAGTTCCGG




CCTGAGCGGTTCTTC




CCCGAGAATGCACAA




GGGCGCCATCCATAT




GCCTACGTGCCCTTC




TCTGCTGGCCCCAGG




AACTGTATAGGTCAA




AAGTTTGCTGTGATG




GAAGAAAAGACCATT




CTTTCGTGCATCCTA




AGGCACTTTTGGATA




GAATCCAACCAGAAA




AGAGAAGAACTTGGT




CTAGAAGGACAGTTG




ATTCTTCGTCCAACT




AATGGCATCTGGATC




AAGTTGAAGAGGAGA




AATGCAGATGAACCC




TAA







Macaca mulatta

40



(RHESUS MONKEY)
MAGIWLGLVWQKLLL



CYP4V2 GENE
WGAASAVSLAGASLV



PRODUCT
LSLLQRVASYVRKWQ



NP_001180767.1
QMRPIPTVARAYPLV




GHALLMKRDGREFFQ




QIIEYTEEYRHMPLL




KLWVGPVPMVALYNA




ENVEVILTSSKQIDK




SSMYKFLEPWLGLGL




LTSTGNKWRSRRKML




TPTFHFTILEDFLDI




MNEQANILVKKLEKH




VNQEAFNCFVYITLC




ALDIICETAMGKNIG




AQSNDDSEYVRAVYR




MSEMIERRIKMPWLW




LDLWYLMFKEGWEHK




KSLKILHAFTNNVIA




ERANEMNVDEDCRGD




GRDSAPSKNKRRAFL




DLLLSVTDDEGNRLS




HEDIREEVDTFMFEG




HDTTAAAMNWSLYLL




GSNPEVQKKVDHELD




DVFGRSDRPATVEDL




KKLRYLECVIKETLR




LFPSVPLFARSVSED




CEVAGYRVLKGTEAV




IIPYALHRDPRYFPN




PEEFRPERFFPENAQ




GRHPYAYVPFSAGPR




NCIGQKFAVMEEKTI




LSCILRHFWIESNQK




REELGLEGQLILRPT




NGIWIKLKRRNADEP







Bos taurus

41



CYP4V2 ODS
ATGCTGGCGCCGTGG



NM_001034373.2
TTGCTGAGCGTCGGG




CCGAAGCTGCTGCTC




TGGAGCGGGCTGTGC




GCCGTCTCCCTGGCA




GGCGCCACCCTCACC




CTGAACCTCCTGAAG




ATGGTGGCGAGCTAT




GCGCGGAAATGGCGT




CAGATGCGTCCCGTC




CCGACCATTGGGGAC




CCCTACCCCTTGGTG




GGACACGCGCTGATG




ATGAAGCCCGATGCA




AGAGATTTTTTTCAG




CAGATAATTGATTTC




ACTGAAGAATGCCGA




CACCTGCCACTGCTG




AAACTCTGGCTCGGG




CCTGTGCCTCTCGTG




GCCCTTTATAACGCA




GAAACTGTGGAAGTA




ATTTTAAGCAGTTCA




AAGCACATTGAAAAA




TCCTATATGTACAAG




TTCTTAGAACCGTGG




CTTGGACTAGGACTT




CTTACAAGTACTGGA




AACAAATGGCGATCT




AGGAGAAAAATGTTA




ACACCCACTTTCCAT




TTTACAATTCTGGAG




GATTTCTTAGATGTC




ATGAATGAACAAGCA




AATATATTGGTTACT




AAGCTTGAAAAGCAT




GTTAACCAAGAAGCG




TTTAACTGCTTTTTT




TACGTCACTCTTTGT




ACCTTAGATATAATC




TGTGAAACAGCTATG




GGAAAGAACATTGGT




GCTCAAAGAAATGAT




GATTCCGAGTATGTT




CGAGCCGTTTATAGG




ATGAGTGATTCGATA




CATCAAAGAATGAAG




ATGCCCTGGCTCTGG




CTTGACCTTATATTC




TATATGTTTAAAAAT




GGACGAGAACACAGA




AGGAGCCTAAAGATT




GTACATGATTTTACC




AACAATGTCATCACT




GAACGGGCCAATGAA




ATGAAGAGACATGAA




GAAGGTACGAGTAAC




GACAAGGAGAAGGAC




TTTCCTCCACGCAAA




ACTAAATGCAGGGCT




TTTCTTGACTTGCTT




TTAAATGTGACTGAT




GACCAAGGGAACAAG




CTGAGTCATGAAGAT




ATAAGAGAAGAAGTC




GACACCTTTATGTTT




GAGGGCCATGATACA




ACTGCAGCTGCAATA




AACTGGTCCTTGTAT




CTGTTGGGTTGGTAT




CCAGAAGTCCAGCAG




AGAGTGGACACTGAG




CTGGAAGAAGTGTTT




GGGAAGTCTGACCGT




CCTGTTACCCTAGAA




GACCTGAAGAAACTT




AAATATCTGGACTGT




GTTATTAAGGAGAGC




CTTCGCCTTTTCCCG




TCTGTTCCTTTCTTT




GCCCGTAATCTTACC




GAAGACTGTGAAGTT




GCGGGTCACAAAATC




GTGCAAGGCTGTCAA




GTAATCATTGTGCCC




TACGCACTGCATAGA




GATCCAAAGTACTTC




CCGGATCCTGAGGAA




TTCAAGCCAGAACGG




TTCTTTCCCGAGAAT




TTGAAAGGACGTCAT




ACATACGCATATGTG




CCCTTCTCTGCAGGC




CCCCGAAACTGTATA




GGTCAAAAGTTTGCC




ATAATGGAAGAAAAG




ACCATTCTTTCCTGC




ATCCTTAGGCACTTT




TGGGTAGAATCCAAC




CAAAAAAGAGAAGAA




CTTGGTCTAGCAGGA




GAGCTCATTCTTCGT




CCAAGTAACGGCATC




TGGATCAAGTTGAAG




AGGAGAAACACAGAT




GAATCCTAA







Bos taurus

42



CYP4V2 GENE
MLAPWLLSVGPKLLL



PRODUCT
WSGLCAVSLAGATLT



NP_001029545.1
LNLLKMVASYARKWR




QMRPVPTIGDPYPLV




GHALMMKPDARDFFQ




QIIDFTEECRHLPLL




KLWLGPVPLVALYNA




ETVEVILSSSKHIEK




SYMYKFLEPWLGLGL




LTSTGNKWRSRRKML




TPITHETILEDFLDV




MNEQANILVTKLEKH




VNQEAFNCFFYVTLC




TLDIICETAMGKNIG




AQRNDDSEYVRAVYR




MSDSIHQRMKMPWLW




LDLIFYMFKNGREHR




RSLKIVHDFTNNVIT




ERANEMKRHEEGTSN




DKEKDFPPRKTKCRA




FLDLLLNVTDDQGNK




LSHEDIREEVDTFMF




EGHDTTAAAINWSLY




LLGWYPEVQQRVDTE




LEEVFGKSDRPVTLE




DLKKLKYLDCVIKES




LRLFPSVPFFARNLT




EDCEVAGHKIVQGCQ




VIIVPYALHRDPKYF




PDPEEFKPERFFPEN




LKGRHTYAYVPFSAG




PRNCIGQKFAIMEEK




TILSCILRHFWVESN




QKREELGLAGELILR




PSNGIWIKLKRRNTD




ES







Rattus

43




norvegicus

ATGTTGTGGCTGTGG



CYP4V3 CDS
TTAGGGCTCAGCGGG



NM_001135600.1
CAGAAGCTATTGCTT




TGGGGCGCAGCGAGC




GCGGTCTCCGTGGCC




GGCGCCACTGTCTTG




CTCAACATCCTGCAG




ATGTTGGTAAGCTAT




GCACGAAAGTGGCAG




CAGATGCGGCCAATC




CCGTCGGTGGCTCGC




GCTTACCCCTTGGTG




GGACATGCGCTGTTT




ATGAAGCCCAACAAC




ACAGAATTTTTTCAG




CAGATAATTCAGTAC




ACAGAAGAATTCCGA




CACCTGCCCATCATT




AAACTCTGGATTGGA




CCAGTGCCCCTGGTG




GCACTTTATAAGGCA




GAGAATGTGGAGGTG




ATTTTGACCAGTTCG




AAGCAAATTGATAAA




TCCTTTATGTACAAG




TTCCTACAGCCATGG




CTGGGACTAGGACTT




CTTACAAGTACTGGG




AGCAAATGGCGTGCC




AGGAGGAAGATGTTA




ACACCCAGTTTCCAT




TTTACAATTCTGGAG




GATTTCTTAGATGTC




ATGAATGAGCAAGCA




AATATATTGGTTAAC




AAGCTTGAAAAACAT




GTCAATCAAGAGGCC




TTTAACTGCTTTTTC




CCCATCACTCTTTGT




GCTCTGGATATAATC




TGTGAAACGGCTATG




GGGAAGAACATTGGA




GCTCAAAGTAATGGT




GATTCTGAGTATGTC




CGTACAGTGTATAGG




ATGAGCGATATGATA




TACAGAAGAATGAAG




ATGCCCTGGTTTTGG




TTTGACCTTTGGTAC




CTTATGTTTAAAGAA




GGAAGGGACCACAAA




AAGGGACTAAAGAGT




CTACATACTTTTACC




AACAATGTCATTGCT




GAACGGGTTAATGCA




AGGAAGGCAGAGCAA




GACTGCATAGGTGCT




GGGAGGGGTCCTCTC




CCCTCGAAAACTAAG




CGCAAGGCCTTTCTT




GACTTGCTTTTGAGT




GTGACTGATGAGGAA




GGAAACAAATTAAGC




CATGAAGACATCCGA




GAGGAAGTTGACACC




TTCATGTTTGAGGGT




CACGATACAACTGCT




GCTGCCATAAACTGG




TCCTTATACCTCCTG




GGCTCTAATCCAGAA




GTCCAGAGGAAAGTG




GACAAGGAGCTGGAT




GATGTGTTTGGAAGA




TCCCATCGCCCTGTC




ACCTTGGAAGACCTG




AAGAAACTTAAATAT




CTGGATTGTGTCATT




AAGGAGACCCTCCGT




GTTTTCCCATCTGTC




CCTTTATTTGCCCGG




AGTCTTAGCGAAGAC




TGTGAAGTGGCGGGT




TACAAAATCTCAAAA




GGAACGGAAGCAGTC




ATCATTCCCTATGCA




CTACATCGAGACCCT




AGATACTTCCCAGAC




CCTGAGGAATTCCAG




CCAGAGCGGTTCTTT




CCTGAAAACTCCCAA




GGACGCCACCCCTAT




GCCTATGTGCCATTC




TCTGCTGGACCTAGA




AACTGCATTGGTCAA




AAGTTTGCGGTCATG




GAGGAAAAGACCATT




CTTGCCTGTATCCTG




AGGGAGTTTTGGATA




GAATCCAACCAGAAG




AGAGAAGAACTCGGC




CTGGCTGGAGATTTG




ATTCTTAGGCCAAAT




AATGGCATCTGGATC




AAGCTGAAGAGGAGG




CATGAAGATGACCCC




TAA







Rattus norvegicus

44



CYP4V3 GENE
MLWLWLGLSGQKLLL



PRODUCT
WGAASAVSVAGATVL



NP_001129072.1
LNILQMLVSYARKWQ




QMRPIPSVARAYPLV




GHALFMKPNNTEFFQ




QIIQYTEEFRHLPII




KLWIGPVPLVALYKA




ENVEVILTSSKQIDK




SFMYKFLQPWLGLGL




LTSTGSKWRARRKML




TPSFHFTILEDFLDV




MNEQANILVNKLEKH




VNQEAFNCFFPITLC




ALDIICETAMGKNIG




AQSNGDSEYVRTVYR




MSDMIYRRMKMPWFW




FDLWYLMFKEGRDHK




KGLKSLHTFTNNVIA




ERVNARKAEQDCIGA




GRGPLPSKTKRKAFL




DLLLSVTDEEGNKLS




HEDIREEVDTFMFEG




HDTTAAAINWSLYLL




GSNPEVQRKVDKELD




DVFGRSHRPVTLEDL




KKLKYLDCVIKETLR




VFPSVPLFARSLSED




CEVAGYKISKGTEAV




IIPYALHRDPRYFPD




PEEFQPERFFPENSQ




GRHPYAYVPFSAGPR




NCIGQKFAVMEEKTI




LACILREFWIESNQK




REELGLAGDLILRPN




NGIWIKLKRRHEDDP







Mus musculus

45



CYP4V3 ODS
ATGTTGTGGCTGTGG



NM_133969.3
TTAGGGCTCAGTGGG




CAGAAACTATTGCTT




TGGGGCGCAGCGAGC




GCGGTCTCCCTGGCC




GGCGCCACTATCCTG




ATCAGCATCTTTCCG




ATGCTGGTAAGCTAC




GCGCGGAAATGGCAG




CAGATGCGGTCAATC




CCGTCGGTGGCCCGC




GCCTACCCCTTGGTG




GGACACGCGCTTTAT




ATGAAGCCCAACAAC




GCAGAATTTTTTCAG




CAGCTAATTTATTAC




ACAGAAGAATTTCGA




CACCTGCCGATCATT




AAACTTTGGATTGGA




CCCGTGCCCCTGGTG




GCACTTTATAAGGCA




GAGAATGTGGAGGTG




ATTTTGACCAGTTCT




AAGCAAATTGATAAA




TCGTTTTTGTACAAG




TTCCTACAGCCATGG




CTGGGACTAGGACTT




CTTACAAGTACGGGG




AGCAAATGGCGCACC




AGGAGGAAGATGCTA




ACGCCCACTTTCCAT




TTTACCATTCTGGAG




AACTTCTTGGATGTC




ATGAATGAGCAAGCA




AATATATTGGTTAAT




AAGCTTGAAAAACAC




GTCAACCAAGAAGCC




TTTAATTGTTTTTTT




TACATCACTCTTTGT




GCTCTGGATATAATC




TGTGAAACGGCTATG




GGGAAGAACATCGGA




GCTCAAAGCAATAAT




GATTCCGAGTATGTC




CGTACAGTGTATAGG




ATGAGTGATATGATA




TATAGAAGAATGAAG




ATGCCCTGGCTTTGG




TTTGACCTTTGGTAC




CTTGTGTTTAAAGAA




GGACGGGACCACAAA




AGGGGACTCAAATGC




CTACATACTTTCACC




AACAATGTCATTGCT




GAACGAGTCAAAGAA




AGGAAGGCAGAGGAA




GACTGGACGGGTGCT




GGCAGGGGTCCTATC




CCCTCCAAAAATAAG




CGCAAGGCTTTCCTT




GACTTGCTTTTGAGT




GTGACTGATGAGGAA




GGAAACAGATTAAGC




CAGGAAGACATCCGA




GAGGAAGTTGACACC




TTCATGTTTGAGGGT




CACGATACAACTGCT




GCTGCAATCAACTGG




TCCTTATACCTATTG




GGCACGAATCCAGAA




GTCCAGAGGAAAGTG




GATCAGGAGCTGGAT




GAAGTGTTTGGAAGA




TCCCATCGTCCTGTC




ACCTTGGAAGACCTG




AAGAAACTTAAATAT




TTGGATTGCGTCATT




AAGGAGACTCTCCGA




GTTTTCCCATCTGTC




CCTTTATTTGCCCGG




AGTCTTAGCGAGGAC




TGTGAAGTGGGCGGT




TACAAAGTCACAAAA




GGAACGGAAGCAATC




ATCATTCCCTACGCA




CTACACCGAGACCCC




AGATACTTCCCAGAT




CCAGAGGAATTCCGA




CCAGAGCGGTTCTTT




CCTGAAAATTCCCAA




GGACGCCATCCCTAT




GCCTATGTGCCATTT




TCTGCTGGACCTCGA




AACTGTATTGGTCAA




AAGTTTGCTGTCATG




GAGGAGAAGACCATT




CTTGCCTGTATCCTG




AGGCAGTTTTGGGTA




GAATCCAACCAGAAG




AGAGAAGAACTCGGC




CTGGCTGGAGATTTG




ATTCTTAGGCCAAAT




AATGGCATCTGGATC




AAGCTGAAGAGGAGA




CATGAAGATGACCCC




TAA







Mus musculus

46



CYP4V3 GENE
MLWLWLGLSGQKLLL



PRODUCT
WGAASAVSLAGATIL



NP_598730.1
ISIFPMLVSYARKWQ




QMRSIPSVARAYPLV




GHALYMKPNNAEFFQ




QLIYYTEEFRHLPII




KLWIGPVPLVALYKA




ENVEVILTSSKQIDK




SFLYKFLQPWLGLGL




LTSTGSKWRTRRKML




TPITHETILENFLDV




MNEQANILVNKLEKH




VNQEAFNCFFYITLC




ALDIICETAMGKNIG




AQSNNDSEYVRTVYR




MSDMIYRRMKMPWLW




FDLWYLVFKEGRDHK




RGLKCLHTFTNNVIA




ERVKERKAEEDWTGA




GRGPIPSKNKRKAFL




DLLLSVTDEEGNRLS




QEDIREEVDTFMFEG




HDTTAAAINWSLYLL




GTNPEVQRKVDQELD




EVFGRSHRPVTLEDL




KKLKYLDCVIKETLR




VFPSVPLFARSLSED




CEVGGYKVTKGTEAI




IIPYALHRDPRYFPD




PEEFRPERFFPENSQ




GRHPYAYVPFSAGPR




NCIGQKFAVMEEKTI




LACILRQFWVESNQK




REELGLAGDLILRPN




NGIWIKLKRRHEDDP







Gallus gallus

47



CYP4V2 ODS1
ATGGCAATGGAGATC



NM_001001879.
ACGCTAGGATCCATG




GAGGGAACACAGCTG




CTGCCCTGGGTGGCT




GGAGCCATCACCCTG




CTGCTGACGGTGGTG




ACTGTACACTTCCTA




CCCTCTTTGCTGAAC




TACTGGTGGTGGTGG




TGGGTGATGAAGCCC




ATCCCAGGCATCCGC




CCATGCTACCCCTTT




GTGGGAAATGCTCTC




CTGTTGGAGCGAAAT




GGAGAAGGTTTTTTT




AAACAGCTACAACAG




TATGCTGATGAGTTC




AGGAAAATGCCAATG




TTCAAACTCTGGTTA




GGTCCACTGCCTGTC




ACAGTATTGTTCCAT




CCTGATAGTGTGGAG




GTTATTCTGAGCAGT




TCAAAGCATATTAAA




AAATCATTCCTGTAC




ACATTTCTGCACCCA




TGGCTGGGGACTGGA




CTTTTGACAAGCACT




GGAGACAAGTGGCGG




TCACGGAGGAAGATG




ATAACTCCTACATTC




CACTTTGCAATCTTA




AATGACTTTCTTGAG




GTTATGAATGAACAA




GGGGGTGTTTTGTTG




GAGAAACTTGAGAAG




CATGTTGACAAGGAA




CCATTTAATATCTTT




ACAGACATCACTCTG




TGTGCACTTGATATT




ATCTGTGAAACTGCA




ATGGGCAAGAATCTG




GGTGCTCAAGACAAT




AAGGATTCTGAGTAT




GTTCGTGCTGTCTAC




AGGATGAGTGATCTA




ATCCAACAGCGACAG




AAGAGCCCTTGGCTT




TGGCATGATCTTATG




TATCTTCTGTTCAAG




GAAGGAAGAGAGCAT




GAGCGGAATCTTAAG




ATTCTGCATGGTTTT




ACAGATACGGTAATT




GCAGAAAAAGTTGCA




GAACTTGAAAACACC




AAGCTAACAAAACAC




GATACTGACGTGAAC




ACTGAAGAAGAAAGT




GGTTCCAAAAAGAGA




GAAGCTTTCTTAGAC




ATGCTGCTGAATGCC




ACAGATGATGAAGGG




AAAAAACTCAGCTAC




AAGGACATTCGTGAA




GAAGTGGATACTTTT




ATGTTTGAGGGTCAT




GATACAACAGCAGCT




GCTATGAACTGGGTC




CTATACTTGCTTGGT




CATCATCCTGAAGCC




CAGAAGAAGGTTCAC




CAAGAACTGGATGAG




GTGTTTGGCAACACA




GAGCGTCCTGTTACA




GTGGATGATTTGAAG




AAACTTCGATACCTC




GAGTGTGTTGTGAAA




GAAGCCCTGAGGCTC




TTCCCTTCAGTTCCC




ATGTTCGCCCGTTCC




TTGCAAGAGGATTGC




TACATTAGTGGATAT




AAGCTACCAAAAGGC




ACGAATGTCCTTGTC




TTAACTTATGTGCTG




CACAGAGATCCTGAG




ATCTTCCCTGAGCCA




GATGAATTCAGGCCT




GAGCGCTTCTTCCCT




GAAAATAGCAAAGGA




AGGCACCCATATGCT




TATGTGCCCTTCTCT




GCTGGCCCCAGGAAC




TGCATTGGCCAACGC




TTTGCACAAATGGAA




GAGAAAACTCTTCTA




GCCCTCATCCTGCGG




CGCTTTTGGGTGGAC




TGTTCTCAAAAGCCA




GAAGAGCTTGGTCTG




TCAGGAGAACTAATT




CTTCGTCCAAATAAT




GGCATCTGGGTTCAA




CTGAAGAGGAGACCA




AAAACTGTAACAGAA




TGA







Gallus gallus

48



CYP4V2 GENE
MAMEITLGSMEGTQL



PRODUCT
LPWVAGAITLLLTVV



NP_001001879.1
TVHFLPSLLNYWWWW




WVMKPIPGIRPCYPF




VGNALLLERNGEGFF




KQLQQYADEFRKMPM




FKLWLGPLPVTVLFH




PDSVEVILSSSKHIK




KSFLYTFLHPWLGTG




LLTSTGDKWRSRRKM




ITPTFHFAILNDFLE




VMNEQGGVLLEKLEK




HVDKEPFNIFTDITL




CALDIICETAMGKNL




GAQDNKDSEYVRAVY




RMSDLIQQRQKSPWL




WHDLMYLLFKEGREH




ERNLKILHGFTDTVI




AEKVAELENTKLTKH




DTDVNTEEESGSKKR




EAFLDMLLNATDDEG




KKLSYKDIREEVDTF




MFEGHDTTAAAMNWV




LYLLGHHPEAQKKVH




QELDEVFGNTERPVT




VDDLKKLRYLECVVK




EALRLFPSVPMFARS




LQEDCYISGYKLPKG




TNVLVLTYVLHRDPE




IFPEPDEFRPERFFP




ENSKGRHPYAYVPFS




AGPRNCIGQRFAQME




EKTLLALILRRFWVD




CSQKPEELGLSGELI




LRPNNGIWVQLKRRP




KTVTE







Canis lupus

49




familiaris

ATGTTAACACCCACT



CYP4V2 CDS
TTCCATTTTACGATT



XM_022404181.1
CTGGAAGATTTCTTA




GATGTCATGAATGAA




CACGCAAATATATTG




GTTAATAAGCTTGAA




AAACATGTTAACCAA




GAAGCATTTAACTGC




TTTTTTTACATCACT




CTTTGTGCATTAGAT




ATAATTTGTGAAACA




GCTATGGGGAAGAAT




ATTGGGGCTCAAAAT




AATGAGGATTCTGAG




TATGTTCGTGCCATC




TACAGAATGAGTGAT




ACGATACATCGAAGA




ATGAAGATGCCCTGG




CTCTGGCTTGACTTT




TTGTTTCTTATGTTT




AAAGAAGGCCGGGAA




CACAAAAGGAACCTA




GAGATCCTACATAAT




TTTACCAATAATGTC




ATCACTGAACGGGCC




AGTGAACTGAAGAGA




GACGAAGAACATGGA




AGTGCTGACAAGGAC




TGCTCCCCCTCCAAA




AATAAACGCAGAGCT




TTTCTTGACTTGCTT




TTAAATGTGACTGAT




GATGAAGGGAACAAG




CTACGTCATGAAGAT




GTTCGAGAAGAAGTT




GACACCTTCATGTTT




GAGGGCCATGATACG




ACAGCAGCGGCGATA




AACTGGTCCTTATAT




CTCTTGGGTTCTTAC




CCAGAAGTCCAGAAA




CAAGTGGACAGTGAA




CTGGAGGACGTGTTT




GGGAAGTCTGATCGT




CCTGCTACCTTAGAA




GACCTGAAGAAACTC




AAATACCTGGAGTGT




GTCATTAAGGAGAGC




CTTCGCCTTTTTCCT




TCAGTTCCCTTATTT




GCCCGTAATCTTAAC




GAAGATTGTGTAGTT




GCGGGTTACAAGGTT




GTGAAAGGCTCCCAA




GCGATCATCATTCCC




TACGCACTTCATAGA




GATCCAAGATATTTC




CCAAATCCCGAGGAG




TTCCAGCCAGAGCGG




TTCTTTCCTGAAAAT




TTGCAAGGACGCCAC




CCATATGCATACATT




CCCTTTTCTGCTGGA




CCCAGAAACTGTATA




GGTCAAAGGTTTGCC




ATAATGGAAGAAAAG




ACTGTTCTTTCCTGT




GTCCTGAGGCATTTT




TGGGTAGAATCCAAC




CAGAAAAGAGAAGAA




CTTGGTCTGGCAGGA




GAGTTGATTCTTCGT




CCAACTAATGGCATC




TGGATCAAGTTGAAG




AGGAGAAATGCAGAT




GAATCTTAA







Canis lupus

50




familiaris

MLTPITHETILEDFL



CYP4V2
DVMNEHANILVNKLE



GENE PRODUCT
KHVNQEAFNCFFYIT



XP_022259889.1
LCALDIICETAMGKN




IGAQNNEDSEYVRAI




YRMSDTIHRRMKMPW




LWLDFLFLMFKEGRE




HKRNLEILHNFTNNV




ITERASELKRDEEHG




SADKDCSPSKNKRRA




FLDLLLNVTDDEGNK




LRHEDVREEVDTFMF




EGHDTTAAAINWSLY




LLGSYPEVQKQVDSE




LEDVFGKSDRPATLE




DLKKLKYLECVIKES




LRLFPSVPLFARNLN




EDCVVAGYKVVKGSQ




AIIIPYALHRDPRYF




PNPEEFQPERFFPEN




LQGRHPYAYIPFSAG




PRNCIGQRFAIMEEK




TVLSCVLRHFWVESN




QKREELGLAGELILR




PTNGIWIKLKRRNAD




ES






Kozak sequence
51




GCCGCC






Kozak sequence
52




GACACC






Kozak sequence
53




GCCACG









In some embodiments, the 5′ and 3′ ITRs comprise about 130 to about 145 nucleotides each. The ITRs are required for efficient multiplication of the AAV genome, and the symmetrical feature of these sequences gives them an ability to form a hairpin, which contributes to so-called self-priming that allows primase-independent synthesis of the second DNA strand. It is contemplated that the 5′ and 3′ ITRs of AAV serotype 2 may be used (e.g., nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1 and 22, respectively). In other aspects, ITRs from other suitable serotypes may be selected from among any AAV serotype known in the art, as described herein, e.g., the ITRs may be from AAV8, AAV9, or AAV5.


These ITRs or other AAV components may be readily isolated using techniques available to those of skill in the art from any AAV serotype known, or yet to be identified serotypes, for example, the AAV sequences may be synthetic or obtained through other suitable means by reference to published sequences such as are available in the literature or in databases such as, e.g., GenBank, PubMed, or the like. Alternatively, such AAV components may also be isolated or obtained from academic, commercial, or public sources (e.g., the American Type Culture Collection, Manassas, Va.).


In some embodiments, the 5′ or 3′ ITR region of an AAV vector is mutated to form a ΔITR, e.g., by deleting/mutating the terminal resolution site (trs), and the resulting AAV genome becomes self-complementary (sc) by forming dimeric inverted repeat DNA molecules. In one embodiment, a ΔITR sequence comprises SEQ ID NO: 54. Additional ΔITR sequences are known in the art, e.g., as described in Wang et al., Gene Therapy, 2003, 10: 2105-2111; McCarty et al., Gene Therapy, 2003, 10: 2112-2118; and McCarty et al., Gene Therapy, 2001, 8: 1248-1254, each one of which is incorporated by reference in its entirety.


In certain embodiments, the promoter may be a ubiquitous promoter, e.g., a CMV promoter, CBA promoter, or CAG promoter. For example, the CMV promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:2, the CBA promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:3, and the CAG promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:4. Alternatively, a RPE-specific promoter may be used to target expression of CYP4V2 preferentially in RPE cells, e.g., human RPE cells, of the retina. Examples of RPE-specific promoters include ProC2 promoter, VMD2 promoter, CYP4V2 promoter, and RPE65 promoter. For example, the ProC2 promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:5. In one embodiment, the VMD2 promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:6. In some embodiments, the CYP4V2 promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:7 or a fragment thereof, e.g., fragments of 100, 200, 300, 400, 500, 600, 700, 800, or 900 nucleotides of SEQ ID NO:7. In certain embodiments, the RPE65 promoter can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:8.


In some embodiments, an AAV vector genome comprises a promoter operably linked to a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, wherein the promoter can target the expression of CYP4V2 in retinal cells, e.g., non-human primate or human retinal cells, and the promoter is selected from Table 3 below:









TABLE 3







Nucleic acid sequence of retinal-


specific promoters










Promoter & Ref.
SEQ ID NO & SEQUENCE






SynP159 (ProD3)
55



WO 2017/093931
ATCCTGGGGTTTAAACAGGA




CTAGGTCCACTGGGAGAAGA




GGAAGTCAAACAGGACTAGT




CATCGATAGGCTAGCCAGCT




TAATTAATCAGATTGTCTTT




CCTCCCGTCTAAGCATGGAA




GCCCTAAATGGCCTACAATT




CCTATAGCTTAGTTGCAAAT




TTGAGAAGTTCCCCCACTGA




CTCTGGTGGAGGTGGTCTAT




TCTGTGTCCCTGGTGAAAAG




TCTACCCCCTCGGGTTTGTT




ATGGGGCCCAGAACTTGTAC




AATGCCCCGTAAGCTTCTTA




GAGGAGGCGGGTATTAGGCA




GGATTGGATCTGCGTCCCCT




GACATGCCCTTCATACCCTT




GAATTAGGATTCCTAAGGGA




GCCGGCAGGAGGAGAATGGG




GTGTTCCTTGTGGTTCCACT




TCACACCTACTCTTCGAGAC




CCCGGATTCTGACAAGTTTC




CCGAACTTGGAAGACCCAGA




TGTCAAGGTCTGAAGGTAAA




TGATGTGTTTAGGCAGGAGG




GTTCAGCCAGGCTCAGCTCT




CCTCCCCTCTCGCAGGGGAA




GGAGAGAGACCCTCTAGAAT




TCCTGTAGGAGGTGCACGTG




GGCTGATCCTCACATGGTCC




TGCTGGAGTTAGTAGAGGGT




ATATAATGGAAGCTCGACTT




CCAGCTATCACATCCACTGT




GTTGTTGTGAACTGGAATCC




ACTATAGGCCA






SynP160 (ProD4)
56



WO 2017/093934
ATCCTGGGGTTTAAACAGGA




CTAGGTCCACTGGGAGAAGA




GGAAGTCAAACAGGACTAGT




CATCGATAGGCTAGCCAGCT




TAATTAATCAGATCTCCAGT




GTTTACCCAGGGCAAGAAGT




CCCATTTTTGTTCTTTTACA




AGCTGAAGACCAGAAACACA




TGCGGCCCATTCCCGTCCGA




GGCAGAAATGCTGAGGGATA




AGTCTCAGGCTCTGAGCTGA




GTTCAGGAAAAGGTCAGTGT




CCCGATAGAGCACTCAGGTA




GAGTGAATCCGCTTATCACA




GAGTGAATCCAGCTTAGTTG




TCCTTTGGAACCTCAGTTGA




TTGGATAAGTCCTCCAAGTG




TGAAAGAGGCATCTCCACTC




AGGCCTTGGTTCCAATGGTC




TCTCAGGGAACTGCCCTCAG




CAGTGCATAGAGCTGAGCCA




GCTCTCCGGGAAGTTCAGTC




GAGTTTATCCTCACATGGTC




CTGCTGGAGTTAGTAGAGGG




TATATAATGGAAGCTCGACT




TCCAGCTATCACATCCACTG




TGTTGTTGTGAACTGGAATC




CACTATAGGCCA






SynP161 (ProD5)
57



WO 2017/093935
ATCCTGGGGTTTAAACAGGA




CTAGGTCCACTGGGAGAAGA




GGAAGTCAAACAGGACTAGT




CATCGATAGGCTAGCCAGCT




TAATTAATCAGATTTCCAGG




AAGAGGCACCAGAGCCCTCT




CCCTATTGCTCAAAGCGCAG




GTGGAATAATCTTGGCCGTG




TGACCGGAATTCAAAGCAGT




TTTGGGAACTGAGCCCCAAC




CTGTAAGCCCTGATGTTATT




TCAAGAAAGATGGTGTCAGA




ATTAAATTGGATTAGAGAGG




AGGATATGGATTAGAGCAGA




GCAGCATCCTCACATGGTCC




TGCTGGAGTTAGTAGAGGGT




A






SynP162 (ProD6)
58



WO 2017/093936
CACACAAAACACAAATACAA




CAAATCTTTTAAAACTGCGA




TAATCCTATGTTGATTCTCT




TACCTAAATTAAAAAACAAA




ACAAAATATGATAGCCTTGA




ATAAATTTTTATATGATATT




TCATACTGTAGCCCAGGCTA




GCCTCAAACTTGTAGCAATT




CTCTTGTCTTCATCTCCTGA




ACACTGGAATTACAGGTGAG




ATCTAGAATGCTTTTCTTTT




TTATGAGATACATCATCTTT




AAATGAATTTAACTAACTTT




ATGTGTATGGATGTTTTGCC




TGAATGTATGTGCAGGGCCG




AGGGAGTGGGAGAGAACCCA




CTGGCTGTGTTAAGCCACTG




ACATCCTCACATGGTCCTGC




TGGAGTTAGTAGAGGGTATA




TAATGGAAGCTCGACTTCCA




GCTATCACATCCACTGTGTT




GTTGTGAACTGGAATCCACT




ATAGGCCA






SynP198 (ProD1)
59



WO 2018/083607
ATCCTGGGGTTTAAACAGGA




CTAGGTCCACTGGGAGAAGA




GGAAGTCAAACAGGACTAGT




CATCGATAGGCTAGCCAGCT




TAATTAATCAGATGGTTCAT




TGTAAGCCACTGTAGTCGTG




GGTGACTCACATCAAACCAC




CCCTTCGGGAACACGATGCC




GACACTGAAACTACATAGGG




GAGAGCAAATAAAACTGTCT




TCTCTAGTTTGGGGAAATTG




GAGCCTGCCTTAGGGAAACA




GTGACTAATTTACAGCTAGT




GTTTGGAATGAGATCATCTG




TCAAAATAAATGTATCTTTA




CTTCCTTCTTGAGAGGAAGC




AAGCTGTTTTATGATGTTCC




TTGGAATCCTTAAAAATACA




GAGCAACATTTACATTATTA




ATGATACGCTTTATTGCTGC




AGGCTAACTAGGTCCAAAAT




TGTCCTTCCATAGATGGAGC




TGGAGAGTTACACAGAAGTT




TGCATATCGAGCTCTTAGGT




CTGCATGTACAGCTAATGTA




CTTGTGGACCCTGTCACATA




TCCTCACATGGTCCTGCTGG




AGTTAGTAGAGGGTATATAA




TGGAAGCTCGACTTCCAGCT




ATCACATCCACTGTGTTGTT




GTGAACTGGAATCCACTATA




GGCCA






SynP107
60



(ProC17)
AACAAGTCTATCATAATAAT



WO 2018/099974
TACAGGATGTGAACCTGGGA




GGATAATTACAGGACCCCGG




GCGCAATAAATAATTACAGG




AATCGAATATGGAATTATAA




TTACAGGATCTGAAGAATCA




AGTATAATTACAGGAGCCGT




TGTGTGCTGTATAATTACAG




GAATGATCATTTATTGCATA




ATTACAGGATAGGTGTGCCG




CTACATAATTACAGGAGGTT




TCAGCCCAACTATAATTACA




GGACTAGGCAAGTTCGGTAT




AATTACAGGATGGCGCTGCC




CCCCAATAATTACAGGATAG




CTGACTTCGGTAATAATTAC




AGGACATTCTCGCCAGACTA




TAATTACAGGATGCAACTAG




ACTCTGATAATTACAGGATC




GTCTTAAATTGCCATAATTA




CAGGAACAAGCATACGTTGC




ATAATTACAGGACCCCTATT




CTAGTGTATAATTACAGGAT




GTGCACAACCAAAAATAATT




ACAGGATAATTGTCTTGACT




GATAATTACAGGAGGGTGTG




ATACACCTATAATTACAGGA




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynPI (ProA6)
61



WO 2018/099975
AGCTAGCACAGCACTAGGCT



WO 2017/046084
AAAGCGTACTGAGCCCTTGT




CTTCCGTGGGAGCTGCAGAG




TGGGATGCATGCGTTGTGAG




CTGAGGCTCAAGCTGCGCTG




GCAGAAGAGCAGGGGTTGCC




TTGTCAGACTCCAGGGTCTC




TTTCTCTCTGAGCCTGGGAA




AGTGCCACTTTATTGGATCT




ATAAAGCCGGGGGGGGGGGG




GGGGGAGGAATCTCAAGGTG




AAGAGGAAGTTCACAGACCC




CTCTAACGCCTCTATTAGAA




CCTTCCAGCTATTCTCTCAT




ACTTGTACACTGAGCTGGCA




CACAGTATAGGCAAGTTCTA




TTCGCATCACCCCTCTAGTT




CCTGTCTCCCTGGTTATGCA




AGCCTCATATTTAGGTAGAT




GTGACCTTAGGAAACCAAAA




TATCCTTTAAGATCTTACTA




ACTGGTTGCCTGTTCAGCTT




TTCCACATTGATCCTGTAGC




CCCCTCGAGGAGGTGAAGGA




AAAAAATCTCCTCTTTGTTT




CTCTAACTCATTAATGAATT




TTAAGGGCACTCTGTAAGGT




TCCTTTCCCATTCTGGTCTG




GTTCGTACATTCTGAGAAAC




ACACTGTGTTTGTGTTGAGA




GTTGGCTCCCTAGCTACACT




GTCTGTCACATTGATGCTCT




GAGTAGGGACAGGGTTCATC




TAGGAAATATATTTTCACTC




ACACTCTGTATCTTTTCCTA




GTTTGGCATATTCTAGTCTG




CATTTGGCTCTCTGTTTAAA




TATAAAAGAAAACTAAAACA




CACCCTTCAGACGCCTATGT




CTGAAAAATCTGGCATTTCC




GTGGGTTTTTCTTTAAGGAG




GCCTTCATTTGTAACCAACA




CCATGCTCTCCTTAAGGAAA




TCAATCTCAATGCCCTATTA




TCCTTCCCTTTTCTTTCCTC




CCAGTTTGAGGCTGCAGTTG




CCTTTTTTTTTCTTATCCCC




TGCTGAACCTGAAAAACCCT




CTCTTTTCTACAGTTTTCTG




TTCCCAGGCCCCGCTGACTT




CCTTTAGAGCATGGGGGGGG




GGGGGATCAGGATTGTGATG




TGTGAACTGGGAGGATCTTG




ACCTACTCCGCTAACCCAGT




GGCCTGAGCAAATCACAAGG




AGGATTGGAGCCATCTGCCC




AGCCCCTCCCCCACGGCAGC




CTGCTGGAAAGAGACAAGTT




AGTCATTCAAATGATTGGCT




TTTTGCCCGCTTCTTCTCTA




AATAAGAAGGCAGCAGCTTC




TGCTGAGGT






SynP88 (ProA5)
62



WO 2018/146588
GGTGCCCAGGCAGTGGGAGC




AGGGCTGACCAGAGTTCTGC




AGAGATTGCCTGGAGGCCTT




CCTGGAAGAAGAGATCCTGG




CACCGCACAAAGAGAAGCAC




AGGCTTTCCAGGGCTGAGGA




GAGGGAGGTCAAGTGAGGCC




CAGGTGCCCCTGCCTGAGCC




TGTGTCCCCAGAAACCTCCT




CTCCCTCTCATCACCCCCAC




ATCCTCCCTGCCACTCCCCG




CAGCTCCCTGTGGCCAAGTG




CACTGCAGCACTCGGCTCTG




CTCCACAAACGGTCTGCTCC




ACTCCAGGAAGGCCACCTCC




TCCCCCCCCCCCCACCTCCG




GCTGTCACCACTCACCGCTC




TAGCCTCCAGGGGGTGGGGA




CCCCAGAGCTGGACACACCC




CATCGAAGCCCCACAGCTCA




GCCAGCCGGACAGACTCACG




GTCGGACTCAAGACCCCGGA




GCCCTGAGGTGGGCAGCGCG




CCAGGGTTCCTCGCAGCCTC




TTCAAGGTCAGTGCAAGTTG




GGTGTGCAGCCCTTTGGAGC




CTTTGAGGTCTGTGGGACTC




AGCTCAGAACCCTCATCCCA




GACCACGAGCCCCAAGGTGG




GCTTCACTCCAGGTGCACCT




GAGCCAAGTGCTGGGCAAAG




GGCGCCCAGGTCCACAGTCA




GCACAGGTCCAGGGGTCCAT




CAGGAGGGGCCCCAGGCTGG




GGGCCAACCCCTTGCTGAGG




CCTCTTTGGGGACACTCCCC




ACCGGCCATGGGGAGCTAAA




ATTGGAAAGTGGCGAGTGGG




AGGCAGCTGACACAGCTATT




TTGTGCGCTCTTCATCCGCT




CCGGTTTCACTCTCCTGCTC




CACTAACCTGATCCTGTGCT




TCCCTCCCCCACCCTGCCGA




TGAAGAGGTGTCTCAGCCCT




CCAGCCACAGTGCAGAGGCT




GCTCAGGAGGGCCAGGCCGG




GAGCGAGCAGGGCCAGCGTG




GTCTGGTCTGAGCCGGGACT




CACCAGGAGCACCTGCCCTT




CAGAGAAGCTCACTGGATGG




CCTCCCGGGTCCCTGACCCT




TTGTGACCCACACCTCTCTG




TCAGTGTAGCAAGGAGCGGC




CTCCCAGAGCCCCAACTACA




GGGCTGGAGGAGACAGATCT




GCAACTGGGAGATCTTGGGT




TGGGAGAGATGGGGTGACCC




TACCCATCTCCAAAAGGGCA




CTGCACCGTGTTCCCCTTTC




CCTCGGTTCCAGGTCTGGAC




CTAAGCAACCACTGGAAGAC




TGGCGGCCAGGCTGAAGAGG




GTGGGAGGGGCTTAGGTACT




GGCCCAGACCCCAGGGATGG




CCCAGCAGGGTAGCCAGAGG




GAGTGACCAGACACATCCTG




GACTTGATACCAGTCAGCAC




CTTGGACAGCAGCCAGCACC




CTCCCAGTTGCTGCCTGGCC




CTGCCTGGTCCAGCTCTGGC




CACTCTGGGGCCTCAAAGAG




CCCAACATCCAGCCTGCAGC




AAGAGCTTAGACTACACAGC




ACTTCAAGGGGGACAGTGGG




TGAACACAGGCAGGGACCTG




AGATAAAACAGACTCACGGC




TTGGCGGAGGAATGGAGTCA




GCAGAGCCCGGAGTTGAGCG




AGTCTGGGAAGTTAGTGCTA




GAGGAGTTCACGGGATCTCA




GGGGACCTCGTGGGCAGGGC




TTTGCTGAGGTTAAGAGAGG




CTCACTGTGAGACGGGAGAA




CTGACAGAGTCTTCCACCAT




GGGAAAGACCCCATGGTTGG




GGAAGTCTTGCAGGAACAGT




TTGGTGTCCCAAACTTGTCA




GCCCATCAGAGAGGTATGAA




GGAGAGGAAGCTAGTCTGTG




CGAAGTCTGGGCTTTGGAGA




ATCTTCAAAGGAAGCAAGAT




TGAGAGCTGCAGAGGAAAGG




AAGAAGGTGTCTGGGTGTGT




TGGGGGGGGTAGATTTACTG




ACAGCATCCCCAGGGGATGG




CTGAGTGGACCAGTCTCCTC




AGAGGGTCCACCAGGGGAGG




CGAGGCAAGGCTGGGACTGG




GGGTTCTCACTCATGCTTCT




CCTTCAGCCCTCTCCAGGCC






SynPVI (ProA7)
63



WO 2017/046084
CATCCTGAGAGATGAGCCAG




GACAAAGAACCAGTAATAGC




TCCTGGAGCAGCACATCTGT




TTTGCCAGGATTATCCCTTG




GATCTCTTAAAACCGAGACC




TTGTAATCTGAAGACTCAAC




TTGGGCTGTACCCTTAACCT




TCAGCTCTATGATGCAAGTG




AGTCCACAGGACCGGAGGCT




TTGAGATGAGCTTTTCAGAA




GGGAGGAGTTGGCCGCTTGC




TCCCAGAGCTCCAGCACCTG




CATTCTTCTGGCTATGTCAG




AAGCCAGATCATTTCCCTCG




TTAAAAACAAAAACAAAAAA




ACAAACAAACAAAATGTTAG




TCTTTGCCCTTTATCTGCCT




GGCAAAGCTTTTAATTGGCT




TGATCTGTCATTCCGCTAGA




CATAAAGGGGACAATCCCCG




GATTAGGAAGGAGCTCTCCA




GCTCGGGTAAGGAGTCTCAA




GGCAAGGTAGGCAAGCACCA




CCGGTCCGCACTCTCGCCCA




GCTTTTACGGGAAGAAGAGA






SynP136 (ProA1)
64



WO 2017/046084
AGAGGCAGGCCGAGTTTGAG




GCCAGCCTGGTCTACACAGG




CGTTCTAGGAGAACCTGTCT




CATATGCACATGGGCCTGGG




ATTACACATACAACTGCAAT




GGCAGCACTTGGAAAGCGGA




AGCAGGAGAATCGGAATTTC




ACACTCATCCTTCATTATAG




AAGTCCAAACCTGTGCTAAG




CTACTTGGACATCGCTAAAA




AACAGCAAAAATCTTTCTAG




GAATTGCCAATGTATACACA




CCAAGTTGTATTTTTGTAGG




GCAGACTTTTCCAACTTGCC




AGATGATAATAATCATTTAT




ATTAGCTACATTTCAGGCTC




CAGAATTAACACTGTTACTG




AAATGTATAGGTTCTAAAAC




ATACCATTTCCAAATATTTT




AAAGGATTAACATTTTTGAA




AAGCATGTGATCTTCCAACC




ATATTTTAGGGAACAGACAT




AAGAAGTAGGCAAGTTTGGG




AAGAAACAGTTCCTGAGGGC




ATTTCTTCCCAACCTTGAAT




GCCCTGTGGGTTAACTGAGG




TCTTGGTAAAATGTAGATTA




TTTACTGGACTTTTTGAACT




GAGAGTGCATTTCTAACAAA




ACTCCAGGGTATGTGGTCCT




TGCATTACATATGGGGTAGC




AACATTCTAAAGCAGTGTTT




TTCAACCTGTGGATCAAGAC




CCACAGAAGTCACATAGCAG




ATATCCTGCCTATTAGATAT




TTACATTAAGATTCAGAGCA




GTAGCAGAATAGGAGTCATC




CCAACCTGAGGAACTGCATC




AGAGTCCCAGCATCAGGAAG




GGTGAGAGCCACTGAGCTAA




AGTCCTCTAGGTGAGGGGGC




TGCCCCGGAAAGACTCATTT




AAATGAAACCACTGACACAG




AGAGCTGACAGATGAGGTGG




GTTCCGTGTCTGTGAGGCTC




TGCTGGTCGTCTCCTCACTC




CCATGGAAGAACCACCGAGA




TGAGGGCGAGGGGCAGAGCT




AACCCAGCCTCTAAGTAGGC




AGAGTCTAGTGTCCAGCTGC




CCAAGGAAGAAGTTTGCTGT




GTGAGGTGGCCCTGATGTCC




GCACACACAAAATGCCAGTG




AAGTCTACTTGACCAAGTGA




AGCTGGTGTGGAATGGGAAG




AAGCACACACAGTCAGTCTC




TCTGCACACACTCTGTCCTT




CACTTCTTCACTTACCAGAG




ATTTGATGAGAACCTACTAG




CAGATCAGATTTGATCCCTG




AGTGGAAAAAACGTACAGTG




GGAGATAAAAGAGGAAAACA




ACGGATCTGAGTTTGAGGTT




AGCCTAGTCTGAGCAAGCCG




GATACACAGTAAGACCCTGT




CTCACATACATCCACTCGCA




CGCGCGCGCACACAAACACA




CACACACACACACACACACA




CACACACACACACACACATC




GTGCTAAGGACAAGATAGGC




ATCCTGAGAGATGAGCCAGG




ACAAAGAACCAGTAATAGCT




CCTGGAGCAGCACATCTGTT




TTGCCAGGATTATCCCTTGG




ATCTCTTAAAACCGAGACCT




TGTAATCTGAAGACTCAACT




TGGGCTGTACCCTTAACCTT




CAGCTCTATGATGCAAGTGA




GTCCACAGGACCGGAGGCTT




TGAGATGAGCTTTTCAGAAG




GGAGGAGTTGGCCGCTTGCT




CCCAGAGCTCCAGCACCTGC




ATTCTTCTGGCTATGTCAGA




AGCCAGATCATTTCCCTCGT




TAAAAACAAAAACAAAAAAA




CAAACAAACAAAATGTTAGT




CTTTGCCCTTTATCTGCCTG




GCAAAGCTTTTAATTGGCTT




GATCTGTCATTCCGCTAGAC




ATAAAGGGGACAATCCCCGG




ATTAGGAAGGAGCTCTCCAG




CTCGGGTAAGGAGTCTCAAG




GCAAGGTAGGCAAGCACCAC




CGGTCCGCACTCTCGCCCAG




CTTTTACGGGAAGAAGAGAA




TGTTACTCTATCCTAACATA




TTTTTCCTTTTCCTCTATCT




CACAGATAGGAAAAATTTAA




GAGCCAGAGGGAACGTCCCT




TCTCAGAGGAGACAGCAGAA






SynP155 (ProA4)
65



WO 2017/046084
CTCTCCTCCCATTGATGACT




GACTAGGCCATCCTCTGCTA




CATAGGTGGCTGGAGCCTGA




GTCCCTCCTTGTGTACTCTT




TGGTTGGTGGTTTACTCTGG




GGGTACTGGTTAGTTCGTAT




TGTTGTTCCTCCTAGGGGAC




TGCAAACCCCTTCAGCTCCT




TGGGTCCTTTCTCTAGTTCC




TTCTTTGGGGACCCTGTGCT




CAGTTCAATGGATGGCCAAT




TTCCTTCTTAAATGCCCCTA




GCAGTAACTGTTAGGTCTCA




ATCCCAAGACAAATGTCTGA




GGTGCCTATTTAACAGATCA




AAGCGGACCTGGCCTCAGGT




TATCCCAGTCCCTCCCTGTA




CCTCAGTCCCTACCCATCAC




CAACTCTCCAGCCCAGAGCT




TGGGCTGCACTTCCCCCACG




GTTCTTCCCATTTTGGCTAC




ATGGTCTTTTTTTTTACCTT




TTTGGTTCCTTTGGCCTTTT




GGCTTTTGGCTTCCAGGGCT




TCTGGATCCCCCCCAACCCC




TCCCATACACATACACATGT




GCACTCGTGCACTCAACCCA




GCACAGGATAATGTTCATTC




TTGACCTTTCCACATACATC




TGGCTATGTTCTCTCTCTTA




TCTACAATAAATCTCCTCCA




CTATACTTAGGAGCAGTTAT




GTTCTTCTTCTTTCTTTCTT




TTTTTTTTTTTTCATTCAGT




AACATCATCAGAATCCCCTA




GCTCTGGCCTACCTCCTCAG




TAACAATCAGCTGATCCCTG




GCCACTAATCTGTACTCACT




AATCTGTTTTCCAAACTCTT




GGCCCCTGAGCTAATTATAG




CAGTGCTTCATGCCACCCAC




CCCAACCCTATTCTTGTTCT




CTGACTCCCACTAATCTACA




CATTCAGAGGATTGTGGATA




TAAGAGGCTGGGAGGCCAGC




TTAGCAACCAGAGCTGGAGG




CTGATGCGAGCTTCATCTCT




TCCCTCAGGTAATATTCTAA




ATCTCTCTGCTTCTAGCCCA




TACTAAGTCCACCTCCTTTG




CCTTTAGCATCTTCTTTAGG




AGGAGAGGGGCATCTTTTCT




GATGCAAGCAATGGATTTTT




CAGGCTGATGTAAGAGACTT




CTAGAACTCAGCACCCCCCC




CCAACTCATCCCTCTGACCA




AGCCTACTATGTTTTGAAGG




AAAGCACCAGAAAGACATTT




CCCTCTCTATGCTTCCCTAG




CACCTTAAGCGTGGGGACAG




GATGGAAATGTTTGGGGAAA




GTGACAAGAGAGATGATGAG




TAAGGGCAAAGAGGGCTTTC




GGCCTCCACAGAGGCTTCTA




CTGCCACCCCCCAAGAAAGT




ATGAGCGCAACCCTTTCTGT




TCTACAGCTTTCCCTCTTCT




TTCCCCCACCTCCCCCCTGT




TCTTCCTTCTGAGCTGGAGG




TCAAAAGCATCCCAATTCAG




GGTCAAGTCCAGTACAGGGA




CAAAAAGAAATTTCATCCAT




TCATTTATTTATTCATATAG




TTAACTGACTGTGTGCCTGT




TGAAGTTCAGTATCAATGCA




GCCCAAGGAACGTATTTAAG




AGATGGAGTATGAGCAAGTA




GGATAAATAGAAGGGGTTAA




AAAATAAGATGAGGAGCAAT




CAAGAAAGACACTGGACATT




CCTCTAGCTTTCACACACAT




GCACCTGTGCATGCATGGAT




ACATGCACAGGCATTCGCTC




ATGCACATACACATGAGAGA




GAGAGAGAATGAGAGAGAGA




GAGAGAGAGAGAGAGAGAGA




GAGAGAGAGAGAGAGAGAGA




GAGAGAGAGAGAAAGAGAGA




AAGAGAGAAAGAGAGAAAGA




GAATGTAGTGCAATGGTTGG




GTAAGTGTGTAACTGAAGAG




TTGCCCTAAGAAGAGGAAAA




AAAAAAAGGAAGCATTGAGT




GTTGGTGTGGTATCTCAGGC




AGTTAATTTATATTACACTA




GGTGTATCATTATGGAATAT




TATAGTGCACTAAAAAAAAA




AGGATTAAATAACTGAGTGT




TCCTCTTCCCCTCATCTCAG




GAAAGATTCAACTGGCCAGC






SynP123 (ProC1)
66



WO 2017/046084
AGATCTATTAGTAAAATTAA




CTACACCTGGTCCTTTATGT




CATTAACTACACGTCAGTCG




TTCTATTATTAACTACACAG




AACTTACTATATAATTAACT




ACACCGCGCATTTGGATATA




TTAACTACACAACTTTGCTT




AATAAATTAACTACACCCGT




AACGGATTCTCATTAACTAC




ACGTTTCATTACGAGGGATT




AACTACACATAGCCCCCGGA




GGCATTAACTACACTTTTTG




AGGTCGCGAATTAACTACAC




TTCGACTCGCAGGACATTAA




CTACACTATACCGATAACGC




AATTAACTACACAAATTTTT




TATGAAGATTAACTACACTG




TTCGCTCCTGCCTATTAACT




ACACGAGGCCGTATTTCCAA




TTAACTACACCCGAGACACA




AGATAATTAACTACACTTAA




CCAGATGGCAGATTAACTAC




ACGTACGGGCAGGCCCGATT




AACTACACCGGCTGTCATTC




CTCATTAACTACACATATCA




CGACTTGTGATTAACTACAC




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynP114 (ProC22)
67



WO 2017/046084
GTACTGCGGACATCCGCTAA




TTAGCATAACCCGCAAGGAT




GTAGCTAATTAGCATATCAC




GGGAGACTGGGGCTAATTAG




CATAAAAAGTCTCCCGCCTG




CTAATTAGCATACGAGACTC




TAGAATCGCTAATTAGCATA




TCAGTCAAACCACTTGCTAA




TTAGCATAAGCATCGCGCTA




TTTGCTAATTAGCATAAATG




TTACATACATCGCTAATTAG




CATATGATAGCACTGTCAAG




CTAATTAGCATATCAGCCGC




ACGCATGGCTAATTAGCATA




CGAATACCACAAGCTGCTAA




TTAGCATACGGTTAAAATAA




TACGCTAATTAGCATATCAA




AGACGACAGAAGCTAATTAG




CATAGATCACCATCACCACG




CTAATTAGCATACGTTAATG




CTGTTCTGCTAATTAGCATA




GAAATTGTTGATCTGGCTAA




TTAGCATACCCGCCTTCCTG




AACGCTAATTAGCATACGGT




ACGTCGAGATTGCTAATTAG




CATATGTACTGAACCCATAG




CTAATTAGCATAATAAATTA




CTAATCCGCTAATTAGCATA




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynP132 (ProB2)
68



WO 2016/174624
GACCATTTAAAAGGGGTATA




TAAAGATTGCATACAAAAGC




TGAGGGGCCTCACCCTGAAT




GGATTCTTTCTTGAAAGCCA




CTTTTGTTCTTTAAGAGGCG




CGGTCCAAATAATGTGCAAG




CATGATTGGCTGGAGGCACA




TTTCGTAGATTAATCCTCTC




CCTTGAAAGGATCCAAGTCT




GGAAAATAGCCAAAAACGTG




GCTGTTATGCAACCCTTACC




CAAGCTCCTCCTCCCAGCTG




CCATCCCTCTTACTAAGCAG




TGTCATGAGGCTGGGCCAGG




CTGGAGATTAATTCTTGACC




ATTTAAAAGGGGTATATAAA




GATTGCATACAAAAGCTGAG




GGGCCTCACCCTGAATGGAT




TCTTTCTTGAAAGCCACTTT




TGTTCTTTAAGAGGCGCGGT




CCAAATAATGTGCAAGCATG




ATTGGCTGGAGGCACATTTC




GTAGATTAATCCTCTCCCTT




GAAAGGATCCAAGTCTGGAA




AATAGCCAAAAACGTGGCTG




TTATGCAACCCTTACCCAAG




CTCCTCCTCCCAGCTGCCAT




CCCTCTTACTAAGCAGTGTC




ATGAGGCTGGGCCAGGCTGG




AGATTAATTCTT






SynP156
69



WO 2017/064642
GTAGGCCTAGAGCGGTGCTG




ACGTCAGCAATTCCGATCTA




GCTGTGCTGACGTCAGCAGT




TTAATTGAGCTGCTGCTGAC




GTCAGCACATACCATAGCAT




CGTGCTGACGTCAGCAGTGA




GGCTACTATCCTGCTGACGT




CAGCATATATGTCGCTCTAC




TGCTGACGTCAGCAGCACCA




ACTGTAAATTGCTGACGTCA




GCAATAAGAGACGGGCTTTG




CTGACGTCAGCACGAGTACA




TAGCAATTGCTGACGTCAGC




ACTAGTGCGGCCATCGTGCT




GACGTCAGCAAGCTTTCAAA




GAGTCTGCTGACGTCAGCAT




CTTCCTGACGCAACTGCTGA




CGTCAGCATTGAGGGCTATG




GCTTGCTGACGTCAGCAGCA




CACGCTATGGGGTGCTGACG




TCAGCAGCTAAGGAGACATG




TTGCTGACGTCAGCATTCGT




GTCAGACATATGCTGACGTC




AGCAGGGGCTAGCCACTAAT




GCTGACGTCAGCACAGTTGT




CGTTGATATGCTGACGTCAG




CAATAGACACTTTTATGTGC




TGACGTCAGCAGTTAGGGTC




AGAGGCTGCTGACGTCAGCA




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynP17 (ProB1)
70



PCT/IB2019/0590
TCACCAAGTAGGAGTCCTTC




AGTAGATGAAAGGGGTATTT




TAAA88CCGTTGAAGCTATC




TTGGTGGCAATCTAGGATGT




TGAGACCTCAGAGAAAATGT




CGAAACCTTGGAAAATTTAT




TTTGACGATTAGAAATTGTT




TAATAATAAAACAAAAGACT




TCCTTTCTCCAGCCCCACTT




TCCCTGTTTCTTTTGTCATA




GGTTGTTGTGAACTCGATCT




GGGAGGGAATCCTGGACTCG




CAACCCGACTCCGCTCGGCG




TTGATTGGCTCCTGCCTCAG




GACCCCGCCGGACCCGCCCC




CCGGCCGTGGGAATCGCCGC




CTAGCAGGCGGGCTGCGGCT




GCCACTCAGTCGGAGTGGCG




GAGGCCGTAGCCCCGCCTCC




TCCCCCCTAATTGATA






SynP27 (ProB12)
71



PCT/IB2019/0590
ACCCTCCTCAGGGGAAGAAA




CAGTACATTCTCTGAAGCCT




CCTG89GTTAAATGGGGGAA




GTATTTGTATTCCTATCACC




AAGTAGGAGTCCTTCAGTAG




ATGAAAGGGGTATTTTAAAC




CGTTGAAGCTATCTTGGTGG




CAATCTAGGATGTTGAGACC




TCAGAGAAAATGTCGAAACC




TTGGAAAATTTATTTTGACG




ATTAGAAATTGTTTAATATC




TCCTTCCAAGATTAATCTAT




GATTAAAGGGCACTTAAGAG




ACTTTTATAATTTCTAAAAT




ATTCAATAGCATAGATGATT




TGGCCATTACAAACTGCCTA




AGATTTCTCCTCAGGCAGAA




GCCAGGCCACCCACGGAGAG




ACCCAGGAACTGGGCCAAGA




GCCTAAACAAAAGACTTCCT




TTCTCCAGCCCCACTTTCCC




TGTTTCTTTTGTCATAGGTT




GTTGTGAACTAAAAAAATAG




CTCAGTTTCACAAAAGCGAT




CTGGGAGGGAATCCTGGACT




CGCAACCCGACTCCGCTCGG




CGTTGATTGGCCCCGCCTCC




CAGCAGCTCAATAGTTACAG




GGGAGTGGCAGGTCCCTCCC




GGCCACGTCTTGGACCCGCC




CCCCGGCCGTGGGAATCGCC




GCCTAGCAGGCGGACAGACT




GGAGAGGTGGATTAATGACC




CCAGCAAAAAGCTGGCATGT




CCAAGAGATTTAAAATATTT




TTTTTATGTAACAGCTTTAG




CCAAAGCTGTTCTAGGGTTC




AGAGGAACTGCCACTCAGTC




GGAGTGGCGGAGGCCGTAGC




CCCGCCTCCTCCCCCCTAAT




TGATAGACTGACTTCTTGAC




TAATGGCCAATCTCTAAGCA




GAGGGGAGGACCTTCCTATT




GGCCAGAGAGTCAGCTTTCA




AATAAAAGAGGCGGCTCTTC




CGGCAACAAAGAAAACAAGG




CGAGCCTATAAACAAAGCCA




CGTGGGCTTCAAGTTTCCAC




GGACGCAAGGTTGTGCAACG




CAGTAGTCACTTATTC






SynP57 (ProA14)
72



PCT/IB2019/0590
GCTCAGGCTCTTGGGGACTG




GGCTCCAGCCCTCTGGGATC




ATCA90TTTGCTCTAAGAAC




TGGCCTGGGTGCAGCTCCAG




ACCAAAGGCAGCAATTGTTC




AGAGCCCTGAAAGCGCCAAG




GCGCCAAGGCTTCTTCTACA




TACTCACCTCTGACCCACCA




GCCCCCCACCCCAGCCCAGG




TCTGACGAAAGGTACCTCTC




TCCACTGCAACAACTGGGGT




GTGGCAGGCTCTGGTTTATT




CGCCTTGTTCTCCCTTCCCC




AACCCCCCTTTTCTCATCCC




CCTAGCAACCAAACTAGATC




CATCAAAGAGCAGGACCTGG




CAGCCGAGCTGGGAGAGACT




AATAGCCTGGAAGGAAGGCG




GGGCCTGGAGAGGAACGGAA




GCCTAGGGATGCAAGCCAGC




ACTGGGCGTTGGCTCTGACC




CATCTCGGAGGACACACGGA




AGGTGGGGGAGTTCTCTGCT




CTGCAGTCTGCAGGGAGCCA




TCCTCCTTATCCCAGTCAGG




CATCCAGCCTAGAACCCCAA




GCCTTCTTCTCTTACACCCG




TCTCTTTCTCAGGACCCAAC




TGAGGTAGACTCATCCTGTT




TGAGAGTCCCAGGGTCCCCA




GTGGTAGCAGACACATGGCT




CTCAGCAAACCCAAAGGGCT




TCAGCATCCTTTCTCCTGCA




GAGAATCCAGACGGCCTCTG




TCCACTCCTGGGACTGCCTG




TGCTGCATTCTGGAAGTAGT




GTGTCACACAAAGGTCAGAC




ACCAGCCTTTCTGCTAACTG




GGGTGTGGGGGCGCTGTTAA




GGGGTGTAGCTGTGTATTCC




TGTCATGTCTGTGCACACAT




GCATATTTGTAGCCTCTACA




AAGCTGGCTCAGTGAGTATT




GGGCAAGTTATCTGTGGACC




TGTCGGAGGACTTCTCTCTC




TAACAGGCTGTAGTGGCTGG




GTATCTCTCCCATCTCATCT




CCCTTTATCTGCACCATGTC




TGGGTACCTGCATCTCCTCT




GCACTGGAGACTGGTGCCTA




CTAGTCTATATGTCTTTCAG




CCCTGGCAGCTGCTATCCCC




CACCCCCCTCCCCTTCCTAC




TTCAGGAATTCCTCTGGTTC




CCGTAAGGCCCGTGACTGCC




CAGCAGATGGTGTGGAGGGG




GCACCAATCCAGTAAAGGCT




GAAAGTGTACCACAGGCCCA




CTCAGCCCCAACAAGAGTGG




GCACCTCACAGGCCCTTTCA




TGGCACAGACCCTTGGAACC




CCGACATCCTCAGCACCCTG




TGAGGTGCCCACTCTTGTTG




GGGTGGGTGTTACGTCCGAG




TTTGGGGGCTGTGTCTTTAA




GATGGAAACATCACCATGCA




ACTTCTGCTGGTCCAAGGGC




GGGGGTGGGGGTGGGAGAGC




TGGTCAGTCCATTAGCTGCA




GAGCTGGCGCCAATCACCAG




CCCTTTACCGTGCCCTGGGG




AGTAGGCAGAGATAAGCTCT




TCCCCAGCTCCCTCTGCCTC




AGCCCTCGGTTGTGGCCAAT




GATGGGGGGCAGTTGACAAC




AGGTGAAAGGAGAACCCCAG




TTTCAGGAGACAGGAGGAGG




CACGAATTCCCTGGCTTAGG




CCAGGTTAGCTCTCCCTCCA




CCTACCCCACTTCTCATTGC




TCAAAACTTGCCCTTTTCCT




CAGGTCCTCATATTCCCTAA




TTTTTACCCCCTCTTCTGAG




AGGGCACCCCAGGTCAAGCC




ATGTCCTCCCATTCTAGGCT




CCAGCGTTGGATGCATGCTC




TAAGGTAGACCTTAGCCCAC




CTCCATCACATCCCGGATCT




CAGCCAGCAACAAGGGGGAA




TCAAGCAGGCAGGGTGCCAG




CAACCAGGAGAGGGAAGGGG




TGGTGTCCTCTCTCTGCAGG




GTGGGGCATCCCCCTCCCCA




CACAGCCCAAGGCTGAAGTC




AGGCCAGTGGGAGGAGCTGT




CGTGGCCCCCCACCCCCCCT




CCCCGGAGACCGCAGGGCTA




TAAAGCCGCCCCGCATCGGT




CTGCAGCTCCTTGCCACCCG




GCCTAGTTCTGCCAAGCGCT




GA






SynP78 (ProA27)
73



PCT/IB2019/0590
GGTCAGTAAAGTGAATGAGA




TGAGGTCATGTTCCATGTGG




GATA91AACATGGTTAGTAG




ACTGCACCAGGTGATGGGGG




AAAGGAGAGAAAAAGATGTG




AGAGGGGAGGGGACCAGGAG




AAGGGACCAAGAGCGAAGAG




AATCAAGATAGCCAAGAGAG




CAAATGGCCAAAAATGGCAG




GGTTACATAGGAAAGAGAAG




CTTGCAGAAGAGTAGCCAGG




GCCCCAGGGAGGAGATGTTT




AGTTCAGGGGAGAGGTGAGA




AAAACTGAGAAGAGCTACAG




GTACTGATGGAAGATAGAAG




CCAGAATGAATTTTGGTGTG




CTAATAGGTACCACAGTTAG




CCAGTTGCTTCTTTGGAACC




CAACATAAAGGACTTTTTTT




CCTCCTCCTCCTCCTCCTCC




TCCTCTTCCTCTTCCTCTTC




CTCCTCCTCCTCTTCCTTCT




CTCTCTCTCTCTCTCTCTCT




CTCTCTCTCTCTCATACATA




GGTGTAGCTAGAAACTGGAG




CACTGTGACCTTATTCAAGG




GGCCACAAAGGTGCCTCTAC




ACCCCCATGCACACACCTTA




CAAAAAAGGATCTCTAGCAT




TTTTGCAGTCTTTCAGTGGA




ATTCAAAAAGGAATCATTTG




ATTGGTAATGAGAATGTTTT




TCCTCTCGGCTTTTCACAGC




TCAGGAAGGAGTAATTTATC




AAGTACTCTGCTTGGAGAAG




TAGAGCATAGCCTGGAATGG




AGGAACATGGATCCCTGTGG




GCGCTTGCAATCTTCTGCTT




TCATTTTGTCAGTCATGCAA




GCACAGTTTTAAGTACTCAC




CAGGGGAGAAAAAGCTCTCT




TCCCAGCTTGTGCTTGCCAG




TAAGACACTCTCCTTTCAGA




GTCAAGGCTGCAGCTGGCCT




TGGGAGCTTCTTCCTAGGTC




TCTAGCAAGTGGAGCCAGAG




CTGCTACAGAGGAGGTAAGG




GCCATGGGCAGCATCCCAGG




AAGGTGGTTGGCAAGAGGGT




GGGAGACCTCTCTGCACGTC




CTCCTGGGACCTGCATGCTC




TCCCCATGCCTCACCCTCAC




CCTAGTTGTGACACCAGACC




AAGAAAGGCGATGTGGTTCC




CCAGCCACATCCAAAGCCAA




GCCTTTGGCCAGAGGAAGGA




AGGCTGTCCCAGTCATGGTT




TTGCTTTTGTTTTTCCCCTC




AGCTTGCTTTTTGAACCTCT




ATCTGAGAGGACAGTGCCCT




GCTGCTCCATAGCTTCAATC




CTGGCTGCAGGGATGGAGGT




TGGGAAGGAAGCTGGTGAGA




TCCTAGATCCTCAAAAATGA




TAACTGGATGTAGCCCTGGT




AGCTAAACATCCACAGATAC




ACAGCTGTGAATGGCCTGTA




CTTGGACAAACTGGAGTTCT




GAGTTTAGGATCCAGATGGA




TTAGGAGTGAGTCCCAAGCA




GGACTTGCTTACCCACTTCA




GGGACCAGCTTCCTTCCAAA




TAGACACAGGAGAGTGTCTC




TCTTCCCTGTCACCCATAGC




CTGACTAGGGAGAGTGAGTG




GCAAACCCAAATTTGCATAT




TTCATTCCAGCTGAGACTAA




AGCCTTGACCTCAGGCATGG




AGGACTGTAACCACTGAGAA




CTAATATGATAACATTGTTA




TCTTACGAGAATTCTCCTGT




ATGCAGAGTAGGTCCATATG




GTTTTCTGGATTCATTGCAC




AGATGAATTCGAACCTGACA




TCCCACAGGGAGAGAGATGT




GTGAGCTCCAGACAGAAGGC




TGTGTAGTGTGGGCACTGTG




CCAGGACCACCAGCATAATT




TCTCCTAAGACACACCTGTC




TAGAAAGTTAGAGCCATAAG




ACAACCTTGGCCCTGGGCCA




TGTCACTGCTCATATCTGGC




CCCAGCTTTGTGTGCCTAGA




GGAGTATTCTTGCCTCTTTG




GAAAAATTGGAGGGAGCCGG




ATTAACCTACTGCAGGTGCT




AGGGGTGGGTGGCAAAGCTG




TGATAGGTGTTGGTAGTGTT




GTAGCTGGCAAAGCTGATCT




CCTGTCTGTTGCAGCCTTCA




CC






SynP151
74



(ProC29)PCT/
CTTACCGATTGCAGACGAAA



IB2019/059092
CCGAAACTTAGCTGACATCG




AGTCGAAACCGAAACTTTTC




ATGGCCGAAGGCGAAACCGA




AACTTGCGTCCGTGTAACGC




GAAACCGAAACTTCCCGAGC




ATCCTTACGAAACCGAAACT




GCAACCGGCTACACTCGAAA




CCGAAACTACTAATGATACC




AACCGAAACCGAAACTCGGT




AAGTGAAACTGCGAAACCGA




AACTTGGTGGACAGCCTTCC




GAAACCGAAACTGGACGATG




TTCGTTCCGAAACCGAAACT




ATATTCGTGCCCAAGCGAAA




CCGAAACTAGGGGGCCGATA




TCCCGAAACCGAAACTACAG




GCCCCGCCCGTCGAAACCGA




AACTTACGTCTCAGGAAGTC




GAAACCGAAACTGGCTACCA




CTGACCACGAAACCGAAACT




TCTACTGTTCCGTGACGAAA




CCGAAACTGACGGACAAGAG




TACCGAAACCGAAACTTAGT




CAGGCGTCCATCGAAACCGA




AACTCAAAGATTCAAAAAAC




GAAACCGAAACTTTCTGTTG




GGATGTCCGAAACCGAAACT




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynP194
75



(ProB15)PCT/
GCCCCTGCCTGCGCGAGGGC



IB2019/059093
GGGAAGACAGCCCCCGGGCC




CTCCTCCTCCCTCTGCCTTT




TTAAGGGACGCCCTCCAGGG




CGACCCCGGAGGGCGGACTT




GCCAAGCTGAAGAGAATCAG




TCAAAAATCCGCCCACAGGG




GACACATCATTTAAATAAAT




GTGTTTCTTTGCCCGAACAG




AAGTTCAGATAGGCTCGATT




ATCATTAATTCTGGGTTTCA




CGTAACGAGAGGAAACACAG




GTTGCAATAAAAATAAAAAA




ATGGTTTGAAATCAATTTTA




ACTCATTTTGAACGTCCTCA




CACGTTTGACAAACCGATTT




GTTTCAGGAGACTTGCTAAT




ATCTAAATCGGTGACAGGGT




GTTTGCTGTGAGTGTGGCTC




TGGAAAAGTTATTAAGCGTT




ATAAAAAAAATGATGTAATG




AAATTCTAATTAATGGGAGG




GAAGTGCCAACAAATCACTC




CTTAAAATATTAACGCTATC




AAAGAACAGCTGGAGAAGGA




GGAAACTTGACCCTTGGGGG




GGAAAAGAACCCCGAGCACC




CTCTGAATAAGTCAAATAGA




CAAGGGCTCTAAATGAGGAA




ATTAATTATTATTTTCCAAG




TTGCACCATTGGCAGGGCAC




ACTCTCCGTAGGCAAACAAC




AAAAACCTCTCTCACTCACA




CAAAAGCCCACCTTGCAAAT




GAATGGAATATTAATGATTA




GGAATTTGGGGGCGGGCCCT




GGCCTGGCGAGCTGGTGATC




CTTGCAAAACAACAACTCCC




TGGTACCCAGATGCACGCTG




CCAATGCTCCAGGGAAGATA




ACCCAGTGGAAAGAAGGAAG




AGACTGCAGAAATAACTTCT




GGGGCATCGCTAACTTATTC




AGCAGGTCTACTTTATGGGT




TTAATGAGAAACCCAGGCCA




AAGAAGTCCCCAGATGGATA




AACTGATCTTTTATTCTGAA




AGAGTTAAGGCTTTGCCAGC




TCTGCTTAACTGCTTTGCCA




GTTTGGTTGAATCCAAAGTG




TATTAAAGCGGCCGAATTCT




AAATCTTTCAAAGGTGGGAT




TTATAAGGGAAGTGCTAACA




CGACCTCAACCATGCCAGGC




TGCCAGGAATTATACTGGGA




CCAAGAGCATGCTTTTCCAC




ATTAGAGCCAGAGATTGTGC




AACTGTCAAACAATGCGGGG




CGCTGGAGGAGGCGGTCAGG




CTGAGGACCAGTGATCTCCC




AGCCCCCTCTGTTTGGAACA




GGGAATTTTGGACATGCAAA




AACACACCTTGTTTTAAACG




CAGAGGGCACTCTAAGATCA




AGGCTGAAATTCCCCCTTCC




CTCCTTAAGAAGATAAATCA




CCTGACTTCCTCAAAAGCTC




TGAAACACACCCTTTGGCCT




CACCTTGGCAGCCAAGCCAG




TCCAAGTTGGAGCCGGAGCT




GGTAGGGTTATCTGTGTCAG




GTTCAGATCTATTCAGGGGA




ATAGTTCTAGACCCTGACGC




AGGCAGGCTGAGGCCCTCTG




GGAACCCCACTCCAGCTACT




GGCGACTGTGCCTTTAAATT




GCTGCTTTCAGAGGGTGCAT




CTAGGGGGATGTGGGAGGGA




GAGAAACATCTTTCTACTGG




TCTCTTTCCTCCCTCCCCTC




CAGGACTTCCAGGGTTTGGA




GAGTGATTGCTACCCAAAGA




GAATCAGCAGCCCAAGCTCC




TCCCGAGTTGGAGGCTGGAC




CTAACACCCTTGACTCCAGG




CTAAAA






SynP5 (ProA9)
76



PCT/IB2020/
GCTGATGTGTCTTACTGATG



050538
ATGCATCTTTCAGGTGTGTG




CTGGTGGCCGGAGGATGCTG




TGAGTAGCCTAAGGTTGATA




CTCAGATGGTACAGCCACCG




CAGGCTGCTGCTACCATAGA




CTTCCAACAGCACTGGACTT




CCCCTTTTGTGTCTTTGTTT




TTTCTGGGTGCAGCTTGGTA




GCTCCTGTCTTCCACAGACC




TTTGTCTAGAGCCTATGTAC




AGCCTCAGAGGGTCCTTCAC




TGAAGCCGAGCTTGCAGCCC




CCCCTCCCATGCCTCAGAGA




CCCTTCAGGGCTAAACCTGT




GCCTTGTTCCCATCTGCCTC




TAAGGCCTATAGAAGCATAC




AGCACACCCTCTGTCCACAG




TGCATCCATGTTTAGAAAGC




CAGAAGGAACAGTTAGAAAC




TTAGAAGCCATCTATTTTTG




TCCCCTTAATTTCAGGGGAT




GGAAAGTGGGGCCTTGAGGT




GAAGTGAGTTGCCTAAGGTC




TCCCAACTAGATAGGTTTCT




CTCAGCTTGCTGGCCAGCAC




TTGTACTGCGAGGGTGATAG




CTGTAGAGTTTAGCTTTGCC




TGAAGCATATTCAGGCAGAG




GCCAGTCAGCCAACCTGCCC




TTGGGGAAGGGCTTTTGGGG




GTCAGGGAGGGACATGTTTC




TGGAAACTTCCACAGGAGCC




TGACCAGTTCAGACCCTACT




CAACTCAGGAAATCCCTTCC




CAACTCCTGGTTCCCAAGAC




TCTACCTTTAGCTAGCAGCT




GCTCTGACCCTTCCGACCTT




CTAATGTTCCCAGAGCTGCT




CTGACTGCATTTCATTTGCC




TGTCGGAGGCATGGCCTGCC




TTGCTGGTTATGCTCTGCTG




GCCTTTCCAGAGGGCCTCCC




GAATCTGCTTTGCCCCAGGC




AAGGCTACCCCTTCCCTCTT




AGAGCCATTCTGCCTCTTCA




TTCCACCCAACCAGCAGATG




ATCTCTGGATAATTTATGCA




GCAAATCCTCTTTAATCTTT




AATCTGGGGTCTTGAACAAA




AGGAACCTGCCGCTAACCTG




TGTCTTTTTCACAGCTTGAG




TGGAGGTGGGGAATGTCTGA




CATTTCCCTCATAGGAGGTG




TAGTGTGGGTATGAGCAATG




AGTAACTTGGATGTTCAGTC




AGCTCACTCCCCTAAATCCT




TGTTGAATCTCCGGGAGGTA




ACTCCAACTCTTGCCACAAC




TCACCCTCCCAGCAGTCTCT




CTTCCAGGGATGCCAGGTGG




GCAGGTTTATTTTTCTGTGA




GAACTGACTCGAGTTCCTAC




GGTGCAACACTGCCTGGAGA




GACTATTTTAGAAAAAAAAA




AAAAAAAAGCAGTTGCCCGG




TGCAGCCCTGGGCTTCAGGA




GAAGCTCACGCAGGCACCGG




TTGTGGCTGCAGAGGTACAG




GCCCCGCCCCAGGCCCGACT




AGCCCCGCCCCACCCTGCCA




CCAGCGGACCGCACTCTTGC




AAGGCTAGTGGGGGCCCCCG




CGGTGCAAAGAGGTCGGTGC




GCAGCTCGCATCACGGGTGA




CTGGGGCGCTGTCCAGGAGG




AGCTGGCCCGGCTCGGGCTG




CAACCATGGTAAGGAGAGAG




GACAGCCAGAAACGCAGGGC




CTGCCACTCCGGGGCTGCTC




CGAGGGGACACTCGGCGCTG




CAGCTCTGGCTGGGCAGGGC




GGGAGGTACTGTCCCCGGCT




CCGGGTTCCGAAATGCACTG




CTGGCGCTAGGCGCGCCGCG




TTGCCGTTCTCAAGTTATTC




TTTCTGAGCAGAGCTGCTTT




GAGCGGGCCGAGACCCCCAG




GGTGCTGCCCAAGGTCTTGG




AGGAAGGACTAGGTCAGTTT




TGTGGGAGGTGCCTGCTGGT




AGCCTCTCGTGATGGAGATA




AGGATGGTAGGGGGTCCCCG




CCCCGTGCCCGAATAAGCTG




TGTTACCTGGATGGCCCTTC




CTCACCTACCTGGGGTACAG




AGACCAGCACCAACTTCCTT




TGGAAAACACAGAGGAAATC




CGTAAACACAGCCAGCCTCA




CTAGAAGGGATGATGACAGA






SynP35 (ProC8)
77



PCT/IB2020/
CGAATCCGCGATAGCACCGC



050539
CTGAGGGGATTGAGGACTCC




GTCAGACCGCCTGAGGGGAT




GGAAGAAAGATAATCACCGC




CTGAGGGGATGGCTCGGTTT




TGCACACCGCCTGAGGGGAT




ACGAAATTCTATCGCACCGC




CTGAGGGGATAAGCTCGTTC




CTATGACCGCCTGAGGGGAT




AATCTCCTCAATACGACCGC




CTGAGGGGATTATAGAATGC




ATTCAACCGCCTGAGGGGAT




GAACTACCGGTTTTCACCGC




CTGAGGGGATTGAGCTCCCA




CGGCTACCGCCTGAGGGGAT




AAGGCCAGAACTGTCACCGC




CTGAGGGGATTCTGACTAAT




TCGGGACCGCCTGAGGGGAT




AGTTTCGGTCTGGATACCGC




CTGAGGGGATAACCTCTCCG




CGGTGACCGCCTGAGGGGAT




GCGCCATGGCGGTTAACCGC




CTGAGGGGATATTCCGCCTT




CTACAACCGCCTGAGGGGAT




AAAGAGCGAGCCGAGACCGC




CTGAGGGGATCATCCACGGG




TCTCTACCGCCTGAGGGGAT




TCCCCTACGAGTTGGACCGC




CTGAGGGGATTCTAACTCAG




TGGCAACCGCCTGAGGGGAT




GCTCGAGATCTGCGATCTGC




ATCTCAATTAGTCAGCAACC




ATAGTCCCGCCCCTAACTCC




GCCCATCCCGCCCCTAACTC




CGCCCAGTTCCGCCCATTCT




CCGCCCCATCGCTGACTAAT




TTTTTTTATTTATGCAGAGG




CCGAGGCCGCCTCGGCCTCT




GAGCTATTCCAGAAGTAGTG




AGGAGGCTTTTTTGGAGGCC




TAGGCTTTTGCAAA






SynP66 (ProA21)
78



PCT/IB2020/
AAGGAATCCCAAGTTTTAAA



050540
AATTCGTAGAGAAGCCAAGA




GGTGGCGCCAGGCGAGACGC




ACTTCCTGGGAGGCTGAAAG




TCGGTCGTAGATGCTGCAGG




GGAGCTCTGTCCTGATAGGG




GTTATTCTATCCAAACCTCC




TCTTTCCTACCTTGTGAAAT




ATGTGTCAATTCTCCTTTCA




CCCCCACCCCACCCCCCTCT




TAACTTTCCGGACACCAAAG




AAATCTTAACTTGTATTCAC




ATCTTTTATTCTTCCTAGAT




GGGACTGGATGAGGCTTTGG




AAGAACTTTAAGACGGAAAC




TTTTTTTTAGGGGATGAAGT




ATTCGCAAAGCGATAAAACG




TTGTGTGTGTGTGTGTGTGT




GTGTGTGTGTGTGTGTGTGT




GTATTTTAAATATATATATA




TATTTTTAAAAAGTCCTTAC




TCTGAAGCTCAGTCGTGGGA




CAGAAAAGCACTCTGAGCTC




CTGTCTCCGCAGGAGTGATG




ACCTGGCACATGCATTATTC




TGTTCATTTGGCTTTTATCC




CGTGCCCTTGTTTGGCTTCT




GCTCCTTTGTTTTGGCTATT




TATTGCTACTTGATAGGAGT




AAGGAGGGCAGAAAGACCTC




ACAGAGGTTATGGAGGAGAG




ATTTCACCATCTAGCTTGAA




ATTATCTGTGGTCTTCACAC




TCACTAATGAGGGACTTAGG




ATGTACATTCCGATCGGGAT




TTCTAGTCCCGTGGGGGAGC




GCACACCAGCCACATTCCTG




AGACGCCACGCAGCCTCCAT




GCTCCACTAGCAAACTCAGT




TCCACCACAGCAAGTTTCAC




TTGATCCCACAGGACCTGCC




TGGACCCTTTGTTGGGTGGG




CGGGAAGCCCCTGGACCCCT




CACCCACCTGGTCACATGGC




CTTTCTATGGCCCCTCCCCT




CTCTTTCTTTGGAGTCCGCC




TTTTTCTCATGGTGACAGTA




ATTGTTTCTACAGTCACCCA




TCACTCCTCCTGCCCGGCCT




CTCTGCTAGGGGTCAGTGTC




CTCTTCAGTGACAAAAGGCG




CCCTAGATCTGGGCTCCCTG




GGGAGGGAGGTGGCTGGATC




TGGTAGTTAGAATGCTGTCT




CTCCCTGGTGCTGCGACAAC




CCCTCCCCCGCTGTGCACAC




AAATGGGCTTTATCCGGCAA




ACAAAACCGCACCCCCACCC




CAGGCTACACAGGCACGTGG




ACCTAAGCCTCACCAAGGGA




AGGGGGTGGTGACAGGCGCC




AGAGAAAGACGAGGCAGAAG




ACAAATATTCTCCTCGCCCC




ACTTCTTGCTCTCCACAATC




CAGATTTTAAAGTTTGACTT




TCCACTCCCCACCTGCTCCC




TGAGCCTCCAACTTCTGTTC




TCCTATCTCCCGAATCTGAA




TTCTTTCTGGTTCCAACCAG




CTCAACTTCTCTTGGTTTCA




GAAACAGGTTCCCCACCAGC




AGTCCCATACCACCCAGGGA




TGTGCTCCTCAGGCAGGGGA




ATGAGAACACGGTGTCCTGG




GAGGGAGAGGTGCGAAACCC




CCCTTCCCTGACCGAGAGTT




CCAGGGGACACCCGTACGAG




CGGCAGTGTAAATAGCAAAG




GAAGAGCTCACTCCAGGGTC




CTGAGCCAAGGCCAGGGCGC




TGGGCTCTGCTGGGCCATCC




TGCATGCCTAATCCGCTATT




TAAGGAGCTGCTCGGCTGCA




GCCCAGGCACCACCCCCCTC




CTCACGTACACCGGTTTCGA




GCCACCTTAAAAGCGGGAGG




CAACTGTGAAGTTGCTGGCC




AGTAAGTGGTGTGGAGATTA




CGAAGGGACATACGGAGAGG




GCAGAGAGAGGAAGAGAGAG




AAAGTGAGAGAGGAAGAAAT




TTATCCTGGGATCCAGAAGT




TCGTGTTAACCTGTGGAAAA




TCAAGTCCCTGGAAGTCTGC




AGAGACAGAGACAAGAAGAA




AAGAGATAGAACGCCAGAAA




CTCCTCTCTCTCCCTCCCTC




TCCACCTCTCTCTTCTAAAC




CCCAAATTCCTGGTCCCTTG




TACCCCATTGTGGGGATAAT






SynP166
79



(ProA36)PCT/
GGGAATACGTATGTAGTTCC



IB2020/050541
TGGGGATGCCTTGAAAAAGA




GAAATCCCAGTGTGTAAGGT




CAGTATTGTATGGAGTACCA




GGTAATAGGGTGGCATCAGA




AGGAAGGGGTGGGGTTTGCT




TTCTAAAACTTACTATACAC




CCCAACAGTCCTCTAGTCTC




TAAGGAAATGGCAGGGGCAG




CTATGAATAACACATAAACA




CAACACCAAAATGTATCTAA




AATTACAACCCCTGAGACTA




CACTCAAATGACACATTCAC




CATTGCCAATGTGACAGGCC




TCTCTGTCTCTTGCCACCTG




CCTGGTCTGCCTGCTCACTC




CTCCTAGGCAGCTTTATTCT




ACCTTTGTTACTTAGGAACA




ATAACACCAGGGCTTAACTT




ATAATAGAGACTCACAACGG




ACCCAGGTCCCCATGACCCA




GTCTTGCCTTGAACACACCA




TAAGTAAACATGTATAGAGC




GCATCCAACACACTGAACTT




TGTAACTCAGGCTTACCCAC




CTCTGTCCGCTCAGAACACT




CACGTTGGACAAAATCCCGG




AGAAATAATCTCCTGTGGTT




GTATAAGGCATGTTGTGGTA




CTGTGGTAAAGTCAAAACAT




TTAAACTGTGGTAGATTCAA




AACATTTAGGTGAGCCTATA




GTGAGTCTGGAGCCGTGTTT




GTGTGTGTGTGTGTGTGTGT




GTGTGTGTGTGTAAATGAAT




GTATATATGTGTATCTGTGT




GTGCATGATGTAAATGTGTG




TATGTAAATGTGTGTATATG




TGTATATGTATGAATTTGTA




TGTACATGTGTATATGTGTG




TATATGTGCATATGTATGTG




TCAGTGTCTGTGTGTGCATG




TATATGTGTGTATGTATATG




TGAGTGTCTGTGTGAATGTA




CATGTGTATCTGTGTGCATG




TAAATGTTTATATGTAAATG




TGTGAATGTGTGTGTGTGTA




TATGTGTATATGTATGAATA




TATGTGTATGTACATGTGTG




TGCATGTGTCTGTATGAATA




TGTGTTTATATGTGCATATG




TATGTGTATGTTTCTGTGTG




TGCATGTATATGTGTGTACA




TCTATGAATATGTGTGTGTG




TGTCTGTGTGTCTGTGTGTC




TGTGTGTGTCTGTGTGTGAA




TGTATATATATGTGTCTCTG




TGTGTATGTAAATGTGTGTA




TGTGTGTATATGTGCATATG




TATGAATGTGTGTATATGTG




TGTATGAATAGGTGTATGTG




TGTGAATGTGTCTGTGTGGG




CATATATATGTATGTATGAA




TGTATGTATATATATATATA




TATATATATATATATATATA




TATATATATATATATTGTGT




GTCTGTGTCTGTGTGTGCAC




GTGTGTGTGTGTGTGCACAT




GTGTGTGCACGTGTGTGTTC




AGCACCTTTTCCAGCCAGTT




TGAGCTATTTTGTACTGTTC




TGGCAGTGGAGATAACAACC




CACAGAACACAATCTTTCCC




TATCTGGCACTTCCATTCTG




GCAGACAGTTTGGGGTTTCC




CAGCAGCGGTGAGGAAGGAG




CCATCAGAGAGTGATGGATA




AAAGGTCTTGCTGAGAAGGT




GAAGTGTCTAGGCCCAAATG




TGACTGGGGGAGGATTAGAA




AAACTCCCATGCAGTGTAGG




TTAAGTGGTAGGGCTGCCTT




TAGACCCTAAGCTCCCAAAC




TCCTGCACTATAAGGTCCCA




TGGGTGCCCCTCAGATGGGG




AAGACAAACAGCAAGCAGTG




TGGCTCTTCGGGGGCTTAAA




TGCCGAGGATGCTTGGTTCA




AGGGTCCCTCCTTGTTCCTT




TCTTCTCAACAAGCACAGGA




AAGGTAAGTGGCTGCTCTTG




GCTCTTTATTTTAATCTCAG




AAGGGTGCCCCTCCTCCCTC




CAAGGACTGGGCAGACCTGG




CCGCAAATCCCCCCTAATCC




ATCAGCACCTGGGTCTCCAC




CCCATAGCAGCACACAGCCT




TGTTAGCCAGGCGACCACAC




TTGTCCCTCCCGCCCCCCGC




GGCGCCTACTCTCCCTCACC






Dalkara
80



WO 2017/093566
CACCCACAAGCCAGTTCCTG




TCCCTGAGGACTTGGCTCAG




GGACTCTGGGAATGTGGTAG




ACATGGGGTGGCCCCACCAA




ATGCATCCTTATGGGAACCT




GCTCCCTGGGAGCCATGAAA




AGAGCGTGGACTTCGAGGTG




GGGCCACAGGAAGTGGTCAG




GTCCATCTCAGGGGACCTGC




TGCCCATCCACACTGCTGGC




CAGGAAATGGGGGGCAATTC




ATGCCTCCTCAGCACCTTCA




GCACTGGGCGGCTCAAAGAA




GGCAAGGGACTATTCTGGGG




TCACACAGCATGCAGCCAGA




GGCCAAGGCATGAGGAAGTC




CTTCATTTCCCCACCCCCAC




CCACCTCAGATCCTCCAACC




GGTTTCATGGCAGCCCAGGG




TCCAGCGGCATCCAGGATGC




TGGTGGGTAGCTGCACAGCC




CAGGCCGCGGGAGGTTGGCT




GCTCTCACCTAACAGGCCTA




TGTGGCCCTGACCCCTACCT




AGGAAGCTGGGGACAATGGC




CAAGGCGCCTCCCCTCTCTG




TGCCTGTCTGTCCAGGTGCA




GCATAGACACAGCACCCCTG




GGGCCAAGAGCACCCAGCCA




GGGCTGCCCCCATGGGTGGG




CAGGGCAGTAAATGAATGAG




GGACAGGTTGGGAGGTGGCC




AGCCCCCTCCAGCCCATGGA




GGGCACGGGGCAGGAGAGCT




GGGCTGAGCCAGCAGGAGCC




CAGGGAGCCTGGTCTCTGCC




TTCCTATCCTGGAGGAAGGT




GAGGCTGAACCTCCTTCCCT




CCCTCCCTCCCTCCCCGCCC




CCACTGCACGCAGGGCTGGC




TGGGCTCCAGCTGGCCTCCG




CATCAATATTTCATCGGCGT




CAATAGGAGGCATCGGGGAC




AGCCGCTGCGGCAGCACTCG




AGCCAGCTCAAGCCCGCAGC




TCGCAGGGAGATCCAGCTCC




GTCCTGCCTGCAGCAGCACA




ACCCTGCACACCC









Each one of the above references is incorporated by reference in its entirety.


In one embodiment, an AAV vector genome comprises a promoter operably linked to a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, wherein the promoter comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 55-80. The promoter can target the expression of CYP4V2 in retinal cells, e.g., non-human primate or human retinal cells.


In some embodiments, the vector genome, e.g., single stranded vector genome, may comprise an intron sequence. For example, the intron may be a human growth hormone (hGH) intron, Simian Virus 40 (SV40) intron, or a human beta gobin intron, e.g., a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:9, 10, or 11, respectively.


In one embodiment, the vector genome, e.g., single stranded vector genome, comprises a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, e.g., human CYP4V2 coding sequence. The CYP4V2 coding sequence can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49. In one particular embodiment, the vector genome comprises a recombinant nucleotide sequence comprising a CYP4V2 coding sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:14.


In addition, the vector genome, e.g., single stranded vector genome, may include a regulatory element operably linked to the heterologous CYP4V2 gene. The regulatory element may include appropriate transcription initiation, termination, and enhancer sequences, efficient RNA processing signals such as splicing signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency; sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of regulatory sequences are known in the art and may be utilized. Regulatory element sequences of the invention include those described in Table 2, for example, Hepatitis B virus regulatory element (HPRE) and Woodchuck hepatitis virus regulatory element (WPRE), which can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:16 and 17, respectively.


In one embodiment, the vector genome, e.g., single stranded vector genome, comprises a polyA signal sequence. PolyA signal sequences of the invention include those described in Table 2, for example, Bovine Growth Hormone (bGH) polyA signal sequence and Simian Virus 40 (SV40) polyA signal sequence, which can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:18 and 19, respectively. In one particular embodiment, the vector genome comprises a bGH polyA signal sequence, which can have a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:18.


Therefore, in one aspect, the invention is related to a vector genome, e.g., single stranded vector genome, comprising, in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (iv) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), and (v) a 3′ ITR (e.g., SEQ ID NO:22). In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) an intron (e.g., SEQ ID NO:9, 10, or 11), (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (v) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), and (vi) a 3′ ITR (e.g., SEQ ID NO:22). In some embodiments, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (iv) a regulatory element (e.g., SEQ ID NO:16 or 17), (v) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), and (vi) a 3′ ITR (e.g., SEQ ID NO:22). In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) an intron (e.g., SEQ ID NO:9, 10, or 11), (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (v) a regulatory element (e.g., SEQ ID NO:15 or 17), (vi) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), and (vii) a 3′ ITR (e.g., SEQ ID NO:22).


In some embodiments, the vector genome, e.g., single stranded vector genome, may further comprise a stuffer polynucleotide sequence. The stuffer polynucleotide sequence can be located in the vector sequence at any desired position such that it does not prevent a function or activity of the vector. In one aspect, the stuffer polynucleotide sequence is positioned between the polyA signal sequence and the 3′ ITR. Typically, a stuffer polynucleotide sequence is inert or innocuous and has no function or activity. In various particular aspects, the stuffer polynucleotide sequence is not a bacterial polynucleotide sequence; the stuffer polynucleotide sequence is not a sequence that encodes a protein or peptide; and the stuffer polynucleotide sequence is distinct from an ITR sequence, the promoter, the recombinant nucleotide sequence comprising a CYP4V2 coding sequence, and the polyA signal sequence. In some embodiments, the stuffer sequence can be a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:20 or 21. In various additional aspects, a stuffer polynucleotide sequence is between about 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-1,000, 1,000-1,500, 1,500-2,000, 2,000-2,500, or 2,500-3,000 nucleotides in length.


Therefore, in certain embodiments, the vector genome, e.g., single stranded vector genome, comprises, in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (iv) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), (v) a stuffer sequence (e.g., SEQ ID NO:20 or 21), and (vi) a 3′ ITR (e.g., SEQ ID NO:22). In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) an intron (e.g., SEQ ID NO:9, 10, or 11), (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (v) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), (vi) a stuffer sequence (e.g., SEQ ID NO:20 or 21), and (vii) a 3′ ITR (e.g., SEQ ID NO:22). In some embodiments, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (iv) a regulatory element (e.g., SEQ ID NO:16 or 17), (v) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), (vi) a stuffer sequence (e.g., SEQ ID NO:20 or 21), and (vii) a 3′ ITR (e.g., SEQ ID NO:22). In certain aspects of the invention, the vector genome, e.g., single stranded vector genome, comprises in the 5′ to 3′ direction: (i) a 5′ ITR (e.g., SEQ ID NO:1), (ii) a promoter (e.g., SEQ ID NO:2, 3, 4, 5, 6, 7, or 8), (iii) an intron (e.g., SEQ ID NO:9, 10, or 11), (iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence (e.g., SEQ ID NO:13, 14, 39, 41, 43, 45, 47, or 49), (v) a regulatory element (e.g., SEQ ID NO:16 or 17), (vi) a polyA signal sequence (e.g., SEQ ID NO:18 or 19), (vii) a stuffer sequence (e.g., SEQ ID NO:20 or 21), and (viii) a 3′ ITR (e.g., SEQ ID NO:22).


In some embodiments, the vector genome, e.g., single stranded vector genome, may also comprise a Kozak sequence. The Kozak sequence is a sequence that occurs on eukaryotic mRNA and has the consensus (gcc)gccRccAUGG sequence and plays a role in the initiation of the translation process. The Kozak sequence can be positioned immediately upstream of the recombinant nucleotide sequence comprising the CYP4V2 coding sequence. In some embodiments, the Kozak sequence is GCCACC (SEQ ID NO:12). Alternatively, the vector genome, e.g., single stranded vector genome, comprises a Kozak sequence of GCCGCC (SEQ ID NO:51), GACACC (SEQ ID NO:52), or GCCACG (SEQ ID NO:53).


In certain aspects of the invention, the viral vector comprises an AAV8 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:24, 25, and 26, respectively, encoded by, for example, a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:23 and a vector genome comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22; Hi) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


Iv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector genome comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain embodiments, the AAV8 capsid may comprise subcombinations of capsid proteins VP1, VP2, and/or VP3.


It is also contemplated that the viral vector of the invention may comprise an AAV9 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:28, 29, and 30, respectively, encoded by, for example, a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:27 and a vector genome comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


Iv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector genome comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain embodiments, the AAV9 capsid may comprise subcombinations of capsid proteins VP1, VP2, and/or VP3.


In certain aspects of the invention, the viral vector comprises an AAV2 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:32, 33, and 34, respectively, encoded by, for example, a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:31 and a vector genome comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxix) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector genome comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain embodiments, the AAV2 capsid may comprise subcombinations of capsid proteins VP1, VP2, and/or VP3.


In certain aspects of the invention, the viral vector comprises an AAV5 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:36, 37, and 38, respectively, encoded by, for example, a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:35 and a vector genome comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector genome comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain embodiments, the AAV5 capsid may comprise subcombinations of capsid proteins VP1, VP2, and/or VP3.


Methods for generating viral vectors are well known in the art and would allow for the skilled artisan to generate the viral vectors of the invention (see, e.g., U.S. Pat. No. 7,465,583), including the viral vectors described in Table 4. In general, methods of producing rAAV vectors are applicable to producing the viral vectors of the invention; the primary difference between the methods is the structure of the genetic elements to be packaged. To produce a viral vector according to the present invention, sequences of the genetic elements described in Table 2 can be used to produce an encapsidated viral genome.


The genetic elements as described in Table 2 are in the context of a circular plasmid or a viral genome, e.g., a singled stranded or self-complementary viral genome, but one of skill in the art will appreciate that a DNA substrate may be provided in any form known in the art, including but not limited to a plasmid, naked DNA vector, bacterial artificial chromosome (BAC), yeast artificial chromosome (YAC) or a viral vector (e.g., adenovirus, herpesvirus, Epstein-Barr Virus, AAV, baculoviral, retroviral vectors, and the like). Alternatively, the genetic elements in Table 2 necessary to produce the viral vectors described herein may be stably incorporated into the genome of a packaging cell.


The viral vector particles according to the invention may be produced by any method known in the art, e.g., by introducing the sequences to be replicated and packaged into a permissive or packaging cell, as those terms are understood in the art (e.g., a “permissive” cell can be infected or transduced by the virus; a “packaging” cell is a stably transformed cell providing helper functions).


In one embodiment, a method is provided for producing a CYP4V2 viral vector, wherein the method comprises providing to a cell permissive for parvovirus replication: (a) a nucleotide sequence containing the genetic elements for producing a vector genome of the invention (as described in detail below and in Table 2); (b) nucleotide sequences sufficient for replication of the vector genome sequence in (a) to produce a vector genome; (c) nucleotide sequences sufficient to package the vector genome into a parvovirus capsid, under conditions sufficient for virus vectors comprising the vector genome encapsidated within the parvovirus capsid to be produced in the cell. Preferably, the parvovirus replication and/or capsid coding sequences are AAV sequences.


Any method of introducing the nucleotide sequence carrying the gene cassettes described below into a cellular host for replication and packaging may be employed, including but not limited to, electroporation, calcium phosphate precipitation, linear polyethylenimine polymer precipitation, microinjection, cationic or anionic liposomes, and liposomes in combination with a nuclear localization signal.


Viral vectors described herein may be produced using methods known in the art, such as, for example, triple transfection or baculovirus mediated virus production. Any suitable permissive or packaging cell known in the art may be employed to produce the vectors.


Mammalian cells are preferred. Also preferred are trans-complementing packaging cell lines that provide functions deleted from a replication-defective helper virus, e.g., 293 cells or other Ela trans-complementing cells. Also preferred are mammalian cells or cell lines that are defective for DNA repair as known in the art, as these cell lines will be impaired in their ability to correct the mutations introduced into the plasmids described herein.


The gene cassette may contain some or all of the parvovirus (e.g., AAV) cap and rep genes. Preferably, however, some or all of the cap and rep functions are provided in trans by introducing a packaging vector(s) encoding the capsid and/or Rep proteins into the cell. Most preferably, the gene cassette does not encode the capsid or Rep proteins. Alternatively, a packaging cell line is used that is stably transformed to express the cap and/or rep genes (see, e.g., Gao et al., Hum Gene Ther 9:2353-2362, 1998; Inoue et al., J Virol 72:7024-7031, 1998; U.S. Pat. No. 5,837,484; WO 98/27207; U.S. Pat. No. 5,658,785; WO 96/17947).


In addition, helper virus functions are preferably provided for the virus vector to propagate new virus particles. Both adenovirus and herpes simplex virus may serve as helper viruses for AAV. See, e.g., Bernard N. Fields et al., VIROLOGY, volume 2, chapter 69 (3d ed., Lippincott-Raven Publishers). Exemplary helper viruses include, but are not limited to, Herpes simplex (HSV) varicella zoster, cytomegalovirus, and Epstein-Barr virus. The multiplicity of infection (MOI) and the duration of the infection will depend on the type of virus used and the packaging cell line employed. Any suitable helper vector may be employed. Preferably, the helper vector is a plasmid, for example, as described by Xiao et al., J Virol 72:2224, 1998. The vector can be introduced into the packaging cell by any suitable method known in the art, as described above.


Vector stocks free of contaminating helper virus may be obtained by any method known in the art. For example, recombinant single stranded or self complementary virus and helper virus may be readily differentiated based on size. The viruses may also be separated away from helper virus based on affinity for a heparin substrate (Zolotukhin et al., Gene Ther 6:973-985, 1999). Preferably, deleted replication-defective helper viruses are used so that any contaminating helper virus is not replication competent. As a further alternative, an adenovirus helper lacking late gene expression may be employed, as only adenovirus early gene expression is required to mediate packaging of the duplexed virus. Adenovirus mutants defective for late gene expression are known in the art (e.g., ts100K and ts149 adenovirus mutants).


One method for providing helper functions employs a non-infectious adenovirus miniplasmid that carries all of the helper genes required for efficient AAV production (Ferrari et al., Nat Med 3:1295-1297, 1997; Xiao et al., J Virol 72:2224-2232, 1998). The rAAV titers obtained with adenovirus miniplasmids are forty-fold higher than those obtained with conventional methods of wild-type adenovirus infection (Xiao et al., J Virol 72:2224-2232, 1998). This approach obviates the need to perform co-transfections with adenovirus (Hölscher et al., J Virol 68:7169-7177, 1994; Clark et al., Hum Gene Ther 6:1329-1341, 1995; Trempe and Yang, (1993), in, Fifth Parvovirus Workshop, Crystal River, Fla.).


Other methods of producing rAAV stocks have been described, including but not limited to, methods that split the rep and cap genes onto separate expression cassettes to prevent the generation of replication-competent AAV (see, e.g., Allen et al., J Virol 71:6816-6822, 1997), methods employing packaging cell lines (see, e.g., Gao et al., Hum Gene Ther 9:2353-2362, 1998; Inoue et al., J Virol 72:7024-7031, 1998; U.S. Pat. No. 5,837,484; WO 98/27207; U.S. Pat. No. 5,658,785; WO 96/17947), and other helper virus free systems (see, e.g., U.S. Pat. No. 5,945,335).


Herpesvirus may also be used as a helper virus in AAV packaging methods. Hybrid herpesviruses encoding the AAV Rep protein(s) may advantageously facilitate for more scalable AAV vector production schemes. A hybrid herpes simplex virus type I (HSV-1) vector expressing the AAV-2 rep and cap genes has been described (Conway et al., Gene Ther 6:986-993, 1999, and WO 00/17377).


In summary, the gene cassette to be replicated and packaged, parvovirus cap genes, appropriate parvovirus rep genes, and (preferably) helper functions are provided to a cell (e.g., a permissive or packaging cell) to produce rAAV particles carrying the vector genome. The combined expression of the rep and cap genes encoded by the gene cassette and/or the packaging vector(s) and/or the stably transformed packaging cell results in the production of a viral vector particle in which a viral vector capsid packages a viral vector genome according to the invention. The single stranded viral vectors are allowed to assemble within the cell, and may then be recovered by any method known by those of skill in the art and described in the examples. For example, viral vectors may be purified by standard CsCl centrifugation methods (Grieger et al., Nat Protoc 1:1412-1428, 2006), iodixanol centrifugation methods, or by various methods of column chromatography known to the skilled artisan (see, e.g., Lock et al., Hum Gene Ther 21:1259-1271, 2010; Smith et al., Mol Ther 17:1888-1896, 2009; and Vandenberghe et al., Hum Gene Ther 21:1251-1257, 2010).


The reagents and methods disclosed herein may be employed to produce high-titer stocks of the inventive viral vectors, preferably at essentially wild-type titers. It is also preferred that the parvovirus stock has a titer of about 1010 vg/mL to about 1013 vg/mL, e.g., at least or about 1010 vg/mL, 6.6×1010 vg/mL, 1011 vg/mL, 5×1011 vg/mL, 1012 vg/mL, 5×1012 vg/mL, 1013 vg/mL, 5×1013 vg/mL, or more.


Nucleic Acids for use in Generating the Viral Vector

The invention also relates to nucleic acids useful for the generation of viral vectors. In certain aspects of the invention, the nucleic acids useful for the generation of viral vectors may be in the form of plasmids. Plasmids useful for the generation of viral vectors, also referred to as a viral vector plasmid, may contain a gene cassette. At a minimum, a gene cassette of a viral vector plasmid contains: a promoter, a heterologous CYP4V2 gene, a polyA signal sequence, and 5′ and 3′ ITRs.


The composition of the heterologous gene and other elements will depend upon the use to which the resulting vector will be put. For example, one type of heterologous gene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include, without limitation, DNA sequences encoding β-lactamase, β-galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, membrane bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to which high affinity antibodies directed thereto exist or can be produced by conventional means, and fusion proteins comprising a membrane bound protein appropriately fused to an antigen tag domain from, among others, hemagglutinin or Myc. For example, where the reporter sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for beta-galactosidase activity. Where the reporter sequence is GFP or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer.


The heterologous gene sequences, when associated with elements that drive their expression, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and immunohistochemistry.


The heterologous gene may also be a non-marker sequence encoding a product that is useful in biology and medicine, such as proteins, peptides, RNA, enzymes, dominant negative mutants, or catalytic RNAs. Desirable RNA molecules include tRNA, dsRNA, ribosomal RNA, catalytic RNAs, siRNA, small hairpin RNA, trans-splicing RNA, and antisense RNAs. One example of a useful RNA sequence is a sequence that inhibits or extinguishes expression of a targeted nucleotide sequence in the treated animal.


The heterologous gene may also be used to correct or ameliorate gene deficiencies, which may include deficiencies in which normal genes are expressed at less than normal levels or deficiencies in which the functional gene product is not expressed. It is contemplated in the present invention that the heterologous gene sequence may be a CYP4V2 coding sequence. Examples of CYP4V2 coding sequences are provided in Table 2: SEQ ID NOs:13, 14, 39, 41, 43, 45, 47, and 49.


One aspect of the invention relates to nucleic acids that comprise a gene cassette comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the gene cassette comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain embodiments, the nucleic acid comprising the gene cassette may be a plasmid.


Methods for incorporating the elements in Table 2 are well known in the art and would allow for the skilled artisan to generate the nucleic acids and plasmids of the invention using the methods described herein.


Pharmaceutical Compositions

In one aspect, the invention provides pharmaceutical compositions comprising the viral vectors of the invention formulated together with a pharmaceutically acceptable carrier. The compositions can additionally contain one or more other therapeutic agents that are suitable for treating or preventing BCD. Pharmaceutically acceptable carriers enhance or stabilize the composition, or can be used to facilitate preparation of the composition. Pharmaceutically acceptable carriers include solvents, surfactants, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.


A pharmaceutical composition of the present invention can be administered by a variety of methods known in the art. The route and/or mode of administration vary depending upon the desired results. It is preferred that administration be subretinal. The pharmaceutically acceptable carrier should be suitable for subretinal, intravitreal, intravenous, sub-cutaneous, or topical administration.


The composition should be sterile and fluid. Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion, and by use of surfactants. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition. In one embodiment, the composition can include a buffer with 1×PBS and 0.001% PLURONIC™ F-68 as a surfactant, with a pH of about 6.5 to 8.0, e.g., pH 6.5 to 7.5 and pH 6.5 to 7.0.


Pharmaceutical compositions of the invention can be prepared in accordance with methods well known and routinely practiced in the art. See, e.g., Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed., 2000; and Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978. Pharmaceutical compositions are preferably manufactured under GMP conditions. Typically, a therapeutically effective dose or efficacious dose of the viral vector is employed in the pharmaceutical compositions of the invention. The viral vectors may be formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art. Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors.


A physician or veterinarian can start doses of the viral vectors of the invention employed in the pharmaceutical composition at levels lower than that required to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, effective doses of the compositions of the present invention, for the treatment of BCD as described herein vary depending upon different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Treatment dosages need to be titrated to optimize safety and efficacy. For subretinal administration with a viral vector, the dosage may range from about 1×108 vector genomes (vg)/eye to about 1×1012 vg/eye. For example, the dosage may be greater than or about 1×108 vg/eye, 2.5×108 vg/eye, 5×108 vg/eye, 7.5×108 vg/eye, 1×109 vg/eye, 2.5×109 vg/eye, 5×109 vg/eye, 7.5×109 vg/eye, 1×1010 vg/eye, 2.5×1010 vg/eye, 5×1010 vg/eye, 7.5×1010 vg/eye, 1×1011 vg/eye, 2×1011 vg/eye, 2.5×1011 vg/eye, 5×1011 vg/eye, 7.5×1011 vg/eye, or 1×1012 vg/eye.


The viral vectors described herein are mainly used as one time doses per eye, with the possibility of repeat dosing to treat regions of the retina that are not covered in the previous dosing. The dosage of administration may vary depending on whether the treatment is prophylactic or therapeutic.


The various features and embodiments of the present invention, referred to in individual sections and embodiments above apply, as appropriate, to other sections and embodiments, mutatis mutandis. Consequently, features specified in one section or embodiment may be combined with features specified in other sections or embodiments, as appropriate.


Therapeutic Uses

Viral vectors as described herein, can be used at a therapeutically useful concentration for the treatment of eye related diseases, by administering to a subject in need thereof, an effective amount of the viral vectors of the invention. For example, the viral vector may comprises an AAV8 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:24, 25, and 26, respectively, encoded by, for example, a nucleotide sequence with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO:23 and a vector genome comprising in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to one of the following sets of nucleotide sequences:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


In some embodiments, the vector genome comprises in the 5′ to 3′ direction nucleotide sequences with greater than or about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NOs:1, 5, 14, 18, and 22; SEQ ID NOs:1, 5, 9, 14, 18, and 22; SEQ ID NOs:1, 5, 14, 16, 18, and 22; or SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22. In certain other embodiments, the AAV8 capsid may comprise subcombinations of capsid proteins VP1, VP2, and/or VP3.


Subjects in need of treatment may include those who have one or more mutation in their CYP4V2 gene, e.g., Table 1. More specifically, the present invention provides a method of treating BCD, by administering to a subject in need thereof an effective amount of a viral vector comprising a CYP4V2 coding sequence (e.g., a nucleotide sequence encoding a human CYP4V2 protein, e.g., SEQ ID NO:15). In some aspects, provided herein is a method of improving vision in a subject with BCD, by administering to a subject in need thereof an effective amount of a viral vector comprising a CYP4V2 coding sequence (e.g., a nucleotide sequence encoding a human CYP4V2 protein, e.g., SEQ ID NO:15). In some aspects, provided herein is a method of preventing the decline of vision in a subject with BCD, by administering to a subject in need thereof an effective amount of a viral vector comprising a CYP4V2 coding sequence (e.g., a nucleotide sequence encoding a human CYP4V2 protein, e.g., SEQ ID NO:15). In specific aspects, the present invention provides viral vectors comprising a CYP4V2 coding sequence for use in treating BCD in a subject. In one embodiment, the viral vectors described herein can be administered subretinally or intravitreally using methods known to those of skill in the art. In one embodiment, the methods may include genotypying a subject to determine whether they possess one or more CYP4V2 mutation associated with BCD (see, e.g., Table 1), and treating a subject with one or more CYP4V2 mutation associated with BCD for BCD by administering a viral vector as described herein. In specific embodiments, a viral vector provided herein for use with methods of treating BCD comprises a CYP4V2 coding sequence (e.g., a nucleotide sequence encoding a human CYP4V2 protein, e.g., SEQ ID NO:15) operably linked to a promoter, e.g., ProC2 promoter.


Use of recombinant AAV has been shown to be feasible and safe for the treatment of retinal disease. See, e.g., Bainbridge et al., N Engl J Med 358:2231-2239, 2008; Bainbridge et al., Gene Ther 15:1191-1192, 2008; Hauswirth et al., Hum Gene Ther 19:979-990, 2008; Maguire et al., N Engl J Med 358:2240-2248, 2008; Bennett et al., Lancet 388:661-672, 2016; and Russell et al., Lancet 390:849-860, 2017. The viral vectors described herein can be used, inter alia, to treat and prevent progression of BCD and reduce vision loss.


The present invention also relates to a method of expressing a CYP4V2 coding sequence in RPE cells by administering viral vectors of the invention to a subject in need thereof, e.g., a subject with one or more mutations in their CYP4V2 gene, e.g., Table 1. The present invention also relates to viral vectors of the invention for use in expressing a CYP4V2 coding sequence in RPE cells of the retina of the subject in need thereof. The invention also contemplates a method of delivering and expressing a CYP4V2 coding sequence to the retina, specifically to RPE cells in the retina, of a subject having BCD. It is contemplated that the CYP4V2 coding sequence is delivered to the subject in need thereof by contacting the retina and/or RPE cells of the subject (e.g., administering subretinally or intravitreally) with a viral vector as described herein. Alternatively, a CYP4V2 coding sequence is delivered to a subject by administering to the subject a viral vector as described herein.


In some aspects, the present invention further includes methods of expressing a CYP4V2 coding sequence in RPE cells in the retina of a subject having BCD, by contacting the retina of the subject with viral vectors of the invention. In certain aspects, RPE cells of the retina of the subject are contacted with viral vectors of the invention.


Treatment and/or prevention of ocular disease such as BCD can be determined by an ophthalmologist, optometrist, or health care professional using clinically relevant measurements of visual function, functional vision, retinal anatomy, and/or Quality of Life. Treatment of BCD means any action (e.g., administration of a viral vector described herein) contemplated to improve or preserve visual function, functional vision, retinal anatomy, and/or Quality of Life. In addition, prevention as it relates to BCD means any action (e.g., administration of a viral vector described herein) that inhibits, prevents, or slows a worsening in visual function, functional vision, retinal anatomy, and/or BCD phenotype, as defined herein, in a subject at risk for said worsening, e.g., decrease number and/or size of yellow or white crystalline-like deposits in the retina.


Visual function may include, for example, visual acuity, visual acuity with low illumination, visual field, central visual field, peripheral vision, contrast sensitivity, dark adaptation, photostress recovery, color discrimination, reading speed, dependence on assistive devices (e.g., large typeface, magnifying devices, telescopes), facial recognition, proficiency at operating a motor vehicle, ability to perform one or more activities of daily living, and/or patient-reported satisfaction related to visual function. Thus, in certain embodiments, treatment of BCD can be said to occur where a subject has at least a 10%, 20%, or 30% decrease or lack of a 10%, 20%, or 30% or more increase in time to a pre-specified degree of dark adaptation. In addition, treatment of BCD can be said to occur where a subject exhibits early severe night blindness and slow dark adaptation at a young age, followed by progressive loss of visual acuity, visual fields and color vision, leading to legal blindness, determined by a qualified health care professional, e.g., ophthalmologist and optometrist.


Exemplary measures of visual function include Snellen visual acuity, ETDRS visual acuity, low-luminance visual acuity, Amsler grid, Goldmann visual field, standard automated perimetry, microperimetry, Pelli-Robson charts, SKILL card, Ishihara color plates, Farnsworth D15 or D100 color test, standard electroretinography, multifocal electroretinography, validated tests for reading speed, facial recognition, driving simulations, and patient reported satisfaction. Thus, treatment of BCD can be said to be achieved upon a gain of or failure to lose 2 or more lines (or 10 letters) of vision on an ETDRS scale. In addition, in certain aspects, treatment of BCD can be said to occur upon improvement or slowing of loss of retinal function as measured by, for example, electroretinography; improvement or slowing of progression of retinal architecture as measured by, for example, optical coherence tomography (OCT); improvement or slowing of loss in ambulatory navigation, e.g., through a maze at various illumination intensities; and/or at least a 10%, 20%, or 30% increase or lack of 10%, 20%, or 30% decrease in reading speed (words per minute). In addition, in some aspects, treatment of BCD can be said to occur where a subject exhibits at least a 20% increase or lack of a 20% decrease in the proportion of correctly identified plates on an Ishihara test or correctly sequenced disks on a Farnsworth test. Thus, treatment of BCD can be determined by, for example, improvement of rate of dark adaptation, an improvement in visual acuity, or slowing the rate of visual acuity loss.


Undesirable aspects of retinal anatomy that may be treated or prevented include, for example, accumulation of small, yellow or white crystalline-like deposits of lipids in the retina, retinal atrophy, retinal pigment epithelium atrophy, narrowing of retinal vessels, pigmentary clumping, and subretinal fluid. Exemplary means of assessing retinal anatomy include fundoscopy, fundus photography, fluorescein angiography, indocyanine green angiography, OCT, spectral domain optical coherence tomography, scanning laser ophthalmoscopy, confocal microscopy, adaptive optics, fundus autofluorescence, biopsy, necropsy, and immunohistochemistry. Thus, the viral vectors described herein can be used to treat BCD in a subject, as determined by, for example, a reduction in the rate of development of retinal atrophy and/or a reduction in the number and/or size of yellow or white crystalline-like deposits in the retina.


Treatment of BCD can also be determined by, for example, improvement or preservation of Quality of Life. Skilled practioners will appreciate that Quality of Life can be determined by many different tests, e.g., National Eye Institute NEI-VFQ25 questionnaire.


Subjects to be treated with therapeutic agents of the present invention can also be administered other therapeutic agents or devices with known efficacy for treating retinal dystrophy such as vitamin and mineral preparations, low-vision aids, guide dogs, or other devices known to assist patients with low vision.


Currently, there are no other approved therapeutic agents for the treatment of BCD.


As other new therapies emerge, the present compositions and newer therapies can be administered sequentially in either order or simultaneously as clinically indicated.


The following are exemplary embodiments of the present invention.


1. A viral vector comprising a vector genome comprising, in a 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a polyadenylation (polyA) signal sequence; and


(v) a 3′ ITR.


2. The viral vector of embodiment 1, wherein the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) an intron;


(iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(v) a polyA signal sequence; and


(vi) a 3′ ITR.


3. The viral vector of embodiment 1, wherein the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a regulatory element;


(v) a polyA signal sequence; and


(vi) a 3′ ITR.


4. The viral vector of embodiment 1, wherein the vector genome comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) an intron;


(iv) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(v) a regulatory element;


(vi) a polyA signal sequence; and


(vii) a 3′ ITR.


5. The viral vector of any one of embodiments 1 to 4, wherein the vector genome comprises a length greater than or about 4.1 kb and less than or about 4.9 kb.


6. The viral vector of any one of embodiments 1 to 5, wherein the vector genome comprises a stuffer sequence positioned between the polyA signal sequence and the 3′ ITR.


7. The viral vector of embodiment 6, wherein the stuffer sequence is between about 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-1,000, 1,000-1,500, 1,500-2,000, 2,000-2,500, or 2,500-3,000 nucleotides in length.


8. The viral vector of any one of embodiments 1 to 7, wherein the 5′ ITR comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:1.


9. The viral vector of any one of embodiments 1 to 8, wherein the promoter is a ubiquitous promoter.


10. The viral vector of embodiment 9, wherein the promoter is a cytomegalovirus (CMV) promoter, CBA promoter, or CAG promoter.


11. The viral vector of embodiment 10, wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:2, SEQ ID NO:3, or SEQ ID NO:4.


12. The viral vector of any one of embodiments 1 to 8, wherein the promoter is a retinal pigment epithelium (RPE)-specific promoter.


13. The viral vector of embodiment 12, wherein the promoter is a ProC2 promoter, VMD2 promoter, CYP4V2 promoter, or RPE65 promoter.


14. The viral vector of embodiment 13, wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, or SEQ ID NO:8, and promotes expression of the CYP4V2 in RPE cells.


15. The viral vector of any one of embodiments 1 to 14, wherein the CYP4V2 coding sequence comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, or SEQ ID NO:49.


16. The viral vector of any one of embodiments 1 to 15, wherein the polyA signal sequence comprises a bovine growth hormone or simian virus 40 polyA nucleotide sequence.


17. The viral vector of embodiment 16, wherein the polyA signal sequence comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:18 or SEQ ID NO:19.


18. The viral vector of any one of embodiments 1 to 17, wherein the 3′ ITR comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:22.


19. The viral vector of any one of embodiments 2 and 4, wherein the intron comprises a human growth hormone, simian virus 40, or human beta gobin intron sequence.


20. The viral vector of embodiment 19, wherein the intron comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:9, SEQ ID NO:10, or SEQ ID NO:11.


21. The viral vector of any one of embodiments 3 and 4, wherein the regulatory element comprises a hepatitis B virus or woodchuck hepatitis virus sequence.


22. The viral vector of embodiment 21, wherein the regulatory element comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:16 or SEQ ID NO:17.


23. The viral vector of any one of embodiments 1 to 22, wherein the vector genome comprises a Kozak sequence positioned immediately upstream of the recombinant nucleotide sequence comprising the CYP4V2 coding sequence.


24. The viral vector of embodiment 23, wherein the Kozak sequence comprises the nucleotide sequence of SEQ ID NO:12, SEQ ID NO:51, SEQ ID NO:52, or SEQ ID NO:53.


25. The viral vector of embodiment 1, wherein the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22.


26. The viral vector of embodiment 2, wherein the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 9, 14, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 9, 14, 19, and 22.


27. The viral vector of embodiment 3, wherein the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 16, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 14, 16, 19, and 22.


28. The viral vector of embodiment 4, wherein the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


ii) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


iii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


iv) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


v) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


vi) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


vii) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


viii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


ix) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


x) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xi) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xii) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xiii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xiv) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xv) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


xvi) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


xvii) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


xviii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


xix) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


xx) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


xxi) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


xxii) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


xxv) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


xxviii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


29. The viral vector of any one of embodiments 1 to 28, wherein the vector comprises an adeno-associated virus (AAV) serotype 8, 9, 2, or 5 capsid.


30. The viral vector of embodiment 29, wherein the AAV8 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:24, 25, and 26, respectively.


31. The viral vector of embodiment 29, wherein the AAV8 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:23.


32. The viral vector of embodiment 29, wherein the AAV9 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:28, 29, and 30, respectively.


33. The viral vector of embodiment 29, wherein the AAV9 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:27.


34. The viral vector of embodiment 29, wherein the AAV2 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:32, 33, and 34, respectively.


35. The viral vector of embodiment 29, wherein the AAV2 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:31.


36. The viral vector of embodiment 29, wherein the AAV5 capsid comprises VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs:36, 37, and 38, respectively.


37. The viral vector of embodiment 29, wherein the AAV5 capsid is encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO:35.


38. A composition comprising the viral vector of any of the preceding embodiments.


39. The composition of embodiment 38, wherein the composition further comprises a pharmaceutically acceptable excipient.


40. A method of expressing a heterologous CYP4V2 gene in a retinal cell, the method comprising contacting the retinal cell with the viral vector of any of the preceding embodiments.


41. The method of embodiment 40, wherein the retinal cell is a RPE cell.


42. A method of treating a subject with Bietti crystalline dystrophy (BCD), the method comprising administering to the subject an effective amount of the composition of embodiment 39.


43. A method of improving visual acuity, improving visual function or functional vision, or inhibiting decline of visual function or functional vision in a subject with BCD, the method comprising administering to the subject an effective amount of the composition of embodiment 39.


44. The composition of embodiment 39 for use in treating a subject with BCD.


45. The composition of embodiment 39 for use in improving visual acuity in a subject with BCD.


46. A nucleic acid comprising a gene cassette, wherein the gene cassette comprises, in the 5′ to 3′ direction:


(i) a 5′ ITR;


(ii) a promoter;


(iii) a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;


(iv) a polyA signal sequence; and


(v) a 3′ ITR.


47. The nucleic acid of embodiment 46, wherein the nucleic acid is a plasmid.


48. The nucleic acid of embodiment 46, wherein the gene cassette comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of:


i) SEQ ID NOs:1, 2, 13, 18, and 22;


ii) SEQ ID NOs:1, 3, 13, 18, and 22;


iii) SEQ ID NOs:1, 4, 13, 18, and 22;


iv) SEQ ID NOs:1, 5, 13, 18, and 22;


v) SEQ ID NOs:1, 6, 13, 18, and 22;


vi) SEQ ID NOs:1, 7, 13, 18, and 22;


vii) SEQ ID NOs:1, 8, 13, 18, and 22;


viii) SEQ ID NOs:1, 2, 14, 18, and 22;


ix) SEQ ID NOs:1, 3, 14, 18, and 22;


x) SEQ ID NOs:1, 4, 14, 18, and 22;


xi) SEQ ID NOs:1, 5, 14, 18, and 22;


xii) SEQ ID NOs:1, 6, 14, 18, and 22;


xiii) SEQ ID NOs:1, 7, 14, 18, and 22;


xiv) SEQ ID NOs:1, 8, 14, 18, and 22;


xv) SEQ ID NOs:1, 2, 13, 19, and 22;


xvi) SEQ ID NOs:1, 3, 13, 19, and 22;


xvii) SEQ ID NOs:1, 4, 13, 19, and 22;


xviii) SEQ ID NOs:1, 5, 13, 19, and 22;


xix) SEQ ID NOs:1, 6, 13, 19, and 22;


xx) SEQ ID NOs:1, 7, 13, 19, and 22;


xxi) SEQ ID NOs:1, 8, 13, 19, and 22;


xxii) SEQ ID NOs:1, 2, 14, 19, and 22;


xxiii) SEQ ID NOs:1, 3, 14, 19, and 22;


xxiv) SEQ ID NOs:1, 4, 14, 19, and 22;


xxv) SEQ ID NOs:1, 5, 14, 19, and 22;


xxvi) SEQ ID NOs:1, 6, 14, 19, and 22;


xxvii) SEQ ID NOs:1, 7, 14, 19, and 22;


xxviii) SEQ ID NOs:1, 8, 14, 19, and 22;


xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;


xxx) SEQ ID NOs:1, 3, 9, 13, 18, and 22;


xxxi) SEQ ID NOs:1, 4, 9, 13, 18, and 22;


xxxii) SEQ ID NOs:1, 5, 9, 13, 18, and 22;


xxxiii) SEQ ID NOs:1, 6, 9, 13, 18, and 22;


xxxiv) SEQ ID NOs:1, 7, 9, 13, 18, and 22;


xxxv) SEQ ID NOs:1, 8, 9, 13, 18, and 22;


xxxvi) SEQ ID NOs:1, 2, 9, 14, 18, and 22;


xxxvii) SEQ ID NOs:1, 3, 9, 14, 18, and 22;


xxxviii) SEQ ID NOs:1, 4, 9, 14, 18, and 22;


xxxix) SEQ ID NOs:1, 5, 9, 14, 18, and 22;


xl) SEQ ID NOs:1, 6, 9, 14, 18, and 22;


xli) SEQ ID NOs:1, 7, 9, 14, 18, and 22;


xlii) SEQ ID NOs:1, 8, 9, 14, 18, and 22;


xliii) SEQ ID NOs:1, 2, 9, 13, 19, and 22;


xliv) SEQ ID NOs:1, 3, 9, 13, 19, and 22;


xlv) SEQ ID NOs:1, 4, 9, 13, 19, and 22;


xlvi) SEQ ID NOs:1, 5, 9, 13, 19, and 22;


xlvii) SEQ ID NOs:1, 6, 9, 13, 19, and 22;


xlviii) SEQ ID NOs:1, 7, 9, 13, 19, and 22;


xlix) SEQ ID NOs:1, 8, 9, 13, 19, and 22;


l) SEQ ID NOs:1, 2, 9, 14, 19, and 22;


li) SEQ ID NOs:1, 3, 9, 14, 19, and 22;


lii) SEQ ID NOs:1, 4, 9, 14, 19, and 22;


liii) SEQ ID NOs:1, 5, 9, 14, 19, and 22;


liv) SEQ ID NOs:1, 6, 9, 14, 19, and 22;


lv) SEQ ID NOs:1, 7, 9, 14, 19, and 22;


lvi) SEQ ID NOs:1, 8, 9, 14, 19, and 22;


lvii) SEQ ID NOs:1, 2, 13, 16, 18, and 22;


lviii) SEQ ID NOs:1, 3, 13, 16, 18, and 22;


lix) SEQ ID NOs:1, 4, 13, 16, 18, and 22;


lx) SEQ ID NOs:1, 5, 13, 16, 18, and 22;


lxi) SEQ ID NOs:1, 6, 13, 16, 18, and 22;


lxii) SEQ ID NOs:1, 7, 13, 16, 18, and 22;


lxiii) SEQ ID NOs:1, 8, 13, 16, 18, and 22;


lxiv) SEQ ID NOs:1, 2, 14, 16, 18, and 22;


lxv) SEQ ID NOs:1, 3, 14, 16, 18, and 22;


lxvi) SEQ ID NOs:1, 4, 14, 16, 18, and 22;


lxvii) SEQ ID NOs:1, 5, 14, 16, 18, and 22;


lxviii) SEQ ID NOs:1, 6, 14, 16, 18, and 22;


lxix) SEQ ID NOs:1, 7, 14, 16, 18, and 22;


lxx) SEQ ID NOs:1, 8, 14, 16, 18, and 22;


lxxi) SEQ ID NOs:1, 2, 13, 16, 19, and 22;


lxxii) SEQ ID NOs:1, 3, 13, 16, 19, and 22;


lxxiii) SEQ ID NOs:1, 4, 13, 16, 19, and 22;


lxxiv) SEQ ID NOs:1, 5, 13, 16, 19, and 22;


lxxv) SEQ ID NOs:1, 6, 13, 16, 19, and 22;


lxxvi) SEQ ID NOs:1, 7, 13, 16, 19, and 22;


lxxvii) SEQ ID NOs:1, 8, 13, 16, 19, and 22;


lxxviii) SEQ ID NOs:1, 2, 14, 16, 19, and 22;


lxxix) SEQ ID NOs:1, 3, 14, 16, 19, and 22;


lxxx) SEQ ID NOs:1, 4, 14, 16, 19, and 22;


lxxxi) SEQ ID NOs:1, 5, 14, 16, 19, and 22;


lxxxii) SEQ ID NOs:1, 6, 14, 16, 19, and 22;


lxxxiii) SEQ ID NOs:1, 7, 14, 16, 19, and 22;


lxxxiv) SEQ ID NOs:1, 8, 14, 16, 19, and 22;


lxxxv) SEQ ID NOs:1, 2, 9, 13, 16, 18, and 22;


lxxxvi) SEQ ID NOs:1, 3, 9, 13, 16, 18, and 22;


lxxxvii) SEQ ID NOs:1, 4, 9, 13, 16, 18, and 22;


lxxxviii) SEQ ID NOs:1, 5, 9, 13, 16, 18, and 22;


lxxxix) SEQ ID NOs:1, 6, 9, 13, 16, 18, and 22;


xc) SEQ ID NOs:1, 7, 9, 13, 16, 18, and 22;


xci) SEQ ID NOs:1, 8, 9, 13, 16, 18, and 22;


xcii) SEQ ID NOs:1, 2, 9, 14, 16, 18, and 22;


xciii) SEQ ID NOs:1, 3, 9, 14, 16, 18, and 22;


xciv) SEQ ID NOs:1, 4, 9, 14, 16, 18, and 22;


xcv) SEQ ID NOs:1, 5, 9, 14, 16, 18, and 22;


xcvi) SEQ ID NOs:1, 6, 9, 14, 16, 18, and 22;


xcvii) SEQ ID NOs:1, 7, 9, 14, 16, 18, and 22;


xcviii) SEQ ID NOs:1, 8, 9, 14, 16, 18, and 22;


xcix) SEQ ID NOs:1, 2, 9, 13, 16, 19, and 22;


c) SEQ ID NOs:1, 3, 9, 13, 16, 19, and 22;


ci) SEQ ID NOs:1, 4, 9, 13, 16, 19, and 22;


cii) SEQ ID NOs:1, 5, 9, 13, 16, 19, and 22;


ciii) SEQ ID NOs:1, 6, 9, 13, 16, 19, and 22;


civ) SEQ ID NOs:1, 7, 9, 13, 16, 19, and 22;


cv) SEQ ID NOs:1, 8, 9, 13, 16, 19, and 22;


cvi) SEQ ID NOs:1, 2, 9, 14, 16, 19, and 22;


cvii) SEQ ID NOs:1, 3, 9, 14, 16, 19, and 22;


cviii) SEQ ID NOs:1, 4, 9, 14, 16, 19, and 22;


cix) SEQ ID NOs:1, 5, 9, 14, 16, 19, and 22;


cx) SEQ ID NOs:1, 6, 9, 14, 16, 19, and 22;


cxi) SEQ ID NOs:1, 7, 9, 14, 16, 19, and 22; and


cxii) SEQ ID NOs:1, 8, 9, 14, 16, 19, and 22.


49. A viral vector comprising a vector genome comprising a promoter operably linked to a recombinant nucleotide sequence comprising a CYP4V2 coding sequence, wherein the promoter is a ProC2 promoter.


EXAMPLES

The following examples are provided to further illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.


Example 1: Construction of AAV-ITR Plasmids
1.1. Cloning of AAV-ITR Plasmids:

The nucleotide sequences of the individual plasmid elements are described in Table 2. The sequences were either synthesized or purchased commercially. Table 4 describes the elements that exist in each plasmid that was constructed. Standard molecular biology cloning techniques were used in generating the plasmids described in Table 4. A plasmid backbone with kanamycin resistance was used as the backbone and starting material. The individual sequence elements were cloned in at restriction enzyme sites or using blunt end cloning.


Because the antibiotic resistance gene cassette contained in the plasmid backbone does not play a role in the production of the AAV vectors, one of skill in the art could use alternate plasmid backbones and/or antibiotic resistance gene cassettes and yield the same viral vectors.


1.2. Triple Plasmid Transfection to Produce rAAV Vectors:


Recombinant AAV (rAAV) viral vectors were generated by triple transfection methods. Methods for triple transfection are known in the art (Ferrari et al., Nat Med 3:1295-1297, 1997). Briefly, AAV-ITR-containing plasmids (described in Table 4), AAV-RepCap containing plasmid (carrying Rep2 and Cap8) and Adeno-helper plasmid (carrying genes that assist in completing AAV replication cycle) were co-transfected into 293 cells. Cells were cultured for 4 days. At the end of the culture period, the cells were lysed and the vectors in the culture supernatant and in the cell lysate were purified by column chromatography using AVB sepharose affinity columns (GE Healthcare Life Sciences). Skilled practioners will appreciate that a standard CsCl gradient centrifugation method (method based on Grieger et al., Nat Protoc 1:1412-1428, 2006) may also be used.


Alternatively, GMP-like rAAV vectors can be generated by the cell transfection and culture methods described above. The harvested cell culture material is then processed by column chromatography based on methods described by Lock et al., Hum Gene Ther 21:1259-1271, 2010; Smith et al., Mol Ther 17:1888-1896, 2009; and Vandenberghe et al., Hum Gene Ther 21:1251-1257, 2010.









TABLE 4







Plasmid Compositions










SEQUENCE IDENTIFIER



Element
(SEQ ID NO:)
Cloning Strategy










Plasmid NVS1 Composition









5′ ITR
1
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ITRs.


ProC2 Promoter
5
PCR amplify ProC2




promoter adding MluI




and SacII restriction




sites. Ligate




SacII/MluI digested




amplicon into




SacII/MluI cut AAV




plasmid backbone.


CYP4V2 coding
14
Cyp4V2 synthesis


sequence

fragment flanked by




XbaI and HindIII




sites. Ligate




XbaI/HindIII fragment




into XbaI/HindIII




sites of AAV plasmid




backbone.


bGH polyA signal
18
Ligate HindIII/SgrA1


sequence

fragment containing




bGH polyA signal




sequence into AAV




plasmid digested with




HindIII/SgrAI.


3′ ITR
22
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ITRs.







Plasmid NVS2 Composition









5′ ITR
1
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ITRs.


ProC2 Promoter
5
PCR amplify promoter




adding MluI and SacII




restriction sites.




Ligate SacII/MluI




digested amplicon into




SacII/MluI cut AAV




plasmid backbone.


hGH intron
9
PCR amplify hGHintron




adding SacII and XbaI




restriction sites.




Ligate SacII/XbaI cut




amplicon into




SacII/XbaI cut AAV




plasmid backbone.


CYP4V2 coding
14
Cyp4V2 synthesis


sequence

fragment flanked by




XbaI and HindIII




sites. Ligate




XbaI/HindIII cut




fragment into




XbaI/HindIII sites of




AAV plasmid backbone.


bGH polyA signal
18
Ligate HindIII/SgrA1


sequence

fragment containing




bGH polyA signal




sequence into AAV




plasmid digested with




HindIII/SgrAI.


3′ ITR
22
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ ITRs.







Plasmid NVS3 Composition









5′ ITR
1
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ ITRs.


ProC2 Promoter
5
PCR amplify promoter




adding MluI and SacII




restriction sites.




Ligate SacII/MluI




digested amplicon into




SacII/MluI cut AAV




plasmid backbone.


CYP4V2 coding
14
Cyp4V2 synthesis


sequence

fragment flanked by




XbaI and HindIII




sites. Ligate




XbaI/HindIII cut




fragment into




XbaI/HindIII sites of




AAV plasmid backbone.


HPRE regulatory
16
Digest plasmid


element

containing HPRE with




XhoI and blunt. Digest




with SalI. Ligate




into AAV plasmid cut




first with BglII,




blunted and cut with




SalI.


bGH polyA signal
18
Ligate HindIII/SgrA1


sequence

fragment containing




bGH polyA signal




sequence into AAV




plasmid digested with




HindIII/SgrAI.


3′ ITR
22
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ ITRs.







Plasmid NVS4 Composition









5′ ITR
1
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI sites of




AAV plasmid backbone




containing WT AAV2




5′and 3′ ITRs.


ProC2 Promoter
5
PCR amplify promoter




adding MluI and SacII




restriction sites.




Ligate SacII/MluI cut




amplicon into




SacII/MluI digested




AAV plasmid backbone.


hGH intron
9
PCR amplify hGHintron




adding SacII and XbaI




restriction sites.




Ligate SacII/XbaI cut




amplicon into




SacII/XbaI cut AAV




plasmid backbone.


CYP4V2 coding
14
Cyp4V2 synthesis


sequence

fragment flanked by




XbaI and HindIII




sites. Ligate




XbaI/HindIII cut




fragment into




XbaI/HindIII sites of




AAV plasmid backbone.


HPRE regulatory
16
Cut plasmid containing


element

HPRE element with XhoI




then blunt ends and




cut with SalI. Digest




AAV plasmid backbone




with BglII then blunt




ends and cut with




SalI. Ligate.


bGH polyA signal
18
Ligate HindIII/SgrA1


sequence

fragment containing




bGH polyA signal




sequence into AAV




plasmid digested with




HindIII/SgrAI.


3′ ITR
22
MluI and PmlI digested




AAV transfer plasmid




insert is ligated into




MluI and PmlI AAV




plasmid backbone




containing WT AAV2




5′and 3′ ITRs.









Example 2: Inclusion of the hGH Intron, bGH polyA Signal Sequence, and HPRE Provide Enhanced Expression of eGFP

AAV8 vectors expressing ChR2d-eGFP were designed containing different elements, including different introns, different polyA signal sequences, and with or without a HPRE, to determine the best combination for optimal gene expression in the retina.


Methods

C57BL/6 mice were injected subretinally with 1×109 vg of AAV8 vectors expressing channelrhodopsin fused to eGFP (ChR2d-eGFP) and containing different elements, e.g., different introns (e.g., hGH intron and SV40 intron), polyA signal sequences (e.g., bGH polyA signal sequence and SV40 polyA signal sequence), and with or without a HPRE. Four weeks later, eyes were harvested from the mice and some were fixed with 1 ml 4% paraformaldehyde (PFA) fixative at 4° C. overnight and then placed in phosphate-buffered saline (PBS). These eyes were then dried with a paper towel and transferred to a 35 mm dish. Extraneous tissue was removed from the outside of the eye, as well as the cornea and lens, and then the eyecup was submerged in 1 ml PBS. The retina was then removed from the eyecup, and both were cut into petals and mounted on slides. eGFP fluorescent images were obtained using a Zeiss Axio Imager M1 fluorescent microscope and AxioVision software. All images were taken at 2.5× magnification and with the same exposure time.


The other harvested eyes were separated into neural retina and posterior eyecup and frozen for analysis of ChR2d-eGFP mRNA expression using droplet digital PCR (ddPCR). Briefly, RNA was isolated from the tissue samples using the Qiagen RNeasy Mini Kit and then 200 ng RNA was used to generate cDNA using the High-Capacity cDNA Reverse Transcription Kit from ThermoFisher Scientific. 1 ng of cDNA for each sample was added to ddPCR Supermix and primers and probe that recognize eGFP (Mr04097229_mr; ThermoFisher Scientific) and mouse Rab7 (Mm00784318_sH; ThermoFisher Scientific) were added to each reaction. ddPCR was performed according to the manufacturer's protocol (Bio-Rad). ChR2d-eGFP expression was normalized to Rab7 control expression for each sample.


Results and Conclusions

Five different AAV8 vectors were constructed and injected subretinally into mice. Four weeks post-injection, eyes were harvested from the mice and ChR2d-eGFP expression was examined by both flatmount and ddPCR. Flatmounts of the posterior eyecup showed eGFP fluorescence was highest in the eyes injected with vectors containing the hGH intron (FIG. 1). Also, inclusion of the bGH polyA signal sequence showed slightly higher fluorescence compared to the same vector with the SV40 polyA signal sequence (AAV8-TM078 versus AAV8-TM073).


To obtain a more quantitative analysis of ChR2d-eGFP expression level, ddPCR was performed on mRNA isolated from separated neural retina and posterior eyecup samples. The results showed that in the posterior eyecup, expression was most significantly enhanced by addition of the HPRE (AAV8-TM075) (FIG. 2A). Also, vectors containing the bGH polyA signal sequence showed higher expression compared to the respective vectors containing the SV40 polyA signal sequence (compare AAV8-TM078 to AAV8-TM073, and AAV8-TM079 to AAV8-TM074). In the neural retina, addition of the HPRE again led to an enhancement in expression level of eGFP (AAV8-TM075), but the greatest increase in expression was observed from addition of the bGH polyA signal sequence (AAV8-TM078 and AAV8-TM079) (FIG. 2B).


Taken together, these results show that the optimal expression cassette for gene expression in the retina may include the hGH intron, bGH polyA signal sequence, and HPRE elements. Therefore, vectors containing one, two, or all three of those elements were constructed for delivery of the CYP4V2 cDNA for the treatment of BCD.


Example 3: Subretinal Injection of AAV-CYP4V2 Vectors into Cyp4v3 Knockout Mice Prevents Progression of Disease

Cyp4v3 is the mouse ortholog of human CYP4V2 (82% identity). The Cyp4v3 gene was knocked out using CRISPR/Cas9, and Cyp4v3 knockout mice are injected with AAV vector expressing CYP4V2 at approximately 1×109 vg per eye. At different time points post-injection, mice are examined by fundus imaging and optical coherence tomography to determine the number and size of crystalline deposits present in the retina. In addition, the mice are evaluated for visual function (e.g., visual acuity, dark adaptation) and functional vision (e.g., mobility test). Compared to control-injected eyes (AAV-eGFP vector), eyes injected with the vector expressing CYP4V2 show a reduction in number and/or size of crystalline deposits and/or an improvement in visual function and/or functional vision, demonstrating successful expression of CYP4V2 in the RPE cells and restoration of CYP4V2 protein function.


Example 4: Subretinal Injection of AAV-ProC2 Vectors into Non-Human Primates Leads to Gene Expression in RPE Cells

ProC2 promoter sequence was chemically synthesized by GENEWIZ, with short flanks containing MluI/NheI/AscI and BamHI/EcoRI/BgIII restriction sites. ProC2 promoter sequence was subcloned using an appropriate restriction site combination into pAAV-EF1a-CatCh-GFP replacing the EF1a or hRO promoters. The pAAV-EF1a-CatCh-GFP plasmid was constructed by adapter PCR and the Clontech In-Fusion kit using pcDNA3.1(−)-CatCh-GFP. HEK293T cells were co-transfected with an AAV transgene plasmid, an AAV helper plasmid encoding the AAV Rep2 and Cap proteins for the selected capsid (BP2), and the pHGT1-Adenol helper plasmid harboring the adenoviral genes using branched polyethyleneimine (Polysciences). One cell culture dish 15 cm in diameter was co-transfected with the plasmid mixture at 80% confluence of the HEK293T cells. A cell transfection mixture containing 7 μg AAV transgene plasmid, 7 μg Rep2 and Cap-encoding plasmid, 20 μg AAV helper plasmid and 6.8 μM polyethyleneimine in 5 ml of DMEM was incubated at room temperature for 15 min before being added to a cell culture dish containing 10 ml of DMEM. At 60 h post-transfection, cells were collected and resuspended in buffer containing 150 mM NaCl and 20 mM Tris-HCl, pH 8.0. Cells were lysed by repeated freeze-thaw cycles and MgCl2 was added to make a final concentration of 1 mM. Plasmid and genomic DNA were removed by treatment with 250 U ml−1 of TurboNuclease at 37° C. for 10 min. Cell debris was removed by centrifugation at 4,000 r.p.m. for 30 min. AAV particles were purified and concentrated in Millipore Amicon 100 K columns (catalog no. UFC910008; Merck Millipore). Encapsidated viral DNA was quantified by TaqMan reverse transcription PCR following denaturation of the AAV particles using protease K; titers were calculated as genome copies per ml.


For AAV administration in mice, ocular injections were performed on mice anesthetized with 2.5% isoflurane. A small incision was made with a sharp 30-G needle in the sclera near the lens and 2 μl of AAV suspension was injected through this incision into the subretinal/intravitreal space using a blunt 5-μl Hamilton syringe (Hamilton Company) held in a micromanipulator.


For AAV administration in non-human primates, 50 microliter of AAV particle suspension were injected subretinally in collaboration with an ophthalmologist and a third party contractor in Kunming, China. After 3 month, the isolated eyecups were fixed overnight in 4% PFA in PBS, followed by a washing step in PBS at 4 C. After receiving the fixed eyecups, the infected retinal region was dissected out and treated with 10% normal donkey serum (NDS), 1% BSA, 0.5% Triton X-100 in PBS for 1 h at room temperature. Treatment with monoclonal rat anti-GFP Ab (Molecular Probes Inc.; 1:500) and polyclonal goat anti-ChAT (Millipore: 1:200) in 3% NDS, 1% BSA, 0.5% Triton X-100 in PBS was carried out for 5 days at room temperature. Treatment with secondary donkey anti-rat Alexa Fluor-488 Ab (Molecular Probes Inc.; 1:200), anti-goat Alexa Fluor-633 and Hoechst, was done for 2 hr. Sections were washed, mounted with ProLong Gold antifade reagent (Molecular Probes Inc.) on glass slides, and photographed using a Zeiss LSM 700 Axio Imager Z2 laser scanning confocal microscope (Carl Zeiss Inc.).



FIG. 3 shows that subretinal injection of AAV-ProC2-CatCh-GFP in cynomolgus monkeys (NHP) induced expression in RPE cells (gray areas of grayscale image at the top of FIGS. 3A & 3B).


Table 5 below summarizes the ability of the synthetic promoter ProC2 to drive expression in mouse and NHP retinal cells.









TABLE 5







Cell Specificity Expression in Mouse and NHP Retinal Cells










Targeted Cell Types











Targeted cell




density as a



percentage of



target
Target Expression













In order of
Targeting
population
Outer
Inner



abundance
specificity
density
Retina
Retina
















Mouse
All AC,
All AC (75%),
All AC
0
1



s-MG
s-MG (25%)
(34 ± 6.9%)


NHP
RPE
RPE (100%)
RPE (50 ± 7%)





MG = Muller glia; AC = amacrine cells; All AC = All amacrine cells; s- (as prefix) = sparse expression; RPE = retinal pigment epithelium cells.






Example 5: Subretinal Injection of AAV Vectors into Cynomolgus Monkeys to Determine the Best Capsid Serotype for Targeting RPE Cells

AAV2, AAV6, AAV8, and AAV9 vectors expressing GFP from a CMV promoter were injected subretinally in cynomolgus monkeys at a dose of 1×1011 vg per eye. Four weeks post-injection, GFP expression in the monkey eyes was examined in-life by fundus autofluorescence imaging and post-harvest by immunohistochemistry. In addition, the level and localization of GFP mRNA and AAV genomic DNA were assessed by in-situ hybridization.


All four serotypes tested facilitated GFP expression in photoreceptor and RPE cells. Expression was observed near the injection site with varying degree of spread to peripheral regions. GFP expression was not detected in optic nerve or brain sections for any of the serotypes tested.


Example 6: Subretinal Injection of AAV Vectors into Cynomolgus Monkeys to Determine the Best Promoter for RPE-Specific Expression

AAV vectors expressing GFP from RPE-specific promoters are injected subretinally in cynomolgus monkeys at a dose of 1×1011 vg per eye. The RPE-specific promoters include ProC2 and VMD2. Four weeks post-injection, GFP expression in the monkey eyes is examined in-life by fundus autofluorescence imaging and post-harvest by immunohistochemistry. In addition, the level and localization of GFP mRNA and AAV genomic DNA are assessed by in-situ hybridization. The two different promoters both show RPE-specific GFP expression but the level of expression is variable.


Example 7: AAV-Driven Gene Expression in Human Retinal Tissues

Human retinal tissues are prepared from enucleated human eyeballs from which the retina is dissected suing fine scissors. AAV vectors expressing GFP from RPE-specific promoters are incubated with human retinal tissues. The RPE-specific promoters include ProC2 and VMD2. AAV-induced GFP expression is examined 6-8 weeks after virus administration. Six weeks post-injection, GFP expression in the human retinal tissues are examined by via immunofluorescence and imaging. The two different promoters both show RPE-specific GFP expression.


Example 8: AAV-Driven Expression of CYP4V2 Under the ProC2 Promoter in NHP and Human Tissues

AAV vectors expressing human CYP4V2 under the ProC2 promoter (“AAV-ProC2-CYP4V2 vector”) are incubated with human retinal tissues as described in Example 7. CYP4V2 gene expression is examined 6-8 weeks after virus administration. Six weeks post-injection, CYP4V2 expression in the human retinal tissues is detected.


AAV-ProC2-CYP4V2 vector is injected subretinally in cynomolgus monkeys at a dose of 1×1011 vg per eye. Four weeks post-injection, CYP4V2 expression in the monkey eyes is examined post-harvest by immunohistochemistry. In addition, the level and localization of CYP4V2 mRNA and AAV genomic DNA are assessed by in-situ hybridization. The ProC2 promoter induces RPE-specific expression of the CYP4V2 gene in the monkey eyes.


Having described the present disclosure in detail, it will be apparent that modifications, variations, and equivalent aspects are possible without departing from the spirit and scope of the present disclosure as described herein and in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure are provided as non-limiting examples. Any references cited herein, including, e.g., all patents, published patent applications, and non-patent publications, are incorporated by reference in their entirety.

Claims
  • 1. A viral vector comprising a vector genome comprising, in the 5′ to 3′ direction: i. a 5′ inverted terminal repeat (ITR);ii. a promoter;iii. a recombinant nucleotide sequence comprising a CYP4V2 coding sequence;iv. a polyadenylation (polyA) signal sequence;v. and a 3′ ITR.
  • 2. The viral vector of claim 1, wherein the promoter is a ProC2 promoter.
  • 3. The viral vector of claim 2, wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 5.
  • 4. The viral vector of claim 1, wherein the promoter is selected from the group consisting of a VMD2 promoter, a CYP4V2 promoter, and a RPE65 promoter.
  • 5. The viral vector of claim 4, wherein the promoter comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 8, and promotes expression of CYP4V2 in RPE cells.
  • 6. The viral vector of claim 1, wherein the promoter is a ubiquitous promoter.
  • 7. The viral vector of claim 6, wherein the promoter is a cytomegalovirus (CMV) promoter, CBA promoter, or CAG promoter.
  • 8. The viral vector of claim 1, wherein the promoter comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 55-80.
  • 9. The viral vector of any one of claims 1 to 7, wherein the CYP4V2 coding sequence comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 13, 14, 39, 41, 43, 45, 47, or 49.
  • 10. The viral vector of any one of claims 1 to 9, wherein the polyA signal comprises a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 18 or 19.
  • 11. The viral vector of any one of claims 1 to 10, further comprises an intron sequence comprising a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 9, 10, or 11.
  • 12. The viral vector of any one of claims 1 to 11, further comprises 1) a regulatory element comprising a hepatitis B virus or woodchuck hepatitis virus sequence and/or 2) a Kozak sequence positioned immediately upstream of the recombinant nucleotide sequence comprising the CYP4V2 coding sequence.
  • 13. The viral vector of any one of claims 1 to 12, wherein the vector genome comprises, in the 5′ to 3′ direction, nucleotide sequences selected from the group consisting of: i) SEQ ID NOs: 1, 2, 13, 18, and 22;ii) SEQ ID NOs: 1, 3, 13, 18, and 22;iii) SEQ ID NOs: 1, 4, 13, 18, and 22;iv) SEQ ID NOs: 1, 5, 13, 18, and 22;v) SEQ ID NOs: 1, 6, 13, 18, and 22;vi) SEQ ID NOs: 1, 7, 13, 18, and 22;vii) SEQ ID NOs: 1, 8, 13, 18, and 22;viii) SEQ ID NOs: 1, 2, 14, 18, and 22;ix) SEQ ID NOs: 1, 3, 14, 18, and 22;x) SEQ ID NOs: 1, 4, 14, 18, and 22;xi) SEQ ID NOs: 1, 5, 14, 18, and 22;xii) SEQ ID NOs: 1, 6, 14, 18, and 22;xiii) SEQ ID NOs: 1, 7, 14, 18, and 22;xiv) SEQ ID NOs: 1, 8, 14, 18, and 22;xv) SEQ ID NOs: 1, 2, 13, 19, and 22;xvi) SEQ ID NOs: 1, 3, 13, 19, and 22;xvii) SEQ ID NOs: 1, 4, 13, 19, and 22;xviii) SEQ ID NOs: 1, 5, 13, 19, and 22;xix) SEQ ID NOs: 1, 6, 13, 19, and 22;xx) SEQ ID NOs: 1, 7, 13, 19, and 22;xxi) SEQ ID NOs: 1, 8, 13, 19, and 22;xxii) SEQ ID NOs: 1, 2, 14, 19, and 22;xxiii) SEQ ID NOs: 1, 3, 14, 19, and 22;xxiv) SEQ ID NOs: 1, 4, 14, 19, and 22;xxv) SEQ ID NOs: 1, 5, 14, 19, and 22;xxvi) SEQ ID NOs: 1, 6, 14, 19, and 22;xxvii) SEQ ID NOs: 1, 7, 14, 19, and 22;xxviii) SEQ ID NOs: 1, 8, 14, 19, and 22;xxix) SEQ ID NOs:1, 2, 9, 13, 18, and 22;xxx) SEQ ID NOs: 1, 3, 9, 13, 18, and 22;xxxi) SEQ ID NOs: 1, 4, 9, 13, 18, and 22;xxxii) SEQ ID NOs: 1, 5, 9, 13, 18, and 22;xxxiii) SEQ ID NOs: 1, 6, 9, 13, 18, and 22;xxxiv) SEQ ID NOs: 1, 7, 9, 13, 18, and 22;xxxv) SEQ ID NOs: 1, 8, 9, 13, 18, and 22;xxxvi) SEQ ID NOs: 1, 2, 9, 14, 18, and 22;xxxvii) SEQ ID NOs: 1, 3, 9, 14, 18, and 22;xxxviii) SEQ ID NOs: 1, 4, 9, 14, 18, and 22;xxxix) SEQ ID NOs: 1, 5, 9, 14, 18, and 22;xl) SEQ ID NOs: 1, 6, 9, 14, 18, and 22;xli) SEQ ID NOs: 1, 7, 9, 14, 18, and 22;xlii) SEQ ID NOs: 1, 8, 9, 14, 18, and 22;xliii) SEQ ID NOs: 1, 2, 9, 13, 19, and 22;xliv) SEQ ID NOs: 1, 3, 9, 13, 19, and 22;xlv) SEQ ID NOs: 1, 4, 9, 13, 19, and 22;xlvi) SEQ ID NOs: 1, 5, 9, 13, 19, and 22;xlvii) SEQ ID NOs: 1, 6, 9, 13, 19, and 22;xlviii) SEQ ID NOs: 1, 7, 9, 13, 19, and 22;xlix) SEQ ID NOs: 1, 8, 9, 13, 19, and 22;l) SEQ ID NOs: 1, 2, 9, 14, 19, and 22;li) SEQ ID NOs: 1, 3, 9, 14, 19, and 22;li) SEQ ID NOs: 1, 4, 9, 14, 19, and 22;liii) SEQ ID NOs: 1, 5, 9, 14, 19, and 22;liv) SEQ ID NOs: 1, 6, 9, 14, 19, and 22;lv) SEQ ID NOs: 1, 7, 9, 14, 19, and 22;lvi) SEQ ID NOs: 1, 8, 9, 14, 19, and 22;lvii) SEQ ID NOs: 1, 2, 13, 16, 18, and 22;lviii) SEQ ID NOs: 1, 3, 13, 16, 18, and 22;lix) SEQ ID NOs: 1, 4, 13, 16, 18, and 22;lx) SEQ ID NOs: 1, 5, 13, 16, 18, and 22;lxi) SEQ ID NOs: 1, 6, 13, 16, 18, and 22;lxii) SEQ ID NOs: 1, 7, 13, 16, 18, and 22;lxiii) SEQ ID NOs: 1, 8, 13, 16, 18, and 22;lxiv) SEQ ID NOs: 1, 2, 14, 16, 18, and 22;lxv) SEQ ID NOs: 1, 3, 14, 16, 18, and 22;lxvi) SEQ ID NOs: 1, 4, 14, 16, 18, and 22;lxvii) SEQ ID NOs: 1, 5, 14, 16, 18, and 22;lxviii) SEQ ID NOs: 1, 6, 14, 16, 18, and 22;lxix) SEQ ID NOs: 1, 7, 14, 16, 18, and 22;lxx) SEQ ID NOs: 1, 8, 14, 16, 18, and 22;lxxi) SEQ ID NOs: 1, 2, 13, 16, 19, and 22;lxxii) SEQ ID NOs: 1, 3, 13, 16, 19, and 22;lxxiii) SEQ ID NOs: 1, 4, 13, 16, 19, and 22;lxxiv) SEQ ID NOs: 1, 5, 13, 16, 19, and 22;lxxv) SEQ ID NOs: 1, 6, 13, 16, 19, and 22;lxxvi) SEQ ID NOs: 1, 7, 13, 16, 19, and 22;lxxvii) SEQ ID NOs: 1, 8, 13, 16, 19, and 22;lxxviii) SEQ ID NOs: 1, 2, 14, 16, 19, and 22;lxxix) SEQ ID NOs: 1, 3, 14, 16, 19, and 22;lxxx) SEQ ID NOs: 1, 4, 14, 16, 19, and 22;lxxxi) SEQ ID NOs: 1, 5, 14, 16, 19, and 22;lxxxii) SEQ ID NOs: 1, 6, 14, 16, 19, and 22;lxxxiii) SEQ ID NOs: 1, 7, 14, 16, 19, and 22;lxxxiv) SEQ ID NOs: 1, 8, 14, 16, 19, and 22;lxxxv) SEQ ID NOs: 1, 2, 9, 13, 16, 18, and 22;lxxxvi) SEQ ID NOs: 1, 3, 9, 13, 16, 18, and 22;lxxxvii) SEQ ID NOs: 1, 4, 9, 13, 16, 18, and 22;lxxxviii) SEQ ID NOs: 1, 5, 9, 13, 16, 18, and 22;lxxxix) SEQ ID NOs: 1, 6, 9, 13, 16, 18, and 22;xc) SEQ ID NOs: 1, 7, 9, 13, 16, 18, and 22;xci) SEQ ID NOs: 1, 8, 9, 13, 16, 18, and 22;xcii) SEQ ID NOs: 1, 2, 9, 14, 16, 18, and 22;xciii) SEQ ID NOs: 1, 3, 9, 14, 16, 18, and 22;xciv) SEQ ID NOs: 1, 4, 9, 14, 16, 18, and 22;xcv) SEQ ID NOs: 1, 5, 9, 14, 16, 18, and 22;xcvi) SEQ ID NOs: 1, 6, 9, 14, 16, 18, and 22;xcvii) SEQ ID NOs: 1, 7, 9, 14, 16, 18, and 22;xcviii) SEQ ID NOs: 1, 8, 9, 14, 16, 18, and 22;xcix) SEQ ID NOs: 1, 2, 9, 13, 16, 19, and 22;c) SEQ ID NOs: 1, 3, 9, 13, 16, 19, and 22;ci) SEQ ID NOs: 1, 4, 9, 13, 16, 19, and 22;cii) SEQ ID NOs: 1, 5, 9, 13, 16, 19, and 22;ciii) SEQ ID NOs: 1, 6, 9, 13, 16, 19, and 22;civ) SEQ ID NOs: 1, 7, 9, 13, 16, 19, and 22;cv) SEQ ID NOs: 1, 8, 9, 13, 16, 19, and 22;cvi) SEQ ID NOs: 1, 2, 9, 14, 16, 19, and 22;cvii) SEQ ID NOs: 1, 3, 9, 14, 16, 19, and 22;cviii) SEQ ID NOs: 1, 4, 9, 14, 16, 19, and 22;cix) SEQ ID NOs: 1, 5, 9, 14, 16, 19, and 22;cx) SEQ ID NOs: 1, 6, 9, 14, 16, 19, and 22;cxi) SEQ ID NOs: 1, 7, 9, 14, 16, 19, and 22; andcxii) SEQ ID NOs: 1, 8, 9, 14, 16, 19, and 22.
  • 14. The viral vector of any one of claims 1 to 13, further comprises an adeno-associated virus (AAV) serotype 8, 9, 2, or 5 capsid.
  • 15. The viral vector of claim 14, further comprises 1) an AAV9 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs: 28, 29, and 30, respectively; or 2) an AAV9 capsid encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 27.
  • 16. The viral vector of claim 14, further comprises 1) an AAV8 capsid comprising VP1, VP2, and VP3 amino acid sequences with greater than or about 90% identity to SEQ ID NOs: 24, 25, and 26, respectively; or 2) an AAV8 capsid encoded by a nucleotide sequence with greater than or about 90% identity to SEQ ID NO: 23.
  • 17. A composition comprising the viral vector of any one of claims 1 to 16.
  • 18. A method of expressing a heterologous CYP4V2 gene in a retinal cell, the method comprising contacting the retinal cell with the viral vector of any one of claims 1 to 16.
  • 19. A method of treating a subject with Bietti crystalline dystrophy (BCD), the method comprising administering to the subject an effective amount of the composition of claim 17.
  • 20. A method of improving visual acuity, improving visual function or functional vision, or inhibiting decline of visual function or functional vision in a subject with BCD, the method comprising administering to the subject an effective amount of the composition of claim 17.
CROSS-REFERENCE TO RELATED APPLICATION AND INCORPORATION OF SEQUENCE LISTING

This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Appln. No. 62/810,250, filed Feb. 25, 2019, herein incorporated by reference in its entirety. The sequence listing that is contained in the file named “PAT058467-WO-PCT SQL_ST25,” which is 204,397 bytes (measured in operating system MS-Windows) and was created on Feb. 22, 2020, is filed herewith and incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2020/051557 2/24/2020 WO 00
Provisional Applications (1)
Number Date Country
62810250 Feb 2019 US