Compositions for modulating SOD-1 expression

Information

  • Patent Grant
  • 10968453
  • Patent Number
    10,968,453
  • Date Filed
    Wednesday, April 15, 2020
    4 years ago
  • Date Issued
    Tuesday, April 6, 2021
    3 years ago
Abstract
Disclosed herein are antisense compounds and methods for decreasing SOD-1 mRNA and protein expression. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate SOD-1 associated diseases, disorders, and conditions. Such SOD-1 associated diseases include amyotrophic sclerosis (ALS).
Description
SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0240WOSEQ_ST25.pdf created Mar. 30, 2015, which is 320 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD

Provided are compositions and methods for reducing expression of superoxide dismutase 1, soluble (SOD-1) mRNA and protein in an animal. Such methods are useful to treat, prevent, or ameliorate neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) by inhibiting expression of SOD-1 in an animal.


BACKGROUND

The soluble SOD-1 enzyme (also known as Cu/Zn superoxide dismutase) is one of the superoxide dismutases that provide defense against oxidative damage of biomolecules by catalyzing the dismutation of superoxide to hydrogen peroxide (H2O2) (Fridovich, Annu. Rev. Biochem., 1995, 64, 97-112). The superoxide anion (02-) is a potentially harmful cellular by-product produced primarily by errors of oxidative phosphorylation in mitochondria (Turrens, J. Physiol. 2003, 552, 335-344) Mutations in the SOD-1 gene are associated with a dominantly-inherited form of amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) a disorder characterized by a selective degeneration of upper and lower motor neurons (Rowland, N. Engl. J. Med. 2001, 344, 1688-1700). There is a tight genetic linkage between familial ALS and missense mutations in the SOD1 gene (Rosen, Nature, 1993, 362, 59-62). The toxicity of mutant SOD1 is believed to arise from an initial misfolding (gain of function) reducing nuclear protection from the active enzyme (loss of function in the nuclei), a process that may be involved in ALS pathogenesis (Sau, Hum. Mol. Genet. 2007, 16, 1604-1618).


ALS is a devastating progressive neurodegenerative disease affecting as many as 30,000 Americans at any given time. The progressive degeneration of the motor neurons in ALS eventually leads to their death. When the motor neurons die, the ability of the brain to initiate and control muscle movement is lost. With voluntary muscle action progressively affected, patients in the later stages of the disease may become totally paralyzed.


Currently lacking are acceptable options for treating such neurodegenerative diseases. It is therefore an object herein to provide methods for the treatment of such diseases.


SUMMARY

Provided herein are methods, compounds, and compositions for modulating expression of superoxide dismutase 1, soluble (SOD-1) mRNA and protein. In certain embodiments, compounds useful for modulating expression of SOD-1 mRNA and protein are antisense compounds. In certain embodiments, the antisense compounds are modified oligonucleotides.


In certain embodiments, modulation can occur in a cell or tissue. In certain embodiments, the cell or tissue is in an animal. In certain embodiments, the animal is a human. In certain embodiments, SOD-1 mRNA levels are reduced. In certain embodiments, SOD-1 protein levels are reduced. Such reduction can occur in a time-dependent manner or in a dose-dependent manner.


Also provided are methods, compounds, and compositions useful for preventing, treating, and ameliorating diseases, disorders, and conditions. In certain embodiments, such SOD-1 related diseases, disorders, and conditions are neurodegenerative diseases. In certain embodiments, such neurodegenerative diseases, disorders, and conditions include amyotrophic lateral sclerosis (ALS).


Such diseases, disorders, and conditions can have one or more risk factors, causes, or outcomes in common. Certain risk factors and causes for development of ALS include growing older, having a personal or family history, or genetic predisposition. However, the majority of ALS cases are sporadic and no known risk factors are known. Certain symptoms and outcomes associated with development of ALS include but are not limited to: fasciculations, cramps, tight and stiff muscles (spasticity), muscle weakness affecting an arm or a leg, slurred and nasal speech, difficulty walking, difficulty chewing or swallowing (dysphagia), difficulty speaking or forming words (dysarthria), weakness or atrophy, spasticity, exaggerated reflexes (hyperreflexia), and presence of Babinski's sign. As ALS progresses, symptoms and outcomes by include weakening of other limbs, perhaps accompanied by twitching, muscle cramping, and exaggerated, faster reflexes; problems with chewing, swallowing, and breathing; drooling may occur; eventual paralysis; and death.


In certain embodiments, methods of treatment include administering an SOD-1 antisense compound to an individual in need thereof. In certain embodiments, methods of treatment include administering an SOD-1 modified oligonucleotide to an individual in need thereof.







DETAILED DESCRIPTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Additionally, as used herein, the use of “and” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise. Also, all sequences described herein are listed 5′ to 3′, unless otherwise stated. The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this disclosure, including, but not limited to, patents, patent applications, published patent applications, articles, books, treatises, and GENBANK Accession Numbers and associated sequence information obtainable through databases such as National Center for Biotechnology Information (NCBI) and other data referred to throughout in the disclosure herein are hereby expressly incorporated by reference for the portions of the document discussed herein, as well as in their entirety.


Definitions

Unless specific definitions are provided, the nomenclature utilized in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis.


Unless otherwise indicated, the following terms have the following meanings:


“2′-deoxynucleoside” (also 2′-deoxyribonucleoside) means a nucleoside comprising 2′-H furanosyl sugar moiety, as found in naturally occurring deoxyribonucleosides (DNA). In certain embodiments, a 2′-deoxynucleoside may comprise a modified nucleobase or may comprise an RNA nucleobase (e.g., uracil).


“2′-deoxyribose sugar” means a 2′-H furanosyl sugar moiety, as found in naturally occurring deoxyribonucleic acids (DNA).


“2′-O-methoxyethyl” (also 2′-MOE and 2′-OCH2CH2—OCH3 and MOE and 2′-O-methoxyethylribose) refers to an O-methoxy-ethyl modification of the 2′ position of a furanose ring. A 2′-O-methoxyethylribose modified sugar is a modified sugar.


“2′-O-methoxyethylribose modified nucleoside” (also 2′-MOE nucleoside) means a nucleoside comprising a 2′-MOE modified sugar moiety.


“2′-substituted nucleoside” means a nucleoside comprising a substituent at the 2′-position of the furanose ring other than H or OH. In certain embodiments, 2′ substituted nucleosides include nucleosides with bicyclic sugar modifications.


“5-methylcytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5-methylcytosine is a modified nucleobase.


“About” means within 10% of a value. For example, if it is stated, “the compounds affected at least about 50% inhibition of SOD-1”, it is implied that the SOD-1 levels are inhibited within a range of 45% and 55%. “Administered concomitantly” refers to the co-administration of two pharmaceutical agents in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Concomitant administration does not require that both pharmaceutical agents be administered in a single pharmaceutical composition, in the same dosage form, or by the same route of administration. The effects of both pharmaceutical agents need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive.


“Administering” means providing a pharmaceutical agent to an animal, and includes, but is not limited to administering by a medical professional and self-administering.


“Amelioration” refers to a lessening, slowing, stopping, or reversing of at least one indicator of the seventy of a condition or disease. The severity of indicators may be determined by subjective or objective measures, which are known to those skilled in the art.


“Animal” refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.


“Antibody” refers to a molecule characterized by reacting specifically with an antigen in some way, where the antibody and the antigen are each defined in terms of the other. Antibody may refer to a complete antibody molecule or any fragment or region thereof, such as the heavy chain, the light chain, Fab region, and Fc region.


“Antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid.


“Antisense compound” means an oligomeric compound that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, ssRNAs, and occupancy-based compounds.


“Antisense inhibition” means reduction of target nucleic acid levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels or in the absence of the antisense compound.


“Antisense mechanisms” are all those mechanisms involving hybridization of a compound with a target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.


“Antisense oligonucleotide” means a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding segment of a target nucleic acid.


“Base complementarity” refers to the capacity for the precise base pairing of nucleobases of an oligonucleotide with corresponding nucleobases in a target nucleic acid (i.e., hybridization), and is mediated by Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen binding between corresponding nucleobases.


“Bicyclic sugar” means a furanose ring modified by the bridging of two atoms. A bicyclic sugar is a modified sugar.


“Bicyclic nucleic acid” or “BNA” refers to a nucleoside or nucleotide wherein the furanose portion of the nucleoside or nucleotide includes a bridge connecting two carbon atoms on the furanose ring, thereby forming a bicyclic ring system.


“Cap structure” or “terminal cap moiety” means chemical modifications, which have been incorporated at either terminus of an antisense compound.


“cEt” or “constrained ethyl” or “cEt modified sugar” means a bicyclic nucleoside having a sugar moiety comprising a bridge connecting the 4′-carbon and the 2′-carbon, wherein the bridge has the formula: 4′-CH(CH3)—O-2′. A cEt modified sugar is a modified sugar.


“cEt modified nucleoside” means a bicyclic nucleoside having a sugar moiety comprising a bridge connecting the 4′-carbon and the 2′-carbon, wherein the bridge has the formula: 4′-CH(CH3)—O-2′. A cEt modified sugar is a modified sugar.


“Chemically distinct region” refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2′-O-methoxyethyl nucleosides is chemically distinct from a region having nucleosides without 2′-O-methoxyethyl modifications.


“Chimeric antisense compound” means an antisense compound that has at least two chemically distinct regions, each position having a plurality of subunits.


“Co-administration” means administration of two or more pharmaceutical agents to an individual.


The two or more pharmaceutical agents may be in a single pharmaceutical composition, or may be in separate pharmaceutical compositions. Each of the two or more pharmaceutical agents may be administered through the same or different routes of administration. Co-administration encompasses parallel or sequential administration.


“Complementarity” means the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.


“Comprise,” “comprises,” and “comprising” will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.


“Contiguous nucleobases” means nucleobases immediately adjacent to each other.


“Designing” or “designed to” refer to the process of designing an oligomeric compound that specifically hybridizes with a selected nucleic acid molecule.


“Diluent” means an ingredient in a composition that lacks pharmacological activity, but is pharmaceutically necessary or desirable. For example, in drugs that are injected, the diluent may be a liquid, e.g. saline solution.


“Dose” means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose may be administered in one, two, or more boluses, tablets, or injections. For example, in certain embodiments where subcutaneous administration is desired, the desired dose requires a volume not easily accommodated by a single injection, therefore, two or more injections may be used to achieve the desired dose. In certain embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses may be stated as the amount of pharmaceutical agent per hour, day, week, or month.


“Effective amount” in the context of modulating an activity or of treating or preventing a condition means the administration of that amount of pharmaceutical agent to a subject in need of such modulation, treatment, or prophylaxis, either in a single dose or as part of a series, that is effective for modulation of that effect, or for treatment or prophylaxis or improvement of that condition. The effective amount may vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.


“Efficacy” means the ability to produce a desired effect.


“Expression” includes all the functions by which a gene's coded information is converted into structures present and operating in a cell. Such structures include, but are not limited to the products of transcription and translation.


“Fully complementary” or “100% complementary” means each nucleobase of a first nucleic acid has a complementary nucleobase in a second nucleic acid. In certain embodiments, a first nucleic acid is an antisense compound and a target nucleic acid is a second nucleic acid.


“Gapmer” means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as a “gap” and the external regions may be referred to as the “wings.”


“Gap-narrowed” means a chimeric antisense compound having a gap segment of 9 or fewer contiguous 2′-deoxyribonucleosides positioned between and immediately adjacent to 5′ and 3′ wing segments having from 1 to 6 nucleosides.


“Gap-widened” means a chimeric antisense compound having a gap segment of 12 or more contiguous 2′-deoxyribonucleosides positioned between and immediately adjacent to 5′ and 3′ wing segments having from 1 to 6 nucleosides.


“Hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a target nucleic acid. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an oligonucleotide and a nucleic acid target.


“Identifying an animal having a SOD-1 associated disease” means identifying an animal having been diagnosed with a SOD-1 associated disease or predisposed to develop a SOD-1 associated disease. Individuals predisposed to develop a SOD-1 associated disease include those having one or more risk factors for developing a SOD-1 associated disease, including, growing older, having a personal or family history, or genetic predisposition of one or more SOD-1 associated diseases. Such identification may be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments, such as genetic testing.


“Immediately adjacent” means there are no intervening elements between the immediately adjacent elements.


“Individual” means a human or non-human animal selected for treatment or therapy.


“Inhibiting SOD-1” means reducing the level or expression of a SOD-1 mRNA and/or protein. In certain embodiments, SOD-1 mRNA and/or protein levels are inhibited in the presence of an antisense compound targeting SOD-1, including a modified oligonucleotide targeting SOD-1, as compared to expression of SOD-1 mRNA and/or protein levels in the absence of a SOD-1 antisense compound, such as a modified oligonucleotide.


“Inhibiting the expression or activity” refers to a reduction or blockade of the expression or activity and does not necessarily indicate a total elimination of expression or activity.


“Internucleoside linkage” refers to the chemical bond between nucleosides.


“Linked nucleosides” means adjacent nucleosides linked together by an internucleoside linkage.


“Mismatch” or “non-complementary nucleobase” refers to the case when a nucleobase of a first nucleic acid is not capable of pairing with the corresponding nucleobase of a second or target nucleic acid.


“Mixed backbone” means a pattern of internucleoside linkages including at least two different internucleoside linkages. For example, an oligonucleotide with a mixed backbone may include at least one phosphodiester linkage and at least one phosphorothioate linkage.


“Modified internucleoside linkage” refers to a substitution or any change from a naturally occurring internucleoside bond (i.e., a phosphodiester internucleoside bond).


“Modified nucleobase” means any nucleobase other than adenine, cytosine, guanine, thymidine, or uracil. An “unmodified nucleobase” means the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C), and uracil (U).


A “modified nucleoside” means a nucleoside having, independently, a modified sugar moiety and/or modified nucleobase.


“Modified nucleotide” means a nucleotide having, independently, a modified sugar moiety, modified internucleoside linkage, and/or modified nucleobase.


“Modified oligonucleotide” means an oligonucleotide comprising at least one modified internucleoside linkage, modified sugar, and/or modified nucleobase.


“Modified sugar” means substitution and/or any change from a natural sugar moiety.


“Monomer” means a single unit of an oligomer. Monomers include, but are not limited to, nucleosides and nucleotides, whether naturally occurring or modified.


“Motif” means the pattern of unmodified and modified nucleosides in an antisense compound.


“Natural sugar moiety” means a sugar moiety found in DNA (2′-H) or RNA (2′-OH).


“Naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage.


“Non-complementary nucleobase” refers to a pair of nucleobases that do not form hydrogen bonds with one another or otherwise support hybridization.


“Nucleic acid” refers to molecules composed of monomeric nucleotides. A nucleic acid includes, but is not limited to, ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and microRNAs (miRNA).


“Nucleobase” means a heterocyclic moiety capable of pairing with a base of another nucleic acid.


“Nucleobase complementarity” refers to a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In certain embodiments, complementary nucleobase refers to a nucleobase of an antisense compound that is capable of base pairing with a nucleobase of its target nucleic acid. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be complementary at that nucleobase pair.


“Nucleobase sequence” means the order of contiguous nucleobases independent of any sugar, linkage, and/or nucleobase modification.


“Nucleoside” means a nucleobase linked to a sugar.


“Nucleoside mimetic” includes those structures used to replace the sugar or the sugar and the base and not necessarily the linkage at one or more positions of an oligomeric compound such as for example nucleoside mimetics having morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo, or tricyclo sugar mimetics, e.g., non furanose sugar units. Nucleotide mimetic includes those structures used to replace the nucleoside and the linkage at one or more positions of an oligomeric compound such as for example peptide nucleic acids or morpholinos (morpholinos linked by —N(H)—C(═O)—O— or other non-phosphodiester linkage). Sugar surrogate overlaps with the slightly broader term nucleoside mimetic but is intended to indicate replacement of the sugar unit (furanose ring) only. The tetrahydropyranyl rings provided herein are illustrative of an example of a sugar surrogate wherein the furanose sugar group has been replaced with a tetrahydropyranyl ring system. “Mimetic” refers to groups that are substituted for a sugar, a nucleobase, and/or internucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target.


“Nucleotide” means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside.


“Off-target effect” refers to an unwanted or deleterious biological effect associated with modulation of RNA or protein expression of a gene other than the intended target nucleic acid.


“Oligomeric compound” or “oligomer” means a polymer of linked monomeric subunits which is capable of hybridizing to at least a region of a nucleic acid molecule.


“Oligonucleotide” means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.


“Parenteral administration” means administration through injection (e.g., bolus injection) or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g., intrathecal or intracerebroventricular administration.


“Peptide” means a molecule formed by linking at least two amino acids by amide bonds. Without limitation, as used herein, peptide refers to polypeptides and proteins.


“Pharmaceutical agent” means a substance that provides a therapeutic benefit when administered to an individual. For example, in certain embodiments, a modified oligonucleotide targeted to SOD-1 is a pharmaceutical agent.


“Pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise a modified oligonucleotide and a sterile aqueous solution.


“Pharmaceutically acceptable derivative” encompasses pharmaceutically acceptable salts, conjugates, prodrugs or isomers of the compounds described herein.


“Pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.


“Phosphorothioate linkage” means a linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom. A phosphorothioate linkage is a modified internucleoside linkage.


“Portion” means a defined number of contiguous (i.e., linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an antisense compound.


“Prevent” or “preventing” refers to delaying or forestalling the onset or development of a disease, disorder, or condition for a period of time from minutes to days, weeks to months, or indefinitely.


“Prodrug” means a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.


“Prophylactically effective amount” refers to an amount of a pharmaceutical agent that provides a prophylactic or preventative benefit to an animal.


“Region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic.


“Ribonucleotide” means a nucleotide having a hydroxy at the 2′ position of the sugar portion of the nucleotide. Ribonucleotides may be modified with any of a variety of substituents.


“Salts” mean a physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.


“Segments” are defined as smaller or sub-portions of regions within a target nucleic acid.


“Shortened” or “truncated” versions of oligonucleotides SOD-1ght herein have one, two or more nucleosides deleted.


“Side effects” means physiological responses attributable to a treatment other than desired effects. In certain embodiments, side effects include, without limitation, injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system abnormalities, and myopathies.


“Single-stranded oligonucleotide” means an oligonucleotide which is not hybridized to a complementary strand.


“Sites,” as used herein, are defined as unique nucleobase positions within a target nucleic acid.


“Slows progression” means decrease in the development of the disease.


“SOD-1” means the mammalian gene superoxide dismutase 1, soluble (SOD-1), including the human gene superoxide dismutase 1, soluble (SOD-1).


“SOD-1 associated disease” means any disease associated with any SOD-1 nucleic acid or expression product thereof. Such diseases may include a neurodegenerative disease. Such neurodegenerative diseases may include amyotrophic lateral sclerosis (ALS).


“SOD-1 mRNA” means any messenger RNA expression product of a DNA sequence encoding SOD-1.


“SOD-1 nucleic acid” means any nucleic acid encoding SOD-1. For example, in certain embodiments, a SOD-1 nucleic acid includes a DNA sequence encoding SOD-1, an RNA sequence transcribed from DNA encoding SOD-1 (including genomic DNA comprising introns and exons), and a mRNA sequence encoding SOD-1. “SOD-1 mRNA” means a mRNA encoding a SOD-1 protein.


“SOD-1 protein” means the polypeptide expression product of a SOD-1 nucleic acid.


“Specifically hybridizable” refers to an antisense compound having a sufficient degree of complementarity between an oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays and therapeutic treatments.


“Stringent hybridization conditions” or “stringent conditions” refer to conditions under which an oligomeric compound will hybridize to its target sequence, but to a minimal number of other sequences.


“Subject” means a human or non-human animal selected for treatment or therapy.


“Sugar chemistry motif” means a pattern of sugar modifications including at least two different sugar modifications. For example, an oligonucleotide with a mixed backbone may include at least one 2′-O-methoxyethyl modified nucleoside, and/or one cEt modified nucleoside, and/or one 2′-deoxynucleoside.


“Target” refers to a protein, the modulation of which is desired.


“Target gene” refers to a gene encoding a target.


“Targeting” or “targeted” means the process of design and selection of an antisense compound that will specifically hybridize to a target nucleic acid and induce a desired effect.


“Target nucleic acid,” “target RNA,” and “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds.


“Target region” means a portion of a target nucleic acid to which one or more antisense compounds is targeted.


“Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5′ target site” refers to the 5′-most nucleotide of a target segment. “3′ target site” refers to the 3′-most nucleotide of a target segment.


“Therapeutically effective amount” means an amount of a pharmaceutical agent that provides a therapeutic benefit to an individual.


“Treat” or “treating” or “treatment” refers administering a composition to effect an alteration or improvement of the disease or condition.


“Unmodified nucleobases” mean the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).


“Unmodified nucleotide” means a nucleotide composed of naturally occuring nucleobases, sugar moieties, and internucleoside linkages. In certain embodiments, an unmodified nucleotide is an RNA nucleotide (i.e. β-D-ribonucleosides) or a DNA nucleotide (i.e. β-D-deoxyribonucleoside).


“Wing segment” means a plurality of nucleosides modified to impart to an oligonucleotide properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.


Certain Embodiments

Certain embodiments provide methods, compounds, and compositions for inhibiting SOD-1 mRNA and protein expression. Certain embodiments provide methods, compounds, and composition for decreasing SOD-1 mRNA and protein levels.


Certain embodiments provide antisense compounds targeted to a SOD-1 nucleic acid. In certain embodiments, the SOD-1 nucleic acid is the sequence set forth in GENBANK Accession No. NM_000454.4 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000 (incorporated herein as SEQ ID NO: 2), and the complement of GENBANK Accession No. NW_001114168.1 truncated from nucleotides 2258000 to U.S. Pat. No. 2,271,000 (incorporated herein as SEQ ID NO: 3).


Certain embodiments provide methods for the treatment, prevention, or amelioration of diseases, disorders, and conditions associated with SOD-1 in an individual in need thereof. Also contemplated are methods for the preparation of a medicament for the treatment, prevention, or amelioration of a disease, disorder, or condition associated with SOD-1. SOD-1 associated diseases, disorders, and conditions include neurodegenerative diseases. In certain embodiments, SOD-1 associated diseases include amyotrophic lateral sclerosis (ALS).


Embodiment 1





    • A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 118-1461.





Embodiment 2





    • A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs:15, 21, 23, 47, 54, and 67, wherein at least one internucleoside linkage is a phosphodiester linkage.





Embodiment 3





    • The compound of any preceding embodiment, wherein the modified oligonucleotide has a mixed backbone.





Embodiment 4





    • The compound of embodiment 3, wherein the mixed backbone motif is any of the following:
      • sossssssssoooss,
      • sooossssssssoss,
      • sooosssssssssoss,
      • soosssssssssooss,
      • sooossssssssooss,
      • sooosssssssssooss,
      • sooossssssssssooss,
      • sooosssssssssssooos,
      • soooossssssssssooss,
      • sooosssssssssssooss,
      • sososssssssssssosos, and
      • sooossssssssssoooss, wherein
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 5





    • The compound of any preceding embodiment, wherein the modified oligonucleotide has a sugar chemistry motif of any of the following:
      • ekddddddddekekee,
      • kekeddddddddekek,
      • eeeedddddddddkkee,
      • eeeeddddddddekeke,
      • eeeeddddddddkekee,
      • eeeeddddddddkkeee,
      • eeeeeddddddddkkee,
      • eeeekddddddddkeee,
      • eeeekdddddddkeeee,
      • eeekddddddddkeeee,
      • eeekkdddddddkkeee,
      • eekkdddddddddkkee,
      • eekkddddddddeeeee,
      • eekkddddddddkkeee,
      • ekekddddddddeeeee,
      • ekekddddddddkekee, and
      • kekeddddddddeeeee, wherein
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,





Embodiment 6





    • The compound of any preceding embodiment, wherein the nucleobase sequence of the modified oligonucleotide is at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% complementary to SEQ ID NO: 1 or SEQ ID NO: 2.





Embodiment 7





    • The compound of any preceding embodiment, consisting of a single-stranded modified oligonucleotide.





Embodiment 8





    • The compound of any preceding embodiment, wherein at least one internucleoside linkage is a modified internucleoside linkage.





Embodiment 9





    • The compound of embodiment 8, wherein at least one modified internucleoside linkage is a phosphorothioate internucleoside linkage.





Embodiment 10





    • The compound of embodiment 9, wherein each modified internucleoside linkage is a phosphorothioate internucleoside linkage.





Embodiment 11





    • The compound of any preceding embodiment, wherein at least one internucleoside linkage is a phosphodiester internucleoside linkage.





Embodiment 12





    • The compound of any preceding embodiment, wherein at least one internucleoside linkage is a phosphorothioate linkage and at least one internucleoside linkage is a phosphodiester linkage.





Embodiment 13





    • The compound of any preceding embodiment, wherein at least one nucleoside comprises a modified nucleobase.





Embodiment 14





    • The compound of embodiment 13, wherein the modified nucleobase is a 5-methylcytosine.





Embodiment 15





    • The compound of any preceding embodiment, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.





Embodiment 16





    • The compound of embodiment 15, wherein the at least one modified sugar is a bicyclic sugar.





Embodiment 17





    • The compound of embodiment 16, wherein the bicyclic sugar comprises a chemical link between the 2′ and 4′ position of the sugar 4′-CH2—N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.





Embodiment 18





    • The compound of embodiment 17, wherein the bicyclic sugar comprises a 4′-CH2—N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.





Embodiment 19





    • The compound of embodiment 15, wherein at least one modified sugar comprises a 2′-O-methoxyethyl group.





Embodiment 20





    • The compound of embodiment 15, wherein the modified sugar comprises a 2′-O(CH2)2—OCH3 group.





Embodiment 21





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 10 linked deoxynucleosides;
      • a 5′ wing segment consisting of 5 linked nucleosides; and
      • a 3′ wing segment consisting of 5 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 22





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 9 linked deoxynucleosides;
      • a 5′ wing segment consisting of 5 linked nucleosides; and
      • a 3′ wing segment consisting of 5 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 23





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 8 linked deoxynucleosides;
      • a 5′ wing segment consisting of 5 linked nucleosides; and
      • a 3′ wing segment consisting of 5 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 24





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 8 linked deoxynucleosides;
      • a 5′ wing segment consisting of 4 linked nucleosides; and
      • a 3′ wing segment consisting of 5 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 25





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 8 linked deoxynucleosides;
      • a 5′ wing segment consisting of 5 linked nucleosides; and
      • a 3′ wing segment consisting of 7 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 26





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 8 linked deoxynucleosides;
      • a 5′ wing segment consisting of 6 linked nucleosides; and
      • a 3′ wing segment consisting of 6 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 27





    • The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:
      • a gap segment consisting of 9 linked deoxynucleosides;
      • a 5′ wing segment consisting of 6 linked nucleosides; and
      • a 3′ wing segment consisting of 5 linked nucleosides;
      • wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.





Embodiment 28





    • The compound of any preceding embodiment, wherein the modified oligonucleotide consists of 12, 13, 14, 15, 16, 17, 18, 19, or 20 linked nucleosides.





Embodiment 29





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 30





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 31





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 32





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 33





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 34





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 35





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 36





    • A compound consisting of a modified oligonucleotide according to the following formula:







embedded image


Embodiment 37





    • A compound consisting of a modified oligonucleotide according to the following formula: mCes Aeo Ges Geo Aes Tds Ads mCds Ads Tds Tds Tds mCds Tds Ads mCeo Aes Geo mCes Te; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 38





    • A compound consisting of a modified oligonucleotide according to the following formula: Tes Teo Aeo Aes Tds Gds Tds Tds Tds Ads Tds mCds Ako Gko Ges Aes Te; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 39





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo Aeo Teo Ads mCds Ads Tds Tds Tds mCds Tds Ads mCko Aks Ges mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 40





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo Aeo Teo Aes mCds Ads Tds Tds Tds mCds Tds Ads mCko Aks Ges mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 41





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo Aeo Teo Aks mCds Ads Tds Tds Tds mCds Tds Ads mCko Aes Ges mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 42





    • A compound consisting of a modified oligonucleotide according to the following formula: Aes Gko Teo Gks Tds Tds Tds Ads Ads Tds Gds Tds Tko Teo Aks Tes mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 43





    • A compound consisting of a modified oligonucleotide according to the following formula: Aes Gko Teo Gks Tds Tds Tds Ads Ads Tds Gds Tds Teo Teo Aes Tes mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 44





    • A compound consisting of a modified oligonucleotide according to the following formula: Aes Geo Tko Gks Tds Tds Tds Ads Ads Tds Gds Tds Teo Teo Aes Tes mCe; wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • k=a cEt modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 45





    • A compound consisting of a modified oligonucleotide according to the following formula: mCes mCeo Geo Teo mCeo Gds mCds mCds mCds Tds Tds mCds Ads Gds mCds Aeo mCeo Ges mCes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 46





    • A compound consisting of a modified oligonucleotide according to the following formula: mCes mCeo Geo Teo mCes Gds mCds mCds mCds Tds Tds mCds Ads Ges mCeo Aeo mCeo Ges mCes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 47





    • A compound consisting of a modified oligonucleotide according to the following formula: mCes mCeo Geo Teo mCes Gds mCds mCds mCds Tds Tds mCds Ads Gds mCds Aeo mCeo Geo mCes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 48





    • A compound consisting of a modified oligonucleotide according to the following formula: Aes mCeo Aeo mCeo mCes Tds Tds mCds Ads mCds Tds Gds Gds Tds mCds mCeo Aeo Teo Tes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 49





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo mCeo Geo Aes Tds mCds mCds mCds Ads Ads Tds Tds Ads mCds Aeo mCeo mCeo Aes mCe, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 50





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo mCeo Geo Aes Tes mCds mCds mCds Ads Ads Tds Tds Ads mCeo Aeo mCeo mCes Aes mCe, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 51





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo mCeo Geo Aes Tds mCds mCds mCds Ads Ads Tds Tds Aes mCeo Aeo mCeo mCes Aes mCe, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 52





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Geo mCeo Geo Aeo Tes mCds mCds mCds Ads Ads Tds Tds Ads mCds Aeo mCeo mCes Aes mCe, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 53





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Teo mCeo Geo mCes mCds mCds Tds Tds mCds Ads Gds mCds Ads mCds Geo mCeo Aeo mCes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 54





    • A compound consisting of a modified oligonucleotide according to the following formula: Tes mCeo Geo mCeo mCes mCds Tds Tds mCds Ads Gds mCds Ads mCds Gds mCeo Aeo mCeo Aes mCe, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar,
      • s=a phosphorothioate internucleoside linkage, and
      • o=a phosphodiester internucleoside linkage.





Embodiment 55





    • A compound consisting of a modified oligonucleotide according to the following formula: Ges Aes Aes Aes Tes Tds Gds Ads Tds Gds Ads Tds Gds mCds mCds mCes Tes Ges mCes Ae, wherein,
      • A=an adenine,
      • mC=a 5′-methylcytosine
      • G=a guanine,
      • T=a thymine,
      • e=a 2′-O-methoxyethylribose modified sugar,
      • d=a 2′-deoxyribose sugar, and
      • s=a phosphorothioate internucleoside linkage.





Embodiment 56





    • A composition comprising the compound of any preceding embodiment or salt thereof and at least one of a pharmaceutically acceptable carrier or diluent.





Embodiment 57





    • A method comprising administering to an animal the compound or composition of any preceding embodiment.





Embodiment 58





    • The method of embodiment 57, wherein the animal is a human.





Embodiment 59





    • The method of embodiment 57, wherein administering the compound prevents, treats, ameliorates, or slows progression of a SOD-1 associated disease.





Embodiment 60





    • The method of embodiment 59, wherein the SOD-1 associated disease is a neurodegenerative disease.





Embodiment 61





    • The method of embodiment 60, wherein the SOD-1 associated disease is ALS.





Embodiment 62





    • Use of the compound or composition of any preceding embodiment for the manufacture of a medicament for treating a neurodegenerative disorder.





Embodiment 63





    • Use of the compound or composition of any preceding embodiment for the manufacture of a medicament for treating ALS.





Embodiment 64





    • The compound or composition of any preceding embodiment wherein the modified oligonucleotide does not have the nucleobase sequence of SEQ ID NO: 21.





Embodiment 65





    • The compound or composition of any preceding embodiment wherein the modified oligonucleotide does not have the nucleobase sequence of any of SEQ ID NOs: 21-118.





Embodiment 66





    • A compound comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence, wherein the nucleobase sequence comprises an at least 12 consecutive nucleobase portion complementary to an equal number of nucleobases of nucleotides 665 to 684 of SEQ ID NO: 1, wherein the modified oligonucleotide is at least 80% complementary to SEQ ID NO: 1.





Embodiment 67





    • The compound of embodiment 66, wherein the modified oligonucleotide is 100% complementary to SEQ ID NO: 1.





Embodiment 68





    • The compound of embodiment 66, wherein the modified oligonucleotide is a single-stranded modified oligonucleotide.





Embodiment 69





    • The compound of embodiments 66-68 wherein at least one internucleoside linkage is a modified internucleoside linkage.





Embodiment 70





    • The compound of embodiment 69, wherein at least one modified internucleoside linkage is a phosphorothioate internucleoside linkage.





Embodiment 71





    • The compound of embodiment 70, wherein each modified internucleoside linkage is a phosphorothioate internucleoside linkage.





Embodiment 72





    • The compound of embodiments 66-69, wherein at least one internucleoside linkage is a phosphodiester internucleoside linkage.





Embodiment 73





    • The compound of embodiments 66-71 and 72-73, wherein at least one internucleoside linkage is a phosphorothioate linkage and at least one internucleoside linkage is a phosphodiester linkage.





Embodiment 74





    • The compound of embodiments 66-73, wherein at least one nucleoside comprises a modified nucleobase.





Embodiment 75





    • The compound of embodiment 74, wherein the modified nucleobase is a 5-methylcytosine.





Embodiment 76





    • The compound of embodiments 66-75, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.





Embodiment 77





    • The compound of embodiment 76, wherein the at least one modified sugar is a bicyclic sugar.





Embodiment 78





    • The compound of embodiment 77, wherein the bicyclic sugar comprises a 4′-CH(R)—O-2′ bridge wherein R is, independently, H, C1-C2 alkyl, or a protecting group.





Embodiment 79





    • The compound of embodiment 78, wherein R is methyl.





Embodiment 80





    • The compound of embodiment 78, wherein R is H.





Embodiment 81





    • The compound of embodiment 76, wherein the at least one modified sugar comprises a 2′-O-methoxyethyl group.


      Antisense Compounds





Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligonucleotides, modified oligonucleotides, and siRNAs. An oligomeric compound may be “antisense” to a target nucleic acid, meaning that is is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding.


In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted. In certain such embodiments, an oligonucleotide has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.


In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 12 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 12 to 25 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 12 to 22 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 14 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 15 to 25 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 18 to 22 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 19 to 21 subunits in length. In certain embodiments, the antisense compound is 8 to 80, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, 16 to 50, 17 to 30, 17 to 50, 18 to 30, 18 to 50, 19 to 30, 19 to 50, or 20 to 30 linked subunits in length.


In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 12 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 13 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 14 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 15 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 16 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 17 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 18 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 19 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 20 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 21 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 22 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 23 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 24 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 25 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 26 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 27 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 28 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 29 subunits in length. In certain embodiments, an antisense compound targeted to a SOD-1 nucleic acid is 30 subunits in length. In certain embodiments, the antisense compound targeted to a SOD-1 nucleic acid is 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 linked subunits in length, or a range defined by any two of the above values. In certain embodiments the antisense compound is a modified oligonucleotide, and the linked subunits are nucleosides.


In certain embodiments, oligonucleotides targeted to a SOD-1 nucleic acid may be shortened or truncated. For example, a single subunit may be deleted from the 5′ end (5′ truncation), or alternatively from the 3′ end (3′ truncation). A shortened or truncated antisense compound targeted to a SOD-1 nucleic acid may have two subunits deleted from the 5′ end, or alternatively may have two subunits deleted from the 3′ end, of the antisense compound. Alternatively, the deleted nucleosides may be dispersed throughout the antisense compound, for example, in an antisense compound having one nucleoside deleted from the 5′ end and one nucleoside deleted from the 3′ end.


When a single additional subunit is present in a lengthened antisense compound, the additional subunit may be located at the 5′ or 3′ end of the antisense compound. When two or more additional subunits are present, the added subunits may be adjacent to each other, for example, in an antisense compound having two subunits added to the 5′ end (5′ addition), or alternatively to the 3′ end (3′ addition), of the antisense compound. Alternatively, the added subunits may be dispersed throughout the antisense compound, for example, in an antisense compound having one subunit added to the 5′ end and one subunit added to the 3′ end.


It is possible to increase or decrease the length of an antisense compound, such as a modified oligonucleotide, and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the oligonucleotides were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase oligonucleotides, including those with 1 or 3 mismatches.


Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo.


Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase oligonucleotides, and a 28 and 42 nucleobase oligonucleotides comprised of the sequence of two or three of the tandem oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase oligonucleotides.


Antisense Compound Motifs


In certain embodiments, antisense compounds targeted to a SOD-1 nucleic acid have chemically modified subunits arranged in patterns, or motifs, to confer to the antisense compounds properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.


Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid, and/or increased inhibitory activity. A second region of a chimeric antisense compound may optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.


Antisense compounds having a gapmer motif are considered chimeric antisense compounds. In a gapmer an internal region having a plurality of nucleotides that supports RNaseH cleavage is positioned between external regions having a plurality of nucleotides that are chemically distinct from the nucleosides of the internal region. In the case of an oligonucleotide having a gapmer motif, the gap segment generally serves as the substrate for endonuclease cleavage, while the wing segments comprise modified nucleosides. In certain embodiments, the regions of a gapmer are differentiated by the types of sugar moieties comprising each distinct region. The types of sugar moieties that are used to differentiate the regions of a gapmer may in some embodiments include β-D-ribonucleosides, β-D-deoxyribonucleosides, 2-modified nucleosides (such 2′-modified nucleosides may include 2′-MOE, and 2′-O—CH3, among others), and bicyclic sugar modified nucleosides (such bicyclic sugar modified nucleosides may include those having a 4′-(CH2)n—O-2′ bridge, where n=1 or n=2 and 4′-CH2—O—CH2-2′). In certain embodiments, wings may include several modified sugar moieties, including, for example 2′-MOE. In certain embodiments, wings may include several modified and unmodified sugar moieties. In certain embodiments, wings may include various combinations of 2′-MOE nucleosides and 2′-deoxynucleosides.


Each distinct region may comprise uniform sugar moieties, variant, or alternating sugar moieties. The wing-gap-wing motif is frequently described as “X—Y—Z”, where “X” represents the length of the 5′ wing, “Y” represents the length of the gap, and “Z” represents the length of the 3′ wing. “X” and “Z” may comprise uniform, variant, or alternating sugar moieties. In certain embodiments, “X” and “Y” may include one or more 2′-deoxynucleosides. “Y” may comprise 2′-deoxynucleosides. As used herein, a gapmer described as “X—Y—Z” has a configuration such that the gap is positioned immediately adjacent to each of the 5′ wing and the 3′ wing. Thus, no intervening nucleotides exist between the 5′ wing and gap, or the gap and the 3′ wing. Any of the antisense compounds described herein can have a gapmer motif. In certain embodiments, “X” and “Z” are the same; in other embodiments they are different.


In certain embodiments, gapmers provided herein include, for example 20-mers having a motif of 5-10-5.


In certain embodiments, gapmers provided herein include, for example 19-mers having a motif of 5-9-5.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 5-8-5.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 4-8-5.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 5-8-7.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 6-8-6.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 6-8-5.


In certain embodiments, the modified oligonucleotide contains at least one 2′-O-methoxyethyl modified nucleoside, at least one cEt modified nucleoside, and at least one 2′-deoxynucleoside. In certain embodiments, the modified oligonucleotide has a sugar chemistry motif of any of the following:

    • ekddddddddekekee
    • kekeddddddddekek
    • eeeedddddddddkkee
    • eeeeddddddddekeke
    • eeeeddddddddkekee
    • eeeeddddddddkkeee
    • eeeeeddddddddkkee
    • eeeekddddddddkeee
    • eeeekdddddddkeeee
    • eeekddddddddkeeee
    • eeekkdddddddkkeee
    • eekkdddddddddkkee
    • eekkddddddddeeeee
    • eekkddddddddkkeee
    • ekekddddddddeeeee
    • ekekddddddddkekee
    • kekeddddddddeeeee, wherein
    • e=a 2′-O-methoxyethylribose modified sugar,
    • k=a cEt modified sugar,
    • d=a 2′-deoxyribose sugar,


      Target Nucleic Acids, Target Regions and Nucleotide Sequences


Nucleotide sequences that encode SOD-1 include, without limitation, the following: GENBANK Accession No. NM_000454.4 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000 (incorporated herein as SEQ ID NO: 2), and the complement of GENBANK Accession No. NW_001114168.1 truncated from nucleotides 2258000 to U.S. Pat. No. 2,271,000 (incorporated herein as SEQ ID NO: 3).


It is understood that the sequence set forth in each SEQ ID NO in the Examples contained herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. As such, antisense compounds defined by a SEQ ID NO may comprise, independently, one or more modifications to a sugar moiety, an internucleoside linkage, or a nucleobase. Antisense compounds described by Isis Number (Isis No) indicate a combination of nucleobase sequence and motif.


In certain embodiments, a target region is a structurally defined region of the target nucleic acid. For example, a target region may encompass a 3′ UTR, a 5′ UTR, an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region. The structurally defined regions for SOD-1 can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a target region may encompass the sequence from a 5′ target site of one target segment within the target region to a 3′ target site of another target segment within the same target region.


Targeting includes determination of at least one target segment to which an antisense compound hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in mRNA target nucleic acid levels. In certain embodiments, the desired effect is reduction of levels of protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.


A target region may contain one or more target segments. Multiple target segments within a target region may be overlapping. Alternatively, they may be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain embodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceeding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous. Contemplated are target regions defined by a range having a starting nucleic acid that is any of the 5′ target sites or 3′ target sites listed herein.


Suitable target segments may be found within a 5′ UTR, a coding region, a 3′ UTR, an intron, an exon, or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment may specifically exclude a certain structurally defined region such as the start codon or stop codon.


The determination of suitable target segments may include a comparison of the sequence of a target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm may be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense compound sequences that may hybridize in a non-specific manner to sequences other than a selected target nucleic acid (i.e., non-target or off-target sequences).


There may be variation in activity (e.g., as defined by percent reduction of target nucleic acid levels) of the antisense compounds within an active target region. In certain embodiments, reductions in SOD-1 mRNA levels are indicative of inhibition of SOD-1 expression. Reductions in levels of a SOD-1 protein are also indicative of inhibition of target mRNA expression. Phenotypic changes are indicative of inhibition of SOD-1 expression. Improvement in neurological function is indicative of inhibition of SOD-1 expression. Improved motor function is indicative of inhibition of SOD-1 expression.


Hybridization


In some embodiments, hybridization occurs between an antisense compound disclosed herein and a SOD-1 nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.


Hybridization can occur under varying conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.


Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a SOD-1 nucleic acid.


Complementarity


An antisense compound and a target nucleic acid are complementary to each other when a sufficient number of nucleobases of the antisense compound can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a target nucleic acid, such as a SOD-1 nucleic acid).


Non-complementary nucleobases between an antisense compound and a SOD-1 nucleic acid may be tolerated provided that the antisense compound remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense compound may hybridize over one or more segments of a SOD-1 nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).


In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a SOD-1 nucleic acid, a target region, target segment, or specified portion thereof. Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods.


For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).


In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e., 100% complementary) to a target nucleic acid, or specified portion thereof. For example, an antisense compound may be fully complementary to a SOD-1 nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and/or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be “fully complementary” to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound may or may not be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.


The location of a non-complementary nucleobase may be at the 5′ end or 3′ end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases may be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they may be contiguous (i.e., linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located in the wing segment of a gapmer oligonucleotide.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a SOD-1 nucleic acid, or specified portion thereof.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a SOD-1 nucleic acid, or specified portion thereof.


The antisense compounds provided herein also include those which are complementary to a portion of a target nucleic acid. As used herein, “portion” refers to a defined number of contiguous (i.e. linked) nucleobases within a region or segment of a target nucleic acid. A “portion” can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 9 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least an 11 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 12 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 13 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 14 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 15 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least a 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.


Identity


The antisense compounds provided herein may also have a defined percent identity to a particular nucleotide sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are contemplated. The non-identical bases may be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.


In certain embodiments, the antisense compounds, or portions thereof, are at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to one or more of the antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.


In certain embodiments, a portion of the antisense compound is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


In certain embodiments, a portion of the oligonucleotide is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


Modifications


A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2′, 3′ or 5′ hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside linkages of the oligonucleotide.


Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.


Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.


Modified Internucleoside Linkages


The naturally occurring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.


Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.


In certain embodiments, modified oligonucleotides targeted to a SOD-1 nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are interspersed throughout the antisense compound. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of a modified oligonucleotide is a phosphorothioate internucleoside linkage.


In certain embodiments, the modified oligonucleotides targeted to a SOD-1 nucleic acid comprise one or more phosphodiester internucleoside linkages. In certain embodiments, modified oligonucleotides targeted to a SOD-1 nucleic acid comprise at least one phosphorothioate internucleoside linkage and at least one phosphodiester internucleoside linkage. In certain embodiments, the modified oligonucleotide has a mixed backbone motif of the following:

    • sossssssssoooss,
    • sooossssssssoss,
    • sooosssssssssoss,
    • soosssssssssooss,
    • sooossssssssooss,
    • sooosssssssssooss,
    • sooossssssssssooss,
    • sooosssssssssssooos,
    • soooossssssssssooss,
    • sooosssssssssssooss,
    • sososssssssssssosos, and
    • sooossssssssssoooss, wherein
    • s=a phosphorothioate internucleoside linkage, and
    • o=a phosphodiester internucleoside linkage.


      Modified Sugar Moieties


Antisense compounds of the invention can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise chemically modified ribofuranose ring moieties. Examples of chemically modified ribofuranose rings include without limitation, addition of substitutent groups (including 5′ and 2′ substituent groups, bridging of non-geminal ring atoms to form bicyclic nucleic acids (BNA), replacement of the ribosyl ring oxygen atom with S, N(R), or C(R1)(R2) (R, R1 and R2 are each independently H, C1-C12 alkyl or a protecting group) and combinations thereof. Examples of chemically modified sugars include 2′-F-5′-methyl substituted nucleoside (see PCT International Application WO 2008/101157 Published on Aug. 21, 2008 for other disclosed 5′,2′-bis substituted nucleosides) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 2′-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a BNA (see PCT International Application WO 2007/134181 Published on Nov. 22, 2007 wherein LNA is substituted with for example a 5′-methyl or a 5′-vinyl group).


Examples of nucleosides having modified sugar moieties include without limitation nucleosides comprising 5′-vinyl, 5′-methyl (R or S), 4′-S, 2′-F, 2′-OCH3, 2′-OCH2CH3, 2′-OCH2CH2F and 2′-O(CH2)2OCH3 substituent groups. The substituent at the 2′ position can also be selected from allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2—O—N(Rm)(Rn), O—CH2—C(═O)—N(Rm)(Rn), and O—CH2—C(═O)—N(R1)—(CH2)2—N(Rm)(Rn), where each R1, Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl.


As used herein, “bicyclic nucleosides” refer to modified nucleosides comprising a bicyclic sugar moiety. Examples of bicyclic nucleic acids (BNAs) include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, antisense compounds provided herein include one or more BNA nucleosides wherein the bridge comprises one of the formulas: 4′-(CH2)—O-2′ (LNA); 4′-(CH2)—S-2′; 4′-(CH2)2—O-2′ (ENA); 4′-CH(CH3)—O-2′ and 4′-CH(CH2OCH3)—O-2′ (and analogs thereof see U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008); 4′-C(CH3)(CH3)—O-2′ (and analogs thereof see PCT/US2008/068922 published as WO/2009/006478, published Jan. 8, 2009); 4′-CH2—N(OCH3)-2′ (and analogs thereof see PCT/US2008/064591 published as WO/2008/150729, published Dec. 11, 2008); 4′-CH2—O—N(CH3)-2′ (see published U.S. Patent Application US2004-0171570, published Sep. 2, 2004); 4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see U.S. Pat. No. 7,427,672, issued on Sep. 23, 2008); 4′-CH2—C(H)(CH3)-2′ (see Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2—C(═CH2)-2′ (and analogs thereof see PCT/US2008/066154 published as WO 2008/154401, published on Dec. 8, 2008).


Further bicyclic nucleosides have been reported in published literature (see for example: Srivastava et al., J. Am. Chem. Soc., 2007, 129(26) 8362-8379; Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wahlestedt et al., Proc. Nat. Acad. Sci. U.S.A., 2000, 97, 5633-5638; Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; U.S. Pat. Nos. 7,399,845; 7,053,207; 7,034,133; 6,794,499; 6,770,748; 6,670,461; 6,525,191; 6,268,490; U.S. Patent Publication Nos.: US2008-0039618; US2007-0287831; US2004-0171570; U.S. patent application Ser. Nos. 12/129,154; 61/099,844; 61/097,787; 61/086,231; 61/056,564; 61/026,998; 61/026,995; 60/989,574; International applications WO 2007/134181; WO 2005/021570; WO 2004/106356; WO 94/14226; and PCT International Applications Nos.: PCT/US2008/068922; PCT/US2008/066154; and PCT/US2008/064591). Each of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see PCT international application PCT/DK98/00393, published on Mar. 25, 1999 as WO 99/14226).


As used herein, “monocylic nucleosides” refer to nucleosides comprising modified sugar moieties that are not bicyclic sugar moieties. In certain embodiments, the sugar moiety, or sugar moiety analogue, of a nucleoside may be modified or substituted at any position.


As used herein, “4′-2′ bicyclic nucleoside” or “4′ to 2′ bicyclic nucleoside” refers to a bicyclic nucleoside comprising a furanose ring comprising a bridge connecting two carbon atoms of the furanose ring connects the 2′ carbon atom and the 4′ carbon atom of the sugar ring.


In certain embodiments, bicyclic sugar moieties of BNA nucleosides include, but are not limited to, compounds having at least one bridge between the 4′ and the 2′ carbon atoms of the pentofuranosyl sugar moiety including without limitation, bridges comprising 1 or from 1 to 4 linked groups independently selected from —[C(Ra)(Rb)]n—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —C(═NRa)—, —C(═O)—, —C(═S)—, —O—, —Si(Ra)2—, —S(═O)x—, and —N(Ra)—; wherein: x is 0, 1, or 2; n is 1, 2, 3, or 4; each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.


In certain embodiments, the bridge of a bicyclic sugar moiety is, —[C(Ra)(Rb)]n—, —[C(Ra)(Rb)]n—O—, —C(RaRb)—N(R)—O— or —C(RaRb)—O—N(R)—. In certain embodiments, the bridge is 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R)-2′ and 4′-CH2—N(R)—O-2′- wherein each R is, independently, H, a protecting group or C1-C12 alkyl.


In certain embodiments, bicyclic nucleosides are further defined by isomeric configuration. For example, a nucleoside comprising a 4′-(CH2)—O-2′ bridge, may be in the α-L configuration or in the β-D configuration. Previously, α-L-methyleneoxy (4′-CH2—O-2′) BNA's have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).


In certain embodiments, bicyclic nucleosides include those having a 4′ to 2′ bridge wherein such bridges include without limitation, α-L-4′-(CH2)—O-2′, β-D-4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R)-2′, 4′-CH2—N(R)—O-2′, 4′-CH(CH3)—O-2′, 4′-CH2—S-2′, 4′-CH2—N(R)-2′, 4′-CH2—CH(CH3)-2′, and 4′-(CH2)3-2′, wherein R is H, a protecting group or C1-C12 alkyl.


In certain embodiment, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


-Qa-Qb-Qc- is —CH2—N(Rc)—CH2—, —C(═O)—N(Rc)—CH2—, —CH2—O—N(Rc)—, —CH2—N(Rc)—O— or —N(Rc)—O—CH2;


Rc is C1-C12 alkyl or an amino protecting group; and


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium.


In certain embodiments, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Za is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, substituted amide, thiol or substituted thiol.


In one embodiment, each of the substituted groups, is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJc, NJcJd, SJc, N3, OC(═X)Jc, and NJeC(═X)NJcJd, wherein each Jc, Jd and Je is, independently, H, C1-C6 alkyl, or substituted C1-C6 alkyl and X is O or NJc.


In certain embodiments, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Zb is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl or substituted acyl (C(═O)—).


In certain embodiments, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Rd is C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl;


each qa, qb, qc and qd is, independently, H, halogen, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl, C1-C6 alkoxyl, substituted C1-C6 alkoxyl, acyl, substituted acyl, C1-C6 aminoalkyl or substituted C1-C6 aminoalkyl;


In certain embodiments, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


qa, qb, qe and qf are each, independently, hydrogen, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxy, substituted C1-C12 alkoxy, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(═O)OJj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk;


or qe and qf together are ═C(qg)(qh);


qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.


The synthesis and preparation of adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil bicyclic nucleosides having a 4′-CH2—O-2′ bridge, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). The synthesis of bicyclic nucleosides has also been described in WO 98/39352 and WO 99/14226.


Analogs of various bicyclic nucleosides that have 4′ to 2′ bridging groups such as 4′-CH2—O-2′ and 4′-CH2—S-2′, have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of oligodeoxyribonucleotide duplexes comprising bicyclic nucleosides for use as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Furthermore, synthesis of 2′-amino-BNA, a novel conformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2′-amino- and 2′-methylamino-BNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.


In certain embodiments, bicyclic nucleosides have the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


each qi, qj, qk and ql is, independently, H, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxyl, substituted C1-C12 alkoxyl, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(═O)OJj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk; and qi and qj or qi and qk together are ═C(qg)(qh), wherein qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.


One carbocyclic bicyclic nucleoside having a 4′-(CH2)3-2′ bridge and the alkenyl analog bridge 4′-CH═CH—CH2-2′ have been described (Frier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443 and Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).


In certain embodiments, bicyclic nucleosides include, but are not limited to, (A) α-L-methyleneoxy (4′-CH2—O-2′) BNA, (B) β-D-methyleneoxy (4′-CH2—O-2′) BNA, (C) ethyleneoxy (4′-(CH2)2—O-2′) BNA, (D) aminooxy (4′-CH2—O—N(R)-2′) BNA, (E) oxyamino (4′-CH2—N(R)—O-2′) BNA, (F) methyl(methyleneoxy) (4′-CH(CH3)—O-2′) BNA (also referred to as constrained ethyl or cEt), (G) methylene-thio (4′-CH2—S-2′) BNA, (H) methylene-amino (4′-CH2—N(R)-2′) BNA, (I) methyl carbocyclic (4′-CH2—CH(CH3)-2′) BNA, (J) propylene carbocyclic (4′-(CH2)3-2′) BNA, and (K) vinyl BNA as depicted below.




embedded image


embedded image


wherein Bx is the base moiety and R is, independently, H, a protecting group, C1-C6 alkyl or C1-C6 alkoxy.


As used herein, the term “modified tetrahydropyran nucleoside” or “modified THP nucleoside” means a nucleoside having a six-membered tetrahydropyran “sugar” substituted for the pentofuranosyl residue in normal nucleosides and can be referred to as a sugar surrogate. Modified THP nucleosides include, but are not limited to, what is referred to in the art as hexitol nucleic acid (HNA), anitol nucleic acid (ANA), manitol nucleic acid (MNA) (see Leumann, Bioorg. Med. Chem., 2002, 10, 841-854) or fluoro HNA (F-HNA) having a tetrahydropyranyl ring system as illustrated below.




embedded image


In certain embodiment, sugar surrogates are selected having the formula:




embedded image



wherein:


Bx is a heterocyclic base moiety;


T3 and T4 are each, independently, an internucleoside linking group linking the tetrahydropyran nucleoside analog to the oligomeric compound or one of T3 and T4 is an internucleoside linking group linking the tetrahydropyran nucleoside analog to an oligomeric compound or oligonucleotide and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group or a 5′ or 3-terminal group;


q1, q2, q3, q4, q5, q6 and q7 are each independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl; and


one of R1 and R2 is hydrogen and the other is selected from halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 and CN, wherein X is O, S or NJ1 and each J1, J2 and J3 is, independently, H or C1-C6 alkyl.


In certain embodiments, q1, q2, q3, q4, q5, q6 and q7 are each H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, THP nucleosides are provided wherein one of R1 and R2 is F. In certain embodiments, R1 is fluoro and R2 is H; R1 is methoxy and R2 is H, and R1 is methoxyethoxy and R2 is H.


In certain embodiments, sugar surrogates comprise rings having more than 5 atoms and more than one heteroatom. For example nucleosides comprising morpholino sugar moieties and their use in oligomeric compounds has been reported (see for example: Braasch et al., Biochemistry, 2002, 41, 4503-4510; and U.S. Pat. Nos. 5,698,685; 5,166,315; 5,185,444; and 5,034,506). As used here, the term “morpholino” means a sugar surrogate having the following formula:




embedded image


In certain embodiments, morpholinos may be modified, for example by adding or altering various substituent groups from the above morpholino structure. Such sugar surrogates are referred to herein as “modified morpholinos.”


Combinations of modifications are also provided without limitation, such as 2′-F-5′-methyl substituted nucleosides (see PCT International Application WO 2008/101157 published on Aug. 21, 2008 for other disclosed 5′, 2′-bis substituted nucleosides) and replacement of the ribosyl ring oxygen atom with S and further substitution at the 2′-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a bicyclic nucleic acid (see PCT International Application WO 2007/134181, published on Nov. 22, 2007 wherein a 4′-CH2—O-2′ bicyclic nucleoside is further substituted at the 5′ position with a 5′-methyl or a 5′-vinyl group). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (see, e.g., Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).


In certain embodiments, antisense compounds comprise one or more modified cyclohexenyl nucleosides, which is a nucleoside having a six-membered cyclohexenyl in place of the pentofuranosyl residue in naturally occurring nucleosides. Modified cyclohexenyl nucleosides include, but are not limited to those described in the art (see for example commonly owned, published PCT Application WO 2010/036696, published on Apr. 10, 2010, Robeyns et al., J. Am. Chem. Soc., 2008, 130(6), 1979-1984; Horvith et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al., J. Am. Chem. Soc., 2007, 129(30), 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al., Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111-2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al., J. Am. Chem., 2000, 122, 8595-8602; Published PCT application, WO 06/047842; and Published PCT Application WO 01/049687; the text of each is incorporated by reference herein, in their entirety). Certain modified cyclohexenyl nucleosides have Formula X.




embedded image


wherein independently for each of said at least one cyclohexenyl nucleoside analog of Formula X:


Bx is a heterocyclic base moiety;


T3 and T4 are each, independently, an internucleoside linking group linking the cyclohexenyl nucleoside analog to an antisense compound or one of T3 and T4 is an internucleoside linking group linking the tetrahydropyran nucleoside analog to an antisense compound and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5′- or 3′-terminal group; and


q1, q2, q3, q4, q5, q6, q7, q8 and q9 are each, independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, substituted C2-C6 alkynyl or other sugar substituent group.


Many other monocyclic, bicyclic and tricyclic ring systems are known in the art and are suitable as sugar surrogates that can be used to modify nucleosides for incorporation into oligomeric compounds as provided herein (see for example review article: Leumann, Christian J. Bioorg. & Med. Chem., 2002, 10, 841-854). Such ring systems can undergo various additional substitutions to further enhance their activity.


As used herein, “2′-modified sugar” means a furanosyl sugar modified at the 2′ position. In certain embodiments, such modifications include substituents selected from: a halide, including, but not limited to substituted and unsubstituted alkoxy, substituted and unsubstituted thioalkyl, substituted and unsubstituted amino alkyl, substituted and unsubstituted alkyl, substituted and unsubstituted allyl, and substituted and unsubstituted alkynyl. In certain embodiments, 2′ modifications are selected from substituents including, but not limited to: O[(CH2)nO]mCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nF, O(CH2)nONH2, OCH2C(═O)N(H)CH3, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other 2′-substituent groups can also be selected from: C1-C12 alkyl, substituted alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, F, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving pharmacokinetic properties, or a group for improving the pharmacodynamic properties of an antisense compound, and other substituents having similar properties. In certain embodiments, modified nucleosides comprise a 2′-MOE side chain (Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Such 2′-MOE substitution have been described as having improved binding affinity compared to unmodified nucleosides and to other modified nucleosides, such as 2′-O-methyl, O-propyl, and O-aminopropyl. Oligonucleotides having the 2′-MOE substituent also have been shown to be antisense inhibitors of gene expression with promising features for in vivo use (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; and Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926).


As used herein, “2′-modified” or “2′-substituted” refers to a nucleoside comprising a sugar comprising a substituent at the 2′ position other than H or OH. 2′-modified nucleosides, include, but are not limited to, bicyclic nucleosides wherein the bridge connecting two carbon atoms of the sugar ring connects the 2′ carbon and another carbon of the sugar ring; and nucleosides with non-bridging 2′ substituents, such as allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, —OCF3, O—(CH2)2—O—CH3, 2′-O(CH2)2SCH3, O—(CH2)2—O—N(Rm)(Rn), or O—CH2—C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl. 2′-modified nucleosides may further comprise other modifications, for example at other positions of the sugar and/or at the nucleobase.


As used herein, “2′-F” refers to a nucleoside comprising a sugar comprising a fluoro group at the 2′ position of the sugar ring.


As used herein, “2′-OMe” or “2′-OCH3”, “2′-O-methyl” or “2′-methoxy” each refers to a nucleoside comprising a sugar comprising an —OCH3 group at the 2′ position of the sugar ring.


As used herein, “MOE” or “2′-MOE” or “2′-OCH2CH2OCH3” or “2′-O-methoxyethyl” each refers to a nucleoside comprising a sugar comprising a —OCH2CH2OCH3 group at the 2′ position of the sugar ring.


Methods for the preparations of modified sugars are well known to those skilled in the art. Some representative U.S. patents that teach the preparation of such modified sugars include without limitation, U.S. Pat. Nos.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,670,633; 5,700,920; 5,792,847 and 6,600,032 and International Application PCT/US2005/019219, filed Jun. 2, 2005 and published as WO 2005/121371 on Dec. 22, 2005, and each of which is herein incorporated by reference in its entirety.


As used herein, “oligonucleotide” refers to a compound comprising a plurality of linked nucleosides. In certain embodiments, one or more of the plurality of nucleosides is modified. In certain embodiments, an oligonucleotide comprises one or more ribonucleosides (RNA) and/or deoxyribonucleosides (DNA).


In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.


In certain embodiments, antisense compounds comprise one or more nucleosides having modified sugar moieties. In certain embodiments, the modified sugar moiety is 2′-MOE. In certain embodiments, the 2′-MOE modified nucleosides are arranged in a gapmer motif. In certain embodiments, the modified sugar moiety is a bicyclic nucleoside having a (4′-CH(CH3)—O-2′) bridging group. In certain embodiments, the (4′-CH(CH3)—O-2′) modified nucleosides are arranged throughout the wings of a gapmer motif.


Compositions and Methods for Formulating Pharmaceutical Compositions


Oligonucleotides may be admixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


An antisense compound targeted to a SOD-1 nucleic acid can be utilized in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS). PBS is a diluent suitable for use in compositions to be delivered parenterally. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising an antisense compound targeted to a SOD-1 nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the antisense compound is a modified oligonucleotide.


Pharmaceutical compositions comprising antisense compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of antisense compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


A prodrug can include the incorporation of additional nucleosides at one or both ends of an antisense compound which are cleaved by endogenous nucleases within the body, to form the active antisense compound.


Conjugated Antisense Compounds


Antisense compounds may be covalently linked to one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting oligonucleotides. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.


Antisense compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense compounds to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense compound having terminal nucleic acid from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap), or at the 3′-terminus (3′-cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Further 3′ and 5′-stabilizing groups that can be used to cap one or both ends of an antisense compound to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.


Cell Culture and Antisense Compounds Treatment


The effects of antisense compounds on the level, activity or expression of SOD-1 nucleic acids can be tested in vitro in a variety of cell types. Cell types used for such analyses are available from commerical vendors (e.g. American Type Culture Collection, Manassas, Va.; Zen-Bio, Inc., Research Triangle Park, N.C.; Clonetics Corporation, Walkersville, Md.) and are cultured according to the vendor's instructions using commercially available reagents (e.g. Invitrogen Life Technologies, Carlsbad, Calif.). Illustrative cell types include, but are not limited to, HepG2 cells, Hep3B cells, primary hepatocytes, A431 cells, and SH-SY5Y cells.


In Vitro Testing of Oligonucleotides


Described herein are methods for treatment of cells with oligonucleotides, which can be modified appropriately for treatment with other antisense compounds.


Cells may be treated with oligonucleotides when the cells reach approximately 60-80% confluency in culture.


One reagent commonly used to introduce oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN (Invitrogen, Carlsbad, Calif.). Oligonucleotides may be mixed with LIPOFECTIN in OPTI-MEM 1 (Invitrogen, Carlsbad, Calif.) to achieve the desired final concentration of oligonucleotide and a LIPOFECTIN concentration that may range from 2 to 12 ug/mL per 100 nM oligonucleotide.


Another reagent used to introduce oligonucleotides into cultured cells includes LIPOFECTAMINE (Invitrogen, Carlsbad, Calif.). Oligonucleotide is mixed with LIPOFECTAMINE in OPTI-MEM 1 reduced serum medium (Invitrogen, Carlsbad, Calif.) to achieve the desired concentration of oligonucleotide and a LIPOFECTAMINE concentration that may range from 2 to 12 ug/mL per 100 nM oligonucleotide.


Another technique used to introduce oligonucleotides into cultured cells includes electroporation.


Cells are treated with oligonucleotides by routine methods. Cells may be harvested 16-24 hours after oligonucleotide treatment, at which time RNA or protein levels of target nucleic acids are measured by methods known in the art and described herein. In general, when treatments are performed in multiple replicates, the data are presented as the average of the replicate treatments.


The concentration of oligonucleotide used varies from cell line to cell line. Methods to determine the optimal oligonucleotide concentration for a particular cell line are well known in the art. Oligonucleotides are typically used at concentrations ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE. Oligonucleotides are used at higher concentrations ranging from 625 to 20,000 nM when transfected using electroporation.


RNA Isolation


RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, for example, using the TRIZOL Reagent (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommended protocols.


Analysis of Inhibition of Target Levels or Expression


Inhibition of levels or expression of a SOD-1 nucleic acid can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or quantitaive real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Quantitative real-time PCR can be conveniently accomplished using the commercially available ABI PRISM 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.


Quantitative Real-Time PCR Analysis of Target RNA Levels


Quantitation of target RNA levels may be accomplished by quantitative real-time PCR using the ABI PRISM 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. Methods of quantitative real-time PCR are well known in the art.


Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction, which produces complementary DNA (cDNA) that is then used as the substrate for the real-time PCR amplification. The RT and real-time PCR reactions are performed sequentially in the same sample well. RT and real-time PCR reagents may be obtained from Invitrogen (Carlsbad, Calif.). RT real-time-PCR reactions are carried out by methods well known to those skilled in the art.


Gene (or RNA) target quantities obtained by real time PCR are normalized using either the expression level of a gene whose expression is constant, such as cyclophilin A, or by quantifying total RNA using RIBOGREEN (Invitrogen, Inc. Carlsbad, Calif.). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RIBOGREEN RNA quantification reagent (Invetrogen, Inc. Eugene, Oreg.). Methods of RNA quantification by RIBOGREEN are SOD-1ght in Jones, L. J., et al, (Analytical Biochemistry, 1998, 265, 368-374). A CYTOFLUOR 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN fluorescence.


Probes and primers are designed to hybridize to a SOD-1 nucleic acid. Methods for designing real-time PCR probes and primers are well known in the art, and may include the use of software such as PRIMER EXPRESS Software (Applied Biosystems, Foster City, Calif.).


Analysis of Protein Levels


Antisense inhibition of SOD-1 nucleic acids can be assessed by measuring SOD-1 protein levels. Protein levels of SOD-1 can be evaluated or quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assays, protein activity assays (for example, caspase activity assays), immunohistochemistry, immunocytochemistry or fluorescence-activated cell sorting (FACS). Antibodies directed to a target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art. In certain embodiments, the compounds herein provide improved reduction in protein levels.


In Vivo Testing of Antisense Compounds


Antisense compounds, for example, modified oligonucleotides, are tested in animals to assess their ability to inhibit expression of SOD-1 and produce phenotypic changes, such as, improved motor function. In certain embodiments, motor function is measured by walking initiation analysis, rotarod, grip strength, pole climb, open field performance, balance beam, hindpaw footprint testing in the animal. Testing may be performed in normal animals, or in experimental disease models. For administration to animals, oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration, such as intraperitoneal, intravenous, and subcutaneous. Oligonucleotide dosage and dosing frequency depends upon multiple factors such as, but not limited to, route of administration and animal body weight. Following a period of treatment with oligonucleotides, RNA is isolated from CNS tissue or CSF and changes in SOD-1 nucleic acid expression are measured.


Certain Indications


In certain embodiments, provided herein are methods, compounds, and compositions of treating an individual comprising administering one or more pharmaceutical compositions described herein. In certain embodiments, the individual has a neurodegenerative disease. In certain embodiments, the individual is at risk for developing a neurodegenerative disease, including, but not limited to, amyotrophic lateral sclerosis (ALS). In certain embodiments, the individual has been identified as having a SOD-1 associated disease. In certain embodiments, provided herein are methods for prophylactically reducing SOD-1 expression in an individual. Certain embodiments include treating an individual in need thereof by administering to an individual a therapeutically effective amount of an antisense compound targeted to a SOD-1 nucleic acid.


In one embodiment, administration of a therapeutically effective amount of an antisense compound targeted to a SOD-1 nucleic acid is accompanied by monitoring of SOD-1 levels in an individual, to determine an individual's response to administration of the antisense compound. An individual's response to administration of the antisense compound may be used by a physician to determine the amount and duration of therapeutic intervention.


In certain embodiments, administration of an antisense compound targeted to a SOD-1 nucleic acid results in reduction of SOD-1 expression by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%, or a range defined by any two of these values. In certain embodiments, administration of an antisense compound targeted to a SOD-1 nucleic acid results in improved motor function in an animal. In certain embodiments, administration of a SOD-1 antisense compound improves motor function by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%, or a range defined by any two of these values.


In certain embodiments, pharmaceutical compositions comprising an antisense compound targeted to SOD-1 are used for the preparation of a medicament for treating a patient suffering or susceptible to a neurodegenerative disease including amyotrophic lateral sclerosis (ALS).


Certain Comparator Compositions


Antisense oligonucleotides targeting human SOD-1 were described in an earlier publication (see WO 2005/040180, incorporated by reference herein, in its entirety). Several oligonucleotides (ISIS 333611, ISIS 146144, ISIS 146145, ISIS 150437, ISIS 150441, ISIS 150443, ISIS 150444, ISIS 150445, ISIS 150446, ISIS 150447, ISIS 150448, ISIS 150449, ISIS 150452, ISIS 150454, ISIS 150458, ISIS 150460, ISIS 150462-150467, ISIS 150470, ISIS 150472, ISIS 150474, ISIS 150475, ISIS 150476, ISIS 150479-150483, ISIS 150488, ISIS 150489, ISIS 150490, ISIS 150491-150493, ISIS 150495-150498, ISIS 150511, ISIS 333605, ISIS 333606, ISIS 333609-333617, ISIS 333619, ISIS 333620-333636, ISIS 333638, and ISIS 333640) described therein, were used as comparator compounds throughout select screens for new antisense compounds described herein.


In certain embodiments, ISIS 333611, a 5-10-5 MOE gapmer, having a sequence of (from 5′ to 3′) CCGTCGCCCTTCAGCACGCA (incorporated herein as SEQ ID NO: 21), wherein each internucleoside linkage is a phosphorothioate linkage, each cytosine is a 5-methylcytosine, and each of nucleosides 1-5 and 16-20 (from 5′ to 3′) comprise a 2′-O-methoxyethyl moiety was used as a comparator compound. ISIS 333611 was selected as a comparator compound because it exhibited high levels of dose-dependent inhibition in various studies as described in WO 2005/040180. Additionally, phase 1 human clinical trials were completed using ISIS 333611. See, MILLER et al., “An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study” Lancet Neurol. (2013) 12(5): 435-442. Thus, ISIS 333611 was deemed a highly efficacious and potent compound with an acceptable safety profile (such that it was tested in human patients).


In certain embodiments, the compounds described herein benefit from one or more improved properties relative to the antisense compounds described in WO 2005/040180. Some of the improved properties are demonstrated in the examples provided herein. In certain embodiments, compounds described herein are more efficacious, potent, and/or tolerable in various in vitro and in vivo studies than comparator compounds described herein, including ISIS 333611. In certain embodiments, ISIS 666853, ISIS 666859, ISIS 666919, ISIS 666921, ISIS 666922, ISIS 666869, ISIS 666870, and ISIS 666867 are more efficacious and/or potent in various in vitro and in vivo studies than comparator compounds described herein, including ISIS 333611. In certain embodiments, ISIS 666853, ISIS 666859, ISIS 666919, ISIS 666921, ISIS 666922, ISIS 666869, ISIS 666870, and ISIS 666867 are more tolerable in one or more tolerability assays in animals than comparator compounds described herein, including ISIS 333611. This is despite 333611 being sufficiently well tolerated to progress to human clinical trials.


In certain embodiments, certain compounds described herein are more efficacious than comparator compounds by virtue of an in vitro IC50 of less than 2 μM, less than 1.9 μM, less than 1.8 μM, less than 1.7 μM, less than 1.6 μM, less than 1.5 μM, less than 1.4 μM, less than 1.3 μM, less than 1.2 μM, less than 1.1 μM, less than 1 μM, less than 0.9 μM, less than 0.8 μM, less than 0.7 μM, less than 0.6 μM, or less than 0.5 μM less than 0.4 μM, less than 0.3 μM, less than 0.2 μM, less than 0.1 μM, when tested in human cells, for example, in the HepG2 A431 or SH-SY5Y cell lines (For example, see Examples 6-11).


In certain embodiments, certain compounds described herein are more efficacious than comparator compounds by virtue of their ability to inhibit SOD-1 expression in vivo. In certain embodiments, the compounds inhibit SOD-1 in lumbar spinal cord and cervical spinal cord by at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% in, for example, a transgenic animal model.


In certain embodiments, certain compounds described herein are more tolerable than comparator compounds on the basis of reduced microglial marker levels (e.g., IBA1), reduced astrocytic marker levels (e.g., GFAP), and/or FOB scores in rats, mice, and/or monkeys. See, for example, Examples 14, 15, 18, and 19.


ISIS 666853


For example, as provided in Example 12 (hereinbelow), ISIS 666853 achieved 81% inhibition in lumbar spinal cord and 74% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 14 (hereinbelow), ISIS 666853 achieved a FOB score of 0 whereas ISIS 333611 achieved a FOB score of 4 in Sprague-Dawley rats after 3 hours when treated with 3 mg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666853 treated rats as compared to ISIS 333611 treated rats.


For example, as provided in Example 15 (hereinbelow), ISIS 666853 achieved an ED50 of 81.3 and 242.6 in lumbar tissue and cervical tissue (respectively) in SOD-1 transgenic rats when treated intrathecally with 10, 30, 100, 300, or 3000 μg of oligonucleotide. ED50 in lumbar and cervical tissues could not be calculated in ISIS 333611 treated transgenic rats because the highest concentration tested (3000 μg) filed to inhibit human SOD-1 mRNA greater than 55-65%.


For example, as provided in Example 16 (hereinbelow), at doses of 1 mg and 3 mg ISIS 666853 achieved 3 hour FOB scores of 0.0 and 0.5 (respectively) whereas ISIS 333611 achieved FOB scores of 3.0 and 4.9 (respectively). At doses of 1 mg and 3 mg ISIS 666853 achieved 8 week FOB scores of 0.0 and 0.0 (respectively) whereas ISIS 333611 achieved FOB scores of 0.0 and 1.2 (respectively).


For example, as provided in Example 17 (hereinbelow), ISIS 666853 achieved an ED50 of 136 and 188 in lumbar tissue and cortex tissue (respectively) whereas ISIS 333611 achieved an ED50 of 401 and 786 in lumbar tissue and cortex tissue (respectively) in SOD-1 transgenic mice when treated with an intracerebral ventricular bolus of 10, 30, 100, 300, or 700 μg of oligonucleotide.


For example, as provided in Example 18 (hereinbelow), ISIS 666853 achieved a FOB score of 1.25 whereas ISIS 333611 achieved a FOB score of 6.5 in C57bl6 mice after 3 hours when treated with 700 μg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666853 treated mice as compared to ISIS 333611 treated mice.


ISIS 666859


For example, as provided in Example 12 (hereinbelow), ISIS 666859 achieved 79% inhibition in lumbar spinal cord and 64% inhibition in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 14 (hereinbelow), ISIS 666859 achieved a FOB score of 1 whereas ISIS 333611 achieved a FOB score of 4 in Sprague-Dawley rats after 3 hours when treated with 3 mg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666859 treated rats as compared to ISIS 333611 treated rats.


For example, as provided in Example 15 (hereinbelow), ISIS 666859 achieved an ED50 of 74.0 and 358.8 in lumbar tissue and cervical tissue (respectively) in SOD-1 transgenic rats when treated intrathecally with 10, 30, 100, 300, or 3000 μg of oligonucleotide. ED50 in lumbar and cervical tissues could not be calculated in ISIS 333611 treated transgenic rats because the highest concentration tested (3000 μg) filed to inhibit human SOD-1 mRNA greater than 55-65%.


For example, as provided in Example 16 (hereinbelow), at doses of 1 mg and 3 mg ISIS 666859 achieved 3 hour FOB scores of 0.0 and 2.1 (respectively) whereas ISIS 333611 achieved FOB scores of 3.0 and 4.9 (respectively). At doses of 1 mg and 3 mg ISIS 666859 achieved 8 week FOB scores of 0.0 and 0.3 (respectively) whereas ISIS 333611 achieved FOB scores of 0.0 and 1.2 (respectively).


For example, as provided in Example 17 (hereinbelow), ISIS 666859 achieved an ED50 of 106 and 206 in lumbar tissue and cortex tissue (respectively) whereas ISIS 333611 achieved an ED50 of 401 and 786 in lumbar tissue and cortex tissue (respectively) in SOD-1 transgenic mice when treated with an intracerebral ventricular bolus of 10, 30, 100, 300, or 700 μg of oligonucleotide.


For example, as provided in Example 18 (hereinbelow), ISIS 666859 achieved a FOB score of 1.75 whereas ISIS 333611 achieved a FOB score of 6.5 in C57bl6 mice after 3 hours when treated with 700 μg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666859 treated mice as compared to ISIS 333611 treated mice.


ISIS 666919


For example, as provided in Example 12 (hereinbelow), ISIS 666919 achieved 76% inhibition in lumbar spinal cord and 68% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 14 (hereinbelow), ISIS 666919 achieved a FOB score of 2 whereas ISIS 333611 achieved a FOB score of 4 in Sprague-Dawley rats after 3 hours when treated with 3 mg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666919 treated rats as compared to ISIS 333611 treated rats.


For example, as provided in Example 15 (hereinbelow), ISIS 666919 achieved an ED50 of 104.1 and 613.5 in lumbar tissue and cervical tissue (respectively) in SOD-1 transgenic rats when treated intrathecally with 10, 30, 100, 300, or 3000 μg of oligonucleotide. ED50 in lumbar and cervical tissues could not be calculated in ISIS 333611 treated transgenic rats because the highest concentration tested (3000 μg) filed to inhibit human SOD-1 mRNA greater than 55-65%.


For example, as provided in Example 16 (hereinbelow), at doses of 1 mg and 3 mg ISIS 666919 achieved 3 hour FOB scores of 1.3 and 3.5 (respectively) whereas ISIS 333611 achieved FOB scores of 3.0 and 4.9 (respectively). At doses of 1 mg and 3 mg ISIS 666919 achieved 8 week FOB scores of 0.0 and 0.1 (respectively) whereas ISIS 333611 achieved FOB scores of 0.0 and 1.2 (respectively).


For example, as provided in Example 17 (hereinbelow), ISIS 666919 achieved an ED50 of 168 in lumbar tissue whereas ISIS 333611 achieved an ED50 of 401 in lumbar tissue in SOD-1 transgenic mice when treated with an intracerebral ventricular bolus of 10, 30, 100, 300, or 700 μg of oligonucleotide.


For example, as provided in Example 18 (hereinbelow), ISIS 666919 achieved a FOB score of 0.0 whereas ISIS 333611 achieved a FOB score of 6.5 in C57bl6 mice after 3 hours when treated with 700 μg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666919 treated mice as compared to ISIS 333611 treated mice.


ISIS 666921


For example, as provided in Example 12 (hereinbelow), ISIS 66621 achieved 71% inhibition in lumbar spinal cord and 65% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 14 (hereinbelow), ISIS 666921 achieved a FOB score of 2 whereas ISIS 333611 achieved a FOB score of 4 in Sprague-Dawley rats after 3 hours when treated with 3 mg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666919 treated rats as compared to ISIS 333611 treated rats.


ISIS 666922


For example, as provided in Example 12 (hereinbelow), ISIS 666922 achieved 67% inhibition in lumbar spinal cord and 62% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 14 (hereinbelow), ISIS 666922 achieved a FOB score of 3 whereas ISIS 333611 achieved a FOB score of 4 in Sprague-Dawley rats after 3 hours when treated with 3 mg of oligonucleotide. Microglial marker (IBA1) levels and astrocytic marker (GFAP) levels were also reduced in ISIS 666919 treated rats as compared to ISIS 333611 treated rats.


ISIS 666869


For example, as provided in Example 12 (hereinbelow), ISIS 666869 achieved 82% inhibition in lumbar spinal cord and 81% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


ISIS 666870


For example, as provided in Example 12 (hereinbelow), ISIS 666870 achieved 76% inhibition in lumbar spinal cord and 68% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


For example, as provided in Example 15 (hereinbelow), ISIS 666870 achieved an ED50 of 139.4 and 1111 in lumbar tissue and cervical tissue (respectively) in SOD-1 transgenic rats when treated intrathecally with 10, 30, 100, 300, or 3000 μg of oligonucleotide. ED50 in lumbar and cervical tissues could not be calculated in ISIS 333611 treated transgenic rats because the highest concentration tested (3000 μg) filed to inhibit human SOD-1 mRNA greater than 55-65%.


For example, as provided in Example 17 (hereinbelow), ISIS 666870 achieved an ED50 of 148 and 409 in lumbar tissue and cortex tissue (respectively) whereas ISIS 333611 achieved an ED50 of 401 and 786 in lumbar tissue and cortex tissue (respectively) in SOD-1 transgenic mice when treated with an intracerebral ventricular bolus of 10, 30, 100, 300, or 700 μg of oligonucleotide.


For example, as provided in Example 18 (hereinbelow), ISIS 666870 achieved a FOB score of 4.75 whereas ISIS 333611 achieved a FOB score of 6.5 in C57bl6 mice after 3 hours when treated with 700 μg of oligonucleotide.


ISIS 666867


For example, as provided in Example 12 (hereinbelow), ISIS 666867 achieved 59% inhibition in lumbar spinal cord and 48% in cervical spinal cord of an SOD-1 transgenic rat model when dosed with 30 μL of 16.67 mg/ml solution of oligonucleotide diluted in PBS (500 μg final dose), whereas ISIS 333611 achieved 51% inhibition in lumbar spinal cord and 47% inhibition in cervical spinal cord.


Certain Compositions


1. ISIS 666853


In certain embodiments, ISIS 666853 is characterized as a 5-10-5 MOE gapmer, having a sequence of (from 5′ to 3′) CAGGATACATTTCTACAGCT (incorporated herein as SEQ ID NO: 725), wherein each of nucleosides 1-5 and 16-20 are 2′-O-methoxyethylribose modified nucleosides, and each of nucleosides 6-15 are 2′-deoxynucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 4 to 5, 16 to 17, and 18 to 19 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 3 to 4, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 14 to 15, 15 to 16, 17 to 18, and 19 to 20 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666853 is described by the following chemical notation: mCes Aeo Ges Geo Aes Tds Ads mCds Ads Tds Tds Tds mCds Tds Ads mCeo Aes Geo mCes Te; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666853 is described by the following chemical structure:




embedded image



2. ISIS 666859


In certain embodiments, ISIS 666859 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) TTAATGTTTATCAGGAT (incorporated herein as SEQ ID NO: 1351), consisting of seventeen nucleosides, wherein each of nucleosides 1-4 and 15-17 are 2′-O-methoxyethylribose nucleosides, wherein each of nucleosides 13 and 14 are cEt modified nucleosides, wherein each of nucleosides 5-12 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 13 to 14, 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666859 is described by the following chemical notation: Tes Teo Aeo Aes Tds Gds Tds Tds Tds Ads Tds mCds Ako Gko Ges Aes Te; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666859 is described by the following chemical structure:




embedded image



3. ISIS 666919


In certain embodiments, ISIS 666919 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) GGATACATTTCTACAGC (incorporated herein as SEQ ID NO: 1342), consisting of seventeen nucleosides, wherein each of nucleosides 1-4 and 16-17 are 2′-O-methoxyethylribose modified nucleosides, wherein each of nucleosides 14 and 15 are cEt modified nucleosides, wherein each of nucleosides 5-13 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666919 is described by the following chemical notation: Ges Geo Aeo Teo Ads mCds Ads Tds Tds Tds mCds Tds Ads mCko Aks Ges mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666919 is described by the following chemical structure:




embedded image



4. ISIS 666921


In certain embodiments, ISIS 666921 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) GGATACATTTCTACAGC (incorporated herein as SEQ ID NO: 1342), consisting of seventeen nucleosides, wherein each of nucleosides 1-5 and 16-17 are 2′-O-methoxyethylribose modified nucleosides, wherein each of nucleosides 14-15 are cEt modified nucleosides, wherein each of nucleosides 6-13 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666921 is described by the following chemical notation: Ges Geo Aeo Teo Aes mCds Ads Tds Tds Tds mCds Tds Ads mCko Aks Ges mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666921 is described by the following chemical structure:




embedded image



5. ISIS 666922


In certain embodiments, ISIS 666922 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) GGATACATTTCTACAGC (incorporated herein as SEQ ID NO: 1342), consisting of seventeen nucleosides, wherein each of nucleosides 1-4 and 15-17 are 2′-O-methoxyethylribose modified nucleosides, wherein each of nucleosides 5 and 14 are cEt modified nucleosides, wherein each of nucleosides 6-13 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 4 to 5, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 13 to 14, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666922 is described by the following chemical notation: Ges Geo Aeo Teo Aks mCds Ads Tds Tds Tds mCds Tds Ads mCko Aes Ges mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666922 is described by the following chemical structure:




embedded image



6. ISIS 666869


In certain embodiments, ISIS 666869 is characterized as modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) AGTGTTTAATGTTTATC (incorporated herein as SEQ ID NO: 1173), consisting of seventeen nucleosides, wherein each of nucleosides 1, 3, 14, and 16-17 are 2′-methoxyethylribose modified nucleosides, wherein each of nucleosides 2, 4, 13, and 15 are cEt modified nucleosides, wherein each of nucleosides 5-12 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 13 to 14, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666869 is described by the following chemical notation: Aes Gko Teo Gks Tds Tds Tds Ads Ads Tds Gds Tds Tko Teo Aks Tes mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666869 is described by the following chemical structure:




embedded image



7. ISIS 666870


In certain embodiments, ISIS 666870 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) AGTGTTTAATGTTTATC (incorporated herein as SEQ ID NO: 1173), consisting of seventeen nucleosides, wherein each of nucleosides 1, 3, 13-17 are 2′-O-methoxyethylribose modified nucleosides, wherein each of nucleosides 2 and 4 are cEt modified nucleosides, wherein each of nucleosides 5-12 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 13 to 14, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666870 is described by the following chemical notation: Aes Gko Teo Gks Tds Tds Tds Ads Ads Tds Gds Tds Teo Teo Aes Tes mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666870 is described by the following chemical structure:




embedded image



8. ISIS 666867


In certain embodiments, ISIS 666867 is characterized as a modified oligonucleotide having the nucleobase sequence (from 5′ to 3′) AGTGTTTAATGTTTATC (incorporated herein as SEQ ID NO: 1173), consisting of seventeen nucleosides, wherein each of nucleosides 1-2 and 13-17 are 2′-O-methoxyethylribose modified nucleosides, wherein each of nucleosides 3 and 4 are cEt modified nucleosides, wherein each of nucleosides 5-12 are 2′-deoxyribonucleosides, wherein the internucleoside linkages between nucleosides 2 to 3, 3 to 4, 13 to 14, and 14 to 15 are phosphodiester linkages and the internucleoside linkages between nucleosides 1 to 2, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 12 to 13, 15 to 16, and 16 to 17 are phosphorothioate linkages, and wherein each cytosine is a 5′-methylcytosine.


In certain embodiments, ISIS 666867 is described by the following chemical notation: Aes Geo Tko Gks Tds Tds Tds Ads Ads Tds Gds Tds Teo Teo Aes Tes mCe; wherein,


A=an adenine,


mC=a 5′-methylcytosine


G=a guanine,


T=a thymine,


e=a 2′-O-methoxyethylribose modified sugar,


k=a cEt modified sugar,


d=a 2′-deoxyribose sugar,


s=a phosphorothioate internucleoside linkage, and


o=a phosphodiester internucleoside linkage.


In certain embodiments, ISIS 666867 is described by the following chemical structure:




embedded image


EXAMPLES
Non-Limiting Disclosure and Incorporation by Reference

While certain compounds, compositions, and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.


Example 1: Inhibition of Human Superoxide Dismutase 1, Soluble (SOD-1) in HepG2 Cells by MOE Gapmers

Modified oligonucleotides were designed targeting a superoxide dismutase 1, soluble (SOD-1) nucleic acid and were tested for their effects on SOD-1 mRNA in vitro. ISIS 146144, ISIS 146145, ISIS 150437, ISIS 150441, ISIS 150443, ISIS 150444, ISIS 150445, ISIS 150446, ISIS 150447, ISIS 150448, ISIS 150449, ISIS 150452, ISIS 150454, ISIS 150458, ISIS 150460, ISIS 150462-150467, ISIS 150470, ISIS 150472, ISIS 150474, ISIS 150475, ISIS 150476, ISIS 150479-150483, ISIS 150488, ISIS 150489, ISIS 150490, ISIS 150491-150493, ISIS 150495-150498, ISIS 150511, ISIS 333605, ISIS 333606, ISIS 333609-333617, ISIS 333619, ISIS 333620-333636, ISIS 333638, and ISIS 333640, previously disclosed in WO 2005/040180, were also included in this assay. ISIS 333611, previously disclosed in WO 2005/040180, was also designated as a benchmark or comparator oligonucleotide. ISIS 333611 was recently tested in human clinical trials. See, MILLER et al., “An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study” Lancet Neurol. (2013) 12(5): 435-442.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 7,000 nM modified oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR.


Human primer probe set RTS3898 (forward sequence CTCTCAGGAGACCATTGCATCA, designated herein as SEQ ID NO: 11; reverse sequence TCCTGTCTTTGTACTTTCTTCATTTCC; designated herein as SEQ ID NO: 12; probe sequence CCGCACACTGGTGGTCCATGAAAA, designated herein as SEQ ID NO: 13) was used to measure mRNA levels. In cases where the oligonucleotide overlapped the amplicon of the primer probe set, an alternative primer probe set, HTS90 (forward sequence CGTGGCCTAGCGAGTTATGG, designated herein as SEQ ID NO: 14; reverse sequence GAAATTGATGATGCCCTGCA; designated herein as SEQ ID NO: 15; probe sequence ACGAAGGCCGTGTGCGTGCTGX, designated herein as SEQ ID NO: 16), was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. ‘n.d.’ indicates that inhibition levels were not measured using the particular primer probe set.


The newly designed modified oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Startsite” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stopsite” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000). ‘n/a’ indicates that the modified oligonucleotide does not target that particular gene sequence with 100 complementarity.









TABLE 1







Percent Inhibition of SOD-1 mRNA by 5-10-5 MOE 


gapmers targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















590065
1
20
CGCCCACTCTGGCCCCAAAC
7
807
826
118





590066
35
54
CCGCGACTACTTTATAGGCC
5
841
860
119





333611
167
186
CCGTCGCCCTTCAGCACGCA
85
973
992
21





590067
202
221
CCTTCTGCTCGAAATTGATG
74
1008
1027
120





590068
203
222
TCCTTCTGCTCGAAATTGAT
58
n/a
n/a
121





590069
204
223
TTCCTTCTGCTCGAAATTGA
50
n/a
n/a
122





590070
205
224
TTTCCTTCTGCTCGAAATTG
47
n/a
n/a
123





590071
206
225
CTTTCCTTCTGCTCGAAATT
31
n/a
n/a
124





590072
207
226
ACTTTCCTTCTGCTCGAAAT
42
n/a
n/a
125





590073
208
227
TACTTTCCTTCTGCTCGAAA
38
n/a
n/a
126





590074
209
228
TTACTTTCCTTCTGCTCGAA
33
n/a
n/a
127





590075
210
229
ATTACTTTCCTTCTGCTCGA
39
n/a
n/a
128





590076
211
230
CATTACTTTCCTTCTGCTCG
28
n/a
n/a
129





590077
212
231
CCATTACTTTCCTTCTGCTC
58
n/a
n/a
130





590078
213
232
TCCATTACTTTCCTTCTGCT
58
n/a
n/a
131





590079
214
233
GTCCATTACTTTCCTTCTGC
69
n/a
n/a
132





590080
215
234
GGTCCATTACTTTCCTTCTG
68
n/a
n/a
133





590081
216
235
TGGTCCATTACTTTCCTTCT
61
n/a
n/a
134





590082
217
236
CTGGTCCATTACTTTCCTTC
69
n/a
n/a
135





590083
218
237
ACTGGTCCATTACTTTCCTT
54
4972
4991
136





150445
219
238
CACTGGTCCATTACTTTCCT
84
4973
4992
22





590084
220
239
TCACTGGTCCATTACTTTCC
65
4974
4993
137





590085
221
240
TTCACTGGTCCATTACTTTC
45
4975
4994
138





590086
222
241
CTTCACTGGTCCATTACTTT
43
4976
4995
139





590087
223
242
CCTTCACTGGTCCATTACTT
67
4977
4996
140





590088
224
243
ACCTTCACTGGTCCATTACT
59
4978
4997
141





436841
225
244
CACCTTCACTGGTCCATTAC
65
4979
4998
142





150446
226
245
ACACCTTCACTGGTCCATTA
83
4980
4999
23





393336
227
246
CACACCTTCACTGGTCCATT
81
4981
5000
143





150447
228
247
CCACACCTTCACTGGTCCAT
89
4982
5001
24





590089
229
248
CCCACACCTTCACTGGTCCA
82
4983
5002
144





590090
230
249
CCCCACACCTTCACTGGTCC
89
4984
5003
145





590091
231
250
TCCCCACACCTTCACTGGTC
84
4985
5004
146





590092
232
251
TTCCCCACACCTTCACTGGT
61
4986
5005
147





590093
233
252
CTTCCCCACACCTTCACTGG
60
4987
5006
148





590094
234
253
GCTTCCCCACACCTTCACTG
78
4988
5007
149





590095
235
254
TGCTTCCCCACACCTTCACT
72
4989
5008
150





590096
236
255
ATGCTTCCCCACACCTTCAC
76
4990
5009
151





393337
237
256
AATGCTTCCCCACACCTTCA
76
4991
5010
152





590097
238
257
TAATGCTTCCCCACACCTTC
68
4992
5011
153





590098
264
283
TCCATGCAGGCCTTCAGTCA
63
5018
5037
154





590099
265
284
ATCCATGCAGGCCTTCAGTC
64
5019
5038
155





590100
266
285
AATCCATGCAGGCCTTCAGT
52
5020
5039
156





590101
267
286
GAATCCATGCAGGCCTTCAG
53
5021
5040
157





590102
268
287
GGAATCCATGCAGGCCTTCA
65
5022
5041
158





393339
269
288
TGGAATCCATGCAGGCCTTC
43
5023
5042
159





590103
270
289
ATGGAATCCATGCAGGCCTT
56
5024
5043
160





590104
271
290
CATGGAATCCATGCAGGCCT
57
5025
5044
161





590105
272
291
ACATGGAATCCATGCAGGCC
52
5026
5045
162





590106
273
292
AACATGGAATCCATGCAGGC
54
5027
5046
163





590107
274
293
GAACATGGAATCCATGCAGG
51
5028
5047
164





590108
275
294
TGAACATGGAATCCATGCAG
58
5029
5048
165





393340
276
295
ATGAACATGGAATCCATGCA
62
5030
5049
166





590109
316
335
GACCTGCACTGGTACAGCCT
69
7632
7651
167





436847
317
336
GGACCTGCACTGGTACAGCC
74
7633
7652
168





590110
318
337
AGGACCTGCACTGGTACAGC
70
7634
7653
169





590111
319
338
GAGGACCTGCACTGGTACAG
74
7635
7654
170





590112
320
339
TGAGGACCTGCACTGGTACA
68
7636
7655
171





590113
321
340
GTGAGGACCTGCACTGGTAC
80
7637
7656
172





393343
322
341
AGTGAGGACCTGCACTGGTA
79
7638
7657
173





590114
323
342
AAGTGAGGACCTGCACTGGT
65
7639
7658
174





590115
324
343
AAAGTGAGGACCTGCACTGG
48
7640
7659
175





590116
325
344
TAAAGTGAGGACCTGCACTG
51
7641
7660
176





436848
326
345
TTAAAGTGAGGACCTGCACT
59
7642
7661
177





590117
327
346
ATTAAAGTGAGGACCTGCAC
43
7643
7662
178





590118
328
347
GATTAAAGTGAGGACCTGCA
43
7644
7663
179





590119
329
348
GGATTAAAGTGAGGACCTGC
67
7645
7664
180





590120
330
349
AGGATTAAAGTGAGGACCTG
63
7646
7665
181





436849
331
350
GAGGATTAAAGTGAGGACCT
64
7647
7666
182





393344
332
351
AGAGGATTAAAGTGAGGACC
59
7648
7667
183





590121
333
352
TAGAGGATTAAAGTGAGGAC
52
7649
7668
184





590122
334
353
ATAGAGGATTAAAGTGAGGA
36
7650
7669
185





590123
335
354
GATAGAGGATTAAAGTGAGG
25
7651
7670
186





590124
336
355
GGATAGAGGATTAAAGTGAG
34
7652
7671
187





590125
337
356
TGGATAGAGGATTAAAGTGA
49
7653
7672
188





590126
338
357
CTGGATAGAGGATTAAAGTG
34
7654
7673
189





590127
339
358
TCTGGATAGAGGATTAAAGT
39
7655
7674
190





590128
360
379
ATCCTTTGGCCCACCGTGTT
60
7676
7695
191
















TABLE 2







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE


gapmers targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:

%
%
NO:
NO:




1
1

inhibition
inhibition
2
2
SEQ


ISIS
Start
Stop

with
with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
HTS90
Site
Site
NO


















333611
167
186
CCGTCGCCCTTCAGCACGCA
76
95
 973
 992
21





393347
361
380
CATCCTTTGGCCCACCGTGT
70
72
7677
7696
192





590129
362
381
TCATCCTTTGGCCCACCGTG
66
68
7678
7697
193





590130
363
382
TTCATCCTTTGGCCCACCGT
53
55
7679
7698
194





590131
364
383
CTTCATCCTTTGGCCCACCG
52
50
7680
7699
195





590132
365
384
TCTTCATCCTTTGGCCCACC
61
64
7681
7700
196





590133
366
385
CTCTTCATCCTTTGGCCCAC
45
54
7682
7701
197





590134
367
386
TCTCTTCATCCTTTGGCCCA
44
34
7683
7702
198





590135
368
387
CTCTCTTCATCCTTTGGCCC
52
49
7684
7703
199





590136
369
388
CCTCTCTTCATCCTTTGGCC
48
47
7685
7704
200





590137
370
389
GCCTCTCTTCATCCTTTGGC
35
44
n/a
n/a
201





590138
371
390
TGCCTCTCTTCATCCTTTGG
52
45
n/a
n/a
202





590139
372
391
ATGCCTCTCTTCATCCTTTG
50
45
n/a
n/a
203





590140
373
392
CATGCCTCTCTTCATCCTTT
49
27
n/a
n/a
204





590141
374
393
ACATGCCTCTCTTCATCCTT
34
18
n/a
n/a
205





590142
375
394
AACATGCCTCTCTTCATCCT
38
35
n/a
n/a
206





333612
376
395
CAACATGCCTCTCTTCATCC
34
33
n/a
n/a
25





333613
377
396
CCAACATGCCTCTCTTCATC
46
55
n/a
n/a
26





333614
378
397
TCCAACATGCCTCTCTTCAT
42
48
n/a
n/a
27





333615
379
398
CTCCAACATGCCTCTCTTCA
42
15
n/a
n/a
28





333616
380
399
TCTCCAACATGCCTCTCTTC
35
44
n/a
n/a
29





333617
381
400
GTCTCCAACATGCCTCTCTT
42
47
n/a
n/a
30





590143
501
520
TGCTTTTTCATGGACCACCA
n.d.
65
n/a
n/a
207





590144
502
521
CTGCTTTTTCATGGACCACC
n.d.
70
n/a
n/a
208





590145
503
522
TCTGCTTTTTCATGGACCAC
n.d.
64
n/a
n/a
209





436860
504
523
ATCTGCTTTTTCATGGACCA
n.d.
65
n/a
n/a
210





590146
505
524
CATCTGCTTTTTCATGGACC
n.d.
68
9655
9674
211





590147
506
525
TCATCTGCTTTTTCATGGAC
n.d.
59
9656
9675
212





393359
507
526
GTCATCTGCTTTTTCATGGA
n.d.
56
9657
9676
213





590148
508
527
AGTCATCTGCTTTTTCATGG
n.d.
45
9658
9677
214





590149
509
528
AAGTCATCTGCTTTTTCATG
n.d.
23
9659
9678
215





590150
510
529
CAAGTCATCTGCTTTTTCAT
n.d.
43
9660
9679
216





590151
511
530
CCAAGTCATCTGCTTTTTCA
n.d.
72
9661
9680
217





489513
512
531
CCCAAGTCATCTGCTTTTTC
n.d.
73
9662
9681
218





590152
513
532
GCCCAAGTCATCTGCTTTTT
n.d.
74
9663
9682
219





436861
514
533
TGCCCAAGTCATCTGCTTTT
n.d.
75
9664
9683
220





590153
515
534
TTGCCCAAGTCATCTGCTTT
n.d.
47
9665
9684
221





393360
516
535
TTTGCCCAAGTCATCTGCTT
n.d.
57
9666
9685
222





590154
517
536
CTTTGCCCAAGTCATCTGCT
n.d.
79
9667
9686
223





590155
518
537
CCTTTGCCCAAGTCATCTGC
n.d.
67
9668
9687
224





590156
519
538
ACCTTTGCCCAAGTCATCTG
n.d.
57
9669
9688
225





333620
520
539
CACCTTTGCCCAAGTCATCT
n.d.
68
9670
9689
31





333621
521
540
CCACCTTTGCCCAAGTCATC
n.d.
72
9671
9690
32





333622
522
541
TCCACCTTTGCCCAAGTCAT
n.d.
77
9672
9691
33





333623
523
542
TTCCACCTTTGCCCAAGTCA
n.d.
73
9673
9692
34





333624
524
543
TTTCCACCTTTGCCCAAGTC
n.d.
77
9674
9693
35





333625
525
544
ATTTCCACCTTTGCCCAAGT
n.d.
79
9675
9694
36





333626
526
545
CATTTCCACCTTTGCCCAAG
n.d.
72
9676
9695
37





333627
527
546
TCATTTCCACCTTTGCCCAA
n.d.
55
9677
9696
38





333628
528
547
TTCATTTCCACCTTTGCCCA
n.d.
59
9678
9697
39





333629
529
548
CTTCATTTCCACCTTTGCCC
n.d.
73
9679
9698
40





333630
530
549
TCTTCATTTCCACCTTTGCC
n.d.
76
9680
9699
41





333631
531
550
TTCTTCATTTCCACCTTTGC
n.d.
62
9681
9700
42





333632
532
551
TTTCTTCATTTCCACCTTTG
n.d.
64
9682
9701
43





333633
533
552
CTTTCTTCATTTCCACCTTT
n.d.
69
9683
9702
44





333634
534
553
ACTTTCTTCATTTCCACCTT
n.d.
55
9684
9703
45





333635
535
554
TACTTTCTTCATTTCCACCT
n.d.
72
9685
9704
46





489517
582
601
CCCAATTACACCACAAGCCA
68
72
9732
9751
226





436863
583
602
TCCCAATTACACCACAAGCC
83
86
9733
9752
227





590157
584
603
ATCCCAATTACACCACAAGC
64
62
9734
9753
228





590158
585
604
GATCCCAATTACACCACAAG
51
61
9735
9754
229





590159
586
605
CGATCCCAATTACACCACAA
60
55
9736
9755
230





590160
587
606
GCGATCCCAATTACACCACA
59
63
9737
9756
231





150463
588
607
GGCGATCCCAATTACACCAC
78
79
9738
9757
47





393363
589
608
GGGCGATCCCAATTACACCA
65
65
9739
9758
232





590161
590
609
TGGGCGATCCCAATTACACC
56
60
9740
9759
233





590162
591
610
TTGGGCGATCCCAATTACAC
48
51
9741
9760
234





489518
592
611
ATTGGGCGATCCCAATTACA
51
59
9742
9761
235





436864
593
612
TATTGGGCGATCCCAATTAC
39
41
9743
9762
236





590163
594
613
TTATTGGGCGATCCCAATTA
35
34
9744
9763
237





590164
595
614
TTTATTGGGCGATCCCAATT
42
44
9745
9764
238





590165
596
615
GTTTATTGGGCGATCCCAAT
58
61
9746
9765
239





393364
597
616
TGTTTATTGGGCGATCCCAA
60
69
9747
9766
240





590166
598
617
ATGTTTATTGGGCGATCCCA
51
54
9748
9767
241





590167
599
618
AATGTTTATTGGGCGATCCC
48
45
9749
9768
242





590168
600
619
GAATGTTTATTGGGCGATCC
60
65
9750
9769
243





150464
601
620
GGAATGTTTATTGGGCGATC
58
63
9751
9770
48





393365
607
626
TCCAAGGGAATGTTTATTGG
50
58
9757
9776
244
















TABLE 3







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE 


gapmers targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
80
973
992
21





590169
608
627
ATCCAAGGGAATGTTTATTG
63
9758
9777
245





590170
609
628
CATCCAAGGGAATGTTTATT
53
9759
9778
246





590171
610
629
ACATCCAAGGGAATGTTTAT
49
9760
9779
247





590172
611
630
TACATCCAAGGGAATGTTTA
56
9761
9780
248





489519
612
631
CTACATCCAAGGGAATGTTT
60
9762
9781
249





590173
613
632
ACTACATCCAAGGGAATGTT
61
9763
9782
250





590174
614
633
GACTACATCCAAGGGAATGT
65
9764
9783
251





393366
615
634
AGACTACATCCAAGGGAATG
58
9765
9784
252





590175
616
635
CAGACTACATCCAAGGGAAT
50
9766
9785
253





436865
617
636
TCAGACTACATCCAAGGGAA
69
9767
9786
254





590176
618
637
CTCAGACTACATCCAAGGGA
78
9768
9787
255





150465
619
638
CCTCAGACTACATCCAAGGG
91
9769
9788
49





590177
620
639
GCCTCAGACTACATCCAAGG
90
9770
9789
256





590178
621
640
GGCCTCAGACTACATCCAAG
92
9771
9790
257





489520
622
641
GGGCCTCAGACTACATCCAA
88
9772
9791
258





590179
643
662
CAGGATAACAGATGAGTTAA
79
9793
9812
259





590180
644
663
GCAGGATAACAGATGAGTTA
83
9794
9813
260





590181
645
664
AGCAGGATAACAGATGAGTT
81
9795
9814
261





590182
646
665
TAGCAGGATAACAGATGAGT
68
9796
9815
262





590183
647
666
CTAGCAGGATAACAGATGAG
74
9797
9816
263





590184
648
667
GCTAGCAGGATAACAGATGA
70
9798
9817
264





393370
649
668
AGCTAGCAGGATAACAGATG
61
9799
9818
265





590185
650
669
CAGCTAGCAGGATAACAGAT
78
9800
9819
266





590186
651
670
ACAGCTAGCAGGATAACAGA
72
9801
9820
267





489522
652
671
TACAGCTAGCAGGATAACAG
78
9802
9821
268





590187
653
672
CTACAGCTAGCAGGATAACA
88
9803
9822
269





378879
654
673
TCTACAGCTAGCAGGATAAC
86
9804
9823
270





590188
655
674
TTCTACAGCTAGCAGGATAA
85
9805
9824
271





393371
656
675
TTTCTACAGCTAGCAGGATA
84
9806
9825
272





436868
657
676
ATTTCTACAGCTAGCAGGAT
81
9807
9826
273





590189
658
677
CATTTCTACAGCTAGCAGGA
87
9808
9827
274





590190
659
678
ACATTTCTACAGCTAGCAGG
92
9809
9828
275





590191
660
679
TACATTTCTACAGCTAGCAG
88
9810
9829
276





590192
661
680
ATACATTTCTACAGCTAGCA
88
9811
9830
277





489523
662
681
GATACATTTCTACAGCTAGC
93
9812
9831
278





590193
683
702
ACAGTGTTTAATGTTTATCA
74
9833
9852
279





590194
684
703
TACAGTGTTTAATGTTTATC
64
9834
9853
280





590195
685
704
TTACAGTGTTTAATGTTTAT
56
9835
9854
281





590196
686
705
ATTACAGTGTTTAATGTTTA
50
9836
9855
282





590197
687
706
GATTACAGTGTTTAATGTTT
74
9837
9856
283





590198
688
707
AGATTACAGTGTTTAATGTT
37
9838
9857
284





590199
689
708
AAGATTACAGTGTTTAATGT
58
9839
9858
285





393375
690
709
TAAGATTACAGTGTTTAATG
58
9840
9859
286





590200
691
710
TTAAGATTACAGTGTTTAAT
46
9841
9860
287





436876
772
791
CAAATCTTCCAAGTGATCAT
36
9922
9941
288





590201
773
792
ACAAATCTTCCAAGTGATCA
33
9923
9942
289





590202
774
793
TACAAATCTTCCAAGTGATC
34
9924
9943
290





150474
775
794
ATACAAATCTTCCAAGTGAT
47
9925
9944
50





590203
776
795
TATACAAATCTTCCAAGTGA
29
9926
9945
291





393382
777
796
CTATACAAATCTTCCAAGTG
41
9927
9946
292





436877
778
797
ACTATACAAATCTTCCAAGT
45
9928
9947
293





590204
779
798
AACTATACAAATCTTCCAAG
27
9929
9948
294





590205
780
799
AAACTATACAAATCTTCCAA
33
9930
9949
295





590206
781
800
AAAACTATACAAATCTTCCA
35
9931
9950
296





489533
782
801
TAAAACTATACAAATCTTCC
26
9932
9951
297





590207
783
802
ATAAAACTATACAAATCTTC
19
9933
9952
298





590208
784
803
TATAAAACTATACAAATCTT
2
9934
9953
299





590209
785
804
TTATAAAACTATACAAATCT
7
9935
9954
300





590210
786
805
TTTATAAAACTATACAAATC
0
9936
9955
301





590211
787
806
TTTTATAAAACTATACAAAT
4
9937
9956
302





590212
788
807
GTTTTATAAAACTATACAAA
5
9938
9957
303





590213
789
808
AGTTTTATAAAACTATACAA
3
9939
9958
304





436878
790
809
GAGTTTTATAAAACTATACA
7
9940
9959
305





150475
791
810
TGAGTTTTATAAAACTATAC
28
9941
9960
51





489536
812
831
CATTGAAACAGACATTTTAA
28
9962
9981
306





150479
813
832
TCATTGAAACAGACATTTTA
36
9963
9982
52





393385
814
833
GTCATTGAAACAGACATTTT
50
9964
9983
307





590214
815
834
GGTCATTGAAACAGACATTT
45
9965
9984
308





590215
816
835
AGGTCATTGAAACAGACATT
47
9966
9985
309





590216
817
836
CAGGTCATTGAAACAGACAT
39
9967
9986
310





590217
818
837
ACAGGTCATTGAAACAGACA
44
9968
9987
311





590218
819
838
TACAGGTCATTGAAACAGAC
42
9969
9988
312





150480
820
839
ATACAGGTCATTGAAACAGA
46
9970
9989
53





393386
821
840
AATACAGGTCATTGAAACAG
36
9971
9990
313





489537
822
841
AAATACAGGTCATTGAAACA
12
9972
9991
314





590219
823
842
AAAATACAGGTCATTGAAAC
16
9973
9992
315





590220
824
843
CAAAATACAGGTCATTGAAA
21
9974
9993
316
















TABLE 4







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE


gapmers targeting SEQ ID NO: 1 and/or 2











SEQ
SEQ
















ID
ID


SEQ
SEQ




NO:
NO:

%
ID
ID




1
1

inhibition
NO: 2
NO: 2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















590251
n/a
n/a
CCTTGCCTTCTGCTCGAAAT
57
1013
1032
317





590252
n/a
n/a
AATAAAGTTGACCTCTTTTT
45
5479
5498
318





590253
n/a
n/a
CTCTGATATAAAAATCTTGT
54
8142
8161
319





590254
n/a
n/a
GCCCCGCGGCGGCCTCGGTC
38
1238
1257
320





590255
n/a
n/a
GCTATCGCCATTATTACAAG
38
7722
7741
321





590256
n/a
n/a
CTCAAATGTGAAAGTTGTCC
57
3414
3433
322





590257
n/a
n/a
GTTCTATATTCAATAAATGC
37
7925
7944
323





590258
n/a
n/a
AATTAAAGTTCCCAAATACA
0
7578
7597
324





590259
n/a
n/a
GATCATTACAAAAGTTAAGA
17
6150
6169
325





590260
n/a
n/a
CCTTCTCTGCCCTTGCAGCC
55
1685
1704
326





590261
n/a
n/a
ACCCAAATAACTATGTTGTA
n.d.
9394
9413
327





590262
n/a
n/a
CCAGGTTTTAAACTTAACAA
n.d.
8890
8909
328





590263
n/a
n/a
ATCTCAGGACTAAAATAAAC
44
3663
3682
329





590264
n/a
n/a
AAATAACTATGTTGTAGACC
n.d.
9390
9409
330





590265
n/a
n/a
AAGAACCTTTTCCAGAAAAT
37
2449
2468
331





590266
n/a
n/a
GGAACAGAAACAAGTCTATG
25
7458
7477
332





590267
n/a
n/a
AGAAAGCTATCGCCATTATT
27
7727
7746
333





590268
n/a
n/a
TTCCCAAATACATTCTAAAA
7
7570
7589
334





590269
n/a
n/a
AACTGCTCTAGGCCTGTGTC
53
4787
4806
335





590270
n/a
n/a
AAATGGATCAAATCTGATCA
31
6595
6614
336





590271
n/a
n/a
GTAGGTGCACATCAAAATCA
58
1928
1947
337





590272
n/a
n/a
TCTGATATAAAAATCTTGTC
28
8141
8160
338





590273
n/a
n/a
ACCATATGAACTCCAGAAAG
45
7741
7760
339





590274
n/a
n/a
AACATCAAGGTAGTTCATGA
10
8379
8398
340





590275
n/a
n/a
GCAATTACAGAAATGGATCA
42
6605
6624
341





590276
n/a
n/a
TTTTAAGCATATTCCAAAGT
45
6331
6350
342





590277
n/a
n/a
TCAACCCCCAGCTCAAACAC
26
6174
6193
343





590278
n/a
n/a
AGAAAAATAACATTAATCCT
n.d.
9541
9560
344





590279
n/a
n/a
AAGATTTTAAACACGGAATA
31
3085
3104
345





146145
165
184
GTCGCCCTTCAGCACGCACA
82
971
990
54





333611
167
186
CCGTCGCCCTTCAGCACGCA
81
973
992
21





590250
399
418
AGCAGTCACATTGCCCAAGT
75
8454
8473
346





489525
682
701
CAGTGTTTAATGTTTATCAG
69
9832
9851
347





436879
825
844
GCAAAATACAGGTCATTGAA
49
9975
9994
348





590221
826
845
GGCAAAATACAGGTCATTGA
54
9976
9995
349





590222
827
846
TGGCAAAATACAGGTCATTG
52
9977
9996
350





393387
828
847
CTGGCAAAATACAGGTCATT
51
9978
9997
351





590223
829
848
TCTGGCAAAATACAGGTCAT
47
9979
9998
352





590224
830
849
GTCTGGCAAAATACAGGTCA
44
9980
9999
353





590225
831
850
AGTCTGGCAAAATACAGGTC
50
9981
10000
354





489538
832
851
AAGTCTGGCAAAATACAGGT
38
9982
10001
355





590226
833
852
TAAGTCTGGCAAAATACAGG
33
9983
10002
356





590227
834
853
TTAAGTCTGGCAAAATACAG
20
9984
10003
357





150482
853
872
TTTAATACCCATCTGTGATT
29
10003
10022
55





590228
854
873
GTTTAATACCCATCTGTGAT
33
10004
10023
358





150483
855
874
AGTTTAATACCCATCTGTGA
44
10005
10024
56





590229
856
875
AAGTTTAATACCCATCTGTG
51
10006
10025
359





590230
857
876
CAAGTTTAATACCCATCTGT
42
10007
10026
360





590231
858
877
ACAAGTTTAATACCCATCTG
38
10008
10027
361





393389
859
878
GACAAGTTTAATACCCATCT
48
10009
10028
362





590232
860
879
TGACAAGTTTAATACCCATC
55
10010
10029
363





590233
861
880
CTGACAAGTTTAATACCCAT
49
10011
10030
364





489541
862
881
TCTGACAAGTTTAATACCCA
52
10012
10031
365





590234
863
882
TTCTGACAAGTTTAATACCC
39
10013
10032
366





590235
864
883
ATTCTGACAAGTTTAATACC
21
10014
10033
367





590236
865
884
AATTCTGACAAGTTTAATAC
4
10015
10034
368





393390
866
885
AAATTCTGACAAGTTTAATA
7
10016
10035
369





590237
867
886
GAAATTCTGACAAGTTTAAT
5
10017
10036
370





436881
868
887
AGAAATTCTGACAAGTTTAA
33
10018
10037
371





590238
869
888
AAGAAATTCTGACAAGTTTA
20
10019
10038
372





590239
891
910
TTATTCACAGGCTTGAATGA
23
10041
10060
373





489544
892
911
TTTATTCACAGGCTTGAATG
41
10042
10061
374





590240
893
912
TTTTATTCACAGGCTTGAAT
40
10043
10062
375





436884
894
913
TTTTTATTCACAGGCTTGAA
31
10044
10063
376





590241
895
914
GTTTTTATTCACAGGCTTGA
39
10045
10064
377





150488
896
915
GGTTTTTATTCACAGGCTTG
51
10046
10065
57





590242
897
916
GGGTTTTTATTCACAGGCTT
46
10047
10066
378





150489
898
917
AGGGTTTTTATTCACAGGCT
52
10048
10067
58





590243
899
918
CAGGGTTTTTATTCACAGGC
49
10049
10068
379





590244
900
919
ACAGGGTTTTTATTCACAGG
38
10050
10069
380





590245
901
920
TACAGGGTTTTTATTCACAG
34
10051
10070
381





150490
902
921
ATACAGGGTTTTTATTCACA
30
10052
10071
59





590246
903
922
CATACAGGGTTTTTATTCAC
34
10053
10072
382





150491
904
923
CCATACAGGGTTTTTATTCA
34
10054
10073
60





590247
905
924
GCCATACAGGGTTTTTATTC
34
10055
10074
383





590248
906
925
TGCCATACAGGGTTTTTATT
33
10056
10075
384





393393
907
926
GTGCCATACAGGGTTTTTAT
43
10057
10076
385





590249
908
927
AGTGCCATACAGGGTTTTTA
12
10058
10077
386
















TABLE 5







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE


gapmers targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
86
973
992
21





590280
n/a
n/a
TGGAAAAACTCAAATGTGAA
51
3422
3441
387





590281
n/a
n/a
TTTCCCTTTCTTTTCCACAC
76
5738
5757
388





590282
n/a
n/a
TCTTTCCCTTTCTTTTCCAC
65
5740
5759
389





590283
n/a
n/a
TACCTTCTCTGCCCTTGCAG
74
1687
1706
390





590284
n/a
n/a
GCAAGGGCCAAGGCTGCTGC
75
6879
6898
391





590285
n/a
n/a
AAAGCTAAATTATGAATTAA
12
7592
7611
392





590286
n/a
n/a
CTAATGAAGGCTCAGTATGA
59
3193
3212
393





590287
n/a
n/a
GGAGTCAAATGCCAAAGAAC
60
2463
2482
394





590288
n/a
n/a
TGAATTAAAGTTCCCAAATA
5
7580
7599
395





590289
n/a
n/a
ACTTGGTGCAGGCAGAATAT
63
6916
6935
396





590290
n/a
n/a
CCTCTGATATAAAAATCTTG
67
8143
8162
397





590291
n/a
n/a
AAAGTTGGAGAGAGTTTCTG
8
4940
4959
398





590292
n/a
n/a
TCTCTGCCCTTGCAGCCCAA
80
1682
1701
399





590293
n/a
n/a
TTACTTGGTGCAGGCAGAAT
56
6918
6937
400





590294
n/a
n/a
AATGGAGTCAAATGCCAAAG
66
2466
2485
401





590295
n/a
n/a
TATGAATTAAAGTTCCCAAA
20
7582
7601
402





590296
n/a
n/a
AGTTCTATATTCAATAAATG
21
7926
7945
403





590297
n/a
n/a
TACAAGTAGTATACCATATG
33
7753
7772
404





590298
n/a
n/a
TAGCCTTAGAGCTGTACAAA
70
1553
1572
405





590299
n/a
n/a
GTCCCCATTTGTCAATTCCT
71
7882
7901
406





590300
n/a
n/a
AACCTGCCTACTGGCAGAGC
59
2095
2114
407





590301
n/a
n/a
CTTGTTCCCACACTCAATGC
56
4747
4766
408





590302
n/a
n/a
ACAAGTCATGATAACCTGCA
61
8952
8971
409





590303
n/a
n/a
TGTTTTCCAAACTCAGATCT
52
8796
8815
410





590304
n/a
n/a
AGAACCTCATAATATTAGAA
9
9557
9576
411





590305
n/a
n/a
GGTTTTAAACTTAACAAAAT
1
8887
8906
412





590306
n/a
n/a
CTCTGGTGTATTTTTAGTAA
65
1831
1850
413





590307
n/a
n/a
TATCTCTGCATATCTGGAAA
71
3034
3053
414





590308
n/a
n/a
CAGCCTTTTTAACCCAAAAG
68
4407
4426
415





590309
n/a
n/a
TGGAATGCTCCACTATCCAA
57
3012
3031
416





590310
n/a
n/a
CGTTCAGAAGTTTGTCTCTG
67
2126
2145
417





590311
n/a
n/a
CTGCTCAGGGAAGGTGGAAA
53
2922
2941
418





590312
n/a
n/a
TCAAGAGAAGCTAGGAAAAC
50
3154
3173
419





590313
n/a
n/a
TCCCTTTCTTTTCCACACCT
74
5736
5755
420





590314
n/a
n/a
TTGTTCCCACACTCAATGCA
56
4746
4765
421





590315
n/a
n/a
TCACCAGCACAGCACAACAC
58
5076
5095
422





590316
n/a
n/a
CCTGGGATCATTACAAAAGT
42
6155
6174
423





590317
n/a
n/a
AGTAGTATACCATATGAACT
35
7749
7768
424





590318
n/a
n/a
TCTAATATGGTCAAATGTAA
27
8779
8798
425





590319
n/a
n/a
GGTTGGGCTCTGGTGTATTT
64
1838
1857
426





590320
n/a
n/a
TGCCCTTTACTTGGTGCAGG
56
6924
6943
427





590321
n/a
n/a
AGAGAGTTTCTGAACAAAGA
24
4932
4951
428





590322
n/a
n/a
GAATTTCAGCAATTACAGAA
33
6613
6632
429





590323
n/a
n/a
ACAAGTTAAACAAGTCATGA
9
8961
8980
430





590324
n/a
n/a
TGTGCCCTTTACTTGGTGCA
47
6926
6945
431





590325
n/a
n/a
TTAGGAGGAGGAAAAGGACC
23
1719
1738
432





590326
n/a
n/a
ACTGGCAGAGCAATTTTAAA
25
2086
2105
433





590327
n/a
n/a
AGTCAAATGCCAAAGAACCT
58
2461
2480
434





590328
n/a
n/a
AAGCATCAGATGGATTAGGG
17
8411
8430
435





590329
n/a
n/a
GTCCGCGGGACCCTCAGGAA
54
1414
1433
436





590330
n/a
n/a
CAATTACAGAAATGGATCAA
42
6604
6623
437





590331
n/a
n/a
GCTGTCAAGTAATCACTACC
27
9606
9625
438





590332
n/a
n/a
AGTGCAAAGTTGGAGAGAGT
33
4945
4964
439





590333
n/a
n/a
ACTTGCTTCCAATCCCAAAT
78
6436
6455
440





590334
n/a
n/a
AACTCAAATGTGAAAGTTGT
51
3416
3435
441





590335
n/a
n/a
TTTTAGTAAGATCTTCAAAT
14
1820
1839
442





590336
n/a
n/a
ATTTCAGCAATTACAGAAAT
27
6611
6630
443





590337
n/a
n/a
TTAAGTGTCCCCATTTGTCA
56
7888
7907
444





590338
n/a
n/a
TTAGCAACCTGCCTACTGGC
57
2100
2119
445





590339
n/a
n/a
TATTACAAGAGTTAAGCATC
41
7711
7730
446





590340
n/a
n/a
ATGTTGAATATACATGTACA
36
4545
4564
447





590341
n/a
n/a
TTTGTCTCTGACCATCTTAG
74
2116
2135
448





590342
n/a
n/a
TTTTCCACCAGTTGGTAACT
59
2253
2272
449





590343
n/a
n/a
CAACAGCTTCCCACAAGTTA
28
8973
8992
450





590344
n/a
n/a
CAAATGTGAAAGTTGTCCCT
62
3412
3431
451





590345
n/a
n/a
GCTACCTTCTCTGCCCTTGC
73
1689
1708
452





590346
n/a
n/a
TCTTAGCAGAACAGTGTTCT
51
8743
8762
453





590347
n/a
n/a
ATACATTCTAAAAAGAAACA
41
7563
7582
454





590348
n/a
n/a
GCACATATTTACAAGTAGTA
58
7762
7781
455





590349
n/a
n/a
GGGTCACCAGCACAGCACAA
35
5079
5098
456





590350
n/a
n/a
GTGCAAGGGCCAAGGCTGCT
66
6881
6900
457





590351
n/a
n/a
ACCTGGGTTCATGCATGGAT
72
2902
2921
458





590352
n/a
n/a
ATCACTATTTGAAACTAAAT
0
6569
6588
459





590353
n/a
n/a
ATACAATAAAGTTGACCTCT
64
5483
5502
460





590354
n/a
n/a
TTTTAAACTTAACAAAATGT
10
8885
8904
461





590355
n/a
n/a
CTCCCCGCGCTCCCGCCACG
15
1268
1287
462





590356
n/a
n/a
GAAGGCTCAGTATGAAGAGA
65
3188
3207
463
















TABLE 6 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
87
973
992
21





590357
n/a
n/a
AGAAAACAGCTGATTTACCT
40
4915
4934
464





590358
n/a
n/a
CCACAAGTTAAACAAGTCAT
n.d.
8963
8982
465





590359
n/a
n/a
CAAATTTGCAAACAAGTAGC
61
8331
8350
466





590360
n/a
n/a
CCTAATTTGAACTGCAAGTA
n.d.
8665
8684
467





590361
n/a
n/a
AAAAAACTCATCTCCCCAGC
70
6969
6988
468





590362
n/a
n/a
AGGCTCAGTATGAAGAGATC
67
3186
3205
469





590363
n/a
n/a
TGTTATCAAGAGCACAGGGC
58
3383
3402
470





590364
n/a
n/a
CCTCAAAAGGGAGATGGTAA
41
4768
4787
471





590365
n/a
n/a
AGTATGGGTCACCAGCACAG
71
5084
5103
472





590366
n/a
n/a
TCACAATCTAGTGCAGTTAC
70
5584
5603
473





590367
n/a
n/a
CAAGTGAGAAACCCAATCCT
n.d.
8856
8875
474





590368
n/a
n/a
AGAAAATCTGGCCATTTTAA
n.d.
8832
8851
475





590369
n/a
n/a
ACAGGTAATGGTGCTCCGTG
71
3716
3735
476





590370
n/a
n/a
TGAAAGGCTTTCAGAAAACA
44
8102
8121
477





590371
n/a
n/a
CAGGCAAGTTACAGGAAGCA
64
6687
6706
478





590372
n/a
n/a
CAGCAAGCTGCTTAACTGCT
65
4800
4819
479





590373
n/a
n/a
TGTTGCAAAGACATTACCTT
n.d.
9455
9474
480





590374
n/a
n/a
GAAACTAAATTAGCAAGATG
43
6559
6578
481





590375
n/a
n/a
TCAAGAGCACAGGGCCAAAA
60
3378
3397
482





590376
n/a
n/a
AGGAGGAGGAAAAGGACCTC
53
1717
1736
483





590377
n/a
n/a
CCTCAGCCTTTTTAACCCAA
73
4410
4429
484





590378
n/a
n/a
CTATGTTGTAGACCACCACA
n.d.
9384
9403
485





590379
n/a
n/a
CTCCGTGGCTACATACAGAA
66
3703
3722
486





590380
n/a
n/a
TTTATCTGGATCTTTAGAAA
n.d.
8642
8661
487





590381
n/a
n/a
AAAAAAAGGAAAGTGAAAGT
n.d.
9279
9298
488





590382
n/a
n/a
GGTTCATGCATGGATTCTCA
76
2897
2916
489





590383
n/a
n/a
CTGCAAAGTGTCACACAAAC
76
1630
1649
490





590384
n/a
n/a
TTCAGAAGTACCAAAGGGTA
53
8227
8246
491





590385
n/a
n/a
TAAAAGCATTCCAGCATTTG
44
7848
7867
492





590386
n/a
n/a
TAGTATACCATATGAACTCC
73
7747
7766
493





590387
n/a
n/a
TGCATATCTGGAAAGCTGGA
59
3028
3047
494





590388
n/a
n/a
CTTAACTGCTCTAGGCCTGT
54
4790
4809
495





590389
n/a
n/a
AGGCACCGACCGGGCGGCAC
21
1155
1174
496





590390
n/a
n/a
TGCAAAGTTGGAGAGAGTTT
32
4943
4962
497





590391
n/a
n/a
TCCTCAAAAGGGAGATGGTA
37
4769
4788
498





590392
n/a
n/a
AGTATACCATATGAACTCCA
76
7746
7765
499





590393
n/a
n/a
TATTTGTACATGTTGAATAT
2
4554
4573
500





590394
n/a
n/a
ACCCAAAAGGTGTATGTCTC
71
4396
4415
501





590395
n/a
n/a
CTTTGGAAAAAAAGGAAAGT
n.d.
9285
9304
502





590396
n/a
n/a
GGGAGAAAGGCAGGCAAGTT
20
6697
6716
503





590397
n/a
n/a
TTAAGCCCAGGAAGTAAAAG
9
7862
7881
504





590398
n/a
n/a
AGACATTACCTTTAAACATT
n.d.
9447
9466
505





590399
n/a
n/a
GTGGCTTAAGAAATGCTCCG
26
2050
2069
506





590400
n/a
n/a
GTGAGAAGGGAACAGAAACA
48
7466
7485
507





590401
n/a
n/a
AAAAGCATCAGATGGATTAG
21
8413
8432
508





590402
n/a
n/a
TTCCACCAGTTGGTAACTTC
78
2251
2270
509





590403
n/a
n/a
TTTTTAGTAAGATCTTCAAA
15
1821
1840
510





590404
n/a
n/a
ATCTGTGTCCAAATCCCAGG
59
4847
4866
511





590405
n/a
n/a
TAAGATCTTCAAATAAGCTA
33
1814
1833
512





590406
n/a
n/a
ATCAACTCTTTCCCTTTCTT
63
5746
5765
513





590407
n/a
n/a
TGTGTCCTCAAAAGGGAGAT
37
4773
4792
514





590408
n/a
n/a
TACCTCCTCCCAACAATACC
n.d.
9590
9609
515





590409
n/a
n/a
TTCTGCTTTACAACTATGGC
n.d.
9133
9152
516





590410
n/a
n/a
GTACATGTTGAATATACATG
35
4549
4568
517





590411
n/a
n/a
TTTGTGGCTAATCTTAAGGT
47
5699
5718
518





590412
n/a
n/a
TCCTGCCTCAGCCTTTTTAA
34
4415
4434
519





590413
n/a
n/a
CGGTGTCCGCGGGACCCTCA
59
1418
1437
520





590414
n/a
n/a
GAAATGGATCAAATCTGATC
50
6596
6615
521





590415
n/a
n/a
GGTAGTTCATGAGCTAAATT
31
8371
8390
522





590416
n/a
n/a
AATGGAGTCTCGACTAGTTT
62
8072
8091
523





590417
n/a
n/a
CAAGTATGGGTCACCAGCAC
57
5086
5105
524





590418
n/a
n/a
GGTGTCCGCGGGACCCTCAG
40
1417
1436
525





590419
n/a
n/a
CGCCACGCGCAGGCCCAGCC
37
1255
1274
526





590420
n/a
n/a
TCTAGGCCTGTGTCCTCAAA
75
4781
4800
527





590421
n/a
n/a
ACTGTCCTGGGCTAATGAAG
36
3204
3223
528





590422
n/a
n/a
AAGCATCTTGTTACCTCTCT
52
7698
7717
529





590423
n/a
n/a
GCCCAGGAAGTAAAAGCATT
38
7858
7877
530





590424
n/a
n/a
GTAAGATCTTCAAATAAGCT
46
1815
1834
531





590425
n/a
n/a
AAAGGGAGATGGTAATCTTG
48
4763
4782
532





590426
n/a
n/a
GCCAAGGCTGCTGCCTTACA
66
6873
6892
533





590427
n/a
n/a
CAGACTAACTGTTCCTGTCC
43
2363
2382
534





590428
n/a
n/a
TTTGTCAATTCCTTTAAGCC
39
7875
7894
535





590429
n/a
n/a
ACTACCTCCTCCCAACAATA
n.d.
9592
9611
536





590430
n/a
n/a
TACCTCTCTTCATCCTTTGG
50
7687
7706
537





590431
n/a
n/a
ACTGCTCTAGGCCTGTGTCC
59
4786
4805
538





590432
n/a
n/a
CCTCCTCCCAACAATACCCA
n.d.
9588
9607
539





590433
n/a
n/a
GGCAGGCAAGTTACAGGAAG
42
6689
6708
540
















TABLE 7 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















592596
2
21
TCGCCCACTCTGGCCCCAAA
86
808
827
541





592597
4
23
CCTCGCCCACTCTGGCCCCA
89
810
829
542





592598
6
25
CGCCTCGCCCACTCTGGCCC
56
812
831
543





592599
8
27
CGCGCCTCGCCCACTCTGGC
68
814
833
544





592600
10
29
TCCGCGCCTCGCCCACTCTG
64
816
835
545





592601
12
31
CCTCCGCGCCTCGCCCACTC
83
818
837
546





592602
14
33
GACCTCCGCGCCTCGCCCAC
89
820
839
547





592603
16
35
CAGACCTCCGCGCCTCGCCC
88
822
841
548





592604
18
37
GCCAGACCTCCGCGCCTCGC
79
824
843
549





592605
20
39
AGGCCAGACCTCCGCGCCTC
89
826
845
550





592606
22
41
ATAGGCCAGACCTCCGCGCC
88
828
847
551





592607
24
43
TTATAGGCCAGACCTCCGCG
75
830
849
552





592608
26
45
CTTTATAGGCCAGACCTCCG
21
832
851
553





592609
28
47
TACTTTATAGGCCAGACCTC
76
834
853
554





592610
30
49
ACTACTTTATAGGCCAGACC
60
836
855
555





592611
32
51
CGACTACTTTATAGGCCAGA
0
838
857
556





592612
34
53
CGCGACTACTTTATAGGCCA
0
840
859
557





592613
36
55
TCCGCGACTACTTTATAGGC
0
842
861
558





592614
38
57
TCTCCGCGACTACTTTATAG
7
844
863
559





592615
40
59
CGTCTCCGCGACTACTTTAT
0
846
865
560





592616
42
61
CCCGTCTCCGCGACTACTTT
0
848
867
561





592617
44
63
ACCCCGTCTCCGCGACTACT
0
850
869
562





592618
46
65
GCACCCCGTCTCCGCGACTA
0
852
871
563





592619
48
67
CAGCACCCCGTCTCCGCGAC
0
854
873
564





592620
50
69
ACCAGCACCCCGTCTCCGCG
0
856
875
565





592621
52
71
AAACCAGCACCCCGTCTCCG
2
858
877
566





592622
54
73
GCAAACCAGCACCCCGTCTC
4
860
879
567





592623
56
75
ACGCAAACCAGCACCCCGTC
0
862
881
568





592624
58
77
CGACGCAAACCAGCACCCCG
0
864
883
569





592625
60
79
TACGACGCAAACCAGCACCC
0
866
885
570





592626
62
81
ACTACGACGCAAACCAGCAC
0
868
887
571





592627
64
83
AGACTACGACGCAAACCAGC
1
870
889
572





592628
66
85
GGAGACTACGACGCAAACCA
0
872
891
573





592629
68
87
CAGGAGACTACGACGCAAAC
0
874
893
574





592630
70
89
TGCAGGAGACTACGACGCAA
0
876
895
575





592631
72
91
GCTGCAGGAGACTACGACGC
1
878
897
576





150511
74
93
ACGCTGCAGGAGACTACGAC
0
880
899
61





592632
90
109
GCAACGGAAACCCCAGACGC
2
896
915
577





592633
92
111
CTGCAACGGAAACCCCAGAC
0
898
917
578





592634
94
113
GACTGCAACGGAAACCCCAG
0
900
919
579





345715
95
114
GGACTGCAACGGAAACCCCA
0
901
920
580





592635
96
115
AGGACTGCAACGGAAACCCC
1
902
921
581





150437
98
117
CGAGGACTGCAACGGAAACC
6
904
923
62





592636
100
119
TCCGAGGACTGCAACGGAAA
6
906
925
582





592637
102
121
GTTCCGAGGACTGCAACGGA
12
908
927
583





592638
104
123
TGGTTCCGAGGACTGCAACG
0
910
929
584





592639
106
125
CCTGGTTCCGAGGACTGCAA
32
912
931
585





592640
108
127
GTCCTGGTTCCGAGGACTGC
68
914
933
586





345717
110
129
AGGTCCTGGTTCCGAGGACT
65
916
935
587





592641
112
131
CGAGGTCCTGGTTCCGAGGA
84
918
937
588





592642
114
133
GCCGAGGTCCTGGTTCCGAG
86
920
939
589





592643
116
135
ACGCCGAGGTCCTGGTTCCG
78
922
941
590





592644
118
137
CCACGCCGAGGTCCTGGTTC
79
924
943
591





345719
120
139
GGCCACGCCGAGGTCCTGGT
63
926
945
592





150441
122
141
TAGGCCACGCCGAGGTCCTG
81
928
947
63





592645
124
143
GCTAGGCCACGCCGAGGTCC
63
930
949
593





592646
126
145
TCGCTAGGCCACGCCGAGGT
56
932
951
594





592647
128
147
ACTCGCTAGGCCACGCCGAG
48
934
953
595





345721
130
149
TAACTCGCTAGGCCACGCCG
63
936
955
596





592648
132
151
CATAACTCGCTAGGCCACGC
38
938
957
597





592649
134
153
GCCATAACTCGCTAGGCCAC
52
940
959
598





592650
136
155
TCGCCATAACTCGCTAGGCC
59
942
961
599





592651
138
157
CGTCGCCATAACTCGCTAGG
55
944
963
600





592652
156
175
CAGCACGCACACGGCCTTCG
56
962
981
601





333605
158
177
TTCAGCACGCACACGGCCTT
85
964
983
64





333606
160
179
CCTTCAGCACGCACACGGCC
82
966
985
65





146144
162
181
GCCCTTCAGCACGCACACGG
58
968
987
66





333609
164
183
TCGCCCTTCAGCACGCACAC
79
970
989
67





146145
165
184
GTCGCCCTTCAGCACGCACA
86
971
990
54





333610
166
185
CGTCGCCCTTCAGCACGCAC
79
972
991
68





333611
167
186
CCGTCGCCCTTCAGCACGCA
83
973
992
21





592653
168
187
GCCGTCGCCCTTCAGCACGC
79
974
993
602





592654
169
188
GGCCGTCGCCCTTCAGCACG
72
975
994
603





592655
170
189
GGGCCGTCGCCCTTCAGCAC
51
976
995
604





592656
172
191
CTGGGCCGTCGCCCTTCAGC
45
978
997
605





592657
174
193
CACTGGGCCGTCGCCCTTCA
33
980
999
606





592658
176
195
TGCACTGGGCCGTCGCCCTT
72
982
1001
607





592659
178
197
CCTGCACTGGGCCGTCGCCC
76
984
1003
608
















TABLE 8 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID




NO:
NO:

%
NO:
NO:




1
1

inhibition
2
2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
87
973
992
21





150443
180
199
GCCCTGCACTGGGCCGTCGC
65
986
1005
69





592660
182
201
ATGCCCTGCACTGGGCCGTC
52
988
1007
609





592661
184
203
TGATGCCCTGCACTGGGCCG
30
990
1009
610





592662
186
205
GATGATGCCCTGCACTGGGC
38
992
1011
611





592663
188
207
TTGATGATGCCCTGCACTGG
36
994
1013
612





150444
190
209
AATTGATGATGCCCTGCACT
48
996
1015
70





592664
192
211
GAAATTGATGATGCCCTGCA
35
998
1017
15





592665
194
213
TCGAAATTGATGATGCCCTG
40
1000
1019
614





592666
196
215
GCTCGAAATTGATGATGCCC
68
1002
1021
615





592667
198
217
CTGCTCGAAATTGATGATGC
63
1004
1023
616





592668
200
219
TTCTGCTCGAAATTGATGAT
47
1006
1025
617





592669
239
258
TTAATGCTTCCCCACACCTT
68
4993
5012
618





592670
241
260
CTTTAATGCTTCCCCACACC
71
4995
5014
619





592671
243
262
TCCTTTAATGCTTCCCCACA
69
4997
5016
620





150448
245
264
AGTCCTTTAATGCTTCCCCA
76
4999
5018
71





592672
247
266
TCAGTCCTTTAATGCTTCCC
75
5001
5020
621





592673
249
268
AGTCAGTCCTTTAATGCTTC
58
5003
5022
622





592674
251
270
TCAGTCAGTCCTTTAATGCT
46
5005
5024
623





592675
253
272
CTTCAGTCAGTCCTTTAATG
41
5007
5026
624





592676
255
274
GCCTTCAGTCAGTCCTTTAA
62
5009
5028
625





150449
257
276
AGGCCTTCAGTCAGTCCTTT
65
5011
5030
72





592677
259
278
GCAGGCCTTCAGTCAGTCCT
69
5013
5032
626





592678
261
280
ATGCAGGCCTTCAGTCAGTC
65
5015
5034
627





592679
263
282
CCATGCAGGCCTTCAGTCAG
53
5017
5036
628





592680
277
296
CATGAACATGGAATCCATGC
63
5031
5050
629





592681
279
298
CTCATGAACATGGAATCCAT
60
5033
5052
630





592682
281
300
AACTCATGAACATGGAATCC
56
5035
5054
631





592683
284
303
CCAAACTCATGAACATGGAA
60
5038
5057
632





592684
286
305
CTCCAAACTCATGAACATGG
69
5040
5059
633





592685
288
307
ATCTCCAAACTCATGAACAT
40
5042
5061
634





592686
290
309
TTATCTCCAAACTCATGAAC
35
5044
5063
635





592687
292
311
TATTATCTCCAAACTCATGA
26
5046
5065
636





592688
294
313
TGTATTATCTCCAAACTCAT
41
5048
5067
637





150452
296
315
GCTGTATTATCTCCAAACTC
51
5050
5069
73





592689
298
317
CTGCTGTATTATCTCCAAAC
43
5052
5071
638





592690
300
319
GCCTGCTGTATTATCTCCAA
37
n/a
n/a
639





592691
302
321
CAGCCTGCTGTATTATCTCC
33
n/a
n/a
640





592692
304
323
TACAGCCTGCTGTATTATCT
27
n/a
n/a
641





592693
306
325
GGTACAGCCTGCTGTATTAT
21
n/a
n/a
642





592694
308
327
CTGGTACAGCCTGCTGTATT
23
n/a
n/a
643





592695
310
329
CACTGGTACAGCCTGCTGTA
46
n/a
n/a
644





592696
312
331
TGCACTGGTACAGCCTGCTG
40
n/a
n/a
645





592697
314
333
CCTGCACTGGTACAGCCTGC
62
n/a
n/a
646





592698
340
359
TTCTGGATAGAGGATTAAAG
41
7656
7675
647





592699
342
361
TTTTCTGGATAGAGGATTAA
29
7658
7677
648





592700
344
363
TGTTTTCTGGATAGAGGATT
51
7660
7679
649





592701
346
365
CGTGTTTTCTGGATAGAGGA
64
7662
7681
650





592702
348
367
ACCGTGTTTTCTGGATAGAG
44
7664
7683
651





592703
350
369
CCACCGTGTTTTCTGGATAG
62
7666
7685
652





592704
352
371
GCCCACCGTGTTTTCTGGAT
60
7668
7687
653





592705
354
373
TGGCCCACCGTGTTTTCTGG
62
7670
7689
654





592706
356
375
TTTGGCCCACCGTGTTTTCT
49
7672
7691
655





592707
358
377
CCTTTGGCCCACCGTGTTTT
52
7674
7693
656





592708
382
401
AGTCTCCAACATGCCTCTCT
53
n/a
n/a
657





592709
384
403
CAAGTCTCCAACATGCCTCT
39
n/a
n/a
658





489501
386
405
CCCAAGTCTCCAACATGCCT
75
8441
8460
659





150454
388
407
TGCCCAAGTCTCCAACATGC
86
8443
8462
74





592710
390
409
ATTGCCCAAGTCTCCAACAT
71
8445
8464
660





592711
392
411
ACATTGCCCAAGTCTCCAAC
64
8447
8466
661





592712
394
413
TCACATTGCCCAAGTCTCCA
59
8449
8468
662





489502
396
415
AGTCACATTGCCCAAGTCTC
70
8451
8470
663





592713
398
417
GCAGTCACATTGCCCAAGTC
70
8453
8472
664





592714
400
419
CAGCAGTCACATTGCCCAAG
84
8455
8474
665





592715
402
421
GTCAGCAGTCACATTGCCCA
83
8457
8476
666





592716
404
423
TTGTCAGCAGTCACATTGCC
59
8459
8478
667





489503
406
425
CTTTGTCAGCAGTCACATTG
47
8461
8480
668





592717
408
427
ATCTTTGTCAGCAGTCACAT
54
8463
8482
669





592718
410
429
CCATCTTTGTCAGCAGTCAC
76
8465
8484
670





592719
412
431
CACCATCTTTGTCAGCAGTC
75
8467
8486
671





592720
414
433
CACACCATCTTTGTCAGCAG
66
8469
8488
672





489504
416
435
GCCACACCATCTTTGTCAGC
60
8471
8490
673





592721
418
437
CGGCCACACCATCTTTGTCA
62
8473
8492
674





592722
420
439
ATCGGCCACACCATCTTTGT
57
8475
8494
675





592723
422
441
ACATCGGCCACACCATCTTT
54
8477
8496
676





150458
424
443
ACACATCGGCCACACCATCT
77
8479
8498
75





489505
426
445
AGACACATCGGCCACACCAT
84
8481
8500
677





592724
428
447
ATAGACACATCGGCCACACC
66
8483
8502
678
















TABLE 9 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:

%
%
NO:
NO:




1
1

inhibition
inhibition
2
2
SEQ


ISIS
Start
Stop

with
with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
HTS90
Site
Site
NO


















333611
167
186
CCGTCGCCCTTCAGCACGCA
87
n.d.
973
992
21





592725
430
449
CAATAGACACATCGGCCACA
67
65
8485
8504
679





592726
432
451
TTCAATAGACACATCGGCCA
62
66
8487
8506
680





592727
434
453
TCTTCAATAGACACATCGGC
56
49
8489
8508
681





489506
436
455
AATCTTCAATAGACACATCG
25
28
8491
8510
682





592728
438
457
AGAATCTTCAATAGACACAT
12
0
8493
8512
683





592729
440
459
ACAGAATCTTCAATAGACAC
24
16
8495
8514
684





592730
442
461
TCACAGAATCTTCAATAGAC
34
24
8497
8516
685





592731
444
463
GATCACAGAATCTTCAATAG
15
14
8499
8518
686





489507
446
465
GAGATCACAGAATCTTCAAT
42
46
8501
8520
687





592732
448
467
GTGAGATCACAGAATCTTCA
n.d.
58
8503
8522
688





592733
450
469
GAGTGAGATCACAGAATCTT
n.d.
45
8505
8524
689





592734
452
471
GAGAGTGAGATCACAGAATC
n.d.
48
8507
8526
690





592735
454
473
CTGAGAGTGAGATCACAGAA
n.d.
66
8509
8528
691





489508
456
475
TCCTGAGAGTGAGATCACAG
n.d.
60
8511
8530
692





333619
458
477
TCTCCTGAGAGTGAGATCAC
n.d.
65
8513
8532
76





592736
460
479
GGTCTCCTGAGAGTGAGATC
n.d.
40
8515
8534
693





592737
462
481
ATGGTCTCCTGAGAGTGAGA
n.d.
37
8517
8536
694





592738
464
483
CAATGGTCTCCTGAGAGTGA
n.d.
41
8519
8538
695





489509
466
485
TGCAATGGTCTCCTGAGAGT
n.d.
43
8521
8540
696





592739
468
487
GATGCAATGGTCTCCTGAGA
n.d.
16
8523
8542
697





592740
470
489
ATGATGCAATGGTCTCCTGA
n.d.
6
8525
8544
698





592741
472
491
CAATGATGCAATGGTCTCCT
n.d.
0
8527
8546
699





592742
474
493
GCCAATGATGCAATGGTCTC
n.d.
25
8529
8548
700





489510
476
495
CGGCCAATGATGCAATGGTC
n.d.
32
8531
8550
701





592743
478
497
TGCGGCCAATGATGCAATGG
n.d.
14
8533
8552
702





592744
480
499
TGTGCGGCCAATGATGCAAT
n.d.
0
8535
8554
703





592745
482
501
AGTGTGCGGCCAATGATGCA
n.d.
7
8537
8556
704





592746
484
503
CCAGTGTGCGGCCAATGATG
n.d.
25
8539
8558
705





489511
486
505
CACCAGTGTGCGGCCAATGA
n.d.
28
8541
8560
706





150460
488
507
ACCACCAGTGTGCGGCCAAT
n.d.
52
8543
8562
77





592747
490
509
GGACCACCAGTGTGCGGCCA
n.d.
44
n/a
n/a
707





592748
492
511
ATGGACCACCAGTGTGCGGC
n.d.
40
n/a
n/a
708





150462
494
513
TCATGGACCACCAGTGTGCG
n.d.
39
n/a
n/a
78





592749
496
515
TTTCATGGACCACCAGTGTG
n.d.
35
n/a
n/a
709





592750
498
517
TTTTTCATGGACCACCAGTG
n.d.
23
n/a
n/a
710





592751
500
519
GCTTTTTCATGGACCACCAG
n.d.
63
n/a
n/a
711





333636
536
555
GTACTTTCTTCATTTCCACC
n.d.
65
9686
9705
79





333638
538
557
TTGTACTTTCTTCATTTCCA
n.d.
66
9688
9707
80





333640
540
559
CTTTGTACTTTCTTCATTTC
n.d.
37
9690
9709
81





592752
543
562
TGTCTTTGTACTTTCTTCAT
n.d.
63
9693
9712
712





592753
545
564
CCTGTCTTTGTACTTTCTTC
n.d.
74
9695
9714
713





592754
547
566
TTCCTGTCTTTGTACTTTCT
n.d.
72
9697
9716
714





592755
549
568
GTTTCCTGTCTTTGTACTTT
n.d.
57
9699
9718
715





592756
568
587
AAGCCAAACGACTTCCAGCG
72
66
9718
9737
716





592757
570
589
ACAAGCCAAACGACTTCCAG
72
74
9720
9739
717





489516
572
591
CCACAAGCCAAACGACTTCC
85
82
9722
9741
718





592758
574
593
CACCACAAGCCAAACGACTT
72
73
9724
9743
719





592759
576
595
TACACCACAAGCCAAACGAC
74
68
9726
9745
720





592760
578
597
ATTACACCACAAGCCAAACG
67
61
9728
9747
721





592761
580
599
CAATTACACCACAAGCCAAA
64
56
9730
9749
722





150466
640
659
GATAACAGATGAGTTAAGGG
66
65
9790
9809
82





489521
642
661
AGGATAACAGATGAGTTAAG
79
78
9792
9811
723





592762
663
682
GGATACATTTCTACAGCTAG
91
87
9813
9832
724





592763
665
684
CAGGATACATTTCTACAGCT
92
89
9815
9834
725





592764
667
686
ATCAGGATACATTTCTACAG
88
83
9817
9836
726





592765
669
688
TTATCAGGATACATTTCTAC
77
72
9819
9838
727





592766
671
690
GTTTATCAGGATACATTTCT
90
89
9821
9840
728





592767
673
692
ATGTTTATCAGGATACATTT
82
76
9823
9842
729





592768
675
694
TAATGTTTATCAGGATACAT
80
79
9825
9844
730





592769
677
696
TTTAATGTTTATCAGGATAC
82
78
9827
9846
731





592770
679
698
TGTTTAATGTTTATCAGGAT
79
75
9829
9848
732





592771
681
700
AGTGTTTAATGTTTATCAGG
84
81
9831
9850
733





489526
692
711
TTTAAGATTACAGTGTTTAA
36
38
9842
9861
734





592772
694
713
CTTTTAAGATTACAGTGTTT
46
47
9844
9863
735





592773
696
715
CACTTTTAAGATTACAGTGT
39
42
9846
9865
736





592774
698
717
TACACTTTTAAGATTACAGT
21
24
9848
9867
737





592775
700
719
ATTACACTTTTAAGATTACA
3
0
9850
9869
738





489527
702
721
CAATTACACTTTTAAGATTA
0
0
9852
9871
739





150467
704
723
CACAATTACACTTTTAAGAT
58
73
9854
9873
83





592776
706
725
CACACAATTACACTTTTAAG
29
5
9856
9875
740





592777
708
727
GTCACACAATTACACTTTTA
59
49
9858
9877
741





592778
710
729
AAGTCACACAATTACACTTT
40
34
9860
9879
742





489528
712
731
AAAAGTCACACAATTACACT
31
27
9862
9881
743





592779
714
733
GAAAAAGTCACACAATTACA
21
7
9864
9883
744





592780
716
735
CTGAAAAAGTCACACAATTA
18
13
9866
9885
745





592781
718
737
CTCTGAAAAAGTCACACAAT
32
26
9868
9887
746





592782
720
739
AACTCTGAAAAAGTCACACA
35
20
9870
9889
747
















TABLE 10 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ








ID
ID


SEQ
SEQ




NO:
NO:

%
ID
ID




1
1

inhibition
NO: 2
NO: 2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
74
973
992
21





489529
722
741
GCAACTCTGAAAAAGTCACA
41
9872
9891
748





592783
724
743
AAGCAACTCTGAAAAAGTCA
34
9874
9893
749





592784
727
746
TTAAAGCAACTCTGAAAAAG
4
9877
9896
750





592785
729
748
CTTTAAAGCAACTCTGAAAA
36
9879
9898
751





592786
731
750
TACTTTAAAGCAACTCTGAA
28
9881
9900
752





592787
733
752
GGTACTTTAAAGCAACTCTG
48
9883
9902
753





592788
735
754
CAGGTACTTTAAAGCAACTC
38
9885
9904
754





592789
737
756
TACAGGTACTTTAAAGCAAC
20
9887
9906
755





592790
739
758
ACTACAGGTACTTTAAAGCA
26
9889
9908
756





592791
741
760
TCACTACAGGTACTTTAAAG
34
9891
9910
757





592792
743
762
TCTCACTACAGGTACTTTAA
50
9893
9912
758





592793
745
764
TTTCTCACTACAGGTACTTT
36
9895
9914
759





592794
747
766
AGTTTCTCACTACAGGTACT
53
9897
9916
760





592795
749
768
TCAGTTTCTCACTACAGGTA
37
9899
9918
761





150470
751
770
AATCAGTTTCTCACTACAGG
30
9901
9920
84





592796
753
772
TAAATCAGTTTCTCACTACA
21
9903
9922
762





150472
755
774
CATAAATCAGTTTCTCACTA
37
9905
9924
85





592797
757
776
ATCATAAATCAGTTTCTCAC
35
9907
9926
763





592798
759
778
TGATCATAAATCAGTTTCTC
35
9909
9928
764





592799
761
780
AGTGATCATAAATCAGTTTC
5
9911
9930
765





592800
763
782
CAAGTGATCATAAATCAGTT
21
9913
9932
766





592801
765
784
TCCAAGTGATCATAAATCAG
41
9915
9934
767





592802
767
786
CTTCCAAGTGATCATAAATC
44
9917
9936
768





592803
769
788
ATCTTCCAAGTGATCATAAA
30
9919
9938
769





592804
771
790
AAATCTTCCAAGTGATCATA
32
9921
9940
770





489534
792
811
CTGAGTTTTATAAAACTATA
4
9942
9961
771





150476
794
813
AACTGAGTTTTATAAAACTA
9
9944
9963
86





592805
796
815
TTAACTGAGTTTTATAAAAC
14
9946
9965
772





592806
798
817
TTTTAACTGAGTTTTATAAA
3
9948
9967
773





592807
800
819
CATTTTAACTGAGTTTTATA
13
9950
9969
774





489535
802
821
GACATTTTAACTGAGTTTTA
34
9952
9971
775





592808
804
823
CAGACATTTTAACTGAGTTT
40
9954
9973
776





592809
806
825
AACAGACATTTTAACTGAGT
36
9956
9975
777





592810
808
827
GAAACAGACATTTTAACTGA
25
9958
9977
778





592811
810
829
TTGAAACAGACATTTTAACT
24
9960
9979
779





592812
835
854
TTTAAGTCTGGCAAAATACA
23
9985
10004
780





592813
837
856
GATTTAAGTCTGGCAAAATA
31
9987
10006
781





592814
839
858
GTGATTTAAGTCTGGCAAAA
41
9989
10008
782





592815
841
860
CTGTGATTTAAGTCTGGCAA
49
9991
10010
783





592816
843
862
ATCTGTGATTTAAGTCTGGC
53
9993
10012
784





150481
845
864
CCATCTGTGATTTAAGTCTG
51
9995
10014
87





592817
847
866
ACCCATCTGTGATTTAAGTC
51
9997
10016
785





592818
849
868
ATACCCATCTGTGATTTAAG
43
9999
10018
786





592819
851
870
TAATACCCATCTGTGATTTA
42
10001
10020
787





592820
870
889
AAAGAAATTCTGACAAGTTT
22
10020
10039
788





489542
872
891
ACAAAGAAATTCTGACAAGT
13
10022
10041
789





592821
874
893
TGACAAAGAAATTCTGACAA
24
10024
10043
790





592822
876
895
AATGACAAAGAAATTCTGAC
25
10026
10045
791





592823
878
897
TGAATGACAAAGAAATTCTG
6
10028
10047
792





592824
880
899
CTTGAATGACAAAGAAATTC
24
10030
10049
793





489543
882
901
GGCTTGAATGACAAAGAAAT
29
10032
10051
794





592825
884
903
CAGGCTTGAATGACAAAGAA
35
10034
10053
795





592826
886
905
CACAGGCTTGAATGACAAAG
32
10036
10055
796





592827
888
907
TTCACAGGCTTGAATGACAA
41
10038
10057
797





592828
890
909
TATTCACAGGCTTGAATGAC
30
10040
10059
798





150492
909
928
AAGTGCCATACAGGGTTTTT
32
10059
10078
88





592829
911
930
ATAAGTGCCATACAGGGTTT
0
10061
10080
799





150493
913
932
TAATAAGTGCCATACAGGGT
24
10063
10082
89





592830
915
934
CATAATAAGTGCCATACAGG
26
10065
10084
800





150495
917
936
CTCATAATAAGTGCCATACA
35
10067
10086
90





150496
919
938
GCCTCATAATAAGTGCCATA
37
10069
10088
91





592831
921
940
TAGCCTCATAATAAGTGCCA
19
10071
10090
801





592832
923
942
AATAGCCTCATAATAAGTGC
0
10073
10092
802





592833
925
944
TTAATAGCCTCATAATAAGT
19
10075
10094
803





150497
927
946
TTTTAATAGCCTCATAATAA
17
10077
10096
92





592834
929
948
TCTTTTAATAGCCTCATAAT
27
10079
10098
804





592835
931
950
ATTCTTTTAATAGCCTCATA
27
10081
10100
805





150498
933
952
GGATTCTTTTAATAGCCTCA
39
10083
10102
93





592836
935
954
TTGGATTCTTTTAATAGCCT
24
10085
10104
806





592837
937
956
ATTTGGATTCTTTTAATAGC
0
10087
10106
807





592838
939
958
GAATTTGGATTCTTTTAATA
10
10089
10108
808





592839
941
960
TTGAATTTGGATTCTTTTAA
13
10091
10110
809





592840
943
962
GTTTGAATTTGGATTCTTTT
29
10093
10112
810





592841
945
964
TAGTTTGAATTTGGATTCTT
31
10095
10114
811





592842
947
966
TTTAGTTTGAATTTGGATTC
8
10097
10116
812





592843
949
968
TTTTTAGTTTGAATTTGGAT
10
n/a
n/a
813





592844
951
970
TTTTTTTAGTTTGAATTTGG
7
n/a
n/a
814









Example 2: Inhibition of Human SOD-1 in HepG2 Cells by MOE Gapmers

Modified oligonucleotides were designed targeting asuperoxide dismutase 1, soluble (SOD-1) nucleic acid and were tested for their effects on SOD-1 mRNA in vitro. ISIS 146143, ISIS150438-150440, ISIS 150442, ISIS 150450, ISIS 150455-150457, ISIS 150459, ISIS 150461, ISIS 150469, ISIS 150473, ISIS 150478, ISIS 150484, ISIS 150486, ISIS 150494, ISIS 150508-150510, ISIS 333607, ISIS 333608, ISIS 333611, ISIS 333618, previously disclosed in WO 2005/040180, were also included in this assay. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 5,000 nM modified oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR.


Human primer probe set RTS3898 was used to measure mRNA levels. In cases where the oligonucleotide overlapped the amplicon of the primer probe set, an alternative primer probe set, HTS90, was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. ‘n.d.’ indicates that inhibition levels were not measured using the particular primer probe set.


The newly designed modified oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000). ‘n/a’ indicates that the modified oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 11 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2















SEQ
SEQ








ID
ID


SEQ
SEQ




NO:
NO:

%
ID
ID




1
1

inhibition
NO: 2
NO: 2
SEQ


ISIS
Start
Stop

with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
Site
Site
NO

















333611
167
186
CCGTCGCCCTTCAGCACGCA
64
973
992
21





596301
550
569
CGTTTCCTGTCTTTGTACTT
n.d.
9700
9719
815





596302
569
588
CAAGCCAAACGACTTCCAGC
54
9719
9738
816





596303
571
590
CACAAGCCAAACGACTTCCA
47
9721
9740
817





596304
573
592
ACCACAAGCCAAACGACTTC
28
9723
9742
818





596305
575
594
ACACCACAAGCCAAACGACT
49
9725
9744
819





596306
577
596
TTACACCACAAGCCAAACGA
24
9727
9746
820





596307
641
660
GGATAACAGATGAGTTAAGG
48
9791
9810
821





596308
664
683
AGGATACATTTCTACAGCTA
79
9814
9833
822





596309
666
685
TCAGGATACATTTCTACAGC
70
9816
9835
823





596310
668
687
TATCAGGATACATTTCTACA
58
9818
9837
824





489524
672
691
TGTTTATCAGGATACATTTC
52
9822
9841
825





596311
674
693
AATGTTTATCAGGATACATT
54
9824
9843
826





596312
676
695
TTAATGTTTATCAGGATACA
34
9826
9845
827





596313
678
697
GTTTAATGTTTATCAGGATA
71
9828
9847
828





596314
680
699
GTGTTTAATGTTTATCAGGA
73
9830
9849
829





596315
693
712
TTTTAAGATTACAGTGTTTA
13
9843
9862
830





596316
695
714
ACTTTTAAGATTACAGTGTT
24
9845
9864
831





596317
697
716
ACACTTTTAAGATTACAGTG
15
9847
9866
832





596318
699
718
TTACACTTTTAAGATTACAG
0
9849
9868
833





596319
701
720
AATTACACTTTTAAGATTAC
1
9851
9870
834





596320
705
724
ACACAATTACACTTTTAAGA
0
9855
9874
835





596321
707
726
TCACACAATTACACTTTTAA
15
9857
9876
836





596322
711
730
AAAGTCACACAATTACACTT
15
9861
9880
837





596323
715
734
TGAAAAAGTCACACAATTAC
0
9865
9884
838





596324
717
736
TCTGAAAAAGTCACACAATT
5
9867
9886
839





596325
719
738
ACTCTGAAAAAGTCACACAA
21
9869
9888
840





596326
723
742
AGCAACTCTGAAAAAGTCAC
14
9873
9892
841





596327
730
749
ACTTTAAAGCAACTCTGAAA
0
9880
9899
842





489530
732
751
GTACTTTAAAGCAACTCTGA
22
9882
9901
843





596328
734
753
AGGTACTTTAAAGCAACTCT
36
9884
9903
844





596329
740
759
CACTACAGGTACTTTAAAGC
18
9890
9909
845





150469
742
761
CTCACTACAGGTACTTTAAA
25
9892
9911
94





596330
744
763
TTCTCACTACAGGTACTTTA
28
9894
9913
846





596331
746
765
GTTTCTCACTACAGGTACTT
30
9896
9915
847





596332
748
767
CAGTTTCTCACTACAGGTAC
25
9898
9917
848





596333
750
769
ATCAGTTTCTCACTACAGGT
22
9900
9919
849





489531
752
771
AAATCAGTTTCTCACTACAG
0
9902
9921
850





596334
756
775
TCATAAATCAGTTTCTCACT
21
9906
9925
851





596335
760
779
GTGATCATAAATCAGTTTCT
37
9910
9929
852





489532
762
781
AAGTGATCATAAATCAGTTT
8
9912
9931
853





596336
764
783
CCAAGTGATCATAAATCAGT
39
9914
9933
854





436935
766
785
TTCCAAGTGATCATAAATCA
18
9916
9935
855





596337
768
787
TCTTCCAAGTGATCATAAAT
12
9918
9937
856





150473
770
789
AATCTTCCAAGTGATCATAA
4
9920
9939
95





596338
795
814
TAACTGAGTTTTATAAAACT
0
9945
9964
857





596339
807
826
AAACAGACATTTTAACTGAG
4
9957
9976
858





596340
809
828
TGAAACAGACATTTTAACTG
0
9959
9978
859





150478
811
830
ATTGAAACAGACATTTTAAC
0
9961
9980
96





596341
836
855
ATTTAAGTCTGGCAAAATAC
16
9986
10005
860





596342
840
859
TGTGATTTAAGTCTGGCAAA
34
9990
10009
861





489539
842
861
TCTGTGATTTAAGTCTGGCA
44
9992
10011
862





596343
844
863
CATCTGTGATTTAAGTCTGG
29
9994
10013
863





596344
846
865
CCCATCTGTGATTTAAGTCT
41
9996
10015
864





596345
848
867
TACCCATCTGTGATTTAAGT
50
9998
10017
865





596346
850
869
AATACCCATCTGTGATTTAA
0
10000
10019
866





489540
852
871
TTAATACCCATCTGTGATTT
11
10002
10021
867





150484
871
890
CAAAGAAATTCTGACAAGTT
7
10021
10040
97





596347
873
892
GACAAAGAAATTCTGACAAG
8
10023
10042
868





596348
877
896
GAATGACAAAGAAATTCTGA
0
10027
10046
869





596349
883
902
AGGCTTGAATGACAAAGAAA
27
10033
10052
870





150486
885
904
ACAGGCTTGAATGACAAAGA
19
10035
10054
98





596350
910
929
TAAGTGCCATACAGGGTTTT
13
10060
10079
871





596351
914
933
ATAATAAGTGCCATACAGGG
18
10064
10083
872





150494
916
935
TCATAATAAGTGCCATACAG
0
10066
10085
99





596352
918
937
CCTCATAATAAGTGCCATAC
23
10068
10087
873





596353
920
939
AGCCTCATAATAAGTGCCAT
6
10070
10089
874





596354
922
941
ATAGCCTCATAATAAGTGCC
19
10072
10091
875





596355
928
947
CTTTTAATAGCCTCATAATA
0
10078
10097
876





596356
930
949
TTCTTTTAATAGCCTCATAA
5
10080
10099
877





596357
932
951
GATTCTTTTAATAGCCTCAT
4
10082
10101
878





596358
934
953
TGGATTCTTTTAATAGCCTC
13
10084
10103
879





596359
936
955
TTTGGATTCTTTTAATAGCC
14
10086
10105
880





596360
938
957
AATTTGGATTCTTTTAATAG
14
10088
10107
881





596361
940
959
TGAATTTGGATTCTTTTAAT
0
10090
10109
882





596362
946
965
TTAGTTTGAATTTGGATTCT
0
10096
10115
883





596363
948
967
TTTTAGTTTGAATTTGGATT
0
n/a
n/a
884





596364
950
969
TTTTTTAGTTTGAATTTGGA
0
n/a
n/a
885
















TABLE 12 







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers


targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:

%
%
NO:
NO:




1
1

inhibition
inhibition
2
2
SEQ


ISIS
Start
Stop

with
with
Start
Stop
ID


NO
Site
Site
Sequence
RTS3898
HTS90
Site
Site
NO


















333611
167
186
CCGTCGCCCTTCAGCACGCA
66
n.d.
973
992
21





596230
246
265
CAGTCCTTTAATGCTTCCCC
51
40
5000
5019
886





596231
248
267
GTCAGTCCTTTAATGCTTCC
34
34
5002
5021
887





596232
250
269
CAGTCAGTCCTTTAATGCTT
35
29
5004
5023
888





596233
252
271
TTCAGTCAGTCCTTTAATGC
24
21
5006
5025
889





596234
256
275
GGCCTTCAGTCAGTCCTTTA
41
39
5010
5029
890





150450
258
277
CAGGCCTTCAGTCAGTCCTT
56
51
5012
5031
100





596235
260
279
TGCAGGCCTTCAGTCAGTCC
42
46
5014
5033
891





596236
262
281
CATGCAGGCCTTCAGTCAGT
37
33
5016
5035
892





596237
278
297
TCATGAACATGGAATCCATG
24
19
5032
5051
893





596238
280
299
ACTCATGAACATGGAATCCA
27
20
5034
5053
894





596239
295
314
CTGTATTATCTCCAAACTCA
32
28
5049
5068
895





596240
309
328
ACTGGTACAGCCTGCTGTAT
22
28
n/a
n/a
896





596241
311
330
GCACTGGTACAGCCTGCTGT
31
24
n/a
n/a
897





596242
313
332
CTGCACTGGTACAGCCTGCT
38
29
n/a
n/a
898





596243
315
334
ACCTGCACTGGTACAGCCTG
46
48
n/a
n/a
899





596244
341
360
TTTCTGGATAGAGGATTAAA
6
14
7657
7676
900





596245
343
362
GTTTTCTGGATAGAGGATTA
28
39
7659
7678
901





596246
347
366
CCGTGTTTTCTGGATAGAGG
44
37
7663
7682
902





596247
349
368
CACCGTGTTTTCTGGATAGA
24
11
7665
7684
903





596248
351
370
CCCACCGTGTTTTCTGGATA
46
40
7667
7686
904





596249
353
372
GGCCCACCGTGTTTTCTGGA
46
41
7669
7688
905





596250
355
374
TTGGCCCACCGTGTTTTCTG
35
26
7671
7690
906





596251
357
376
CTTTGGCCCACCGTGTTTTC
31
15
7673
7692
907





596252
359
378
TCCTTTGGCCCACCGTGTTT
30
23
7675
7694
908





596253
383
402
AAGTCTCCAACATGCCTCTC
20
6
n/a
n/a
909





596254
387
406
GCCCAAGTCTCCAACATGCC
61
53
8442
8461
910





596255
389
408
TTGCCCAAGTCTCCAACATG
41
33
8444
8463
911





596256
391
410
CATTGCCCAAGTCTCCAACA
39
25
8446
8465
912





150455
393
412
CACATTGCCCAAGTCTCCAA
36
19
8448
8467
101





596257
397
416
CAGTCACATTGCCCAAGTCT
40
27
8452
8471
913





596258
401
420
TCAGCAGTCACATTGCCCAA
52
42
8456
8475
914





596259
403
422
TGTCAGCAGTCACATTGCCC
55
49
8458
8477
915





596260
405
424
TTTGTCAGCAGTCACATTGC
26
16
8460
8479
916





596261
407
426
TCTTTGTCAGCAGTCACATT
20
11
8462
8481
917





596262
409
428
CATCTTTGTCAGCAGTCACA
34
13
8464
8483
918





596263
411
430
ACCATCTTTGTCAGCAGTCA
41
30
8466
8485
919





596264
415
434
CCACACCATCTTTGTCAGCA
39
20
8470
8489
920





596265
417
436
GGCCACACCATCTTTGTCAG
23
5
8472
8491
921





150456
419
438
TCGGCCACACCATCTTTGTC
32
28
8474
8493
102





150457
421
440
CATCGGCCACACCATCTTTG
34
38
8476
8495
103





596266
423
442
CACATCGGCCACACCATCTT
27
13
8478
8497
922





596267
425
444
GACACATCGGCCACACCATC
45
30
8480
8499
923





150459
427
446
TAGACACATCGGCCACACCA
46
36
8482
8501
104





596268
429
448
AATAGACACATCGGCCACAC
30
25
8484
8503
924





596269
431
450
TCAATAGACACATCGGCCAC
35
0
8486
8505
925





596270
433
452
CTTCAATAGACACATCGGCC
39
16
8488
8507
926





596271
435
454
ATCTTCAATAGACACATCGG
16
0
8490
8509
927





596272
437
456
GAATCTTCAATAGACACATC
22
11
8492
8511
928





596273
439
458
CAGAATCTTCAATAGACACA
17
0
8494
8513
929





596274
441
460
CACAGAATCTTCAATAGACA
10
14
8496
8515
930





596275
443
462
ATCACAGAATCTTCAATAGA
11
10
8498
8517
931





596276
445
464
AGATCACAGAATCTTCAATA
14
29
8500
8519
932





596277
447
466
TGAGATCACAGAATCTTCAA
n.d.
30
8502
8521
933





596278
449
468
AGTGAGATCACAGAATCTTC
n.d.
30
8504
8523
934





596279
453
472
TGAGAGTGAGATCACAGAAT
n.d.
18
8508
8527
935





333618
457
476
CTCCTGAGAGTGAGATCACA
n.d.
27
8512
8531
105





596281
459
478
GTCTCCTGAGAGTGAGATCA
n.d.
23
8514
8533
936





596282
461
480
TGGTCTCCTGAGAGTGAGAT
n.d.
24
8516
8535
937





596283
463
482
AATGGTCTCCTGAGAGTGAG
n.d.
22
8518
8537
938





596284
465
484
GCAATGGTCTCCTGAGAGTG
n.d.
57
8520
8539
939





596285
467
486
ATGCAATGGTCTCCTGAGAG
n.d.
0
8522
8541
940





596286
469
488
TGATGCAATGGTCTCCTGAG
n.d.
1
8524
8543
941





596287
471
490
AATGATGCAATGGTCTCCTG
n.d.
0
8526
8545
942





596288
473
492
CCAATGATGCAATGGTCTCC
n.d.
8
8528
8547
943





596289
475
494
GGCCAATGATGCAATGGTCT
n.d.
9
8530
8549
944





596290
477
496
GCGGCCAATGATGCAATGGT
n.d.
13
8532
8551
945





596291
479
498
GTGCGGCCAATGATGCAATG
n.d.
12
8534
8553
946





596292
481
500
GTGTGCGGCCAATGATGCAA
n.d.
15
8536
8555
947





596293
483
502
CAGTGTGCGGCCAATGATGC
n.d.
0
8538
8557
948





596294
485
504
ACCAGTGTGCGGCCAATGAT
n.d.
0
8540
8559
949





596295
487
506
CCACCAGTGTGCGGCCAATG
n.d.
22
8542
8561
950





596296
489
508
GACCACCAGTGTGCGGCCAA
n.d.
16
n/a
n/a
951





596297
491
510
TGGACCACCAGTGTGCGGCC
n.d.
28
n/a
n/a
952





150461
493
512
CATGGACCACCAGTGTGCGG
n.d.
25
n/a
n/a
106





596298
495
514
TTCATGGACCACCAGTGTGC
n.d.
21
n/a
n/a
953





596299
497
516
TTTTCATGGACCACCAGTGT
n.d.
17
n/a
n/a
954





596300
499
518
CTTTTTCATGGACCACCAGT
n.d.
9
n/a
n/a
955









Example 3: Inhibition of Human SOD-1 in HepG2 Cells by Deoxy, MOE and cEt Gapmers

Modified oligonucleotides were designed targeting a superoxide dismutase 1, soluble (SOD-1) nucleic acid and were tested for their effects on SOD-1 mRNA in vitro. ISIS 333611, which was previously described in WO 2005/040180, was included as a benchmark. ISIS 590067, ISIS 590074, ISIS 590082, ISIS 590130, ISIS 590138, and ISIS 590146, which are 5-10-5 MOE gapmers as described above in Example 1, were also included in this assay. ISIS 590512, which has a similar sequence as ISIS 333611 but with deoxy, MOE, and cEt sugar modifications, was also included in this study.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 3,000 nM modified oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR.


Human primer probe set RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. ‘n.d.’ indicates that inhibition levels were not measured.


The newly designed modified oligonucleotides in the Tables below were designed as deoxy, MOE, and cEt gapmers. The gapmers are 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000). ‘n/a’ indicates that the modified oligonucleotide does not target that particular gene sequence with S100 complementarity.









TABLE 13 







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt


gapmers targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:



NO:
NO:




1
1


%
2
2
SEQ


ISIS
Start
Stop


inhi-
Start
Stop
NO


NO
Site
Site
Sequence
Chemistry
bition
Site
Site
ID


















590434
1
17
CCACTCTGGCCC
eeekkdddddddkkeee
17
807
823
956





CAAAC










590435
2
18
CCCACTCTGGCC
eeekkdddddddkkeee
15
808
824
957





CCAAA










590436
3
19
GCCCACTCTGGC
eeekkdddddddkkeee
22
809
825
958





CCCAA










590437
4
20
CGCCCACTCTGG
eeekkdddddddkkeee
14
810
826
959





CCCCA










590438
35
51
CGACTACTTTAT
eeekkdddddddkkeee
12
841
857
960





AGGCC










590439
36
52
GCGACTACTTTA
eeekkdddddddkkeee
12
842
858
961





TAGGC










590440
37
53
CGCGACTACTTT
eeekkdddddddkkeee
11
843
859
962





ATAGG










590441
38
54
CCGCGACTACTT
eeekkdddddddkkeee
5
844
860
963





TATAG










590442
76
92
CGCTGCAGGAGA
eeekkdddddddkkeee
0
882
898
964





CTACG










590443
77
93
ACGCTGCAGGAG
eeekkdddddddkkeee
25
883
899
965





ACTAC










590444
167
183
TCGCCCTTCAGC
eeekkdddddddkkeee
31
973
989
966





ACGCA










590445
168
184
GTCGCCCTTCAG
eeekkdddddddkkeee
28
974
990
967





CACGC










590512
169
185
CGTCGCCCTTCA
eeekkdddddddkkeee
8
975
991
968





GCACG










590446
170
186
CCGTCGCCCTTC
eeekkdddddddkkeee
27
976
992
969





AGCAC










590447
171
187
GCCGTCGCCCTT
eeekkdddddddkkeee
33
977
993
970





CAGCA










590448
202
218
TCTGCTCGAAAT
eeekkdddddddkkeee
34
1008
1024
971





TGATG










590449
203
219
TTCTGCTCGAAA
eeekkdddddddkkeee
18
1009
1025
972





TTGAT










590450
204
220
CTTCTGCTCGAA
eeekkdddddddkkeee
13
1010
1026
973





ATTGA










590451
205
221
CCTTCTGCTCGA
eeekkdddddddkkeee
16
1011
1027
974





AATTG










590452
206
222
TCCTTCTGCTCG
eeekkdddddddkkeee
14
n/a
n/a
975





AAATT










590453
207
223
TTCCTTCTGCTCG
eeekkdddddddkkeee
13
n/a
n/a
976





AAAT










590454
208
224
TTTCCTTCTGCTC
eeekkdddddddkkeee
6
n/a
n/a
977





GAAA










590455
209
225
CTTTCCTTCTGCT
eeekkdddddddkkeee
0
n/a
n/a
978





CGAA










590456
210
226
ACTTTCCTTCTGC
eeekkdddddddkkeee
0
n/a
n/a
979





TCGA










590457
211
227
TACTTTCCTTCTG
eeekkdddddddkkeee
n.d.
n/a
n/a
980





CTCG










590458
212
228
TTACTTTCCTTCT
eeekkdddddddkkeee
n.d.
n/a
n/a
981





GCTC










590459
213
229
ATTACTTTCCTTC
eeekkdddddddkkeee
n.d.
n/a
n/a
982





TGCT










590461
214
230
CATTACTTTCCTT
eeekkdddddddkkeee
n.d.
n/a
n/a
983





CTGC










590462
215
231
CCATTACTTTCCT
eeekkdddddddkkeee
n.d.
n/a
n/a
984





TCTG










590463
216
232
TCCATTACTTTCC
eeekkdddddddkkeee
n.d.
n/a
n/a
985





TTCT










590464
217
233
GTCCATTACTTTC
eeekkdddddddkkeee
n.d.
n/a
n/a
986





CTTC










590465
218
234
GGTCCATTACTT
eeekkdddddddkkeee
n.d.
4972
4988
987





TCCTT










590466
219
235
TGGTCCATTACT
eeekkdddddddkkeee
5
4973
4989
988





TTCCT










590467
220
236
CTGGTCCATTAC
eeekkdddddddkkeee
11
4974
4990
989





TTTCC










590468
221
237
ACTGGTCCATTA
eeekkdddddddkkeee
14
4975
4991
990





CTTTC










590469
222
238
CACTGGTCCATT
eeekkdddddddkkeee
12
4976
4992
991





ACTTT










590470
223
239
TCACTGGTCCAT
eeekkdddddddkkeee
15
4977
4993
992





TACTT










590471
224
240
TTCACTGGTCCA
eeekkdddddddkkeee
14
4978
4994
993





TTACT










590472
225
241
CTTCACTGGTCC
eeekkdddddddkkeee
11
4979
4995
994





ATTAC










590473
226
242
CCTTCACTGGTC
eeekkdddddddkkeee
8
4980
4996
995





CATTA










590474
227
243
ACCTTCACTGGT
eeekkdddddddkkeee
44
4981
4997
996





CCATT










590475
228
244
CACCTTCACTGG
eeekkdddddddkkeee
53
4982
4998
997





TCCAT










590476
229
245
ACACCTTCACTG
eeekkdddddddkkeee
20
4983
4999
998





GTCCA










590477
230
246
CACACCTTCACT
eeekkdddddddkkeee
12
4984
5000
999





GGTCC










590478
231
247
CCACACCTTCAC
eeekkdddddddkkeee
36
4985
5001
1000





TGGTC










590479
232
248
CCCACACCTTCA
eeekkdddddddkkeee
18
4986
5002
1001





CTGGT










590480
233
249
CCCCACACCTTC
eeekkdddddddkkeee
14
4987
5003
1002





ACTGG










590481
235
251
TTCCCCACACCT
eeekkdddddddkkeee
8
4989
5005
1003





TCACT










590482
236
252
CTTCCCCACACC
eeekkdddddddkkeee
29
4990
5006
1004





TTCAC










590483
237
253
GCTTCCCCACAC
eeekkdddddddkkeee
36
4991
5007
1005





CTTCA










590484
238
254
TGCTTCCCCACA
eeekkdddddddkkeee
43
4992
5008
1006





CCTTC










590485
239
255
ATGCTTCCCCAC
eeekkdddddddkkeee
41
4993
5009
1007





ACCTT










590486
240
256
AATGCTTCCCCA
eeekkdddddddkkeee
35
4994
5010
1008





CACCT










590487
241
257
TAATGCTTCCCC
eeekkdddddddkkeee
52
4995
5011
1009





ACACC










590488
264
280
ATGCAGGCCTTC
eeekkdddddddkkeee
37
5018
5034
1010





AGTCA










590489
265
281
CATGCAGGCCTT
eeekkdddddddkkeee
41
5019
5035
1011





CAGTC










590490
266
282
CCATGCAGGCCT
eeekkdddddddkkeee
21
5020
5036
1012





TCAGT










590491
267
283
TCCATGCAGGCC
eeekkdddddddkkeee
18
5021
5037
1013





TTCAG










590492
268
284
ATCCATGCAGGC
eeekkdddddddkkeee
27
5022
5038
1014





CTTCA










590493
269
285
AATCCATGCAGG
eeekkdddddddkkeee
13
5023
5039
1015





CCTTC










590494
270
286
GAATCCATGCAG
eeekkdddddddkkeee
9
5024
5040
1016





GCCTT










590495
271
287
GGAATCCATGCA
eeekkdddddddkkeee
7
5025
5041
1017





GGCCT










590496
272
288
TGGAATCCATGC
eeekkdddddddkkeee
12
5026
5042
1018





AGGCC










590497
273
289
ATGGAATCCATG
eeekkdddddddkkeee
9
5027
5043
1019





CAGGC










590498
274
290
CATGGAATCCAT
eeekkdddddddkkeee
14
5028
5044
1020





GCAGG










590499
275
291
ACATGGAATCCA
eeekkdddddddkkeee
0
5029
5045
1021





TGCAG










590500
276
292
AACATGGAATCC
eeekkdddddddkkeee
10
5030
5046
1022





ATGCA










590501
277
293
GAACATGGAATC
eeekkdddddddkkeee
9
5031
5047
1023





CATGC










590502
278
294
TGAACATGGAAT
eeekkdddddddkkeee
2
5032
5048
1024





CCATG










590503
279
295
ATGAACATGGAA
eeekkdddddddkkeee
8
5033
5049
1025





TCCAT










590504
316
332
CTGCACTGGTAC
eeekkdddddddkkeee
3
7632
7648
1026





AGCCT










590505
317
333
CCTGCACTGGTA
eeekkdddddddkkeee
17
7633
7649
1027





CAGCC










590506
318
334
ACCTGCACTGGT
eeekkdddddddkkeee
12
7634
7650
1028





ACAGC










590507
319
335
GACCTGCACTGG
eeekkdddddddkkeee
7
7635
7651
1029





TACAG










590508
320
336
GGACCTGCACTG
eeekkdddddddkkeee
7
7636
7652
1030





GTACA










590509
321
337
AGGACCTGCACT
eeekkdddddddkkeee
4
7637
7653
1031





GGTAC










590510
322
338
GAGGACCTGCAC
eeekkdddddddkkeee
17
7638
7654
1032





TGGTA










590511
323
339
TGAGGACCTGCA
eeekkdddddddkkeee
8
7639
7655
1033





CTGGT
















TABLE 14







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt gapmers


targeting SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





590512
169
185
CGTCGCCCTTCA
eeekkdddddddkkeee
45
 975
 991
 968





GCACG










590513
324
340
GTGAGGACCTG
eeekkdddddddkkeee
21
7640
7656
1034





CACTGG










590514
325
341
AGTGAGGACCT
eeekkdddddddkkeee
21
7641
7657
1035





GCACTG










590515
326
342
AAGTGAGGACC
eeekkdddddddkkeee
16
7642
7658
1036





TGCACT










590516
327
343
AAAGTGAGGAC
eeekkdddddddkkeee
20
7643
7659
1037





CTGCAC










590517
328
344
TAAAGTGAGGA
eeekkdddddddkkeee
19
7644
7660
1038





CCTGCA










590518
329
345
TTAAAGTGAGG
eeekkdddddddkkeee
14
7645
7661
1039





ACCTGC










590519
330
346
ATTAAAGTGAG
eeekkdddddddkkeee
Si
7646
7662
1040





GACCTG










590520
331
347
GATTAAAGTGA
eeekkdddddddkkeee
8
7647
7663
1041





GGACCT










590521
332
348
GGATTAAAGTG
eeekkdddddddkkeee
30
7648
7664
1042





AGGACC










590522
333
349
AGGATTAAAGT
eeekkdddddddkkeee
23
7649
7665
1043





GAGGAC










590523
334
350
GAGGATTAAAG
eeekkdddddddkkeee
40
7650
7666
1044





TGAGGA










590524
335
351
AGAGGATTAAA
eeekkdddddddkkeee
16
7651
7667
1045





GTGAGG










590525
336
352
TAGAGGATTAA
eeekkdddddddkkeee
21
7652
7668
1046





AGTGAG










590526
337
353
ATAGAGGATTA
eeekkdddddddkkeee
 9
7653
7669
1047





AAGTGA










590527
338
354
GATAGAGGATT
eeekkdddddddkkeee
 8
7654
7670
1048





AAAGTG










590528
339
355
GGATAGAGGAT
eeekkdddddddkkeee
14
7655
7671
1049





TAAAGT










590530
340
356
TGGATAGAGGA
eeekkdddddddkkeee
23
7656
7672
1050





TTAAAG










590531
341
357
CTGGATAGAGG
eeekkdddddddkkeee
26
7657
7673
1051





ATTAAA










590532
342
358
TCTGGATAGAG
eeekkdddddddkkeee
25
7658
7674
1052





GATTAA










590533
360
376
CTTTGGCCCACC
eeekkdddddddkkeee
41
7676
7692
1053





GTGTT










590534
361
377
CCTTTGGCCCAC
eeekkdddddddkkeee
46
7677
7693
1054





CGTGT










590535
362
378
TCCTTTGGCCCA
eeekkdddddddkkeee
39
7678
7694
1055





CCGTG










590536
363
379
ATCCTTTGGCCC
eeekkdddddddkkeee
n.d.
7679
7695
1056





ACCGT










590537
364
380
CATCCTTTGGCC
eeekkdddddddkkeee
n.d.
7680
7696
1057





CACCG










590538
365
381
TCATCCTTTGGC
eeekkdddddddkkeee
n.d.
7681
7697
1058





CCACC










590539
366
382
TTCATCCTTTGG
eeekkdddddddkkeee
n.d.
7682
7698
1059





CCCAC










590540
367
383
CTTCATCCTTTG
eeekkdddddddkkeee
n.d.
7683
7699
1060





GCCCA










590541
368
384
TCTTCATCCTTT
eeekkdddddddkkeee
n.d.
7684
7700
1061





GGCCC










590542
369
385
CTCTTCATCCTT
eeekkdddddddkkeee
n.d.
7685
7701
1062





TGGCC










590543
370
386
TCTCTTCATCCT
eeekkdddddddkkeee
n.d.
7686
7702
1063





TTGGC










590544
371
387
CTCTCTTCATCC
eeekkdddddddkkeee
 2
7687
7703
1064





TTTGG










590545
374
390
TGCCTCTCTTCA
eeekkdddddddkkeee
 6
n/a
n/a
1065





TCCTT










590546
375
391
ATGCCTCTCTTC
eeekkdddddddkkeee
 0
n/a
n/a
1066





ATCCT










590547
376
392
CATGCCTCTCTT
eeekkdddddddkkeee
14
n/a
n/a
1067





CATCC










590548
377
393
ACATGCCTCTCT
eeekkdddddddkkeee
 0
n/a
n/a
1068





TCATC










590549
378
394
AACATGCCTCTC
eeekkdddddddkkeee
13
n/a
n/a
1069





TTCAT










590550
379
395
CAACATGCCTCT
eeekkdddddddkkeee
 3
n/a
n/a
1070





CTTCA










590551
380
396
CCAACATGCCTC
eeekkdddddddkkeee
 0
n/a
n/a
1071





TCTTC










590552
381
397
TCCAACATGCCT
eeekkdddddddkkeee
 0
n/a
n/a
1072





CTCTT










590553
382
398
CTCCAACATGCC
eeekkdddddddkkeee
 5
n/a
n/a
1073





TCTCT










590554
383
399
TCTCCAACATGC
eeekkdddddddkkeee
10
n/a
n/a
1074





CTCTC










590555
384
400
GTCTCCAACATG
eeekkdddddddkkeee
 8
n/a
n/a
1075





CCTCT










590556
402
418
AGCAGTCACATT
eeekkdddddddkkeee
18
8457
8473
1076





GCCCA










590557
403
419
CAGCAGTCACA
eeekkdddddddkkeee
 7
8458
8474
1077





TTGCCC










590558
429
445
AGACACATCGG
eeekkdddddddkkeee
21
8484
8500
1078





CCACAC










590559
436
452
CTTCAATAGACA
eeekkdddddddkkeee
 9
8491
8507
1079





CATCG 










590560
449
465
GAGATCACAGA
eeekkdddddddkkeee
13
8504
8520
1080





ATCTTC










590561
501
517
TTTTTCATGGAC
eeekkdddddddkkeee
76
n/a
n/a
1081





CACCA










590562
502
518
CTTTTTCATGGA
eeekkdddddddkkeee
87
n/a
n/a
1082





CCACC










590563
503
519
GCTTTTTCATGG
eeekkdddddddkkeee
71
n/a
n/a
1083





ACCAC










590564
504
520
TGCTTTTTCATG
eeekkdddddddkkeee
51
n/a
n/a
1084





GACCA










590565
505
521
CTGCTTTTTCAT
eeekkdddddddkkeee
65
9655
9671
1085





GGACC










590566
506
522
TCTGCTTTTTCA
eeekkdddddddkkeee
55
9656
9672
1086





TGGAC










590567
507
523
ATCTGCTTTTTC
eeekkdddddddkkeee
42
9657
9673
1087





ATGGA










590568
508
524
CATCTGCTTTTT
eeekkdddddddkkeee
70
9658
9674
1088





CATGG










590569
509
525
TCATCTGCTTTT
eeekkdddddddkkeee
71
9659
9675
1089





TCATG










590570
510
526
GTCATCTGCTTT
eeekkdddddddkkeee
74
9660
9676
1090





TTCAT










590571
511
527
AGTCATCTGCTT
eeekkdddddddkkeee
76
9661
9677
1091





TTTCA










590572
512
528
AAGTCATCTGCT
eeekkdddddddkkeee
83
9662
9678
1092





TTTTC










590573
513
529
CAAGTCATCTGC
eeekkdddddddkkeee
42
9663
9679
1093





TTTTT










590574
514
530
CCAAGTCATCTG
eeekkdddddddkkeee
50
9664
9680
1094





CTTTT










590575
515
531
CCCAAGTCATCT
eeekkdddddddkkeee
72
9665
9681
1095





GCTTT










590576
516
532
GCCCAAGTCATC
eeekkdddddddkkeee
93
9666
9682
1096





TGCTT










590577
517
533
TGCCCAAGTCAT
eeekkdddddddkkeee
90
9667
9683
1097





CTGCT










590578
518
534
TTGCCCAAGTCA
eeekkdddddddkkeee
92
9668
9684
1098





TCTGC










590579
524
540
CCACCTTTGCCC
eeekkdddddddkkeee
91
9674
9690
1099





AAGTC










590580
525
541
TCCACCTTTGCC
eeekkdddddddkkeee
88
9675
9691
1100





CAAGT










590581
526
542
TTCCACCTTTGC
eeekkdddddddkkeee
87
9676
9692
1101





CCAAG










590582
527
543
TTTCCACCTTTG
eeekkdddddddkkeee
78
9677
9693
1102





CCCAA










590583
528
544
ATTTCCACCTTT
eeekkdddddddkkeee
63
9678
9694
1103





GCCCA










590584
529
545
CATTTCCACCTT
eeekkdddddddkkeee
73
9679
9695
1104





TGCCC










590585
530
546
TCATTTCCACCT
eeekkdddddddkkeee
57
9680
9696
1105





TTGCC










590586
531
547
TTCATTTCCACC
eeekkdddddddkkeee
33
9681
9697
1106





TTTGC










590587
533
549
TCTTCATTTCCA
eeekkdddddddkkeee
31
9683
9699
1107





CCTTT










590588
536
552
CTTTCTTCATTT
eeekkdddddddkkeee
11
9686
9702
1108





CCACC










590589
537
553
ACTTTCTTCATT
eeekkdddddddkkeee
15
9687
9703
1109





TCCAC










590590
538
554
TACTTTCTTCAT
eeekkdddddddkkeee
18
9688
9704
1110





TTCCA
















TABLE 15







Percent inhibition of SOD-1 mRNA by deoxy MOE and cEt gapmers targeting


SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





590512
169
185
CGTCGCCCTTCAG
eeekkdddddddkkeee
21
 975
 991
 968





CACG










590591
582
598
AATTACACCACA
eeekkdddddddkkeee
21
9732
9748
1111





AGCCA










590592
583
599
CAATTACACCAC
eeekkdddddddkkeee
33
9733
9749
1112





AAGCC










590593
584
600
CCAATTACACCA
eeekkdddddddkkeee
29
9734
9750
1113





CAAGC










590594
585
601
CCCAATTACACC
eeekkdddddddkkeee
29
9735
9751
1114





ACAAG










590595
588
604
GATCCCAATTAC
eeekkdddddddkkeee
 3
9738
9754
1115





ACCAC










590596
589
605
CGATCCCAATTAC
eeekkdddddddkkeee
12
9739
9755
1116





ACCA










590597
590
606
GCGATCCCAATT
eeekkdddddddkkeee
19
9740
9756
1117





ACACC










590598
591
607
GGCGATCCCAAT
eeekkdddddddkkeee
 9
9741
9757
1118





TACAC










590599
592
608
GGGCGATCCCAA
eeekkdddddddkkeee
18
9742
9758
1119





TTACA










590600
593
609
TGGGCGATCCCA
eeekkdddddddkkeee
20
9743
9759
1120





ATTAC










590601
594
610
TTGGGCGATCCC
eeekkdddddddkkeee
26
9744
9760
1121





AATTA










590602
595
611
ATTGGGCGATCC
eeekkdddddddkkeee
19
9745
9761
1122





CAATT










590603
596
612
TATTGGGCGATCC
eeekkdddddddkkeee
 3
9746
9762
1123





CAAT










590604
597
613
TTATTGGGCGATC
eeekkdddddddkkeee
15
9747
9763
1124





CCAA










590605
598
614
TTTATTGGGCGAT
eeekkdddddddkkeee
20
9748
9764
1125





CCCA










590606
599
615
GTTTATTGGGCGA
eeekkdddddddkkeee
18
9749
9765
1126





TCCC










590607
600
616
TGTTTATTGGGCG
eeekkdddddddkkeee
21
9750
9766
1127





ATCC










590608
601
617
ATGTTTATTGGGC
eeekkdddddddkkeee
28
9751
9767
1128





GATC










590609
602
618
AATGTTTATTGGG
eeekkdddddddkkeee
30
9752
9768
1129





CGAT










590610
603
619
GAATGTTTATTGG
eeekkdddddddkkeee
14
9753
9769
1130





GCGA










590611
604
620
GGAATGTTTATTG
eeekkdddddddkkeee
15
9754
9770
1131





GGCG










590612
607
623
AAGGGAATGTTT
eeekkdddddddkkeee
 2
9757
9773
1132





ATTGG










590613
608
624
CAAGGGAATGTT
eeekkdddddddkkeee
n.d.
9758
9774
1133





TATTG










590614
609
625
CCAAGGGAATGT
eeekkdddddddkkeee
n.d.
9759
9775
1134





TTATT










590615
610
626
TCCAAGGGAATG
eeekkdddddddkkeee
n.d.
9760
9776
1135





TTTAT










590616
611
627
ATCCAAGGGAAT
eeekkdddddddkkeee
n.d.
9761
9777
1136





GTTTA










590617
612
628
CATCCAAGGGAA
eeekkdddddddkkeee
n.d.
9762
9778
1137





TGTTT










590618
613
629
ACATCCAAGGGA
eeekkdddddddkkeee
n.d.
9763
9779
1138





ATGTT










590619
614
630
TACATCCAAGGG
eeekkdddddddkkeee
n.d.
9764
9780
1139





AATGT










590620
615
631
CTACATCCAAGG
eeekkdddddddkkeee
n.d.
9765
9781
1140





GAATG










590621
616
632
ACTACATCCAAG
eeekkdddddddkkeee
 7
9766
9782
1141





GGAAT










590622
617
633
GACTACATCCAA
eeekkdddddddkkeee
19
9767
9783
1142





GGGAA










590623
618
634
AGACTACATCCA
eeekkdddddddkkeee
39
9768
9784
1143





AGGGA










590624
619
635
CAGACTACATCC
eeekkdddddddkkeee
53
9769
9785
1144





AAGGG










590625
620
636
TCAGACTACATCC
eeekkdddddddkkeee
57
9770
9786
1145





AAGG










590626
621
637
CTCAGACTACATC
eeekkdddddddkkeee
76
9771
9787
1146





CAAG










590627
622
638
CCTCAGACTACAT
eeekkdddddddkkeee
58
9772
9788
1147





CCAA










590628
623
639
GCCTCAGACTAC
eeekkdddddddkkeee
43
9773
9789
1148





ATCCA










590629
624
640
GGCCTCAGACTA
eeekkdddddddkkeee
24
9774
9790
1149





CATCC










590630
625
641
GGGCCTCAGACT
eeekkdddddddkkeee
24
9775
9791
1150





ACATC










590631
643
659
GATAACAGATGA
eeekkdddddddkkeee
11
9793
9809
1151





GTTAA










590632
644
660
GGATAACAGATG
eeekkdddddddkkeee
32
9794
9810
1152





AGTTA










590633
645
661
AGGATAACAGAT
eeekkdddddddkkeee
45
9795
9811
1153





GAGTT










590634
646
662
CAGGATAACAGA
eeekkdddddddkkeee
65
9796
9812
1154





TGAGT










590635
647
663
GCAGGATAACAG
eeekkdddddddkkeee
58
9797
9813
1155





ATGAG










590636
648
664
AGCAGGATAACA
eeekkdddddddkkeee
45
9798
9814
1156





GATGA










590637
649
665
TAGCAGGATAAC
eeekkdddddddkkeee
34
9799
9815
1157





AGATG










590638
650
666
CTAGCAGGATAA
eeekkdddddddkkeee
39
9800
9816
1158





CAGAT










590639
651
667
GCTAGCAGGATA
eeekkdddddddkkeee
10
9801
9817
1159





ACAGA










590640
652
668
AGCTAGCAGGAT
eeekkdddddddkkeee
15
9802
9818
1160





AACAG










590641
653
669
CAGCTAGCAGGA
eeekkdddddddkkeee
21
9803
9819
1161





TAACA










590642
654
670
ACAGCTAGCAGG
eeekkdddddddkkeee
20
9804
9820
1162





ATAAC










590643
655
671
TACAGCTAGCAG
eeekkdddddddkkeee
40
9805
9821
1163





GATAA










590644
656
672
CTACAGCTAGCA
eeekkdddddddkkeee
55
9806
9822
1164





GGATA










590645
657
673
TCTACAGCTAGC
eeekkdddddddkkeee
51
9807
9823
1165





AGGAT










590646
658
674
TTCTACAGCTAGC
eeekkdddddddkkeee
31
9808
9824
1166





AGGA










590647
659
675
TTTCTACAGCTAG
eeekkdddddddkkeee
38
9809
9825
1167





CAGG










590648
660
676
ATTTCTACAGCTA
eeekkdddddddkkeee
45
9810
9826
1168





GCAG










590649
661
677
CATTTCTACAGCT
eeekkdddddddkkeee
34
9811
9827
1169





AGCA










590650
664
680
ATACATTTCTACA
eeekkdddddddkkeee
57
9814
9830
1170





GCTA










590651
665
681
GATACATTTCTAC
eeekkdddddddkkeee
40
9815
9831
1171





AGCT










590652
683
699
GTGTTTAATGTTT
eeekkdddddddkkeee
37
9833
9849
1172





ATCA










590653
684
700
AGTGTTTAATGTT
eeekkdddddddkkeee
67
9834
9850
1173





TATC










590654
685
701
CAGTGTTTAATGT
eeekkdddddddkkeee
54
9835
9851
1174





TTAT










590655
686
702
ACAGTGTTTAATG
eeekkdddddddkkeee
56
9836
9852
1175





TTTA










590656
687
703
TACAGTGTTTAAT
eeekkdddddddkkeee
30
9837
9853
1176





GTTT










590657
688
704
TTACAGTGTTTAA
eeekkdddddddkkeee
18
9838
9854
1177





TGTT










590658
689
705
ATTACAGTGTTTA
eeekkdddddddkkeee
24
9839
9855
1178





ATGT










590659
690
706
GATTACAGTGTTT
eeekkdddddddkkeee
10
9840
9856
1179





AATG










590660
691
707
AGATTACAGTGTT
eeekkdddddddkkeee
45
9841
9857
1180





TAAT










590661
692
708
AAGATTACAGTG
eeekkdddddddkkeee
34
9842
9858
1181





TTTAA










590662
693
709
TAAGATTACAGT
eeekkdddddddkkeee
54
9843
9859
1182





GTTTA










590663
694
710
TTAAGATTACAGT
eeekkdddddddkkeee
54
9844
9860
1183





GTTT










590664
772
788
ATCTTCCAAGTGA
eeekkdddddddkkeee
 7
9922
9938
1184





TCAT










590665
773
789
AATCTTCCAAGTG
eeekkdddddddkkeee
23
9923
9939
1185





ATCA










590666
774
790
AAATCTTCCAAGT
eeekkdddddddkkeee
 4
9924
9940
1186





GATC










590667
775
791
CAAATCTTCCAA
eeekkdddddddkkeee
18
9925
9941
1187





GTGAT
















TABLE 16







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt gapmers targeting


SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





590512
169
185
CGTCGCCCTT
eeekkdddddddkkeee
16
  975
  991
 968





CAGCACG










590668
777
793
TACAAATCTT
eeekkdddddddkkeee
17
 9927
 9943
1188





CCAAGTG










590669
778
794
ATACAAATC
eeekkdddddddkkeee
15
 9928
 9944
1189





TTCCAAGT










590670
779
795
TATACAAAT
eeekkdddddddkkeee
11
 9929
 9945
1190





CTTCCAAG










590671
780
796
CTATACAAA
eeekkdddddddkkeee
13
 9930
 9946
1191





TCTTCCAA










590672
781
797
ACTATACAA
eeekkdddddddkkeee
10
 9931
 9947
1192





ATCTTCCA










590673
782
798
AACTATACA
eeekkdddddddkkeee
28
 9932
 9948
1193





AATCTTCC










590674
783
799
AAACTATAC
eeekkdddddddkkeee
26
 9933
 9949
1194





AAATCTTC










590675
786
802
ATAAAACTA
eeekkdddddddkkeee
14
 9936
 9952
1195





TACAAATC










590676
791
807
GTTTTATAAA
eeekkdddddddkkeee
22
 9941
 9957
1196





ACTATAC










590677
793
809
GAGTTTTATA
eeekkdddddddkkeee
 6
 9943
 9959
1197





AAACTAT










590678
814
830
ATTGAAACA
eeekkdddddddkkeee
22
 9964
 9980
1198





GACATTTT










590679
815
831
CATTGAAAC
eeekkdddddddkkeee
11
 9965
 9981
1199





AGACATTT










590680
816
832
TCATTGAAA
eeekkdddddddkkeee
10
 9966
 9982
1200





CAGACATT










590681
817
833
GTCATTGAA
eeekkdddddddkkeee
23
 9967
 9983
1201





ACAGACAT










590682
818
834
GGTCATTGA
eeekkdddddddkkeee
11
 9968
 9984
1202





AACAGACA










590683
819
835
AGGTCATTG
eeekkdddddddkkeee
21
 9969
 9985
1203





AAACAGAC










590684
820
836
CAGGTCATT
eeekkdddddddkkeee
14
 9970
 9986
1204





GAAACAGA










590685
821
837
ACAGGTCAT
eeekkdddddddkkeee
14
 9971
 9987
1205





TGAAACAG










590686
822
838
TACAGGTCA
eeekkdddddddkkeee
 9
 9972
 9988
1206





TTGAAACA










590687
823
839
ATACAGGTC
eeekkdddddddkkeee
14
 9973
 9989
1207





ATTGAAAC










590688
824
840
AATACAGGT
eeekkdddddddkkeee
 6
 9974
 9990
1208





CATTGAAA










590689
825
841
AAATACAGG
eeekkdddddddkkeee
 2
 9975
 9991
1209





TCATTGAA










590690
826
842
AAAATACAG
eeekkdddddddkkeee
n.d.
 9976
 9992
1210





GTCATTGA










590691
827
843
CAAAATACA
eeekkdddddddkkeee
n.d.
 9977
 9993
1211





GGTCATTG










590692
828
844
GCAAAATAC
eeekkdddddddkkeee
n.d.
 9978
 9994
1212





AGGTCATT










590693
829
845
GGCAAAATA
eeekkdddddddkkeee
n.d.
 9979
 9995
1213





CAGGTCAT










590694
830
846
TGGCAAAAT
eeekkdddddddkkeee
n.d.
 9980
 9996
1214





ACAGGTCA










590695
831
847
CTGGCAAAA
eeekkdddddddkkeee
n.d.
 9981
 9997
1215





TACAGGTC










590696
832
848
TCTGGCAAA
eeekkdddddddkkeee
n.d.
 9982
 9998
1216





ATACAGGT










590697
833
849
GTCTGGCAA
eeekkdddddddkkeee
n.d.
 9983
 9999
1217





AATACAGG










590698
834
850
AGTCTGGCA
eeekkdddddddkkeee
 1
 9984
10000
1218





AAATACAG










590699
835
851
AAGTCTGGC
eeekkdddddddkkeee
10
 9985
10001
1219





AAAATACA










590700
836
852
TAAGTCTGG
eeekkdddddddkkeee
 4
 9986
10002
1220





CAAAATAC










590701
837
853
TTAAGTCTGG
eeekkdddddddkkeee
 2
 9987
10003
1221





CAAAATA










590702
853
869
AATACCCAT
eeekkdddddddkkeee
 7
10003
10019
1222





CTGTGATT










590703
854
870
TAATACCCAT
eeekkdddddddkkeee
 4
10004
10020
1223





CTGTGAT










590704
855
871
TTAATACCCA
eeekkdddddddkkeee
 2
10005
10021
1224





TCTGTGA










590705
856
872
TTTAATACCC
eeekkdddddddkkeee
 0
10006
10022
1225





ATCTGTG










590706
857
873
GTTTAATACC
eeekkdddddddkkeee
17
10007
10023
1226





CATCTGT










590707
858
874
AGTTTAATAC
eeekkdddddddkkeee
10
10008
10024
1227





CCATCTG










590708
859
875
AAGTTTAAT
eeekkdddddddkkeee
12
10009
10025
1228





ACCCATCT










590709
860
876
CAAGTTTAAT
eeekkdddddddkkeee
37
10010
10026
1229





ACCCATC










590710
861
877
ACAAGTTTA
eeekkdddddddkkeee
23
10011
10027
1230





ATACCCAT










590711
862
878
GACAAGTTT
eeekkdddddddkkeee
24
10012
10028
1231





AATACCCA










590712
863
879
TGACAAGTTT
eeekkdddddddkkeee
27
10013
10029
1232





AATACCC










590713
864
880
CTGACAAGT
eeekkdddddddkkeee
10
10014
10030
1233





TTAATACC










590714
865
881
TCTGACAAG
eeekkdddddddkkeee
 0
10015
10031
1234





TTTAATAC










590715
866
882
TTCTGACAA
eeekkdddddddkkeee
 6
10016
10032
1235





GTTTAATA










590716
867
883
ATTCTGACA
eeekkdddddddkkeee
 9
10017
10033
1236





AGTTTAAT










590717
868
884
AATTCTGAC
eeekkdddddddkkeee
15
10018
10034
1237





AAGTTTAA










590718
869
885
AAATTCTGA
eeekkdddddddkkeee
21
10019
10035
1238





CAAGTTTA










590719
870
886
GAAATTCTG
eeekkdddddddkkeee
14
10020
10036
1239





ACAAGTTT










590720
871
887
AGAAATTCT
eeekkdddddddkkeee
 8
10021
10037
1240





GACAAGTT










590721
872
888
AAGAAATTC
eeekkdddddddkkeee
18
10022
10038
1241





TGACAAGT










590722
891
907
TTCACAGGCT
eeekkdddddddkkeee
 9
10041
10057
1242





TGAATGA










590723
892
908
ATTCACAGG
eeekkdddddddkkeee
11
10042
10058
1243





CTTGAATG










590724
893
909
TATTCACAG
eeekkdddddddkkeee
 0
10043
10059
1244





GCTTGAAT










590725
894
910
TTATTCACAG
eeekkdddddddkkeee
10
10044
10060
1245





GCTTGAA










590726
895
911
TTTATTCACA
eeekkdddddddkkeee
29
10045
10061
1246





GGCTTGA










590727
896
912
TTTTATTCAC
eeekkdddddddkkeee
28
10046
10062
1247





AGGCTTG










590728
897
913
TTTTTATTCA
eeekkdddddddkkeee
31
10047
10063
1248





CAGGCTT










590729
898
914
GTTTTTATTC
eeekkdddddddkkeee
10
10048
10064
1249





ACAGGCT










590731
899
915
GGTTTTTATT
eeekkdddddddkkeee
22
10049
10065
1250





CACAGGC










590732
900
916
GGGTTTTTAT
eeekkdddddddkkeee
17
10050
10066
1251





TCACAGG










590733
901
917
AGGGTTTTTA
eeekkdddddddkkeee
24
10051
10067
1252





TTCACAG










590734
902
918
CAGGGTTTTT
eeekkdddddddkkeee
17
10052
10068
1253





ATTCACA










590735
903
919
ACAGGGTTTT
eeekkdddddddkkeee
10
10053
10069
1254





TATTCAC










590736
904
920
TACAGGGTTT
eeekkdddddddkkeee
11
10054
10070
1255





TTATTCA










590737
905
921
ATACAGGGT
eeekkdddddddkkeee
 3
10055
10071
1256





TTTTATTC










590738
906
922
CATACAGGG
eeekkdddddddkkeee
 0
10056
10072
1257





TTTTTATT










590739
907
923
CCATACAGG
eeekkdddddddkkeee
 1
10057
10073
1258





GTTTTTAT










590740
908
924
GCCATACAG
eeekkdddddddkkeee
11
10058
10074
1259





GGTTTTTA










590741
909
925
TGCCATACA
eeekkdddddddkkeee
 9
10059
10075
1260





GGGTTTTT










590742
910
926
GTGCCATAC
eeekkdddddddkkeee
 7
10060
10076
1261





AGGGTTTT










590743
911
927
AGTGCCATA
eeekkdddddddkkeee
 9
10061
10077
1262





CAGGGTTT










590744
938
954
TTGGATTCTT
eeekkdddddddkkeee
 8
10088
10104
1263





TTAATAG










590745
951
967
TTTTAGTTTG
eeekkdddddddkkeee
12
n/a
n/a
1264





AATTTGG
















TABLE 17







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt gapmers targeting


SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





333611
167
186
CCGTCGCCCT
eeeeeddddddddddeeeee
66
 973
 992
  21





TCAGCACGCA










590067
202
221
CCTTCTGCTCG
eeeeeddddddddddeeeee
53
1008
1027
 120





AAATTGATG










590074
209
228
TTACTTTCCTT
eeeeeddddddddddeeeee
30
n/a
n/a
 127





CTGCTCGAA










590457
211
227
TACTTTCCTTC
eeekkdddddddkkeee
14
n/a
n/a
 980





TGCTCG










590458
212
228
TTACTTTCCTT
eeekkdddddddkkeee
22
n/a
n/a
 981





CTGCTC










590459
213
229
ATTACTTTCCT
eeekkdddddddkkeee
15
n/a
n/a
 982





TCTGCT










590461
214
230
CATTACTTTCC
eeekkdddddddkkeee
28
n/a
n/a
 983





TTCTGC










590462
215
231
CCATTACTTTC
eeekkdddddddkkeee
37
n/a
n/a
 984





CTTCTG










590463
216
232
TCCATTACTTT
eeekkdddddddkkeee
18
n/a
n/a
 985





CCTTCT










590082
217
236
CTGGTCCATT
eeeeeddddddddddeeeee
50
n/a
n/a
 135





ACTTTCCTTC










590464
217
233
GTCCATTACTT
eeekkdddddddkkeee
33
n/a
n/a
 986





TCCTTC










590465
218
234
GGTCCATTAC
eeekkdddddddkkeee
18
4972
4988
 987





TTTCCTT










590130
363
382
TTCATCCTTTG
eeeeeddddddddddeeeee
30
7679
7698
 194





GCCCACCGT










590536
363
379
ATCCTTTGGC
eeekkdddddddkkeee
51
7679
7695
1056





CCACCGT










590537
364
380
CATCCTTTGG
eeekkdddddddkkeee
38
7680
7696
1057





CCCACCG










590538
365
381
TCATCCTTTGG
eeekkdddddddkkeee
27
7681
7697
1058





CCCACC










590539
366
382
TTCATCCTTTG
eeekkdddddddkkeee
26
7682
7698
1059





GCCCAC










590540
367
383
CTTCATCCTTT
eeekkdddddddkkeee
35
7683
7699
1060





GGCCCA










590541
368
384
TCTTCATCCTT
eeekkdddddddkkeee
15
7684
7700
1061





TGGCCC










590542
369
385
CTCTTCATCCT
eeekkdddddddkkeee
26
7685
7701
1062





TTGGCC










590543
370
386
TCTCTTCATCC
eeekkdddddddkkeee
14
7686
7702
1063





TTTGGC










590138
371
390
TGCCTCTCTTC
eeeeeddddddddddeeeee
32
n/a
n/a
 202





ATCCTTTGG










590146
505
524
CATCTGCTTTT
eeeeeddddddddddeeeee
46
9655
9674
 211





TCATGGACC










590613
608
624
CAAGGGAATG
eeekkdddddddkkeee
19
9758
9774
1133





TTTATTG










590614
609
625
CCAAGGGAAT
eeekkdddddddkkeee
36
9759
9775
1134





GTTTATT










590615
610
626
TCCAAGGGAA
eeekkdddddddkkeee
32
9760
9776
1135





TGTTTAT










590616
611
627
ATCCAAGGGA
eeekkdddddddkkeee
42
9761
9777
1136





ATGTTTA










590617
612
628
CATCCAAGGG
eeekkdddddddkkeee
16
9762
9778
1137





AATGTTT










590618
613
629
ACATCCAAGG
eeekkdddddddkkeee
30
9763
9779
1138





GAATGTT










590619
614
630
TACATCCAAG
eeekkdddddddkkeee
30
9764
9780
1139





GGAATGT










590620
615
631
CTACATCCAA
eeekkdddddddkkeee
40
9765
9781
1140





GGGAATG










590690
826
842
AAAATACAGG
eeekkdddddddkkeee
28
9976
9992
1210





TCATTGA










590691
827
843
CAAAATACAG
eeekkdddddddkkeee
23
9977
9993
1211





GTCATTG










590692
828
844
GCAAAATACA
eeekkdddddddkkeee
43
9978
9994
1212





GGTCATT










590693
829
845
GGCAAAATAC
eeekkdddddddkkeee
39
9979
9995
1213





AGGTCAT










590694
830
846
TGGCAAAATA
eeekkdddddddkkeee
26
9980
9996
1214





CAGGTCA










590695
831
847
CTGGCAAAAT
eeekkdddddddkkeee
18
9981
9997
1215





ACAGGTC










590696
832
848
TCTGGCAAAA
eeekkdddddddkkeee
0
9982
9998
1216





TACAGGT










590697
833
849
GTCTGGCAAA
eeekkdddddddkkeee
24
9983
9999
1217





ATACAGG









Example 4: Inhibition of Human SOD-1 in HepG2 Cells by Deoxy, MOE and cEt Gapmers

Modified oligonucleotides were designed targeting a superoxide dismutase 1, soluble (SOD-1) nucleic acid and were tested for their effects on SOD-1 mRNA in vitro. ISIS 333611, a5-10-5 MOE gapmer which was previously described in WO2005/040180, was included as a benchmark.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 4,000 nM modified oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR.


Human primer probe set RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. ‘n.d.’ indicates that inhibition levels were not measured.


The newly designed modified oligonucleotides in the Tables below were designed as deoxy, MOE, and cEt gapmers or 5-10-5 gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a2′-MOE modification. The deoxy, MOE and cEt oligonucleotides are 17 nucleosides in length wherein the nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000). ‘n/a’ indicates that the modified oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 18







Percent inhibition of SOD-1 mRNA by 5-10-5 MOE gapmers targeting


SEQ ID NO: 1 and/or 2















SEQ ID
SEQ ID


SEQ ID
SEQ ID




NO: 1
NO: 1


NO: 2
NO: 2
SEQ


ISIS
Start
Stop

%
Start
Stop
ID


NO
Site
Site
Sequence
inhibition
Site
Site
NO





596168
  3
 22
CTCGCCCACTCTGGCCCCAA
45
 809
 828
1265





596169
  5
 24
GCCTCGCCCACTCTGGCCCC
37
 811
 830
1266





596170
  7
 26
GCGCCTCGCCCACTCTGGCC
33
 813
 832
1267





596171
  9
 28
CCGCGCCTCGCCCACTCTGG
27
 815
 834
1268





596172
 11
 30
CTCCGCGCCTCGCCCACTCT
40
 817
 836
1269





596173
 13
 32
ACCTCCGCGCCTCGCCCACT
77
 819
 838
1270





596174
 15
 34
AGACCTCCGCGCCTCGCCCA
72
 821
 840
1271





596175
 17
 36
CCAGACCTCCGCGCCTCGCC
46
 823
 842
1272





596176
 19
 38
GGCCAGACCTCCGCGCCTCG
49
 825
 844
1273





150508
 21
 40
TAGGCCAGACCTCCGCGCCT
33
 827
 846
 107





596177
 23
 42
TATAGGCCAGACCTCCGCGC
40
 829
 848
1274





596178
 25
 44
TTTATAGGCCAGACCTCCGC
69
 831
 850
1275





150509
 27
 46
ACTTTATAGGCCAGACCTCC
64
 833
 852
 108





596179
 31
 50
GACTACTTTATAGGCCAGAC
74
 837
 856
1276





596180
 33
 52
GCGACTACTTTATAGGCCAG
19
 839
 858
1277





596181
 37
 56
CTCCGCGACTACTTTATAGG
27
 843
 862
1278





596182
 39
 58
GTCTCCGCGACTACTTTATA
22
 845
 864
1279





596183
 41
 60
CCGTCTCCGCGACTACTTTA
20
 847
 866
1280





596184
 43
 62
CCCCGTCTCCGCGACTACTT
16
 849
 868
1281





596185
 45
 64
CACCCCGTCTCCGCGACTAC
13
 851
 870
1282





596186
 47
 66
AGCACCCCGTCTCCGCGACT
24
 853
 872
1283





596187
 49
 68
CCAGCACCCCGTCTCCGCGA
38
 855
 874
1284





596188
 51
 70
AACCAGCACCCCGTCTCCGC
11
 857
 876
1285





596189
 53
 72
CAAACCAGCACCCCGTCTCC
13
 859
 878
1286





596190
 55
 74
CGCAAACCAGCACCCCGTCT
21
 861
 880
1287





150510
 57
 76
GACGCAAACCAGCACCCCGT
45
 863
 882
 109





596191
 59
 78
ACGACGCAAACCAGCACCCC
30
 865
 884
1288





596192
 61
 80
CTACGACGCAAACCAGCACC
19
 867
 886
1289





596193
 63
 82
GACTACGACGCAAACCAGCA
40
 869
 888
1290





596194
 65
 84
GAGACTACGACGCAAACCAG
23
 871
 890
1291





596195
 67
 86
AGGAGACTACGACGCAAACC
35
 873
 892
1292





596196
 69
 88
GCAGGAGACTACGACGCAAA
33
 875
 894
1293





596197
 71
 90
CTGCAGGAGACTACGACGCA
36
 877
 896
1294





596198
 73
 92
CGCTGCAGGAGACTACGACG
23
 879
 898
1295





596199
 91
110
TGCAACGGAAACCCCAGACG
21
 897
 916
1296





596200
 93
112
ACTGCAACGGAAACCCCAGA
43
 899
 918
1297





596201
 97
116
GAGGACTGCAACGGAAACCC
24
 903
 922
1298





596202
 99
118
CCGAGGACTGCAACGGAAAC
29
 905
 924
1299





596203
101
120
TTCCGAGGACTGCAACGGAA
 5
 907
 926
1300





150438
103
122
GGTTCCGAGGACTGCAACGG
35
 909
 928
 110





345716
105
124
CTGGTTCCGAGGACTGCAAC
51
 911
 930
1301





150439
107
126
TCCTGGTTCCGAGGACTGCA
24
 913
 932
 111





596204
109
128
GGTCCTGGTTCCGAGGACTG
14
 915
 934
1302





150440
111
130
GAGGTCCTGGTTCCGAGGAC
31
 917
 936
 112





596205
113
132
CCGAGGTCCTGGTTCCGAGG
18
 919
 938
1303





345718
115
134
CGCCGAGGTCCTGGTTCCGA
24
 921
 940
1304





596206
117
136
CACGCCGAGGTCCTGGTTCC
23
 923
 942
1305





596207
119
138
GCCACGCCGAGGTCCTGGTT
38
 925
 944
1306





596208
123
142
CTAGGCCACGCCGAGGTCCT
39
 929
 948
1307





345720
125
144
CGCTAGGCCACGCCGAGGTC
52
 931
 950
1308





596209
127
146
CTCGCTAGGCCACGCCGAGG
46
 933
 952
1309





596210
129
148
AACTCGCTAGGCCACGCCGA
44
 935
 954
1310





596211
131
150
ATAACTCGCTAGGCCACGCC
12
 937
 956
1311





596212
133
152
CCATAACTCGCTAGGCCACG
22
 939
 958
1312





345722
135
154
CGCCATAACTCGCTAGGCCA
59
 941
 960
1313





150442
137
156
GTCGCCATAACTCGCTAGGC
40
 943
 962
 113





146143
157
176
TCAGCACGCACACGGCCTTC
52
 963
 982
 114





195753
159
178
CTTCAGCACGCACACGGCCT
57
 965
 984
 115





333607
161
180
CCCTTCAGCACGCACACGGC
37
 967
 986
 116





333608
163
182
CGCCCTTCAGCACGCACACG
23
 969
 988
 117





333611
167
186
CCGTCGCCCTTCAGCACGCA
67
 973
 992
  21





596213
171
190
TGGGCCGTCGCCCTTCAGCA
12
 977
 996
1314





596214
173
192
ACTGGGCCGTCGCCCTTCAG
26
 979
 998
1315





596215
175
194
GCACTGGGCCGTCGCCCTTC
14
 981
1000
1316





596216
177
196
CTGCACTGGGCCGTCGCCCT
24
 983
1002
1317





596217
181
200
TGCCCTGCACTGGGCCGTCG
38
 987
1006
1318





596218
183
202
GATGCCCTGCACTGGGCCGT
15
 989
1008
1319





596219
185
204
ATGATGCCCTGCACTGGGCC
20
 991
1010
1320





596220
189
208
ATTGATGATGCCCTGCACTG
 8
 995
1014
1321





596221
191
210
AAATTGATGATGCCCTGCAC
14
 997
1016
1322





596222
193
212
CGAAATTGATGATGCCCTGC
32
 999
1018
1323





596223
195
214
CTCGAAATTGATGATGCC CT
31
1001
1020
1324





596224
197
216
TGCTCGAAATTGATGATGCC
20
1003
1022
1325





596225
199
218
TCTGCTCGAAATTGATGATG
14
1005
1024
1326





596226
201
220
CTTCTGCTCGAAATTGATGA
11
1007
1026
1327





596227
240
259
TTTAATGCTTCCCCACACCT
15
4994
5013
1328





596228
242
261
CCTTTAATGCTTCCCCACAC
 1
4996
5015
1329





596229
244
263
GTCCTTTAATGCTTCCCCAC
 9
4998
5017
1330
















TABLE 19







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt gapmers targeting


SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





596530
164
180
CCCTTCAGCA
eekkddddddddkkeee
74
 970
 986
1331





CGCACAC










596721
164
180
CCCTTCAGCA
eekkdddddddddkkee
81
 970
 986
1331





CGCACAC










596531
165
181
GCCCTTCAGC
eekkddddddddkkeee
75
 971
 987
1332





ACGCACA










596722
165
181
GCCCTTCAGC
eekkdddddddddkkee
60
 971
 987
1332





ACGCACA










596532
166
182
CGCCCTTCAG
eekkddddddddkkeee
67
 972
 988
1333





CACGCAC










596723
166
182
CGCCCTTCAG
eekkdddddddddkkee
73
 972
 988
1333





CACGCAC










333611
167
186
CCGTCGCCCT
eeeeeddddddddddeeeee
73
 973
 992
  21





TCAGCACGCA










596720
167
183
TCGCCCTTCA
eekkddddddddkkeee
56
 973
 989
 966





GCACGCA










596911
167
183
TCGCCCTTCA
eekkdddddddddkkee
63
 973
 989
 966





GCACGCA










596533
168
184
GTCGCCCTTC
eekkddddddddkkeee
60
 974
 990
 967





AGCACGC










596724
168
184
GTCGCCCTTC
eekkdddddddddkkee
72
 974
 990
 967





AGCACGC










596534
169
185
CGTCGCCCTT
eekkddddddddkkeee
52
 975
 991
 968





CAGCACG










596725
169
185
CGTCGCCCTT
eekkdddddddddkkee
43
 975
 991
 968





CAGCACG










596535
170
186
CCGTCGCCCT
eekkddddddddkkeee
71
 976
 992
 969





TCAGCAC










596726
170
186
CCGTCGCCCT
eekkdddddddddkkee
75
 976
 992
 969





TCAGCAC










596536
171
187
GCCGTCGCCC
eekkddddddddkkeee
64
 977
 993
 970





TTCAGCA










596727
171
187
GCCGTCGCCC
eekkdddddddddkkee
57
 977
 993
 970





TTCAGCA










596537
577
593
CACCACAAGC
eekkddddddddkkeee
48
9727
9743
1334





CAAACGA










596728
577
593
CACCACAAGC
eekkdddddddddkkee
46
9727
9743
1334





CAAACGA










596538
578
594
ACACCACAAG
eekkddddddddkkeee
27
9728
9744
1335





CCAAACG










596729
578
594
ACACCACAAG
eekkdddddddddkkee
45
9728
9744
1335





CCAAACG










596539
579
595
TACACCACAA
eekkddddddddkkeee
56
9729
9745
1336





GCCAAAC










596730
579
595
TACACCACAA
eekkdddddddddkkee
63
9729
9745
1336





GCCAAAC










596540
580
596
TTACACCACA
eekkddddddddkkeee
60
9730
9746
1337





AGCCAAA










596731
580
596
TTACACCACA
eekkdddddddddkkee
63
9730
9746
1337





AGCCAAA










596541
581
597
ATTACACCAC
eekkddddddddkkeee
46
9731
9747
1338





AAGCCAA










596732
581
597
ATTACACCAC
eekkdddddddddkkee
63
9731
9747
1338





AAGCCAA










596542
582
598
AATTACACCA
eekkddddddddkkeee
62
9732
9748
1111





CAAGCCA










596733
582
598
AATTACACCA
eekkdddddddddkkee
56
9732
9748
1111





CAAGCCA










596543
583
599
CAATTACACC
eekkddddddddkkeee
58
9733
9749
1112





ACAAGCC










596734
583
599
CAATTACACC
eekkdddddddddkkee
61
9733
9749
1112





ACAAGCC










596544
584
600
CCAATTACAC
eekkddddddddkkeee
66
9734
9750
1113





CACAAGC










596735
584
600
CCAATTACAC
eekkdddddddddkkee
73
9734
9750
1113





CACAAGC










596545
585
601
CCCAATTACA
eekkddddddddkkeee
63
9735
9751
1114





CCACAAG










596736
585
601
CCCAATTACA
eekkdddddddddkkee
74
9735
9751
1114





CCACAAG










596546
588
604
GATCCCAATT
eekkddddddddkkeee
41
9738
9754
1115





ACACCAC










596737
588
604
GATCCCAATT
eekkdddddddddkkee
58
9738
9754
1115





ACACCAC










596547
589
605
CGATCCCAAT
eekkddddddddkkeee
57
9739
9755
1116





TACACCA










596738
589
605
CGATCCCAAT
eekkdddddddddkkee
59
9739
9755
1116





TACACCA










596548
590
606
GCGATCCCAA
eekkddddddddkkeee
31
9740
9756
1117





TTACACC










596739
590
606
GCGATCCCAA
eekkdddddddddkkee
58
9740
9756
1117





TTACACC










596549
591
607
GGCGATCCCA
eekkddddddddkkeee
33
9741
9757
1118





ATTACAC










596740
591
607
GGCGATCCCA
eekkdddddddddkkee
66
9741
9757
1118





ATTACAC










596550
592
608
GGGCGATCCC
eekkddddddddkkeee
30
9742
9758
1119





AATTACA










596741
592
608
GGGCGATCCC
eekkdddddddddkkee
30
9742
9758
1119





AATTACA










596551
593
609
TGGGCGATCC
eekkddddddddkkeee
19
9743
9759
1120





CAATTAC










596742
593
609
TGGGCGATCC
eekkdddddddddkkee
46
9743
9759
1120





CAATTAC










596552
594
610
TTGGGCGATC
eekkddddddddkkeee
14
9744
9760
1121





CCAATTA










596743
594
610
TTGGGCGATC
eekkdddddddddkkee
 5
9744
9760
1121





CCAATTA










596553
595
611
ATTGGGCGAT
eekkddddddddkkeee
 2
9745
9761
1122





CCCAATT










596744
595
611
ATTGGGCGAT
eekkdddddddddkkee
23
9745
9761
1122





CCCAATT










596554
596
612
TATTGGGCGA
eekkddddddddkkeee
19
9746
9762
1123





TCCCAAT










596745
596
612
TATTGGGCGA
eekkdddddddddkkee
 6
9746
9762
1123





TCCCAAT










596555
597
613
TTATTGGGCG
eekkddddddddkkeee
41
9747
9763
1124





ATCCCAA










596746
597
613
TTATTGGGCG
eekkdddddddddkkee
41
9747
9763
1124





ATCCCAA










596556
598
614
TTTATTGGGC
eekkddddddddkkeee
34
9748
9764
1125





GATCCCA










596747
598
614
TTTATTGGGC
eekkdddddddddkkee
46
9748
9764
1125





GATCCCA










596557
599
615
GTTTATTGGG
eekkddddddddkkeee
54
9749
9765
1126





CGATCCC










596748
599
615
GTTTATTGGG
eekkdddddddddkkee
68
9749
9765
1126





CGATCCC










596558
600
616
TGTTTATTGG
eekkddddddddkkeee
50
9750
9766
1127





GCGATCC










596749
600
616
TGTTTATTGG
eekkdddddddddkkee
47
9750
9766
1127





GCGATCC










596559
601
617
ATGTTTATTG
eekkddddddddkkeee
76
9751
9767
1128





GGCGATC










596750
601
617
ATGTTTATTG
eekkdddddddddkkee
64
9751
9767
1128





GGCGATC










596560
602
618
AATGTTTATT
eekkddddddddkkeee
61
9752
9768
1129





GGGCGAT










596751
602
618
AATGTTTATT
eekkdddddddddkkee
64
9752
9768
1129





GGGCGAT










596561
603
619
GAATGTTTAT
eekkddddddddkkeee
47
9753
9769
1130





TGGGCGA










596752
603
619
GAATGTTTAT
eekkdddddddddkkee
65
9753
9769
1130





TGGGCGA










596562
604
620
GGAATGTTTA
eekkddddddddkkeee
37
9754
9770
1131





TTGGGCG










596753
604
620
GGAATGTTTA
eekkdddddddddkkee
58
9754
9770
1131





TTGGGCG










596563
608
624
CAAGGGAATG
eekkddddddddkkeee
43
9758
9774
1133





TTTATTG










596754
608
624
CAAGGGAATG
eekkdddddddddkkee
38
9758
9774
1133





TTTATTG










596564
609
625
CCAAGGGAAT
eekkddddddddkkeee
57
9759
9775
1134





GTTTATT










596755
609
625
CCAAGGGAAT
eekkdddddddddkkee
52
9759
9775
1134





GTTTATT










596565
610
626
TCCAAGGGAA
eekkddddddddkkeee
27
9760
9776
1135





TGTTTAT










596756
610
626
TCCAAGGGAA
eekkdddddddddkkee
57
9760
9776
1135





TGTTTAT










596566
611
627
ATCCAAGGGA
eekkddddddddkkeee
35
9761
9777
1136





ATGTTTA










596757
611
627
ATCCAAGGGA
eekkdddddddddkkee
39
9761
9777
1136





ATGTTTA










596567
616
632
ACTACATCCA
eekkddddddddkkeee
42
9766
9782
1141





AGGGAAT










596758
616
632
ACTACATCCA
eekkdddddddddkkee
48
9766
9782
1141





AGGGAAT
















TABLE 20







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt gapmers targeting


SEQ ID NO: 1 and/or 2
















SEQ ID
SEQ ID



SEQ ID
SEQ ID




NO: 1
NO: 1



NO: 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





333611
167
186
CCGTCGCCCT
eeeeeddddddddddeeeee
64
 973
 992
  21





TCAGCACGCA










596720
167
183
TCGCCCTTCA
eekkddddddddkkeee
56
 973
 989
 966





GCACGCA










596911
167
183
TCGCCCTTCA
eekkdddddddddkkee
60
 973
 989
 966





GCACGCA










596568
617
633
GACTACATCC
eekkddddddddkkeee
50
9767
9783
1142





AAGGGAA










596759
617
633
GACTACATCC
eekkdddddddddkkee
57
9767
9783
1142





AAGGGAA










596569
618
634
AGACTACATC
eekkddddddddkkeee
53
9768
9784
1143





CAAGGGA










596760
618
634
AGACTACATC
eekkdddddddddkkee
55
9768
9784
1143





CAAGGGA










596570
619
635
CAGACTACAT
eekkddddddddkkeee
81
9769
9785
1144





CCAAGGG










596761
619
635
CAGACTACAT
eekkdddddddddkkee
78
9769
9785
1144





CCAAGGG










596571
620
636
TCAGACTACA
eekkddddddddkkeee
79
9770
9786
1145





TCCAAGG










596762
620
636
TCAGACTACA
eekkdddddddddkkee
78
9770
9786
1145





TCCAAGG










596572
621
637
CTCAGACTAC
eekkddddddddkkeee
85
9771
9787
1146





ATCCAAG










596763
621
637
CTCAGACTAC
eekkdddddddddkkee
76
9771
9787
1146





ATCCAAG










596573
622
638
CCTCAGACTA
eekkddddddddkkeee
73
9772
9788
1147





CATCCAA










596764
622
638
CCTCAGACTA
eekkdddddddddkkee
87
9772
9788
1147





CATCCAA










596574
623
639
GCCTCAGACT
eekkddddddddkkeee
69
9773
9789
1148





ACATCCA










596765
623
639
GCCTCAGACT
eekkdddddddddkkee
82
9773
9789
1148





ACATCCA










596575
624
640
GGCCTCAGAC
eekkddddddddkkeee
70
9774
9790
1149





TACATCC










596766
624
640
GGCCTCAGAC
eekkdddddddddkkee
76
9774
9790
1149





TACATCC










596576
625
641
GGGCCTCAGA
eekkddddddddkkeee
55
9775
9791
1150





CTACATC










596767
625
641
GGGCCTCAGA
eekkdddddddddkkee
58
9775
9791
1150





CTACATC










596577
640
656
AACAGATGA
eekkddddddddkkeee
73
9790
9806
1339





GTTAAGGG










596768
640
656
AACAGATGA
eekkdddddddddkkee
86
9790
9806
1339





GTTAAGGG










596578
641
657
TAACAGATGA
eekkddddddddkkeee
68
9791
9807
1340





GTTAAGG










596769
641
657
TAACAGATGA
eekkdddddddddkkee
80
9791
9807
1340





GTTAAGG










596579
642
658
ATAACAGATG
eekkddddddddkkeee
27
9792
9808
1341





AGTTAAG










596770
642
658
ATAACAGATG
eekkdddddddddkkee
42
9792
9808
1341





AGTTAAG










596580
643
659
GATAACAGAT
eekkddddddddkkeee
41
9793
9809
1151





GAGTTAA










596771
643
659
GATAACAGAT
eekkdddddddddkkee
28
9793
9809
1151





GAGTTAA










596581
644
660
GGATAACAG
eekkddddddddkkeee
63
9794
9810
1152





ATGAGTTA










596772
644
660
GGATAACAG
eekkdddddddddkkee
63
9794
9810
1152





ATGAGTTA










596582
645
661
AGGATAACA
eekkddddddddkkeee
84
9795
9811
1153





GATGAGTT










596773
645
661
AGGATAACA
eekkdddddddddkkee
86
9795
9811
1153





GATGAGTT










596583
646
662
CAGGATAAC
eekkddddddddkkeee
95
9796
9812
1154





AGATGAGT










596774
646
662
CAGGATAAC
eekkdddddddddkkee
96
9796
9812
1154





AGATGAGT










596584
647
663
GCAGGATAA
eekkddddddddkkeee
79
9797
9813
1155





CAGATGAG










596775
647
663
GCAGGATAA
eekkdddddddddkkee
86
9797
9813
1155





CAGATGAG










596585
651
667
GCTAGCAGG
eekkddddddddkkeee
19
9801
9817
1159





ATAACAGA










596776
651
667
GCTAGCAGG
eekkdddddddddkkee
43
9801
9817
1159





ATAACAGA










596586
652
668
AGCTAGCAG
eekkddddddddkkeee
57
9802
9818
1160





GATAACAG










596777
652
668
AGCTAGCAG
eekkdddddddddkkee
54
9802
9818
1160





GATAACAG










596587
653
669
CAGCTAGCAG
eekkddddddddkkeee
71
9803
9819
1161





GATAACA










596778
653
669
CAGCTAGCAG
eekkdddddddddkkee
61
9803
9819
1161





GATAACA










596588
654
670
ACAGCTAGCA
eekkddddddddkkeee
79
9804
9820
1162





GGATAAC










596779
654
670
ACAGCTAGCA
eekkdddddddddkkee
83
9804
9820
1162





GGATAAC










596589
655
671
TACAGCTAGC
eekkddddddddkkeee
85
9805
9821
1163





AGGATAA










596780
655
671
TACAGCTAGC
eekkdddddddddkkee
86
9805
9821
1163





AGGATAA










596590
656
672
CTACAGCTAG
eekkddddddddkkeee
87
9806
9822
1164





CAGGATA










596781
656
672
CTACAGCTAG
eekkdddddddddkkee
91
9806
9822
1164





CAGGATA










596591
657
673
TCTACAGCTA
eekkddddddddkkeee
75
9807
9823
1165





GCAGGAT










596782
657
673
TCTACAGCTA
eekkdddddddddkkee
83
9807
9823
1165





GCAGGAT










596592
658
674
TTCTACAGCT
eekkddddddddkkeee
74
9808
9824
1166





AGCAGGA










596783
658
674
TTCTACAGCT
eekkdddddddddkkee
79
9808
9824
1166





AGCAGGA










596593
659
675
TTTCTACAGC
eekkddddddddkkeee
76
9809
9825
1167





TAGCAGG










596784
659
675
TTTCTACAGC
eekkdddddddddkkee
84
9809
9825
1167





TAGCAGG










596594
660
676
ATTTCTACAG
eekkddddddddkkeee
66
9810
9826
1168





CTAGCAG










596785
660
676
ATTTCTACAG
eekkdddddddddkkee
75
9810
9826
1168





CTAGCAG










596595
665
681
GATACATTTC
eekkddddddddkkeee
64
9815
9831
1171





TACAGCT










596786
665
681
GATACATTTC
eekkdddddddddkkee
77
9815
9831
1171





TACAGCT










596596
666
682
GGATACATTT
eekkddddddddkkeee
75
9816
9832
1342





CTACAGC










596787
666
682
GGATACATTT
eekkdddddddddkkee
84
9816
9832
1342





CTACAGC










596597
667
683
AGGATACATT
eekkddddddddkkeee
60
9817
9833
1343





TCTACAG










596788
667
683
AGGATACATT
eekkdddddddddkkee
77
9817
9833
1343





TCTACAG










596598
668
684
CAGGATACAT
eekkddddddddkkeee
79
9818
9834
1344





TTCTACA










596789
668
684
CAGGATACAT
eekkdddddddddkkee
85
9818
9834
1344





TTCTACA










596599
672
688
TTATCAGGAT
eekkddddddddkkeee
57
9822
9838
1345





ACATTTC










596790
672
688
TTATCAGGAT
eekkdddddddddkkee
67
9822
9838
1345





ACATTTC










596600
674
690
GTTTATCAGG
eekkddddddddkkeee
85
9824
9840
1346





ATACATT










596791
674
690
GTTTATCAGG
eekkdddddddddkkee
88
9824
9840
1346





ATACATT










596601
675
691
TGTTTATCAG
eekkddddddddkkeee
70
9825
9841
1347





GATACAT










596792
675
691
TGTTTATCAG
eekkdddddddddkkee
83
9825
9841
1347





GATACAT










596602
676
692
ATGTTTATCA
eekkddddddddkkeee
85
9826
9842
1348





GGATACA










596793
676
692
ATGTTTATCA
eekkdddddddddkkee
81
9826
9842
1348





GGATACA










596603
677
693
AATGTTTATC
eekkddddddddkkeee
89
9827
9843
1349





AGGATAC










596794
677
693
AATGTTTATC
eekkdddddddddkkee
90
9827
9843
1349





AGGATAC










596604
678
694
TAATGTTTAT
eekkddddddddkkeee
90
9828
9844
1350





CAGGATA










596795
678
694
TAATGTTTAT
eekkdddddddddkkee
85
9828
9844
1350





CAGGATA










596605
679
695
TTAATGTTTA
eekkddddddddkkeee
90
9829
9845
1351





TCAGGAT










596796
679
695
TTAATGTTTA
eekkdddddddddkkee
92
9829
9845
1351





TCAGGAT









Example 5: Inhibition of Human SOD-1 in HepG2 Cells by Deoxy, MOE and cEt Gapmers

Modified oligonucleotides were designed targeting an SOD-1 nucleic acid and were tested for their effects on SOD-1 mRNA in vitro. ISIS 333611, a5-10-5 MOE gapmer, which was previously described in WO 2005/040180, was included as a benchmark.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 5,000 nM modified oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR.


Human primer probe set RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. ‘n.d.’ indicates that inhibition levels were not measured.


The newly designed modified oligonucleotides in the Tables below were designed as deoxy, MOE, and cEt gapmers. The gapmers are 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000). ‘n/a’ indicates that the modified oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 21 







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt


gapmers targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO: 1
NO: 1



NO: 2
NO. 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO





333611
167
186
CCGTCGCCCTT
eeeeeddddddddddeeeee
71
 973
 992
  21





CAGCACGCA










596720
167
183
TCGCCCTTCAG
eekkddddddddkkeee
53
 973
 989
 966





CACGCA










596911
167
183
TCGCCCTTCAG
eekkdddddddddkkee
61
 973
 989
 966





CACGCA










596606
681
697
GTTTAATGTTT
eekkddddddddkkeee
87
9831
9847
1352





ATCAGG










596797
681
697
GTTTAATGTTT
eekkdddddddddkkee
92
9831
9847
1352





ATCAGG










596607
683
699
GTGTTTAATGT
eekkddddddddkkeee
86
9833
9849
1172





TTATCA










596798
683
699
GTGTTTAATGT
eekkdddddddddkkee
86
9833
9849
1172





TTATCA










596608
684
700
AGTGTTTAAT
eekkddddddddkkeee
88
9834
9850
1173





GTTTATC










596799
684
700
AGTGTTTAAT
eekkdddddddddkkee
80
9834
9850
1173





GTTTATC










596609
685
701
CAGTGTTTAAT
eekkddddddddkkeee
77
9835
9851
1174





GTTTAT










596800
685
701
CAGTGTTTAAT
eekkdddddddddkkee
85
9835
9851
1174





GTTTAT










596610
686
702
ACAGTGTTTA
eekkddddddddkkeee
83
9836
9852
1175





ATGTTTA










596801
686
702
ACAGTGTTTA
eekkdddddddddkkee
84
9836
9852
1175





ATGTTTA










596611
690
706
GATTACAGTG
eekkddddddddkkeee
54
9840
9856
1179





TTTAATG










596802
690
706
GATTACAGTG
eekkdddddddddkkee
61
9840
9856
1179





TTTAATG










596612
691
707
AGATTACAGT
eekkddddddddkkeee
68
9841
9857
1180





GTTTAAT










596803
691
707
AGATTACAGT
eekkdddddddddkkee
63
9841
9857
1180





GTTTAAT










596613
697
713
CTTTTAAGATT
eekkddddddddkkeee
62
9847
9863
1353





ACAGTG










596804
697
713
CTTTTAAGATT
eekkdddddddddkkee
53
9847
9863
1353





ACAGTG










596614
699
715
CACTTTTAAG
eekkddddddddkkeee
37
9849
9865
1354





ATTACAG










596805
699
715
CACTTTTAAG
eekkdddddddddkkee
49
9849
9865
1354





ATTACAG










596615
710
726
TCACACAATT
eekkddddddddkkeee
28
9860
9876
1355





ACACTTT










596806
710
726
TCACACAATT
eekkdddddddddkkee
39
9860
9876
1355





ACACTTT










596616
711
727
GTCACACAAT
eekkddddddddkkeee
28
9861
9877
1356





TACACTT










596807
711
727
GTCACACAAT
eekkdddddddddkkee
35
9861
9877
1356





TACACTT










596617
713
729
AAGTCACACA
eekkddddddddkkeee
41
9863
9879
1357





ATTACAC










596808
713
729
AAGTCACACA
eekkdddddddddkkee
37
9863
9879
1357





ATTACAC










596618
737
753
AGGTACTTTA
eekkddddddddkkeee
35
9887
9903
1358





AAGCAAC










596809
737
753
AGGTACTTTA
eekkdddddddddkkee
42
9887
9903
1358





AAGCAAC










596619
739
755
ACAGGTACTT
eekkddddddddkkeee
14
9889
9905
1359





TAAAGCA










596810
739
755
ACAGGTACTT
eekkdddddddddkkee
20
9889
9905
1359





TAAAGCA










596620
740
756
TACAGGTACT
eekkddddddddkkeee
23
9890
9906
1360





TTAAAGC










596811
740
756
TACAGGTACT
eekkdddddddddkkee
26
9890
9906
1360





TTAAAGC










596621
741
757
CTACAGGTAC
eekkddddddddkkeee
 2
9891
9907
1361





TTTAAAG










596812
741
757
CTACAGGTAC
eekkdddddddddkkee
16
9891
9907
1361





TTTAAAG










596622
743
759
CACTACAGGT
eekkddddddddkkeee
27
9893
9909
1362





ACTTTAA










596813
743
759
CACTACAGGT
eekkdddddddddkkee
38
9893
9909
1362





ACTTTAA










596623
744
760
TCACTACAGG
eekkddddddddkkeee
27
9894
9910
1363





TACTTTA










596814
744
760
TCACTACAGG
eekkdddddddddkkee
35
9894
9910
1363





TACTTTA










596624
745
761
CTCACTACAG
eekkddddddddkkeee
40
9895
9911
1364





GTACTTT










596815
745
761
CTCACTACAG
eekkdddddddddkkee
54
9895
9911
1364





GTACTTT










596625
746
762
TCTCACTACA
eekkddddddddkkeee
42
9896
9912
1365





GGTACTT










596816
746
762
TCTCACTACA
eekkdddddddddkkee
46
9896
9912
1365





GGTACTT










596626
747
763
TTCTCACTACA
eekkddddddddkkeee
26
9897
9913
1366





GGTACT










596817
747
763
TTCTCACTACA
eekkdddddddddkkee
37
9897
9913
1366





GGTACT










596627
748
764
TTTCTCACTAC
eekkddddddddkkeee
35
9898
9914
1367





AGGTAC










596818
748
764
TTTCTCACTAC
eekkdddddddddkkee
45
9898
9914
1367





AGGTAC










596628
749
765
GTTTCTCACTA
eekkddddddddkkeee
25
9899
9915
1368





CAGGTA










596819
749
765
GTTTCTCACTA
eekkdddddddddkkee
38
9899
9915
1368





CAGGTA










596629
750
766
AGTTTCTCACT
eekkddddddddkkeee
33
9900
9916
1369





ACAGGT










596820
750
766
AGTTTCTCACT
eekkdddddddddkkee
50
9900
9916
1369





ACAGGT










596630
751
767
CAGTTTCTCAC
eekkddddddddkkeee
38
9901
9917
1370





TACAGG










596821
751
767
CAGTTTCTCAC
eekkdddddddddkkee
38
9901
9917
1370





TACAGG










596631
752
768
TCAGTTTCTCA
eekkddddddddkkeee
25
9902
9918
1371





CTACAG










596822
752
768
TCAGTTTCTCA
eekkdddddddddkkee
43
9902
9918
1371





CTACAG










596632
753
769
ATCAGTTTCTC
eekkddddddddkkeee
31
9903
9919
1372





ACTACA










596823
753
769
ATCAGTTTCTC
eekkdddddddddkkee
44
9903
9919
1372





ACTACA










596633
754
770
AATCAGTTTCT
eekkddddddddkkeee
34
9904
9920
1373





CACTAC










596824
754
770
AATCAGTTTCT
eekkdddddddddkkee
53
9904
9920
1373





CACTAC










596634
761
777
GATCATAAAT
eekkddddddddkkeee
34
9911
9927
1374





CAGTTTC










596825
761
777
GATCATAAAT
eekkdddddddddkkee
38
9911
9927
1374





CAGTTTC










596635
762
778
TGATCATAAA
eekkddddddddkkeee
49
9912
9928
1375





TCAGTTT










596826
762
778
TGATCATAAA
eekkdddddddddkkee
38
9912
9928
1375





TCAGTTT










596636
763
779
GTGATCATAA
eekkddddddddkkeee
33
9913
9929
1376





ATCAGTT










596827
763
779
GTGATCATAA
eekkdddddddddkkee
48
9913
9929
1376





ATCAGTT










596637
764
780
AGTGATCATA
eekkddddddddkkeee
23
9914
9930
1377





AATCAGT










596828
764
780
AGTGATCATA
eekkdddddddddkkee
32
9914
9930
1377





AATCAGT










596638
766
782
CAAGTGATCA
eekkddddddddkkeee
47
9916
9932
1378





TAAATCA










596829
766
782
CAAGTGATCA
eekkdddddddddkkee
29
9916
9932
1378





TAAATCA










596639
767
783
CCAAGTGATC
eekkddddddddkkeee
40
9917
9933
1379





ATAAATC










596830
767
783
CCAAGTGATC
eekkdddddddddkkee
48
9917
9933
1379





ATAAATC










596640
768
784
TCCAAGTGAT
eekkddddddddkkeee
42
9918
9934
1380





CATAAAT










596831
768
784
TCCAAGTGAT
eekkdddddddddkkee
39
9918
9934
1380





CATAAAT










596641
770
786
CTTCCAAGTG
eekkddddddddkkeee
40
9920
9936
1381





ATCATAA










596832
770
786
CTTCCAAGTG
eekkdddddddddkkee
54
9920
9936
1381





ATCATAA










596642
771
787
TCTTCCAAGTG
eekkddddddddkkeee
33
9921
9937
1382





ATCATA










596833
771
787
TCTTCCAAGTG
eekkdddddddddkkee
43
9921
9937
1382





ATCATA










596643
772
788
ATCTTCCAAGT
eekkddddddddkkeee
38
9922
9938
1184





GATCAT










596834
772
788
ATCTTCCAAGT
eekkdddddddddkkee
38
9922
9938
1184





GATCAT
















TABLE 22 







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt


gapmers targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ









ID
ID



SEQ
SEQ




NO:
NO:



ID
ID




1
1



NO: 2
NO. 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO


















333611
167
186
CCGTCGCCCT
eeeeeddddddddddeeeee
62
973
992
21





TCAGCACGCA










596720
167
183
TCGCCCTTCA
eekkddddddddkkeee
53
973
989
966





GCACGCA










596911
167
183
TCGCCCTTCA
eekkdddddddddkkee
58
973
989
966





GCACGCA










596644
773
789
AATCTTCCAA
eekkddddddddkkeee
19
9923
9939
1185





GTGATCA










596835
773
789
AATCTTCCAA
eekkdddddddddkkee
38
9923
9939
1185





GTGATCA










596645
774
790
AAATCTTCCA
eekkddddddddkkeee
46
9924
9940
1186





AGTGATC










596836
774
790
AAATCTTCCA
eekkdddddddddkkee
48
9924
9940
1186





AGTGATC










596646
782
798
AACTATACAA
eekkddddddddkkeee
60
9932
9948
1193





ATCTTCC










596837
782
798
AACTATACAA
eekkdddddddddkkee
63
9932
9948
1193





ATCTTCC










596647
783
799
AAACTATACA
eekkddddddddkkeee
55
9933
9949
1194





AATCTTC










596838
783
799
AAACTATACA
eekkdddddddddkkee
55
9933
9949
1194





AATCTTC










596648
806
822
AGACATTTTA
eekkddddddddkkeee
46
9956
9972
1383





ACTGAGT










596839
806
822
AGACATTTTA
eekkdddddddddkkee
53
9956
9972
1383





ACTGAGT










596649
817
833
GTCATTGAAA
eekkddddddddkkeee
2
9967
9983
1201





CAGACAT










596840
817
833
GTCATTGAAA
eekkdddddddddkkee
15
9967
9983
1201





CAGACAT










596650
819
835
AGGTCATTGA
eekkddddddddkkeee
40
9969
9985
1203





AACAGAC










596841
819
835
AGGTCATTGA
eekkdddddddddkkee
44
9969
9985
1203





AACAGAC










596651
822
838
TACAGGTCAT
eekkddddddddkkeee
26
9972
9988
1206





TGAAACA










596842
822
838
TACAGGTCAT
eekkdddddddddkkee
38
9972
9988
1206





TGAAACA










596652
823
839
ATACAGGTCA
eekkddddddddkkeee
33
9973
9989
1207





TTGAAAC










596843
823
839
ATACAGGTCA
eekkdddddddddkkee
22
9973
9989
1207





TTGAAAC










596653
825
841
AAATACAGGT
eekkddddddddkkeee
28
9975
9991
1209





CATTGAA










596844
825
841
AAATACAGGT
eekkdddddddddkkee
47
9975
9991
1209





CATTGAA










596654
827
843
CAAAATACAG
eekkddddddddkkeee
44
9977
9993
1211





GTCATTG










596845
827
843
CAAAATACAG
eekkdddddddddkkee
56
9977
9993
1211





GTCATTG










596655
830
846
TGGCAAAATA
eekkddddddddkkeee
33
9980
9996
1214





CAGGTCA










596846
830
846
TGGCAAAATA
eekkdddddddddkkee
43
9980
9996
1214





CAGGTCA










596656
831
847
CTGGCAAAAT
eekkddddddddkkeee
25
9981
9997
1215





ACAGGTC










596847
831
847
CTGGCAAAAT
eekkdddddddddkkee
53
9981
9997
1215





ACAGGTC










596657
833
849
GTCTGGCAAA
eekkddddddddkkeee
30
9983
9999
1217





ATACAGG










596848
833
849
GTCTGGCAAA
eekkdddddddddkkee
38
9983
9999
1217





ATACAGG










596658
836
852
TAAGTCTGGC
eekkddddddddkkeee
24
9986
1ooo2
1220





AAAATAC










596849
836
852
TAAGTCTGGC
eekkdddddddddkkee
46
9986
1ooo2
1220





AAAATAC










596659
837
853
TTAAGTCTGG
eekkddddddddkkeee
27
9987
1ooo3
1221





CAAAATA










596850
837
853
TTAAGTCTGG
eekkdddddddddkkee
42
9987
1ooo3
1221





CAAAATA










596660
840
856
GATTTAAGTC
eekkddddddddkkeee
19
9990
1ooo6
1384





TGGCAAA










596851
840
856
GATTTAAGTC
eekkdddddddddkkee
35
9990
1ooo6
1384





TGGCAAA










596661
841
857
TGATTTAAGT
eekkddddddddkkeee
52
9991
1ooo7
1385





CTGGCAA










596852
841
857
TGATTTAAGT
eekkdddddddddkkee
52
9991
1ooo7
1385





CTGGCAA










596662
842
858
GTGATTTAAG
eekkddddddddkkeee
54
9992
1ooo8
1386





TCTGGCA










596853
842
858
GTGATTTAAG
eekkdddddddddkkee
69
9992
1ooo8
1386





TCTGGCA










596663
843
859
TGTGATTTAA
eekkddddddddkkeee
45
9993
1ooo9
1387





GTCTGGC










596854
843
859
TGTGATTTAA
eekkdddddddddkkee
58
9993
1ooo9
1387





GTCTGGC










596664
844
860
CTGTGATTTA
eekkddddddddkkeee
n.d.
9994
10010
1388





AGTCTGG










596855
844
860
CTGTGATTTA
eekkdddddddddkkee
61
9994
10010
1388





AGTCTGG










596665
845
861
TCTGTGATTT
eekkddddddddkkeee
49
9995
10011
1389





AAGTCTG










596856
845
861
TCTGTGATTT
eekkdddddddddkkee
49
9995
10011
1389





AAGTCTG










596666
846
862
ATCTGTGATT
eekkddddddddkkeee
35
9996
10012
1390





TAAGTCT










596857
846
862
ATCTGTGATT
eekkdddddddddkkee
37
9996
10012
1390





TAAGTCT










596667
847
863
CATCTGTGAT
eekkddddddddkkeee
42
9997
10013
1391





TTAAGTC










596858
847
863
CATCTGTGAT
eekkdddddddddkkee
48
9997
10013
1391





TTAAGTC










596668
848
864
CCATCTGTGA
eekkddddddddkkeee
46
9998
10014
1392





TTTAAGT










596859
848
864
CCATCTGTGA
eekkdddddddddkkee
47
9998
10014
1392





TTTAAGT










596669
849
865
CCCATCTGTG
eekkddddddddkkeee
49
9999
10015
1393





ATTTAAG










596860
849
865
CCCATCTGTG
eekkdddddddddkkee
49
9999
10015
1393





ATTTAAG










596670
850
866
ACCCATCTGT
eekkddddddddkkeee
33
1ooo0
10016
1394





GATTTAA










596861
850
866
ACCCATCTGT
eekkdddddddddkkee
44
1ooo0
10016
1394





GATTTAA










596671
851
867
TACCCATCTG
eekkddddddddkkeee
29
1ooo1
10017
1395





TGATTTA










596862
851
867
TACCCATCTG
eekkdddddddddkkee
45
1ooo1
10017
1395





TGATTTA










596672
854
870
TAATACCCAT
eekkddddddddkkeee
25
1ooo4
10020
1223





CTGTGAT










596863
854
870
TAATACCCAT
eekkdddddddddkkee
28
1ooo4
10020
1223





CTGTGAT










596673
855
871
TTAATACCCA
eekkddddddddkkeee
28
1ooo5
10021
1224





TCTGTGA










596864
855
871
TTAATACCCA
eekkdddddddddkkee
26
1ooo5
10021
1224





TCTGTGA










596674
858
874
AGTTTAATAC
eekkddddddddkkeee
29
1ooo8
10024
1227





CCATCTG










596865
858
874
AGTTTAATAC
eekkdddddddddkkee
43
1ooo8
10024
1227





CCATCTG










596675
859
875
AAGTTTAATA
eekkddddddddkkeee
54
1ooo9
10025
1228





CCCATCT










596866
859
875
AAGTTTAATA
eekkdddddddddkkee
59
1ooo9
10025
1228





CCCATCT










596676
860
876
CAAGTTTAAT
eekkddddddddkkeee
52
10010
10026
1229





ACCCATC










596867
860
876
CAAGTTTAAT
eekkdddddddddkkee
62
10010
10026
1229





ACCCATC










596677
861
877
ACAAGTTTAA
eekkddddddddkkeee
58
10011
10027
1230





TACCCAT










596868
861
877
ACAAGTTTAA
eekkdddddddddkkee
61
10011
10027
1230





TACCCAT










596678
862
878
GACAAGTTTA
eekkddddddddkkeee
54
10012
10028
1231





ATACCCA










596869
862
878
GACAAGTTTA
eekkdddddddddkkee
59
10012
10028
1231





ATACCCA










596679
863
879
TGACAAGTTT
eekkddddddddkkeee
43
10013
10029
1232





AATACCC










596870
863
879
TGACAAGTTT
eekkdddddddddkkee
52
10013
10029
1232





AATACCC










596680
864
880
CTGACAAGTT
eekkddddddddkkeee
30
10014
10030
1233





TAATACC










596871
864
880
CTGACAAGTT
eekkdddddddddkkee
36
10014
10030
1233





TAATACC










596681
865
881
TCTGACAAGT
eekkddddddddkkeee
33
10015
10031
1234





TTAATAC










596872
865
881
TCTGACAAGT
eekkdddddddddkkee
20
10015
10031
1234





TTAATAC
















TABLE 23 







Percent inhibition of SOD-1 mRNA by deoxy, MOE and cEt


gapmers targeting SEQ ID NO: 1 and/or 2
















SEQ
SEQ









ID
ID



SEQ
SEQ




NO:
NO:



ID
ID




1
1



NO. 2
NO: 2
SEQ


ISIS
Start
Stop


%
Start
Stop
ID


NO
Site
Site
Sequence
Chemistry
inhibition
Site
Site
NO


















333611
167
186
CCGTCGCCCT
eeeeeddddddddddeeeee
68
973
992
21





TCAGCACGCA










596720
167
183
TCGCCCTTCA
eekkddddddddkkeee
64
973
989
966





GCACGCA










596911
167
183
TCGCCCTTCA
eekkdddddddddkkee
71
973
989
966





GCACGCA










596682
884
900
GCTTGAATGA
eekkddddddddkkeee
24
10034
10050
1396





CAAAGAA










596873
884
900
GCTTGAATGA
eekkdddddddddkkee
32
10034
10050
1396





CAAAGAA










596683
885
901
GGCTTGAATG
eekkddddddddkkeee
54
10035
10051
1397





ACAAAGA










596874
885
901
GGCTTGAATG
eekkdddddddddkkee
44
10035
10051
1397





ACAAAGA










596684
889
905
CACAGGCTTG
eekkddddddddkkeee
34
10039
10055
1398





AATGACA










596875
889
905
CACAGGCTTG
eekkdddddddddkkee
47
10039
10055
1398





AATGACA










596685
890
906
TCACAGGCTT
eekkddddddddkkeee
28
10040
10056
1399





GAATGAC










596876
890
906
TCACAGGCTT
eekkdddddddddkkee
46
10040
10056
1399





GAATGAC










596686
891
907
TTCACAGGCT
eekkddddddddkkeee
20
10041
10057
1242





TGAATGA










596877
891
907
TTCACAGGCT
eekkdddddddddkkee
16
10041
10057
1242





TGAATGA










596687
892
908
ATTCACAGGC
eekkddddddddkkeee
19
10042
10058
1243





TTGAATG










596878
892
908
ATTCACAGGC
eekkdddddddddkkee
29
10042
10058
1243





TTGAATG










596688
893
909
TATTCACAGG
eekkddddddddkkeee
24
10043
10059
1244





CTTGAAT










596879
893
909
TATTCACAGG
eekkdddddddddkkee
11
10043
10059
1244





CTTGAAT










596689
894
910
TTATTCACAG
eekkddddddddkkeee
26
10044
10060
1245





GCTTGAA










596880
894
910
TTATTCACAG
eekkdddddddddkkee
30
10044
10060
1245





GCTTGAA










596690
895
911
TTTATTCACA
eekkddddddddkkeee
44
10045
10061
1246





GGCTTGA










596881
895
911
TTTATTCACA
eekkdddddddddkkee
55
10045
10061
1246





GGCTTGA










596691
896
912
TTTTATTCAC
eekkddddddddkkeee
43
10046
10062
1247





AGGCTTG










596882
896
912
TTTTATTCAC
eekkdddddddddkkee
48
10046
10062
1247





AGGCTTG










596692
899
915
GGTTTTTATT
eekkddddddddkkeee
38
10049
10065
1250





CACAGGC










596883
899
915
GGTTTTTATT
eekkdddddddddkkee
57
10049
10065
1250





CACAGGC










596693
903
919
ACAGGGTTTT
eekkddddddddkkeee
29
10053
10069
1254





TATTCAC










596884
903
919
ACAGGGTTTT
eekkdddddddddkkee
47
10053
10069
1254





TATTCAC










596694
904
920
TACAGGGTTT
eekkddddddddkkeee
13
10054
10070
1255





TTATTCA










596885
904
920
TACAGGGTTT
eekkdddddddddkkee
31
10054
10070
1255





TTATTCA










596695
907
923
CCATACAGGG
eekkddddddddkkeee
13
10057
10073
1258





TTTTTAT










596886
907
923
CCATACAGGG
eekkdddddddddkkee
34
10057
10073
1258





TTTTTAT










596696
908
924
GCCATACAGG
eekkddddddddkkeee
13
10058
10074
1259





GTTTTTA










596887
908
924
GCCATACAGG
eekkdddddddddkkee
26
10058
10074
1259





GTTTTTA










596697
909
925
TGCCATACAG
eekkddddddddkkeee
21
10059
10075
1260





GGTTTTT










596888
909
925
TGCCATACAG
eekkdddddddddkkee
22
10059
10075
1260





GGTTTTT










596698
910
926
GTGCCATACA
eekkddddddddkkeee
20
10060
10076
1261





GGGTTTT










596889
910
926
GTGCCATACA
eekkdddddddddkkee
28
10060
10076
1261





GGGTTTT










596699
911
927
AGTGCCATAC
eekkddddddddkkeee
20
10061
10077
1262





AGGGTTT










596890
911
927
AGTGCCATAC
eekkdddddddddkkee
27
10061
10077
1262





AGGGTTT










596700
912
928
AAGTGCCATA
eekkddddddddkkeee
15
10062
10078
1400





CAGGGTT










596891
912
928
AAGTGCCATA
eekkdddddddddkkee
21
10062
10078
1400





CAGGGTT










596701
913
929
TAAGTGCCAT
eekkddddddddkkeee
26
10063
10079
1401





ACAGGGT










596892
913
929
TAAGTGCCAT
eekkdddddddddkkee
35
10063
10079
1401





ACAGGGT










596702
914
930
ATAAGTGCCA
eekkddddddddkkeee
36
10064
10080
1402





TACAGGG










596893
914
930
ATAAGTGCCA
eekkdddddddddkkee
46
10064
10080
1402





TACAGGG










596703
915
931
AATAAGTGCC
eekkddddddddkkeee
40
10065
10081
1403





ATACAGG










596894
915
931
AATAAGTGCC
eekkdddddddddkkee
36
10065
10081
1403





ATACAGG










596704
916
932
TAATAAGTGC
eekkddddddddkkeee
22
10066
10082
1404





CATACAG










596895
916
932
TAATAAGTGC
eekkdddddddddkkee
30
10066
10082
1404





CATACAG










596705
917
933
ATAATAAGTG
eekkddddddddkkeee
27
10067
10083
1405





CCATACA










596896
917
933
ATAATAAGTG
eekkdddddddddkkee
27
10067
10083
1405





CCATACA










596706
918
934
CATAATAAGT
eekkddddddddkkeee
32
10068
10084
1406





GCCATAC










596897
918
934
CATAATAAGT
eekkdddddddddkkee
34
10068
10084
1406





GCCATAC










596707
919
935
TCATAATAAG
eekkddddddddkkeee
28
10069
10085
1407





TGCCATA










596898
919
935
TCATAATAAG
eekkdddddddddkkee
34
10069
10085
1407





TGCCATA










596708
920
936
CTCATAATAA
eekkddddddddkkeee
30
10070
10086
1408





GTGCCAT










596899
920
936
CTCATAATAA
eekkdddddddddkkee
44
10070
10086
1408





GTGCCAT










596709
921
937
CCTCATAATA
eekkddddddddkkeee
29
10071
10087
1409





AGTGCCA










596900
921
937
CCTCATAATA
eekkdddddddddkkee
31
10071
10087
1409





AGTGCCA










596710
922
938
GCCTCATAAT
eekkddddddddkkeee
41
10072
10088
1410





AAGTGCC










596901
922
938
GCCTCATAAT
eekkdddddddddkkee
33
10072
10088
1410





AAGTGCC










596711
923
939
AGCCTCATAA
eekkddddddddkkeee
16
10073
10089
1411





TAAGTGC










596902
923
939
AGCCTCATAA
eekkdddddddddkkee
11
10073
10089
1411





TAAGTGC










596712
924
940
TAGCCTCATA
eekkddddddddkkeee
11
10074
10090
1412





ATAAGTG










596903
924
940
TAGCCTCATA
eekkdddddddddkkee
27
10074
10090
1412





ATAAGTG










596713
925
941
ATAGCCTCAT
eekkddddddddkkeee
20
10075
10091
1413





AATAAGT










596904
925
941
ATAGCCTCAT
eekkdddddddddkkee
27
10075
10091
1413





AATAAGT










596714
926
942
AATAGCCTCA
eekkddddddddkkeee
20
10076
10092
1414





TAATAAG










596905
926
942
AATAGCCTCA
eekkdddddddddkkee
25
10076
10092
1414





TAATAAG










596715
931
947
CTTTTAATAG
eekkddddddddkkeee
45
10081
10097
1415





CCTCATA










596906
931
947
CTTTTAATAG
eekkdddddddddkkee
34
10081
10097
1415





CCTCATA










596716
932
948
TCTTTTAATA
eekkddddddddkkeee
52
10082
10098
1416





GCCTCAT










596907
932
948
TCTTTTAATA
eekkdddddddddkkee
56
10082
10098
1416





GCCTCAT










596717
936
952
GGATTCTTTT
eekkddddddddkkeee
14
10086
10102
1417





AATAGCC










596908
936
952
GGATTCTTTT
eekkdddddddddkkee
19
10086
10102
1417





AATAGCC










596718
938
954
TTGGATTCTT
eekkddddddddkkeee
23
10088
10104
1263





TTAATAG










596909
938
954
TTGGATTCTT
eekkdddddddddkkee
8
10088
10104
1263





TTAATAG










596719
949
965
TTAGTTTGAA
eekkddddddddkkeee
31
10099
10115
1418





TTTGGAT










596910
949
965
TTAGTTTGAA
eekkdddddddddkkee
16
10099
10115
1418





TTTGGAT









Example 6: Dose-Dependent Inhibition of Human SOD-1 with Modified Oligonucleotides in HepG2 Cells

Gapmers from the studies described above exhibiting significant in vitro inhibition of SOD-1 mRNA were selected and tested at various doses in HepG2 cells. Benchmark compound ISIS 333611 and other compounds previously disclosed in WO 2005/040180, including ISIS 146144, 146145, 150445, 150446, 150447, 150454, 150463, 150465, 333606, 333609, and 333611 were also tested.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.813 μM, 1.625 μM, 3.250 μM, 6.500 μM, and 13.000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.


The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. SOD-1 mRNA levels were significantly reduced in a dose-dependent manner in modified oligonucleotide treated cells.









TABLE 24







Dose-dependent inhibition of SOD-1 mRNA













ISIS
0.813
1.625
3.250
6.500
13.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















150445
7
21
44
56
82
4.4


150446
15
32
47
71
87
3.2


150447
26
43
68
81
93
2.0


150463
16
38
51
66
85
3.1


333611
18
39
57
66
79
3.0


393336
18
34
53
69
83
3.1


393343
24
32
53
73
42
5.1


436863
18
42
58
72
89
2.6


590089
28
59
70
82
90
1.5


590090
34
56
76
82
51
1.1


590091
30
44
68
84
88
1.9


590094
16
35
57
73
76
3.0


590113
34
35
57
73
84
2.3
















TABLE 25







Dose-dependent inhibition of SOD-1 mRNA













ISIS
0.813
1.625
3.250
6.500
13.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















150465
42
59
77
82
87
1.0


333611
17
26
40
64
82
3.8


378879
14
35
63
72
86
2.8


393371
28
42
57
74
80
2.3


489520
28
44
64
72
84
2.2


590177
53
59
69
85
88
0.7


590178
40
53
71
73
87
1.3


590180
18
42
51
64
73
3.3


590187
34
51
68
80
92
1.6


590188
30
46
61
76
88
2.0


590189
37
49
68
78
88
1.6


590190
38
58
77
84
89
1.1


590191
29
56
71
77
84
1.6


590192
37
59
72
80
87
1.2
















TABLE 26







Dose-dependent inhibition of SOD-1 mRNA













ISIS
0.813
1.625
3.250
6.500
13.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















146144
15
58
67
78
64
2.2


146145
31
53
67
81
90
1.6


333606
11
39
62
75
91
2.7


333609
13
37
57
71
85
2.9


333611
14
30
53
68
86
3.2


590250
8
19
47
64
84
3.9


590626
61
72
84
84
87
0.2


592630
24
33
58
70
85
2.7


592631
19
48
59
74
88
2.3


592645
20
31
53
74
89
2.8


592649
14
32
56
69
82
3.2
















TABLE 27







Dose-dependent inhibition of SOD-1 mRNA













ISIS
0.813
1.625
3.250
6.500
13.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















150454
13
24
49
69
83
3.5


333611
28
28
53
68
82
3.0


489505
13
24
38
56
81
4.5


489516
25
16
39
61
79
4.3


592652
11
31
52
74
46
5.1


592714
8
25
45
69
82
3.8


592715
18
35
50
70
83
3.1


592762
44
66
74
81
89
0.8


592763
50
68
74
86
95
0.7


592764
26
43
48
76
87
2.5


592766
36
53
66
77
89
1.5


592767
25
31
54
70
79
2.9


592769
35
31
56
73
80
2.5


592771
34
43
58
70
80
2.2









Example 7: Dose-Dependent Inhibition of Human SOD-1 with Modified Oligonucleotides in HepG2 Cells

Gapmers from the studies described above exhibiting significant in vitro inhibition of SOD-1 mRNA were selected and tested at various doses in HepG2 cells. Benchmark compound, ISIS 333611, and ISIS 333625, both of which were previously disclosed in WO 2005/040180 were also tested.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.148 μM, 0.444 μM, 1.330 μM, 4.000 μM, and 12.000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe sets RTS3898 or HTS90 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.


The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. SOD-1 mRNA levels were significantly reduced in a dose-dependent manner in modified oligonucleotide treated cells.









TABLE 28







Dose response assay with primer probe set RTS3898













ISIS
0.148
0.444
1.330
4.000
12.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















333611
6
14
29
51
78
3.2


596911
8
12
23
54
74
3.6


596720
7
14
31
55
71
3.4


596800
44
60
75
84
82
0.2


596801
33
49
69
79
83
0.5


596610
16
44
65
78
84
0.8


596799
20
45
64
75
84
0.8


596609
17
54
65
75
81
0.7


596883
13
22
36
45
51
8.6


489523
16
40
62
78
90
0.9


590181
5
17
46
70
89
1.7


436868
10
35
47
69
82
1.4


596768
16
37
62
82
89
0.9


596775
36
50
66
83
89
0.4
















TABLE 29







Dose response assay with primer probe set HTS90













ISIS
0.148
0.444
1.330
4.000
12.000
IC50


No
μM
μM
μM
μM
μM
(μM)
















333625
0
4
17
56
84
3.3


489532
54
70
78
86
96
0.1


590154
0
14
25
56
86
2.7


596173
0
5
25
63
92
2.4


596174
7
12
37
46
84
2.8


596178
2
16
40
68
82
2.1


596179
0
17
41
64
80
2.3


596308
0
5
22
56
80
3.3


596572
18
35
62
83
90
0.9


596589
10
45
61
77
91
0.9


596600
41
56
71
85
92
0.3


596602
14
51
74
86
95
0.6


596789
22
55
69
86
91
0.5


596795
16
43
64
82
93
0.8









Example 8: Dose-Dependent Inhibition of Human SOD-1 with Modified Oligonucleotides in HepG2 Cells

Gapmers from the studies described above exhibiting significant in vitro inhibition of SOD-1 mRNA were selected and tested at various doses in HepG2 cells. Benchmark compound, ISIS 333611, and additional compounds including, ISIS 146143, 150442, 195753, 333607, and 333608, were previously disclosed in WO 2005/040180 were also tested.


The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.1875 μM, 0.7500 μM, 3.0000 μM, and 12.0000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe sets RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. SOD-1 mRNA levels were significantly reduced in a dose-dependent manner in modified oligonucleotide treated cells.









TABLE 30







Dose-dependent inhibition of SOD-1 mRNA














ISIS
0.1875
0.75
3.00
12.00
IC50



No
μM
μM
μM
μM
(μM)


















333611
0
27
60
91
2



596572
38
65
87
96
0.3



596583
62
89
95
95
<0.1



596590
40
79
89
94
0.2



596602
40
75
92
98
0.2



596603
51
79
92
96
0.1



596604
48
78
91
95
0.1



596605
50
86
90
97
0.1



596764
11
67
89
94
0.7



596768
27
49
82
92
0.7



596773
32
62
89
98
0.4



596774
56
89
93
96
<0.1



596775
31
75
90
97
0.3



596780
24
71
85
98
0.5



596781
30
80
93
97
0.3



596791
38
74
89
95
0.3



596794
43
75
91
97
0.2



596795
28
66
91
98
0.4



596796
43
78
93
98
0.2

















TABLE 31







Dose-dependent inhibition of SOD-1 mRNA














ISIS
0.1875
0.75
3.00
12.00
IC50



No
μM
μM
μM
μM
(μM)


















333611
0
15
68
95
2.1



596589
35
70
90
97
0.3



596789
38
71
89
97
0.3



596600
41
73
89
95
0.2



596582
30
71
87
95
0.4



596784
26
68
89
95
0.4



596787
44
67
89
94
0.2



596779
29
71
89
97
0.4



596792
37
63
83
95
0.4



596782
27
61
85
96
0.5



596765
34
59
87
95
0.4



596793
27
65
88
96
0.5



596570
25
60
84
91
0.6



596769
21
64
85
96
0.6



596783
10
57
84
94
0.9



596584
26
67
84
93
0.5



596571
37
71
81
92
0.3



596598
30
62
81
94
0.5



596588
11
64
87
95
0.7

















TABLE 32







Dose-dependent inhibition of SOD-1 mRNA














ISIS
0.1875
0.75
3.00
12.00
IC50



No
μM
μM
μM
μM
(μM)


















146143
6
12
51
88
2.5



150442
10
21
39
90
2.5



195753
13
23
48
77
2.8



333607
17
26
59
83
1.9



333608
0
2
28
92
3.7



333611
0
13
52
91
2.4



596573
26
51
77
91
0.8



596577
32
55
78
93
0.6



596591
23
51
74
91
0.8



596592
18
48
66
86
1.1



596593
16
58
78
87
0.8



596596
4
49
72
87
1.3



596761
28
55
74
91
0.7



596762
0
47
75
90
1.3



596763
0
40
78
92
1.5



596766
4
50
68
86
1.3



596785
10
47
77
91
1.1



596786
0
45
75
97
1.3



596788
9
52
81
95
1

















TABLE 33







Dose-dependent inhibition of SOD-1 mRNA














ISIS
0.1875
0.75
3.00
12.00
IC50



No
μM
μM
μM
μM
(μM)


















333611
3
22
60
92
2



596302
9
27
59
89
1.9



596308
29
47
82
96
0.7



596309
13
42
75
92
1.1



596310
13
16
48
81
2.8



596313
15
37
70
88
1.3



596314
18
45
74
92
1



596606
55
78
87
93
0.1



596607
44
71
83
84
0.2



596608
46
74
84
81
0.1



596609
30
61
79
87
0.5



596610
39
69
82
86
0.3



596612
16
50
62
77
1.4



596797
67
84
94
96
<0.1



596798
42
68
86
89
0.2



596799
35
66
83
87
0.4



596800
45
73
84
87
0.2



596801
40
67
86
88
0.3



596803
28
41
63
71
1.4

















TABLE 34







Dose-dependent inhibition of SOD-1 mRNA














ISIS
0.1875
0.75
3.00
12.00
IC50



No
μM
μM
μM
μM
(μM)


















333611
0
30
56
69
3.1



590475
19
39
69
88
1.2



590625
19
51
74
85
1.0



590626
42
72
88
90
0.2



590627
16
42
70
84
1.0



590634
45
72
86
92
0.2



590635
39
60
80
90
0.4



590644
44
62
80
86
0.3



590650
34
56
82
93
0.5



590653
52
78
86
85
0.1



590655
35
71
79
82
0.3



596530
25
22
72
79
2.0



596531
8
38
74
96
1.2



596559
15
36
79
95
1.1



596721
14
47
82
97
0.9



596723
12
47
79
94
1.0



596726
24
42
80
94
0.9



596735
7
32
77
96
1.3



596736
25
52
82
97
0.7










Example 9: Dose-Dependent Inhibition of Human SOD-1 in HepG2 Cells by Gapmers with Mixed Backbone Chemistry

Additional gapmers were designed based on the sequences of the oligonucleotides disclosed in studies described above. The oligonucleotides were designed as 5-10-5 MOE, 5-8-5 MOE, and deoxy, MOE and cEt oligonucleotides. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment is comprised of eight 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The deoxy, MOE and cEt oligonucleotides are 16 or 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are either phosphodiester or phosphorothioate linkages. The internucleoside linkages of each oligonucleotide are denoted in the Backbone Chemistry column, where ‘o’ indicates a phosphodiester linkage and ‘s’ denotes a phosphorothioate linkage. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000).









TABLE 35 







Modified oligonucleotides targeting human SOD-1


with mixed backbone chemistry
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:



NO:
NO:




1
1



2
2
SEQ


ISIS
Start
Stop


Backbone
Start
Stop
ID


NO
Site
Site
Sequence
Sugar Modifications
Chemistry
Site
Site
NO


















611458
226
245
ACACCTTCAC
eeeeeddddddddddeeeee
sooosssssssssssooos
4980
4999
23





TGGTCCATTA










654335
233
248
CCCACACCTT
ekddddddddekekee
sossssssssoooss
4987
5002
1420





CACTGG










611474
234
253
GCTTCCCCAC
eeeeeddddddddddeeeee
sooosssssssssssooos
4988
5007
149





ACCTTCACTG










654301
234
251
TTCCCCACAC
eeeeeddddddddeeeee
sooosssssssssooss
4988
5005
1421





CTTCACTG










654336
234
249
CCCCACACCT
ekddddddddekekee
sossssssssoooss
4988
5003
1422





TCACTG










654302
235
252
CTTCCCCACA
eeeeeddddddddeeeee
sooosssssssssooss
4989
5006
1423





CCTTCACT










654319
235
250
TCCCCACACC
kekeddddddddekek
sooossssssssoss
4989
5004
1424





TTCACT










654337
235
250
TCCCCACACC
ekddddddddekekee
sossssssssoooss
4989
5004
1424





TTCACT










654303
236
253
GCTTCCCCAC
eeeeeddddddddeeeee
sooosssssssssooss
4990
5007
1425





ACCTTCAC










654320
236
251
TTCCCCACAC
kekeddddddddekek
sooossssssssoss
4990
5005
1426





CTTCAC










654321
237
252
CTTCCCCACA
kekeddddddddekek
sooossssssssoss
4991
5006
1427





CCTTCA










611475
321
340
GTGAGGACCT
eeeeeddddddddddeeeee
sooosssssssssssooos
7637
7656
172





GCACTGGTAC










611460
588
607
GGCGATCCCA
eeeeeddddddddddeeeee
sooosssssssssssooos
9738
9757
47





ATTACACCAC










654304
663
680
ATACATTTCT
eeeeeddddddddeeeee
sooosssssssssooss
9813
9830
1429





ACAGCTAG










654305
664
681
GATACATTTC
eeeeeddddddddeeeee
sooosssssssssooss
9814
9831
1430





TACAGCTA










654340
664
679
TACATTTCTA
ekddddddddekekee
sossssssssoooss
9814
9829
1431





CAGCTA










611492
665
684
CAGGATACAT
eeeeeddddddddddeeeee
sooosssssssssssooos
9815
9834
725





TTCTACAGCT










654306
665
682
GGATACATTT
eeeeeddddddddeeeee
sooosssssssssooss
9815
9832
1432





CTACAGCT










654323
665
680
ATACATTTCT
kekeddddddddekek
sooossssssssoss
9815
9830
1433





ACAGCT










654341
665
680
ATACATTTCT
ekddddddddekekee
sossssssssoooss
9815
9830
1433





ACAGCT










611500
666
685
TCAGGATACA
eeeeeddddddddddeeeee
sooosssssssssssooos
9816
9835
823





TTTCTACAGC










612941
666
682
GGATACATTT
eekkdddddddddkkee
sooosssssssssoss
9816
9832
1342





CTACAGC










654307
666
683
AGGATACATT
eeeeeddddddddeeeee
sooosssssssssooss
9816
9833
1434





TCTACAGC










654324
666
681
GATACATTTC
kekeddddddddekek
sooossssssssoss
9816
9831
1435





TACAGC










654342
666
681
GATACATTTC
ekddddddddekekee
sossssssssoooss
9816
9831
1435





TACAGC










654308
667
684
CAGGATACAT
eeeeeddddddddeeeee
sooosssssssssooss
9817
9834
1436





TTCTACAG










612925
676
692
ATGTTTATCA
eekkddddddddkkeee
soosssssssssooss
9826
9842
1348





GGATACA










612944
676
692
ATGTTTATCA
eekkdddddddddkkee
sooosssssssssoss
9826
9842
1348





GGATACA










654343
677
692
ATGTTTATCA
ekddddddddekekee
sossssssssoooss
9827
9842
1437





GGATAC










612927
678
694
TAATGTTTAT
eekkddddddddkkeee
soosssssssssooss
9828
9844
1350





CAGGATA










654309
678
695
TTAATGTTTA
eeeeeddddddddeeeee
sooosssssssssooss
9828
9845
1438





TCAGGATA










612928
679
695
TTAATGTTTA
eekkddddddddkkeee
soosssssssssooss
9829
9845
1351





TCAGGAT










654310
679
696
TTTAATGTTT
eeeeeddddddddeeeee
sooosssssssssooss
9829
9846
1439





ATCAGGAT










654311
680
697
GTTTAATGTT
eeeeeddddddddeeeee
sooosssssssssooss
9830
9847
1440





TATCAGGA










654327
680
695
TTAATGTTTA
kekeddddddddekek
sooossssssssoss
9830
9845
1441





TCAGGA










654346
680
695
TTAATGTTTA
ekddddddddekekee
sossssssssoooss
9830
9845
1441





TCAGGA










611497
681
700
AGTGTTTAAT
eeeeeddddddddddeeeee
sooosssssssssssooos
9831
9850
733





GTTTATCAGG










612948
681
697
GTTTAATGTT
eekkdddddddddkkee
sooosssssssssoss
9831
9847
1352





TATCAGG










654312
681
698
TGTTTAATGT
eeeeeddddddddeeeee
sooosssssssssooss
9831
9848
1442





TTATCAGG










654328
681
696
TTTAATGTTT
kekeddddddddekek
sooossssssssoss
9831
9846
1443





ATCAGG










654347
681
696
TTTAATGTTT
ekddddddddekekee
sossssssssoooss
9831
9846
1443





ATCAGG










654313
682
699
GTGTTTAATG
eeeeeddddddddeeeee
sooosssssssssooss
9832
9849
1444





TTTATCAG










654329
682
697
GTTTAATGTT
kekeddddddddekek
sooossssssssoss
9832
9847
1445





TATCAG










654348
682
697
GTTTAATGTT
ekddddddddekekee
sossssssssoooss
9832
9847
1445





TATCAG










612949
683
699
GTGTTTAATG
eekkdddddddddkkee
sooosssssssssoss 
9833
9849
1172





TTTATCA










654314
683
700
AGTGTTTAAT
eeeeeddddddddeeeee
sooosssssssssooss 
9833
9850
1446





GTTTATCA










654330
683
698
TGTTTAATGT
kekeddddddddekek
sooossssssssoss
9833
9848
1447





TTATCA










612931
684
700
AGTGTTTAAT
eekkddddddddkkeee
soosssssssssooss 
9834
9850
1173





GTTTATC










654315
684
701
CAGTGTTTAA
eeeeeddddddddeeeee
sooosssssssssooss 
9834
9851
1448





TGTTTATC










654331
684
699
GTGTTTAATG
kekeddddddddekek
sooossssssssoss
9834
9849
1449





TTTATC










654350
684
699
GTGTTTAATG
ekddddddddekekee
sossssssssoooss
9834
9849
1449





TTTATC










654316
685
702
ACAGTGTTTA
eeeeeddddddddeeeee
sooosssssssssooss 
9835
9852
1450





ATGTTTAT










612918
686
702
ACAGTGTTTA
eeekkdddddddkkeee
soosssssssssooss 
9836
9852
1175





ATGTTTA










612932
686
702
ACAGTGTTTA
eekkddddddddkkeee
soosssssssssooss 
9836
9852
1175





ATGTTTA










654317
686
703
TACAGTGTTT
eeeeeddddddddeeeee
sooosssssssssooss 
9836
9853
1451





AATGTTTA










654333
686
701
CAGTGTTTAA
kekeddddddddekek
sooossssssssoss
9836
9851
1452





TGTTTA










654352
686
701
CAGTGTTTAA
ekddddddddekekee
sossssssssoooss
9836
9851
1452





TGTTTA










654318
687
704
TTACAGTGTT
eeeeeddddddddeeeee
sooosssssssssooss 
9837
9854
1453





TAATGTTT










654334
687
702
ACAGTGTTTA
kekeddddddddekek
sooossssssssoss
9837
9852
1454





ATGTTT









The newly designed oligonucleotides were tested at various doses in HepG2 cells. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.222 μM, 0.667 μM, 2.000 μM, and 6.000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe sets RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.


The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. SOD-1 mRNA levels were significantly reduced in a dose-dependent manner in modified oligonucleotide treated cells.









TABLE 36







Dose response assay














ISIS
0.222
0.667
2.000
6.000
IC50



No
μM
μM
μM
μM
μM


















333611
0
28
53
77
1.9



611458
0
21
50
79
2.0



611460
24
34
55
79
1.3



611474
14
32
55
79
1.5



611475
0
16
35
70
3.0



611492
38
70
88
95
0.3



611497
28
55
80
89
0.6



611500
25
50
73
92
0.7



612918
51
70
74
80
<0.2



612925
53
73
90
89
<0.2



612927
64
89
92
94
<0.2



612928
67
90
94
97
<0.2



612931
68
76
84
86
<0.2



612932
61
73
88
91
<0.2



612941
62
78
91
95
<0.2



612944
47
71
82
92
0.2



612948
76
90
93
94
<0.2



612949
58
68
83
96
<0.2



654301
7
4
17
42
>6.0

















TABLE 37







Dose response assay














ISIS
0.222
0.667
2.000
6.000
IC50



No
μM
μM
μM
μM
μM


















333611
14
20
35
69
3.0



611458
11
27
36
68
2.9



654302
0
8
38
48
6.2



654303
8
29
46
76
1.9



654304
7
28
54
79
1.7



654305
28
59
73
85
0.6



654306
38
62
82
94
0.4



654307
9
43
65
86
1.1



654308
14
31
54
84
1.4



654309
0
17
47
72
2.4



654310
10
24
28
53
6.6



654311
45
73
78
87
0.2



654312
14
39
59
77
1.3



654313
20
43
56
81
1.2



654314
33
58
74
86
0.5



654315
21
47
64
84
0.9



654316
19
30
46
70
2.0



654317
13
46
57
70
1.4



654318
17
42
54
76
1.4

















TABLE 38







Dose response assay














ISIS
0.222
0.667
2.000
6.000
IC50



No
μM
μM
μM
μM
μM


















333611
14
19
50
73
2.1



611458
9
22
39
72
2.5



654319
19
9
31
61
5.1



654320
6
16
20
59
5.9



654321
8
14
51
76
2.1



654323
55
73
89
95
<0.2



654324
54
78
89
96
<0.2



654327
53
82
91
96
<0.2



654328
73
90
93
97
<0.2



654329
58
78
86
94
<0.2



654330
42
54
69
86
0.4



654331
53
78
82
90
<0.2



654333
50
67
81
86
0.2



654334
55
68
78
88
<0.2



654335
15
31
58
81
1.4



654336
21
36
60
75
1.3



654337
16
34
58
80
1.4



654340
36
69
83
95
0.4



654341
43
58
79
91
0.3

















TABLE 39







Dose response assay














ISIS
0.222
0.667
2.00
6.00
IC50



No
μM
μM
μM
μM
μM


















333611
0
6
38
64
3.6



611458
3
14
36
63
3.6



654342
40
60
80
93
0.4



654343
64
81
90
94
<0.2



654346
52
73
84
93
<0.2



654347
21
38
58
81
1.2



654348
44
63
82
94
0.3



654350
40
63
76
86
0.3



654352
54
79
84
88
<0.2










Example 10: Dose-Dependent Inhibition of Human SOD-1 by Gapmers with Mixed Backbone Chemistry

Additional gapmers were designed based on the sequences of the oligonucleotides disclosed in studies described above. The oligonucleotides were designed as deoxy, MOE and cEt oligonucleotides. The deoxy, MOE and cEt oligonucleotides are 16 or 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are either phosphodiester or phosphorothioate linkages. The internucleoside linkages of each oligonucleotide are denoted in the Backbone Chemistry column, where ‘o’ indicates a phosphodiester linkage and ‘s’ indicates a phosphorothioate linkage. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000).









TABLE 40 







Modified oligonucleotides targeting human SOD-1 with


mixed backbone chemistry
















SEQ
SEQ



SEQ
SEQ




ID
ID



ID
ID




NO:
NO:



NO:
NO




1
1



2
2
SEQ


ISIS
Start
Stop


Backbone
Start
Stop
ID


NO
Site
Site
Sequence
Sugar Modifications
Chemistry
Site
Site
NO





612916
664
680
ATACATTTCTA
eeekkdddddddkkeee
soosssssssssooss
9814
9830
1170





CAGCTA










612947
679
695
TTAATGTTTAT
eekkdddddddddkkee
sooosssssssssoss
9829
9845
1351





CAGGAT










654322
664
679
TACATTTCTAC
kekeddddddddekek
sooossssssssoss 
9814
9829
1431





AGCTA










654325
667
682
GGATACATTT
kekeddddddddekek
sooossssssssoss 
9817
9832
1455





CTACAG










654326
679
694
TAATGTTTATC
kekeddddddddekek
sooossssssssoss 
9829
9844
1456





AGGAT










654332
685
700
AGTGTTTAAT
kekeddddddddekek
sooossssssssoss 
9835
9850
1457





GTTTAT










654338
662
677
CATTTCTACAG
ekddddddddekekee
sossssssssoooss 
9812
9827
1458





CTAGC










654339
663
678
ACATTTCTACA
ekddddddddekekee
sossssssssoooss 
9813
9828
1459





GCTAG










654344
678
693
AATGTTTATCA
ekddddddddekekee
sossssssssoooss 
9828
9843
1460





GGATA










654345
679
694
TAATGTTTATC
ekddddddddekekee
sossssssssoooss 
9829
9844
1456





AGGAT










654349
683
698
TGTTTAATGTT
ekddddddddekekee
sossssssssoooss 
9833
9848
1447





TATCA










654351
685
700
AGTGTTTAAT
ekddddddddekekee
sossssssssoooss 
9835
9850
1457





GTTTAT









The newly designed oligonucleotides were tested at various doses in A431 cells. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 5,000 cells per well and modified oligonucleotides were added to the media at 0.12 μM, 0.60 μM, 3.00 μM, and 15.00 μM concentrations of modified oligonucleotide for free uptake by the cells, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe sets RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.









TABLE 41







Dose response assay











ISIS
0.12
0.60
3.00
15.00


No
μM
μM
μM
μM














333611
0
7
17
31


611458
5
4
4
10


612916
4
13
26
37


612918
12
26
45
47


612944
1
4
21
29


612947
12
48
54
72


654305
7
15
39
52


654306
0
25
29
50


654313
1
15
36
50


654314
2
35
52
67


654321
0
8
8
18


654322
0
13
36
59


654329
7
7
41
66


654330
6
14
15
32


654337
0
0
7
21


654338
3
3
2
11


654345
1
9
22
46


654346
0
7
21
46
















TABLE 42







Dose response assay











ISIS
0.12
0.60
3.00
15.00


No
μM
μM
μM
μM














333611
0
0
0
2


611460
0
0
0
30


611474
0
0
11
0


612925
2
4
12
52


612927
0
38
54
68


612948
25
69
89
95


612949
22
57
73
84


654307
42
23
26
45


654308
2
31
9
18


654315
0
8
39
52


654316
0
18
26
45


654323
15
14
16
52


654324
12
22
21
34


654331
7
35
66
78


654332
2
31
47
61


654339
1
27
32
47


654340
37
0
22
12


654347
20
5
12
33


654348
2
19
33
62
















TABLE 43







Dose response assay











ISIS
0.12
0.60
3.00
15.00


No
μM
μM
μM
μM














333611
0
0
0
1


611475
0
17
0
16


611492
13
24
41
62


612928
12
36
49
72


612931
31
68
83
86


654301
2
0
0
9


654302
0
8
3
0


654309
18
7
11
9


654310
13
19
22
7


654317
3
0
1
20


654318
4
0
33
17


654325
0
0
0
14


654326
0
15
17
48


654333
19
18
36
55


654334
0
0
0
6


654341
0
9
0
25


654342
0
0
0
18


654349
0
13
31
49


654350
10
32
66
79
















TABLE 44







Dose response assay











ISIS
0.12
0.60
3.00
15.00


No
μM
μM
μM
μM














333611
5
0
7
3


611497
16
49
60
75


611500
9
8
21
49


612932
17
8
26
37


612941
4
12
36
51


654303
0
1
0
5


654304
9
10
27
43


654311
15
51
68
84


654312
6
26
29
33


654319
3
44
2
8


654320
4
12
5
12


654327
3
45
65
81


654328
15
44
73
85


654335
2
0
0
12


654336
0
0
0
0


654343
0
7
26
59


654344
10
30
51
72


654351
10
22
48
77


654352
8
26
57
76









Example 11: Dose-Dependent Inhibition of Human SOD-1 by Gapmers with Mixed Backbone Chemistry

Additional gapmers were designed based on the sequences of the oligonucleotides disclosed in studies described above. The oligonucleotides were designed as 5-10-5 MOE gapmers, 4-8-5 MOE gapmers, 5-8-5 MOE gapmers, 5-8-7 MOE gapmers, 6-8-6 MOE gapmers, 6-9-5 MOE gapmers, or deoxy, MOE and cEt oligonucleotides.


The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. The 4-8-5 MOE gapmers are 17 nucleosides in length, wherein the central gap segment is comprised of eight 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising four and five nucleosides respectively. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment is comprised of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. The 5-8-7 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five and seven nucleosides respectively. The 6-8-6 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising six nucleosides each. The 6-9-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of nine 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising six and five nucleosides respectively. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification.


The deoxy, MOE and cEt oligonucleotides are 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety. The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar.


The internucleoside linkages throughout each gapmer are either phosphodiester or phosphorothioate linkages. The internucleoside linkages of each oligonucleotide are denoted in the Backbone Chemistry column, where ‘o’ indicates a phosphodiester linkage and ‘s’ indicates a phosphorothioate linkage. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000).









TABLE 45 







Modified oligonucleotides targeting human SOD-1 with mixed backbone chemistry

















SEQ
SEQ




SEQ
SEQ




ID
ID




ID
ID




NO:
NO:




NO:
NO:




1
1




2
2
SEQ



Start
Stop



Backbone
Start
Stop
ID


ISIS NO
Site
Site 
Sequence
Motif
Sugar Modifications
Chemistry
Site
Site
NO



















666846
665
684
CAGGATACAT
5-10-5
eeeeeddddddddddeeeee
soooossssssssssooss
9815
9834
725





TTCTACAGCT
MOE










666849
665
684
CAGGATACAT
5-10-5
eeeeeddddddddddeeeee
sooosssssssssssooss
9815
9834
725





TTCTACAGCT
MOE










666853
665
684
CAGGATACAT
5-10-5
eeeeeddddddddddeeeee
sososssssssssssosos
9815
9834
725





TTCTACAGCT
MOE










666859
679
695
TTAATGTTTA
Deoxy,
eeeeddddddddkkeee
soosssssssssooss
9829
9845
1351





TCAGGAT
MOE











and cEt










666861
679
695
TTAATGTTTA
Deoxy,
ekekddddddddeeeee
soosssssssssooss
9829
9845
1351





TCAGGAT
MOE











and cEt










666867
684
700
AGTGTTTAAT
Deoxy,
eekkddddddddeeeee
soosssssssssooss
9834
9850
1173





GTTTATC
MOE











and cEt










666869
684
700
AGTGTTTAAT
Deoxy,
ekekddddddddkekee
soosssssssssooss
9834
9850
1173





GTTTATC
MOE











and cEt










666870
684
700
AGTGTTTAAT
Deoxy,
ekekddddddddeeeee
soosssssssssooss
9834
9850
1173





GTTTATC
MOE











and cEt










666919
666
682
GGATACATTT
Deoxy,
eeeedddddddddkkee
sooosssssssssoss
9816
9832
1342





CTACAGC
MOE











and cEt










666921
666
682
GGATACATTT
Deoxy,
eeeeeddddddddkkee
sooosssssssssoss
9816
9832
1342





CTACAGC
MOE











and cEt










666922
666
682
GGATACATTT
Deoxy,
eeeekddddddddkeee
sooosssssssssoss
9816
9832
1342





CTACAGC
MOE











and cEt










684059
676
692
ATGTTTATCA
Deoxy,
eeekddddddddkeeee
soosssssssssooss
9826
9842
1348





GGATACA
MOE











and cEt










684064
676
692
ATGTTTATCA
Deoxy,
eeeeddddddddkekee
soosssssssssooss
9826
9842
1348





GGATACA
MOE











and cEt










684068
676
692
ATGTTTATCA
4-8-5
eeeeddddddddeeeee
soosssssssssooss
9826
9842
1348





GGATACA
MOE










684087
590
607
GGCGATCCCA
5-8-5
eeeeeddddddddeeeee
sooosssssssssooss
9740
9757
613





ATTACACC
MOE










684088
167
184
GTCGCCCTTC
5-8-5
eeeeeddddddddeeeee
sooosssssssssooss
973
990
1419





AGCACGCA
MOE










684095
167
186
CCGTCGCCCT
5-10-5
eeeeeddddddddddeeeee
soooossssssssssooss 
973
992
21





TCAGCACGCA
MOE










684097
167
186
CCGTCGCCCT
5-8-7
eeeeeddddddddeeeeeee
sooossssssssssoooss 
973
992
21





TCAGCACGCA
MOE










684101
588
607
GGCGATCCCA
6-8-6
eeeeeeddddddddeeeeee
sooossssssssssoooss
9738
9757
47





ATTACACCAC
MOE










684102
588
607
GGCGATCCCA
5-8-7
eeeeeddddddddeeeeeee
sooossssssssssoooss
9738
9757
47





ATTACACCAC
MOE










684104
588
607
GGCGATCCCA
6-9-5
eeeeeedddddddddeeeee
sooo0ssssssssssooss
9738
9757
47





ATTACACCAC
MOE









The newly designed oligonucleotides were tested at various doses in A431 cells. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 5,000 cells per well and modified oligonucleotides were added to the media at 0.062 μM, 0.185 μM, 0.556 μM, 1.667 μM, 5.000 μM, and 15.000 μM concentrations of modified oligonucleotide for free uptake by the cells, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe sets RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.









TABLE 46







Dose response assay














ISIS
0.062
0.185
0.556
1.667
5.000
15.000
IC50


No
μM
μM
μM
μM
μM
μM
(μM)

















666846
18
28
45
70
69
81
0.8


666919
0
1
13
28
42
55
11.0


666849
33
29
52
62
74
82
0.6


666921
2
4
15
19
37
44
>15


666853
20
29
49
69
76
83
0.7


666922
8
7
30
33
66
59
4.1


666859
26
30
58
64
68
78
0.6


666861
6
21
44
76
68
77
1.1


666867
16
43
65
68
79
83
0.5


666869
52
68
79
88
89
91
<0.06


666870
24
37
57
77
81
86
0.4
















TABLE 47







Dose response assay














ISIS
0.062
0.185
0.556
1.667
5.000
15.000
IC50


No
μM
μM
μM
μM
μM
μM
(μM)

















684059
7
18
38
53
68
79
1.5


684102
0
9
0
0
4
0
>15


684064
12
19
29
38
51
61
5.0


684104
0
0
0
0
0
4
>15


684068
0
4
10
33
50
56
8.0


684087
3
1
29
0
0
27
>15


684088
10
11
11
3
4
18
>15


684095
12
13
14
4
7
18
>15


684097
8
4
5
4
3
9
>15


684101
7
0
0
23
6
14
>15









The newly designed oligonucleotides were also tested at various doses in SH-SY5Y cells. The modified oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and modified oligonucleotides transfected using electroporation at 0.062 μM, 0.185 μM, 0.556 μM, 1.6676 μM, 5.000 μM, 1 and 15.000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3898 was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells.









TABLE 48







Dose response assay














ISIS
0.062
0.185
0.556
1.667
5.000
15.000
IC50


No
μM
μM
μM
μM
μM
μM
(μM)

















666846
0
17
49
62
83
91
0.9


666919
10
3
23
35
77
78
2.2


666849
10
10
33
61
81
92
1.1


666921
0
0
12
30
56
68
4.8


666853
0
17
39
59
85
82
1.3


666922
9
0
12
33
65
76
3.2


666859
11
44
53
75
77
93
0.5


666861
0
0
34
61
81
90
1.4


666867
33
10
43
61
81
77
0.9


666869
38
49
61
83
81
84
0.2


666870
3
6
48
69
77
87
1.1
















TABLE 49







Dose response assay














ISIS
0.062
0.185
0.556
1.667
5.000
15.000
IC50


No
μM
μM
μM
μM
μM
μM
(μM)

















684059
4
30
51
68
88
92
0.7


684102
5
2
16
25
36
61
12.0


684064
15
27
52
63
79
92
0.7


684104
0
3
20
38
61
84
2.6


684068
0
4
32
37
61
83
2.3


684087
0
3
21
31
47
66
5.8


684088
13
4
5
40
52
77
3.9


684095
16
5
19
36
68
80
2.4


684097
11
15
9
30
59
76
3.6


684101
0
0
8
23
49
66
6.6









Example 12: Inhibition of Human SOD-1 in a Transgenic Rat Model

Gapmers from the studies described above, including benchmark compound ISIS 333611, which was previously disclosed in WO 2005/040180, were tested in an SOD-1 transgenic rat model (Taconic, Cat #2148-F and 2148-M). These hemizygous rats express mutant human SOD-1 in the spinal cord.


Additional gapmers were designed based on the sequences of the oligonucleotides disclosed in studies described above. The oligonucleotides were designed as 5-9-5 MOE gapmers, 5-10-5 MOE gapmers or deoxy, MOE and cEt oligonucleotides. The 5-9-5 MOE gapmers are 19 nucleosides in length, wherein the central gap segment is comprised of nine 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment is comprised of ten 2′-deoxyribonucleosides and is flanked by wing segments on the 5′ direction and the 3′ directions comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The deoxy, MOE and cEt oligonucleotides are 17 nucleosides in length wherein each nucleoside has a MOE sugar modification, a cEt sugar modification, or a deoxy moiety The sugar chemistry of each oligonucleotide is denoted as in the Chemistry column, where ‘k’ indicates a cEt modified sugar; ‘d’ indicates a 2′-deoxyribose; and ‘e’ indicates a 2′-MOE modified sugar. The internucleoside linkages throughout each gapmer are either phosphodiester or phosphorothioate linkages. The internucleoside linkages of each oligonucleotide is denoted in the Backbone Chemistry column, where ‘o’ indicates a phosphodiester linkage and ‘s’ indicates a phosphorothioate linkage. All cytosine residues throughout each oligonucleotide are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Table below is targeted to either the human SOD-1 mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000454.4) or the human SOD-1 genomic sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NT_011512.10 truncated from nucleotides 18693000 to 18704000).









TABLE 50 







Modified oligonucleotides targeting human SOD-1 with mixed backbone chemistry

















SEQ
SEQ




SEQ
SEQ




ID
ID




ID
ID




NO:
NO:




NO:
NO:




1
1




2
2
SEQ


ISIS
Start
Stop



Backbone
Start
Stop
ID


NO
Site
Site
Sequence
Motif
Sugar Modifications
Chemistry
Site
Site
NO



















383872
167
186
CCGTCGCCCTT
5-10-5
eeeeeddddddddddeeeee
sooosssssssssssooos
973
992
21





CAGCACGCA
MOE










611457
165
184
GTCGCCCTTCA
5-10-5
eeeeeddddddddddeeeee
sooosssssssssssooos
971
990
54





GCACGCACA
MOE










611464
164
183
TCGCCCTTCAG
5-10-5
eeeeeddddddddddeeeee
sooosssssssssssooos
970
989
67





CACGCACAC
MOE










611467
656
675
TTTCTACAGCT
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9806
9825
272





AGCAGGATA
MOE










611468
583
602
TCCCAATTACA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9733
9752
227





CCACAAGCC
MOE










611472
230
249
CCCCACACCTT
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
4984
5003
145





CACTGGTCC
MOE










611473
231
250
TCCCCACACCT
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
4985
5004
146





TCACTGGTC
MOE










611478
644
663
GCAGGATAAC
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9794
9813
260





AGATGAGTTA
MOE










611479
645
664
AGCAGGATAA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9795
9814
261





CAGATGAGTT
MOE










611481
655
674
TTCTACAGCTA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9805
9824
271





GCAGGATAA
MOE










611484
660
679
TACATTTCTAC
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9810
9829
276





AGCTAGCAG
MOE










611485
661
680
ATACATTTCTA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9811
9830
277





CAGCTAGCA
MOE










611488
124
143
GCTAGGCCAC
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
930
949
593





GCCGAGGTCC
MOE










611490
402
421
GTCAGCAGTCA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
8457
8476
666





CATTGCCCA
MOE










611494
671
690
GTTTATCAGGA
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9821
9840
728





TACATTTCT
MOE










611495
673
692
ATGTTTATCAG
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9823
9842
729





GATACATTT
MOE










611498
569
588
CAAGCCAAAC
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9719
9738
816





GACTTCCAGC
MOE










611499
664
683
AGGATACATTT
5-10-5
eeeeeddddddddddeeeee 
sooosssssssssssooos
9814
9833
822





CTACAGCTA
MOE










612912
621
637
CTCAGACTACA
Deoxy,
eeekkdddddddkkeee
soosssssssssooss 
9771
9787
1146





TCCAAG
MOE,











and cEt










612915
656
672
CTACAGCTAGC
Deoxy,
eeekkdddddddkkeee
soosssssssssooss
9806
9822
1164





AGGATA
MOE,











and cEt










612917
684
700
AGTGTTTAATG
Deoxy,
eeekkdddddddkkeee
soosssssssssooss 
9834
9850
1173





TTTATC
MOE,











and cEt










612919
621
637
CTCAGACTACA
Deoxy,
eekkddddddddkkeee
soosssssssssooss 
9771
9787
1146





TCCAAG
MOE,











and cEt










612923
656
672
CTACAGCTAGC
Deoxy,
eekkddddddddkkeee
soosssssssssooss
9806
9822
1164





AGGATA
MOE,











and cEt










612924
674
690
GTTTATCAGGA
Deoxy,
eekkddddddddkkeee
soosssssssssooss
9824
9840
1346





TACATT
MOE,











and cEt










612934
170
186
CCGTCGCCCTT
Deoxy,
eekkdddddddddkkee
sooosssssssssoss
976
992
969





CAGCAC
MOE,











and cEt










612935
585
601
CCCAATTACAC
Deoxy,
eekkdddddddddkkee
sooosssssssssoss 
9735
9751
1114





CACAAG
MOE,











and cEt










612940
659
675
TTTCTACAGCT
Deoxy,
eekkdddddddddkkee
sooosssssssssoss 
9809
9825
1167





AGCAGG
MOE,











and cEt










612942
668
684
CAGGATACATT
Deoxy,
eekkdddddddddkkee
sooosssssssssoss 
9818
9834
1344





TCTACA
MOE,











and cEt










612943
674
690
GTTTATCAGGA
Deoxy,
eekkdddddddddkkee
sooosssssssssoss 
9824
9840
1346





TACATT
MOE,











and cEt










666854
665
681
AGGATACATTT
5-9-5
eeeeedddddddddeeeee 
sooossssssssssooss
9815
9831
1428





CTACAGCT
MOE










666855
666
682
CAGGATACATT
5-9-5
eeeeedddddddddeeeee 
sooossssssssssooss
9816
9832
1461





TCTACAGC
MOE










666857
679
695
TTAATGTTTAT
Deoxy,
eeekddddddddkeeee
soosssssssssooss 
9829
9845
1351





CAGGAT
MOE,











and cEt










666858
679
695
TTAATGTTTAT
Deoxy,
eekkddddddddeeeee
soosssssssssooss 
9829
9845
1351





CAGGAT
MOE,











and cEt










666864
679
695
TTAATGTTTAT
Deoxy,
kekeddddddddeeeee
soosssssssssooss 
9829
9845
1351





CAGGAT
MOE,











and cEt










666865
679
695
TTAATGTTTAT
Deoxy,
eeeeddddddddekeke
soosssssssssooss
9829
9845
1351





CAGGAT
MOE,











and cEt










666866
684
700
AGTGTTTAATG
Deoxy,
eeekddddddddkeeee
soosssssssssooss
9834
9850
1173





TTTATC
MOE,











and cEt










666908
686
702
ACAGTGTTTAA
Deoxy,
eeeekdddddddkeeee
sooossssssssooss
9836
9852
1175





TGTTTA
MOE,











and cEt










666923
666
682
GGATACATTTC
Deoxy,
eeekddddddddkeeee
sooossssssssooss
9816
9832
1342





TACAGC
MOE,











and cEt









The modified oligonucleotides were tested in a series of experiments that had similar conditions. The results for each experiment are presented in separate tables shown below. Rats were injected intrathecally with 30 μL of a 16.67 mg/ml solution of modified oligonucleotide diluted in PBS (500 μg final dose). A control group of rats was injected intrathecally with PBS. Inhibition levels of SOD-1 in the lumbar spinal cord, thoracic spinal cord and cervical spinal cord were assessed. The data is presented below and indicate that several modified oligonucleotides inhibited human SOD-1 levels in this model.









TABLE 51







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















333611
5-10-5 MOE with
51
51
47
21



phosphorothioate



backbone chemistry


383872
5-10-5 MOE
29
36
26
21



with mixed



backbone chemistry


611460
5-10-5 MOE
55
53
25
1428



with mixed



backbone chemistry


611464
5-10-5 MOE
52
54
26
67



with mixed



backbone chemistry


611468
5-10-5 MOE
46
44
19
227



with mixed



backbone chemistry


611481
5-10-5 MOE
39
44
33
271



with mixed



backbone chemistry
















TABLE 52







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















611473
5-10-5 MOE
47
42
5
146



with mixed



backbone chemistry


611474
5-10-5 MOE
75
65
65
149



with mixed



backbone chemistry


611479
5-10-5 MOE
24
13
20
261



with mixed



backbone chemistry


611484
5-10-5 MOE
51
31
41
276



with mixed



backbone chemistry


611485
5-10-5 MOE
52
40
35
277



with mixed



backbone chemistry


611492
5-10-5 MOE
57
44
43
725



with mixed



backbone chemistry
















TABLE 53







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















611472
5-10-5 MOE
0
19
15
145



with mixed



backbone chemistry


611478
5-10-5 MOE
16
33
24
260



with mixed



backbone chemistry


611490
5-10-5 MOE
53
55
44
666



with mixed



backbone chemistry


611494
5-10-5 MOE
34
39
38
728



with mixed



backbone chemistry


611495
5-10-5 MOE
33
19
38
729



with mixed



backbone chemistry


611498
5-10-5 MOE
30
43
27
816



with mixed



backbone chemistry


611499
5-10-5 MOE
45
56
40
822



with mixed



backbone chemistry


611500
5-10-5 MOE
56
58
52
823



with mixed



backbone chemistry
















TABLE 54







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















611457
5-10-5 MOE
56
46
43
54



with mixed



backbone chemistry


611467
5-10-5 MOE
21
28
22
272



with mixed



backbone chemistry


611488
5-10-5 MOE
14
23
4
593



with mixed



backbone chemistry


612917
Deoxy, MOE, and cEt
47
55
37
1173



with mixed



backbone chemistry


612923
Deoxy, MOE, and cEt
53
63
45
1164



with mixed



backbone chemistry


612925
Deoxy, MOE, and cEt
67
69
63
1348



with mixed



backbone chemistry


612928
Deoxy, MOE, and cEt
84
85
81
1351



with mixed



backbone chemistry
















TABLE 55







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















612912
Deoxy, MOE, and cEt
59
60
48
1146



with mixed



backbone chemistry


612919
Deoxy, MOE, and cEt
60
60
58
1146



with mixed



backbone chemistry


612916
Deoxy, MOE, and cEt
72
69
69
1170



with mixed



backbone chemistry


612931
Deoxy, MOE, and cEt
81
79
72
1173



with mixed



backbone chemistry


612932
Deoxy, MOE, and cEt
21
26
24
1175



with mixed



backbone chemistry
















TABLE 56







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















612915
Deoxy, MOE, and cEt
54
48
52
1164



with mixed



backbone chemistry


612918
Deoxy, MOE, and cEt
73
69
64
1175



with mixed



backbone chemistry


612927
Deoxy, MOE, and cEt
82
75
62
1350



with mixed



backbone chemistry


612934
Deoxy, MOE, and cEt
59
44
48
969



with mixed



backbone chemistry


612935
Deoxy, MOE, and cEt
64
54
62
1114



with mixed



backbone chemistry


612940
Deoxy, MOE, and cEt
11
26
17
1167



with mixed



backbone chemistry


612941
Deoxy, MOE, and cEt
81
75
71
1342



with mixed



backbone chemistry


612942
Deoxy, MOE, and cEt
40
42
41
1344



with mixed



backbone chemistry


612943
Deoxy, MOE, and cEt
61
54
51
1346



with mixed



backbone chemistry


612944
Deoxy, MOE, and cEt
59
52
51
1348



with mixed



backbone chemistry
















TABLE 57







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats












ISIS




SEQ


No
Chemistry
Lumbar
Thoracic
Cervical
ID NO















612924
Deoxy, MOE, and cEt
42
64
53
1346



with mixed



backbone chemistry


612947
Deoxy, MOE, and cEt
68
75
74
1351



with mixed



backbone chemistry


612948
Deoxy, MOE, and cEt
80
90
87
1352



with mixed



backbone chemistry


612949
Deoxy, MOE, and cEt
73
82
85
1172



with mixed



backbone chemistry
















TABLE 58







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats











ISIS



SEQ


No
Chemistry
Lumbar
Cervical
ID NO














654304
5-8-5 MOE
28
6
1429



with mixed



backbone chemistry


654305
5-8-5 MOE
14
0
1430



with mixed



backbone chemistry


654306
5-8-5 MOE
36
0
1432



with mixed



backbone chemistry


654307
5-8-5 MOE
17
0
1432



with mixed



backbone chemistry
















TABLE 59







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats











ISIS



SEQ


No
Chemistry
Lumbar
Cervical
ID NO














654334
Deoxy, MOE, and cEt
39
19
1454



with mixed



backbone chemistry


666854
5-9-5 MOE
52
39
1428



with mixed



backbone chemistry


666855
5-9-5 MOE
37
17
1461



with mixed



backbone chemistry


666857
Deoxy, MOE, and cEt
59
39
1351



with mixed



backbone chemistry


666858
Deoxy, MOE, and cEt
38
22
1351



with mixed



backbone chemistry


666859
Deoxy, MOE, and cEt
79
64
1351



with mixed



backbone chemistry


666864
Deoxy, MOE, and cEt
50
40
1351



with mixed



backbone chemistry


666865
Deoxy, MOE, and cEt
73
44
1351



with mixed



backbone chemistry


666866
Deoxy, MOE, and cEt
67
56
1173



with mixed



backbone chemistry


666908
Deoxy, MOE, and cEt
38
13
1175



with mixed



backbone chemistry


666923
Deoxy, MOE, and cEt
45
26
1342



with mixed



backbone chemistry
















TABLE 60







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats











ISIS



SEQ


No
Chemistry
Lumbar
Cervical
ID NO














654323
Deoxy, MOE, and cEt
53
35
1433



with mixed



backbone chemistry


666846
5-10-5 MOE
64
50
725



with mixed



backbone chemistry


666849
5-10-5 MOE
63
55
725



with mixed



backbone chemistry


666853
5-10-5 MOE
81
74
725



with mixed



backbone chemistry


666861
Deoxy, MOE, and cEt
55
47
1351



with mixed



backbone chemistry


666867
Deoxy, MOE, and cEt
59
48
1173



with mixed



backbone chemistry


666869
Deoxy, MOE, and cEt
82
81
1173



with mixed



backbone chemistry


666870
Deoxy, MOE, and cEt
76
68
1173



with mixed



backbone chemistry


666919
Deoxy, MOE, and cEt
76
68
1342



with mixed



backbone chemistry


666921
Deoxy, MOE, and cEt
71
65
1342



with mixed



backbone chemistry


666922
Deoxy, MOE, and cEt
67
62
1342



with mixed



backbone chemistry
















TABLE 61







Percent inhibition of human SOD-1 in the


spinal cord regions of transgenic rats










ISIS


SEQ ID


No
Chemistry
Lumbar
NO













684059
Deoxy, MOE, and cEt
54
1348



with mixed



backbone chemistry


684064
Deoxy, MOE, and cEt
51
1348



with mixed



backbone chemistry


684068
4-8-5 MOE
18
1348



with mixed



backbone chemistry


684087
5-8-5 MOE
37
613



with mixed



backbone chemistry


684088
5-8-5 MOE
31
1419



with mixed



backbone chemistry


684095
5-10-5 MOE
34
21



with mixed



backbone chemistry


684097
5-8-7 MOE
22
21



with mixed



backbone chemistry


684101
6-8-6 MOE
22
47



with mixed



backbone chemistry


684104
6-9-5 MOE
11
47



with mixed



backbone chemistry









Example 13: Dose-Dependent Inhibition of Human SOD-1 with Modified Oligonucleotides in LLC-MK2 Cells

Gapmers from the studies described above, including benchmark compound ISIS 333611, exhibiting significant in vitro inhibition of SOD-1 mRNA were selected and tested at various doses in LLC-MK2 cells. The cross-reactivity of the human modified oligonucleotides tested in this study with the rhesus monkey genomic sequence (the complement of GENBANK Accession No. NW_001114168.1 truncated from nucleotides 2258000 to 2271000, designated herein as SEQ ID NO: 3) is shown in the Table below.









TABLE 62







Cross-reactivity of antisense oligonucleotides


targeting human SOD1with SEQ ID NO: 3









ISIS
Start Site of



No
SEQ ID NO: 3
Mismatches












333611
1572
2


436839
1564
0


436854
9049
0


436867
10347
0


666853
10375
1


666859
10389
1


666919
10376
1


666921
10376
1









Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.078 μM, 0.156 μM, 0.313 μM, 0.625 μM, 1.25 μM, 2.50 μM, 5.00 μM, and 10.000 μM concentrations of modified oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and SOD-1 mRNA levels were measured by quantitative real-time PCR Primer probe set RTS3121 (forward sequence TGGAGATAATACACAAGGCTGTACCA, designated herein as SEQ ID NO: 17; reverse sequence CAACATGCCTCTCTTCATCCTTT, designated herein as SEQ ID NO: 18; probe sequence ATCCTCTATCCAGACAACACGGTGGGC, designated herein as SEQ ID NO: 19) was used to measure mRNA levels. SOD-1 mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of SOD-1, relative to untreated control cells. The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. As presented in the Table, several of the newly designed oligonucleotides were more potent than the benchmark, ISIS 336611.









TABLE 63







Dose-dependent inhibition of SOD-1 rhesus monkey mRNA
















ISIS
0.078
0.156
0.313
0.625
1.25
2.50
5.00
10.00
IC50


No
μM
μM
μM
μM
μM
μM
μM
μM
(μM)



















333611
3
2
0
0
17
15
19
40
>10


436839
0
0
5
0
20
22
37
61
7.1


436854
34
34
40
39
52
65
69
84
1.2


436867
3
0
11
18
34
49
70
87
2.2


666853
7
34
20
39
60
80
79
92
1.0


666859
0
9
20
18
15
25
30
44
>10


666919
11
15
16
36
51
65
73
84
1.4


666921
0
13
28
37
50
52
62
74
1.8









Example 14: Tolerability of SOD-1 Modified Oligonucleotides in a Rat Model

Gapmers from the studies described above, including benchmark compound ISIS 333611, which was previously disclosed in WO 2005/040180, were tested for tolerability in Sprague-Dawley rats.


The modified oligonucleotides were tested in a series of experiments that had similar conditions. Rats were injected intrathecally with 3 mg of a single dose of ISIS oligonucleotide. A control group of rats was injected intrathecally with PBS. Acute tolerability was assessed 3 hours post-dose using a functional observational battery (FOB). This score is used to evaluate the acute tolerability of a compound with lower scores denoting better tolerated compounds. Control animals usually have a score of ‘0’ or ‘1’. At 3 hours post injection, the rats are observed by placing each rat on the cage top and evaluating certain functions, assigning a number of ‘0’ or ‘1’ depending on whether the rat exhibits normal function in the region of interest (0) or does not (1) for each function, and then adding the total scores. Seven regions are assessed, including tail, hind paws, hind legs, hind end, front posture, fore paws, and head. The results of the scoring are presented in the Table below. As presented in the Table, several newly designed oligonucleotides demonstrated more acute tolerability compared to the benchmark, ISIS 333611.









TABLE 64







FOB scores in Sprague-Dawley rats













Target Start





ISIS
Site on SEQ

FOB



No
ID NO: 1
Chemistry
score
















333611
167
5-10-5 MOE with
4





phosphorothioate backbone



684073
167
Deoxy, MOE, and cEt with
3





mixed backbone



684081
167
Deoxy, MOE, and cEt with
1





mixed backbone



684088
167
5-8-5 MOE with mixed
0





backbone



684093
167
5-9-5 MOE with mixed
0





backbone



684095
167
5-10-5 MOE with mixed
0





backbone



684096
167
6-8-6 MOE with mixed
0





backbone



684097
167
5-8-7 MOE with mixed
0





backbone



684098
167
7-8-5 MOE with mixed
0





backbone



684099
167
6-9-5 MOE with mixed
0





backbone



684074
168
Deoxy, MOE, and cEt with
0





mixed backbone



684082
168
Deoxy, MOE, and cEt with
1





mixed backbone



684089
168
5-8-5 MOE with mixed
0





backbone



684094
168
5-9-5 MOE with mixed
1





backbone



684075
169
Deoxy, MOE, and cEt with
3





mixed backbone



684083
169
Deoxy, MOE, and cEt with
3





mixed backbone



684090
169
5-8-5 MOE with mixed
2





backbone



684076
170
Deoxy, MOE, and cEt with
2





mixed backbone



684084
170
Deoxy, MOE, and cEt with
4





mixed backbone



611474
234
5-10-5 MOE with mixed
4





backbone



654301
234
5-8-5 MOE with mixed
3





backbone



654302
235
5-8-5 MOE with mixed
1





backbone



654303
236
5-8-5 MOE with mixed
0





backbone



684069
588
Deoxy, MOE, and cEt with
0





mixed backbone



684077
588
Deoxy, MOE, and cEt with
1





mixed backbone



684085
588
5-8-5 MOE with mixed
0





backbone



684091
588
5-9-5 MOE with mixed
0





backbone



684100
588
5-10-5 MOE with mixed
0





backbone



684101
588
6-8-6 MOE with mixed
0





backbone



684102
588
5-8-7 MOE with mixed
0





backbone



684103
588
7-8-5 MOE with mixed
0





backbone



684104
588
6-9-5 MOE with mixed
0





backbone



684070
589
Deoxy, MOE, and cEt with
0





mixed backbone



684078
589
Deoxy, MOE, and cEt with
0





mixed backbone



684086
589
5-8-5 MOE with mixed
0





backbone



684092
589
5-9-5 MOE with mixed
0





backbone



684071
590
Deoxy, MOE, and cEt with
0





mixed backbone



684079
590
Deoxy, MOE, and cEt with
0





mixed backbone



684087
590
5-8-5 MOE with mixed
0





backbone



684072
591
Deoxy, MOE, and cEt with
1





mixed backbone



684080
591
Deoxy, MOE, and cEt with
1





mixed backbone



654304
663
5-8-5 MOE with mixed
3





backbone



612916
664
Deoxy, MOE, and cEt with
0





mixed backbone



654305
664
5-8-5 MOE with mixed
2





backbone



611492
665
5-10-5 MOE with mixed
0





backbone



654306
665
5-8-5 MOE with mixed
3





backbone



654323
665
Deoxy, MOE, and cEt with
0





mixed backbone



654341
665
Deoxy, MOE, and cEt with
0





mixed backbone



666846
665
5-10-5 MOE with mixed
0





backbone



666849
665
5-10-5 MOE with mixed
0





backbone



666851
665
5-10-5 MOE with mixed
1





backbone



666853
665
5-10-5 MOE with mixed
0





backbone



666854
665
5-9-5 MOE with mixed
1





backbone



611500
666
5-10-5 MOE with mixed
0





backbone



612941
666
Deoxy, MOE, and cEt with
3





mixed backbone



654307
666
5-8-5 MOE with mixed
2





backbone



654342
666
Deoxy, MOE, and cEt with
2





mixed backbone



666845
666
5-10-5 MOE with mixed
0





backbone



666848
666
5-10-5 MOE with mixed
1





backbone



666850
666
5-10-5 MOE with mixed
0





backbone



666852
666
5-10-5 MOE with mixed
1





backbone



666855
666
5-9-5 MOE with mixed
1





backbone



666917
666
Deoxy, MOE, and cEt with
3





mixed backbone



666918
666
Deoxy, MOE, and cEt with
3





mixed backbone



666919
666
Deoxy, MOE, and cEt with
2





mixed backbone



666920
666
Deoxy, MOE, and cEt with
1





mixed backbone



666921
666
Deoxy, MOE, and cEt with
2





mixed backbone



666922
666
Deoxy, MOE, and cEt with
3





mixed backbone



666923
666
Deoxy, MOE, and cEt with
2





mixed backbone



666856
667
5-9-5 MOE with mixed
3





backbone



612925
676
Deoxy, MOE, and cEt with
4





mixed backbone



684059
676
Deoxy, MOE, and cEt with
4





mixed backbone



684060
676
Deoxy, MOE, and cEt with
3





mixed backbone



684061
676
Deoxy, MOE, and cEt with
4





mixed backbone



684062
676
Deoxy, MOE, and cEt with
4





mixed backbone



684063
676
Deoxy, MOE, and cEt with
5





mixed backbone



684064
676
Deoxy, MOE, and cEt with
4





mixed backbone



684065
676
Deoxy, MOE, and cEt with
4





mixed backbone



684066
676
Deoxy, MOE, and cEt with
4





mixed backbone



684067
676
Deoxy, MOE, and cEt with
5





mixed backbone



684068
676
4-8-5 MOE with mixed
4





backbone



612927
678
Deoxy, MOE, and cEt with
4





mixed backbone



654309
678
5-8-5 MOE with mixed
4





backbone



612928
679
Deoxy, MOE, and cEt with
2





mixed backbone



612947
679
Deoxy, MOE, and cEt with
7





mixed backbone



654310
679
5-8-5 MOE with mixed
3





backbone



666857
679
Deoxy, MOE, and cEt with
1





mixed backbone



666858
679
Deoxy, MOE, and cEt with
1





mixed backbone



666859
679
Deoxy, MOE, and cEt with
1





mixed backbone



666860
679
Deoxy, MOE, and cEt with
0





mixed backbone



666861
679
Deoxy, MOE, and cEt with
5





mixed backbone



666862
679
Deoxy, MOE, and cEt with
1





mixed backbone



666863
679
Deoxy, MOE, and cEt with
4





mixed backbone



666864
679
Deoxy, MOE, and cEt with
4





mixed backbone



666865
679
Deoxy, MOE, and cEt with
5





mixed backbone



611497
681
5-10-5 MOE with mixed
5





backbone



612948
681
Deoxy, MOE, and cEt with
3





mixed backbone



666847
681
5-10-5 MOE with mixed
7





backbone



612949
683
Deoxy, MOE, and cEt with
4





mixed backbone



612931
684
Deoxy, MOE, and cEt with
4





mixed backbone



666866
684
Deoxy, MOE, and cEt with
6





mixed backbone



666867
684
Deoxy, MOE, and cEt with
6





mixed backbone



666868
684
Deoxy, MOE, and cEt with
6





mixed backbone



666869
684
Deoxy, MOE, and cEt with
6





mixed backbone



666870
684
Deoxy, MOE, and cEt with
6





mixed backbone



666871
684
Deoxy, MOE, and cEt with
6





mixed backbone



666872
684
Deoxy, MOE, and cEt with
6





mixed backbone



666873
684
Deoxy, MOE, and cEt with
6





mixed backbone



666874
684
Deoxy, MOE, and cEt with
5





mixed backbone



612918
686
Deoxy, MOE, and cEt with
4





mixed backbone



612932
686
Deoxy, MOE, and cEt with
2





mixed backbone



666906
686
Deoxy, MOE, and cEt with
2





mixed backbone



666907
686
Deoxy, MOE, and cEt with
3





mixed backbone



666908
686
Deoxy, MOE, and cEt with
1





mixed backbone



666909
686
Deoxy, MOE, and cEt with
0





mixed backbone



666910
686
Deoxy, MOE, and cEt with
2





mixed backbone



666911
686
Deoxy, MOE, and cEt with
0





mixed backbone



666912
686
Deoxy, MOE, and cEt with
0





mixed backbone



666913
686
Deoxy, MOE, and cEt with
0





mixed backbone



666914
686
Deoxy, MOE, and cEt with
0





mixed backbone



666915
686
Deoxy, MOE, and cEt with
1





mixed backbone



666916
686
Deoxy, MOE, and cEt with
1





mixed backbone



654318
687
5-8-5 MOE with mixed
1





backbone



654334
687
Deoxy, MOE, and cEt with
3





mixed backbone










Tolerability was also assessed 8 weeks post-dose by measuring the levels of IBA1, a microglial marker, and GFAP, an astrocytic marker, in the lumbar spinal cord region. Both IBA1 and GFAP are markers of CNS inflammation (Frank, M G, Brain Behav. Immun. 2007, 21, 47-59), hence the higher the level of either marker, the less tolerable the antisense oligonucleotide is deemed to be in this rat model.


IBA1 mRNA levels were measured with primer probe set rAIF1_LTS00219 (forward sequence AGGAGAAAAACAAAGAACACCAGAA, designated herein as SEQ ID NO: 5; reverse sequence CAATTAGGGCAACTCAGAAATAGCT, designated herein as SEQ ID NO: 6; probe sequence CCAACTGGTCCCCCAGCCAAGA, designated herein as SEQ ID NO: 7). GFAP mRNA levels were measured with primer probe set mGFAP_LTS00370 (forward sequence GAAACCAGCCTGGACACCAA, designated herein as SEQ ID NO: 8; reverse sequence TCCACAGTCTTTACCACGATGTTC, designated herein as SEQ ID NO: 9; probe sequence TCCGTGTCAGAAGGCCACCTCAAGA, designated herein as SEQ ID NO: 10).


The results are presented in the Table below. As presented in the Table, several newly designed oligonucleotides were more tolerable compared to the benchmark, ISIS 333611.









TABLE 65







IBA1 and GFAP mRNA levels (% control) in


the lumbar regions of Sprague-Dawley rats









ISIS No.
IBA1
GFAP












333611
341
314


654301
149
137


654302
261
129


654303
110
80


654304
143
130


654305
185
158


654306
110
106


654307
152
144


654309
195
169


654310
119
141


654318
93
81


654323
125
113


654334
114
75


654341
209
224


654342
473
485


666845
389
416


666846
173
171


666847
271
297


666848
399
377


666849
140
150


666850
246
252


666851
246
199


666852
282
266


666853
168
147


666854
135
123


666855
238
221


666856
253
209


666857
242
182


666858
169
134


666859
185
162


666861
161
152


666862
254
285


666863
216
185


666864
174
154


666865
251
232


666866
281
135


666867
132
112


666868
199
211


666869
262
207


666870
201
189


666871
192
214


666872
441
136


666873
340
277


666874
204
199


666917
292
244


666919
115
85


666920
155
102


666921
108
82


666922
123
82


666923
118
93


684059
168
162


684060
158
141


684061
335
263


684062
218
265


684064
191
168


684065
245
304


684066
313
376


684067
171
151


684068
157
135


684085
459
586


684086
187
227


684087
215
263


684088
151
183


684089
507
667


684090
130
170


684091
350
426


684092
366
333


684093
412
264


684094
294
373


684095
213
215


684096
404
335


684097
217
206


684098
378
438


684099
534
473


684100
276
259


684101
153
125


684102
237
242


684103
588
416


684104
221
193









Example 15: Dose Dependent Inhibition of Human SOD-1 in a Transgenic Rat Model

Gapmers from the studies described above, including benchmark compound ISIS 333611, were tested in an SOD-1 transgenic rat model (Taconic, Cat #2148-F and 2148-M). These hemizygous rats express mutant human SOD-1 in the spinal cord, many brain regions, and peripheral organs. Rats were injected intrathecally with 10, 30, 100, 300, 1000, or 3000 μg of a gapmer listed in the table below or with only PBS. Two weeks later, the animals were sacrificed. Inhibition of SOD-1 mRNA in the lumbar spinal cord, cervical spinal cord, rostral cortex, and caudal cortex was assessed by RT-PCR using primer probe set RTS3898, described in Example 1. The data is presented below as ED50 values, and indicates that the oligonucleotides inhibited SOD1 mRNA in multiple CNS tissues more potently than Isis 333611. Indeed, ED50 values for Isis No. 333611 could not even be calculated, as indicated by an entry of “n/a,” because even the highest concentration tested (3000 μg) did not inhibit SOD-1 mRNA greater than 55-65%. “n.d.” indicates that there is no data available for the indicated sample.









TABLE 66







Inhibition of human SOD1 in transgenic rats










ED50 (μg)













Isis No.
Lumbar
Cervical
Rostral
Caudal
SEQ ID NO.















333611
n/a
n/a
n.d.
n.d.
21


666853
81.3
242.6
6434
931
725


666859
74.0
358.8
2360
1113
1351


666870
139.4
1111
5511
2105
1173


666919
104.1
613.5
>6000
2655
1342









Example 16: Tolerability of SOD-1 Modified Oligonucleotides in Rats

Gapmers from the studies described above, including benchmark compound ISIS 333611, were tested for tolerability in Sprague-Dawley rats. Groups of 4 to 6 rats were injected intrathecally with 1 mg or 3 mg of a single dose of an ISIS oligonucleotide. A control group of rats was injected intrathecally with PBS. Acute tolerability was assessed 3 hours post-dose, as described in Example 14. The results for the 1 mg dose are the averages for each group following one experiment. The results for the 3 mg dose are the averages for each group across two replicate experiments. The results of the study, presented in the table below, indicate that several newly designed oligonucleotides were more tolerable than the benchmark, ISIS 333611.









TABLE 67







FOB values











Isis
3 hour FOB

8 week FOB












No.
1 mg
3 mg
1 mg
3 mg














333611
3.0
4.9
0.0
1.2


666853
0.0
0.5
0.0
0.0


666859
0.0
2.1
0.0
0.3


666870
2.3
5.8
0.0
0.8


666919
1.3
3.5
0.0
0.1









Example 17: Dose Dependent Inhibition of Human SOD-1 in a Transgenic Mouse Model

In order to confirm the results obtained in transgenic rats in another species, gapmers from the studies described above were tested in an SOD-1 transgenic mouse model that expresses the same G93A human mutant SOD1 gene that the transgenic rat expresses (see Examples 12 and 15).


Mice received an intracerebral ventricular bolus (ICVB) of 10, 30, 100, 300, or 700 μg of a gapmer listed in the table below, or PBS. Two weeks later, the animals were sacrificed. Inhibition of SOD-1 mRNA in the lumbar spinal cord and cortex was assessed by RT-PCR using primer probe set RTS3898, described in Example 1. The data is presented below as ED50 values, and indicates that the oligonucleotides inhibited SOD1 mRNA more potently than Isis 333611 in both rats and mice.









TABLE 68







Inhibition of human SOD1 in transgenic mice









Isis No.
Lumbar ED50 (μg)
Cortex ED50 (μg)












333611
401
786


666853
136
188


666859
106
206


666870
148
409


666919
168
1211









Example 18: Tolerability of SOD-1 Modified Oligonucleotides in Mice

Gapmers from the studies described above, including benchmark compound ISIS 333611, were tested for tolerability in C57bl6 mice. Mice were injected stereotaxically into the cerebral ventricles with 700 ug of a single dose of ISIS oligonucleotide. A control group of mice was injected into the cerebral ventricle with PBS. Acute tolerability was assessed at 3 hours post injection using a functional observation battery (FOB) different from that used for the rats. Each mouse was evaluated according to 7 different criteria. The 7 criteria are (1) the mouse was bright, alert, and responsive; (2) the mouse was standing or hunched without stimuli; (3) the mouse shows any movement without stimuli (4) the mouse demonstrates forward movement after its lifted; (5) the mouse demonstrates any movement after its lifted; (6) the mouse responds to a tail pinch; (7) regular breathing. For each of the 7 different criteria, each mouse was given a sub-score of 0 if it met the criteria or 1 if it did not. After all of the 7 criteria were evaluated, the sub-scores were summed for each mouse and then averaged for each group. For example, if a mouse was bright, alert, and responsive 3 hours after the 700 μg ICV dose, and met all other other criteria, it would get a summed score of 0. If another mouse was not bright, alert, and responsive 3 hours after the 700 μg ICV dose but met all other criteria, it would receive a score of 1. Saline treated mice generally receive a score of 0. A score at the top end of the range would be suggestive of acute toxicity.


Bodyweights were measured throughout the study and are reported below as percent change at 8 weeks relative to baseline. Long term tolerability was assessed 8 weeks post-dose by measuring the levels of IBA1 and GFAP, as described in Example 14. IBA1 and GFAP mRNA levels are reported relative to PBS treated animals. The results of the study, presented in the tables below, indicate that several newly designed oligonucleotides were more tolerable, in rats and mice, compared to the benchmark, ISIS 333611.









TABLE 69







FOB values and body weight change









Isis No.
3 hour FOB
Body weight (% change)












333611
6.5
3.8


666853
1.25
8.0


666859
1.75
14.0


666870
4.75
7.3


666919
0.0
5.2
















TABLE 70







Inflammation markers











Isis
IBA1 (% PBS)

GFAP (% PBS)












No.
Lumbar
Cortex
Lumbar
Cortex














333611
130.3
134.3
117.5
207.7


666853
102.8
109.3
103.3
103.7


666859
110.4
98.2
109.0
72.8


666870
158.8
117.8
106.7
128.6


666919
115.0
97.9
99.8
84.3









Example 19: Dose Dependent Inhibition of Monkey SOD-1 in Cynomolgus Monkey

Isis No. 666853 was tested in cynomolgus monkey. There is one mismatch between Isis No. 666853 and cynomolgus monkey SOD-1, and there are 17 contiguous bases in Isis No. 666853 that are 100% complementary to cynomolgus monkey SOD-1.


Groups of 6-10 male and female monkeys received an intrathecal lumbar bolus of PBS or 4, 12, or 35 mg of Isis No. 666853 on days 1, 14, 28, 56, and 84 of the study. Each group received the same dose on all five dosing days. On day 91, the animals were sacrificed. Inhibition of SOD-1 mRNA in the lumbar, thoracic, and cervical spinal cord and frontal cortex, motor cortex, hippocampus, pons, and cerebellum was assessed by RT-PCR using primer probe set RTS3898. The data is presented below as the average percent inhibition for each treatment group, relative to the PBS treated group. The results indicate that Isis No. 666853 inhibited SOD-1 mRNA in multiple target tissues in cynomolgus monkey.


Treatment with 666853 was well tolerated for the duration of the 13 week study and there were no clinical observations of adverse reactions in monkeys.









TABLE 71







Inhibition of SOD-1 mRNA in monkeys








Amount
Inhibition (%)















of 666853



Frontal
Motor





per dose (mg)
Lumbar
Thoracic
Cervical
cortex
cortex
Hippocampus
Pons
Cerebellum


















4
44.4
27.1
20.1
21.5
21.6
32.0
6.8
15.4


12
75.4
69.0
42.1
56.7
55.7
31.8
13.2
33.3


35
87.0
74.8
72.1
80.5
82.6
80.1
48.6
48.4








Claims
  • 1. A method for treating a superoxide dismutase 1 (SOD1) associated neurodegenerative disorder in a human subject in need thereof, the method comprising administering to the human subject a therapeutically effective amount of a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent; and an antisense oligonucleotide having the following formula: 5′-mCes Aeo Ges Geo Aes Tds Ads mCds Ads Tds Tds Tds mCds Tds Ads mCeo Aes Geo mCes Te -3′ (nucleobase sequence of SEQ ID NO: 725); wherein, A=an adenine,mC=a 5-methylcytosine,G=a guanine,T=a thymine,e=a 2′-O-methoxyethylribose modified sugar,d=a 2′-deoxyribose sugar,s=a phosphorothioate internucleoside linkage, ando=a phosphodiester internucleoside linkage; or a pharmaceutically acceptable salt thereof.
  • 2. The method of claim 1, wherein the pharmaceutically acceptable carrier or diluent is a sterile aqueous solution.
  • 3. The method of claim 1, wherein the pharmaceutically acceptable carrier or diluent is phosphate buffered saline (PBS).
  • 4. The method of claim 1, wherein the pharmaceutical composition is administered intrathecally.
  • 5. The method of claim 1, wherein the SOD1 associated neurodegenerative disorder is amyotrophic lateral sclerosis (ALS) associated with a mutation in the SOD1 gene.
  • 6. The method of claim 5, wherein the mutation is a missense mutation.
  • 7. The method of claim 5, wherein the mutation is a gain of function mutation.
  • 8. The method of claim 5, wherein the ALS is familial SOD1 associated ALS.
  • 9. The method of claim 5, wherein the ALS is sporadic SOD1 associated ALS.
  • 10. The method of claim 5, wherein the pharmaceutical composition is administered intrathecally.
  • 11. The method of claim 8, wherein the pharmaceutical composition is administered intrathecally.
  • 12. The method of claim 9, wherein the pharmaceutical composition is administered intrathecally.
  • 13. A method for treating a superoxide dismutase 1 (SOD1) associated neurodegenerative disorder in a human subject in need thereof, the method comprising administering to the human subject a therapeutically effective amount of a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent; and an antisense oligonucleotide according to the following formula:
  • 14. The method of claim 13, wherein the pharmaceutically acceptable carrier or diluent is a sterile aqueous solution.
  • 15. The method of claim 13, wherein the pharmaceutically acceptable carrier or diluent is PBS.
  • 16. The method of claim 13, wherein the pharmaceutical composition is administered intrathecally.
  • 17. The method of claim 13, wherein the SOD1 associated neurodegenerative disorder is amyotrophic lateral sclerosis (ALS) associated with a mutation in the SOD1 gene.
  • 18. The method of claim 17, wherein the mutation is a missense mutation.
  • 19. The method of claim 17, wherein the mutation is a gain of function mutation.
  • 20. The method of claim 17, wherein the ALS is familial SOD1 associated ALS.
  • 21. The method of claim 17, wherein the ALS is sporadic SOD1 associated ALS.
  • 22. The method of claim 17, wherein the pharmaceutical composition is administered intrathecally.
  • 23. The method of claim 20, wherein the pharmaceutical composition is administered intrathecally.
  • 24. The method of claim 21, wherein the pharmaceutical composition is administered intrathecally.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the benefit of priority of U.S. application Ser. No. 16/513,297, filed Jul. 16, 2019 (now U.S. Pat. No. 10,669,546), which is a divisional of U.S. application Ser. No. 15/301,004 filed Sep. 30, 2016 (now U.S. Pat. No. 10,385,341), which is U.S. national stage application of PCT/US2015/023934, filed Apr. 1, 2015, which in turn claims the benefit of priority of U.S. Provisional Appl. No. 61/973,803 filed Apr. 1, 2014. The contents of each of these applications are incorporated by reference herein in their entirety.

US Referenced Citations (244)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
4415732 Caruthers et al. Nov 1983 A
4469863 Ts'o et al. Sep 1984 A
4476301 Imbach et al. Oct 1984 A
4500707 Caruthers et al. Feb 1985 A
4725677 Koster et al. Feb 1988 A
4845205 Huynh Dinh et al. Jul 1989 A
4973679 Caruthers et al. Nov 1990 A
4981957 Lebleu et al. Jan 1991 A
5013830 Ohutsuka et al. May 1991 A
5023243 Tullis Jun 1991 A
5034506 Summerton et al. Jul 1991 A
5118800 Smith et al. Jun 1992 A
5130302 Spielvogel et al. Jul 1992 A
5132418 Caruthers et al. Jul 1992 A
5134066 Rogers et al. Jul 1992 A
RE34036 McGeehan Aug 1992 E
5149797 Pederson et al. Sep 1992 A
5166315 Summerton et al. Nov 1992 A
5175273 Bischofberger et al. Dec 1992 A
5177196 Meyers, Jr. et al. Jan 1993 A
5177198 Spielvogel et al. Jan 1993 A
5188897 Suhadolnik et al. Feb 1993 A
5194599 Froehler et al. Mar 1993 A
5214134 Weis et al. May 1993 A
5216141 Benner Jun 1993 A
5220007 Pederson et al. Jun 1993 A
5223618 Cook et al. Jun 1993 A
5235033 Summerton et al. Aug 1993 A
5256775 Froehler Oct 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5264564 Matteucci Nov 1993 A
5185444 Summerton et al. Dec 1993 A
5276019 Cohen et al. Jan 1994 A
5286717 Cohen et al. Feb 1994 A
5319080 Leumann Jun 1994 A
5321131 Agrawal et al. Jun 1994 A
5359044 Cook et al. Oct 1994 A
5366878 Pederson et al. Nov 1994 A
5367066 Urdea et al. Nov 1994 A
5378825 Cook et al. Jan 1995 A
5386023 Sanghvi et al. Jan 1995 A
5393878 Leumann Feb 1995 A
5399676 Froehler Mar 1995 A
5403711 Walder et al. Apr 1995 A
5405938 Summerton et al. Apr 1995 A
5405939 Suhadolnik et al. Apr 1995 A
5432272 Benner Jul 1995 A
5434257 Matteucci Jul 1995 A
5446137 Maag et al. Aug 1995 A
5453496 Caruthers et al. Sep 1995 A
5455233 Spielvogel et al. Oct 1995 A
5457187 Gmelner et al. Oct 1995 A
5457191 Cook et al. Oct 1995 A
5459255 Cook et al. Oct 1995 A
5466677 Baxter et al. Nov 1995 A
5466786 Burh et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5476925 Letsinger et al. Dec 1995 A
5484908 Froehler et al. Jan 1996 A
5489677 Sanghvi et al. Feb 1996 A
5491133 Walder et al. Feb 1996 A
5502177 Matteucci et al. Mar 1996 A
5508270 Baxter et al. Apr 1996 A
5514785 Van Ness et al. May 1996 A
5519126 Hecht May 1996 A
5519134 Acevedo et al. May 1996 A
5525711 Hawkins et al. Jun 1996 A
5527899 Froehler Jun 1996 A
5536638 Rossau et al. Jul 1996 A
5536821 Agrawal et al. Jul 1996 A
5541306 Agrawal et al. Jul 1996 A
5541307 Cook et al. Jul 1996 A
5550111 Suhadolnik et al. Aug 1996 A
5552540 Haralambidis Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5563253 Agrawal et al. Oct 1996 A
5565350 Kmiec Oct 1996 A
5565555 Froehler et al. Oct 1996 A
5567811 Mistura et al. Oct 1996 A
5571799 Tkachuk et al. Nov 1996 A
5576427 Cook et al. Nov 1996 A
5587361 Cook et al. Dec 1996 A
5587469 Cook et al. Dec 1996 A
5587470 Cook et al. Dec 1996 A
5591722 Montgomery et al. Jan 1997 A
5594121 Froehler et al. Jan 1997 A
5596086 Matteucci Jan 1997 A
5596091 Switzer Jan 1997 A
5597909 Urdea et al. Jan 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610289 Cook et al. Mar 1997 A
5610300 Altmann et al. Mar 1997 A
5614617 Cook et al. Mar 1997 A
5618704 Sanghvi et al. Apr 1997 A
5623065 Cook et al. Apr 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5627053 Usman et al. May 1997 A
5633360 Bischofberger et al. May 1997 A
5639873 Barascut et al. Jun 1997 A
5645985 Froehler et al. Jul 1997 A
5646265 McGee Jul 1997 A
5646269 Matteucci Jul 1997 A
5652355 Metelev et al. Jul 1997 A
5652356 Agrawal et al. Jul 1997 A
5663312 Chaturvedula Sep 1997 A
5670633 Cook et al. Sep 1997 A
5672697 Burh et al. Sep 1997 A
5677437 Teng et al. Oct 1997 A
5677439 Weis et al. Oct 1997 A
5681941 Cook et al. Oct 1997 A
5698685 Summerton et al. Dec 1997 A
5700920 Altmann et al. Dec 1997 A
5700922 Cook Dec 1997 A
5721218 Froehler Feb 1998 A
5750692 Cook et al. May 1998 A
5763588 Matteucci et al. Jun 1998 A
5792608 Swaminathan et al. Aug 1998 A
5792847 Burh et al. Aug 1998 A
5801154 Baracchini et al. Sep 1998 A
5808027 Cook et al. Sep 1998 A
5830653 Froehler et al. Nov 1998 A
5843641 Brown et al. Dec 1998 A
5849290 Brown et al. Dec 1998 A
5859221 Cook et al. Jan 1999 A
5948903 Cook et al. Sep 1999 A
5994076 Chenchik et al. Nov 1999 A
5994517 Ts'O et al. Nov 1999 A
5998148 Bennett et al. Dec 1999 A
6005087 Cook et al. Dec 1999 A
6005096 Matteucci et al. Dec 1999 A
6077833 Bennett et al. Jun 2000 A
6166199 Cook et al. Dec 2000 A
6194150 Stinchcomb et al. Feb 2001 B1
6300319 Manoharan Oct 2001 B1
6303374 Zhang et al. Oct 2001 B1
6352829 Chenchik et al. Mar 2002 B1
6426220 Bennett et al. Jul 2002 B1
6525191 Ramasamy Feb 2003 B1
6531584 Cook et al. Mar 2003 B1
6582908 Fodor et al. Jun 2003 B2
6600032 Manoharan et al. Jul 2003 B1
6660720 Manoharan Dec 2003 B2
6784290 Monia et al. Aug 2004 B1
7015315 Cook et al. Mar 2006 B1
7053199 Imanishi et al. May 2006 B2
7053207 Wengel et al. May 2006 B2
7060809 Wengel et al. Jun 2006 B2
7054125 Wengel Aug 2006 B2
7101993 Cook et al. Sep 2006 B1
7132530 Bennett et al. Nov 2006 B2
7217805 Imanishi et al. May 2007 B2
7262177 Ts'o et al. Aug 2007 B2
7314923 Kaneko et al. Jan 2008 B2
7399845 Seth et al. Jul 2008 B2
7427672 Imanishi et al. Sep 2008 B2
7491805 Vargeese et al. Feb 2009 B2
7547684 Seth et al. Jun 2009 B2
7569686 Bhat et al. Aug 2009 B1
7622455 Bennett et al. Nov 2009 B2
7632938 Khvorova et al. Dec 2009 B2
7655785 Bentwich Feb 2010 B1
7666854 Seth et al. Feb 2010 B2
7678895 Bennett et al. Mar 2010 B2
7696345 Allerson et al. Apr 2010 B2
7723509 Manoharan et al. May 2010 B2
7741457 Swayze et al. Jun 2010 B2
7750131 Seth et al. Jul 2010 B2
7875733 Bhat et al. Jan 2011 B2
7888497 Bentwich et al. Feb 2011 B2
7902163 Bennett et al. Mar 2011 B2
7939677 Bhat et al. May 2011 B2
8022193 Swayze et al. Sep 2011 B2
8030467 Seth et al. Oct 2011 B2
8039610 Khvorova et al. Oct 2011 B2
8080644 Wengel et al. Dec 2011 B2
8088746 Seth et al. Jan 2012 B2
8088904 Swayze et al. Jan 2012 B2
8106022 Manoharan et al. Jan 2012 B2
8124745 Allerson et al. Feb 2012 B2
8153365 Wengel et al. Apr 2012 B2
8268980 Seth et al. Sep 2012 B2
8278283 Seth et al. Oct 2012 B2
8278425 Prakash et al. Oct 2012 B2
8278426 Seth et al. Oct 2012 B2
8440803 Swayze et al. May 2013 B2
8501805 Seth et al. Aug 2013 B2
8530640 Seth et al. Sep 2013 B2
8546556 Seth et al. Oct 2013 B2
8575123 Manoharan et al. Nov 2013 B2
RE44779 Imanishi et al. Feb 2014 E
8828956 Manoharan et al. Sep 2014 B2
8921331 Bennett et al. Dec 2014 B2
8993529 Bennett et al. Mar 2015 B2
9005906 Swayze et al. Apr 2015 B2
9012421 Migawa et al. Apr 2015 B2
9102938 Rajeev et al. Aug 2015 B2
9127276 Prakash et al. Aug 2015 B2
9290760 Rajeev et al. Mar 2016 B2
9476051 Bennett et al. Oct 2016 B2
10385341 Swayze et al. Aug 2019 B2
20010053519 Fodor et al. Dec 2001 A1
20020156040 Oberley et al. Oct 2002 A1
20030158403 Manoharan et al. Aug 2003 A1
20030175906 Manoharan et al. Sep 2003 A1
20030228597 Cowsert et al. Dec 2003 A1
20040091919 Bennett et al. May 2004 A1
20040171570 Allerson et al. Sep 2004 A1
20040192629 Xu et al. Sep 2004 A1
20040241651 Olek et al. Dec 2004 A1
20050019915 Bennett et al. Jan 2005 A1
20050118625 Mounts Jun 2005 A1
20050130923 Bhat et al. Jun 2005 A1
20050244851 Blume et al. Nov 2005 A1
20050261218 Esau et al. Nov 2005 A1
20060148740 Platenburg Jul 2006 A1
20060229268 Benjamin et al. Oct 2006 A1
20060293269 Bennett et al. Dec 2006 A1
20070031844 Khvorova et al. Feb 2007 A1
20070054869 Bennett et al. Mar 2007 A1
20070117772 Bennett et al. May 2007 A1
20080039618 Allerson et al. Feb 2008 A1
20090130195 Acevedo-Duncan et al. May 2009 A1
20100081705 Bennett et al. Apr 2010 A1
20100190837 Migawa et al. Jul 2010 A1
20100197762 Swayze et al. Aug 2010 A1
20110039914 Pavco et al. Feb 2011 A1
20110191912 Alexandrov et al. Aug 2011 A1
20120029049 Bennett et al. Feb 2012 A1
20120214865 Bennett et al. Aug 2012 A1
20130130378 Manoharan et al. May 2013 A1
20130053430 Bell et al. Aug 2013 A1
20130323836 Manoharan et al. Dec 2013 A1
20140107330 Freier et al. Apr 2014 A1
20150078540 Prakash et al. Jan 2015 A1
20150167008 Bennett et al. Jun 2015 A1
20150184153 Freier et al. Jul 2015 A1
20150191727 Migawa et al. Jul 2015 A1
20150267195 Seth et al. Sep 2015 A1
20150275212 Albaek et al. Oct 2015 A1
20200040342 Swayze et al. Feb 2020 A1
Foreign Referenced Citations (25)
Number Date Country
2451643 Nov 2012 CA
103582648 Feb 2014 CN
2221376 Nov 2012 EP
2270024 Oct 2018 EP
WO 199005181 May 1990 WO
WO 199419493 Sep 1994 WO
WO 199726270 Jul 1997 WO
WO 199731012 Aug 1997 WO
WO 200203979 Jan 2002 WO
WO 2002044321 Jun 2002 WO
WO 2002057414 Jul 2002 WO
WO 2003000707 Jan 2003 WO
WO 2003004602 Jan 2003 WO
WO 2005040180 Jun 2005 WO
WO 2006066203 Jun 2006 WO
WO 2007092182 Aug 2007 WO
WO 2009102427 Aug 2009 WO
WO 2013173637 Nov 2013 WO
WO 2015031392 Mar 2015 WO
WO 2015153800 Oct 2015 WO
WO 2016016449 Feb 2016 WO
WO 2016077687 May 2016 WO
WO 2017007813 Jan 2017 WO
WO 2017007825 Jan 2017 WO
WO 2018204786 Nov 2018 WO
Non-Patent Literature Citations (81)
Entry
U.S. Appl. No. 15/301,044, now U.S. Pat. No. 10,385,341, filed Sep. 30, 2016, Swayze.
U.S. Appl. No. 16/513,297, filed Jul. 16, 2019, Swayze.
Agrawal et al., “Antisense therapeutics: is it as simple as complementary base recognition,” Mol. Medicine Today, 2000, 6:72-81.
Al-Chalabi et al., “Recent Advances in amyotrophic lateral sclerosis,” Curr Opin Neurol, 2000, 13(4):397-405.
Alisky et al., “Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases,” Hum Gene Ther, 2000, 11(17):2315-2329.
Amorfix Life Sciences Ltd., “Amorfix Life Sciences Discovers Common Link Between ALS and Alzheimer's Disease,” Press Release, Nov. 27, 2007.
Berger et al., “Crystal structures of B-DNA with incorporated 2′-deoxy-2′-fluoro-arabino-furanosyl thymines: implications of conformational preorganization for duplex stability,” Nucleic Acids Res, 1998, 26(10):2473-2480.
Berger et al., “Universal bases for hybridization, replication and chain termination,” Nucleic Acids Research, 2000, 28(15):2911-2914.
Bosco et al., “Wild-Type and Mutant SOD1 Share an Aberrant Conformation and a Common Pathogenic Pathway in ALS,” Nat. Neurosci., 2010, 13(11):1396-1403.
Braasch et al., “Novel Antisense and Peptide Nucleic Acid Strategies for Controlling Gene Expression,” Biochemistry, 2002, 41(14):4503-4510.
Branch, “A good antisense molecule is hard to find,” TIBS, 1998, 23″45-50.
Brooks et al., “El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis,” ALS and Other Motor Neuron Disorders, 2000, 1:293-299.
Bruijin et al., “Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1,” Science, 1998, 281(5384):1851-1854.
Burel et al., “Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts,” Nucleic Acids Research, 2015, 44(5):2093-2109.
Chin, “On the Preparation and Utilization of Isolated and Purified Oligonucleotides,” Document purportedly located on a CD-ROM and contributed to the public collection of the Katherine R. Everett Law Library of the University of North Carolina on Mar. 14, 2002.
Cleveland et al., “Oxidation versus aggregation—how do SOD1 mutants cause ALS?” Nat Med., 2000, 6(12):1320-1321.
Condon et al., “Altered mRNA splicing and inhibitions of human E-selectin expression by an antisense oligonucleotide in human umbilical vein endothelial cells,” J. Nio. Chem., 1996, 271(48):30398-30403.
Crooke et al., “Antisense Drug Technology,” Second Edition, CRC Press. (2008). Chapters 1-28.
Crooke et al., “Basic Principles of Antisense Therapeutics,” (1998), Chapter 1, Springer-Verlag, New York.
Dean et al., “Antisense Oligonucleotide-based Therapeutics for Cancer,” Oncogene, 2003, 22:9087-9096.
Egli et al., “Synthesis, improved antisense activity and structural rationale for the divergent RNA affinities of 3′-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides,” J. Am. Chem., 2011, 133(41):16642-16649.
European Extended Search Report in European Application No. 15773965.7, dated Oct. 6, 2017, 9 pages.
Fridovich, “Superoxide radical and superoxide dismutases,” Annu, Rev. Biochem., 1995, 64:97-112.
Gautschi et al., “Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins,” Journal of the National Cancer Institute, 2001, 93:463-471.
GenBank Accession No. X02312 (PRI Jan. 28, 1995), 2 pages.
Green et al., “Antisense Oligonucleotides: An Evolving Technology for the Modulation of Gene Expression in Human Disease,” J. Am. Coll. Surg., 2000, 191(1):93-105.
Grzanna et al., “Intrastriatal and intraventricular injections of oligodeoxynucleotides in the rat brain: tissue penetration, intracellular distribution and c-fos antisense effects,” Mol. Brain Res., 1998, 63(1):35-52.
Gulesserian et al., “Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with down syndrome,” J. Investig. Med., 2001, 49(1):41-46.
Haidet-Phillips et al., “Astrocytes from familial and sporadic ALS patients are toxic to motor neurons,” Nature Biotech, 2011, 29(9):824-830.
Hammond et al., “Post-Transcriptional Gene Silencing by Double-Stranded RNA,” Nature, 2001, 2:110-119.
Hanze et al., “Monitoring of antisense effects of oligonucleotides targeted to the neuropeptide Y Y1 receptor gene,” Eur. J. Pharmacol., 1997, 330:(1):87-92.
Ho et al., “cDNA and deduced amino acid sequence of rat coper-zinc-containing superoxide dismutase,” Nucleic Acid Research, 1987, 15(16):6746.
Hottinger, “The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis,” Eur. J. Neurosci., 1997. 9(7):1548-1551.
Hoye et al., “MicroRNA profiling reveals marker of motor neuron disease in ALS models,” J. Neuroscience, 2017, 37(22):5574-5586 (online Apr. 17, 2017).
Huang et al., “Superoxide dismutase as a target for the selective killing of cancer cells,” Nature, 2000, 407(6802):390-395.
International Preliminary Report on Patentability in International Application No. PCT/US2015/023934, dated Oct. 4, 2016, 9 pages.
International Search Report in International Application No. PCT/US2002/19664, dated Jan. 14, 2003, 4 pages.
International Search Report in International Application No. PCT/US2004/031673, dated Aug. 22, 2005, 4 pages.
International Search Report in International Application No. PCT/US2015/23934, dated Sep. 30, 2015.
Jen et al., “Suppression of Gene Expression by Targeted Disruption of Messenger RNA: Available Options and Current Strategies,” Stem Cells, 2000, 18:307-319.
Kagiyama et al., “Antisense inhibition of angiotensinogen attenuates vasopressin release in the paraventricular hypothalamic nucleus of spontaneously hypertensive rats,” Brain Research, 1999, 829:120-124.
Kawata et al., “Aberrant splicing of human Cu/Zn superoxide dimutase (SOD1) RNA transcripts,” Neuroport, 2000, 11(12):2649-2653.
Klivenyi et al., “Neuroprotective effects of creatine in a transgenic animal model of amyotrophic, lateral sclerosis,” Nat Med, 1999, 5(3):347-350.
Klug et al., “A selective antisense oligonucleotide against the G93A mutant of the Cu/Zn—SOD1 mRNA, applied to the mouse brain,” European Journal of Physiology, 2001, 441(6):R205 Abstract No. P20-7.
Lee et al., “Molecular Cloning and High-Level Expression of Human Cytoplasmic Superoxide Dismutase Gene in Escherichia coli,” Kor. Jour. Microbiol., 1990, 28(2):91-7.
Levanon et al., “Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase,” EMBO, 1985, 4(1): 77-84.
Lima et al., “Defining the Factors that Contribute to On-Target Specificity of Antisense Oligonucleotides,” PLoS One, 2014, 9(7):e101752, 19 pages.
Maher et al., “Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system,” Nucl. Acid. Res., 1998, 16(8):3341-3358.
Miller et al., “An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study,” Lancet Neurol, 2013, 12(5):435-442.
Milner et al., “Selecting effective antisense reagents on combinatorial oligonucleotide arrays,” Nature Biotechnology, 1997, 15:537-541.
Misra et al., “Drug delivery to the central nervous system: a review,” J. Pharm. Pharmaceut. Sci, 2003, 6(2):252-273.
Miyagishi et al., “Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells,” Antisense and Nucleic Acid Drug Development, 2003, 13(1):1-7.
Miyagishi et al., “Strategies for generation of an siRNA expression library directed against the human genome”, Oligonucleotides, 2003, 13(5):325-33.
Muramatsu et al., “Superoxide Dismutase in SAS Human Tongue Carcinoma Cell Line is a Factor-Defining Invasiveness and Cell Motility,” Cancer Research, 1995, 55:6210-6214.
New England Biolabs, “Nucleic Acids, Linkers and Primers,” 1998-1999 Catalog (cover page and pp. 121 and 284).
Partial European Search Report in European Patent Application No. 02742241, dated Nov. 8, 2004, 6 pages.
Reynolds et al., “Rational siRNA design for RNA interference,” Nature Biotechnology, 2004, 22:326-330.
Rosen et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, 1993, 362:59-62.
Rothstein et al., “Chronic inhibition of superoxide dismutase produces apoptotic death of spinal Neurons” Proc. Natl. Acad. Sci. USA, 1994, 91(10)4155-4159.
Rowland et al., “Amyotrophic Lateral Sclerosis,” N. Engl. J. Med., 2001, 334:1688-1700.
Rowland et al., “Six important themes in amyotrophic lateral sclerosis (ALS) research, 1999,” J. Neurol. Sci., 2000, 180:2-6.
Sanghvi, “Heterocyclic Base Modifications in Nucleic Acids and Their Applications in Antisense Oligonucleotides,” Antisense Research and Application, 1993, CRC Press, Boca Raton, pp. 276-278.
Sau et al., “Mutation of SOD1 in ALS: a gain of a loss of function,” Hum. Mol. Genet., 2007, 16(13):1604-1618.
Scanlon, “Anti-Genes: SiRNA, Ribozymes and Antisense,” Current Pharmaceutical Biotechnology, 2004, 5:415-420.
Seth et al., “Short Antisense Oligonucleotides with Novel 2′-4′ Conformationally Restricted Nucleoside Analogues Show Improved Potency Without Increased Toxicity in Animals,” J. Med. Chem., 2009, 52:10-13.
Sherman et al., “Nucleotide Sequence and Expression of Human Chromosome 21-encoded Superoxide Dismutase mRNA,” Pro. Natl. Acad. Sci., 1983, 80:5465-5496.
Sinnayah et al., “Effects of angiotensinogen antisense oligonucleotides on fluid intake in response to different dipsogenic stimuli in the rat,” Molecular Brain Research, 1997, 50:43-50.
Skerra, “Phosphorothioate primers improve the amplification of DNA sequence by DNA polymerases with proofreading activity,” Nucleic Acids Research, 1992, 20(14):3551-3554.
Smith et al., “Antisense oligonucleotide therapy for neurodegenerative disease,” Journal of Clinical Investigation, 2006, 116(8):2290-2296.
Tasheva et al., “Regulation of human RPS14 transcription by intronic antisense RNA'a and ribosomal protein S14,” Genes Dev., 1995, 9(3):304-316.
Trotti et al., “SOD1 mutants linked to amyotrophic lateral sclerosis selectivity inactivate a glial glutamate transporter,” Nat. Neurosci., 1999,2(5):427-433.
Troy et al., “Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells,” Proc. Natl. Acad. Sci. USA., 1994, 91(14):6384-6387.
Troy et al., “Down-regulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway,” J. Neurosci., 1996, 16(1):253-261.
Turrens, “Mitochondrial formation of reactive oxygen species,” J. Physiol., 2003, 552:335-344.
Vickers et al., “Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms,” PLOS One, 2014, 9(10):1/12.
Vickers et al., “Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents A comparative analysis,” Journal of Biological Chemistry, 2003, 278:7108-7118.
Vickers et al., “The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA,” Nucleic Acids Research, 2015, 43(18):8955-8963.
Wang et al., “Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol,” Proc. Natl. Acad. Sci. USA, 1995, 92(8):3318-3322.
Ward et al., “Nonsense-Mediated Decay as a Terminating Mechanism for Antisense Oligonucleotides,” Nucleic Acids Res., 2014, 42(9):5871-5879.
Winer et al., “SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy,” Arch. Neurol., 2013, 70(2):201-207 (online Nov. 12, 2012).
Woolf et al., “Specificity of antisense oligonucleotides in vivo,” PNAS, 1992, 89:7305-7309.
Related Publications (1)
Number Date Country
20200354723 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
61973803 Apr 2014 US
Divisions (1)
Number Date Country
Parent 15301004 US
Child 16513297 US
Continuations (1)
Number Date Country
Parent 16513297 Jul 2019 US
Child 16849583 US