Compositions for modulating Tau expression

Abstract
Disclosed herein are antisense compounds and methods for decreasing Tau mRNA and protein expression. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate Tau-associated diseases, disorders, and conditions.
Description
SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0227USC1SEQ_ST25.txt created May 11, 2017, which is 916 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD

Provided are compositions and methods for reducing expression of Tau mRNA and protein in an animal. Such methods are useful to treat, prevent, or ameliorate neurodegenerative diseases, including Tauopathies, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome by inhibiting expression of Tau in an animal.


BACKGROUND

The primary function of Tau is to bind to and stabilize microtubules, which are important structural components of the cytoskeleton involved in mitosis, cytokinesis, and vesicular transport. Tau is found in multiple tissues, but is particularly abundant in axons of neurons. In humans, there are six isoforms of Tau that are generated by alternative splicing of exons 2, 3, and 10. Splicing of exons 2 and 3 at the N-terminus of the protein leads to inclusion of zero, one, or two 29 amino acid acidic domains and is termed 0N, 1N, or 2N Tau respectively. The influence of these domains on Tau function is not fully clear, though may play a role in interactions with the plasma membrane. Inclusion of exon 10 at the C-terminus leads to inclusion of the microtubule binding domain encoded by exon 10. Since there are 3 microtubule binding domains elsewhere in Tau, this Tau isoform (with exon 10 included) is termed 4R Tau, where ‘R’ refers to the number of repeats of microtubule binding domains. Tau without exon 10 is termed 3R Tau. Since more microtubule binding domains (4R compared with 3R) increases the binding to microtubules, 4R Tau presumably significantly increases microtubule binding and assembly. The ratio of 3R/4R Tau is developmentally regulated, with fetal tissues expressing exclusively 3R Tau and adult human tissues expressing approximately equal levels of 3R/4R Tau. Deviations from the normal ratio of 3R/4R Tau are characteristic of neurodegenerative FTD Tauopathies. It is not known how changing the 3R/4R Tau ratio at a later stage in the adult animal will affect Tau pathogenesis.


Serine-threonine directed phosphorylation regulates the microtubule binding ability of Tau. Hyperphosphorylation promotes detachment of Tau from microtubules. Other post translational modifications of Tau have been described; however the significance of these is unclear. Phosphorylation of Tau is also developmentally regulated with higher phosphorylation in fetal tissues and much lower phosphorylation in the adult. One characteristic of neurodegenerative disorders is aberrantly increased Tau phosphorylation.


The microtubule network is involved in many important processes within the cell including structural integrity needed for maintaining morphology of cells and operating transport machinery. Since binding of Tau to microtubules stabilizes microtubules, Tau is likely to be a key mediator of some of these processes and disruption of normal Tau in neurodegenerative diseases may disrupt some of these key cellular processes.


One of the early indicators that Tau may be important in neurodegenerative syndromes was the recognition that Tau is a key component of neurofibrillary inclusions in Alzheimer's disease. In fact, neurofibrillary inclusions are aggregates of hyperphosphorylated Tau protein. Along with amyloid beta containing plaques, neurofibrillary inclusions are a hallmark of Alzheimer's disease and correlate significantly with cognitive impairment. 95% of Tau accumulations in AD are found in neuronal processes and is termed neuritic dystrophy. The process(es) whereby this microtubule associated protein becomes disengaged from microtubules and forms accumulations of proteins and how this relates to neuronal toxicity is not well understood.


Neuronal Tau inclusions are a pathological characteristic of not only Alzheimer's disease, but also a subset of Frontotemporal dementia (FTD), PSP, and CBD. The link between Tau and neurodegeneration was solidified by the discovery that mutations in the Tau gene cause a subset of FTD. These genetic data have also highlighted the importance of the 3R:4R ratio of Tau. Many of the Tau mutations that cause FTD lead to a change in Tau splicing which leads to preferential inclusion of exon 10, and thus to increased 4R Tau. The overall Tau levels are normal. Whether the Tau isoform change or the amino acid change or both cause neurodegeneration remains unknown. Recent data suggest that PSP may also be associated with an increased 4R:3R Tau ratio.


To help understand the influence of Tau ratios on neurodegeneration, a mouse model based on one of the splicing Tau mutations (N279K) has been generated using a minigene that includes the Tau promoter and the flanking intronic sequences of exon 10. As in humans, these mice demonstrate increased levels of 4R Tau compared with transgenics expressing WT Tau and develop behavioral and motor abnormalities as well as accumulations of aggregated Tau in the brain and spinal cord.


The protein “Tau” has been associated with multiple diseases of the brain including Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy, corticobasal ganglionic degeneration, dementia pugilistica, parkinsonism linked to chromosome, Lytico-Bodig disease, tangle-predominant dementia, ganglioglioma, gangliocytoma, meningioangiomatosis, subacute sclerosing panencephalitis, lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, Pick's disease, argyrophilic grain disease, corticobasal degeneration or frontotemporal lobar degeneration and others. Tau-associated disorders such as AD are the most common cause of dementia in the elderly. AD affects an estimated 15 million people worldwide and 40% of the population above 85 years of age. AD is characterized by two pathological hallmarks: Tau neurofibrillary inclusions (NFT) and amyloid-β (Aβ) plaques.


There is currently a lack of acceptable options for treating such neurodegenerative diseases. It is therefore an object herein to provide methods for the treatment of such diseases.


SUMMARY

Provided herein are methods, compounds, and compositions for modulating expression of Tau mRNA and protein. In certain embodiments, compounds useful for modulating expression of Tau mRNA and protein are antisense compounds. In certain embodiments, the antisense compounds are antisense oligonucleotides.


In certain embodiments, modulation can occur in a cell or tissue. In certain embodiments, the cell or tissue is in an animal. In certain embodiments, the animal is a human. In certain embodiments, Tau mRNA levels are reduced. In certain embodiments, Tau protein levels are reduced. Such reduction can occur in a time-dependent manner or in a dose-dependent manner.


Also provided are methods, compounds, and compositions useful for preventing, treating, and ameliorating diseases, disorders, and conditions. In certain embodiments, such Tau related diseases, disorders, and conditions are neurodegenerative diseases. In certain embodiments, such neurodegenerative diseases, disorders, and conditions include Tauopathies, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome


Such diseases, disorders, and conditions can have one or more risk factors, causes, or outcomes in common. Certain risk factors and causes for development of neurodegenerative disorder include growing older, having a personal or family history, or genetic predisposition. Certain symptoms and outcomes associated with development of a neurodegenerative disorder include but are not limited to: presence of hyperphosphorylated Tau, presence of neurofibrillary inclusions, reduction of neurological function, reduced memory, reduced motor function, reduced motor coordination, and confusion.


In certain embodiments, methods of treatment include administering a Tau antisense compound to an individual in need thereof. In certain embodiments, methods of treatment include administering a Tau antisense oligonucleotide to an individual in need thereof.


The present disclosure provides the following non-limiting numbered embodiments:


Embodiment 1

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 20-2443 and SEQ ID NOs: 2478-2483.


Embodiment 2

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 2444-2477 and SEQ ID NOs: 2484-2565.


Embodiment 3

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 20-2565.


Embodiment 4

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135980 of SEQ ID NO: 1.


Embodiment 5

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135853-135872 of SEQ ID NO: 1.


Embodiment 6

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135929 of SEQ ID NO: 1.


Embodiment 7

A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135914 of SEQ ID NO: 1.


Embodiment 8

The compound of embodiments 4-7, wherein the nucleobase sequence of the modified oligonucleotide is at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% complementary to SEQ ID NO: 1.


Embodiment 9

The compound of any preceding embodiment, consisting of a single-stranded modified oligonucleotide.


Embodiment 10

The compound of any preceding embodiment, wherein at least one internucleoside linkage is a modified internucleoside linkage.


Embodiment 11

The compound of embodiment 10, wherein at least one modified internucleoside linkage is a phosphorothioate internucleoside linkage.


Embodiment 12

The compound of embodiment 10, wherein each modified internucleoside linkage is a phosphorothioate internucleoside linkage.


Embodiment 13

The compound of any preceding embodiment, wherein at least one internucleoside linkage is a phosphodiester internucleoside linkage.


Embodiment 14

The compound of any preceding embodiment, wherein at least one internucleoside linkage is a phosphorothioate linkage and at least one internucleoside linkage is a phosphodiester linkage.


Embodiment 15

The compound of any preceding embodiment, wherein at least one nucleoside comprises a modified nucleobase.


Embodiment 16

The compound of embodiment 15, wherein the modified nucleobase is a 5-methylcytosine.


Embodiment 17

The compound of any preceding embodiment, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.


Embodiment 18

The compound of embodiment 17, wherein the at least one modified sugar is a bicyclic sugar.


Embodiment 19

The compound of embodiment 18, wherein the bicyclic sugar comprises a chemical link between the 2′ and 4′ position of the sugar 4′-CH2-N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.


Embodiment 20

The compound of embodiment 18, wherein the bicyclic sugar comprises a 4′-CH2-N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.


Embodiment 21

The compound of embodiment 17, wherein at least one modified sugar comprises a 2′-O-methoxyethyl group.


Embodiment 22

The compound of embodiment 17, wherein the modified sugar comprises a 2′-O(CH2)2—OCH3 group.


Embodiment 23

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 10 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 24

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 9 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 25

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 7 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 6 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 26

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 27

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 4 linked nucleosides; and


a 3′ wing segment consisting of 6 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 28

The compound of any preceding embodiment, wherein the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 6 linked nucleosides; and


a 3′ wing segment consisting of 4 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


Embodiment 29

The compound of any preceding embodiment, wherein the modified oligonucleotide consists of 20 linked nucleosides.


Embodiment 30

The compound of any preceding embodiment, wherein the modified oligonucleotide consists of 19 linked nucleosides.


Embodiment 31

The compound of any preceding embodiment, wherein the modified oligonucleotide consists of 18 linked nucleosides.


Embodiment 32

A composition comprising the compound of any preceding embodiment or salt thereof and at least one of a pharmaceutically acceptable carrier or diluent.


Embodiment 33

A method comprising administering to an animal the compound or composition of any preceding embodiment.


Embodiment 34

The method of embodiment 33, wherein the animal is a human.


Embodiment 35

The method of embodiment 33, wherein administering the compound prevents, treats, ameliorates, or slows progression of a tau associated disease, disorder or condition.


Embodiment 36

The method of embodiment 35, wherein the disease, disorder or condition is a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, or Dravet's Syndrome.


Embodiment 37

Use of the compound or composition of any preceding embodiment for the manufacture of a medicament for treating a neurodegenerative disorder.


Embodiment 38

A compound consisting of ISIS 613099.


Embodiment 39

A compound consisting of ISIS 613361.


Embodiment 40

A compound consisting of ISIS 613370.


Embodiment 41

A compound consisting of ISIS 623782.


Embodiment 42

A compound consisting of ISIS 623996.


Embodiment 43

A composition comprising the compound of any of embodiments 38-42, or salt thereof, and at least one of a pharmaceutically acceptable carrier or diluent.


Embodiment 44

A method comprising administering to an animal the compound or composition of any of embodiments 38-43.


Embodiment 45

The method of embodiment 44, wherein the animal is a human.


Embodiment 46

The method of embodiment 44, wherein administering the compound prevents, treats, ameliorates, or slows progression of a tau associated disease, disorder or condition.


Embodiment 47

The method of embodiment 46, wherein the disease, disorder or condition is a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, or Dravet's Syndrome.


Embodiment 48

Use of the compound or composition of any of embodiments 38-43 for the manufacture of a medicament for treating a neurodegenerative disorder.







DETAILED DESCRIPTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Additionally, as used herein, the use of “and” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this disclosure, including, but not limited to, patents, patent applications, published patent applications, articles, books, treatises, and GENBANK Accession Numbers and associated sequence information obtainable through databases such as National Center for Biotechnology Information (NCBI) and other data referred to throughout in the disclosure herein are hereby expressly incorporated by reference for the portions of the document discussed herein, as well as in their entirety.


Definitions

Unless specific definitions are provided, the nomenclature utilized in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis.


Unless otherwise indicated, the following terms have the following meanings:


“2′-O-methoxyethyl” (also 2′-MOE and 2′-OCH2CH2—OCH3 and MOE) refers to an O-methoxyethyl modification of the 2′ position of a furanose ring. A 2′-O-methoxyethyl modified sugar is a modified sugar.


“2′-MOE nucleoside” (also 2′-O-methoxyethyl nucleoside) means a nucleoside comprising a 2′-MOE modified sugar moiety.


“2′-substituted nucleoside” means a nucleoside comprising a substituent at the 2′-position of the furanose ring other than H or OH. In certain embodiments, 2′ substituted nucleosides include nucleosides with bicyclic sugar modifications.


“5-methylcytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5-methylcytosine is a modified nucleobase.


“About” means within ±7% of a value. For example, if it is stated, “the compounds affected at least about 70% inhibition of Tau”, it is implied that the Tau levels are inhibited within a range of 63% and 77%.


“Administered concomitantly” refers to the co-administration of two pharmaceutical agents in any manner in which the pharmacological effects of both are manifest in the patient at the same time.


Concomitant administration does not require that both pharmaceutical agents be administered in a single pharmaceutical composition, in the same dosage form, or by the same route of administration. The effects of both pharmaceutical agents need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive.


“Administering” means providing a pharmaceutical agent to an animal, and includes, but is not limited to administering by a medical professional and self-administering.


“Amelioration” refers to a lessening, slowing, stopping, or reversing of at least one indicator of the severity of a condition or disease. The severity of indicators may be determined by subjective or objective measures, which are known to those skilled in the art.


“Animal” refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.


“Antibody” refers to a molecule characterized by reacting specifically with an antigen in some way, where the antibody and the antigen are each defined in terms of the other. Antibody may refer to a complete antibody molecule or any fragment or region thereof, such as the heavy chain, the light chain, Fab region, and Fc region.


“Antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid.


“Antisense compound” means an oligomeric compound that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, ssRNAs, and occupancy-based compounds.


“Antisense inhibition” means reduction of target nucleic acid levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels or in the absence of the antisense compound.


“Antisense mechanisms” are all those mechanisms involving hybridization of a compound with a target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.


“Antisense oligonucleotide” means a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding segment of a target nucleic acid.


“Base complementarity” refers to the capacity for the precise base pairing of nucleobases of an antisense oligonucleotide with corresponding nucleobases in a target nucleic acid (i.e., hybridization), and is mediated by Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen binding between corresponding nucleobases.


“Bicyclic sugar” means a furanose ring modified by the bridging of two atoms. A bicyclic sugar is a modified sugar.


“Bicyclic nucleoside” (also BNA) means a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring.


“Cap structure” or “terminal cap moiety” means chemical modifications, which have been incorporated at either terminus of an antisense compound.


“cEt” or “constrained ethyl” means a bicyclic nucleoside having a sugar moiety comprising a bridge connecting the 4′-carbon and the 2′-carbon, wherein the bridge has the formula: 4′-CH(CH3)—O-2′.


“Constrained ethyl nucleoside” (also cEt nucleoside) means a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)—O-2′ bridge.


“Chemically distinct region” refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2′-O-methoxyethyl nucleosides is chemically distinct from a region having nucleosides without 2′-O-methoxyethyl modifications.


“Chimeric antisense compound” means an antisense compound that has at least two chemically distinct regions, each position having a plurality of subunits.


“Co-administration” means administration of two or more pharmaceutical agents to an individual. The two or more pharmaceutical agents may be in a single pharmaceutical composition, or may be in separate pharmaceutical compositions. Each of the two or more pharmaceutical agents may be administered through the same or different routes of administration. Co-administration encompasses parallel or sequential administration.


“Complementarity” means the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.


“Comprise,” “comprises,” and “comprising” will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.


“Contiguous nucleobases” means nucleobases immediately adjacent to each other.


“Designing” or “designed to” refer to the process of designing an oligomeric compound that specifically hybridizes with a selected nucleic acid molecule.


“Diluent” means an ingredient in a composition that lacks pharmacological activity, but is pharmaceutically necessary or desirable. For example, in drugs that are injected, the diluent may be a liquid, e.g. saline solution.


“Dose” means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose may be administered in one, two, or more boluses, tablets, or injections. For example, in certain embodiments where subcutaneous administration is desired, the desired dose requires a volume not easily accommodated by a single injection, therefore, two or more injections may be used to achieve the desired dose. In certain embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses may be stated as the amount of pharmaceutical agent per hour, day, week, or month.


“Effective amount” in the context of modulating an activity or of treating or preventing a condition means the administration of that amount of pharmaceutical agent to a subject in need of such modulation, treatment, or prophylaxis, either in a single dose or as part of a series, that is effective for modulation of that effect, or for treatment or prophylaxis or improvement of that condition. The effective amount may vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.


“Efficacy” means the ability to produce a desired effect.


“Expression” includes all the functions by which a gene's coded information is converted into structures present and operating in a cell. Such structures include, but are not limited to the products of transcription and translation.


“Fully complementary” or “100% complementary” means each nucleobase of a first nucleic acid has a complementary nucleobase in a second nucleic acid. In certain embodiments, a first nucleic acid is an antisense compound and a target nucleic acid is a second nucleic acid.


“Gapmer” means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as a “gap” and the external regions may be referred to as the “wings.”


“Gap-narrowed” means a chimeric antisense compound having a gap segment of 9 or fewer contiguous 2′-deoxyribonucleosides positioned between and immediately adjacent to 5′ and 3′ wing segments having from 1 to 6 nucleosides.


“Gap-widened” means a chimeric antisense compound having a gap segment of 12 or more contiguous 2′-deoxyribonucleosides positioned between and immediately adjacent to 5′ and 3′ wing segments having from 1 to 6 nucleosides.


“Hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a target nucleic acid. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense oligonucleotide and a nucleic acid target.


“Identifying an animal having a Tau associated disease” means identifying an animal having been diagnosed with a Tau associated disease or predisposed to develop a Tau associated disease. Individuals predisposed to develop a Tau associated disease include those having one or more risk factors for developing a Tau associated disease, including, growing older, having a personal or family history, or genetic predisposition of one or more Tau associated diseases. Such identification may be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments, such as genetic testing.


“Immediately adjacent” means there are no intervening elements between the immediately adjacent elements.


“Individual” means a human or non-human animal selected for treatment or therapy.


“Inhibiting Tau” means reducing the level or expression of a Tau mRNA and/or protein. In certain embodiments, Tau mRNA and/or protein levels are inhibited in the presence of an antisense compound targeting Tau, including an antisense oligonucleotide targeting Tau, as compared to expression of Tau mRNA and/or protein levels in the absence of a Tau antisense compound, such as an antisense oligonucleotide.


“Inhibiting the expression or activity” refers to a reduction or blockade of the expression or activity and does not necessarily indicate a total elimination of expression or activity.


“Internucleoside linkage” refers to the chemical bond between nucleosides.


“Linked nucleosides” means adjacent nucleosides linked together by an internucleoside linkage.


“Locked nucleic acid” or “LNA” or “LNA nucleosides” means nucleic acid monomers having a bridge connecting two carbon atoms between the 4′ and 2′position of the nucleoside sugar unit, thereby forming a bicyclic sugar. Examples of such bicyclic sugar include, but are not limited to A) α-L-Methyleneoxy (4′-CH2—O-2′) LNA, (B) β-D-Methyleneoxy (4′-CH2—O-2′) LNA, (C) Ethyleneoxy (4′-(CH2)2—O-2′) LNA, (D) Aminooxy (4′-CH2—O—N(R)-2′) LNA and (E) Oxyamino (4′-CH2—N(R)—O-2′) LNA, as depicted below.




embedded image


As used herein, LNA compounds include, but are not limited to, compounds having at least one bridge between the 4′ and the 2′ position of the sugar wherein each of the bridges independently comprises 1 or from 2 to 4 linked groups independently selected from 4C(R1)(R2)n—, —C(R1)═C(R2)—, —C(R1)═N—, —C(═NR1)—, —C(═O)—, —C(═S)—, —O—, —Si(R1)2—, —S(═O)x— and —N(R1)—; wherein: x is 0, 1, or 2; n is 1, 2, 3, or 4; each R1 and R2 is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, a heterocycle radical, a substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.


Examples of 4′-2′ bridging groups encompassed within the definition of LNA include, but are not limited to one of formulae: 4C(R1)(R2)n—, 4C(R1)(R2)n—O—, —C(R1R2)—N(R1)—O— or —C(R1R2)—O—N(R1)—. Furthermore, other bridging groups encompassed with the definition of LNA are 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R1)-2′ and 4′-CH2—N(R1)—O-2′- bridges, wherein each R1 and R2 is, independently, H, a protecting group or C1-C12 alkyl.


Also included within the definition of LNA according to the invention are LNAs in which the 2′-hydroxyl group of the ribosyl sugar ring is connected to the 4′ carbon atom of the sugar ring, thereby forming a methyleneoxy (4′-CH2—O-2′) bridge to form the bicyclic sugar moiety. The bridge can also be a methylene (—CH2—) group connecting the 2′ oxygen atom and the 4′ carbon atom, for which the term methyleneoxy (4′-CH2—O-2′) LNA is used. Furthermore; in the case of the bicylic sugar moiety having an ethylene bridging group in this position, the term ethyleneoxy (4′-CH2CH2—O-2′) LNA is used. α-L-methyleneoxy (4′-CH2O-2′), an isomer of methyleneoxy (4′-CH2—O-2′) LNA is also encompassed within the definition of LNA, as used herein.


“Mismatch” or “non-complementary nucleobase” refers to the case when a nucleobase of a first nucleic acid is not capable of pairing with the corresponding nucleobase of a second or target nucleic acid.


“Modified internucleoside linkage” refers to a substitution or any change from a naturally occurring internucleoside bond (i.e., a phosphodiester internucleoside bond).


“Modified nucleobase” means any nucleobase other than adenine, cytosine, guanine, thymidine, or uracil. An “unmodified nucleobase” means the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C), and uracil (U).


A “modified nucleoside” means a nucleoside having, independently, a modified sugar moiety and/or modified nucleobase.


“Modified nucleotide” means a nucleotide having, independently, a modified sugar moiety, modified internucleoside linkage, and/or modified nucleobase.


“Modified oligonucleotide” means an oligonucleotide comprising at least one modified internucleoside linkage, modified sugar, and/or modified nucleobase.


“Modified sugar” means substitution and/or any change from a natural sugar moiety.


“Monomer” means a single unit of an oligomer. Monomers include, but are not limited to, nucleosides and nucleotides, whether naturally occurring or modified.


“Motif” means the pattern of unmodified and modified nucleosides in an antisense compound.


“Natural sugar moiety” means a sugar moiety found in DNA (2′-H) or RNA (2′-OH).


“Naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage.


“Non-complementary nucleobase” refers to a pair of nucleobases that do not form hydrogen bonds with one another or otherwise support hybridization.


“Nucleic acid” refers to molecules composed of monomeric nucleotides. A nucleic acid includes, but is not limited to, ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and microRNAs (miRNA).


“Nucleobase” means a heterocyclic moiety capable of pairing with a base of another nucleic acid.


“Nucleobase complementarity” refers to a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In certain embodiments, complementary nucleobase refers to a nucleobase of an antisense compound that is capable of base pairing with a nucleobase of its target nucleic acid. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be complementary at that nucleobase pair.


“Nucleobase sequence” means the order of contiguous nucleobases independent of any sugar, linkage, and/or nucleobase modification.


“Nucleoside” means a nucleobase linked to a sugar.


“Nucleoside mimetic” includes those structures used to replace the sugar or the sugar and the base and not necessarily the linkage at one or more positions of an oligomeric compound such as for example nucleoside mimetics having morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo, or tricyclo sugar mimetics, e.g., non furanose sugar units. Nucleotide mimetic includes those structures used to replace the nucleoside and the linkage at one or more positions of an oligomeric compound such as for example peptide nucleic acids or morpholinos (morpholinos linked by —N(H)—C(═O)—O— or other non-phosphodiester linkage). Sugar surrogate overlaps with the slightly broader term nucleoside mimetic but is intended to indicate replacement of the sugar unit (furanose ring) only. The tetrahydropyranyl rings provided herein are illustrative of an example of a sugar surrogate wherein the furanose sugar group has been replaced with a tetrahydropyranyl ring system. “Mimetic” refers to groups that are substituted for a sugar, a nucleobase, and/or internucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target.


“Nucleotide” means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside.


“Off-target effect” refers to an unwanted or deleterious biological effect associated with modulation of RNA or protein expression of a gene other than the intended target nucleic acid.


“Oligomeric compound” or “oligomer” means a polymer of linked monomeric subunits which is capable of hybridizing to at least a region of a nucleic acid molecule.


“Oligonucleotide” means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.


“Parenteral administration” means administration through injection (e.g., bolus injection) or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g., intrathecal or intracerebroventricular administration.


“Peptide” means a molecule formed by linking at least two amino acids by amide bonds. Without limitation, as used herein, peptide refers to polypeptides and proteins.


“Pharmaceutical agent” means a substance that provides a therapeutic benefit when administered to an individual. For example, in certain embodiments, an antisense oligonucleotide targeted to Tau is a pharmaceutical agent.


“Pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise an antisense oligonucleotide and a sterile aqueous solution.


“Pharmaceutically acceptable derivative” encompasses pharmaceutically acceptable salts, conjugates, prodrugs or isomers of the compounds described herein.


“Pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.


“Phosphorothioate linkage” means a linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom. A phosphorothioate linkage is a modified internucleoside linkage.


“Portion” means a defined number of contiguous (i.e., linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an antisense compound.


“Prevent” or “preventing” refers to delaying or forestalling the onset or development of a disease, disorder, or condition for a period of time from minutes to days, weeks to months, or indefinitely.


“Prodrug” means a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.


“Prophylactically effective amount” refers to an amount of a pharmaceutical agent that provides a prophylactic or preventative benefit to an animal.


“Region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic.


“Ribonucleotide” means a nucleotide having a hydroxy at the 2′ position of the sugar portion of the nucleotide. Ribonucleotides may be modified with any of a variety of substituents.


“Salts” mean a physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.


“Segments” are defined as smaller or sub-portions of regions within a target nucleic acid.


“Shortened” or “truncated” versions of antisense oligonucleotides taught herein have one, two or more nucleosides deleted.


“Side effects” means physiological responses attributable to a treatment other than desired effects. In certain embodiments, side effects include, without limitation, injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system abnormalities, and myopathies.


“Single-stranded oligonucleotide” means an oligonucleotide which is not hybridized to a complementary strand.


“Sites,” as used herein, are defined as unique nucleobase positions within a target nucleic acid.


“Slows progression” means decrease in the development of the said disease.


“Specifically hybridizable” refers to an antisense compound having a sufficient degree of complementarity between an antisense oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays and therapeutic treatments.


“Stringent hybridization conditions” or “stringent conditions” refer to conditions under which an oligomeric compound will hybridize to its target sequence, but to a minimal number of other sequences.


“Subject” means a human or non-human animal selected for treatment or therapy.


“Target” refers to a protein, the modulation of which is desired.


“Target gene” refers to a gene encoding a target.


“Targeting” or “targeted” means the process of design and selection of an antisense compound that will specifically hybridize to a target nucleic acid and induce a desired effect.


“Target nucleic acid,” “target RNA,” and “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds.


“Target region” means a portion of a target nucleic acid to which one or more antisense compounds is targeted.


“Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5′ target site” refers to the 5′-most nucleotide of a target segment. “3′ target site” refers to the 3′-most nucleotide of a target segment.


“Tau” means mammalian microtubule-associated protein tau (MAPT), including human microtubule-associated protein tau (MAPT).


“Tau associated disease” means any disease associated with any Tau nucleic acid or expression product thereof. Such diseases may include a neurodegenerative disease. Such neurodegenerative diseases may include Tauopathies, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome.


“Tau mRNA” means any messenger RNA expression product of a DNA sequence encoding Tau.


“Tau nucleic acid” means any nucleic acid encoding Tau. For example, in certain embodiments, a Tau nucleic acid includes a DNA sequence encoding Tau, an RNA sequence transcribed from DNA encoding Tau (including genomic DNA comprising introns and exons), and an mRNA sequence encoding Tau. “Tau mRNA” means an mRNA encoding a Tau protein.


“Tau protein” means the polypeptide expression product of a Tau nucleic acid.


“Therapeutically effective amount” means an amount of a pharmaceutical agent that provides a therapeutic benefit to an individual.


“Treat” or “treating” or “treatment” refers administering a composition to effect an alteration or improvement of the disease or condition.


“Unmodified nucleobases” mean the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).


“Unmodified nucleotide” means a nucleotide composed of naturally occurring nucleobases, sugar moieties, and internucleoside linkages. In certain embodiments, an unmodified nucleotide is an RNA nucleotide (i.e. β-D-ribonucleosides) or a DNA nucleotide (i.e. β-D-deoxyribonucleoside).


“Wing segment” means a plurality of nucleosides modified to impart to an oligonucleotide properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.


Certain Embodiments

Certain embodiments provide methods, compounds, and compositions for inhibiting Tau mRNA and protein expression. Certain embodiments provide methods, compounds, and composition for decreasing Tau mRNA and protein levels.


Certain embodiments provide antisense compounds targeted to a Tau nucleic acid. In certain embodiments, the Tau nucleic acid is the sequence set forth in GENBANK Accession No. GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to U.S. Pat. No. 9,381,000 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. NM_001123066.3 (incorporated herein as SEQ ID NO: 2), GENBANK Accession No. NM_016841.4, a variant mRNA sequence which skips exons 3, 4, 6, 8, 10, and 12 (incorporated herein as SEQ ID NO: 3), GENBANK Accession No. NT_010783.14 truncated from nucleotides 2624000 to U.S. Pat. No. 2,761,000 (incorporated herein as SEQ ID NO: 4), GENBANK Accession No. DR002467.1 (incorporated herein as SEQ ID NO: 5), GENBANK Accession No. NM_001203251.1 (incorporated herein as SEQ ID NO: 6), and GENBANK Accession No. NM_016835.4 (incorporated herein as SEQ ID NO: 7).


Certain embodiments provide methods for the treatment, prevention, or amelioration of diseases, disorders, and conditions associated with Tau in an individual in need thereof. Also contemplated are methods for the preparation of a medicament for the treatment, prevention, or amelioration of a disease, disorder, or condition associated with Tau. Tau associated diseases, disorders, and conditions include neurodegenerative diseases. In certain embodiments, tau associated diseases include Tauopathies, Alzheimer's Disease, Fronto temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, or Dravet's Syndrome.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 20-2443 and SEQ ID NOs: 2478-2483.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 2444-2477 and SEQ ID NOs: 2484-2565.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 20-2565.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135980 of SEQ ID NO: 1.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135853-135872 of SEQ ID NO: 1.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135929 of SEQ ID NO: 1.


Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 135783-135914 of SEQ ID NO: 1.


In certain embodiments the nucleobase sequence of the modified oligonucleotide is at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% complementary to SEQ ID NO: 1.


In certain embodiments, the compound is a single-stranded modified oligonucleotide.


In certain embodiments, at least one internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.


In certain embodiments, at least one modified internucleoside linkage is a phosphorothioate internucleoside linkage.


In certain embodiments, each modified internucleoside linkage is a phosphorothioate internucleoside linkage.


In certain embodiments, at least one internucleoside linkage is a phosphodiester internucleoside linkage.


In certain embodiments, at least one internucleoside linkage is a phosphorothioate linkage and at least one internucleoside linkage is a phosphodiester linkage.


In certain embodiments, at least one nucleoside comprises a modified nucleobase.


In certain embodiments, the modified nucleobase is a 5-methylcytosine.


In certain embodiments, at least one nucleoside of the modified oligonucleotide comprises a modified sugar.


In certain embodiments, at least one modified sugar is a bicyclic sugar.


In certain embodiments, the bicyclic sugar comprises a chemical link between the 2′ and 4′ position of the sugar 4′-CH2-N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.


In certain embodiments, the bicyclic sugar comprises a 4′-CH2-N(R)—O-2′ bridge wherein R is, independently, H, C1-C12 alkyl, or a protecting group.


In certain embodiments, at least one modified sugar comprises a 2′-O-methoxyethyl group.


In certain embodiments, the modified sugar comprises a 2′-O(CH2)2—OCH3 group.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 10 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 9 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 7 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 6 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 5 linked nucleosides; and


a 3′ wing segment consisting of 5 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 4 linked nucleosides; and


a 3′ wing segment consisting of 6 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide comprises:


a gap segment consisting of 8 linked deoxynucleosides;


a 5′ wing segment consisting of 6 linked nucleosides; and


a 3′ wing segment consisting of 4 linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.


In certain embodiments, the modified oligonucleotide consists of 19 linked nucleosides.


In certain embodiments, the modified oligonucleotide consists of 18 linked nucleosides.


Certain embodiments provide compositions comprising any compound described herein or salt thereof and at least one of a pharmaceutically acceptable carrier or diluent.


Certain embodiments provide methods comprising administering to an animal any compound or composition described herein.


In certain embodiments, the animal is a human.


In certain embodiments, administering the compound prevents, treats, ameliorates, or slows progression of a tau associated disease, disorder or condition.


In certain embodiments, the disease, disorder or condition is a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, or Dravet's Syndrome.


Certain embodiments provide use of any of the compounds or compositions of described herein for the manufacture of a medicament for treating a neurodegenerative disorder.


Certain embodiments provide compounds according to the following formula (Ia):




embedded image



or a pharmaceutically acceptable salt thereof. In certain embodiments, provided are pharmaceutical compositions comprising the compound having the formula (Ia).


Certain embodiments provide compounds according to the following formula (IIa):




embedded image



or a pharmaceutically acceptable salt thereof. In certain embodiments, provided are pharmaceutical compositions comprising the compound having the formula (IIa).


Certain embodiments provide compounds according to the following formula (IIIa):




embedded image



or a pharmaceutically acceptable salt thereof. In certain embodiments, provided are pharmaceutical compositions comprising the compound having the formula (IIIa).


Certain embodiments provide compounds according to the following formula (IVa):




embedded image



or a pharmaceutically acceptable salt thereof. In certain embodiments, provided are pharmaceutical compositions comprising the compound having the formula (IVa).


Certain embodiments provide compounds according to the following formula (Va):




embedded image



or a pharmaceutically acceptable salt thereof. In certain embodiments, provided are pharmaceutical compositions comprising the compound having the formula (Va).


Antisense Compounds


Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligonucleotides, and siRNAs. An oligomeric compound may be “antisense” to a target nucleic acid, meaning that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding.


In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted. In certain such embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.


In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 12 to 30 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 12 to 25 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 12 to 22 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 14 to 20 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 15 to 25 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 18 to 22 subunits in length. In certain embodiments, an antisense compound targeted to Tau nucleic acid is 19 to 21 subunits in length. In certain embodiments, the antisense compound is 8 to 80, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, 16 to 50, 17 to 30, 17 to 50, 18 to 30, 18 to 50, 19 to 30, 19 to 50, or 20 to 30 linked subunits in length.


In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 12 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 13 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 14 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 15 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 16 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 17 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 18 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 19 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 20 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 21 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 22 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 23 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 24 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 25 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 26 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 27 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 28 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 29 subunits in length. In certain embodiments, an antisense compound targeted to a Tau nucleic acid is 30 subunits in length. In certain embodiments, the antisense compound targeted to a Tau nucleic acid is 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 linked subunits in length, or a range defined by any two of the above values. In certain embodiments the antisense compound is an antisense oligonucleotide, and the linked subunits are nucleosides.


In certain embodiments antisense oligonucleotides targeted to a Tau nucleic acid may be shortened or truncated. For example, a single subunit may be deleted from the 5′ end (5′ truncation), or alternatively from the 3′ end (3′ truncation). A shortened or truncated antisense compound targeted to a Tau nucleic acid may have two subunits deleted from the 5′ end, or alternatively may have two subunits deleted from the 3′ end, of the antisense compound. Alternatively, the deleted nucleosides may be dispersed throughout the antisense compound, for example, in an antisense compound having one nucleoside deleted from the 5′ end and one nucleoside deleted from the 3′ end.


When a single additional subunit is present in a lengthened antisense compound, the additional subunit may be located at the 5′ or 3′ end of the antisense compound. When two or more additional subunits are present, the added subunits may be adjacent to each other, for example, in an antisense compound having two subunits added to the 5′ end (5′ addition), or alternatively to the 3′ end (3′ addition), of the antisense compound. Alternatively, the added subunits may be dispersed throughout the antisense compound, for example, in an antisense compound having one subunit added to the 5′ end and one subunit added to the 3′ end.


It is possible to increase or decrease the length of an antisense compound, such as an antisense oligonucleotide, and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of antisense oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Antisense oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the antisense oligonucleotides were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than the antisense oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase antisense oligonucleotides, including those with 1 or 3 mismatches.


Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo.


Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase antisense oligonucleotides, and a 28 and 42 nucleobase antisense oligonucleotides comprised of the sequence of two or three of the tandem antisense oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase antisense oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase antisense oligonucleotides.


Antisense Compound Motifs


In certain embodiments, antisense compounds targeted to a Tau nucleic acid have chemically modified subunits arranged in patterns, or motifs, to confer to the antisense compounds properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.


Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid, and/or increased inhibitory activity. A second region of a chimeric antisense compound may optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.


Antisense compounds having a gapmer motif are considered chimeric antisense compounds. In a gapmer an internal region having a plurality of nucleotides that supports RNaseH cleavage is positioned between external regions having a plurality of nucleotides that are chemically distinct from the nucleosides of the internal region. In the case of an antisense oligonucleotide having a gapmer motif, the gap segment generally serves as the substrate for endonuclease cleavage, while the wing segments comprise modified nucleosides. In certain embodiments, the regions of a gapmer are differentiated by the types of sugar moieties comprising each distinct region. The types of sugar moieties that are used to differentiate the regions of a gapmer may in some embodiments include β-D-ribonucleosides, β-D-deoxyribonucleosides, 2′-modified nucleosides (such 2′-modified nucleosides may include 2′-MOE, and 2′-O—CH3, among others), and bicyclic sugar modified nucleosides (such bicyclic sugar modified nucleosides may include those having a 4′-(CH2)n-O-2′ bridge, where n=1 or n=2 and 4′-CH2—O—CH2-2′). In certain embodiments, wings may include several modified sugar moieties, including, for example 2′-MOE. In certain embodiments, wings may include several modified and unmodified sugar moieties. In certain embodiments, wings may include various combinations of 2′-MOE nucleosides and 2′-deoxynucleosides.


Each distinct region may comprise uniform sugar moieties, variant, or alternating sugar moieties. The wing-gap-wing motif is frequently described as “X—Y—Z”, where “X” represents the length of the 5′ wing, “Y” represents the length of the gap, and “Z” represents the length of the 3′ wing. “X” and “Z” may comprise uniform, variant, or alternating sugar moieties. In certain embodiments, “X” and “Y” may include one or more 2′-deoxynucleosides. “Y” may comprise 2′-deoxynucleosides. As used herein, a gapmer described as “X—Y—Z” has a configuration such that the gap is positioned immediately adjacent to each of the 5′ wing and the 3′ wing. Thus, no intervening nucleotides exist between the 5′ wing and gap, or the gap and the 3′ wing. Any of the antisense compounds described herein can have a gapmer motif. In certain embodiments, “X” and “Z” are the same; in other embodiments they are different.


In certain embodiments, gapmers provided herein include, for example 20-mers having a motif of 5-10-5.


In certain embodiments, gapmers provided herein include, for example 19-mers having a motif of 5-9-5.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 5-8-5.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 4-8-6.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 6-8-4.


In certain embodiments, gapmers provided herein include, for example 18-mers having a motif of 5-7-6.


Target Nucleic Acids, Target Regions and Nucleotide Sequences


Nucleotide sequences that encode Tau include, without limitation, the following: GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to U.S. Pat. No. 9,381,000 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. NM_001123066.3 (incorporated herein as SEQ ID NO: 2), GENBANK Accession No. NM_016841.4, a variant mRNA sequence which skips exons 3, 4, 6, 8, 10, and 12 (incorporated herein as SEQ ID NO: 3), GENBANK Accession No. NT_010783.14 truncated from nucleotides 2624000 to U.S. Pat. No. 2,761,000 (incorporated herein as SEQ ID NO: 4), GENBANK Accession No. DR002467.1 (incorporated herein as SEQ ID NO: 5), GENBANK Accession No. NM_001203251.1 (incorporated herein as SEQ ID NO: 6), and GENBANK Accession No. NM_016835.4 (incorporated herein as SEQ ID NO: 7).


It is understood that the sequence set forth in each SEQ ID NO in the Examples contained herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. As such, antisense compounds defined by a SEQ ID NO may comprise, independently, one or more modifications to a sugar moiety, an internucleoside linkage, or a nucleobase. Antisense compounds described by Isis Number (Isis No) indicate a combination of nucleobase sequence and motif.


In certain embodiments, a target region is a structurally defined region of the target nucleic acid. For example, a target region may encompass a 3′ UTR, a 5′ UTR, an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region. The structurally defined regions for Tau can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a target region may encompass the sequence from a 5′ target site of one target segment within the target region to a 3′ target site of another target segment within the same target region.


Targeting includes determination of at least one target segment to which an antisense compound hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in mRNA target nucleic acid levels. In certain embodiments, the desired effect is reduction of levels of protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.


A target region may contain one or more target segments. Multiple target segments within a target region may be overlapping. Alternatively, they may be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain embodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceeding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous. Contemplated are target regions defined by a range having a starting nucleic acid that is any of the 5′ target sites or 3′ target sites listed herein.


Suitable target segments may be found within a 5′ UTR, a coding region, a 3′ UTR, an intron, an exon, or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment may specifically exclude a certain structurally defined region such as the start codon or stop codon.


The determination of suitable target segments may include a comparison of the sequence of a target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm may be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense compound sequences that may hybridize in a non-specific manner to sequences other than a selected target nucleic acid (i.e., non-target or off-target sequences).


There may be variation in activity (e.g., as defined by percent reduction of target nucleic acid levels) of the antisense compounds within an active target region. In certain embodiments, reductions in Tau mRNA levels are indicative of inhibition of Tau expression. Reductions in levels of a Tau protein are also indicative of inhibition of target mRNA expression. Reduction of percent of cells staining positive for hyperphosphorylated Tau are indicative of inhibition of Tau expression. Further, phenotypic changes are indicative of inhibition of Tau expression. Improvement in neurological function is indicative of inhibition of Tau expression. Improved memory and motor function are indicative of inhibition of Tau expression. Reduction of neurofibrillary inclusions is indicative of inhibition of Tau expression.


Hybridization


In some embodiments, hybridization occurs between an antisense compound disclosed herein and a Tau nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.


Hybridization can occur under varying conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.


Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a Tau nucleic acid.


Complementarity


An antisense compound and a target nucleic acid are complementary to each other when a sufficient number of nucleobases of the antisense compound can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a target nucleic acid, such as a Tau nucleic acid).


Non-complementary nucleobases between an antisense compound and a Tau nucleic acid may be tolerated provided that the antisense compound remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense compound may hybridize over one or more segments of a Tau nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).


In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a Tau nucleic acid, a target region, target segment, or specified portion thereof. Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods.


For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).


In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e., 100% complementary) to a target nucleic acid, or specified portion thereof. For example, an antisense compound may be fully complementary to a Tau nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and/or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be “fully complementary” to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound may or may not be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.


The location of a non-complementary nucleobase may be at the 5′ end or 3′ end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases may be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they may be contiguous (i.e., linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located in the wing segment of a gapmer antisense oligonucleotide.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a Tau nucleic acid, or specified portion thereof.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a Tau nucleic acid, or specified portion thereof.


The antisense compounds provided herein also include those which are complementary to a portion of a target nucleic acid. As used herein, “portion” refers to a defined number of contiguous (i.e. linked) nucleobases within a region or segment of a target nucleic acid. A “portion” can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 9 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least an 11 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 12 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 13 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 14 nucleobase portion of a target segment. In certain embodiments, the antisense compounds, are complementary to at least a 15 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least a 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.


Identity


The antisense compounds provided herein may also have a defined percent identity to a particular nucleotide sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are contemplated. The non-identical bases may be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.


In certain embodiments, the antisense compounds, or portions thereof, are at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to one or more of the antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.


In certain embodiments, a portion of the antisense compound is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


In certain embodiments, a portion of the antisense oligonucleotide is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


Modifications


A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2′, 3′ or 5′ hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside linkages of the oligonucleotide.


Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.


Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.


Modified Internucleoside Linkages


The naturally occurring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.


Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.


In certain embodiments, antisense compounds targeted to a Tau nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are interspersed throughout the antisense compound. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of an antisense compound is a phosphorothioate internucleoside linkage.


Modified Sugar Moieties


Antisense compounds can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise chemically modified ribofuranose ring moieties. Examples of chemically modified ribofuranose rings include without limitation, addition of substitutent groups (including 5′ and 2′ substituent groups, bridging of non-geminal ring atoms to form bicyclic nucleic acids (BNA), replacement of the ribosyl ring oxygen atom with S, N(R), or C(R1)(R2) (R, R1 and R2 are each independently H, C1-C12 alkyl or a protecting group) and combinations thereof. Examples of chemically modified sugars include 2′-F-5′-methyl substituted nucleoside (see PCT International Application WO 2008/101157 Published on Aug. 21, 2008 for other disclosed 5′,2′-bis substituted nucleosides) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 21-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a BNA (see PCT International Application WO 2007/134181 Published on Nov. 22, 2007 wherein LNA is substituted with for example a 5′-methyl or a 5′-vinyl group).


Examples of nucleosides having modified sugar moieties include without limitation nucleosides comprising 5′-vinyl, 5′-methyl (R or 5), 4′-S, 2′-F, 2′-OCH3, 2′-OCH2CH3, 2′-OCH2CH2F and 2′-O(CH2)2OCH3 substituent groups. The substituent at the 2′ position can also be selected from allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2—O—N(Rm)(Rn), O—CH2—C(═O)—N(Rm)(Rn), and O—CH2—C(═O)—N(R1)—(CH2)2—N(Rm)(Rn), where each R1, Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl.


As used herein, “bicyclic nucleosides” refer to modified nucleosides comprising a bicyclic sugar moiety. Examples of bicyclic nucleosides include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, antisense compounds provided herein include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to one of the formulae: 4′-(CH2)—O-2′ (LNA); 4′-(CH2)—S-2′; 4′-(CH2)2—O-2′ (ENA); 4′-CH(CH3)—O-2′ and 4′-CH(CH2OCH3)—O-2′ (and analogs thereof see U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008); 4′-C(CH3)(CH3)—O-2′ (and analogs thereof see published International Application WO/2009/006478, published Jan. 8, 2009); 4′-CH2—N(OCH3)-2′ (and analogs thereof see published International Application WO/2008/150729, published Dec. 11, 2008); 4′-CH2—O—N(CH3)-2′ (see published U.S. Patent Application US2004-0171570, published Sep. 2, 2004); 4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see U.S. Pat. No. 7,427,672, issued on Sep. 23, 2008); 4′-CH2—C(H)(CH3)-2′ (see Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2—C—(═CH2)-2′ (and analogs thereof see published International Application WO 2008/154401, published on Dec. 8, 2008).


Further reports related to bicyclic nucleosides can also be found in published literature (see for example: Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129(26) 8362-8379; Elayadi et al., Curr. Opinion Invest. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; and Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 7,034,133; 7,053,207; 7,399,845; 7,547,684; and 7,696,345; U.S. Patent Publication No. US2008-0039618; US2009-0012281; U.S. Patent Ser. Nos. 60/989,574; 61/026,995; 61/026,998; 61/056,564; 61/086,231; 61/097,787; and 61/099,844; Published PCT International applications WO 1994/014226; WO 2004/106356; WO 2005/021570; WO 2007/134181; WO 2008/150729; WO 2008/154401; and WO 2009/006478. Each of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and 13-D-ribofuranose (see PCT international application PCT/DK98/00393, published on Mar. 25, 1999 as WO 99/14226).


In certain embodiments, bicyclic sugar moieties of BNA nucleosides include, but are not limited to, compounds having at least one bridge between the 4′ and the 2′ position of the pentofuranosyl sugar moiety wherein such bridges independently comprises 1 or from 2 to 4 linked groups independently selected from —[C(Ra)(Rb)]n—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —C(═O)—, —C(═NRa)—, —C(═S)—, —O—, —Si(Ra)2—, —S(═O)x—, and —N(Ra)—;


wherein:


x is 0, 1, or 2;


n is 1, 2, 3, or 4;


each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and


each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.


In certain embodiments, the bridge of a bicyclic sugar moiety is —[C(Ra)(Rb)]n—, —[C(Ra)(Rb)]n—O—, —C(RaRb)—N(R)—O— or —C(RaRb)—O—N(R)—. In certain embodiments, the bridge is 4′-CH2-2′, 4′-(CH2)2-2′, (CH2)3-2′, 4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R)-2′ and 4′-CH2—N(R)—O-2′- wherein each R is, independently, H, a protecting group or C1-C12 alkyl.


In certain embodiments, bicyclic nucleosides are further defined by isomeric configuration. For example, a nucleoside comprising a 4′-2′ methylene-oxy bridge, may be in the α-L configuration or in the β-D configuration. Previously, α-L-methyleneoxy (4′-CH2—O-2′) BNA's have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).


In certain embodiments, bicyclic nucleosides include, but are not limited to, (A) α-L-methyleneoxy (4′-CH2—O-2′) BNA, (B) β-D-methyleneoxy (4′-CH2—O-2′) BNA, (C) ethyleneoxy (4′-(CH2)2—O-2′) BNA, (D) aminooxy (4′-CH2—O—N(R)-2′) BNA, (E) oxyamino (4′-CH2—N(R)—O-2′) BNA, and (F) methyl(methyleneoxy) (4′-CH(CH3)—O-2′) BNA, (G) methylene-thio (4′-CH2—S-2′) BNA, (H) methylene-amino (4′-CH2—N(R)-2′) BNA, (I) methyl carbocyclic (4′-CH2—CH(CH3)-2′) BNA, and (J) propylene carbocyclic (4′-(CH2)3-2′) BNA as depicted below.




embedded image


embedded image



wherein Bx is the base moiety and R is independently H, a protecting group or C1-C12 alkyl.


In certain embodiments, bicyclic nucleosides are provided having Formula I:




embedded image



wherein:


Bx is a heterocyclic base moiety;


-Qa-Qb-Qc- is —CH2—N(Rc)—CH2—, —C(═O)—N(Rc)—CH2—, —CH2—O—N(Rc)—, —CH2—N(Rc)—O— or —N(Rc)—O—CH2;


Rc is C1-C12 alkyl or an amino protecting group; and


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium.


In certain embodiments, bicyclic nucleosides are provided having Formula II:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Za is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, substituted amide, thiol or substituted thio.


In one embodiment, each of the substituted groups is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJc, NJcJd, SJc, N3, OC(═X)Jc, and NJeC(═X)NJcJd, wherein each Jc, Jd and Je is, independently, H, C1-C6 alkyl, or substituted C1-C6 alkyl and X is O or NJc.


In certain embodiments, bicyclic nucleosides are provided having Formula III:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Zb is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl or substituted acyl (C(═O)—).


In certain embodiments, bicyclic nucleosides are provided having Formula IV:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


Rd is C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl;


each qa, qb, qc and qd is, independently, H, halogen, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl, C1-C6 alkoxyl, substituted C1-C6 alkoxyl, acyl, substituted acyl, C1-C6 aminoalkyl or substituted C1-C6 aminoalkyl;


In certain embodiments, bicyclic nucleosides are provided having Formula V:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


qa, qb, qc and qf are each, independently, hydrogen, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxy, substituted C1-C12 alkoxy, OJj, SJj, SOJj, NJjJk, N3, CN, C(═O)OJj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk;


or qe and qf together are ═C(qg)(qh);


qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.


The synthesis and preparation of the methyleneoxy (4′-CH2—O-2′) BNA monomers adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). BNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.


Analogs of methyleneoxy (4′-CH2-O-2′) BNA and 2′-thio-BNAs, have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of locked nucleoside analogs comprising oligodeoxyribonucleotide duplexes as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Furthermore, synthesis of 2′-amino-BNA, a novel comformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2′-amino- and 2′-methylamino-BNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.


In certain embodiments, bicyclic nucleosides are provided having Formula VI:




embedded image



wherein:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;


each qi, qj, qk and ql is, independently, H, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxyl, substituted C1-C12 alkoxyl, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(═O)Oj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk; and


qi and qj or ql and qk together are ═C(qg)(qh), wherein qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.


One carbocyclic bicyclic nucleoside having a 4′-(CH2)3-2′ bridge and the alkenyl analog bridge 4′-CH═CH—CH2-2′ have been described (Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443 and Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (Srivastava et al., J. Am. Chem. Soc., 2007, 129(26), 8362-8379).


As used herein, “4′-2′ bicyclic nucleoside” or “4′ to 2′ bicyclic nucleoside” refers to a bicyclic nucleoside comprising a furanose ring comprising a bridge connecting two carbon atoms of the furanose ring connects the 2′ carbon atom and the 4′ carbon atom of the sugar ring.


As used herein, “monocylic nucleosides” refer to nucleosides comprising modified sugar moieties that are not bicyclic sugar moieties. In certain embodiments, the sugar moiety, or sugar moiety analogue, of a nucleoside may be modified or substituted at any position.


As used herein, “2′-modified sugar” means a furanosyl sugar modified at the 2′ position. In certain embodiments, such modifications include substituents selected from: a halide, including, but not limited to substituted and unsubstituted alkoxy, substituted and unsubstituted thioalkyl, substituted and unsubstituted amino alkyl, substituted and unsubstituted alkyl, substituted and unsubstituted allyl, and substituted and unsubstituted alkynyl. In certain embodiments, 2′ modifications are selected from substituents including, but not limited to: O[(CH2)nO]mCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nF, O(CH2)nONH2, OCH2C(═O)N(H)CH3, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other 2′-substituent groups can also be selected from: C1-C12 alkyl, substituted alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, F, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving pharmacokinetic properties, or a group for improving the pharmacodynamic properties of an antisense compound, and other substituents having similar properties. In certain embodiments, modified nucleosides comprise a 2′-MOE side chain (Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Such 2′-MOE substitution have been described as having improved binding affinity compared to unmodified nucleosides and to other modified nucleosides, such as 2′-O-methyl, O-propyl, and O-aminopropyl. Oligonucleotides having the 2′-MOE substituent also have been shown to be antisense inhibitors of gene expression with promising features for in vivo use (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; and Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926).


As used herein, a “modified tetrahydropyran nucleoside” or “modified THP nucleoside” means a nucleoside having a six-membered tetrahydropyran “sugar” substituted in for the pentofuranosyl residue in normal nucleosides (a sugar surrogate). Modified THP nucleosides include, but are not limited to, what is referred to in the art as hexitol nucleic acid (HNA), anitol nucleic acid (ANA), manitol nucleic acid (MNA) (see Leumann, Bioorg. Med. Chem., 2002, 10, 841-854), fluoro HNA (F-HNA) or those compounds having Formula VII:




embedded image



wherein independently for each of said at least one tetrahydropyran nucleoside analog of Formula VII:


Bx is a heterocyclic base moiety;


Ta and Tb are each, independently, an internucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound or one of Ta and Tb is an internucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound and the other of Ta and Tb is H, a hydroxyl protecting group, a linked conjugate group or a 5′ or 3′-terminal group;


q1, q2, q3, q4, q5, q6 and q7 are each independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl; and each of R1 and R2 is selected from hydrogen, hydroxyl, halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 and CN, wherein X is O, S or NJ1 and each J1, J2 and J3 is, independently, H or C1-C6 alkyl.


In certain embodiments, the modified THP nucleosides of Formula VII are provided wherein q1, q2, q3, q4, q5, q6 and q7 are each H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, THP nucleosides of Formula VII are provided wherein one of R1 and R2 is fluoro. In certain embodiments, R1 is fluoro and R2 is H; R1 is methoxy and R2 is H, and R1 is H and R2 is methoxyethoxy.


As used herein, “2′-modified” or “2′-substituted” refers to a nucleoside comprising a sugar comprising a substituent at the 2′ position other than H or OH. 2′-modified nucleosides, include, but are not limited to, bicyclic nucleosides wherein the bridge connecting two carbon atoms of the sugar ring connects the 2′ carbon and another carbon of the sugar ring; and nucleosides with non-bridging 2′ substituents, such as allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, —OCF3, O—(CH2)2—O—CH3, 2′-O(CH2)2SCH3, O—(CH2)2—O—N(Rm)(Rn), or O—CH2—C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl. 2′-modified nucleosides may further comprise other modifications, for example at other positions of the sugar and/or at the nucleobase.


As used herein, “2′-F” refers to a nucleoside comprising a sugar comprising a fluoro group at the 2′ position.


As used herein, “2′-OMe” or “2′-OCH3” or “2′-O-methyl” each refers to a nucleoside comprising a sugar comprising an —OCH3 group at the 2′ position of the sugar ring.


As used herein, “MOE” or “2′-MOE” or “2′-OCH2CH2OCH3” or “2′-O-methoxyethyl” each refers to a nucleoside comprising a sugar comprising a —OCH2CH2OCH3 group at the 2′ position of the sugar ring.


As used herein, “oligonucleotide” refers to a compound comprising a plurality of linked nucleosides. In certain embodiments, one or more of the plurality of nucleosides is modified. In certain embodiments, an oligonucleotide comprises one or more ribonucleosides (RNA) and/or deoxyribonucleosides (DNA).


Many other bicyclo and tricyclo sugar surrogate ring systems are also known in the art that can be used to modify nucleosides for incorporation into antisense compounds (see for example review article: Leumann, Bioorg. Med. Chem., 2002, 10, 841-854).


Such ring systems can undergo various additional substitutions to enhance activity.


Methods for the preparations of modified sugars are well known to those skilled in the art.


In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.


In certain embodiments, antisense compounds comprise one or more nucleosides having modified sugar moieties. In certain embodiments, the modified sugar moiety is 2′-MOE. In certain embodiments, the 2′-MOE modified nucleosides are arranged in a gapmer motif. In certain embodiments, the modified sugar moiety is a bicyclic nucleoside having a (4′-CH(CH3)—O-2′) bridging group. In certain embodiments, the (4′-CH(CH3)—O-2′) modified nucleosides are arranged throughout the wings of a gapmer motif.


Compositions and Methods for Formulating Pharmaceutical Compositions


Antisense oligonucleotides may be admixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


An antisense compound targeted to a Tau nucleic acid can be utilized in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS). PBS is a diluent suitable for use in compositions to be delivered parenterally. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising an antisense compound targeted to a Tau nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the antisense compound is an antisense oligonucleotide.


Pharmaceutical compositions comprising antisense compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of antisense compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


A prodrug can include the incorporation of additional nucleosides at one or both ends of an antisense compound which are cleaved by endogenous nucleases within the body, to form the active antisense compound.


Conjugated Antisense Compounds


Antisense compounds may be covalently linked to one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting antisense oligonucleotides. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.


Antisense compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense compounds to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense compound having terminal nucleic acid from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap), or at the 3′ terminus (3′-cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Further 3′ and 5′-stabilizing groups that can be used to cap one or both ends of an antisense compound to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.


Cell Culture and Antisense Compounds Treatment


The effects of antisense compounds on the level, activity or expression of Tau nucleic acids can be tested in vitro in a variety of cell types. Cell types used for such analyses are available from commercial vendors (e.g. American Type Culture Collection, Manassas, Va.; Zen-Bio, Inc., Research Triangle Park, NC; Clonetics Corporation, Walkersville, Md.) and are cultured according to the vendor's instructions using commercially available reagents (e.g. Invitrogen Life Technologies, Carlsbad, Calif.). Illustrative cell types include, but are not limited to, HepG2 cells, Hep3B cells, and primary hepatocytes.


In Vitro Testing of Antisense Oligonucleotides


Described herein are methods for treatment of cells with antisense oligonucleotides, which can be modified appropriately for treatment with other antisense compounds.


Cells may be treated with antisense oligonucleotides when the cells reach approximately 60-80% confluency in culture.


One reagent commonly used to introduce antisense oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotides may be mixed with LIPOFECTIN in OPTI-MEM 1 (Invitrogen, Carlsbad, Calif.) to achieve the desired final concentration of antisense oligonucleotide and a LIPOFECTIN concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.


Another reagent used to introduce antisense oligonucleotides into cultured cells includes LIPOFECTAMINE (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotide is mixed with LIPOFECTAMINE in OPTI-MEM 1 reduced serum medium (Invitrogen, Carlsbad, Calif.) to achieve the desired concentration of antisense oligonucleotide and a LIPOFECTAMINE concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.


Another technique used to introduce antisense oligonucleotides into cultured cells includes electroporation.


Cells are treated with antisense oligonucleotides by routine methods. Cells may be harvested 16-24 hours after antisense oligonucleotide treatment, at which time RNA or protein levels of target nucleic acids are measured by methods known in the art and described herein. In general, when treatments are performed in multiple replicates, the data are presented as the average of the replicate treatments.


The concentration of antisense oligonucleotide used varies from cell line to cell line. Methods to determine the optimal antisense oligonucleotide concentration for a particular cell line are well known in the art. Antisense oligonucleotides are typically used at concentrations ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE. Antisense oligonucleotides are used at higher concentrations ranging from 625 to 20,000 nM when transfected using electroporation.


RNA Isolation


RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, for example, using the TRIZOL Reagent (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommended protocols.


Analysis of Inhibition of Target Levels or Expression


Inhibition of levels or expression of a Tau nucleic acid can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or quantitaive real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Quantitative real-time PCR can be conveniently accomplished using the commercially available ABI PRISM 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.


Quantitative Real-Time PCR Analysis of Target RNA Levels


Quantitation of target RNA levels may be accomplished by quantitative real-time PCR using the ABI PRISM 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. Methods of quantitative real-time PCR are well known in the art.


Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction, which produces complementary DNA (cDNA) that is then used as the substrate for the real-time PCR amplification. The RT and real-time PCR reactions are performed sequentially in the same sample well. RT and real-time PCR reagents may be obtained from Invitrogen (Carlsbad, Calif.). RT real-time-PCR reactions are carried out by methods well known to those skilled in the art.


Gene (or RNA) target quantities obtained by real time PCR are normalized using either the expression level of a gene whose expression is constant, such as cyclophilin A, or by quantifying total RNA using RIBOGREEN (Invitrogen, Inc. Carlsbad, Calif.). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RIBOGREEN RNA quantification reagent (Invetrogen, Inc. Eugene, Oreg.). Methods of RNA quantification by RIBOGREEN are taught in Jones, L. J., et al, (Analytical Biochemistry, 1998, 265, 368-374). A CYTOFLUOR 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN fluorescence.


Probes and primers are designed to hybridize to a Tau nucleic acid. Methods for designing real-time PCR probes and primers are well known in the art, and may include the use of software such as PRIMER EXPRESS Software (Applied Biosystems, Foster City, Calif.).


Analysis of Protein Levels


Antisense inhibition of Tau nucleic acids can be assessed by measuring Tau protein levels. Protein levels of Tau can be evaluated or quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assays, protein activity assays (for example, caspase activity assays), immunohistochemistry, immunocytochemistry or fluorescence-activated cell sorting (FACS). Antibodies directed to a target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.


In Vivo Testing of Antisense Compounds


Antisense compounds, for example, antisense oligonucleotides, are tested in animals to assess their ability to inhibit expression of Tau and produce phenotypic changes, such as, improved cognition and motor function. In certain embodiments, cognition is measured by novel object recognition and nestlet building activity. In certain embodiments, motor function is measured by walking initiation analysis, rotarod, grip strength, pole climb, open field performance, balance beam, hindpaw footprint testing in the animal. In certain embodiments, antisense compounds, for example, antisense oligonucleotides, are tested in animals to assess their ability to reduce hyperphosphorylated tau and neurofibrillary tangles. In certain embodiments, antisense compounds, for example, antisense oligonucleotides, are tested to assess their ability to prevent, and/or reduce severity of, seizures in a pentylenetetrazol (PTZ) induced seizure model.


Testing may be performed in normal animals, or in experimental disease models. For administration to animals, antisense oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration, such as intraperitoneal, intravenous, and subcutaneous. Calculation of antisense oligonucleotide dosage and dosing frequency is within the abilities of those skilled in the art, and depends upon factors such as route of administration and animal body weight. Following a period of treatment with antisense oligonucleotides, RNA is isolated from CNS tissue or CSF and changes in Tau nucleic acid expression are measured.


Certain Indications


In certain embodiments, provided herein are methods, compounds, and compositions of treating an individual comprising administering one or more pharmaceutical compositions described herein. In certain embodiments, the individual has a neurodegenerative disease. In certain embodiments, the individual is at risk for developing a neurodegenerative disease, including, but not limited to, a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome. In certain embodiments, the individual has been identified as having a Tau associated disease. In certain embodiments, provided herein are methods for prophylactically reducing Tau expression in an individual. Certain embodiments include treating an individual in need thereof by administering to an individual a therapeutically effective amount of an antisense compound targeted to a Tau nucleic acid.


In one embodiment, administration of a therapeutically effective amount of an antisense compound targeted to a Tau nucleic acid is accompanied by monitoring of Tau levels in an individual, to determine an individual's response to administration of the antisense compound. An individual's response to administration of the antisense compound may be used by a physician to determine the amount and duration of therapeutic intervention.


In certain embodiments, administration of an antisense compound targeted to a Tau nucleic acid results in reduction of Tau expression by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%, or a range defined by any two of these values. In certain embodiments, administration of an antisense compound targeted to a Tau nucleic acid results in improved motor function in an animal. In certain embodiments, administration of a Tau antisense compound improves motor function by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%, or a range defined by any two of these values.


In certain embodiments, pharmaceutical compositions comprising an antisense compound targeted to Tau are used for the preparation of a medicament for treating a patient suffering or susceptible to a neurodegenerative disease including a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome.


Certain Hotspot Regions


1. Nucleobases 135783-135980 of SEQ ID NO: 1


In certain embodiments, antisense oligonucleotides are designed to target nucleobases 135783-135980 of SEQ ID NO: 1 (GENBANK Accession No. GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000). In certain embodiments, nucleobases 135783-135980 are a hotspot region. In certain embodiments, nucleobases 135783-135980 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 5-9-5 MOE gapmers, 5-7-6 MOE gapmers, and 5-8-5 MOE gapmers. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphodiester internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate and phosphodiester internucleotide linkages (e.g., the antisense oligonucleotides have “mixed backbones”).


In certain embodiments, nucleobases 135783-135980 are targeted by the following ISIS numbers: 424879, 424880, 548937, 613114-613120, 622096-622150, 623988-623996, 664511-664542, and 664661-664819.


In certain embodiments, nucleobases 135783-135980 are targeted by the following SEQ ID NOs: 56, 57, 248, 462-467, 1668-1698, 2025-2048, 2301-2309, 2331-2443, and 2478-2483.


In certain embodiments, antisense oligonucleotides targeting nucleobases 135783-135980 achieve at least 12%, at least 13%, at least 14%, at least 15%, at least 16%, at least 17%, at least 18%, at least 19%, 20%, at least 21%, at least 22%, at least 23%, at least 24%, at least 25%, at least 26%, at least 27%, at least 28%, at least 29%, at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, or at least 93% reduction of Tau mRNA and/or protein levels in vitro and/or in vivo.


2. Nucleobases 135853-135872 of SEQ ID NO: 1


In certain embodiments, antisense oligonucleotides are designed to target nucleobases 135853-135872 of SEQ ID NO: 1 (GENBANK Accession No. GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000). In certain embodiments, nucleobases 135853-135872 are a hotspot region. In certain embodiments, nucleobases 135853-135872 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 5-9-5 MOE gapmers, 5-7-6 MOE gapmers, or 5-8-5 MOE gapmers. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphodiester internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate and phosphodiester internucleotide linkages (e.g., the antisense oligonucleotides have “mixed backbones”).


In certain embodiments, nucleobases 135853-135872 are targeted by the following ISIS numbers: 424879, 424880, 613117, 613118, 622114-622125, 623993-623996, 664522-664542, 664676-664713, 664729-664766, and 664783-664819.


In certain embodiments, nucleobases 135853-135872 are targeted by the following SEQ ID NOs: 56, 57, 248, 464-465, 1668-1673, 2039-2048, 2306-2309, 2345-2443, and 2478-2483.


In certain embodiments, antisense oligonucleotides targeting nucleobases 135853-135872 achieve at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, or at least 87% reduction of Tau mRNA and/or protein levels in vitro and/or in vivo.


3. Nucleobases 135783-135929 of SEQ ID NO: 1


In certain embodiments, antisense oligonucleotides are designed to target nucleobases 135783-135929 of SEQ ID NO: 1 (GENBANK Accession No. GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000). In certain embodiments, nucleobases 135783-135929 are a hotspot region. In certain embodiments, nucleobases 135783-135929 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 5-9-5 MOE gapmers, 5-7-6 MOE gapmers, or 5-8-5 MOE gapmers. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphodiester internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate and phosphodiester internucleotide linkages (e.g., the antisense oligonucleotides have “mixed backbones”).


In certain embodiments, nucleobases 135783-135929 are targeted by the following ISIS numbers: 424879, 424880, 548937, 613114-613119, 622096-622138, 623988-623996, 664511-664542, and 664661-664819.


In certain embodiments, nucleobases 135783-135929 are targeted by the following SEQ ID NOs: 56, 57, 248, 462-466, 1668-1686, 2025-2048, 2301-2309, 2331-2443, and 2478-2483.


In certain embodiments, antisense oligonucleotides targeting nucleobases 135783-135929 achieve at least 12%, at least 13%, at least 14%, at least 15%, at least 16%, at least 17%, at least 18%, at least 19%, 20%, at least 21%, at least 22%, at least 23%, at least 24%, at least 25%, at least 26%, at least 27%, at least 28%, at least 29%, at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, or at least 93% reduction of Tau mRNA and/or protein levels in vitro and/or in vivo.


4. Nucleobases 135783-135914 of SEQ ID NO: 1


In certain embodiments, antisense oligonucleotides are designed to target nucleobases 135783-135914 of SEQ ID NO: 1 (GENBANK Accession No. GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000). In certain embodiments, nucleobases 135783-135914 are a hotspot region. In certain embodiments, nucleobases 135783-135914 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 5-9-5 MOE gapmers, 5-7-6 MOE gapmers, or 5-8-5 MOE gapmers. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphodiester internucleoside linkages. In certain embodiments, the nucleosides of the antisense oligonucleotides are linked by phosphorothioate and phosphodiester internucleotide linkages (e.g., the antisense oligonucleotides have “mixed backbones”).


In certain embodiments, nucleobases 135783-135914 are targeted by the following ISIS numbers: 424879, 424880, 548937, 613114-613119, 622096-622133, 623988-623996, 664511-664542, 664661-664819.


In certain embodiments, nucleobases 135783-135914 are targeted by the following SEQ ID NOs: 56, 57, 248, 462-466, 1668-1681, 2025-2048, 2301-2309, 2331-2443, and 2478-2483.


In certain embodiments, nucleobases 135783-135914 are targeted by the following ISIS numbers: 424879, 424880, 548937, 613114-613119, 622096-622133, and 623988-623996.


In certain embodiments, nucleobases 135783-135914 are targeted by the following SEQ ID NOs: 56, 57, 248, 462-466, 1668-1681, 2025-2048, and 2301-2309.


In certain embodiments, antisense oligonucleotides targeting nucleobases 135783-135914 achieve at least 12%, at least 13%, at least 14%, at least 15%, at least 16%, at least 17%, at least 18%, at least 19%, 20%, at least 21%, at least 22%, at least 23%, at least 24%, at least 25%, at least 26%, at least 27%, at least 28%, at least 29%, at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, or at least 93% reduction of Tau mRNA and/or protein levels in vitro and/or in vivo.


EXAMPLES

Non-Limiting Disclosure and Incorporation by Reference


While certain compounds, compositions, and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.


Example 1: Antisense Inhibition of Human Tau in HepG2 Cells by MOE Gapmers

Antisense oligonucleotides were designed targeting a tau nucleic acid and were tested for their effects on tau mRNA in vitro. Cultured HepG2 cells were transfected using Lipofectin reagent with 100 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 (forward sequence AAGATTGGGTCCCTGGACAAT, designated herein as SEQ ID NO: 10; reverse sequence AGCTTGTGGGTTTCAATCTTTTTATT, designated herein as SEQ ID NO: 11; probe sequence CACCCACGTCCCTGGCGGA, designated herein as SEQ ID NO: 12) was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in Table 1 below is targeted to either the human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000) or to the human tau mRNA sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3). ‘n/a’ indicates that the oligonucleotide does not target the gene sequence with 100% complementarity. The sequences listed in Table 2 do not target either SEQ ID NO: 1 or 2 with 100% complementarity, but instead target SEQ ID NO: 3 (GENBANK Accession No. NM_ 016841.4, a variant mRNA sequence which skips exons 3, 4, 6, 8, 10, and 12) or SEQ ID NO: 4 (GENBANK Accession No. NT_010783.14 truncated from nucleotides 2624000 to 2761000).









TABLE 1







Inhibition of Tau mRNA by 5-10-5 MOE gapmers targeting


SEQ ID NOs: 1 and 2















SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID



NO: 1
NO: 1


NO: 2
NO: 2
SEQ


ISIS
Start
Stop

%
Start
Stop
ID


NO
Site
Site
Sequence
inhibition
Site
Site
NO





424863
n/a
n/a
TTGTAGACTATTTGCACACT
59
2240
2259
20





433519
28769
28788
CACAGGCAGATGCGAACCCT
57
n/a
n/a
21





433520
47181
47200
TGGTGGAGACAAGACATTCT
57
n/a
n/a
22





433521
71387
71406
CCATCCCCTAATAGTTAGCA
29
n/a
n/a
23





433522
72861
72880
CATGAGGCTTGGGATCTGAA
49
n/a
n/a
24





433474
73879
73898
GTGATCTTCCATCACTTCGA
61
 345
364
25





433523
73980
73999
GTCCACTAACCTTTCAGGCC
63
n/a
n/a
26





433518
83423
83442
AGCATCAGAGGTTTCAGAGC
46
 501
520
27





424852
83437
83456
GTTGGAGTGCTCTTAGCATC
58
 515
534
28





433513
85934
85953
GGCAGCCTGCTTGCCGGGAG
68
 573
592
29





433524
87927
87946
GAGGATTTCCTTGGAGAGAG
53
n/a
n/a
30





433525
89950
89969
GTTCACTGACCTTGGGTCAC
38
n/a
n/a
31





433526
91248
91267
ATGATTTCTAGAGGTCATGC
61
n/a
n/a
32





433514
95121
95140
AGAGGAAATCCACAGGGAGG
43
1120
1139
33





433515
95372
95391
TTCAGAGGGCTCTGGAAGGT
58
1371
1390
34





433527
95790
95809
ACACCATGAGGGCACCCGTC
65
n/a
n/a
35





433528
98549
98568
ACCATGCGAGCTGATAAAAT
46
n/a
n/a
36





433516
101406
101425
AAGGTTTTAGCAGAGGAACG
50
1514
1533
37





433517
101507
101526
AGGAAGGTGGCTCTGGGCAC
73
1615
1634
38





433476
103087
103106
CCAGAGCTGGGTGGTGTCTT
60
n/a
n/a
39





433477
108040
108059
GGTGGAGTACGGACCACTGC
71
2006
2025
40





433478
108054
108073
AAGACGGCGACTTGGGTGGA
65
2020
2039
41





424857
108148
108167
TGGTGCTTCAGGTTCTCAGT
54
2114
2133
42





433529
121819
121838
TTATCTGCACCTTTGGTAGC
29
n/a
n/a
43





424859
121828
121847
TCTTATTAATTATCTGCACC
50
2149
2168
44





424860
121838
121857
AGATCCAGCTTCTTATTAAT
36
2159
2178
45





424861
121846
121865
CGTTGCTAAGATCCAGCTTC
48
2167
2186
46





424862
121865
121884
GAGCCACACTTGGACTGGAC
79
2186
2205
47





433530
122497
122516
GGTGGCGCAGGCTAAGCATA
52
n/a
n/a
48





424864
125798
125817
GAGCCACACTTGGAGGTCAC
63
2279
2298
49





433531
125834
125853
ACAGGGCTACCTGGTTTATG
53
n/a
n/a
50





424866
130141
130160
ATTTTACTTCCACCTGGCCA
70
2329
2348
51





433479
130188
130207
GGACCCAATCTTCGACTGGA
70
2376
2395
52





424926
135467
135486
GTGGGTTTCAATCTGCAAGA
39
n/a
n/a
53





424869
135475
135494
GTCAGCTTGTGGGTTTCAAT
74
2438
2457
54





433480
135673
135692
GATCACAAACCCTGCTTGGC
60
2636
2655
55





424879
135848
135867
TGATTTTGAAGTCCCGAGCC
64
2811
2830
56





424880
135853
135872
ATCACTGATTTTGAAGTCCC
54
2816
2835
57





433481
136033
136052
CAGAAGCAGCTTTCAGAGCC
38
2996
3015
58





433482
136118
136137
AAATCCTTTGTTGCTGCCAC
37
3081
3100
59





424882
136425
136444
CCCACAGGCTGCCCTGCAGA
57
3388
3407
60





433483
136491
136510
GGAGGTCATCCACGAAGTGC
67
3454
3473
61





433484
136577
136596
GGAAGCCCCTCAACTCAGGC
28
3540
3559
62





433485
136655
136674
GGTCTGCAAAGTGGCCAAAA
49
3618
3637
63





424883
136675
136694
TGGTTAGCCCTAAAGTCCCA
54
3638
3657
64





433486
136686
136705
ACAAAGAGAACTGGTTAGCC
39
3649
3668
65





424884
136703
136722
AAGAGGCACAAGTCCTTACA
40
3666
3685
66





433487
136748
136767
CAGAGATGCCAGTGGCCCAG
70
3711
3730
67





433488
137083
137102
GGAACCGAATCAGATCATGA
54
4046
4065
68





433489
137387
137406
TGGAGGGCTGATACTATGCA
45
4350
4369
69





433490
137430
137449
AAAAGAACCATTTCCAAGGG
41
4393
4412
70





433491
137540
137559
ATCCAACTACAACTCAACAG
17
4503
4522
71





424894
137579
137598
ATCATAGTCACTCTGGTGAA
56
4542
4561
72





433492
137694
137713
GCCACACGAGTCCCAGTGTG
45
4657
4676
73





433493
137731
137750
AAAACTTGGGAGGCCCCAGC
50
4694
4713
74





433494
138173
138192
GATCCAGGACAGGCAATTCA
58
5136
5155
75





433495
138205
138224
TCCTCAGGCAGGCAGCTTGG
49
5168
5187
76





433496
138303
138322
TTCTCATGGCAGCAGATGGA
51
5266
5285
77





433497
138338
138357
TTAGGCAGCAATGTTTTGCA
18
5301
5320
78





433498
138503
138522
AGAGTTCTGGGCCCAGAGAC
73
5466
5485
79





433499
138675
138694
AGGAAGAGGAACCGAGGTGC
59
5638
5657
80





433500
138774
138793
TCTTAGGCTGGCCCCAAGAG
36
5737
5756
81





433501
138812
138831
TCAATTTATCTGCCAGCACT
28
5775
5794
82





433502
138845
138864
TCCTCATTTAAGATCACAAG
36
5808
5827
83





433503
138983
139002
ATGGAACTATTGATAAAGTG
47
5946
5965
84





433504
139003
139022
CACCACTGAAGTCAATTTAA
23
5966
5985
85





433505
139112
139131
AGTTTAAGTGCTGCACCCCA
52
6075
6094
86





433506
139137
139156
GAAATCATGAAAAGGGTTAC
25
6100
6119
87





433507
139154
139173
CTCTAGCAAATGTGGTTGAA
42
6117
6136
88





433508
139229
139248
AGCCAGCTGCCTGGGAAAGC
70
6192
6211
89





433509
139359
139378
TAGAGGGAAGGATGCCAAGG
56
6322
6341
90





433510
139406
139425
GTGTGTCTGGAGCCAGTGTG
49
6369
6388
91





424910
139675
139694
GAAATCATGGGACTTGCAAG
52
6638
6657
92





433512
139729
139748
AAAGCTAAGCTAAGATGATT
31
6692
6711
93





424913
139797
139816
TTACAGCAACAGTCAGTGTA
42
6760
6779
94
















TABLE 2







Inhibition of Tau mRNA by 5-10-5 MOE gapmers targeting


SEQ ID NOs: 3 and 4













Target







SEQ
Target



ID
Start

%
SEQ


ISIS NO
NO
Site
Sequence
inhibition
ID NO















424917
3
968
TTGTAGACTATTTGCACCTT
51
95





433475
3
443
TCTTCAGCTTTCAGGCCAGC
68
96





433511
4
135519
AGAAGTTTTATGAAGCCGCA
13
97









Example 2: Dose-Dependent Antisense Inhibition of Human Tau in HepG2 Cells by 5-10-5 MOE Gapmers

Gapmers from studies described above exhibiting significant in vitro inhibition of Tau mRNA were selected and tested at various doses in HepG2 cells. Cells were plated at a density of 10,000 cells per well and transfected using Lipofectin reagent with 12.5 nM, 25.0 nM, 50.0 nM, 100.0 nM, or 200.0 nM concentrations of antisense oligonucleotide, as specified in the Table below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
















TABLE 3







ISIS
12.5
25.0
50.0
100.0
200.0



No
nM
nM
nM
nM
nM









424862
17
24
41
64
84



424866
14
25
47
63
84



433498
27
42
61
79
82



433508
25
31
53
66
83



433517
25
34
57
72
78



433487
18
30
38
60
76



433477
23
31
51
71
80



433475
18
33
57
71
85



433513
24
30
50
71
77



433483
23
28
41
58
74



433527
19
32
46
60
77










Example 3: Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE Gapmers

Additional antisense oligonucleotides were designed targeting a Tau nucleic acid and were tested for their effects on Tau mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured SH-SY5Y cells were transfected using electroporation with 7,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of Tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either the human Tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000) or to the human Tau mRNA sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3). ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.
















TABLE 4






SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID



NO: 1
NO: 1


NO: 2
NO: 2
SEQ


ISIS
Start
Stop

%
Start
Stop
ID


NO
Site
Site
Sequence
inhibition
Site
Site
NO






















548786
73867
73886
CACTTCGAACTCCTGGCGGG
73
333
352
98





548787
73869
73888
ATCACTTCGAACTCCTGGCG
64
335
354
99





548788
73871
73890
CCATCACTTCGAACTCCTGG
78
337
356
100





548789
73873
73892
TTCCATCACTTCGAACTCCT
49
339
358
101





548790
73875
73894
TCTTCCATCACTTCGAACTC
33
341
360
102





548791
73877
73896
GATCTTCCATCACTTCGAAC
54
343
362
103





433474
73879
73898
GTGATCTTCCATCACTTCGA
86
345
364
25





548792
73906
73925
CCTGTCCCCCAACCCGTACG
38
372
391
104





548793
73908
73927
TTCCTGTCCCCCAACCCGTA
58
374
393
105





548794
73910
73929
CTTTCCTGTCCCCCAACCCG
55
376
395
106





548795
73912
73931
ATCTTTCCTGTCCCCCAACC
14
378
397
107





548796
73914
73933
TGATCTTTCCTGTCCCCCAA
59
380
399
108





548797
73916
73935
CCTGATCTTTCCTGTCCCCC
67
382
401
109





548798
73918
73937
CCCCTGATCTTTCCTGTCCC
67
384
403
110





548799
73920
73939
CCCCCCTGATCTTTCCTGTC
33
386
405
111





548800
73922
73941
AGCCCCCCTGATCTTTCCTG
45
388
407
112





548801
73924
73943
GTAGCCCCCCTGATCTTTCC
62
390
409
113





548802
73926
73945
GTGTAGCCCCCCTGATCTTT
42
392
411
114





548803
73928
73947
TGGTGTAGCCCCCCTGATCT
58
394
413
115





548804
73930
73949
CATGGTGTAGCCCCCCTGAT
62
396
415
116





548805
73932
73951
TGCATGGTGTAGCCCCCCTG
82
398
417
117





548806
73934
73953
GGTGCATGGTGTAGCCCCCC
79
400
419
118





548807
73936
73955
TTGGTGCATGGTGTAGCCCC
58
402
421
119





548808
73938
73957
TCTTGGTGCATGGTGTAGCC
60
404
423
120





548809
73940
73959
GGTCTTGGTGCATGGTGTAG
67
406
425
121





548810
73945
73964
CTCTTGGTCTTGGTGCATGG
61
411
430
122





548811
73958
73977
CGTCCGTGTCACCCTCTTGG
73
424
443
123





548812
98559
98578
GCTTTTACTGACCATGCGAG
68
1449
1468
124





548813
98561
98580
TTGCTTTTACTGACCATGCG
64
1451
1470
125





548814
98563
98582
CTTTGCTTTTACTGACCATG
40
1453
1472
126





548815
98565
98584
GTCTTTGCTTTTACTGACCA
60
1455
1474
127





548816
98567
98586
CCGTCTTTGCTTTTACTGAC
50
1457
1476
128





548817
98569
98588
TCCCGTCTTTGCTTTTACTG
46
1459
1478
129





548818
98571
98590
AGTCCCGTCTTTGCTTTTAC
41
1461
1480
130





548819
98573
98592
CCAGTCCCGTCTTTGCTTTT
37
1463
1482
131





548820
98577
98596
GCTTCCAGTCCCGTCTTTGC
43
1467
1486
132





548821
98579
98598
TCGCTTCCAGTCCCGTCTTT
35
1469
1488
133





548822
98581
98600
CATCGCTTCCAGTCCCGTCT
73
1471
1490
134





548823
98583
98602
GTCATCGCTTCCAGTCCCGT
63
1473
1492
135





548824
98585
98604
TTGTCATCGCTTCCAGTCCC
50
1475
1494
136





548825
98587
98606
TTTTGTCATCGCTTCCAGTC
46
1477
1496
137





548826
103023
103042
GGCCCTTCTGGCCTGGAGGG
64
1747
1766
138





548827
103025
103044
CTGGCCCTTCTGGCCTGGAG
29
1749
1768
139





548828
103027
103046
GCCTGGCCCTTCTGGCCTGG
40
1751
1770
140





548829
103029
103048
TGGCCTGGCCCTTCTGGCCT
12
1753
1772
141





548830
103031
103050
GTTGGCCTGGCCCTTCTGGC
53
1755
1774
142





548831
103052
103071
TTTTGCTGGAATCCTGGTGG
20
1776
1795
143





548832
103054
103073
GTTTTTGCTGGAATCCTGGT
29
1778
1797
144





548833
103056
103075
GGGTTTTTGCTGGAATCCTG
51
1780
1799
145





548834
103075
103094
GGTGTCTTTGGAGCGGGCGG
44
1799
1818
146





548835
103077
103096
GTGGTGTCTTTGGAGCGGGC
30
1801
1820
147





548836
103079
103098
GGGTGGTGTCTTTGGAGCGG
38
1803
1822
148





548837
103081
103100
CTGGGTGGTGTCTTTGGAGC
29
1805
1824
149





548838
103083
103102
AGCTGGGTGGTGTCTTTGGA
37
1807
1826
150





548839
103085
103104
AGAGCTGGGTGGTGTCTTTG
0
1809
1828
151





548840
107921
107940
ATCCCCTGATTTTGGAGGTT
27
1887
1906
152





548841
107923
107942
CGATCCCCTGATTTTGGAGG
65
1889
1908
153





548842
107925
107944
TGCGATCCCCTGATTTTGGA
53
1891
1910
154





548843
107927
107946
GCTGCGATCCCCTGATTTTG
23
1893
1912
155





548844
107929
107948
CCGCTGCGATCCCCTGATTT
32
1895
1914
156





548845
107931
107950
AGCCGCTGCGATCCCCTGAT
51
1897
1916
157





548846
107933
107952
GTAGCCGCTGCGATCCCCTG
14
1899
1918
158





548847
107968
107987
CGGCTGCCGGGAGTGCCTGG
33
1934
1953
159





548848
107970
107989
AGCGGCTGCCGGGAGTGCCT
52
1936
1955
160





548849
107972
107991
GGAGCGGCTGCCGGGAGTGC
44
1938
1957
161





548850
108047
108066
CGACTTGGGTGGAGTACGGA
10
2013
2032
162





548851
108049
108068
GGCGACTTGGGTGGAGTACG
29
2015
2034
163





548852
108051
108070
ACGGCGACTTGGGTGGAGTA
39
2017
2036
164





548853
108053
108072
AGACGGCGACTTGGGTGGAG
6
2019
2038
165





548854
108055
108074
GAAGACGGCGACTTGGGTGG
0
2021
2040
166





548855
108057
108076
CGGAAGACGGCGACTTGGGT
40
2023
2042
167





548856
108059
108078
GGCGGAAGACGGCGACTTGG
38
2025
2044
168





548857
108061
108080
TTGGCGGAAGACGGCGACTT
41
2027
2046
169





548858
108063
108082
TCTTGGCGGAAGACGGCGAC
35
2029
2048
170





548859
108065
108084
GCTCTTGGCGGAAGACGGCG
54
2031
2050
171





548860
108067
108086
CGGCTCTTGGCGGAAGACGG
58
2033
2052
172





548861
108069
108088
GGCGGCTCTTGGCGGAAGAC
55
2035
2054
173





433498
138503
138522
AGAGTTCTGGGCCCAGAGAC
53
5466
5485
79























TABLE 5






SEQ
SEQ


SEQ
SEQ




ID
ID


ID
ID



NO: 1
NO: 1


NO: 2
NO: 2


ISIS
Start
Stop

%
Start
Stop
SEQ


NO
Site
Site
Sequence
inhibition
Site
Site
ID NO






















548885
n/a
n/a
GGGAGATTCTTTCAGGCCAG
0
444
463
174





548893
n/a
n/a
GAGCTTTGAGTTGAGGGACC
0
1432
1451
175





548894
n/a
n/a
GACCATGCGAGCTTTGAGTT
13
1440
1459
176





548895
n/a
n/a
TACTGACCATGCGAGCTTTG
33
1444
1463
177





548881
6183
6202
ATAGTCGACAGAGGCGAGGA
43
283
302
178





548882
73840
73859
CATCCTGGTTCAAAGTTCAC
30
306
325
179





548883
73846
73865
CTCAGCCATCCTGGTTCAAA
39
312
331
180





548884
73847
73866
GCTCAGCCATCCTGGTTCAA
53
313
332
181





548886
83401
83420
GGTTCCTCAGATCCGTCCTC
53
479
498
182





548887
83438
83457
TGTTGGAGTGCTCTTAGCAT
33
516
535
183





548888
85939
85958
TGCGCGGCAGCCTGCTTGCC
32
578
597
184





548889
94699
94718
ACCACCTTACCACTTTCAGG
35
698
717
185





548890
94775
94794
GGGAGCCCCAGGCATGCCGG
45
774
793
186





548891
95125
95144
TTGGAGAGGAAATCCACAGG
13
1124
1143
187





548892
95131
95150
GAAACTTTGGAGAGGAAATC
0
1130
1149
188





548896
98557
98576
TTTTACTGACCATGCGAGCT
40
1447
1466
189





548897
101425
101444
AAGGCAAGGCCTATTTTTCA
34
1533
1552
190





548898
101469
101488
TGGATCAGAGGGTCTGAGCT
40
1577
1596
191





548899
101501
101520
GTGGCTCTGGGCACACAGCA
63
1609
1628
192





548900
108037
108056
GGAGTACGGACCACTGCCAC
37
2003
2022
193





433477
108040
108059
GGTGGAGTACGGACCACTGC
21
2006
2025
40





548862
108071
108090
CAGGCGGCTCTTGGCGGAAG
24
2037
2056
194





548863
108073
108092
TGCAGGCGGCTCTTGGCGGA
34
2039
2058
195





548864
108075
108094
TCTGCAGGCGGCTCTTGGCG
40
2041
2060
196





548865
108129
108148
TGGAGCCGATCTTGGACTTG
23
2095
2114
197





548866
108131
108150
AGTGGAGCCGATCTTGGACT
4
2097
2116
198





548901
108134
108153
CTCAGTGGAGCCGATCTTGG
28
2100
2119
199





548902
108136
108155
TTCTCAGTGGAGCCGATCTT
9
2102
2121
200





548903
108155
108174
TCCCGGCTGGTGCTTCAGGT
33
2121
2140
201





548904
121675
121694
TTTCGGACTTGGCAGAGGCA
50
n/a
n/a
202





548905
121728
121747
GAGTGACATGCGCCACCCTG
65
n/a
n/a
203





548906
121736
121755
CTTTCGATGAGTGACATGCG
19
n/a
n/a
204





548907
121794
121813
AAAAGGATGAGTGACACGCC
58
n/a
n/a
205





548908
121916
121935
GTGAAGGTACTCACACTGCC
34
n/a
n/a
206





548909
121917
121936
TGTGAAGGTACTCACACTGC
21
n/a
n/a
207





548910
121992
122011
CTATGCAGTGTCTCGCAAGT
39
n/a
n/a
208





548911
122001
122020
GGATTTATTCTATGCAGTGT
38
n/a
n/a
209





548912
122002
122021
AGGATTTATTCTATGCAGTG
37
n/a
n/a
210





548913
122015
122034
TGAGAGCCCAAGAAGGATTT
15
n/a
n/a
211





548914
122022
122041
CAGATCCTGAGAGCCCAAGA
33
n/a
n/a
212





548915
122025
122044
AGCCAGATCCTGAGAGCCCA
55
n/a
n/a
213





548916
122137
122156
GGACCCAGAAATGCTGGGAC
18
n/a
n/a
214





548917
125555
125574
AAATGTGTTGTCGAAATTCT
0
n/a
n/a
215





548918
125568
125587
AGTCAGGGTGGAAAAATGTG
0
n/a
n/a
216





548919
125578
125597
AGCACATCCTAGTCAGGGTG
39
n/a
n/a
217





548920
125587
125606
GCCATGAGGAGCACATCCTA
45
n/a
n/a
218





548921
125600
125619
GTGGTTCCCAGCTGCCATGA
38
n/a
n/a
219





548922
125603
125622
ACAGTGGTTCCCAGCTGCCA
38
n/a
n/a
220





548923
125619
125638
CCCAGGCCCTTATTGGACAG
19
n/a
n/a
221





548867
125778
125797
CTTGCTCAGGTCAACTGGTT
45
2259
2278
222





548925
125812
125831
GGATGTTGCCTAATGAGCCA
35
2293
2312
223





548926
130194
130213
GTCCAGGGACCCAATCTTCG
87
2382
2401
224





548927
130196
130215
TTGTCCAGGGACCCAATCTT
48
2384
2403
225





548928
135478
135497
AAGGTCAGCTTGTGGGTTTC
52
2441
2460
226





548868
135518
135537
CTCCGCCCCGTGGTCTGTCT
37
2481
2500
227





548869
135520
135539
ATCTCCGCCCCGTGGTCTGT
25
2483
2502
228





548870
135522
135541
CGATCTCCGCCCCGTGGTCT
48
2485
2504
229





548871
135524
135543
CACGATCTCCGCCCCGTGGT
38
2487
2506
230





548872
135526
135545
TACACGATCTCCGCCCCGTG
33
2489
2508
231





548873
135528
135547
TGTACACGATCTCCGCCCCG
22
2491
2510
232





548874
135530
135549
CTTGTACACGATCTCCGCCC
38
2493
2512
233





548875
135532
135551
GACTTGTACACGATCTCCGC
13
2495
2514
234





548876
135534
135553
GCGACTTGTACACGATCTCC
40
2497
2516
235





548877
135536
135555
TGGCGACTTGTACACGATCT
33
2499
2518
236





548878
135538
135557
ACTGGCGACTTGTACACGAT
25
2501
2520
237





548879
135540
135559
CCACTGGCGACTTGTACACG
19
2503
2522
238





548929
135546
135565
CAGACACCACTGGCGACTTG
33
2509
2528
239





548930
135593
135612
GCTGCCGGTGGAGGAGACAT
29
2556
2575
240





548931
135594
135613
TGCTGCCGGTGGAGGAGACA
19
2557
2576
241





548932
135600
135619
TGTCGATGCTGCCGGTGGAG
20
2563
2582
242





548933
135601
135620
ATGTCGATGCTGCCGGTGGA
20
2564
2583
243





548934
135610
135629
GAGTCTACCATGTCGATGCT
23
2573
2592
244





548880
135654
135673
CCAGGGAGGCAGACACCTCG
28
2617
2636
245





548935
135662
135681
CTGCTTGGCCAGGGAGGCAG
14
2625
2644
246





548936
135674
135693
TGATCACAAACCCTGCTTGG
25
2637
2656
247





548937
135786
135805
CCGAACTGCGAGGAGCAGCT
66
2749
2768
248





433498
138503
138522
AGAGTTCTGGGCCCAGAGAC
34
5466
5485
79









Example 4: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE Gapmers

Gapmers from studies described above exhibiting significant in vitro inhibition of Tau mRNA were selected and tested at various doses in SH-SY-5Y cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 1.25 μM, 2.50 μM, 5.00 μM, 10.00 μM, and 20.00 μM concentrations of antisense oligonucleotide, as specified in the Table below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of Tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
















TABLE 6







ISIS
1.25
2.50
5.00
10.00
20.00



No
μM
μM
μM
μM
μM























433474
29
54
74
83
88



433477
0
0
11
33
59



433498
0
10
30
53
71



548786
9
29
51
66
82



548787
19
27
61
85
87



548788
31
31
54
72
94



548805
19
48
62
81
96



548806
25
50
75
80
95



548811
21
42
60
74
94



548812
47
39
64
77
91



548822
0
32
52
62
91



548899
19
50
69
87
93



548905
11
32
57
80
95



548907
14
28
44
80
91



548937
24
43
66
82
91










Example 5: Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE Gapmers

Additional antisense oligonucleotides were designed targeting a Tau nucleic acid and were tested for their effects on Tau mRNA in vitro. Cultured SH-SY5Y cells were plated at a density of 20,000 cells per well and were transfected using electroporation with 6,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to the human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000).














TABLE 7






SEQ ID
SEQ ID





ISIS
NO: 1
NO: 1

%
SEQ


NO
Start Site
Stop Site
Sequence
inhibition
ID NO




















433474
73879
73898
GTGATCTTCCATCACTTCGA
63
25





559166
26760
26779
TGCTTACACACCACACACAC
0
249



26944
26963





559167
26761
26780
ATGCTTACACACCACACACA
4
250



26945
26964





559168
26762
26781
CATGCTTACACACCACACAC
0
251



26946
26965





559169
81022
81041
TACAGATATATGATTGGATG
0
252



81125
81144





559170
81023
81042
GTACAGATATATGATTGGAT
0
253



81126
81145





559171
81024
81043
TGTACAGATATATGATTGGA
0
254



81127
81146





559172
81025
81044
ATGTACAGATATATGATTGG
0
255



81128
81147





559173
81026
81045
TATGTACAGATATATGATTG
0
256



81129
81148





559174
81027
81046
TTATGTACAGATATATGATT
0
257



81130
81149





559175
81028
81047
ATTATGTACAGATATATGAT
0
258



81131
81150





559176
81029
81048
GATTATGTACAGATATATGA
0
259



81132
81151





559177
81030
81049
GGATTATGTACAGATATATG
0
260



81133
81152





559178
81031
81050
TGGATTATGTACAGATATAT
0
261



81134
81153





559179
81032
81051
ATGGATTATGTACAGATATA
0
262



81135
81154





559180
81033
81052
AATGGATTATGTACAGATAT
0
263



81136
81155





559181
81034
81053
GAATGGATTATGTACAGATA
0
264



81137
81156





559182
81035
81054
AGAATGGATTATGTACAGAT
0
265



81138
81157





559183
81036
81055
AAGAATGGATTATGTACAGA
0
266



81139
81158





559184
81037
81056
GAAGAATGGATTATGTACAG
0
267



81140
81159





559185
81038
81057
GGAAGAATGGATTATGTACA
0
268



81141
81160





559186
81039
81058
GGGAAGAATGGATTATGTAC
0
269



81142
81161





559187
81040
81059
AGGGAAGAATGGATTATGTA
0
270



81143
81162





559188
81041
81060
GAGGGAAGAATGGATTATGT
0
271



81144
81163





559189
81042
81061
CGAGGGAAGAATGGATTATG
0
272



81145
81164





559190
81043
81062
CCGAGGGAAGAATGGATTAT
33
273



81146
81165





559191
81044
81063
ACCGAGGGAAGAATGGATTA
12
274



81147
81166





559192
81045
81064
AACCGAGGGAAGAATGGATT
1
275



81148
81167





559193
81046
81065
GAACCGAGGGAAGAATGGAT
0
276



81149
81168





559194
81047
81066
TGAACCGAGGGAAGAATGGA
0
277



81150
81169





559195
81048
81067
ATGAACCGAGGGAAGAATGG
0
278



81151
81170





559196
81049
81068
GATGAACCGAGGGAAGAATG
0
279



81152
81171





559197
81050
81069
GGATGAACCGAGGGAAGAAT
0
280



81153
81172





559198
81051
81070
TGGATGAACCGAGGGAAGAA
0
281



81154
81173





559199
81052
81071
ATGGATGAACCGAGGGAAGA
0
282



81155
81174





559200
81053
81072
GATGGATGAACCGAGGGAAG
0
283



81156
81175





559201
81054
81073
GGATGGATGAACCGAGGGAA
1
284



81157
81176





559202
81055
81074
TGGATGGATGAACCGAGGGA
0
285



81158
81177





559203
81056
81075
ATGGATGGATGAACCGAGGG
0
286



81159
81178





559204
81057
81076
GATGGATGGATGAACCGAGG
0
287



81160
81179





559205
81058
81077
GGATGGATGGATGAACCGAG
0
288



81161
81180





559206
81096
81115
AAGGATGAAGGAAGGGATGG
0
289



81199
81218





559207
81097
81116
GAAGGATGAAGGAAGGGATG
0
290



81200
81219





559208
81098
81117
GGAAGGATGAAGGAAGGGAT
0
291



81201
81220





559209
81100
81119
TAGGAAGGATGAAGGAAGGG
0
292



81203
81222





559210
81101
81120
ATAGGAAGGATGAAGGAAGG
0
293



81204
81223





559211
81102
81121
GATAGGAAGGATGAAGGAAG
0
294



81205
81224





559212
81103
81122
TGATAGGAAGGATGAAGGAA
0
295



81206
81225





559213
81104
81123
ATGATAGGAAGGATGAAGGA
0
296



81207
81226





559214
81105
81124
GATGATAGGAAGGATGAAGG
0
297



81208
81227





559215
81106
81125
GGATGATAGGAAGGATGAAG
0
298



81209
81228





559216
81107
81126
TGGATGATAGGAAGGATGAA
0
299



81210
81229





559217
81108
81127
ATGGATGATAGGAAGGATGA
0
300



81211
81230





559218
81109
81128
GATGGATGATAGGAAGGATG
0
301



81212
81231





559219
81110
81129
GGATGGATGATAGGAAGGAT
0
302



81213
81232





559220
81111
81130
TGGATGGATGATAGGAAGGA
0
303



81214
81233





559221
81112
81131
TTGGATGGATGATAGGAAGG
0
304



81215
81234





559222
81113
81132
ATTGGATGGATGATAGGAAG
0
305



81216
81235





559223
81114
81133
GATTGGATGGATGATAGGAA
0
306



81217
81236





559224
81115
81134
TGATTGGATGGATGATAGGA
0
307



81218
81237





559225
81116
81135
ATGATTGGATGGATGATAGG
0
308



81219
81238





559226
81117
81136
TATGATTGGATGGATGATAG
0
309



81220
81239





559227
80890
80909
AGATATGGGTGGATGGATGG
0
310



81472
81491





559228
80891
80910
AAGATATGGGTGGATGGATG
0
311



81473
81492





559229
80892
80911
GAAGATATGGGTGGATGGAT
0
312



81474
81493





559230
98881
98900
ACACACCTTCATTTACTGTC
79
313



98918
98937





559231
98882
98901
AACACACCTTCATTTACTGT
56
314



98919
98938





559232
98883
98902
AAACACACCTTCATTTACTG
59
315



98920
98939





559233
98884
98903
CAAACACACCTTCATTTACT
51
316



98921
98940





559234
98885
98904
TCAAACACACCTTCATTTAC
25
317



98922
98941





559235
98887
98906
TTTCAAACACACCTTCATTT
25
318



98924
98943





559236
98888
98907
TTTTCAAACACACCTTCATT
14
319



98925
98944





559237
98889
98908
GTTTTCAAACACACCTTCAT
42
320



98926
98945





559238
98890
98909
GGTTTTCAAACACACCTTCA
79
321



98927
98946





559239
98891
98910
TGGTTTTCAAACACACCTTC
87
322



98928
98947





559240
111795
111814
GAAAACAGAGAAAAGCACAA
12
323



111819
111838





559241
119594
119613
AGAAGTGATATCATATCCTA
63
324



119905
119924





559242
119595
119614
AAGAAGTGATATCATATCCT
74
325



119906
119925









Example 6: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE Gapmers

Gapmers from studies described above exhibiting significant in vitro inhibition of Tau mRNA were selected and tested at various doses in SH-SY-5Y cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.625 μM, 1.25 μM, 2.500 μM, 5.00 μM, 10.00 μM, and 20.00 μM concentrations of antisense oligonucleotide, as specified in the Table below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of Tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.

















TABLE 8







ISIS
0.625
1.25
2.50
5.00
10.00
20.00



No
μM
μM
μM
μM
μM
μM
























433474
17
39
53
73
81
88



559230
30
50
67
81
92
94



559231
0
16
26
44
63
83



559232
10
12
23
30
62
79



559233
5
10
21
38
62
81



559237
0
16
27
31
58
88



559238
25
18
72
77
86
86



559239
26
47
64
80
88
93



559241
0
18
34
61
74
95



559242
13
20
23
47
71
83










Example 7: Antisense Inhibition of Human Tau in SH-SY5Y Cells by MOE Gapmers with Phosphorothioate and Phosphodiester Internucleoside Linkages

Antisense oligonucleotides were designed targeting a tau nucleic acid and were tested for their effects on tau mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured SH-SY5Y cells were transfected using electroporation with 8,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are either phosphorothioate linkages or phosphodiester linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. The ‘Chemistry’ column describes the internucleoside linkages of each oligonucleotide. ‘s’ indicates phosphorothioate linkage and ‘o’ indicates phosphodiester linkage. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence.


Each gapmer listed in the Tables below is targeted to either the human Tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000), human Tau mRNA sequences, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3) or SEQ ID NO: 3 (GENBANK Accession No. NM_016841.4). Several oligonucleotides, presented in Tables 10, 12, and 16, target variant mRNA sequences, designated herein as SEQ ID NO: 5 (GENBANK Accession No. DR002467.1), SEQ ID NO: 6 (GENBANK Accession No. NM_001203251.1) or SEQ ID NO: 7 (GENBANK Accession No. NM_016835.4). The oligonucleotides are presented in the various tables according to the main gene sequence that they target with 100% complementarity. ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 9







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and phosphodiester


internucleoside linkages targeting SEQ ID NOs: 1 and 3
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 3
NO: 3

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Linkage chemistry
NO


















433475
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
41
443
462
sssssssssssssssssss
96





613242
n/a
n/a
CTTCAGCTTTCAGGCCAGCG
54
442
461
soooossssssssssooss
326





613243
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
43
443
462
soooossssssssssooss
96





613244
n/a
n/a
CCATGCGAGCTTGGGTCACG
64
511
530
soooossssssssssooss
327





613245
n/a
n/a
CAGCCCCCTTGGCTTTTTTG
30
565
584
soooossssssssssooss
328





613247
n/a
n/a
TTGCACCTTCCCGCCTCCCG
53
957
976
soooossssssssssooss
329





613240
5897
5916
TGCCGCTCGGCCGTCCGGCG
9
n/a
n/a
soooossssssssssooss
330





613249
6292
6311
GCCCGGCGCACGAAGCCCCA
80
n/a
n/a
soooossssssssssooss
331





613250
7099
7118
AGAAAGAAATCCGCCCCGAG
45
n/a
n/a
soooossssssssssooss
332





613251
11709
11728
ATAATGGAATACTTATTGCA
54
n/a
n/a
soooossssssssssooss
333





613252
11819
11838
GCAGGAGCATGGCACCTGGA
79
n/a
n/a
soooossssssssssooss
334





613253
12081
12100
ACTCGCTGACATGGTGTTTG
87
n/a
n/a
soooossssssssssooss
335





613254
13386
13405
GATGACTCCACAATGTAAAC
75
n/a
n/a
soooossssssssssooss
336





613255
16760
16779
CCTATAGGATTATCCAGGAA
88
n/a
n/a
soooossssssssssooss
337





613256
16987
17006
CATTTCTCATCAGCCATCGA
81
n/a
n/a
soooossssssssssooss
338





613257
17428
17447
ACCAAAGACTTCAGATCAGC
88
n/a
n/a
soooossssssssssooss
339





613412
73879
73898
GTGATCTTCCATCACTTCGA
82
345
364
soooossssssssssooss
25





613246
103087
103106
CCAGAGCTGGGTGGTGTCTT
51
686
705
soooossssssssssooss
39





613181
138046
138065
AGCTTCTGGGAGCTGCAGAT
80
3737
3756
soooossssssssssooss
340





613182
138083
138102
AGAGGAACCCAGTCTGAGGG
49
3774
3793
soooossssssssssooss
341





613183
138116
138135
AGGCTGCGCTGCCCCTCCAG
68
3807
3826
soooossssssssssooss
342





613184
138149
138168
AATCCCTGCTGTGGTCGCAG
63
3840
3859
soooossssssssssooss
343





613185
138182
138201
TCTAGAGCAGATCCAGGACA
53
3873
3892
soooossssssssssooss
344





613186
138215
138234
AAGTCATCCTTCCTCAGGCA
63
3906
3925
soooossssssssssooss
345





613187
138248
138267
CAAGGCTTTGGGAACAGTGT
78
3939
3958
soooossssssssssooss
346





613188
138250
138269
GTCAAGGCTTTGGGAACAGT
84
3941
3960
soooossssssssssooss
347





613189
138281
138300
TTGTGCAAGGTCAGCGGGCT
75
3972
3991
soooossssssssssooss
348





613190
138314
138333
CGGCTTCCCTTTTCTCATGG
75
4005
4024
soooossssssssssooss
349





613191
138347
138366
TGAGTTTCTTTAGGCAGCAA
82
4038
4057
soooossssssssssooss
350





613192
138380
138399
AACCAGAAGTGGCAGAATTG
47
4071
4090
soooossssssssssooss
351





613193
138413
138432
CAAGTCCCTCAGGGTTGCCT
78
4104
4123
soooossssssssssooss
352





613194
138454
138473
CGAAGCTGCCAGCCCCAGGG
70
4145
4164
soooossssssssssooss
353





613195
138487
138506
AGACTTCCTTTCAGGTAAAG
77
4178
4197
soooossssssssssooss
354





613196
138503
138522
AGAGTTCTGGGCCCAGAGAC
58
4194
4213
soooossssssssssooss
79





613197
138520
138539
AGGGAGGCTCTTGGTGGAGA
35
4211
4230
soooossssssssssooss
355





613198
138553
138572
ACTTAGGAGAATTGCTGGGA
75
4244
4263
soooossssssssssooss
356





613199
138586
138605
CCCACATTTCCTTCTCCTTC
72
4277
4296
soooossssssssssooss
357





613200
138636
138655
ACTGTTGGCAGTAATGAGGG
71
4327
4346
soooossssssssssooss
358





613201
138674
138693
GGAAGAGGAACCGAGGTGCG
61
4365
4384
soooossssssssssooss
359





613202
138707
138726
CATGGTGCTGAAGAGCAGGG
71
4398
4417
soooossssssssssooss
360





613203
138740
138759
GGGAGATCCCAGAGCCTTCC
53
4431
4450
soooossssssssssooss
361





613204
138773
138792
CTTAGGCTGGCCCCAAGAGC
64
4464
4483
soooossssssssssooss
362





613205
138806
138825
TATCTGCCAGCACTGATCAC
56
4497
4516
soooossssssssssooss
363





613206
138839
138858
TTTAAGATCACAAGCCAGCG
62
4530
4549
soooossssssssssooss
364





613207
138872
138891
GAGGAGTGCCCAGCCCTGGG
54
4563
4582
soooossssssssssooss
365





613208
138905
138924
CTGGCTCTGCAGGTGGGAGA
44
4596
4615
soooossssssssssooss
366





613209
138938
138957
TACAGTATATCCTATCTAGC
57
4629
4648
soooossssssssssooss
367





613210
138971
138990
ATAAAGTGAGTCAGCAGCTT
71
4662
4681
soooossssssssssooss
368





613211
139004
139023
TCACCACTGAAGTCAATTTA
72
4695
4714
soooossssssssssooss
369





613212
139037
139056
AGCACAACAAGCAATAGCAA
80
4728
4747
soooossssssssssooss
370





613213
139070
139089
ACTATCTTACACATTCCTCC
48
4761
4780
soooossssssssssooss
371





613214
139103
139122
GCTGCACCCCAAGATCTCCC
79
4794
4813
soooossssssssssooss
372





613215
139136
139155
AAATCATGAAAAGGGTTACG
61
4827
4846
soooossssssssssooss
373





613216
139169
139188
GTGGCTGCTCCCTCCCTCTA
60
4860
4879
soooossssssssssooss
374





613217
139188
139207
CCCAAGGGCCTCTAACTCCG
64
4879
4898
soooossssssssssooss
375





613218
139202
139221
TGGAAAAGAGAAACCCCAAG
56
4893
4912
soooossssssssssooss
376





613219
139229
139248
AGCCAGCTGCCTGGGAAAGC
63
4920
4939
soooossssssssssooss
89





613220
139235
139254
TGAACTAGCCAGCTGCCTGG
46
4926
4945
soooossssssssssooss
377





613221
139268
139287
TATTCCTACGCCTGCACCTG
54
4959
4978
soooossssssssssooss
378





613222
139301
139320
AGAGGGCAGCAGGCCAAAGC
48
4992
5011
soooossssssssssooss
379





613223
139337
139356
TTAGGGAGGCATGATTGTGG
55
5028
5047
soooossssssssssooss
380





613224
139368
139387
CCAACGGCTTAGAGGGAAGG
61
5059
5078
soooossssssssssooss
381





613225
139370
139389
TGCCAACGGCTTAGAGGGAA
65
5061
5080
soooossssssssssooss
382





613226
139403
139422
TGTCTGGAGCCAGTGTGAGA
56
5094
5113
soooossssssssssooss
383





613227
139436
139455
CGAGTGATCTCAGCTCCAAA
79
5127
5146
soooossssssssssooss
384





613228
139502
139521
TGATCACCTCTGCCCTCGCC
72
5193
5212
soooossssssssssooss
385





613229
139535
139554
TGAAGCTGCAGGTCTGTAGA
57
5226
5245
soooossssssssssooss
386





613230
139568
139587
CTTTTCAAAGCTGAAGAGAA
57
5259
5278
soooossssssssssooss
387





613231
139601
139620
AGGTGAGGCTCTAGGCCAGT
76
5292
5311
soooossssssssssooss
388





613232
139636
139655
CAACATGGCAAACTCATGGG
76
5327
5346
soooossssssssssooss
389





613233
139669
139688
ATGGGACTTGCAAGTGCCAG
83
5360
5379
soooossssssssssooss
390





613234
139702
139721
CCTCCCCCCACCCTCAGAAT
15
5393
5412
soooossssssssssooss
391





613235
139735
139754
AGACAGAAAGCTAAGCTAAG
50
5426
5445
soooossssssssssooss
392





613236
139768
139787
TTAAAACACACAATACACTA
46
5459
5478
soooossssssssssooss
393





613237
139801
139820
ACTTTTACAGCAACAGTCAG
54
5492
5511
soooossssssssssooss
394





613238
139834
139853
TTTAATCAGAGTAATAACTT
12
5525
5544
soooossssssssssooss
395
















TABLE 10







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and


phosphodiester internucleoside linkages targeting SEQ ID NOs: 5 and 6














Target








SEQ
Target



SEQ


ISIS
ID
Start

%

ID


NO
NO
Site
Sequence
inhibition
Linkage chemistry
NO
















613239
5
3
TGCCCTTCGCGGTCCCTTCG
2
soooossssssssssooss
396





613241
5
424
CTGTCCCCCAAACCCGTACG
56
soooossssssssssooss
397





613248
6
524
GCTTCCGCTGTTGGAGTGCT
62
soooossssssssssooss
398
















TABLE 11







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and phosphodiester


internucleoside linkages targeting SEQ ID NOs: 1 and 3
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 3
NO: 3

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Linkage chemistry
NO


















433475
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
17
443
462
sssssssssssssssssss
96





613027
5901
5920
GCCCTGCCGCTCGGCCGTCC
29
1
20
soooossssssssssooss
399





613028
5934
5953
TTCTCCTCCGGCCACTAGTG
22
34
53
soooossssssssssooss
400





613029
5987
6006
GAACGCGAGCCTCCCCAGGG
1
87
106
soooossssssssssooss
401





613030
6020
6039
GAGGCCGGCGGGCGGCGCAG
2
120
139
soooossssssssssooss
402





613031
6053
6072
GAGGGCGCGCGCCGGCGAAG
0
153
172
soooossssssssssooss
403





613032
6086
6105
TTGGTGCCGGAGCTGGTGGG
54
186
205
soooossssssssssooss
404





613033
6119
6138
GGCAGAAGGTGGGCGGTGGC
74
219
238
soooossssssssssooss
405





613034
6185
6204
TGATAGTCGACAGAGGCGAG
71
285
304
soooossssssssssooss
406





613035
73867
73886
CACTTCGAACTCCTGGCGGG
67
333
352
soooossssssssssooss
98





613036
73869
73888
ATCACTTCGAACTCCTGGCG
72
335
354
soooossssssssssooss
99





613037
73871
73890
CCATCACTTCGAACTCCTGG
69
337
356
soooossssssssssooss
100





613412
73879
73898
GTGATCTTCCATCACTTCGA
72
345
364
soooossssssssssooss
25





613038
73906
73925
CCTGTCCCCCAACCCGTACG
44
372
391
soooossssssssssooss
104





613039
73932
73951
TGCATGGTGTAGCCCCCCTG
80
398
417
soooossssssssssooss
117





613040
73934
73953
GGTGCATGGTGTAGCCCCCC
73
400
419
soooossssssssssooss
118





613041
73939
73958
GTCTTGGTGCATGGTGTAGC
77
405
424
soooossssssssssooss
407





613042
73958
73977
CGTCCGTGTCACCCTCTTGG
79
424
443
soooossssssssssooss
123





613044
83397
83416
CCTCAGATCCGTCCTCAGTG
67
n/a
n/a
soooossssssssssooss
408





613045
83430
83449
TGCTCTTAGCATCAGAGGTT
89
n/a
n/a
soooossssssssssooss
409





613046
85902
85921
CTAAGGGTGCTGTCACATCT
69
n/a
n/a
soooossssssssssooss
410





613047
85934
85953
GGCAGCCTGCTTGCCGGGAG
51
n/a
n/a
soooossssssssssooss
29





613048
85935
85954
CGGCAGCCTGCTTGCCGGGA
51
n/a
n/a
soooossssssssssooss
411





613049
85968
85987
TGGTTCCTTCTGGGATCTCC
76
n/a
n/a
soooossssssssssooss
412





613051
94719
94738
CTCGGAGGAAGCCTTCCTGG
53
n/a
n/a
soooossssssssssooss
413





613052
94752
94771
TGAGCTGGTGGCTCAGACCT
41
n/a
n/a
soooossssssssssooss
414





613053
94825
94844
CCTGTCCCCGAAGGTTGGCG
61
n/a
n/a
soooossssssssssooss
415





613054
94875
94894
GGTGCTTGAGCAGCTCAGGG
70
n/a
n/a
soooossssssssssooss
416





613055
94908
94927
GCGGCCCCTCCTGGTGCAGG
47
n/a
n/a
soooossssssssssooss
417





613056
94941
94960
CCGGCCTCTCTTTGCCCCCT
31
n/a
n/a
soooossssssssssooss
418





613057
94974
94993
CGTCGCGGTCTTCATCCACC
42
n/a
n/a
soooossssssssssooss
419





613058
95038
95057
GGCCGCCCATCTTGGGCTGG
0
n/a
n/a
soooossssssssssooss
420





613059
95071
95090
ATGCTGGTGGCTTCTCTGGC
53
n/a
n/a
soooossssssssssooss
421





613060
95098
95117
ATGGCACCCTCCGCTGGGAA
39
n/a
n/a
soooossssssssssooss
422





613061
95121
95140
AGAGGAAATCCACAGGGAGG
30
n/a
n/a
soooossssssssssooss
33





613062
95154
95173
GCTCTGAGGCTGGGATCTCT
70
n/a
n/a
soooossssssssssooss
423





613063
95187
95206
GCCCTTTGGCCCGCCCTACA
67
n/a
n/a
soooossssssssssooss
424





613064
95235
95254
CGTTGGGTGTGATTTCCACG
61
n/a
n/a
soooossssssssssooss
425





613065
95268
95287
AATGCTCCTCCGAGTGCGCC
85
n/a
n/a
soooossssssssssooss
426





613066
95313
95332
CCTCTGGCCCCTCTCCAGGG
43
n/a
n/a
soooossssssssssooss
427





613067
95346
95365
CTTTTGTGTCCTCTCCCAAA
42
n/a
n/a
soooossssssssssooss
428





613068
95379
95398
GCTGCTTTTCAGAGGGCTCT
51
n/a
n/a
soooossssssssssooss
429





613069
95412
95431
GGCTGACGGGCTTCCCCCGC
61
n/a
n/a
soooossssssssssooss
430





613070
95429
95448
TTTGAGTTGAGGGACCCGGC
33
n/a
n/a
soooossssssssssooss
431





613073
98559
98578
GCTTTTACTGACCATGCGAG
79
522
541
soooossssssssssooss
124





613074
98581
98600
CATCGCTTCCAGTCCCGTCT
78
544
563
soooossssssssssooss
134





613075
98587
98606
TTTTGTCATCGCTTCCAGTC
35
550
569
soooossssssssssooss
137





613076
101406
101425
AAGGTTTTAGCAGAGGAACG
63
n/a
n/a
soooossssssssssooss
37





613077
101457
101476
TCTGAGCTACCAGGAGTGGG
65
n/a
n/a
soooossssssssssooss
432





613078
101491
101510
GCACACAGCAGGGCTGGAGG
68
n/a
n/a
soooossssssssssooss
433





613079
101501
101520
GTGGCTCTGGGCACACAGCA
77
n/a
n/a
soooossssssssssooss
192





613080
101507
101526
AGGAAGGTGGCTCTGGGCAC
69
n/a
n/a
soooossssssssssooss
38





613081
101537
101556
GGGAAGTGACAGAAGAGACG
46
n/a
n/a
soooossssssssssooss
434





613082
101570
101589
GTTTCATCTCCTTTGCTCCA
57
n/a
n/a
soooossssssssssooss
435





613083
102995
103014
CCGCGGTGTGGCGATCTTCG
9
594
613
soooossssssssssooss
436





613084
103028
103047
GGCCTGGCCCTTCTGGCCTG
14
627
646
soooossssssssssooss
437





613085
103075
103094
GGTGTCTTTGGAGCGGGCGG
37
674
693
soooossssssssssooss
146





613086
105445
105464
CTTCTCTGGACTTGCTTAGT
45
n/a
n/a
soooossssssssssooss
438





613087
105475
105494
CTCTCAGATCTGGGCCCTGC
41
n/a
n/a
soooossssssssssooss
439





613088
105478
105497
CCTCTCTCAGATCTGGGCCC
49
n/a
n/a
soooossssssssssooss
440





613089
107932
107951
TAGCCGCTGCGATCCCCTGA
19
719
738
soooossssssssssooss
441





613090
107968
107987
CGGCTGCCGGGAGTGCCTGG
31
755
774
soooossssssssssooss
159





613091
108021
108040
CCACCTTCTTGGGCTCCCGG
17
808
827
soooossssssssssooss
442





613092
108040
108059
GGTGGAGTACGGACCACTGC
20
827
846
soooossssssssssooss
40





613093
108054
108073
AAGACGGCGACTTGGGTGGA
0
841
860
soooossssssssssooss
41





613094
108101
108120
CAGGTCTGGCATGGGCACGG
67
888
907
soooossssssssssooss
443





613095
108134
108153
CTCAGTGGAGCCGATCTTGG
31
921
940
soooossssssssssooss
199





613096
108167
108186
CACCTTCCCGCCTCCCGGCT
47
954
973
soooossssssssssooss
444





613097
121845
121864
GTTGCTAAGATCCAGCTTCT
49
n/a
n/a
soooossssssssssooss
445





613098
121865
121884
GAGCCACACTTGGACTGGAC
85
n/a
n/a
soooossssssssssooss
47





613099
121878
121897
GATATTATCCTTTGAGCCAC
88
n/a
n/a
soooossssssssssooss
446





613101
125784
125803
GGTCACCTTGCTCAGGTCAA
68
993
1012
soooossssssssssooss
447





613102
125817
125836
ATGATGGATGTTGCCTAATG
14
1026
1045
soooossssssssssooss
448





613103
130141
130160
ATTTTACTTCCACCTGGCCA
22
1057
1076
soooossssssssssooss
51
















TABLE 12







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and


phosphodiester internucleoside linkages targeting SEQ ID NOs: 6 and 7














Target








SEQ
Target



SEQ


ISIS
ID
Start

%

ID


NO
NO
Site
Sequence
inhibition
Linkage chemistry
NO
















613043
6
442
GAGATTCTTTCAGGCCAGCG
17
soooossssssssssooss
449





613050
7
685
TTTCAGGCTCTTGGGTCACG
0
soooossssssssssooss
450





613071
7
1430
GCTTTGAGTTGAGGGACCCG
23
soooossssssssssooss
451





613072
7
1444
TACTGACCATGCGAGCTTTG
73
soooossssssssssooss
177





613100
7
2178
TATTTGCACACTGCCGCCTC
13
soooossssssssssooss
452
















TABLE 13







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and phosphodiester


internucleoside linkages targeting SEQ ID NOs: 1 and 3
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 3
NO: 3

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Linkage chemistry
NO


















433475
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
23
443
462
sssssssssssssssssss
96





613412
73879
73898
GTGATCTTCCATCACTTCGA
76
345
364
soooossssssssssooss
25





613104
130143
130162
AGATTTTACTTCCACCTGGC
59
1059
1078
soooossssssssssooss
453





613105
130176
130195
CGACTGGACTCTGTCCTTGA
47
1092
1111
soooossssssssssooss
454





613106
130225
130244
TATTTCCTCCGCCAGGGACG
90
1141
1160
soooossssssssssooss
455





613107
135483
135502
CGCGGAAGGTCAGCTTGTGG
43
1174
1193
soooossssssssssooss
456





613108
135516
135535
CCGCCCCGTGGTCTGTCTTG
44
1207
1226
soooossssssssssooss
457





613109
135549
135568
CCCCAGACACCACTGGCGAC
36
1240
1259
soooossssssssssooss
458





613110
135590
135609
GCCGGTGGAGGAGACATTGC
51
1281
1300
soooossssssssssooss
459





613111
135654
135673
CCAGGGAGGCAGACACCTCG
61
1345
1364
soooossssssssssooss
245





613112
135697
135716
AATTATTGACCGCCCCAGGG
33
1388
1407
soooossssssssssooss
460





613113
135730
135749
TTTTTCCACACTCTCTCATT
41
1421
1440
soooossssssssssooss
461





613114
135783
135802
AACTGCGAGGAGCAGCTGGG
51
1474
1493
soooossssssssssooss
462





613115
135786
135805
CCGAACTGCGAGGAGCAGCT
78
1477
1496
soooossssssssssooss
248





613116
135816
135835
CAAAAGCAGGTTAAGTGATT
28
1507
1526
soooossssssssssooss
463





613117
135849
135868
CTGATTTTGAAGTCCCGAGC
69
1540
1559
soooossssssssssooss
464





613118
135869
135888
ATTTGCTCTTACTCCCATCA
80
1560
1579
soooossssssssssooss
465





613119
135882
135901
TTGGAAAGATGAAATTTGCT
52
1573
1592
soooossssssssssooss
466





613120
135948
135967
TGTTGGATGTGGCCATGTTT
63
1639
1658
soooossssssssssooss
467





613121
136049
136068
GTCCCTTGAAATCCCCCAGA
45
1740
1759
soooossssssssssooss
468





613122
136082
136101
CCACAACAGGGCCAGAGGTG
55
1773
1792
soooossssssssssooss
469





613123
136115
136134
TCCTTTGTTGCTGCCACTGC
59
1806
1825
soooossssssssssooss
470





613124
136148
136167
GCCTGTGGCTCCACGAACAC
72
1839
1858
soooossssssssssooss
471





613125
136181
136200
CCCCGTCACACTCACACAAG
43
1872
1891
soooossssssssssooss
472





613126
136214
136233
GGCCTCCCCCGTGGCCTCCC
37
1905
1924
soooossssssssssooss
473





613127
136247
136266
TGCTTCCTCTCCCCTCTGCC
41
1938
1957
soooossssssssssooss
474





613128
136295
136314
GATGTCTACTCTCCAGCACG
32
1986
2005
soooossssssssssooss
475





613129
136328
136347
ATAGGCCTTGGCTCTCCCAG
73
2019
2038
soooossssssssssooss
476





613130
136361
136380
AGGACAGGCGGCCGCTCAGA
46
2052
2071
soooossssssssssooss
477





613131
136394
136413
TGACCCACAGCAGGCCCCCA
14
2085
2104
soooossssssssssooss
478





613132
136427
136446
CTCCCACAGGCTGCCCTGCA
46
2118
2137
soooossssssssssooss
479





613133
136460
136479
CAGCTTGCCTTCTCTTTTTA
58
2151
2170
soooossssssssssooss
480





613134
136491
136510
GGAGGTCATCCACGAAGTGC
45
2182
2201
soooossssssssssooss
61





613135
136493
136512
AAGGAGGTCATCCACGAAGT
41
2184
2203
soooossssssssssooss
481





613136
136515
136534
GACATCAAGGTCAGTCTTTT
80
2206
2225
soooossssssssssooss
482





613137
136541
136560
AGGGAGGAAGAGGCCAGCGC
60
2232
2251
soooossssssssssooss
483





613138
136574
136593
AGCCCCTCAACTCAGGCCCC
53
2265
2284
soooossssssssssooss
484





613139
136607
136626
TCAATAAAACAGGGTTTCTG
38
2298
2317
soooossssssssssooss
485





613140
136640
136659
CAAAATCATGGCAGCAGTTC
26
2331
2350
soooossssssssssooss
486





613141
136673
136692
GTTAGCCCTAAAGTCCCAGG
76
2364
2383
soooossssssssssooss
487





613142
136706
136725
CCCAAGAGGCACAAGTCCTT
57
2397
2416
soooossssssssssooss
488





613143
136739
136758
CAGTGGCCCAGGCTTGGAAA
63
2430
2449
soooossssssssssooss
489





613144
136748
136767
CAGAGATGCCAGTGGCCCAG
43
2439
2458
soooossssssssssooss
67





613145
136772
136791
TGCCTCCCAGACCCCCACAC
23
2463
2482
soooossssssssssooss
490





613146
136805
136824
AGTGGCCGTGGGAAGGACAG
17
2496
2515
soooossssssssssooss
491





613147
136838
136857
ACAACAGCACAGCGGCGCAG
61
2529
2548
soooossssssssssooss
492





613148
136845
136864
ACGGCAGACAACAGCACAGC
59
2536
2555
soooossssssssssooss
493





613149
136899
136918
GAATTCGGGACATTGTGACG
42
2590
2609
soooossssssssssooss
494





613150
136933
136952
CAGGGTCATTACTGAGAAGG
39
2624
2643
soooossssssssssooss
495





613151
136966
136985
CTCAGTATGGAGTAGGTACC
52
2657
2676
soooossssssssssooss
496





613152
136999
137018
TGTGCCTGGACTTTGCCTTC
61
2690
2709
soooossssssssssooss
497





613153
137032
137051
GGAACTGAGAGTGAGAGGCT
62
2723
2742
soooossssssssssooss
498





613154
137077
137096
GAATCAGATCATGAGATTCG
30
2768
2787
soooossssssssssooss
499





613155
137110
137129
CACATCTGTGACGGGAGGAG
26
2801
2820
soooossssssssssooss
500





613156
137143
137162
CACCTAGGGTCACAGCTGAG
33
2834
2853
soooossssssssssooss
501





613157
137176
137195
GAAAGGGCTCTCTCCATGTC
54
2867
2886
soooossssssssssooss
502





613158
137214
137233
GTGGGCTCAGCACAGGAAGG
23
2905
2924
soooossssssssssooss
503





613159
137229
137248
ACCCAGCCTGCTGCTGTGGG
36
2920
2939
soooossssssssssooss
504





613160
137247
137266
ACCACTGACAACCAAGACAC
22
2938
2957
soooossssssssssooss
505





613161
137280
137299
GCCCTGGGTGCCTTGCCCTT
53
2971
2990
soooossssssssssooss
506





613162
137322
137341
ACAAGCTAGGGTGCAAGTGG
47
3013
3032
soooossssssssssooss
507





613163
137364
137383
GGAGCTGAGCAGCGGGCTGG
45
3055
3074
soooossssssssssooss
508





613164
137401
137420
CCCTTTGTCGGGTGTGGAGG
8
3092
3111
soooossssssssssooss
509





613165
137453
137472
TGGCTTCCAGCTGGGACTGG
65
3144
3163
soooossssssssssooss
510





613166
137486
137505
ATATGTTCAGCTGCTCCAGC
58
3177
3196
soooossssssssssooss
511





613167
137529
137548
ACTCAACAGGGTGCAGATGG
54
3220
3239
soooossssssssssooss
512





613168
137562
137581
GAATCCAAGCATAAACAGAC
55
3253
3272
soooossssssssssooss
513





613169
137595
137614
TTTTTTTCTTTTCACTATCA
34
3286
3305
soooossssssssssooss
514





613170
137629
137648
AGCATTTCAAGATACATGCG
59
3320
3339
soooossssssssssooss
515





613171
137692
137711
CACACGAGTCCCAGTGTGGG
11
3383
3402
soooossssssssssooss
516





613172
137761
137780
TTGGGTCCCAGGTGCTGAGG
40
3452
3471
soooossssssssssooss
517





613173
137794
137813
ACGGCCTCCTTAGCTGCTAG
73
3485
3504
soooossssssssssooss
518





613174
137827
137846
TAATCCTGTGCTTCAGGCCT
32
3518
3537
soooossssssssssooss
519





613175
137881
137900
TGACACAGGGAGCCCCAAGG
40
3572
3591
soooossssssssssooss
520





613176
137914
137933
AGCCAGACCAGCCACAAGAC
16
3605
3624
soooossssssssssooss
521





613177
137947
137966
GCTATGACCAGAGAGAACCA
29
3638
3657
soooossssssssssooss
522





613178
137967
137986
GGACTGCCATGAGACTTCGG
26
3658
3677
soooossssssssssooss
523





613179
137980
137999
TAAGCCTCCTTTGGGACTGC
64
3671
3690
soooossssssssssooss
524





613180
138013
138032
AGTGGCTTCCTTTTTCTTGT
69
3704
3723
soooossssssssssooss
525
















TABLE 14







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and phosphodiester


internucleoside linkages targeting SEQ ID NOs: 1 and 3
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 3
NO: 3

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Linkage chemistry
NO


















433475
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
23
433
452
sssssssssssssssssss
96





613258
18371
18390
GGCAATGCCTGGAAGAAACT
75
n/a
n/a
soooossssssssssooss
526





613259
18411
18430
CGCTGGTGAGAGTGTGACTG
69
n/a
n/a
soooossssssssssooss
527





613260
18449
18468
ATCCGAGGGTGAGATGATAA
75
n/a
n/a
soooossssssssssooss
528





613261
19611
19630
AATAATTTCTCCAGGCTCAT
62
n/a
n/a
soooossssssssssooss
529





613262
20955
20974
GCTGACTTCGATTTGTTATT
84
n/a
n/a
soooossssssssssooss
530





613263
22139
22158
TATCATATGGCACAAATTCT
32
n/a
n/a
soooossssssssssooss
531





613264
23662
23681
CTACCTGGGACCACACCTTA
61
n/a
n/a
soooossssssssssooss
532





613265
25046
25065
GGGTGGAGAGCCTGATGGTC
47
n/a
n/a
soooossssssssssooss
533





613266
25418
25437
CTGTGAGCATCATGAAAGCC
56
n/a
n/a
soooossssssssssooss
534





613267
25606
25625
TTTTATTATGAGGGAGATCA
48
n/a
n/a
soooossssssssssooss
535





613268
26186
26205
AATAGTAGAGAAATGGAAAT
39
n/a
n/a
soooossssssssssooss
536





613269
26690
26709
TAACATGACAGGGTTAGGCC
67
n/a
n/a
soooossssssssssooss
537





613270
26917
26936
GCCCACACACATGCTCATGC
57
n/a
n/a
soooossssssssssooss
538





613271
27160
27179
TGTGTTCAGTTACATGCCTT
82
n/a
n/a
soooossssssssssooss
539





613272
27569
27588
GACCACCATGGTGGGCTGAC
39
n/a
n/a
soooossssssssssooss
540





613273
28227
28246
GGCACCTCTCTGCAGACTTT
85
n/a
n/a
soooossssssssssooss
541





613274
30102
30121
TGCTTCACACACCACAATGG
60
n/a
n/a
soooossssssssssooss
542





613275
31769
31788
AACATTGCCGAGCACCAGCC
63
n/a
n/a
soooossssssssssooss
543





613276
31832
31851
GACTCAGGAACATGTTAGCT
70
n/a
n/a
soooossssssssssooss
544





613277
32045
32064
CACGGCTCAGCAGAGGAGAC
23
n/a
n/a
soooossssssssssooss
545





613278
32324
32343
GCTGCTATCCTTCCTGGGCC
57
n/a
n/a
soooossssssssssooss
546





613279
32760
32779
GGAAATGAAAGCTTCCCACG
61
n/a
n/a
soooossssssssssooss
547





613280
33359
33378
AACAGTCAGAATACCCCCAA
72
n/a
n/a
soooossssssssssooss
548





613281
34056
34075
TATAGGTAGAATATAAAACT
17
n/a
n/a
soooossssssssssooss
549





613282
35266
35285
TATGAACAAAACTGCAGGAC
45
n/a
n/a
soooossssssssssooss
550





613283
35839
35858
AGCCTCCAGAGTGACAGGTG
63
n/a
n/a
soooossssssssssooss
551





613284
36223
36242
CCATAAGCCACTCCTGGTTG
0
n/a
n/a
soooossssssssssooss
552





613285
36410
36429
CAGCTTGGAAGATACAGGAG
63
n/a
n/a
soooossssssssssooss
553





613286
38647
38666
CAAACTTAAGAAAAGTTGCA
67
n/a
n/a
soooossssssssssooss
554





613287
39104
39123
TGCTGGCAAAGAAGACAGGA
69
n/a
n/a
soooossssssssssooss
555





613288
40506
40525
CCACTGATGGCCGGGTGCAG
27
n/a
n/a
soooossssssssssooss
556





613289
42727
42746
TGGGTGTCAAATGGCTGGCT
55
n/a
n/a
soooossssssssssooss
557





613290
42955
42974
TAGAAAGCTATTTAATAAAT
0
n/a
n/a
soooossssssssssooss
558





613291
43109
43128
AGCCGTACATCAATGGTACA
71
n/a
n/a
soooossssssssssooss
559





613292
46627
46646
GGCCCTACCATGGTCGATTT
57
n/a
n/a
soooossssssssssooss
560





613293
47399
47418
ATCAGTGCCAGAGACAGAGG
5
n/a
n/a
soooossssssssssooss
561





613294
48115
48134
TATTATTAACGAACAAAAAA
0
n/a
n/a
soooossssssssssooss
562





613295
48223
48242
AGAGCAATACTTTGTGCTTA
51
n/a
n/a
soooossssssssssooss
563





613296
48608
48627
AGACTCCTCAAATGTGCGCC
53
n/a
n/a
soooossssssssssooss
564





613297
49204
49223
GAATGACGGCCGCCTCCTCT
39
n/a
n/a
soooossssssssssooss
565





613298
49696
49715
TATGGAGGGCTTCTGGCCTC
18
n/a
n/a
soooossssssssssooss
566





613299
51161
51180
GAGAAAGAGCGAGTAATTAG
44
n/a
n/a
soooossssssssssooss
567





613300
52250
52269
TAGCTAGAAACTGTGTCCCT
41
n/a
n/a
soooossssssssssooss
568





613301
53908
53927
CTGTGAGATCATCCCCTGGT
51
n/a
n/a
soooossssssssssooss
569





613302
54457
54476
CAGCGCAGTGCAGGGAGTCA
41
n/a
n/a
soooossssssssssooss
570





613303
55975
55994
GGGTACACAGAGAGGCCACT
53
n/a
n/a
soooossssssssssooss
571





613304
56155
56174
GAACGATGCACTGCCTTGGC
54
n/a
n/a
soooossssssssssooss
572





613305
57402
57421
CACCATATTACACCAGTTGT
60
n/a
n/a
soooossssssssssooss
573





613306
57696
57715
CTGAAATGAATCCCCTGAAC
0
n/a
n/a
soooossssssssssooss
574





613307
57733
57752
GTGTCCACGAATGCCCCTGG
40
n/a
n/a
soooossssssssssooss
575





613308
58392
58411
ACGGATGGTTGCTGCTGATG
47
n/a
n/a
soooossssssssssooss
576





613309
61917
61936
GTCCCTTTTGCTCCCAAAGA
18
n/a
n/a
soooossssssssssooss
577





613310
62489
62508
CAGTCTTTTAATAAGTGAAA
50
n/a
n/a
soooossssssssssooss
578





613311
63219
63238
TTAGCTAAATTGAGGCCCGG
31
n/a
n/a
soooossssssssssooss
579





613312
63257
63276
GGAAAGGTATTGCCTCCTGA
42
n/a
n/a
soooossssssssssooss
580





613313
63627
63646
GGTGACTACGCAGCCTGGAC
57
n/a
n/a
soooossssssssssooss
581





613314
64559
64578
TTCAGGGCAATCCTTGAGGT
41
n/a
n/a
soooossssssssssooss
582





613315
64872
64891
TGCTAATGCTTTGGGACCTA
44
n/a
n/a
soooossssssssssooss
583





613316
66922
66941
TGGGTAGAGAGCAACTGTTC
32
n/a
n/a
soooossssssssssooss
584





613317
67104
67123
ACACCCCTTCTCTGCACATC
25
n/a
n/a
soooossssssssssooss
585





613318
68893
68912
CTGCTAGAGTTCGCCAACAG
59
n/a
n/a
soooossssssssssooss
586





613319
69457
69476
TCTTATTCTCTAGGTGGGCT
70
n/a
n/a
soooossssssssssooss
587





613320
70922
70941
CAGTGCAAGTGGGTATGAAG
30
n/a
n/a
soooossssssssssooss
588





613321
70928
70947
CAGATGCAGTGCAAGTGGGT
44
n/a
n/a
soooossssssssssooss
589





613322
71310
71329
GAAAAACTTTGTCCATAATT
41
n/a
n/a
soooossssssssssooss
590





613323
71665
71684
TAATGAATGTATAACAGAAA
0
n/a
n/a
soooossssssssssooss
591





613324
71702
71721
AAAAGGCAGATACTTTGTGG
56
n/a
n/a
soooossssssssssooss
592





613325
72456
72475
CAGAGGTGTGAAAGTAAAAG
0
n/a
n/a
soooossssssssssooss
593





613326
72566
72585
CAGCTAAAGCTTTGTGAACA
31
n/a
n/a
soooossssssssssooss
594





613327
72612
72631
TGCAGCCCAGGTGAGCCAGC
49
n/a
n/a
soooossssssssssooss
595





613328
73748
73767
GCCTCTCCTCCCAGTTCATG
12
n/a
n/a
soooossssssssssooss
596





613329
75140
75159
GTTTTCTTATTTTTAGCATT
87
n/a
n/a
soooossssssssssooss
597





613330
76340
76359
GGAGGGACGAGAAACAGCAG
0
n/a
n/a
soooossssssssssooss
598





613331
79041
79060
AGCTTCCAGCATGAACATAG
77
n/a
n/a
soooossssssssssooss
599





613332
79971
79990
GAGCCCTGATATGATAGAGG
57
n/a
n/a
soooossssssssssooss
600





613333
80360
80379
TGTACCATGCCTGGCAGATG
78
n/a
n/a
soooossssssssssooss
601





613334
81325
81344
GTTAGATGTATGTATGATGG
0
n/a
n/a
soooossssssssssooss
602





613412
73879
73898
GTGATCTTCCATCACTTCGA
80
345
364
soooossssssssssooss
25
















TABLE 15







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and phosphodiester


internucleoside linkages targeting SEQ ID NOs: 1 and 3
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 3
NO: 3

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Linkage chemistry
NO


















433475
n/a
n/a
TCTTCAGCTTTCAGGCCAGC
31
443
462
sssssssssssssssssss
96





613335
82136
82155
GCCTCCTCCTAGAGCTCCTG
81
n/a
n/a
soooossssssssssooss
603





613336
83231
83250
CGGCCTCGCAACAAACCCAC
55
n/a
n/a
soooossssssssssooss
604





613337
83820
83839
TCCACTGACCTGCCCCTTCC
66
n/a
n/a
soooossssssssssooss
605





613338
84269
84288
TTTGCAACTTGTTCCTGCTT
84
n/a
n/a
soooossssssssssooss
606





613339
85073
85092
TCTTGGGTGCAGGCGGAGCA
53
n/a
n/a
soooossssssssssooss
607





613340
86117
86136
ACCCAAGATTCCCAGGAGCC
77
n/a
n/a
soooossssssssssooss
608





613341
86191
86210
AGGCCCTAAATGCTCTGAGA
75
n/a
n/a
soooossssssssssooss
609





613342
86251
86270
AGAAGTCTCTGGAACTGACG
70
n/a
n/a
soooossssssssssooss
610





613343
86714
86733
TCACCAAACCAATGGCTGGC
67
n/a
n/a
soooossssssssssooss
611





613344
86774
86793
GGTGAAATCCTGGCTAGGCC
89
n/a
n/a
soooossssssssssooss
612





613345
88487
88506
TGCAGATTCGGCCTGAGTTT
72
n/a
n/a
soooossssssssssooss
613





613346
89131
89150
CCAAACAAGAAAGACTGAGA
55
n/a
n/a
soooossssssssssooss
614





613347
89994
90013
CCATGTCCCTCCCCCCAACC
12
n/a
n/a
soooossssssssssooss
615





613348
90126
90145
ATTAGAAAAAAACCACTAGG
37
n/a
n/a
soooossssssssssooss
616





613349
92246
92265
AGCTTACTAGAGTGCTCTTG
81
n/a
n/a
soooossssssssssooss
617





613350
92915
92934
ATTTTTTTCTGGTTCATTCA
71
n/a
n/a
soooossssssssssooss
618





613351
94316
94335
CGCTTAAGAGAGGGAGCATC
72
n/a
n/a
soooossssssssssooss
619





613352
94673
94692
GTGGAGATACGCAGTGGTGG
68
n/a
n/a
soooossssssssssooss
620





613353
95790
95809
ACACCATGAGGGCACCCGTC
82
n/a
n/a
soooossssssssssooss
35





613354
95918
95937
CCCAAACCTGGCTCTGTCAC
65
n/a
n/a
soooossssssssssooss
621





613355
97224
97243
ATCAACCAGCACCATCCACG
65
n/a
n/a
soooossssssssssooss
622





613356
97314
97333
GGGTCTGTAAGCCTAAAGTG
53
n/a
n/a
soooossssssssssooss
623





613357
97315
97334
TGGGTCTGTAAGCCTAAAGT
56
n/a
n/a
soooossssssssssooss
624





613358
97368
97387
TATACTATGTGGCAGAATCA
48
n/a
n/a
soooossssssssssooss
625





613359
97478
97497
CACATTCCCTCTACCCCATG
57
n/a
n/a
soooossssssssssooss
626





613360
97507
97526
TCATAGATTTTCTTCTTTGG
75
n/a
n/a
soooossssssssssooss
627





613361
98881
98900
ACACACCTTCATTTACTGTC
95
n/a
n/a
soooossssssssssooss
313



98918
98937


n/a
n/a
soooossssssssssooss





613362
98882
98901
AACACACCTTCATTTACTGT
83
n/a
n/a
soooossssssssssooss
314



98919
98938


n/a
n/a
soooossssssssssooss





613363
98883
98902
AAACACACCTTCATTTACTG
79
n/a
n/a
soooossssssssssooss
315



98920
98939


n/a
n/a
soooossssssssssooss





613364
98884
98903
CAAACACACCTTCATTTACT
63
n/a
n/a
soooossssssssssooss
316



98921
98940


n/a
n/a
soooossssssssssooss





613365
98885
98904
TCAAACACACCTTCATTTAC
59
n/a
n/a
soooossssssssssooss
317



98922
98941


n/a
n/a
soooossssssssssooss





613366
98886
98905
TTCAAACACACCTTCATTTA
67
n/a
n/a
soooossssssssssooss
628



98923
98942


n/a
n/a
soooossssssssssooss





613367
98887
98906
TTTCAAACACACCTTCATTT
72
n/a
n/a
soooossssssssssooss
318



98924
98943


n/a
n/a
soooossssssssssooss





613368
98888
98907
TTTTCAAACACACCTTCATT
59
n/a
n/a
soooossssssssssooss
319



98925
98944


n/a
n/a
soooossssssssssooss





613369
98889
98908
GTTTTCAAACACACCTTCAT
90
n/a
n/a
soooossssssssssooss
320



98926
98945


n/a
n/a
soooossssssssssooss





613370
98890
98909
GGTTTTCAAACACACCTTCA
96
n/a
n/a
soooossssssssssooss
321



98927
98946


n/a
n/a
soooossssssssssooss





613371
98891
98910
TGGTTTTCAAACACACCTTC
95
n/a
n/a
soooossssssssssooss
322



98928
98947


n/a
n/a
soooossssssssssooss





613372
99560
99579
CCCCAGCTGGCCGAGGCCCA
81
n/a
n/a
soooossssssssssooss
629





613373
99816
99835
GAGAAGGGTCCTGTCCCAGA
76
n/a
n/a
soooossssssssssooss
630





613374
100743
100762
AGTAAGTTGATGGAGATCAT
83
n/a
n/a
soooossssssssssooss
631





613375
102894
102913
CACCAGCCCCACTCCGCCAC
61
n/a
n/a
soooossssssssssooss
632





613376
103875
103894
TGCTCTGTCTCCAGAGACAT
70
n/a
n/a
soooossssssssssooss
633





613377
104615
104634
ATCCAAGATCCAGGCCAGGC
63
n/a
n/a
soooossssssssssooss
634





613378
105870
105889
AGAGACCCAGGGTGACCAGT
76
n/a
n/a
soooossssssssssooss
635





613379
106909
106928
CAAATTTCTCGATCCCCTTC
18
n/a
n/a
soooossssssssssooss
636





613380
108411
108430
CCTGAGGAGGGCACTCACAG
61
n/a
n/a
soooossssssssssooss
637





613381
108891
108910
GTGGCTACCCACGGCCACAG
1
n/a
n/a
soooossssssssssooss
638





613382
108939
108958
CTACCAGGAGCACACACAGA
65
n/a
n/a
soooossssssssssooss
639





613383
109303
109322
CCCTAAGCCATGGTGGGTTT
72
n/a
n/a
soooossssssssssooss
640





613384
109995
110014
CCCTTGTCCCCACAGCCACA
72
n/a
n/a
soooossssssssssooss
641





613385
110198
110217
GGGTCACCTGTGAGTTATTT
62
n/a
n/a
soooossssssssssooss
642





613386
113567
113586
AGCTGCCTCCAGTTGTTTAT
85
n/a
n/a
soooossssssssssooss
643





613387
114056
114075
ACTTTAGCTCCATCTTCTCA
49
n/a
n/a
soooossssssssssooss
644





613388
114755
114774
CTATAATGGTCAGTGGTGTA
67
n/a
n/a
soooossssssssssooss
645





613389
115899
115918
TGAAGGAGAGGCTGTGGTGA
41
n/a
n/a
soooossssssssssooss
646





613390
117387
117406
TGTGACAACAAAGTTGTCCT
46
n/a
n/a
soooossssssssssooss
647





613391
117654
117673
CCCTGCAATCAACACAGGAG
65
n/a
n/a
soooossssssssssooss
648





613392
119050
119069
TCTAACATGCACATATTTAC
60
n/a
n/a
soooossssssssssooss
649





613393
119190
119209
AGCACTGGGTGTTTACAACA
84
n/a
n/a
soooossssssssssooss
650





613394
119594
119613
AGAAGTGATATCATATCCTA
85
n/a
n/a
soooossssssssssooss
324



119905
119924


n/a
n/a
soooossssssssssooss





613395
119595
119614
AAGAAGTGATATCATATCCT
68
n/a
n/a
soooossssssssssooss
325



119906
119925


n/a
n/a
soooossssssssssooss





613396
120782
120801
ACCCGGTGACCTTTCCTCTC
67
n/a
n/a
soooossssssssssooss
651





613397
121728
121747
GAGTGACATGCGCCACCCTG
87
n/a
n/a
soooossssssssssooss
203





613398
121794
121813
AAAAGGATGAGTGACACGCC
66
n/a
n/a
soooossssssssssooss
205





613399
121940
121959
GCCACAGCACGGCGCATGGG
89
n/a
n/a
soooossssssssssooss
652





613400
124954
124973
GCACCGCTCCCTCTGGGAAT
49
n/a
n/a
soooossssssssssooss
653





613401
125298
125317
AAATCTTGCTGGAAAGGCAG
64
n/a
n/a
soooossssssssssooss
654





613402
125428
125447
GACCCAGACATTTGCTCAGC
86
n/a
n/a
soooossssssssssooss
655





613403
125982
126001
GGGCTCCCGCAAGTTTCACA
71
n/a
n/a
soooossssssssssooss
656





613404
127460
127479
GAGAGGCCCTGTGGACAGCT
75
n/a
n/a
soooossssssssssooss
657





613405
130381
130400
CCCACTGGATGCTGCTGAGG
34
n/a
n/a
soooossssssssssooss
658





613406
131662
131681
GTGCCTAGTAACCCATTTAG
54
n/a
n/a
soooossssssssssooss
659





613407
131796
131815
CACCCACAGCAAGACCTAGA
49
n/a
n/a
soooossssssssssooss
660





613408
133056
133075
ACACAGAGAAGCTTCCAGAG
70
n/a
n/a
soooossssssssssooss
661





613409
133304
133323
AGCTATCACATGGACGAGTT
67
n/a
n/a
soooossssssssssooss
662





613410
133548
133567
CATTTAATACAGGCTTTGAT
38
n/a
n/a
soooossssssssssooss
663





613411
134599
134618
AGCCACTGATGCCCAGACAT
69
n/a
n/a
soooossssssssssooss
664





613412
73879
73898
GTGATCTTCCATCACTTCGA
82
345
364
soooossssssssssooss
25
















TABLE 16







Inhibition of Tau mRNA by 5-10-5 MOE gapmers with phosphorothioate and


phosphodiester internucleoside linkages targeting SEQ ID NOs: 5 and 6














Target








SEQ
Target



SEQ


ISIS
ID
Start

%

ID


NO
NO
Site
Sequence
inhibition
Linkage chemistry
NO
















613239
5
3
TGCCCTTCGCGGTCCCTTCG
11
soooossssssssssooss
396





613241
5
424
CTGTCCCCCAAACCCGTACG
48
soooossssssssssooss
397





613248
6
524
GCTTCCGCTGTTGGAGTGCT
59
soooossssssssssooss
398









Example 8: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE Gapmers with Phosphorothioate and Phosphodiester Internucleoside Linkages

Gapmers from studies described above exhibiting significant in vitro inhibition of tau mRNA were selected and tested at various doses in SH-SY-5Y cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 1.25 μM, 2.500 μM, 5.00 μM, 10.00 μM, and 20.00 μM concentrations of antisense oligonucleotide, as specified in the Table below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of Tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
















TABLE 17







ISIS
1.25
2.50
5.00
10.00
20.00



No
μM
μM
μM
μM
μM









613118
46
47
73
92
93



613136
36
70
83
88
92



613115
32
49
82
86
94



613329
73
80
92
94
92



613273
46
24
48
60
85



613262
31
72
76
87
94



613271
44
66
84
89
94



613370
92
92
95
98
98



613361
88
86
89
94
96



613371
80
88
91
95
97



613369
58
85
89
95
96



613399
61
77
90
94
96



613344
80
79
93
95
95



613397
64
74
79
93
95



613412
45
66
70
81
96
























TABLE 18







ISIS
1.25
2.50
5.00
10.00
20.00



No
μM
μM
μM
μM
μM























613255
54
61
80
91
90



613065
22
61
62
83
89



613257
45
69
82
86
91



613098
70
57
83
92
98



613253
44
67
74
86
91



613039
21
77
85
90
95



613188
0
35
72
86
87



613042
33
45
73
90
94



613233
21
54
69
75
89



613073
59
67
83
92
97



613187
8
54
74
61
84



613402
10
58
62
81
87



613045
57
72
92
96
95



613412
20
52
67
84
90



613099
71
66
89
91
95










Example 9: Antisense Inhibition of Human Tau in SH-SY5Y Cells by 5-10-5 MOE, 5-8-5 MOE, 4-8-6 MOE, or 6-8-4 MOE Gapmers

Antisense oligonucleotides were designed targeting a tau nucleic acid and were tested for their effects on Tau mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. ISIS 613412 was also included in the assays. The results for each experiment are presented in separate tables shown below. Cultured SH-SY5Y cells at a density of 20,000 cells per well were transfected using electroporation with 8,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and Tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-8-5 MOE, 4-8-6 MOE, or 6-8-4 MOE gapmers. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 4-8-6 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising four and six nucleosides respectively. The 6-8-4 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising six and four nucleosides respectively. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkage motif throughout for each gapmer in the tables below, except for ISIS 613412, is 5′-s000sssssssssooss-3′, wherein each “s” represents a phosphorothioate internucleoside linkage and wherein each “o” represents a phosphodiester internucleoside linkage. The internucleoside linkage motif for ISIS 613412 is 5′-soooossssssssssooss-3′, wherein each “s” represents a phosphorothioate internucleoside linkage and wherein each “o” represents a phosphodiester internucleoside linkage. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000), SEQ ID NO: 4 (GENBANK Accession No. NT_010783.14 truncated from nucleotides 2624000 to 2761000), SEQ ID NO: 5 (GENBANK Accession No. DR002467.1), or SEQ ID NO: 6 (GENBANK Accession No. NM_001203251.1). ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 19







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE gapmers


targeting SEQ ID NO: 1 and SEQ ID NO: 4
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 1
NO: 1


NO: 4
NO: 4

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Motif
NO


















613412
73879
73898
GTGATCTTCCATCACTTCGA
83
69842
69861
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
89
94855
94872
5-8-5
665



98928
98945


94892
94909





621197
n/a
n/a
TCGCCAACAGACATGTGA
39
64850
64867
5-8-5
666





621196
67898
67915
TGAAGGAGCCTGGGAAGT
15
63891
63908
5-8-5
667





621198
69079
69096
AGCAGAGATGTGGCTGGG
50
65044
65061
5-8-5
668





621199
69622
69639
GTGAGGTTGAAAAGTTTC
34
65587
65604
5-8-5
669





621200
69802
69819
TGGTTTCTGATGGTTTTT
43
65767
65784
5-8-5
670





621201
70023
70040
GTTGGAACTCCTGGGATC
27
65988
66005
5-8-5
671





621202
70259
70276
TCAGCATTTTTCTCCTCT
47
66224
66241
5-8-5
672





621203
70531
70548
CTGGAATGGTACGATCTC
52
66496
66513
5-8-5
673





621204
70750
70767
CCACTCTGGTGCAGGACG
29
66715
66732
5-8-5
674





621205
70930
70947
CAGATGCAGTGCAAGTGG
43
66895
66912
5-8-5
675





621206
71110
71127
GGGTTTCACCAGACCTCA
29
67075
67092
5-8-5
676





621207
71306
71323
CTTTGTCCATAATTTTTT
34
67271
67288
5-8-5
677





621208
71487
71504
TATAGCATGAGCATTTGT
42
67452
67469
5-8-5
678





621209
71667
71684
TAATGAATGTATAACAGA
2
67632
67649
5-8-5
679





621210
71850
71867
TCCTCCTGGCTGCCCTGT
33
67815
67832
5-8-5
680





621211
72030
72047
CATCCTGCCATACCAGAC
32
67995
68012
5-8-5
681





621212
72224
72241
TATCCGCCTCTCAAAGTG
0
68189
68206
5-8-5
682





621213
72410
72427
CACATTTGCATATTTTCA
65
68373
68390
5-8-5
683





621214
72590
72607
TCGGGTTGCCCCATTCAA
27
68553
68570
5-8-5
684





621215
72770
72787
AACCACCATTTACTCACA
35
68733
68750
5-8-5
685





621216
72950
72967
ACCGGCACCCACCAGGTC
22
68913
68930
5-8-5
686





621217
73130
73147
AGGGACAGCATCAGCAGA
22
69093
69110
5-8-5
687





621218
73437
73454
AGGCATGTGGCAGGTGCC
12
69400
69417
5-8-5
688





621219
73617
73634
ACCAACACCGCAGCAGTT
35
69580
69597
5-8-5
689





621220
73797
73814
GTTCTGAGGAGTGTTGGG
0
69760
69777
5-8-5
690





621221
73978
73995
ACTAACCTTTCAGGCCAG
33
69941
69958
5-8-5
691





621222
74273
74290
TAAATTATTTTAGAGACG
0
70236
70253
5-8-5
692





621223
74467
74484
CAAGGTAAATTTCTTTCT
69
70430
70447
5-8-5
693





621224
74647
74664
TCAGGCCTGATCTAAGTA
14
70610
70627
5-8-5
694





621225
74827
74844
TCCCCAACCATGTGGTCT
40
70790
70807
5-8-5
695





621226
75007
75024
TGCCAGCCACACCCATGG
52
70970
70987
5-8-5
696





621227
75187
75204
AACTCCACGGCTTCCATG
50
71150
71167
5-8-5
697





621228
75371
75388
AGATAGAAATCTGAAACG
34
71334
71351
5-8-5
698





621229
75551
75568
GCTGGGCCGAGCTGCATT
66
71514
71531
5-8-5
699





621230
75891
75908
GGATTCAAAGGAGAAAAC
35
71854
71871
5-8-5
700





621231
76192
76209
ATTATTATTTGACATGGG
75
72155
72172
5-8-5
701





621232
76373
76390
AGGGTAGGCAGTGTTGTG
4
72336
72353
5-8-5
702





621233
76553
76570
CTCTCTTTGTCAGGAAAA
58
72516
72533
5-8-5
703





621234
76942
76959
CCTTTTTTTTTAGGACGG
0
72905
72922
5-8-5
704





621235
77222
77239
GAGTTGACTGGGCACGGT
33
73185
73202
5-8-5
705





621236
77414
77431
TCATCTGTGAAGCGGACG
81
73377
73394
5-8-5
706





621237
77594
77611
GGCACAATCCATATGAGG
56
73557
73574
5-8-5
707





621238
77781
77798
GTTATTTTGGAACAGTTT
87
73744
73761
5-8-5
708





621239
78117
78134
CTGGACTTTATTTCATTT
77
74080
74097
5-8-5
709





621240
78319
78336
CAGTATATATAGTGCATA
76
74282
74299
5-8-5
710





621241
78499
78516
CAAAACAGCTCCTTGTAA
14
74462
74479
5-8-5
711





621242
78679
78696
ACTTTCATCTACTTTTCA
32
74642
74659
5-8-5
712





621243
78859
78876
CCAATCTGTCCCCAGCTT
42
74822
74839
5-8-5
713





621244
79039
79056
TCCAGCATGAACATAGCT
65
75002
75019
5-8-5
714





621245
79219
79236
TAGAGTCAGTTTCAGGAT
75
75182
75199
5-8-5
715





621246
79399
79416
GGTGGTATCACCAACAGC
35
75362
75379
5-8-5
716





621247
79589
79606
TTAAGGAATGGCTCTGGG
42
75552
75569
5-8-5
717





621248
79769
79786
GAACATGAGACATCTTGA
8
75732
75749
5-8-5
718





621249
79949
79966
AGCTGTGCCCAGTTAAAA
53
75912
75929
5-8-5
719





621250
80129
80146
TCTGGTCATATGAGGAAA
55
76092
76109
5-8-5
720





621251
80309
80326
AGTCATTATCATGTCACC
89
76272
76289
5-8-5
721





621252
80489
80506
GCTGAGCGAATTACCTAA
75
76452
76469
5-8-5
722





621253
80669
80686
CCTCTGTATGACAGAAAT
48
76632
76649
5-8-5
723





621254
80849
80866
GGTAACATGTAAAGCTTC
79
76812
76829
5-8-5
724





621255
81033
81050
TGGATTATGTACAGATAT
28
76996
77013
5-8-5
725



81136
81153


77099
77116





621256
81110
81127
ATGGATGATAGGAAGGAT
20
77073
77090
5-8-5
726



81213
81230


77176
77193





621257
81393
81410
GATGGAGGAAGGAATGAT
5
77356
77373
5-8-5
727





621258
81629
81646
CTGGATGGTTACATGGAT
31
77592
77609
5-8-5
728





621259
81812
81829
ATAATTGATGTATAATTA
0
77775
77792
5-8-5
729





621260
81992
82009
GTTCTGCCCCACCTGGGC
56
77955
77972
5-8-5
730





621261
82198
82215
GCCTCTCAGGGCCTCCGT
76
78161
78178
5-8-5
731





621262
82378
82395
GAAGGATGGCCACACAGA
39
78341
78358
5-8-5
732





621263
82558
82575
ATGGGCTTATCAATGCAT
85
78521
78538
5-8-5
733





621264
82738
82755
GAGGCCCAAATGATCACA
56
78701
78718
5-8-5
734





621265
82918
82935
GCTCAGGGCAGACACGGT
66
78881
78898
5-8-5
735





621266
83098
83115
CTTAACCAGCTAGTGGTG
38
79061
79078
5-8-5
736





621267
83278
83295
GTCCTGTGGAGCTGAAAA
54
79241
79258
5-8-5
737





621268
83486
83503
GGCTGGAGGCATGGAGGG
7
79449
79466
5-8-5
738





621269
83666
83683
TGCCTCCAGAGCACACAC
55
79629
79646
5-8-5
739





621270
83846
83863
AGGATACTAAACCAAGAT
24
79809
79826
5-8-5
740





621271
84026
84043
CACAGATGGGAAGCAAGA
20
79989
80006
5-8-5
741





621272
84206
84223
CATGAGGCAACAATCCAA
70
80169
80186
5-8-5
742
















TABLE 20







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5


MOE gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1



SEQ


ISIS
Start
Stop

%

ID


NO
Site
Site
Sequence
inhibition
Motif
NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
80
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
92
5-8-5
665



98928
98945





621273
84386
84403
GCCGTAAGACCCAGCTCT
58
5-8-5
743





621274
84566
84583
GAAGAAGTACTGAGAAAG
14
5-8-5
744





621275
84746
84763
TAAGAACCTCAGCGGCAA
56
5-8-5
745





621276
84926
84943
TGAGGGAGCACTGAGAGT
21
5-8-5
746





621277
85106
85123
AGTTCAATGAAGGACATT
69
5-8-5
747





621278
85287
85304
ACTGTTGGATGGGTCCAC
70
5-8-5
748





621279
85467
85484
TTGGTCCATTTTGATTGG
0
5-8-5
749





621280
85647
85664
CGGCAGCCCTGTGTAAAC
48
5-8-5
750





621281
85828
85845
CCTTTGCTTCTTGCGCAG
66
5-8-5
751





621282
86014
86031
AGGGCCTTGACTGCCTGG
15
5-8-5
752





621283
86194
86211
AAGGCCCTAAATGCTCTG
57
5-8-5
753





621284
86384
86401
CGCTCAGGTGATCTTGGG
76
5-8-5
754





621285
86564
86581
CTGATTGATTCCCCATCA
64
5-8-5
755





621286
86746
86763
TTCTTGTTGGGCAACTGG
59
5-8-5
756





621287
86928
86945
GAAATGCACTCAGAAGGG
52
5-8-5
757





621288
87108
87125
CCTCAGTGAAATAACTGT
55
5-8-5
758





621289
87288
87305
TGGCTGCAACTTTGAATG
0
5-8-5
759





621290
87470
87487
CTGGAGATGGCAGGCTGG
39
5-8-5
760





621291
87653
87670
CCCGTGGGCCCCATGTGG
1
5-8-5
761





621292
87834
87851
ATTGAGGACACCTGGTGT
6
5-8-5
762





621293
88014
88031
AAGGTCTGCATTGTCAGT
61
5-8-5
763





621294
88194
88211
CTGCTGGCCTCTCTGTAC
56
5-8-5
764





621295
88374
88391
TCGGACACGGTCACTGCC
60
5-8-5
765





621296
88554
88571
GTGCCTTGTCATGTGACA
79
5-8-5
766





621297
88734
88751
GGAAGCCATGTGGTAGCC
50
5-8-5
767





621298
88918
88935
CAGAGGCCACTGCCTCTG
0
5-8-5
768





621299
89098
89115
TTAATAGTACCAAAATCA
25
5-8-5
769





621300
89278
89295
TACATTTCCTTCCTCCCA
10
5-8-5
770





621301
89470
89487
CGGAGTCAGGCAGATGGG
43
5-8-5
771





621302
89650
89667
GCTATGACCTAGTAGGAA
84
5-8-5
772





621303
89830
89847
ATTGTTTACTAGAAACCA
39
5-8-5
773





621304
90010
90027
GGGCAGAGCCCACCCCAT
40
5-8-5
774





621305
90190
90207
AGGCTGGACAAGGCTAGC
63
5-8-5
775





621306
90531
90548
CATATTTGAGTTTCTTTT
62
5-8-5
776





621307
90711
90728
AATGATTACACAAAGCTG
61
5-8-5
777





621308
90891
90908
GAACAGTGTCTTTCCAGC
73
5-8-5
778





621309
91071
91088
ATGTGCCTTTCTGTGCCA
89
5-8-5
779





621310
91251
91268
AATGATTTCTAGAGGTCA
54
5-8-5
780





621311
91431
91448
CCATGATTCCAGGCTGCT
80
5-8-5
781





621312
91816
91833
CAGCCAGGCTAGTCTTGC
80
5-8-5
782





621313
92037
92054
AGGAGAATGTTCTTTTTT
53
5-8-5
783





621314
92219
92236
TTACTGTACTCTGATATA
41
5-8-5
784





621315
92399
92416
CCTTATGGGAGCCCTTTG
54
5-8-5
785





621316
92579
92596
CAGAGCGCAGCAGCACCT
64
5-8-5
786





621317
92759
92776
CTCACCAGCTCTGCTTTA
53
5-8-5
787





621318
92939
92956
CAGCTGATCAAGGGCACA
84
5-8-5
788





621319
93123
93140
AGACCTGCCATAAGACTC
39
5-8-5
789





621320
93380
93397
CTGACTAAAATGTTATTT
34
5-8-5
790





621321
93570
93587
ACAGGCATGAGTTTTTTT
61
5-8-5
791





621322
93840
93857
CCCCTTTTTTTTGGTTTG
2
5-8-5
792





621323
94020
94037
TCTGGAGCCGCCCTGGGC
36
5-8-5
793





621324
94200
94217
ATGACAGCTCTCCTGGTC
38
5-8-5
794





621325
94380
94397
ACTCTCAACTCCTCTGGT
49
5-8-5
795





621326
94576
94593
TCCTGTTGGAGGAGGCGC
7
5-8-5
796





621327
95433
95450
CCTTTGAGTTGAGGGACC
60
5-8-5
797





621328
95613
95630
GCCTGAGCACGGGAGGAG
41
5-8-5
798





621329
95793
95810
GACACCATGAGGGCACCC
69
5-8-5
799





621330
95986
96003
AGCACCTCCTGGGAGGCG
18
5-8-5
800





621331
96166
96183
GGTGGCATGTGGACCAGG
50
5-8-5
801





621332
96346
96363
TGTGGCTCTGAGGTCTCC
72
5-8-5
802





621333
96526
96543
GCCTCTGTCTTAACTTTT
50
5-8-5
803





621334
96778
96795
TTAGGGTACAGTGGTGTG
18
5-8-5
804





621335
96958
96975
CCTCTAGTAGGCCAGTAT
62
5-8-5
805





621336
97141
97158
AATCAAGTAAGTTTGGGA
57
5-8-5
806





621337
97321
97338
CAACTGGGTCTGTAAGCC
47
5-8-5
807





621338
97506
97523
TAGATTTTCTTCTTTGGT
45
5-8-5
808





621339
97686
97703
GGGCACGAATTCTCACTG
53
5-8-5
809





621340
97866
97883
TCCAGAATAGGAGAGGCT
9
5-8-5
810





621341
98046
98063
ACACTGCAGCCAGGCTTG
63
5-8-5
811





621342
98226
98243
TGCAGTCTCCCTAACCCA
59
5-8-5
812





621343
98406
98423
CTCTTTTCCCTTGAATCT
33
5-8-5
813





621344
98607
98624
GTCAGCTTACCTTGGCTT
44
5-8-5
814





621345
98802
98819
CAACTGCTCTTCCCTGGG
68
5-8-5
815





621346
98982
98999
TCTGGGTGCAGTTTATGC
80
5-8-5
816





621347
99162
99179
AGAATTTATGCTGGAAAT
38
5-8-5
817





621348
99342
99359
GGCCAGCTCTCCAAATCC
56
5-8-5
818





621349
99522
99539
CCCTAGACTCTGGGCAAC
66
5-8-5
819
















TABLE 21







Inhibition of Tau mRNA by 5-10-5 MOE and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1


ISIS
Start
Stop

%

SEQ


NO
Site
Site
Sequence
inhibition
Motif
ID NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
91
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
96
5-8-5
665



98928
98945





620965
20187
20204
TCTAAGTAATTCGATATG
27
5-8-5
820





620966
20375
20392
AAACAGAAACTAGGGTGG
63
5-8-5
821





620967
20571
20588
TCCCGCTGGGATCCATGG
40
5-8-5
822





620968
20751
20768
TGTTGCCATTGGGCAGCC
0
5-8-5
823





620969
20931
20948
GACCTTCTAATTAGTCCA
58
5-8-5
824





620970
21291
21308
GCGATTCTCTCCTGTCTC
53
5-8-5
825





620971
21567
21584
ACTCAGATTTATTATTTT
87
5-8-5
826





620972
21747
21764
AAAGTACTATCCACTTGT
77
5-8-5
827





620973
21927
21944
CAAATCCTGGGTTCGAAT
39
5-8-5
828





620974
22107
22124
AGGTCTCTGCCCATGAAA
59
5-8-5
829





620975
22287
22304
AGATTTCTCCCTTCACCC
46
5-8-5
830





620976
22467
22484
TTAACATGATGGTGGTTT
86
5-8-5
831





620977
22652
22669
CATTGTGGAAATTAAACA
50
5-8-5
832





620978
22837
22854
TGTAGTCAATATTGAACT
86
5-8-5
833





620979
23269
23286
TTTTGAGAGCAGGTCTCG
61
5-8-5
834





620980
23449
23466
ATGGCAAACAGTACATGT
80
5-8-5
835





620981
23631
23648
AGGATTTAAGTGATTTTC
66
5-8-5
836





620982
23826
23843
TACAAAGACCCCTTTTCC
51
5-8-5
837





620983
24016
24033
AGCTGCCAGCAGTCCTTG
81
5-8-5
838





620984
24196
24213
CTGCTGTAGGAAATGACC
77
5-8-5
839





620985
24377
24394
AGCTCCAACCAGCTTTCT
58
5-8-5
840





620986
24557
24574
GTCCTGATTAACAGCTAA
69
5-8-5
841





620987
24744
24761
GTCTGTCTGCTGCCATCC
81
5-8-5
842





620988
24924
24941
GTAACTGATATGGTAACA
85
5-8-5
843





620989
25286
25303
AGCCCTCTTTGTACAGGA
75
5-8-5
844





620990
25466
25483
CTGTTCCAGTTGATCCAG
53
5-8-5
845





620991
25668
25685
GCAGTCTTTTTAAATTAA
80
5-8-5
846





620992
25848
25865
CCTCTGCTCACATAGAAA
64
5-8-5
847





620993
26028
26045
AGTACCTGCCTTGTTCCT
52
5-8-5
848





620994
26208
26225
AAGCATGGTAATACAAAA
78
5-8-5
849





620995
26404
26421
TTGATTAAAAAAAATAGC
4
5-8-5
850





620996
26584
26601
TTCATCCTTTCCAAGTGT
58
5-8-5
851





620997
26764
26781
CATGCTTACACACCACAC
23
5-8-5
852



26948
26965





620998
26762
26779
TGCTTACACACCACACAC
38
5-8-5
853



26946
26963





620999
27140
27157
ATATGCTGAACACACACA
75
5-8-5
854





621000
27320
27337
CCACCGAGGTCTCATTGG
52
5-8-5
855





621001
27500
27517
GGGAGACCTCCCTTTCAA
0
5-8-5
856





621002
27680
27697
TCTCTGGGTGTAGAGACG
54
5-8-5
857





621003
27861
27878
GCAGGCTCGGGCTCCACG
61
5-8-5
858





621004
28041
28058
CCTTGTCAGATGGTTGAT
55
5-8-5
859





621005
28221
28238
TCTGCAGACTTTTCTCAA
22
5-8-5
860





621006
28426
28443
CTGGAGGGAGGTGATGTG
7
5-8-5
861





621007
28616
28633
GAAAGCTGCTGCTGAGGG
63
5-8-5
862





621008
28981
28998
GGGCAAAGATAATTCGAA
61
5-8-5
863





621009
29165
29182
CCTCACCCTGGGCAAGAA
68
5-8-5
864





621010
29409
29426
TTGCTGCTCGGGAGGCCG
14
5-8-5
865





621011
29589
29606
AAATGAAAGATGCTGGCT
23
5-8-5
866





621012
29953
29970
CAGAGAGGTCCAGCTACT
58
5-8-5
867





621013
30133
30150
AGCTCACTACAGCAGGCA
93
5-8-5
868





621014
30607
30624
TATTTCTTGCAATTCTTT
78
5-8-5
869





621015
30787
30804
GGAGGACTGTCTCTAGAG
59
5-8-5
870





621016
30967
30984
TCCGGCCTGGCGAACTGA
40
5-8-5
871





621017
31278
31295
CCTGCAAAGCTAATTTTA
18
5-8-5
872





621018
31458
31475
GAGCCCCCTTTAAGCCTT
65
5-8-5
873





621019
31654
31671
GTACAAAGACTGTGTACG
47
5-8-5
874





621020
31834
31851
GACTCAGGAACATGTTAG
81
5-8-5
875





621021
32023
32040
TGAGGCAGCAATGCTGGG
34
5-8-5
876





621022
32203
32220
CACTGGGAGGTGTATAGA
0
5-8-5
877





621023
32383
32400
GCGAGGTGGGTGAAGGTT
25
5-8-5
878





621024
32563
32580
AAAAACTTTGGCAGTCAG
80
5-8-5
879





621025
32743
32760
GGTCTGCCCTGCACCAGG
59
5-8-5
880





621026
32923
32940
CTGAGCTCTCCGAGCTGC
61
5-8-5
881





621027
33103
33120
GTGAGGTGGTATCATTGG
51
5-8-5
882





621028
33283
33300
CTAGCTTGAATTCCTCCA
81
5-8-5
883





621029
33463
33480
AATCTGTGACTCAAGAAC
47
5-8-5
884





621030
33708
33725
GGGCCGTCTCTATTAAAA
56
5-8-5
885





621031
33888
33905
GGTATAATTTGTTTGGAC
85
5-8-5
886





621032
34068
34085
CTTTATTGCATATAGGTA
86
5-8-5
887





621033
34248
34265
ATCCAGTCCCAACATTGG
30
5-8-5
888





621034
34428
34445
CGGTCTCTCTGACTTGCC
78
5-8-5
889





621035
34620
34637
GAGGGCATTCCTCAAAGG
10
5-8-5
890





621036
34800
34817
AGTTCTCTGATTCTCAAA
63
5-8-5
891





621037
34980
34997
CCCCCAGTGCCCACAAGT
48
5-8-5
892





621038
35160
35177
CTAAAAGCTAAAGTGGGT
49
5-8-5
893





621039
35340
35357
AGGACCTGGCAGAGCTGC
73
5-8-5
894





621040
35520
35537
AAATCGAACACTTACATA
20
5-8-5
895





621041
35721
35738
TTGCCATCTTGGACAGGG
89
5-8-5
896
















TABLE 22







Inhibition of Tau mRNA by 5-10-5 and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1


ISIS
Start
Stop

%

SEQ ID


NO
Site
Site
Sequence
inhibition
Motif
NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
85
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
93
5-8-5
665



98928
98945





620888
98881
98898
ACACCTTCATTTACTGTC
95
5-8-5
897



98918
98935





620889
98890
98907
TTTTCAAACACACCTTCA
74
5-8-5
898



98927
98944





620890
98892
98909
GGTTTTCAAACACACCTT
96
5-8-5
899



98929
98946





620891
98893
98910
TGGTTTTCAAACACACCT
96
5-8-5
900



98930
98947





620892
6191
6208
TACCTGATAGTCGACAGA
53
5-8-5
901





620893
6371
6388
GTCCCTTTCCAGGCCGCC
70
5-8-5
902





620894
6551
6568
CGCCCATTGCGGCAAAAG
73
5-8-5
903





620895
6736
6753
CACTGCTCGGGAGGTGCA
62
5-8-5
904





620896
6938
6955
TGTTCTCAGGCACGGCGC
74
5-8-5
905





620897
7121
7138
GCCCTGCGCTCCGAGCGC
44
5-8-5
906





620898
7301
7318
AAAAAAGATGGCACCTCG
30
5-8-5
907





620899
7481
7498
ACAAAGCAAAGAGCCCCC
59
5-8-5
908





620900
7687
7704
TCACGCCCGTTCCATGCG
43
5-8-5
909





620901
7867
7884
CCGGATGGGTAGCCAGCG
47
5-8-5
910





620902
8047
8064
CCCTCTCCGGACACCTGT
69
5-8-5
911





620903
8227
8244
AAATACACCCAGGGCCGC
51
5-8-5
912





620904
8408
8425
GATAGAATTAACCAGAAA
33
5-8-5
913





620905
8588
8605
AGCCTCGCAGTACCCAGG
39
5-8-5
914





620906
8775
8792
TCGCGAGATGGCAATACG
55
5-8-5
915





620907
8956
8973
TTCCTCCATTAACAGCGC
49
5-8-5
916





620908
9157
9174
CCCGCCTGCTGGGAATGG
65
5-8-5
917





620909
9337
9354
AGAACTCAAATTGGTCCT
67
5-8-5
918





620910
9517
9534
TATAAGCAGCTTATACAG
34
5-8-5
919





620911
9697
9714
CCAAGCCAGGTTATTGCT
70
5-8-5
920





620912
9877
9894
TCTAACAATTTATGGGCA
81
5-8-5
921





620913
10057
10074
AACAAATGGACTGTAACA
59
5-8-5
922





620914
10240
10257
TTCAAGGAGGGAGTAAGG
12
5-8-5
923





620915
10420
10437
AGGAAAGTGGTGGTGGAG
22
5-8-5
924





620916
10600
10617
TGCAGCCCAGCTGGTGAG
35
5-8-5
925





620917
10781
10798
TCCTTGTAGGATGTTTAA
30
5-8-5
926





620918
10961
10978
ACCTGCTACATAGCGGAA
87
5-8-5
927





620919
11141
11158
TTATAGATCATATCTGGG
82
5-8-5
928





620920
11321
11338
AAACAGAGCACCAATGTA
36
5-8-5
929





620921
11501
11518
ACCTCAGAGACTTGACCT
54
5-8-5
930





620922
11681
11698
CCCAGGAAGTGAGAAAAG
20
5-8-5
931





620923
11864
11881
CAGTTGGGAGCCATCTGG
51
5-8-5
932





620924
12044
12061
ATTGGGCTCAGCATGGAG
30
5-8-5
933





620925
12224
12241
TCCTTAACCATTAGGCCA
70
5-8-5
934





620926
12404
12421
TGGCCCTAGTGAGTACCG
75
5-8-5
935





620927
12597
12614
GCCCAGTTTGGTGCAGGG
79
5-8-5
936





620928
12777
12794
GGCGGGAAGGCAGGTCAG
51
5-8-5
937





620929
12957
12974
CAGTTTACCAATGTCAGC
77
5-8-5
938





620930
13137
13154
ATATATTGTTACTTAGTC
83
5-8-5
939





620931
13317
13334
CATAGGCAAAACAGACAA
68
5-8-5
940





620932
13504
13521
TAGTTGAATGTTTTGGAA
73
5-8-5
941





620933
13702
13719
ACGGCGGAGGCTGAGGCG
10
5-8-5
942





620934
13882
13899
AGGTGCAAGCTGGCCGGG
44
5-8-5
943





620935
14062
14079
TGATACCCTGTAAGAATA
82
5-8-5
944





620936
14243
14260
AATATAGCAAAGGGAATT
54
5-8-5
945





620937
14423
14440
TAGAGATAATTATGTCCC
73
5-8-5
946





620938
14609
14626
GCAATTACAGAGCCAGGG
76
5-8-5
947





620939
14789
14806
GCAGAACTGGATCCGATC
69
5-8-5
948





620940
15035
15052
CAAAGCCAGGATGGTCTC
92
5-8-5
949





620941
15246
15263
CCAAAGAGATTCCTTTTT
79
5-8-5
950





620942
15924
15941
GGCCTCATTTATATATAT
20
5-8-5
951





620943
16156
16173
TATGGGACAATCATAGCT
56
5-8-5
952





620944
16336
16353
AATTCTGATACATTGTCA
81
5-8-5
953





620945
16516
16533
GATGACTCTTCCAAATGG
70
5-8-5
954





620946
16696
16713
TCACTTCATTATTCAAGC
84
5-8-5
955





620947
16876
16893
GTGCAGCCGCCACTGGCC
86
5-8-5
956





620948
17085
17102
CGATAAGATCTTTTTAAA
25
5-8-5
957





620949
17266
17283
GACAGTATAATCTCCATT
69
5-8-5
958





620950
17446
17463
AGGCTAAAGTCAGCCCAC
29
5-8-5
959





620951
17639
17656
CTTGCACCCTGGTTTGGG
40
5-8-5
960





620952
17819
17836
TCCCTGTCTGGTTAGGAA
80
5-8-5
961





620953
17999
18016
ACGCGCCTGCCCCGTGCC
50
5-8-5
962





620954
18179
18196
CTCAAACCTGGCCACGCT
64
5-8-5
963





620955
18359
18376
GAAACTGGCGGGTCTGTT
64
5-8-5
964





620956
18539
18556
GGGAGGAATTTGGCAATG
37
5-8-5
965





620957
18719
18736
AAAGAGCACGGCATCTAT
76
5-8-5
966





620958
18905
18922
AAACTGTGAGGCACTGGG
87
5-8-5
967





620959
19088
19105
CATTTGACATTGGCCTGT
72
5-8-5
968





620960
19283
19300
ATTATTATCAGCATCTTC
77
5-8-5
969





620961
19467
19484
TTGCAGAGGCAGGAAGGC
67
5-8-5
970





620962
19647
19664
AGCAGCCTGGTTTAGAGG
31
5-8-5
971





620963
19827
19844
TCCACATCTTCCAGCCTC
74
5-8-5
972





620964
20007
20024
ATACAGACTCAGTCTCCT
79
5-8-5
973
















TABLE 23







Inhibition of Tau mRNA by 5-10-5 and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1


ISIS
Start
Stop

%

SEQ


NO
Site
Site
Sequence
inhibition
Motif
ID NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
78
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
93
5-8-5
665



98928
98945





621042
35901
35918
AGTCGACCGCACTCCTGC
42
5-8-5
974





621043
36106
36123
GCCCTGAGGGTCCACAGG
20
5-8-5
975





621044
36286
36303
AGGGCAGTGTCCTACCTC
50
5-8-5
976





621045
36466
36483
GTCCTCCCTTCCCCACAA
29
5-8-5
977





621046
36653
36670
CTGAATTCCTATCATGCG
51
5-8-5
978





621047
36833
36850
GAGAAAGAAGAGTGTGGT
23
5-8-5
979





621048
37024
37041
CTTAGGACAGATTCCTAG
29
5-8-5
980





621049
37204
37221
GTCAGAAGTGTTTTCCCA
80
5-8-5
981





621050
37413
37430
TCCAATTTTAAACTTAAA
28
5-8-5
982





621051
37750
37767
CTACTGTTTAAAAAGGCT
66
5-8-5
983





621052
38013
38030
GTAAACACCATCTCTAAA
19
5-8-5
984





621053
38193
38210
CTCTGATACTATTATAAG
31
5-8-5
985





621054
38374
38391
CTGAGCTATTTGAGAATT
21
5-8-5
986





621055
38557
38574
TCTGCATATATAATTATA
57
5-8-5
987





621056
38737
38754
CACATTGTTTAGATTTTC
79
5-8-5
988





621057
38922
38939
TTAGCACACCTGAAACGC
51
5-8-5
989





621058
39102
39119
GGCAAAGAAGACAGGAGA
68
5-8-5
990





621059
39541
39558
TGCTGAGGATGCTTTTTT
72
5-8-5
991





621060
39721
39738
GCTGGAAGATGAGGTGGT
47
5-8-5
992





621061
39901
39918
TGGGTGTTGGAGAAAACT
24
5-8-5
993





621062
40100
40117
GCTTTAAAAGCTCCTCAG
65
5-8-5
994





621063
40347
40364
CGAGCACTTGTAGTTCCA
35
5-8-5
995





621064
40528
40545
GCAGTGCTTTAAAAATAT
22
5-8-5
996





621065
40709
40726
GAAATTTCATGAAATATG
37
5-8-5
997





621066
40889
40906
TTACTTGCAATTGAAAGA
6
5-8-5
998





621067
41069
41086
GGAAAGACTACTCAGAGC
57
5-8-5
999





621068
41249
41266
GATGAAAGAGAATAACAA
20
5-8-5
1000





621069
41429
41446
ACCCATTATCTGCTCCCC
66
5-8-5
1001





621070
41611
41628
TTTTCAGTAACAACATAA
51
5-8-5
1002





621071
41944
41961
CCTTTAGCTTTCCTTTTC
47
5-8-5
1003





621072
42124
42141
CAAATTCTGTTTCTGTAA
47
5-8-5
1004





621073
42304
42321
GCAAAAATAAGTGAACTG
38
5-8-5
1005





621074
42492
42509
TTGCAGTGACTTCTTGGG
71
5-8-5
1006





621075
42672
42689
AAACCCCTTCAACATCAG
45
5-8-5
1007





621076
42853
42870
ACAAGAGAAACATTTTAC
53
5-8-5
1008





621077
43033
43050
CACTTAGTAACCAAGCAA
53
5-8-5
1009





621078
43213
43230
CATAGATGATATATTTTG
78
5-8-5
1010





621079
43393
43410
AAATCTTGAACTCCTGAA
58
5-8-5
1011





621080
43620
43637
GGAGTTTTTGTGTTTCTT
77
5-8-5
1012





621081
43804
43821
AAATTCTTAATGGTTCAG
75
5-8-5
1013





621082
44051
44068
AGATAGATCTCGGCTCAC
81
5-8-5
1014





621083
44231
44248
AACCTTTAATAAACTTTT
43
5-8-5
1015





621084
44617
44634
GTCCAAGAGGTTTTTTTT
41
5-8-5
1016





621085
44809
44826
GCAGTCACTGCATTCCAG
27
5-8-5
1017





621086
45050
45067
CAAAAACAGGGCTAGGCA
21
5-8-5
1018





621087
45230
45247
TTCCCTGAACAAATGGCA
59
5-8-5
1019





621088
45412
45429
CTCAAATGTAACATTTTA
84
5-8-5
1020





621089
45592
45609
TACACCTGGCCCATGACC
41
5-8-5
1021





621090
45772
45789
AAGTTCTGGCTCAAGCAA
21
5-8-5
1022





621091
45955
45972
ACAACTCTCTGGAAAAAA
30
5-8-5
1023





621092
46135
46152
AGTCCACGCCTGCATCTG
63
5-8-5
1024





621093
46315
46332
CAAGGCAACAGAGAGGCA
42
5-8-5
1025





621094
46495
46512
AACATGCATATAATTACC
40
5-8-5
1026





621095
46675
46692
TTGGAGGGACAATTCTCA
46
5-8-5
1027





621096
46855
46872
CGAAGAGGCCAGGACTGC
34
5-8-5
1028





621097
47036
47053
TTTGGCTCTGGTGATGGT
45
5-8-5
1029





621098
47216
47233
ACCAGGCAAAGGGACACC
68
5-8-5
1030





621099
47396
47413
TGCCAGAGACAGAGGTTG
68
5-8-5
1031





621100
47576
47593
CACACGCATGGCTTCATG
55
5-8-5
1032





621101
47756
47773
GAGGAAGGCATGAACTAA
60
5-8-5
1033





621102
47936
47953
TCCCATGCCCACGCATGT
26
5-8-5
1034





621103
48116
48133
ATTATTAACGAACAAAAA
2
5-8-5
1035





621104
48302
48319
ATGTCCAGATGTGGATCG
52
5-8-5
1036





621105
48482
48499
ATCAGACAGAAGAGCCAT
55
5-8-5
1037





621106
48678
48695
GCACAGTGCAACAGTGGG
78
5-8-5
1038





621107
49171
49188
GGCTTTCCCTTCCCTTCT
33
5-8-5
1039





621108
49361
49378
AGCTGGGAAAGTGGCAGG
23
5-8-5
1040





621109
49561
49578
ATGACAACTTGATTTGGG
65
5-8-5
1041





621110
49741
49758
GACCGCAACCTTGCCAAA
43
5-8-5
1042





621111
50111
50128
CTTTCAGAGACAGGCTCG
41
5-8-5
1043





621112
50298
50315
GGGCTCACCCCTGTAGTT
9
5-8-5
1044





621113
50766
50783
CTCTTAAGGCCGAGTGCA
39
5-8-5
1045





621114
50970
50987
TGCTAGGCAAAAAAACAA
35
5-8-5
1046





621115
51150
51167
TAATTAGAAACCTCCTCG
10
5-8-5
1047





621116
51330
51347
CAGGTCATATATGAAATC
33
5-8-5
1048





621117
51521
51538
TGTGCTTCCGAAAGTAGT
63
5-8-5
1049





621118
51702
51719
GCATCAAATCCATGCATT
38
5-8-5
1050
















TABLE 24







Inhibition of tau mRNA by 5-10-5 and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1


ISIS
Start
Stop

%

SEQ


NO
Site
Site
Sequence
inhibition
Motif
ID NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
71
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
84
5-8-5
665



98928
98945





621119
51894
51911
ACTCTGAAGCACAGACAG
21
5-8-5
1051





621120
52081
52098
CTTACCTGGGCTGGATGG
5
5-8-5
1052





621121
52261
52278
TTCTGTCTATAGCTAGAA
32
5-8-5
1053





621122
52441
52458
AGATGGCTTCCTATTGTT
32
5-8-5
1054





621123
52621
52638
TGGTTTGGTCAGGCCTCA
51
5-8-5
1055





621124
52803
52820
ATTGTAACTCAAAGTGGG
50
5-8-5
1056





621125
53004
53021
AAACTCTACACCCCTGGG
17
5-8-5
1057





621126
53264
53281
CATACCAGGAAGGAAGGA
17
5-8-5
1058





621127
53444
53461
TGGACATATCAGAATTTG
64
5-8-5
1059





621128
53624
53641
CCCTTATTAGTGTCTACA
68
5-8-5
1060





621129
53805
53822
ACACTCTAGAGAGGTCCA
68
5-8-5
1061





621130
53985
54002
GACAGTACCCACGACACG
32
5-8-5
1062





621131
54165
54182
CCCCATTCTGGATCCTGG
40
5-8-5
1063





621132
54348
54365
ATTGTCTGTAAAATGTGG
57
5-8-5
1064





621133
54528
54545
ATTCTGTCTGACAGAGAC
40
5-8-5
1065





621134
54711
54728
CGATGGTGCACATCTATA
45
5-8-5
1066





621135
54891
54908
CAGTGTCCGCTGAACACA
37
5-8-5
1067





621136
55073
55090
AGGAGGATTAGGAAGAAA
14
5-8-5
1068





621137
55261
55278
CAAGGAAGGCGATCTGGG
17
5-8-5
1069





621138
55623
55640
GGTGGCACTTGAACAAGC
61
5-8-5
1070





621139
55803
55820
GGTGGAAAGGGAACCCGG
43
5-8-5
1071





621140
55983
56000
CCCCACGGGTACACAGAG
20
5-8-5
1072





621141
56163
56180
CGCTGCGAACGATGCACT
63
5-8-5
1073





621142
56343
56360
GAATGGTCCTTCTTACAG
13
5-8-5
1074





621143
56526
56543
CTGGGAAAACCAAGGCAA
57
5-8-5
1075





621144
56706
56723
CCCAGGCTGAGGAAGGAC
40
5-8-5
1076





621145
56886
56903
GATTGGCTTTTACATCTT
48
5-8-5
1077





621146
57289
57306
CGGTTTGAGTACAGTGGT
50
5-8-5
1078





621147
57470
57487
CTAACATCTTAGGGCACA
73
5-8-5
1079





621148
57650
57667
TTCCTCTGATGTCAGAAT
51
5-8-5
1080





621149
58090
58107
CCCCCTCGGTCGCCCAGG
37
5-8-5
1081





621150
58271
58288
TGTTTTAACTAAAAGCTT
24
5-8-5
1082





621151
58451
58468
GTATGAGGGCATAGATGA
26
5-8-5
1083





621152
58631
58648
ATCACACCACAGAATGTT
29
5-8-5
1084





621153
58812
58829
TACTCTTCTGTGGCAGCT
66
5-8-5
1085





621154
59198
59215
CAACAGCAAGGCCAGGCG
44
5-8-5
1086





621155
59380
59397
TAGATAATTTGAAATTTA
0
5-8-5
1087





621156
59786
59803
ACCTTAATCCCAGTATTT
12
5-8-5
1088





621157
59966
59983
TGCTTATGGTCCAGCTGT
40
5-8-5
1089





621158
60146
60163
GAGCCAGGCTTCAAAACC
26
5-8-5
1090





621159
60326
60343
TCCAGCACATTTAGGCGG
32
5-8-5
1091





621160
60522
60539
ATCTCAATAAAGCTATCG
70
5-8-5
1092





621161
60702
60719
CGCCCGCGGTGACTCAGC
32
5-8-5
1093





621162
60906
60923
GGAGTCAAGAGTCCAGGG
44
5-8-5
1094





621163
61109
61126
AGAAGGAATGATGAGGAA
24
5-8-5
1095





621164
61290
61307
GCAGTACAGTTTGGTAAT
32
5-8-5
1096





621165
61476
61493
TGGCTACTCTCTCAGGAG
9
5-8-5
1097





621166
61656
61673
GACCCTAGGTGGGTAAAG
21
5-8-5
1098





621167
61836
61853
GTCCCCTGAGGTGTTGTG
0
5-8-5
1099





621168
62016
62033
CCCAGACAACCTTCACCT
34
5-8-5
1100





621169
62208
62225
TGGGTTAAGACTCTGTCT
11
5-8-5
1101





621170
62467
62484
TGGAGCCGAGTGCGGTGG
12
5-8-5
1102





621171
62657
62674
TCTCTTCTGGATATTTCG
49
5-8-5
1103





621172
62843
62860
CGATTTAAAATGAATGAT
20
5-8-5
1104





621173
63023
63040
AGAACAAAGATAACAGTT
0
5-8-5
1105





621174
63218
63235
GCTAAATTGAGGCCCGGG
42
5-8-5
1106





621175
63398
63415
CTTTCTCCTTTCCTCAAT
26
5-8-5
1107





621176
63578
63595
TCTAAGCGAGACACACAG
26
5-8-5
1108





621177
63758
63775
TGATTTCTCTGGAAGAAC
27
5-8-5
1109





621178
63938
63955
GCCTGTGTCTTCTAACTC
32
5-8-5
1110





621179
64184
64201
GGCTGAGAAGCTGGGACC
40
5-8-5
1111





621180
64365
64382
TTTTTACTTGAGATGTCA
38
5-8-5
1112





621181
64543
64560
GTAGGTGTCATCATCATC
83
5-8-5
1113





621182
64723
64740
CAACACTGACTGAGCACA
56
5-8-5
1114





621183
64903
64920
GCATTGGCTGGGCTAGGT
73
5-8-5
1115





621184
65092
65109
TATTTACTATGCAAAATA
18
5-8-5
1116





621185
65273
65290
AGCACCACAGAGCAGATG
19
5-8-5
1117





621186
65453
65470
CTCAGTGTGGAGTTCTGC
44
5-8-5
1118





621187
65634
65651
CATTTTTCAACCACTTAA
44
5-8-5
1119





621188
65815
65832
GTAAGGCTTTGTGGGCCA
32
5-8-5
1120





621189
66148
66165
TACTTTGCATTATTTATT
44
5-8-5
1121





621190
66535
66552
TTGGCTTTCATTATAATT
13
5-8-5
1122





621191
66736
66753
GGACGGTTGGGAAATAGG
18
5-8-5
1123





621192
66916
66933
GAGCAACTGTTCATAGGG
49
5-8-5
1124





621193
67096
67113
TCTGCACATCGACACATC
34
5-8-5
1125





621194
67538
67555
AGGCTAGGCCCCATGGCT
21
5-8-5
1126





621195
67718
67735
GCACCCCCATCCTTCAGC
30
5-8-5
1127
















TABLE 25







Inhibition of Tau mRNA by 5-10-5 and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID






ISIS
NO: 1 start
NO: 1 stop

%

SEQ ID


NO
site
site
Sequence
inhibition
Motif
NO:
















613412
73879
73898
GTGATCTTCCATCACTTCGA
87
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
96
5-8-5
665



98928
98945





621350
99702
99719
CCAGGAGATGAAGTAGCA
75
5-8-5
1128





621351
n/a
n/a
ACTCTTGGGAAACAAAGT
31
5-8-5
1129





621352
100065
100082
GGAAGCAGCCAGGGACGG
38
5-8-5
1130





621353
100288
100305
CTGCCTGGCCAATTAAAT
28
5-8-5
1131





621354
100468
100485
CAAACTAATATTAACACT
0
5-8-5
1132





621355
100648
100665
TACTCAATTCCAGGCAAG
71
5-8-5
1133





621356
100836
100853
AATGGAAGTTCTAGTACG
57
5-8-5
1134





621357
101188
101205
CAATCACAGTTCTTTTTC
45
5-8-5
1135





621358
101381
101398
GTCTTAAACATAAACATA
77
5-8-5
1136





621359
101759
101776
TGAGAGGGATGGCCCCCA
67
5-8-5
1137





621360
n/a
n/a
CGCATAACACCACGCCCG
90
5-8-5
1138





621361
102169
102186
GCCAAAATCAGGAATGGG
94
5-8-5
1139





621362
102349
102366
GGCAGTCCCTGGGTTCCG
77
5-8-5
1140





621363
102529
102546
GTTGAACCTGACCAAGGA
89
5-8-5
1141





621364
102709
102726
AGCATGAGTTGTGCCAAG
89
5-8-5
1142





621365
102889
102906
CCCACTCCGCCACCTTGA
67
5-8-5
1143





621366
103091
103108
TACCAGAGCTGGGTGGTG
13
5-8-5
1144





621367
103271
103288
ACATTTGCCTCAGAAATC
5
5-8-5
1145





621368
103593
103610
GATTCAGGCTGGGAGTGG
11
5-8-5
1146





621369
103773
103790
CTCCGAGAGCTGCCACTT
51
5-8-5
1147





621370
103966
103983
TGCAGCAGACTCCTAACG
33
5-8-5
1148





621371
104389
104406
AGGAATCTCACTTTTGTC
25
5-8-5
1149





621372
104569
104586
AGGCTGCCCGTGCCACCA
30
5-8-5
1150





621373
104749
104766
TTAGTGAATGGCCATCCT
33
5-8-5
1151





621374
105023
105040
AAACTGCTTGAATTTGGG
31
5-8-5
1152





621375
105203
105220
TGTGAGTCCCCTGTAATC
18
5-8-5
1153





621376
105383
105400
TAAACAGGGCCTTAATGA
0
5-8-5
1154





621377
105563
105580
TCCTCCCGGCTCTAGAAA
10
5-8-5
1155





621378
105745
105762
GGAGACAGCCAGGCATGG
18
5-8-5
1156





621379
106173
106190
ATAATGTTTTTTATAGAG
0
5-8-5
1157





621380
106365
106382
GACTGGATTTTTGTATTT
30
5-8-5
1158





621381
106545
106562
CGGAGTCTTATTCTGATG
39
5-8-5
1159





621382
106725
106742
CCGCAGCAATGCCCCTGC
65
5-8-5
1160





621383
106905
106922
TCTCGATCCCCTTCAAGA
23
5-8-5
1161





621384
107085
107102
CTGGGTGTCCTTTACCCT
5
5-8-5
1162





621385
107265
107282
CCTGCTCCACGCCTGCCT
82
5-8-5
1163





621386
107445
107462
TCAGGGCCTTTATCCTAA
51
5-8-5
1164





621387
107625
107642
TCGGCTCCACAGTCTTTG
60
5-8-5
1165





621388
107805
107822
CACCACTGGGTTAGGCAG
38
5-8-5
1166





621389
108170
108187
TCACCTTCCCGCCTCCCG
16
5-8-5
1167





621390
108359
108376
TTGAAGAGGGTCCAGAGG
3
5-8-5
1168





621391
108548
108565
TGCCCAGAAGGCAGGTGG
38
5-8-5
1169





621392
108728
108745
GGCCCCCGAAGTCTGTGC
62
5-8-5
1170





621393
108908
108925
CGGTGCAGGACAGAGGTG
57
5-8-5
1171





621394
109135
109152
CGCGCACCACCACCACGC
78
5-8-5
1172





621395
109315
109332
TCAGGCTGGGCCCTAAGC
50
5-8-5
1173





621396
109495
109512
TCACCCTTCCCCAGCTCC
45
5-8-5
1174





621397
109675
109692
TCAGACCCAAGTGATAAG
64
5-8-5
1175





621398
109855
109872
GCAGGGTCTACACATGCG
76
5-8-5
1176





621399
110045
110062
CTGAGATGTTCTCTTCCT
73
5-8-5
1177





621400
110225
110242
AGCTGCGGTACAGGACAG
68
5-8-5
1178





621401
110405
110422
CCAGTGAGGGCCCCTCTG
20
5-8-5
1179





621402
110585
110602
GCCCCCAGAGGTGCATGG
58
5-8-5
1180





621403
110769
110786
GGAGCAGCAGACACATGC
79
5-8-5
1181





621404
110949
110966
GGAAGCTACTTCCCATGC
43
5-8-5
1182





621406
111495
111512
GGAGGAGGCCTGACACCC
58
5-8-5
1183





621407
111675
111692
TTTCCCTTTGGTGTTAGC
91
5-8-5
1184





621408
111856
111873
CCCCAAAGCAATCTATGT
47
5-8-5
1185





621409
112036
112053
TCTGGAGGGAACACTGCC
60
5-8-5
1186





621410
112216
112233
GGTTGAGGTTGAGGGTAG
37
5-8-5
1187





621411
112396
112413
ACTCCCGCAGGCCAAACA
36
5-8-5
1188





621412
112603
112620
GAGTGCCAACAGGCCCAG
75
5-8-5
1189





621413
112784
112801
TTCTAAGTACAATTTGGG
67
5-8-5
1190





621414
112984
113001
TTACTGGTTGTGTTTTCT
94
5-8-5
1191





621415
113164
113181
GAGTCTCAGTCTCACTGT
76
5-8-5
1192





621416
113347
113364
CATTCCTCCTGCTGCTGT
83
5-8-5
1193





621417
113540
113557
GCTCTGAAGAGCTCCACG
83
5-8-5
1194





621418
113720
113737
CTCTCTTCAGGGCCACCG
82
5-8-5
1195





621419
113900
113917
CTCTCTCGCCCTGCATGG
48
5-8-5
1196





621420
114080
114097
CTGGACATCCTCCGAGAA
27
5-8-5
1197





621421
114260
114277
CACCCAGGCTGCGGCCCA
64
5-8-5
1198





621422
114440
114457
CTGTGGTGCAAGCCTGTG
42
5-8-5
1199





621423
114639
114656
AGACGAGAGTGCGCCCAC
78
5-8-5
1200





621424
115155
115172
CCACATAAATGTTCTACA
94
5-8-5
1201





621425
115335
115352
GGTACAGGAAAAGATGCC
88
5-8-5
1202





621426
115515
115532
ATCAGCTTAGGAACTGAC
85
5-8-5
1203
















TABLE 26







Inhibition of tau mRNA by 5-10-5 and


5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID






ISIS
NO: 1 start
NO: 1 stop

%

SEQ ID


NO
site
site
Sequence
inhibition
Motif
NO:
















613412
73879
73898
GTGATCTTCCATCACTTCGA
86
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
97
5-8-5
665



98928
98945





621427
115695
115712
GTGCCTCACAGTTGGCTC
39
5-8-5
1204





621428
115896
115913
GAGAGGCTGTGGTGAGGT
25
5-8-5
1205





621429
116077
116094
GAAATCAGAATCCTGAAA
66
5-8-5
1206





621430
116259
116276
ATGTGGCTTTTTCTTGTT
64
5-8-5
1207





621431
116595
116612
GTTTTTTTCTGGCCGGGC
90
5-8-5
1208





621432
116955
116972
TTTTCAGTGGATAAGGCT
78
5-8-5
1209





621433
117135
117152
ACATAAACTCCTTCTTTG
53
5-8-5
1210





621434
117315
117332
TGGTGAATGTTGAAATTC
78
5-8-5
1211





621435
117495
117512
AGGACAAGGAGGCCATGT
56
5-8-5
1212





621436
117787
117804
TCAAATGACAGATTCTCA
78
5-8-5
1213





621437
117967
117984
CATCCCTACTTTCTCCCT
24
5-8-5
1214





621438
118420
118437
TAGAATCTTGCCTTGTCG
34
5-8-5
1215





621439
118600
118617
GATACAGACATACATTGT
68
5-8-5
1216





621440
118831
118848
AATTCTTTGTGATGATGG
82
5-8-5
1217





621441
119044
119061
GCACATATTTACATTTTA
94
5-8-5
1218





621442
119224
119241
GGTGAGAGAGCCAGCCTC
59
5-8-5
1219





621443
119404
119421
CAAACAGCCTCCCATGAA
38
5-8-5
1220





621444
119584
119601
ATATCCTAAGCATTGTCT
71
5-8-5
1221





621445
119880
119897
TACAGTGGCTCCTGTAAT
18
5-8-5
1222





621446
120060
120077
GCTCATCAAAGCAAAAAC
84
5-8-5
1223





621447
120248
120265
CTGGGCTGTCGGATCTGG
69
5-8-5
1224





621448
120439
120456
AAGCCACCATGCCTGTAA
89
5-8-5
1225





621449
120660
120677
ACACCATCACGGCTCAGT
56
5-8-5
1226





621450
120840
120857
AGGGAGTTGGAAAAACTG
46
5-8-5
1227





621451
121209
121226
CAGGTTTGAGAAGCCCTG
0
5-8-5
1228





621452
121389
121406
AGACCCACCGGCACATTC
56
5-8-5
1229





621453
121569
121586
ATTTCCAGCGGGCTTTAC
62
5-8-5
1230





621454
121761
121778
GCTTGCTCGCAAGGACGC
93
5-8-5
1231





621455
121941
121958
CCACAGCACGGCGCATGG
65
5-8-5
1232





621456
122121
122138
ACACCCCCTCCTAGAATA
0
5-8-5
1233





621457
122301
122318
ACCACCTTCAGCCCAACT
22
5-8-5
1234





621458
122481
122498
TAAGCTGGAGGCTTAGGA
40
5-8-5
1235





621459
122678
122695
GAACCTCCCGCCTTAGTC
19
5-8-5
1236





621460
122913
122930
TATATGATTGTTTTTTGA
0
5-8-5
1237





621461
123093
123110
AGGAGCCTCGGGTGCCCA
30
5-8-5
1238





621462
123273
123290
TCAGGCCAGGCATTTTCT
58
5-8-5
1239





621463
123453
123470
CACTTAGCAGACACTGGT
77
5-8-5
1240





621464
123633
123650
TCCTCTGGCCGAGCTCAC
58
5-8-5
1241





621465
123824
123841
ACAGCGCGGGACACACGG
77
5-8-5
1242





621466
124004
124021
GCATCTCTTCTCACCAGG
13
5-8-5
1243





621467
124184
124201
GGATACCTGGAGGGCAGG
13
5-8-5
1244





621468
124379
124396
TGAGGCCAGCACTGAGGG
29
5-8-5
1245





621469
124559
124576
ACTGGAACCATCCCGAAT
37
5-8-5
1246





621470
124752
124769
GCAGTGGCCTTGTGTGGG
19
5-8-5
1247





621471
124932
124949
ACCCTGAGCTGCCAGCTG
53
5-8-5
1248





621472
125112
125129
CTGCACACTCAGTGTCCT
78
5-8-5
1249





621473
125292
125309
CTGGAAAGGCAGGAGTGG
33
5-8-5
1250





621474
125472
125489
AAGAGCCTCTGGGAAAAA
50
5-8-5
1251





621475
125652
125669
GGTGTAACTCAATGAGAA
41
5-8-5
1252





621476
125832
125849
GGCTACCTGGTTTATGAT
32
5-8-5
1253





621477
126012
126029
GGAGCGAGCTGGAGCCAC
75
5-8-5
1254





621478
126332
126349
GCTCACTCCGCTCACTGC
74
5-8-5
1255





621479
126527
126544
CTAGGTCTTATTCTATTT
38
5-8-5
1256





621480
127208
127225
AGGTTTTTGTTGTGTGTT
54
5-8-5
1257





621481
127396
127413
CCTCTTCACCTTAAAAAA
24
5-8-5
1258





621482
127591
127608
AAACAAAGTCACAGAGGG
67
5-8-5
1259





621483
127934
127951
AGGATCACTTTCTTTTCT
31
5-8-5
1260





621484
128271
128288
TTGCTGAGTCTCACTCTG
87
5-8-5
1261





621485
128451
128468
CAGAATCTATAGCTGTGT
51
5-8-5
1262





621486
128631
128648
ATACTTTCCACAGGGAGA
45
5-8-5
1263





621487
128811
128828
GAAGAAGGGTCCCTCTCT
38
5-8-5
1264





621488
128993
129010
ATGAGAGTACAACTCCAT
44
5-8-5
1265





621489
129269
129286
ACCCTTTCAGGCCGGGCG
44
5-8-5
1266





621490
129678
129695
TAAGTAAAGTCTGTTTTT
47
5-8-5
1267





621491
129861
129878
TAGAATGGTGTTTGGATA
42
5-8-5
1268





621492
130040
130057
GCAGTCTACAGGGCAAAG
79
5-8-5
1269





621493
130234
130251
ACCTTTTTATTTCCTCCG
14
5-8-5
1270





621494
130414
130431
AGCTCCAGGTGATTGAGA
68
5-8-5
1271





621495
130691
130708
GTCGCCATGTAAGAAATG
46
5-8-5
1272





621496
130902
130919
AGGGAGACTGATATGGTT
31
5-8-5
1273





621497
131113
131130
ATATTGCTTGACCTCAGG
18
5-8-5
1274





621498
131543
131560
AGTGGTTCTCGCTTTTTT
75
5-8-5
1275





621499
131725
131742
CAAGACAGGCAGGCAGAG
19
5-8-5
1276





621500
131905
131922
GTGCTTGGCTGCGCTTCT
45
5-8-5
1277





621501
132085
132102
CAGACCTCTATCTTTTAG
24
5-8-5
1278





621502
132266
132283
AGGAGGGTCTTTCCCGTG
57
5-8-5
1279





621503
132446
132463
AACTGGGCCACCATGAGA
30
5-8-5
1280
















TABLE 27







Inhibition of Tau mRNA by 5-8-5


MOE gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID






ISIS
NO: 1 start
NO: 1 stop

%

SEQ ID


NO
site
site
Sequence
inhibition
Motif
NO:
















621519
5901
5918
CCTGCCGCTCGGCCGTCC
19
5-8-5
1281





621520
5904
5921
CGCCCTGCCGCTCGGCCG
0
5-8-5
1282





621521
5919
5936
GTGGGCGCGCGCGAGCGC
7
5-8-5
1283





621522
5922
5939
CTAGTGGGCGCGCGCGAG
6
5-8-5
1284





621523
5925
5942
CCACTAGTGGGCGCGCGC
0
5-8-5
1285





621524
5928
5945
CGGCCACTAGTGGGCGCG
18
5-8-5
1286





621525
5931
5948
CTCCGGCCACTAGTGGGC
39
5-8-5
1287





621526
5934
5951
CTCCTCCGGCCACTAGTG
37
5-8-5
1288





621527
5937
5954
CTTCTCCTCCGGCCACTA
15
5-8-5
1289





621528
5940
5957
AGCCTTCTCCTCCGGCCA
0
5-8-5
1290





621529
5943
5960
GGGAGCCTTCTCCTCCGG
0
5-8-5
1291





621530
5946
5963
CGCGGGAGCCTTCTCCTC
28
5-8-5
1292





621531
5949
5966
CTCCGCGGGAGCCTTCTC
0
5-8-5
1293





621532
5952
5969
GGCCTCCGCGGGAGCCTT
0
5-8-5
1294





621533
5955
5972
CGCGGCCTCCGCGGGAGC
0
5-8-5
1295





621534
5958
5975
CAGCGCGGCCTCCGCGGG
0
5-8-5
1296





621535
5961
5978
GGGCAGCGCGGCCTCCGC
31
5-8-5
1297





621536
5964
5981
GGCGGGCAGCGCGGCCTC
17
5-8-5
1298





621537
5987
6004
ACGCGAGCCTCCCCAGGG
10
5-8-5
1299





621538
5990
6007
GGAACGCGAGCCTCCCCA
33
5-8-5
1300





621539
5993
6010
GCGGGAACGCGAGCCTCC
0
5-8-5
1301





621540
5996
6013
GCAGCGGGAACGCGAGCC
0
5-8-5
1302





621541
5999
6016
CGAGCAGCGGGAACGCGA
0
5-8-5
1303





621542
6002
6019
GCGCGAGCAGCGGGAACG
9
5-8-5
1304





621543
6005
6022
CAGGCGCGAGCAGCGGGA
22
5-8-5
1305





621544
6008
6025
GCGCAGGCGCGAGCAGCG
1
5-8-5
1306





621545
6011
6028
GCGGCGCAGGCGCGAGCA
11
5-8-5
1307





621546
6014
6031
CGGGCGGCGCAGGCGCGA
47
5-8-5
1308





621547
6017
6034
CGGCGGGCGGCGCAGGCG
15
5-8-5
1309





621548
6020
6037
GGCCGGCGGGCGGCGCAG
0
5-8-5
1310





621549
6023
6040
TGAGGCCGGCGGGCGGCG
5
5-8-5
1311





621550
6026
6043
TCCTGAGGCCGGCGGGCG
20
5-8-5
1312





621551
6029
6046
CGTTCCTGAGGCCGGCGG
13
5-8-5
1313





621552
6045
6062
GCCGGCGAAGAGGGCGCG
0
5-8-5
1314





621553
6048
6065
CGCGCCGGCGAAGAGGGC
0
5-8-5
1315





621554
6051
6068
GCGCGCGCCGGCGAAGAG
0
5-8-5
1316





621555
6054
6071
AGGGCGCGCGCCGGCGAA
32
5-8-5
1317





621556
6057
6074
GCGAGGGCGCGCGCCGGC
15
5-8-5
1318





621557
6060
6077
ACTGCGAGGGCGCGCGCC
30
5-8-5
1319





621558
6063
6080
GTGACTGCGAGGGCGCGC
38
5-8-5
1320





621559
6066
6083
GCGGTGACTGCGAGGGCG
30
5-8-5
1321





621560
6069
6086
GTGGCGGTGACTGCGAGG
37
5-8-5
1322





621561
6072
6089
TGGGTGGCGGTGACTGCG
48
5-8-5
1323





621562
6075
6092
TGGTGGGTGGCGGTGACT
34
5-8-5
1324





621563
6078
6095
AGCTGGTGGGTGGCGGTG
54
5-8-5
1325





621564
6081
6098
CGGAGCTGGTGGGTGGCG
36
5-8-5
1326





621565
6084
6101
TGCCGGAGCTGGTGGGTG
52
5-8-5
1327





621566
6087
6104
TGGTGCCGGAGCTGGTGG
64
5-8-5
1328





621567
6090
6107
TGTTGGTGCCGGAGCTGG
74
5-8-5
1329





621568
6093
6110
TGCTGTTGGTGCCGGAGC
50
5-8-5
1330





621569
6096
6113
CGCTGCTGTTGGTGCCGG
47
5-8-5
1331





621570
6111
6128
GGGCGGTGGCAGCGGCGC
86
5-8-5
1332





621571
6114
6131
GGTGGGCGGTGGCAGCGG
61
5-8-5
1333





621572
6117
6134
GAAGGTGGGCGGTGGCAG
19
5-8-5
1334





621573
6120
6137
GCAGAAGGTGGGCGGTGG
22
5-8-5
1335





621574
6123
6140
GCGGCAGAAGGTGGGCGG
18
5-8-5
1336





621575
6126
6143
GCGGCGGCAGAAGGTGGG
62
5-8-5
1337





621576
6129
6146
GTGGCGGCGGCAGAAGGT
79
5-8-5
1338





621577
6132
6149
GTGGTGGCGGCGGCAGAA
70
5-8-5
1339





621578
6135
6152
GCTGTGGTGGCGGCGGCA
78
5-8-5
1340





621579
6138
6155
GTGGCTGTGGTGGCGGCG
78
5-8-5
1341





621580
6141
6158
AAGGTGGCTGTGGTGGCG
72
5-8-5
1342





613412
73879
73898
GTGATCTTCCATCACTTCGA
78
5-8-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
94
5-8-5
665



98928
98945





621504
132626
132643
AAACCCTTCTCACAAAAC
17
5-8-5
1343





621505
132812
132829
CCTCCTGGTCCCTCCTCG
12
5-8-5
1344





621506
132992
133009
CCTATCCAGACCCACTCA
10
5-8-5
1345





621507
133179
133196
CACAACCACCCCGGGACG
8
5-8-5
1346





621508
133359
133376
GGACCAGGATGGTGTTTT
44
5-8-5
1347





621509
133539
133556
GGCTTTGATAAAAATATT
8
5-8-5
1348





621510
133788
133805
CGCCTCCGGGATCAAGCA
47
5-8-5
1349





621511
133968
133985
GGTTCGCATTTAAGCTAG
28
5-8-5
1350





621512
134148
134165
ACGGTCATTCTCAGCCCT
59
5-8-5
1351





621513
134333
134350
TAACCTCCAGAGCAACTG
26
5-8-5
1352





621514
134513
134530
GGCAGGTGGGCCACAAAA
17
5-8-5
1353





621515
134696
134713
TCAAAAGGCATGCACATT
44
5-8-5
1354





621516
134876
134893
TAGTATTCCGTCGCCACG
40
5-8-5
1355





621517
135057
135074
GAGCTGTTGTTTTTATTG
7
5-8-5
1356





621518
135369
135386
GCCAGGGACTGTTTTTTG
62
5-8-5
1357
















TABLE 28







Inhibition of tau mRNA by 5-8-5 MOE gapmers targeting SEQ ID NOs: 1 and 2
















SEQ ID
SEQ ID









NO: 1
NO: 1


SEQ ID
SEQ ID

SEQ



start
stop

%
NO: 2
NO: 2

ID


ISIS NO
site
site
Sequence
inhibition
start site
stop site
Motif
NO:


















621596
n/a
n/a
TCACCTGATAGTCGACAG
70
292
309
5-8-5
1358





621597
n/a
n/a
AGTTCACCTGATAGTCGA
61
295
312
5-8-5
1359





621598
n/a
n/a
CAAAGTTCACCTGATAGT
44
298
315
5-8-5
1360





621599
n/a
n/a
GTTCAAAGTTCACCTGAT
72
301
318
5-8-5
1361





621629
n/a
n/a
GATTCTTTCAGGCCAGCG
42
442
459
5-8-5
1362





621630
n/a
n/a
GGAGATTCTTTCAGGCCA
0
445
462
5-8-5
1363





621649
n/a
n/a
ATCTTCCGCTGTTGGAGT
43
527
544
5-8-5
1364





621650
n/a
n/a
CACATCTTCCGCTGTTGG
3
530
547
5-8-5
1365





621651
n/a
n/a
TGTCACATCTTCCGCTGT
0
533
550
5-8-5
1366





621652
n/a
n/a
TGCTGTCACATCTTCCGC
30
536
553
5-8-5
1367





621653
n/a
n/a
AGGGTGCTGTCACATCTT
61
540
557
5-8-5
1368





621581
6144
6161
GAGAAGGTGGCTGTGGTG
14
244
261
5-8-5
1369





621582
6147
6164
GAGGAGAAGGTGGCTGTG
53
247
264
5-8-5
1370





621583
6153
6170
GCGGAGGAGGAGAAGGTG
25
253
270
5-8-5
1371





621584
6156
6173
ACAGCGGAGGAGGAGAAG
2
256
273
5-8-5
1372





621585
6159
6176
AGGACAGCGGAGGAGGAG
38
259
276
5-8-5
1373





621586
6162
6179
GAGAGGACAGCGGAGGAG
53
262
279
5-8-5
1374





621587
6165
6182
CGGGAGAGGACAGCGGAG
43
265
282
5-8-5
1375





621588
6168
6185
GGACGGGAGAGGACAGCG
69
268
285
5-8-5
1376





621589
6171
6188
CGAGGACGGGAGAGGACA
0
271
288
5-8-5
1377





621590
6174
6191
AGGCGAGGACGGGAGAGG
13
274
291
5-8-5
1378





621591
6177
6194
CAGAGGCGAGGACGGGAG
10
277
294
5-8-5
1379





621592
6180
6197
CGACAGAGGCGAGGACGG
57
280
297
5-8-5
1380





621593
6183
6200
AGTCGACAGAGGCGAGGA
61
283
300
5-8-5
1381





621594
6186
6203
GATAGTCGACAGAGGCGA
65
286
303
5-8-5
1382





621595
6189
6206
CCTGATAGTCGACAGAGG
51
289
306
5-8-5
1383





621600
73838
73855
CTGGTTCAAAGTTCACCT
52
304
321
5-8-5
1384





621601
73841
73858
ATCCTGGTTCAAAGTTCA
62
307
324
5-8-5
1385





621602
73844
73861
GCCATCCTGGTTCAAAGT
42
310
327
5-8-5
1386





621603
73847
73864
TCAGCCATCCTGGTTCAA
38
313
330
5-8-5
1387





621604
73850
73867
GGCTCAGCCATCCTGGTT
65
316
333
5-8-5
1388





621605
73867
73884
CTTCGAACTCCTGGCGGG
20
333
350
5-8-5
1389





621606
73870
73887
TCACTTCGAACTCCTGGC
51
336
353
5-8-5
1390





621607
73873
73890
CCATCACTTCGAACTCCT
68
339
356
5-8-5
1391





621608
73876
73893
CTTCCATCACTTCGAACT
28
342
359
5-8-5
1392





613412
73879
73898
GTGATCTTCCATCACTTCGA
75
345
364
5-8-5
25





621609
73879
73896
GATCTTCCATCACTTCGA
68
345
362
5-8-5
1393





621610
73882
73899
CGTGATCTTCCATCACTT
13
348
365
5-8-5
1394





621611
73906
73923
TGTCCCCCAACCCGTACG
46
372
389
5-8-5
1395





621612
73909
73926
TCCTGTCCCCCAACCCGT
54
375
392
5-8-5
1396





621613
73912
73929
CTTTCCTGTCCCCCAACC
43
378
395
5-8-5
1397





621614
73915
73932
GATCTTTCCTGTCCCCCA
71
381
398
5-8-5
1398





621615
73918
73935
CCTGATCTTTCCTGTCCC
71
384
401
5-8-5
1399





621616
73921
73938
CCCCCTGATCTTTCCTGT
54
387
404
5-8-5
1400





621617
73924
73941
AGCCCCCCTGATCTTTCC
40
390
407
5-8-5
1401





621618
73927
73944
TGTAGCCCCCCTGATCTT
35
393
410
5-8-5
1402





621619
73930
73947
TGGTGTAGCCCCCCTGAT
31
396
413
5-8-5
1403





621620
73933
73950
GCATGGTGTAGCCCCCCT
71
399
416
5-8-5
1404





621621
73936
73953
GGTGCATGGTGTAGCCCC
62
402
419
5-8-5
1405





621622
73939
73956
CTTGGTGCATGGTGTAGC
54
405
422
5-8-5
1406





621623
73942
73959
GGTCTTGGTGCATGGTGT
65
408
425
5-8-5
1407





621624
73945
73962
CTTGGTCTTGGTGCATGG
63
411
428
5-8-5
1408





621625
73948
73965
CCTCTTGGTCTTGGTGCA
49
414
431
5-8-5
1409





621626
73951
73968
CACCCTCTTGGTCTTGGT
65
417
434
5-8-5
1410





621627
73956
73973
CGTGTCACCCTCTTGGTC
49
422
439
5-8-5
1411





621628
73959
73976
GTCCGTGTCACCCTCTTG
70
425
442
5-8-5
1412





621631
83395
83412
AGATCCGTCCTCAGTGGG
48
473
490
5-8-5
1413





621632
83398
83415
CTCAGATCCGTCCTCAGT
38
476
493
5-8-5
1414





621633
83401
83418
TTCCTCAGATCCGTCCTC
11
479
496
5-8-5
1415





621634
83404
83421
CGGTTCCTCAGATCCGTC
57
482
499
5-8-5
1416





621635
83407
83424
GCCCGGTTCCTCAGATCC
38
485
502
5-8-5
1417





621636
83410
83427
AGAGCCCGGTTCCTCAGA
63
488
505
5-8-5
1418





621637
83413
83430
TTCAGAGCCCGGTTCCTC
50
491
508
5-8-5
1419





621638
83416
83433
GGTTTCAGAGCCCGGTTC
48
494
511
5-8-5
1420





621639
83419
83436
AGAGGTTTCAGAGCCCGG
41
497
514
5-8-5
1421





621640
83422
83439
ATCAGAGGTTTCAGAGCC
40
500
517
5-8-5
1422





621641
83425
83442
AGCATCAGAGGTTTCAGA
23
503
520
5-8-5
1423





621642
83428
83445
CTTAGCATCAGAGGTTTC
50
506
523
5-8-5
1424





621643
83431
83448
GCTCTTAGCATCAGAGGT
69
509
526
5-8-5
1425





621644
83434
83451
AGTGCTCTTAGCATCAGA
80
512
529
5-8-5
1426





621645
83437
83454
TGGAGTGCTCTTAGCATC
50
515
532
5-8-5
1427





621646
83440
83457
TGTTGGAGTGCTCTTAGC
59
518
535
5-8-5
1428





621647
83443
83460
CGCTGTTGGAGTGCTCTT
70
521
538
5-8-5
1429





621648
83446
83463
TTCCGCTGTTGGAGTGCT
52
524
541
5-8-5
1430





621654
85904
85921
CTAAGGGTGCTGTCACAT
64
543
560
5-8-5
1431





621655
85907
85924
CCACTAAGGGTGCTGTCA
44
546
563
5-8-5
1432





621656
85910
85927
CATCCACTAAGGGTGCTG
55
549
566
5-8-5
1433





621657
85913
85930
CCTCATCCACTAAGGGTG
41
552
569
5-8-5
1434





620887
98891
98908
GTTTTCAAACACACCTTC
81
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a
















TABLE 29







Inhibition of Tau mRNA by 5-8-5 MOE gapmers targeting SEQ ID NOs: 1 and 2
















SEQ ID
SEQ ID


SEQ ID
SEQ ID

SEQ



NO: 1
NO: 1

%
NO: 2
NO: 2

ID


ISIS NO
start site
stop site
Sequence
inhibition
start site
stop site
Motif
NO


















621672
n/a
n/a
GCTGTGGTTCCTTCTGGG
51
613
630
5-8-5
1435





621676
n/a
n/a
TCAGGCTCTTGGGTCACG
0
685
702
5-8-5
1436





621677
n/a
n/a
CTTTCAGGCTCTTGGGTC
0
688
705
5-8-5
1437





621678
n/a
n/a
CCACTTTCAGGCTCTTGG
51
691
708
5-8-5
1438





613412
73879
73898
GTGATCTTCCATCACTTCGA
79
345
364
5-10-5
25





621658
85916
85933
CTCCCTCATCCACTAAGG
27
555
572
5-8-5
1439





621659
85919
85936
GAGCTCCCTCATCCACTA
35
558
575
5-8-5
1440





621660
85922
85939
CGGGAGCTCCCTCATCCA
25
561
578
5-8-5
1441





621661
85925
85942
TGCCGGGAGCTCCCTCAT
40
564
581
5-8-5
1442





621662
85928
85945
GCTTGCCGGGAGCTCCCT
47
567
584
5-8-5
1443





621663
85931
85948
CCTGCTTGCCGGGAGCTC
46
570
587
5-8-5
1444





621664
85934
85951
CAGCCTGCTTGCCGGGAG
45
573
590
5-8-5
1445





621665
85937
85954
CGGCAGCCTGCTTGCCGG
1
576
593
5-8-5
1446





621666
85940
85957
GCGCGGCAGCCTGCTTGC
31
579
596
5-8-5
1447





621667
85943
85960
GCTGCGCGGCAGCCTGCT
50
582
599
5-8-5
1448





621668
85962
85979
TCTGGGATCTCCGTGTGG
39
601
618
5-8-5
1449





621669
85965
85982
CCTTCTGGGATCTCCGTG
56
604
621
5-8-5
1450





621670
85968
85985
GTTCCTTCTGGGATCTCC
79
607
624
5-8-5
1451





621671
85971
85988
GTGGTTCCTTCTGGGATC
49
610
627
5-8-5
1452





621673
89894
89911
CAATGCCTGCTTCTTCAG
31
630
647
5-8-5
1453





621674
89899
89916
GTCTCCAATGCCTGCTTC
43
635
652
5-8-5
1454





621675
89902
89919
GGTGTCTCCAATGCCTGC
74
638
655
5-8-5
1455





621679
94695
94712
TTACCACTTTCAGGCTCT
63
694
711
5-8-5
1456





621680
94700
94717
CCACCTTACCACTTTCAG
28
699
716
5-8-5
1457





621681
94703
94720
GGACCACCTTACCACTTT
62
702
719
5-8-5
1458





621682
94706
94723
CCTGGACCACCTTACCAC
33
705
722
5-8-5
1459





621683
94709
94726
CTTCCTGGACCACCTTAC
18
708
725
5-8-5
1460





621684
94712
94729
AGCCTTCCTGGACCACCT
61
711
728
5-8-5
1461





621685
94715
94732
GGAAGCCTTCCTGGACCA
54
714
731
5-8-5
1462





621686
94718
94735
GGAGGAAGCCTTCCTGGA
24
717
734
5-8-5
1463





621687
94721
94738
CTCGGAGGAAGCCTTCCT
48
720
737
5-8-5
1464





621688
94724
94741
GCTCTCGGAGGAAGCCTT
27
723
740
5-8-5
1465





621689
94727
94744
CTGGCTCTCGGAGGAAGC
19
726
743
5-8-5
1466





621690
94730
94747
GGCCTGGCTCTCGGAGGA
46
729
746
5-8-5
1467





621691
94749
94766
TGGTGGCTCAGACCTGGG
49
748
765
5-8-5
1468





621692
94752
94769
AGCTGGTGGCTCAGACCT
50
751
768
5-8-5
1469





621693
94755
94772
ATGAGCTGGTGGCTCAGA
17
754
771
5-8-5
1470





621694
94758
94775
GACATGAGCTGGTGGCTC
54
757
774
5-8-5
1471





621695
94761
94778
CCGGACATGAGCTGGTGG
26
760
777
5-8-5
1472





621696
94764
94781
ATGCCGGACATGAGCTGG
12
763
780
5-8-5
1473





621697
94767
94784
GGCATGCCGGACATGAGC
11
766
783
5-8-5
1474





621698
94770
94787
CCAGGCATGCCGGACATG
41
769
786
5-8-5
1475





621699
94773
94790
GCCCCAGGCATGCCGGAC
57
772
789
5-8-5
1476





621700
94776
94793
GGAGCCCCAGGCATGCCG
47
775
792
5-8-5
1477





621701
94793
94810
GGCCCTCAGGCAGGAGGG
0
792
809
5-8-5
1478





621702
94825
94842
TGTCCCCGAAGGTTGGCG
50
824
841
5-8-5
1479





621703
94828
94845
TCCTGTCCCCGAAGGTTG
38
827
844
5-8-5
1480





621704
94831
94848
AGGTCCTGTCCCCGAAGG
41
830
847
5-8-5
1481





621705
94834
94851
CTCAGGTCCTGTCCCCGA
60
833
850
5-8-5
1482





621706
94837
94854
GTCCTCAGGTCCTGTCCC
0
836
853
5-8-5
1483





621707
94840
94857
TGTGTCCTCAGGTCCTGT
23
839
856
5-8-5
1484





621708
94843
94860
CTCTGTGTCCTCAGGTCC
55
842
859
5-8-5
1485





621709
94846
94863
GCCCTCTGTGTCCTCAGG
35
845
862
5-8-5
1486





621710
94849
94866
GCCGCCCTCTGTGTCCTC
45
848
865
5-8-5
1487





621711
94852
94869
GCGGCCGCCCTCTGTGTC
0
851
868
5-8-5
1488





621712
94855
94872
GTGGCGGCCGCCCTCTGT
0
854
871
5-8-5
1489





621713
94875
94892
TGCTTGAGCAGCTCAGGG
67
874
891
5-8-5
1490





621714
94878
94895
TGGTGCTTGAGCAGCTCA
51
877
894
5-8-5
1491





621715
94882
94899
AAGCTGGTGCTTGAGCAG
27
881
898
5-8-5
1492





621716
94885
94902
TAGAAGCTGGTGCTTGAG
14
884
901
5-8-5
1493





621717
94888
94905
TCCTAGAAGCTGGTGCTT
0
887
904
5-8-5
1494





621718
94891
94908
GTCTCCTAGAAGCTGGTG
45
890
907
5-8-5
1495





621719
94894
94911
CAGGTCTCCTAGAAGCTG
47
893
910
5-8-5
1496





621720
94897
94914
GTGCAGGTCTCCTAGAAG
41
896
913
5-8-5
1497





621721
94900
94917
CTGGTGCAGGTCTCCTAG
36
899
916
5-8-5
1498





621722
94903
94920
CTCCTGGTGCAGGTCTCC
41
902
919
5-8-5
1499





621723
94906
94923
CCCCTCCTGGTGCAGGTC
39
905
922
5-8-5
1500





621724
94909
94926
CGGCCCCTCCTGGTGCAG
19
908
925
5-8-5
1501





621725
94912
94929
CGGCGGCCCCTCCTGGTG
22
911
928
5-8-5
1502





621726
94915
94932
CAGCGGCGGCCCCTCCTG
35
914
931
5-8-5
1503





621727
94918
94935
CTTCAGCGGCGGCCCCTC
46
917
934
5-8-5
1504





621728
94921
94938
CCCCTTCAGCGGCGGCCC
36
920
937
5-8-5
1505





621729
94924
94941
TGCCCCCTTCAGCGGCGG
17
923
940
5-8-5
1506





621730
94927
94944
CCCTGCCCCCTTCAGCGG
15
926
943
5-8-5
1507





621731
94930
94947
GCCCCCTGCCCCCTTCAG
27
929
946
5-8-5
1508





621732
94933
94950
TTTGCCCCCTGCCCCCTT
49
932
949
5-8-5
1509





621733
94936
94953
CTCTTTGCCCCCTGCCCC
22
935
952
5-8-5
1510





621734
94939
94956
CCTCTCTTTGCCCCCTGC
28
938
955
5-8-5
1511





620887
98891
98908
GTTTTCAAACACACCTTC
90
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a
















TABLE 30







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID







NO: 1 start
NO: 1 stop

%

SEQ


ISIS NO
site
site
Sequence
inhibition
Motif
ID NO:
















613412
73879
73898
GTGATCTTCCATCACTTCGA
82
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
92
5-8-5
665



98928
98945





621735
94942
94959
CGGCCTCTCTTTGCCCCC
34
5-8-5
1512





621736
94945
94962
CCCCGGCCTCTCTTTGCC
27
5-8-5
1513





621737
94948
94965
GCTCCCCGGCCTCTCTTT
44
5-8-5
1514





621738
94951
94968
CTTGCTCCCCGGCCTCTC
38
5-8-5
1515





621739
94954
94971
CTCCTTGCTCCCCGGCCT
37
5-8-5
1516





621740
94957
94974
CTCCTCCTTGCTCCCCGG
33
5-8-5
1517





621741
94960
94977
CACCTCCTCCTTGCTCCC
37
5-8-5
1518





621742
94963
94980
ATCCACCTCCTCCTTGCT
32
5-8-5
1519





621743
94967
94984
CTTCATCCACCTCCTCCT
51
5-8-5
1520





621744
94970
94987
GGTCTTCATCCACCTCCT
61
5-8-5
1521





621745
94973
94990
CGCGGTCTTCATCCACCT
71
5-8-5
1522





621746
94976
94993
CGTCGCGGTCTTCATCCA
48
5-8-5
1523





621747
95038
95055
CCGCCCATCTTGGGCTGG
12
5-8-5
1524





621748
95041
95058
AGGCCGCCCATCTTGGGC
18
5-8-5
1525





621749
95044
95061
GGGAGGCCGCCCATCTTG
21
5-8-5
1526





621750
95060
95077
CTCTGGCGGCTGTCTGGG
47
5-8-5
1527





621751
95063
95080
CTTCTCTGGCGGCTGTCT
41
5-8-5
1528





621752
95066
95083
TGGCTTCTCTGGCGGCTG
53
5-8-5
1529





621753
95069
95086
TGGTGGCTTCTCTGGCGG
26
5-8-5
1530





621754
95072
95089
TGCTGGTGGCTTCTCTGG
57
5-8-5
1531





621755
95075
95092
GGATGCTGGTGGCTTCTC
65
5-8-5
1532





621756
95078
95095
CTGGGATGCTGGTGGCTT
66
5-8-5
1533





621757
95081
95098
AGCCTGGGATGCTGGTGG
51
5-8-5
1534





621758
95084
95101
GGAAGCCTGGGATGCTGG
57
5-8-5
1535





621759
95092
95109
CTCCGCTGGGAAGCCTGG
48
5-8-5
1536





621760
95095
95112
ACCCTCCGCTGGGAAGCC
38
5-8-5
1537





621761
95098
95115
GGCACCCTCCGCTGGGAA
54
5-8-5
1538





621762
95101
95118
GATGGCACCCTCCGCTGG
27
5-8-5
1539





621763
95121
95138
AGGAAATCCACAGGGAGG
15
5-8-5
1540





621764
95124
95141
GAGAGGAAATCCACAGGG
29
5-8-5
1541





621765
95127
95144
TTGGAGAGGAAATCCACA
45
5-8-5
1542





621766
95130
95147
ACTTTGGAGAGGAAATCC
38
5-8-5
1543





621767
95134
95151
GGAAACTTTGGAGAGGAA
56
5-8-5
1544





621768
95137
95154
TGTGGAAACTTTGGAGAG
26
5-8-5
1545





621769
95140
95157
CTCTGTGGAAACTTTGGA
69
5-8-5
1546





621770
95143
95160
GATCTCTGTGGAAACTTT
62
5-8-5
1547





621771
95146
95163
TGGGATCTCTGTGGAAAC
61
5-8-5
1548





621772
95149
95166
GGCTGGGATCTCTGTGGA
47
5-8-5
1549





621773
95152
95169
TGAGGCTGGGATCTCTGT
32
5-8-5
1550





621774
95155
95172
CTCTGAGGCTGGGATCTC
64
5-8-5
1551





621775
95161
95178
GTCGGGCTCTGAGGCTGG
42
5-8-5
1552





621776
95164
95181
CCCGTCGGGCTCTGAGGC
34
5-8-5
1553





621777
95174
95191
CTACACTGGGCCCGTCGG
31
5-8-5
1554





621778
95177
95194
GCCCTACACTGGGCCCGT
48
5-8-5
1555





621779
95180
95197
CCCGCCCTACACTGGGCC
35
5-8-5
1556





621780
95183
95200
TGGCCCGCCCTACACTGG
51
5-8-5
1557





621781
95186
95203
CTTTGGCCCGCCCTACAC
4
5-8-5
1558





621782
95189
95206
GCCCTTTGGCCCGCCCTA
52
5-8-5
1559





621783
95192
95209
CCTGCCCTTTGGCCCGCC
42
5-8-5
1560





621784
95195
95212
CATCCTGCCCTTTGGCCC
49
5-8-5
1561





621785
95198
95215
GGGCATCCTGCCCTTTGG
15
5-8-5
1562





621786
95235
95252
TTGGGTGTGATTTCCACG
52
5-8-5
1563





621787
95253
95270
GCCTGCTCCTTCTGCACG
44
5-8-5
1564





621788
95256
95273
TGCGCCTGCTCCTTCTGC
64
5-8-5
1565





621789
95259
95276
GAGTGCGCCTGCTCCTTC
70
5-8-5
1566





621790
95262
95279
TCCGAGTGCGCCTGCTCC
53
5-8-5
1567





621791
95265
95282
TCCTCCGAGTGCGCCTGC
54
5-8-5
1568





621792
95268
95285
TGCTCCTCCGAGTGCGCC
52
5-8-5
1569





621793
95271
95288
AAATGCTCCTCCGAGTGC
72
5-8-5
1570





621794
95274
95291
CCCAAATGCTCCTCCGAG
75
5-8-5
1571





621795
95277
95294
CTTCCCAAATGCTCCTCC
47
5-8-5
1572





621796
95280
95297
GCCCTTCCCAAATGCTCC
58
5-8-5
1573





621797
95283
95300
GCAGCCCTTCCCAAATGC
39
5-8-5
1574





621798
95286
95303
AATGCAGCCCTTCCCAAA
61
5-8-5
1575





621799
95291
95308
CTGGAAATGCAGCCCTTC
64
5-8-5
1576





621800
95294
95311
CCCCTGGAAATGCAGCCC
49
5-8-5
1577





621801
95297
95314
GGGCCCCTGGAAATGCAG
29
5-8-5
1578





621802
95313
95330
TCTGGCCCCTCTCCAGGG
41
5-8-5
1579





621803
95316
95333
GCCTCTGGCCCCTCTCCA
42
5-8-5
1580





621804
95319
95336
CGGGCCTCTGGCCCCTCT
11
5-8-5
1581





621805
95322
95339
CCCCGGGCCTCTGGCCCC
13
5-8-5
1582





621806
95341
95358
GTCCTCTCCCAAAGAGGG
25
5-8-5
1583





621807
95344
95361
TGTGTCCTCTCCCAAAGA
20
5-8-5
1584





621808
95347
95364
TTTTGTGTCCTCTCCCAA
66
5-8-5
1585





621809
95365
95382
CTCTGGAAGGTCAGCCTC
53
5-8-5
1586





621810
95368
95385
GGGCTCTGGAAGGTCAGC
72
5-8-5
1587





621811
95371
95388
AGAGGGCTCTGGAAGGTC
57
5-8-5
1588
















TABLE 31







Inhibition of tau mRNA by 5-10-5 and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID






ISIS
NO: 1 start
NO: 1 stop

%

SEQ ID


NO
site
site
Sequence
inhibition
Motif
NO:
















613412
73879
73898
GTGATCTTCCATCACTTCGA
88
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
96
5-8-5
665



98928
98945





623737
111219
111236
CCTCCACCCAGCATGGTG
56
5-8-5
1589





623738
111267
111284
TCAAGTCACCCTTTCTCC
78
5-8-5
1590





623739
111368
111385
TTCAGACAATTTTTCTAG
66
5-8-5
1591





623740
111629
111646
TCAGACTCCGCCAGCTTT
79
5-8-5
1592





623741
111678
111695
TCTTTTCCCTTTGGTGTT
34
5-8-5
1593





623742
111753
111770
TTTCCCCCAATGATTTGC
77
5-8-5
1594





623743
112016
112033
CCACGACTCCCACAAGAT
32
5-8-5
1595





623744
112213
112230
TGAGGTTGAGGGTAGGTG
50
5-8-5
1596





623745
112219
112236
AGTGGTTGAGGTTGAGGG
31
5-8-5
1597





623746
112304
112321
CAGGCACTTGGAAACTGC
90
5-8-5
1598





623747
112877
112894
TTGTACTCTTTTTCCCCT
65
5-8-5
1599





623748
112949
112966
TTAGGAGTGCAAGGTTGT
49
5-8-5
1600





623749
113352
113369
TCCTACATTCCTCCTGCT
67
5-8-5
1601





623750
113523
113540
GTTGCAGTGTTCCACTAT
90
5-8-5
1602





623751
113783
113800
CCAGCAGATGCCGACAGC
74
5-8-5
1603





623752
113809
113826
GGGCCCTCACCCCTGCTT
14
5-8-5
1604





623753
113830
113847
CCAAGAAGGGCTGCTGAG
8
5-8-5
1605





623754
114267
114284
AAGCAGCCACCCAGGCTG
17
5-8-5
1606





623755
114739
114756
TATGAGGAGGGAGGAAAG
13
5-8-5
1607





623756
115242
115259
CTGACATCTCAGCCCAAG
93
5-8-5
1608





621425
115335
115352
GGTACAGGAAAAGATGCC
77
5-8-5
1202





623757
115522
115539
CAAGGTGATCAGCTTAGG
82
5-8-5
1609





623758
115526
115543
AGTCCAAGGTGATCAGCT
89
5-8-5
1610





623759
115547
115564
CCCACACAAGCCTCCTCT
66
5-8-5
1611





623760
115791
115808
TTTGTTTGGGTTCAGTTC
59
5-8-5
1612





623761
115803
115820
CCTTGATCTGGTTTTGTT
77
5-8-5
1613





623762
115993
116010
ATCAAGGGAGAGAACGAT
52
5-8-5
1614





623763
116229
116246
AAAAGGCAACAAGCCTTT
0
5-8-5
1615





623764
116769
116786
CGAGGCAAAAAGGGAAAT
45
5-8-5
1616





623765
116791
116808
TAACTTTGAGCTTCCTGG
65
5-8-5
1617





623766
116944
116961
TAAGGCTTAGAAGATTTG
45
5-8-5
1618





623767
116978
116995
GACGATCATTTTTTATTC
72
5-8-5
1619





623768
116983
117000
GGCTTGACGATCATTTTT
77
5-8-5
1620





623769
117421
117438
AGATCTCAGAGTTTGTAG
68
5-8-5
1621





623770
117472
117489
TCGCTGAGGTTCCGCAAC
37
5-8-5
1622





623771
117489
117506
AGGAGGCCATGTGAGGCT
61
5-8-5
1623





623772
117547
117564
TGGATAAATCTCTAGTGC
54
5-8-5
1624





623773
117564
117581
CACTCCTCCTTTAGAGAT
38
5-8-5
1625





623774
117599
117616
TTGTAATTCCTTCTCTGG
65
5-8-5
1626





623775
117971
117988
TAACCATCCCTACTTTCT
42
5-8-5
1627





623776
119098
119115
ACTGAAATCGCTCCTTTA
58
5-8-5
1628





623777
119107
119124
CCAATTATGACTGAAATC
32
5-8-5
1629





623778
119313
119330
GGTCAAAGTTATAAATAT
57
5-8-5
1630





623779
119431
119448
GGATTTGATGCAAAGAAA
70
5-8-5
1631





623780
119740
119757
GCGCAACCCAGCTACTCG
7
5-8-5
1632





621445
119880
119897
TACAGTGGCTCCTGTAAT
28
5-8-5
1222





623781
119964
119981
CTGTATACCTATACTTGG
34
5-8-5
1633





623782
120043
120060
CCGTTTTCTTACCACCCT
92
5-8-5
1634





623783
120177
120194
TTACTTGTCTGAATCTTC
83
5-8-5
1635





623784
120204
120221
TTCATCCCGTTTTTTTTC
54
5-8-5
1636





623785
120309
120326
GACCTCAGTGGCTCTTTT
68
5-8-5
1637





623786
120513
120530
TGTCCAGGATAGTTTGAA
44
5-8-5
1638





623787
121033
121050
GCTGAGCAAATGCTCCCG
54
5-8-5
1639





623788
121194
121211
CTGACCCCGTAGGCAGGA
29
5-8-5
1640





623789
121478
121495
ACCAGCCTGAGGTCAAGT
73
5-8-5
1641





623790
121538
121555
CAGGTCCTCACTTCACAA
42
5-8-5
1642





623791
121767
121784
CCGCCTGCTTGCTCGCAA
92
5-8-5
1643





623792
121787
121804
AGTGACACGCCACCCTGG
80
5-8-5
1644





623793
121797
121814
AAAAAGGATGAGTGACAC
28
5-8-5
1645





623794
121807
121824
GGTAGCCAGAAAAAAGGA
49
5-8-5
1646





623795
121812
121829
CCTTTGGTAGCCAGAAAA
63
5-8-5
1647





623796
121817
121834
CTGCACCTTTGGTAGCCA
87
5-8-5
1648





623797
121822
121839
ATTATCTGCACCTTTGGT
67
5-8-5
1649





623798
121824
121841
TAATTATCTGCACCTTTG
49
5-8-5
1650





623799
121905
121922
CACTGCCGCCTCCCGGGA
65
5-8-5
1651





623800
121909
121926
CTCACACTGCCGCCTCCC
75
5-8-5
1652





623801
121911
121928
TACTCACACTGCCGCCTC
54
5-8-5
1653





623679
121913
121930
GGTACTCACACTGCCGCC
81
5-8-5
1654





623802
121915
121932
AAGGTACTCACACTGCCG
69
5-8-5
1655





623803
121920
121937
GTGTGAAGGTACTCACAC
18
5-8-5
1656





623804
121942
121959
GCCACAGCACGGCGCATG
80
5-8-5
1657





623805
121952
121969
AATAATTCAAGCCACAGC
88
5-8-5
1658





623806
121962
121979
ACCACTTCCTAATAATTC
39
5-8-5
1659





623807
121972
121989
ACGCACTCACACCACTTC
83
5-8-5
1660





623808
121982
121999
TCGCAAGTGTACGCACTC
94
5-8-5
1661





623809
121992
122009
ATGCAGTGTCTCGCAAGT
93
5-8-5
1662





623810
122227
122244
TGATGGGTATTCTCAGCT
77
5-8-5
1663
















TABLE 32







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID



SEQ


ISIS
NO: 1 start
NO: 1 stop

%

ID


NO
site
site
Sequence
inhibition
Motif
NO:
















613412
73879
73898
GTGATCTTCCATCACTTCGA
87
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
83
5-8-5
665



98928
98945





622186
5897
5914
CCGCTCGGCCGTCCGGCG
6
5-8-5
1664





622187
5900
5917
CTGCCGCTCGGCCGTCCG
6
5-8-5
1665





622174
103089
103106
CCAGAGCTGGGTGGTGTC
12
5-8-5
1666





622182
125760
125777
TGTAGACTATTTGCACCT
74
5-8-5
1667





622120
135855
135872
ATCACTGATTTTGAAGTC
36
5-8-5
1668





622121
135858
135875
CCCATCACTGATTTTGAA
59
5-8-5
1669





622122
135861
135878
ACTCCCATCACTGATTTT
70
5-8-5
1670





622123
135864
135881
CTTACTCCCATCACTGAT
41
5-8-5
1671





622124
135867
135884
GCTCTTACTCCCATCACT
82
5-8-5
1672





622125
135870
135887
TTTGCTCTTACTCCCATC
87
5-8-5
1673





622126
135873
135890
AAATTTGCTCTTACTCCC
62
5-8-5
1674





622127
135876
135893
ATGAAATTTGCTCTTACT
70
5-8-5
1675





622128
135879
135896
AAGATGAAATTTGCTCTT
55
5-8-5
1676





622129
135882
135899
GGAAAGATGAAATTTGCT
84
5-8-5
1677





622130
135885
135902
TTTGGAAAGATGAAATTT
12
5-8-5
1678





622131
135891
135908
CATCAATTTGGAAAGATG
43
5-8-5
1679





622132
135894
135911
ACCCATCAATTTGGAAAG
18
5-8-5
1680





622133
135897
135914
CCCACCCATCAATTTGGA
34
5-8-5
1681





622134
135900
135917
TAGCCCACCCATCAATTT
17
5-8-5
1682





622135
135903
135920
TACTAGCCCACCCATCAA
14
5-8-5
1683





622136
135906
135923
TATTACTAGCCCACCCAT
24
5-8-5
1684





622137
135909
135926
TTTTATTACTAGCCCACC
24
5-8-5
1685





622138
135912
135929
ATATTTTATTACTAGCCC
33
5-8-5
1686





622139
135915
135932
TAAATATTTTATTACTAG
0
5-8-5
1687





622140
135918
135935
TTTTAAATATTTTATTAC
0
5-8-5
1688





622141
135926
135943
ATGTTTTTTTTTAAATAT
0
5-8-5
1689





622142
135939
135956
GCCATGTTTTTGAATGTT
60
5-8-5
1690





622143
135942
135959
GTGGCCATGTTTTTGAAT
28
5-8-5
1691





622144
135945
135962
GATGTGGCCATGTTTTTG
63
5-8-5
1692





622145
135948
135965
TTGGATGTGGCCATGTTT
78
5-8-5
1693





622146
135951
135968
ATGTTGGATGTGGCCATG
71
5-8-5
1694





622147
135954
135971
GAAATGTTGGATGTGGCC
72
5-8-5
1695





622148
135957
135974
GAGGAAATGTTGGATGTG
55
5-8-5
1696





622149
135960
135977
CCTGAGGAAATGTTGGAT
77
5-8-5
1697





622150
135963
135980
TTGCCTGAGGAAATGTTG
55
5-8-5
1698





622151
139811
139828
CCAAATTCACTTTTACAG
54
5-8-5
1699





622152
139813
139830
TTCCAAATTCACTTTTAC
67
5-8-5
1700





622153
139815
139832
ATTTCCAAATTCACTTTT
52
5-8-5
1701





622154
139817
139834
TTATTTCCAAATTCACTT
52
5-8-5
1702





622155
139819
139836
CTTTATTTCCAAATTCAC
61
5-8-5
1703





622156
139821
139838
AACTTTATTTCCAAATTC
26
5-8-5
1704





622157
139823
139840
ATAACTTTATTTCCAAAT
23
5-8-5
1705





622158
139826
139843
GTAATAACTTTATTTCCA
65
5-8-5
1706





622159
139828
139845
GAGTAATAACTTTATTTC
25
5-8-5
1707





622160
139830
139847
CAGAGTAATAACTTTATT
9
5-8-5
1708





622161
139832
139849
ATCAGAGTAATAACTTTA
23
5-8-5
1709





622162
139834
139851
TAATCAGAGTAATAACTT
14
5-8-5
1710





622163
139836
139853
TTTAATCAGAGTAATAAC
4
5-8-5
1711
















TABLE 33







Inhibition of Tau mRNA by 5-8-5 MOE gapmers


targeting SEQ ID NO: 5 and 6
















SEQ
SEQ


SEQ
SEQ





ID
ID


ID
ID



NO: 5
NO: 5


NO: 6
NO: 6

SEQ


ISIS
Start
Stop

%
Start
Stop

ID


NO
Site
Site
Sequence
inhibition
Site
Site
Motif
NO


















622164
n/a
n/a
GCTTCCGCTGTTGGAGTG
22
526
543
5-8-5
1712





622165
n/a
n/a
TCAGCTTCCGCTGTTGGA
15
529
546
5-8-5
1713





622166
n/a
n/a
TCTTCAGCTTCCGCTGTT
0
532
549
5-8-5
1714





622167
n/a
n/a
GCTTCTTCAGCTTCCGCT
43
535
552
5-8-5
1715





622171
n/a
n/a
GCCCCCTTGGCTTTTTTG
16
652
669
5-8-5
1716





622172
n/a
n/a
TCAGCCCCCTTGGCTTTT
15
655
672
5-8-5
1717





622173
n/a
n/a
ACCATCAGCCCCCTTGGC
49
659
676
5-8-5
1718





622175
n/a
n/a
TCACCAGAGCTGGGTGGT
15
778
795
5-8-5
1719





622176
n/a
n/a
GGTTCACCAGAGCTGGGT
80
781
798
5-8-5
1720





622177
n/a
n/a
GGAGGTTCACCAGAGCTG
79
784
801
5-8-5
1721





622178
n/a
n/a
TTTGGAGGTTCACCAGAG
45
787
804
5-8-5
1722





622179
n/a
n/a
GATTTTGGAGGTTCACCA
68
790
807
5-8-5
1723





622180
n/a
n/a
TTGCACCTTCCCGCCTCC
19
1046
1063
5-8-5
1724





622181
n/a
n/a
AGACTATTTGCACCTTCC
70
1053
1070
5-8-5
1725





622183
3
20
CCCTTCGCGGTCCCTTCG
0
n/a
n/a
5-8-5
1726





622184
6
23
CTGCCCTTCGCGGTCCCT
12
n/a
n/a
5-8-5
1727





622185
9
26
GCGCTGCCCTTCGCGGTC
0
n/a
n/a
5-8-5
1728





622188
424
441
GTCCCCCAAACCCGTACG
15
n/a
n/a
5-8-5
1729





622189
427
444
CCTGTCCCCCAAACCCGT
45
n/a
n/a
5-8-5
1730





622190
430
447
TTTCCTGTCCCCCAAACC
57
n/a
n/a
5-8-5
1731





622191
436
453
TTGATCTTTCCTGTCCCC
74
n/a
n/a
5-8-5
1732





622192
439
456
CCCTTGATCTTTCCTGTC
69
n/a
n/a
5-8-5
1733





622193
442
459
GCCCCCTTGATCTTTCCT
7
n/a
n/a
5-8-5
1734





622194
445
462
GTAGCCCCCTTGATCTTT
3
n/a
n/a
5-8-5
1735





622195
448
465
GGTGTAGCCCCCTTGATC
8
n/a
n/a
5-8-5
1736





622196
451
468
CATGGTGTAGCCCCCTTG
83
n/a
n/a
5-8-5
1737





622168
564
581
ATGCGAGCTTGGGTCACG
65
598
615
5-8-5
1738





622169
567
584
ACCATGCGAGCTTGGGTC
62
601
618
5-8-5
1739





622170
570
587
CTGACCATGCGAGCTTGG
91
604
621
5-8-5
1740
















TABLE 34







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID


SEQ ID
SEQ ID

SEQ


ISIS
NO: 1
NO: 1

%
NO: 2
NO: 2

ID


NO
start site
stop site
Sequence
inhibition
start site
stop site
Motif
NO:


















613412
73879
73898
GTGATCTTCCATCACTTCGA
91
345
364
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
97
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a





621832
n/a
n/a
GAGCTTTGAGTTGAGGGA
14
1434
1451
5-8-5
1741





621833
n/a
n/a
TGCGAGCTTTGAGTTGAG
0
1437
1454
5-8-5
1742





621834
n/a
n/a
CCATGCGAGCTTTGAGTT
10
1440
1457
5-8-5
1743





621835
n/a
n/a
TGACCATGCGAGCTTTGA
83
1443
1460
5-8-5
1744





621836
n/a
n/a
TACTGACCATGCGAGCTT
91
1446
1463
5-8-5
1745





621848
n/a
n/a
GATGTCTTGGCTTTTTTG
3
1492
1509
5-8-5
1746





621849
n/a
n/a
GTGTGGATGTCTTGGCTT
15
1497
1514
5-8-5
1747





621812
95374
95391
TTCAGAGGGCTCTGGAAG
0
1373
1390
5-8-5
1748





621813
95377
95394
CTTTTCAGAGGGCTCTGG
44
1376
1393
5-8-5
1749





621814
95380
95397
CTGCTTTTCAGAGGGCTC
56
1379
1396
5-8-5
1750





621815
95383
95400
AGGCTGCTTTTCAGAGGG
38
1382
1399
5-8-5
1751





621816
95386
95403
AGCAGGCTGCTTTTCAGA
40
1385
1402
5-8-5
1752





621817
95389
95406
AGCAGCAGGCTGCTTTTC
26
1388
1405
5-8-5
1753





621818
95392
95409
AGCAGCAGCAGGCTGCTT
12
1391
1408
5-8-5
1754





621819
95395
95412
CGGAGCAGCAGCAGGCTG
23
1394
1411
5-8-5
1755





621820
95398
95415
CCGCGGAGCAGCAGCAGG
34
1397
1414
5-8-5
1756





621821
95401
95418
CCCCCGCGGAGCAGCAGC
50
1400
1417
5-8-5
1757





621822
95404
95421
CTTCCCCCGCGGAGCAGC
48
1403
1420
5-8-5
1758





621823
95407
95424
GGGCTTCCCCCGCGGAGC
0
1406
1423
5-8-5
1759





621824
95410
95427
GACGGGCTTCCCCCGCGG
7
1409
1426
5-8-5
1760





621825
95413
95430
GCTGACGGGCTTCCCCCG
36
1412
1429
5-8-5
1761





621826
95416
95433
CCGGCTGACGGGCTTCCC
54
1415
1432
5-8-5
1762





621827
95419
95436
GACCCGGCTGACGGGCTT
7
1418
1435
5-8-5
1763





621828
95423
95440
GAGGGACCCGGCTGACGG
6
1422
1439
5-8-5
1764





621829
95426
95443
GTTGAGGGACCCGGCTGA
27
1425
1442
5-8-5
1765





621830
95429
95446
TGAGTTGAGGGACCCGGC
50
1428
1445
5-8-5
1766





621831
95432
95449
CTTTGAGTTGAGGGACCC
50
1431
1448
5-8-5
1767





621837
98559
98576
TTTTACTGACCATGCGAG
77
1449
1466
5-8-5
1768





621838
98562
98579
TGCTTTTACTGACCATGC
95
1452
1469
5-8-5
1769





621839
98565
98582
CTTTGCTTTTACTGACCA
85
1455
1472
5-8-5
1770





621840
98568
98585
CGTCTTTGCTTTTACTGA
66
1458
1475
5-8-5
1771





621841
98571
98588
TCCCGTCTTTGCTTTTAC
79
1461
1478
5-8-5
1772





621842
98575
98592
CCAGTCCCGTCTTTGCTT
87
1465
1482
5-8-5
1773





621843
98578
98595
CTTCCAGTCCCGTCTTTG
64
1468
1485
5-8-5
1774





621844
98581
98598
TCGCTTCCAGTCCCGTCT
88
1471
1488
5-8-5
1775





621845
98584
98601
TCATCGCTTCCAGTCCCG
90
1474
1491
5-8-5
1776





621846
98587
98604
TTGTCATCGCTTCCAGTC
88
1477
1494
5-8-5
1777





621847
98590
98607
TTTTTGTCATCGCTTCCA
80
1480
1497
5-8-5
1778





621850
101406
101423
GGTTTTAGCAGAGGAACG
75
1514
1531
5-8-5
1779





621851
101409
101426
CAAGGTTTTAGCAGAGGA
83
1517
1534
5-8-5
1780





621852
101412
101429
TTTCAAGGTTTTAGCAGA
35
1520
1537
5-8-5
1781





621853
101415
101432
ATTTTTCAAGGTTTTAGC
79
1523
1540
5-8-5
1782





621854
101418
101435
CCTATTTTTCAAGGTTTT
71
1526
1543
5-8-5
1783





621855
101425
101442
GGCAAGGCCTATTTTTCA
83
1533
1550
5-8-5
1784





621856
101428
101445
TAAGGCAAGGCCTATTTT
23
1536
1553
5-8-5
1785





621857
101431
101448
GGCTAAGGCAAGGCCTAT
69
1539
1556
5-8-5
1786





621858
101457
101474
TGAGCTACCAGGAGTGGG
75
1565
1582
5-8-5
1787





621859
101460
101477
GTCTGAGCTACCAGGAGT
78
1568
1585
5-8-5
1788





621860
101463
101480
AGGGTCTGAGCTACCAGG
82
1571
1588
5-8-5
1789





621861
101466
101483
CAGAGGGTCTGAGCTACC
88
1574
1591
5-8-5
1790





621862
101469
101486
GATCAGAGGGTCTGAGCT
72
1577
1594
5-8-5
1791





621863
101472
101489
TTGGATCAGAGGGTCTGA
83
1580
1597
5-8-5
1792





621864
101478
101495
GGAGGGTTGGATCAGAGG
0
1586
1603
5-8-5
1793





621865
101481
101498
GCTGGAGGGTTGGATCAG
16
1589
1606
5-8-5
1794





621866
101491
101508
ACACAGCAGGGCTGGAGG
34
1599
1616
5-8-5
1795





621867
101494
101511
GGCACACAGCAGGGCTGG
67
1602
1619
5-8-5
1796





621868
101499
101516
CTCTGGGCACACAGCAGG
75
1607
1624
5-8-5
1797





621869
101502
101519
TGGCTCTGGGCACACAGC
90
1610
1627
5-8-5
1798





621870
101505
101522
AGGTGGCTCTGGGCACAC
92
1613
1630
5-8-5
1799





621871
101508
101525
GGAAGGTGGCTCTGGGCA
67
1616
1633
5-8-5
1800





621872
101511
101528
AGAGGAAGGTGGCTCTGG
43
1619
1636
5-8-5
1801





621873
101514
101531
AGGAGAGGAAGGTGGCTC
65
1622
1639
5-8-5
1802





621874
101517
101534
TTTAGGAGAGGAAGGTGG
26
1625
1642
5-8-5
1803





621875
101520
101537
GTATTTAGGAGAGGAAGG
0
1628
1645
5-8-5
1804





621876
101537
101554
GAAGTGACAGAAGAGACG
37
1645
1662
5-8-5
1805





621877
101540
101557
CGGGAAGTGACAGAAGAG
59
1648
1665
5-8-5
1806





621878
101543
101560
GTTCGGGAAGTGACAGAA
65
1651
1668
5-8-5
1807





621879
101546
101563
CCAGTTCGGGAAGTGACA
35
1654
1671
5-8-5
1808





621880
101549
101566
CTGCCAGTTCGGGAAGTG
69
1657
1674
5-8-5
1809





621881
101552
101569
GAACTGCCAGTTCGGGAA
48
1660
1677
5-8-5
1810





621882
101555
101572
CCAGAACTGCCAGTTCGG
66
1663
1680
5-8-5
1811





621883
101558
101575
GCTCCAGAACTGCCAGTT
69
1666
1683
5-8-5
1812





621884
101561
101578
TTTGCTCCAGAACTGCCA
74
1669
1686
5-8-5
1813





621885
101564
101581
TCCTTTGCTCCAGAACTG
61
1672
1689
5-8-5
1814





621886
101567
101584
ATCTCCTTTGCTCCAGAA
64
1675
1692
5-8-5
1815





621887
101570
101587
TTCATCTCCTTTGCTCCA
36
1678
1695
5-8-5
1816





621888
101573
101590
AGTTTCATCTCCTTTGCT
32
1681
1698
5-8-5
1817
















TABLE 35







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID


SEQ ID
SEQ ID

SEQ


ISIS
NO: 1
NO: 1

%
NO: 2
NO: 2

ID


NO
start site
stop site
Sequence
inhibition
start site
stop site
Motif
NO:


















613412
73879
73898
GTGATCTTCCATCACTTCGA
87
345
364
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
95
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a





621890
n/a
n/a
CCCTTGAGTTTCATCTCC
30
1687
1704
5-8-5
1818





621891
n/a
n/a
GCCCCCTTGAGTTTCATC
8
1690
1707
5-8-5
1819





621892
n/a
n/a
TCAGCCCCCTTGAGTTTC
0
1693
1710
5-8-5
1820





621893
n/a
n/a
CCATCAGCCCCCTTGAGT
4
1696
1713
5-8-5
1821





621894
n/a
n/a
TTACCATCAGCCCCCTTG
75
1699
1716
5-8-5
1822





621912
n/a
n/a
CGCAGAGCTGGGTGGTGT
0
1814
1831
5-8-5
1823





621913
n/a
n/a
AGTCGCAGAGCTGGGTGG
0
1817
1834
5-8-5
1824





621914
n/a
n/a
CTTAGTCGCAGAGCTGGG
21
1820
1837
5-8-5
1825





621915
n/a
n/a
TTGCTTAGTCGCAGAGCT
12
1823
1840
5-8-5
1826





621916
n/a
n/a
GACTTGCTTAGTCGCAGA
29
1826
1843
5-8-5
1827





621925
n/a
n/a
TTCACCTCTCTCAGATCT
4
1871
1888
5-8-5
1828





621926
n/a
n/a
AGGTTCACCTCTCTCAGA
9
1874
1891
5-8-5
1829





621927
n/a
n/a
TGGAGGTTCACCTCTCTC
7
1877
1894
5-8-5
1830





621928
n/a
n/a
TTTTGGAGGTTCACCTCT
11
1880
1897
5-8-5
1831





621889
101576
101593
TTGAGTTTCATCTCCTTT
23
1684
1701
5-8-5
1832





621895
102978
102995
GTTTTACCATCAGCCCCC
88
1702
1719
5-8-5
1833





621896
102995
103012
GCGGTGTGGCGATCTTCG
42
1719
1736
5-8-5
1834





621897
102998
103015
CCCGCGGTGTGGCGATCT
33
1722
1739
5-8-5
1835





621898
103001
103018
CTCCCCGCGGTGTGGCGA
37
1725
1742
5-8-5
1836





621899
103004
103021
CTGCTCCCCGCGGTGTGG
50
1728
1745
5-8-5
1837





621900
103007
103024
GGGCTGCTCCCCGCGGTG
43
1731
1748
5-8-5
1838





621901
103025
103042
GGCCCTTCTGGCCTGGAG
29
1749
1766
5-8-5
1839





621902
103029
103046
GCCTGGCCCTTCTGGCCT
34
1753
1770
5-8-5
1840





621903
103032
103049
TTGGCCTGGCCCTTCTGG
49
1756
1773
5-8-5
1841





621904
103050
103067
GCTGGAATCCTGGTGGCG
58
1774
1791
5-8-5
1842





621905
103053
103070
TTTGCTGGAATCCTGGTG
50
1777
1794
5-8-5
1843





621906
103056
103073
GTTTTTGCTGGAATCCTG
62
1780
1797
5-8-5
1844





621907
103075
103092
TGTCTTTGGAGCGGGCGG
21
1799
1816
5-8-5
1845





621908
103078
103095
TGGTGTCTTTGGAGCGGG
57
1802
1819
5-8-5
1846





621909
103081
103098
GGGTGGTGTCTTTGGAGC
17
1805
1822
5-8-5
1847





621910
103084
103101
GCTGGGTGGTGTCTTTGG
44
1808
1825
5-8-5
1848





621911
103087
103104
AGAGCTGGGTGGTGTCTT
47
1811
1828
5-8-5
1849





621917
105442
105459
CTGGACTTGCTTAGTCGC
27
1829
1846
5-8-5
1850





621918
105445
105462
TCTCTGGACTTGCTTAGT
0
1832
1849
5-8-5
1851





621919
105448
105465
TCTTCTCTGGACTTGCTT
48
1835
1852
5-8-5
1852





621920
105451
105468
TGGTCTTCTCTGGACTTG
49
1838
1855
5-8-5
1853





621921
105454
105471
GGGTGGTCTTCTCTGGAC
33
1841
1858
5-8-5
1854





621922
105473
105490
CAGATCTGGGCCCTGCAG
36
1860
1877
5-8-5
1855





621923
105476
105493
TCTCAGATCTGGGCCCTG
70
1863
1880
5-8-5
1856





621924
105479
105496
CTCTCTCAGATCTGGGCC
32
1866
1883
5-8-5
1857





621929
107917
107934
TGATTTTGGAGGTTCACC
44
1883
1900
5-8-5
1858





621930
107920
107937
CCCTGATTTTGGAGGTTC
74
1886
1903
5-8-5
1859





621931
107923
107940
ATCCCCTGATTTTGGAGG
26
1889
1906
5-8-5
1860





621932
107926
107943
GCGATCCCCTGATTTTGG
45
1892
1909
5-8-5
1861





621933
107929
107946
GCTGCGATCCCCTGATTT
38
1895
1912
5-8-5
1862





621934
107932
107949
GCCGCTGCGATCCCCTGA
42
1898
1915
5-8-5
1863





621935
107935
107952
GTAGCCGCTGCGATCCCC
31
1901
1918
5-8-5
1864





621936
107938
107955
GCTGTAGCCGCTGCGATC
67
1904
1921
5-8-5
1865





621937
107941
107958
GCTGCTGTAGCCGCTGCG
23
1907
1924
5-8-5
1866





621938
107971
107988
GCGGCTGCCGGGAGTGCC
40
1937
1954
5-8-5
1867





621939
107974
107991
GGAGCGGCTGCCGGGAGT
1
1940
1957
5-8-5
1868





621940
107978
107995
TGCGGGAGCGGCTGCCGG
48
1944
1961
5-8-5
1869





621941
108021
108038
ACCTTCTTGGGCTCCCGG
24
1987
2004
5-8-5
1870





621942
108024
108041
GCCACCTTCTTGGGCTCC
28
1990
2007
5-8-5
1871





621943
108027
108044
ACTGCCACCTTCTTGGGC
19
1993
2010
5-8-5
1872





621944
108030
108047
ACCACTGCCACCTTCTTG
28
1996
2013
5-8-5
1873





621945
108033
108050
CGGACCACTGCCACCTTC
72
1999
2016
5-8-5
1874





621946
108036
108053
GTACGGACCACTGCCACC
57
2002
2019
5-8-5
1875





621947
108039
108056
GGAGTACGGACCACTGCC
25
2005
2022
5-8-5
1876





621948
108042
108059
GGTGGAGTACGGACCACT
30
2008
2025
5-8-5
1877





621949
108045
108062
TTGGGTGGAGTACGGACC
24
2011
2028
5-8-5
1878





621950
108052
108069
CGGCGACTTGGGTGGAGT
1
2018
2035
5-8-5
1879





621951
108055
108072
AGACGGCGACTTGGGTGG
4
2021
2038
5-8-5
1880





621952
108058
108075
GGAAGACGGCGACTTGGG
50
2024
2041
5-8-5
1881





621953
108061
108078
GGCGGAAGACGGCGACTT
66
2027
2044
5-8-5
1882





621954
108064
108081
CTTGGCGGAAGACGGCGA
38
2030
2047
5-8-5
1883





621955
108067
108084
GCTCTTGGCGGAAGACGG
24
2033
2050
5-8-5
1884





621956
108070
108087
GCGGCTCTTGGCGGAAGA
20
2036
2053
5-8-5
1885





621957
108073
108090
CAGGCGGCTCTTGGCGGA
46
2039
2056
5-8-5
1886





621958
108076
108093
CTGCAGGCGGCTCTTGGC
72
2042
2059
5-8-5
1887





621959
108079
108096
TGTCTGCAGGCGGCTCTT
52
2045
2062
5-8-5
1888





621960
108082
108099
GGCTGTCTGCAGGCGGCT
47
2048
2065
5-8-5
1889





621961
108101
108118
GGTCTGGCATGGGCACGG
73
2067
2084
5-8-5
1890





621962
108137
108154
TCTCAGTGGAGCCGATCT
39
2103
2120
5-8-5
1891





621963
108140
108157
GGTTCTCAGTGGAGCCGA
66
2106
2123
5-8-5
1892





621964
108143
108160
TCAGGTTCTCAGTGGAGC
65
2109
2126
5-8-5
1893





621965
108146
108163
GCTTCAGGTTCTCAGTGG
44
2112
2129
5-8-5
1894
















TABLE 36







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID


SEQ ID
SEQ ID

SEQ


ISIS
NO: 1
NO: 1

%
NO: 2
NO: 2

ID


NO
start site
stop site
Sequence
inhibition
start site
stop site
Motif
NO:


















613412
73879
73898
GTGATCTTCCATCACTTCGA
88
345
364
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
94
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a





621973
n/a
n/a
TGCACCTTCCCGCCTCCC
66
2137
2154
5-8-5
1895





621974
n/a
n/a
TATCTGCACCTTCCCGCC
17
2141
2158
5-8-5
1896





621975
n/a
n/a
AATTATCTGCACCTTCCC
27
2144
2161
5-8-5
1897





621994
n/a
n/a
TGCACACTGCCGCCTCCC
74
2230
2247
5-8-5
1898





621995
n/a
n/a
ACTATTTGCACACTGCCG
28
2236
2253
5-8-5
1899





621996
n/a
n/a
TAGACTATTTGCACACTG
29
2239
2256
5-8-5
1900





621997
n/a
n/a
TTGTAGACTATTTGCACA
62
2242
2259
5-8-5
1901





622012
n/a
n/a
CTCCTGGTTTATGATGGA
24
2310
2327
5-8-5
1902





622013
n/a
n/a
GGCCACCTCCTGGTTTAT
21
2316
2333
5-8-5
1903





622014
n/a
n/a
CACCTGGCCACCTCCTGG
44
2321
2338
5-8-5
1904





622041
n/a
n/a
ATCTTTTTATTTCCTCCG
32
2422
2439
5-8-5
1905





622042
n/a
n/a
TTTCAATCTTTTTATTTC
16
2427
2444
5-8-5
1906





621966
108149
108166
GGTGCTTCAGGTTCTCAG
48
2115
2132
5-8-5
1907





621967
108153
108170
GGCTGGTGCTTCAGGTTC
46
2119
2136
5-8-5
1908





621968
108156
108173
CCCGGCTGGTGCTTCAGG
50
2122
2139
5-8-5
1909





621969
108159
108176
CCTCCCGGCTGGTGCTTC
22
2125
2142
5-8-5
1910





621970
108162
108179
CCGCCTCCCGGCTGGTGC
27
2128
2145
5-8-5
1911





621971
108165
108182
TTCCCGCCTCCCGGCTGG
5
2131
2148
5-8-5
1912





621972
108168
108185
ACCTTCCCGCCTCCCGGC
39
2134
2151
5-8-5
1913





621976
121826
121843
ATTAATTATCTGCACCTT
76
2147
2164
5-8-5
1914





621977
121829
121846
CTTATTAATTATCTGCAC
73
2150
2167
5-8-5
1915





621978
121833
121850
GCTTCTTATTAATTATCT
68
2154
2171
5-8-5
1916





621979
121836
121853
CCAGCTTCTTATTAATTA
44
2157
2174
5-8-5
1917





621980
121839
121856
GATCCAGCTTCTTATTAA
31
2160
2177
5-8-5
1918





621981
121842
121859
TAAGATCCAGCTTCTTAT
44
2163
2180
5-8-5
1919





621982
121845
121862
TGCTAAGATCCAGCTTCT
69
2166
2183
5-8-5
1920





621983
121848
121865
CGTTGCTAAGATCCAGCT
82
2169
2186
5-8-5
1921





621984
121864
121881
CCACACTTGGACTGGACG
73
2185
2202
5-8-5
1922





621985
121867
121884
GAGCCACACTTGGACTGG
80
2188
2205
5-8-5
1923





621986
121870
121887
TTTGAGCCACACTTGGAC
59
2191
2208
5-8-5
1924





621987
121873
121890
TCCTTTGAGCCACACTTG
66
2194
2211
5-8-5
1925





621988
121876
121893
TTATCCTTTGAGCCACAC
77
2197
2214
5-8-5
1926





621989
121879
121896
ATATTATCCTTTGAGCCA
54
2200
2217
5-8-5
1927





621990
121882
121899
TTGATATTATCCTTTGAG
69
2203
2220
5-8-5
1928





621991
121885
121902
TGTTTGATATTATCCTTT
92
2206
2223
5-8-5
1929





621992
121903
121920
CTGCCGCCTCCCGGGACG
51
2224
2241
5-8-5
1930





621993
121906
121923
ACACTGCCGCCTCCCGGG
70
2227
2244
5-8-5
1931





621998
125764
125781
GGTTTGTAGACTATTTGC
76
2245
2262
5-8-5
1932





621999
125767
125784
ACTGGTTTGTAGACTATT
62
2248
2265
5-8-5
1933





622000
125770
125787
TCAACTGGTTTGTAGACT
39
2251
2268
5-8-5
1934





622001
125777
125794
GCTCAGGTCAACTGGTTT
87
2258
2275
5-8-5
1935





622002
125780
125797
CTTGCTCAGGTCAACTGG
53
2261
2278
5-8-5
1936





622003
125783
125800
CACCTTGCTCAGGTCAAC
68
2264
2281
5-8-5
1937





622004
125805
125822
CTAATGAGCCACACTTGG
51
2286
2303
5-8-5
1938





622005
125808
125825
TGCCTAATGAGCCACACT
65
2289
2306
5-8-5
1939





622006
125811
125828
TGTTGCCTAATGAGCCAC
69
2292
2309
5-8-5
1940





622007
125814
125831
GGATGTTGCCTAATGAGC
70
2295
2312
5-8-5
1941





622008
125817
125834
GATGGATGTTGCCTAATG
61
2298
2315
5-8-5
1942





622009
125820
125837
TATGATGGATGTTGCCTA
44
2301
2318
5-8-5
1943





622010
125823
125840
GTTTATGATGGATGTTGC
57
2304
2321
5-8-5
1944





622011
125826
125843
CTGGTTTATGATGGATGT
26
2307
2324
5-8-5
1945





622015
130141
130158
TTTACTTCCACCTGGCCA
36
2329
2346
5-8-5
1946





622016
130144
130161
GATTTTACTTCCACCTGG
49
2332
2349
5-8-5
1947





622017
130147
130164
TCAGATTTTACTTCCACC
76
2335
2352
5-8-5
1948





622018
130150
130167
TTCTCAGATTTTACTTCC
24
2338
2355
5-8-5
1949





622019
130153
130170
AGCTTCTCAGATTTTACT
30
2341
2358
5-8-5
1950





622020
130156
130173
TCAAGCTTCTCAGATTTT
39
2344
2361
5-8-5
1951





622021
130159
130176
AAGTCAAGCTTCTCAGAT
2
2347
2364
5-8-5
1952





622022
130162
130179
TTGAAGTCAAGCTTCTCA
53
2350
2367
5-8-5
1953





622023
130165
130182
TCCTTGAAGTCAAGCTTC
39
2353
2370
5-8-5
1954





622024
130168
130185
CTGTCCTTGAAGTCAAGC
19
2356
2373
5-8-5
1955





622025
130171
130188
ACTCTGTCCTTGAAGTCA
39
2359
2376
5-8-5
1956





622026
130174
130191
TGGACTCTGTCCTTGAAG
36
2362
2379
5-8-5
1957





622027
130177
130194
GACTGGACTCTGTCCTTG
75
2365
2382
5-8-5
1958





622028
130180
130197
TTCGACTGGACTCTGTCC
29
2368
2385
5-8-5
1959





622029
130183
130200
ATCTTCGACTGGACTCTG
33
2371
2388
5-8-5
1960





622030
130186
130203
CCAATCTTCGACTGGACT
49
2374
2391
5-8-5
1961





622031
130189
130206
GACCCAATCTTCGACTGG
74
2377
2394
5-8-5
1962





622032
130192
130209
AGGGACCCAATCTTCGAC
79
2380
2397
5-8-5
1963





622033
130195
130212
TCCAGGGACCCAATCTTC
77
2383
2400
5-8-5
1964





622034
130198
130215
TTGTCCAGGGACCCAATC
68
2386
2403
5-8-5
1965





622035
130201
130218
ATATTGTCCAGGGACCCA
6
2389
2406
5-8-5
1966





622036
130204
130221
GTGATATTGTCCAGGGAC
86
2392
2409
5-8-5
1967





622037
130207
130224
TGGGTGATATTGTCCAGG
68
2395
2412
5-8-5
1968





622038
130225
130242
TTTCCTCCGCCAGGGACG
77
2413
2430
5-8-5
1969





622039
130228
130245
TTATTTCCTCCGCCAGGG
52
2416
2433
5-8-5
1970





622040
130231
130248
TTTTTATTTCCTCCGCCA
61
2419
2436
5-8-5
1971
















TABLE 37







Inhibition of tau mRNA by 5-10-5 MOE and 5-8-5 MOE


gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID


SEQ ID
SEQ ID




ISIS
NO: 1
NO: 1

%
NO: 2
NO: 2

SEQ


NO
start site
stop site
Sequence
inhibition
start site
stop site
Motif
ID NO:


















613412
73879
73898
GTGATCTTCCATCACTTCGA
89
345
364
5-10-5
25





620887
98891
98908
GTTTTCAAACACACCTTC
98
n/a
n/a
5-8-5
665



98928
98945


n/a
n/a





622043
n/a
n/a
GGGTTTCAATCTTTTTAT
65
2430
2447
5-8-5
1972





622044
135477
135494
GTCAGCTTGTGGGTTTCA
86
2440
2457
5-8-5
1973





622045
135480
135497
AAGGTCAGCTTGTGGGTT
49
2443
2460
5-8-5
1974





622046
135484
135501
GCGGAAGGTCAGCTTGTG
26
2447
2464
5-8-5
1975





622047
135488
135505
TCTCGCGGAAGGTCAGCT
54
2451
2468
5-8-5
1976





622048
135491
135508
CGTTCTCGCGGAAGGTCA
63
2454
2471
5-8-5
1977





622049
135507
135524
TCTGTCTTGGCTTTGGCG
30
2470
2487
5-8-5
1978





622050
135510
135527
TGGTCTGTCTTGGCTTTG
72
2473
2490
5-8-5
1979





622051
135513
135530
CCGTGGTCTGTCTTGGCT
75
2476
2493
5-8-5
1980





622052
135516
135533
GCCCCGTGGTCTGTCTTG
39
2479
2496
5-8-5
1981





622053
135527
135544
ACACGATCTCCGCCCCGT
80
2490
2507
5-8-5
1982





622054
135530
135547
TGTACACGATCTCCGCCC
72
2493
2510
5-8-5
1983





622055
135533
135550
ACTTGTACACGATCTCCG
30
2496
2513
5-8-5
1984





622056
135536
135553
GCGACTTGTACACGATCT
72
2499
2516
5-8-5
1985





622057
135539
135556
CTGGCGACTTGTACACGA
65
2502
2519
5-8-5
1986





622058
135542
135559
CCACTGGCGACTTGTACA
35
2505
2522
5-8-5
1987





622059
135545
135562
ACACCACTGGCGACTTGT
46
2508
2525
5-8-5
1988





622060
135548
135565
CAGACACCACTGGCGACT
61
2511
2528
5-8-5
1989





622061
135551
135568
CCCCAGACACCACTGGCG
74
2514
2531
5-8-5
1990





622062
135554
135571
TGTCCCCAGACACCACTG
38
2517
2534
5-8-5
1991





622063
135572
135589
TGAGATGCCGTGGAGACG
36
2535
2552
5-8-5
1992





622064
135575
135592
TGCTGAGATGCCGTGGAG
34
2538
2555
5-8-5
1993





622065
135599
135616
CGATGCTGCCGGTGGAGG
43
2562
2579
5-8-5
1994





622066
135602
135619
TGTCGATGCTGCCGGTGG
51
2565
2582
5-8-5
1995





622067
135605
135622
CCATGTCGATGCTGCCGG
66
2568
2585
5-8-5
1996





622068
135608
135625
CTACCATGTCGATGCTGC
68
2571
2588
5-8-5
1997





622069
135611
135628
AGTCTACCATGTCGATGC
56
2574
2591
5-8-5
1998





622070
135614
135631
GCGAGTCTACCATGTCGA
68
2577
2594
5-8-5
1999





622071
135654
135671
AGGGAGGCAGACACCTCG
24
2617
2634
5-8-5
2000





622072
135657
135674
GCCAGGGAGGCAGACACC
73
2620
2637
5-8-5
2001





622073
135661
135678
CTTGGCCAGGGAGGCAGA
50
2624
2641
5-8-5
2002





622074
135664
135681
CTGCTTGGCCAGGGAGGC
44
2627
2644
5-8-5
2003





622075
135667
135684
ACCCTGCTTGGCCAGGGA
18
2630
2647
5-8-5
2004





622076
135678
135695
CCTGATCACAAACCCTGC
65
2641
2658
5-8-5
2005





622077
135681
135698
GGGCCTGATCACAAACCC
82
2644
2661
5-8-5
2006





622078
135697
135714
TTATTGACCGCCCCAGGG
42
2660
2677
5-8-5
2007





622079
135700
135717
CAATTATTGACCGCCCCA
54
2663
2680
5-8-5
2008





622080
135703
135720
CCACAATTATTGACCGCC
95
2666
2683
5-8-5
2009





622081
135706
135723
TCTCCACAATTATTGACC
63
2669
2686
5-8-5
2010





622082
135709
135726
TCCTCTCCACAATTATTG
41
2672
2689
5-8-5
2011





622083
135712
135729
CTCTCCTCTCCACAATTA
76
2675
2692
5-8-5
2012





622084
135715
135732
ATTCTCTCCTCTCCACAA
57
2678
2695
5-8-5
2013





622085
135718
135735
CTCATTCTCTCCTCTCCA
72
2681
2698
5-8-5
2014





622086
135721
135738
TCTCTCATTCTCTCCTCT
69
2684
2701
5-8-5
2015





622087
135724
135741
CACTCTCTCATTCTCTCC
75
2687
2704
5-8-5
2016





622088
135727
135744
CCACACTCTCTCATTCTC
90
2690
2707
5-8-5
2017





622089
135730
135747
TTTCCACACTCTCTCATT
70
2693
2710
5-8-5
2018





622090
135733
135750
TTTTTTCCACACTCTCTC
76
2696
2713
5-8-5
2019





622091
135737
135754
CTTTTTTTTTCCACACTC
84
2700
2717
5-8-5
2020





622092
135740
135757
ATTCTTTTTTTTTCCACA
67
2703
2720
5-8-5
2021





622093
135746
135763
GTCATTATTCTTTTTTTT
54
2709
2726
5-8-5
2022





622094
135749
135766
CGGGTCATTATTCTTTTT
82
2712
2729
5-8-5
2023





622095
135752
135769
GGCCGGGTCATTATTCTT
72
2715
2732
5-8-5
2024





622096
135783
135800
CTGCGAGGAGCAGCTGGG
52
2746
2763
5-8-5
2025





622097
135786
135803
GAACTGCGAGGAGCAGCT
59
2749
2766
5-8-5
2026





622098
135789
135806
ACCGAACTGCGAGGAGCA
77
2752
2769
5-8-5
2027





622099
135792
135809
TTAACCGAACTGCGAGGA
62
2755
2772
5-8-5
2028





622100
135795
135812
CAATTAACCGAACTGCGA
55
2758
2775
5-8-5
2029





622101
135798
135815
AACCAATTAACCGAACTG
59
2761
2778
5-8-5
2030





622102
135801
135818
ATTAACCAATTAACCGAA
71
2764
2781
5-8-5
2031





622103
135804
135821
GTGATTAACCAATTAACC
70
2767
2784
5-8-5
2032





622104
135807
135824
TAAGTGATTAACCAATTA
42
2770
2787
5-8-5
2033





622105
135810
135827
GGTTAAGTGATTAACCAA
42
2773
2790
5-8-5
2034





622106
135813
135830
GCAGGTTAAGTGATTAAC
78
2776
2793
5-8-5
2035





622107
135816
135833
AAAGCAGGTTAAGTGATT
38
2779
2796
5-8-5
2036





622108
135819
135836
ACAAAAGCAGGTTAAGTG
55
2782
2799
5-8-5
2037





622109
135822
135839
GTGACAAAAGCAGGTTAA
82
2785
2802
5-8-5
2038





622110
135825
135842
CGAGTGACAAAAGCAGGT
86
2788
2805
5-8-5
2039





622111
135828
135845
AGCCGAGTGACAAAAGCA
93
2791
2808
5-8-5
2040





622112
135831
135848
CAAAGCCGAGTGACAAAA
73
2794
2811
5-8-5
2041





622113
135834
135851
AGCCAAAGCCGAGTGACA
82
2797
2814
5-8-5
2042





622114
135837
135854
CCGAGCCAAAGCCGAGTG
82
2800
2817
5-8-5
2043





622115
135840
135857
GTCCCGAGCCAAAGCCGA
63
2803
2820
5-8-5
2044





622116
135843
135860
GAAGTCCCGAGCCAAAGC
59
2806
2823
5-8-5
2045





622117
135846
135863
TTTGAAGTCCCGAGCCAA
76
2809
2826
5-8-5
2046





622118
135849
135866
GATTTTGAAGTCCCGAGC
72
2812
2829
5-8-5
2047





622119
135852
135869
ACTGATTTTGAAGTCCCG
73
2815
2832
5-8-5
2048
















TABLE 38







Inhibition of tau mRNA by 5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID



SEQ



NO: 1 start
NO: 1

%

ID


ISIS NO
site
stop site
Sequence
inhibition
Motif
NO:
















620887
98891
98908
GTTTTCAAACACACCTTC
96
5-8-5
665



98928
98945





623853
12069
12086
TGTTTGGATTTCTATCGG
82
5-8-5
2049





623854
12077
12094
TGACATGGTGTTTGGATT
47
5-8-5
2050





623855
12079
12096
GCTGACATGGTGTTTGGA
77
5-8-5
2051





623856
12080
12097
CGCTGACATGGTGTTTGG
78
5-8-5
2052





623857
12081
12098
TCGCTGACATGGTGTTTG
83
5-8-5
2053





623858
12082
12099
CTCGCTGACATGGTGTTT
84
5-8-5
2054





623859
12083
12100
ACTCGCTGACATGGTGTT
74
5-8-5
2055





623860
12084
12101
GACTCGCTGACATGGTGT
89
5-8-5
2056





623861
12085
12102
GGACTCGCTGACATGGTG
77
5-8-5
2057





623862
16753
16770
TTATCCAGGAAAAATATT
21
5-8-5
2058





623863
16756
16773
GGATTATCCAGGAAAAAT
86
5-8-5
2059





623864
16758
16775
TAGGATTATCCAGGAAAA
76
5-8-5
2060





623865
16759
16776
ATAGGATTATCCAGGAAA
84
5-8-5
2061





623866
16760
16777
TATAGGATTATCCAGGAA
62
5-8-5
2062





623867
16761
16778
CTATAGGATTATCCAGGA
87
5-8-5
2063





623868
16763
16780
CCCTATAGGATTATCCAG
76
5-8-5
2064





623869
16764
16781
TCCCTATAGGATTATCCA
34
5-8-5
2065





623870
16766
16783
TATCCCTATAGGATTATC
56
5-8-5
2066





623871
16769
16786
AGTTATCCCTATAGGATT
16
5-8-5
2067





623872
16774
16791
AGGCAAGTTATCCCTATA
86
5-8-5
2068





623873
17416
17433
ATCAGCACCTGACTGCGG
78
5-8-5
2069





623874
17421
17438
TTCAGATCAGCACCTGAC
91
5-8-5
2070





623875
17424
17441
GACTTCAGATCAGCACCT
92
5-8-5
2071





623876
17426
17443
AAGACTTCAGATCAGCAC
92
5-8-5
2072





623877
17427
17444
AAAGACTTCAGATCAGCA
95
5-8-5
2073





623878
17428
17445
CAAAGACTTCAGATCAGC
96
5-8-5
2074





623879
17429
17446
CCAAAGACTTCAGATCAG
86
5-8-5
2075





623880
17430
17447
ACCAAAGACTTCAGATCA
65
5-8-5
2076





623881
17431
17448
CACCAAAGACTTCAGATC
51
5-8-5
2077





623882
17432
17449
CCACCAAAGACTTCAGAT
55
5-8-5
2078





623883
17434
17451
GCCCACCAAAGACTTCAG
77
5-8-5
2079





623884
17437
17454
TCAGCCCACCAAAGACTT
56
5-8-5
2080





623885
17442
17459
TAAAGTCAGCCCACCAAA
2
5-8-5
2081





623886
20943
20960
GTTATTGGGACTGACCTT
69
5-8-5
2082





623887
20948
20965
GATTTGTTATTGGGACTG
78
5-8-5
2083





613412
73879
73898
GTGATCTTCCATCACTTCGA
89
5-8-5
25





623811
122370
122387
CAGTGGAGCCACTCAACG
41
5-8-5
2084





623812
122380
122397
CACCTGTCCACAGTGGAG
58
5-8-5
2085





623813
122391
122408
AACAAACGGGTCACCTGT
63
5-8-5
2086





623814
122445
122462
CGTGTAGGAGCAGCAGCT
81
5-8-5
2087





623815
122538
122555
CTTTGGTTTGGCTCTTTG
64
5-8-5
2088





623816
123104
123121
GCTGGTGGGAGAGGAGCC
9
5-8-5
2089





623817
123288
123305
ATGCGGGTGGCTGCCTCA
65
5-8-5
2090





623818
123293
123310
GCTGGATGCGGGTGGCTG
24
5-8-5
2091





623819
123341
123358
GTGCTCAGGGCAGGAAGC
45
5-8-5
2092





623820
123590
123607
CAAAGCTCAAACAGCTGA
56
5-8-5
2093





623821
123601
123618
AGAACCAGGATCAAAGCT
41
5-8-5
2094





623822
123704
123721
GCTCCGCCTCAGCAGCAC
71
5-8-5
2095





623823
123722
123739
GTGTGCACTCTCTCCCCA
45
5-8-5
2096





623824
123877
123894
GGCTAGCCCGCAGACGAG
31
5-8-5
2097





623825
123976
123993
CCTGTGAAGGTGCTCAGA
58
5-8-5
2098





623826
124033
124050
GATCCAGTGCCCCCAGAT
54
5-8-5
2099





623827
124057
124074
GGAGAGGCTAGGGCTCAG
68
5-8-5
2100





623828
124223
124240
AGAGGAGTGGATGGCAGT
37
5-8-5
2101





623829
124293
124310
TGGCCTGGGTGAGGTAAC
23
5-8-5
2102





623830
124296
124313
CTCTGGCCTGGGTGAGGT
28
5-8-5
2103





623831
124596
124613
AGGGCAGGTGGTGGTTTC
8
5-8-5
2104





623832
124780
124797
GACATTCCTGGAGTCCCC
83
5-8-5
2105





623833
124859
124876
TGGCAGACAGACAGGTCC
87
5-8-5
2106





623834
124909
124926
AGTCAAAGAACCAGCTCC
68
5-8-5
2107





623835
124949
124966
TCCCTCTGGGAATGATGA
41
5-8-5
2108





623836
124965
124982
GCCTCCAGGGCACCGCTC
76
5-8-5
2109





623837
124972
124989
GCCTGTGGCCTCCAGGGC
43
5-8-5
2110





623838
124977
124994
AGGAGGCCTGTGGCCTCC
11
5-8-5
2111





623839
125075
125092
AATAGGAACAAAGCAACA
25
5-8-5
2112





623840
125086
125103
CTGTCTTTAGCAATAGGA
84
5-8-5
2113





623841
125100
125117
TGTCCTGGACATTCCTGT
66
5-8-5
2114





623842
125291
125308
TGGAAAGGCAGGAGTGGG
0
5-8-5
2115





623843
125306
125323
TCTGAAAAATCTTGCTGG
51
5-8-5
2116





623844
125310
125327
AGCATCTGAAAAATCTTG
82
5-8-5
2117





623845
125322
125339
ATGAGTATGCACAGCATC
68
5-8-5
2118





623846
125337
125354
AAAGTGATCAATATGATG
33
5-8-5
2119





623847
125390
125407
GTCACTCCCTTTCCTGAC
68
5-8-5
2120





623848
125408
125425
ACGCTTAAGTGTAAAAAT
38
5-8-5
2121





623849
125557
125574
AAATGTGTTGTCGAAATT
19
5-8-5
2122





623850
125567
125584
CAGGGTGGAAAAATGTGT
33
5-8-5
2123





623851
125598
125615
TTCCCAGCTGCCATGAGG
33
5-8-5
2124





623852
125743
125760
TGGAGATGAGAGAGGAGG
0
5-8-5
2125
















TABLE 39







Inhibition of Tau mRNA by 5-8-5 MOE gapmers targeting SEQ ID NO: 1














SEQ ID
SEQ ID



SEQ



NO: 1 start
NO: 1 stop

%

ID


ISIS NO
site
site
Sequence
inhibition
Motif
NO:
















623661
6196
6213
GCGCTTACCTGATAGTCG
36
5-8-5
2126





613412
73879
73898
GTGATCTTCCATCACTTCGA
87
5-8-5
25





623662
73981
73998
TCCACTAACCTTTCAGGC
30
5-8-5
2127





623663
83368
83385
GGGAGATTCTGGAACACA
72
5-8-5
2128





623664
83455
83472
GGGCCCACCTTCCGCTGT
22
5-8-5
2129





623665
85895
85912
CTGTCACATCTAGAAACC
21
5-8-5
2130





623666
85982
85999
TACCCTCACCTGTGGTTC
0
5-8-5
2131





623667
89885
89902
CTTCTTCAGCTGGTGTAT
22
5-8-5
2132





623668
89951
89968
TTCACTGACCTTGGGTCA
0
5-8-5
2133





623669
94688
94705
TTTCAGGCTCTGTGTGGA
61
5-8-5
2134





623670
95441
95458
GACACAGACCTTTGAGTT
53
5-8-5
2135





623671
98550
98567
CCATGCGAGCTGATAAAA
39
5-8-5
2136





621344
98607
98624
GTCAGCTTACCTTGGCTT
34
5-8-5
814





620887
98891
98908
GTTTTCAAACACACCTTC
94
5-8-5
665



98928
98945





623672
101387
101404
GTGGATGTCTTAAACATA
89
5-8-5
2137





623673
101586
101603
TTTCCTTACCTTGAGTTT
0
5-8-5
2138





623674
102970
102987
ATCAGCCCCCTGTAAATG
7
5-8-5
2139





623675
103097
103114
TCTTCTTACCAGAGCTGG
0
5-8-5
2140





623676
107909
107926
GAGGTTCACCTGGGAAGG
0
5-8-5
2141





623677
108175
108192
CACTCTCACCTTCCCGCC
6
5-8-5
2142





623712
108255
108272
CCTCCAGGCGCAGCCCTA
92
5-8-5
2143





623713
108413
108430
CCTGAGGAGGGCACTCAC
28
5-8-5
2144





623714
108530
108547
GGAACCGCTGTGGGTGCC
60
5-8-5
2145





623715
108565
108582
TGGGTGGCAGTGTATTCT
63
5-8-5
2146





623716
108690
108707
GGAGAGCTCGCGAGCACC
69
5-8-5
2147





623717
108896
108913
GAGGTGGCTACCCACGGC
59
5-8-5
2148





623718
109561
109578
CCAGAAGGCCCAGCACAT
51
5-8-5
2149





623719
109574
109591
CGAGGCCCAGTGCCCAGA
59
5-8-5
2150





623720
109607
109624
AGGCCCAGGGTTCCAGAA
55
5-8-5
2151





623721
109623
109640
AGGCAAGCTGACACGCAG
73
5-8-5
2152





623722
110101
110118
CAGGAAAAGGCCGGACCT
37
5-8-5
2153





623723
110103
110120
AGCAGGAAAAGGCCGGAC
78
5-8-5
2154





623724
110182
110199
TTCCCCAAGGTCTCTAAC
14
5-8-5
2155





623725
110413
110430
AGGAAAGGCCAGTGAGGG
8
5-8-5
2156





623726
110500
110517
TTGTTATGTGACTTGAGG
74
5-8-5
2157





623727
110630
110647
ATTCCCCACCATGGGACA
17
5-8-5
2158





623728
110635
110652
AGGACATTCCCCACCATG
9
5-8-5
2159





623729
110648
110665
AGATAAGGAGAGAAGGAC
15
5-8-5
2160





623730
110755
110772
ATGCTCAGTGTGGTCAGA
73
5-8-5
2161





623731
110852
110869
AGGGCCGGCCACCTGCAC
56
5-8-5
2162





623732
110919
110936
TCTGTCTCTGGCAACCTG
85
5-8-5
2163





623733
110954
110971
AACAGGGAAGCTACTTCC
6
5-8-5
2164





623734
111077
111094
GGGCCTTCAATGGAAAGT
21
5-8-5
2165





623735
111153
111170
GGTCGCCTGACTCTCACC
66
5-8-5
2166





623736
111174
111191
CCCTTTCTACACTTGGCA
81
5-8-5
2167





623678
121820
121837
TATCTGCACCTTTGGTAG
30
5-8-5
2168





623685
121830
121847
TCTTATTAATTATCTGCA
81
5-8-5
2169





623686
121831
121848
TTCTTATTAATTATCTGC
74
5-8-5
2170





623687
121834
121851
AGCTTCTTATTAATTATC
46
5-8-5
2171





623688
121835
121852
CAGCTTCTTATTAATTAT
6
5-8-5
2172





623689
121837
121854
TCCAGCTTCTTATTAATT
4
5-8-5
2173





623690
121838
121855
ATCCAGCTTCTTATTAAT
2
5-8-5
2174





623691
121840
121857
AGATCCAGCTTCTTATTA
2
5-8-5
2175





623692
121841
121858
AAGATCCAGCTTCTTATT
17
5-8-5
2176





623693
121843
121860
CTAAGATCCAGCTTCTTA
41
5-8-5
2177





623694
121844
121861
GCTAAGATCCAGCTTCTT
75
5-8-5
2178





623695
121846
121863
TTGCTAAGATCCAGCTTC
50
5-8-5
2179





623696
121847
121864
GTTGCTAAGATCCAGCTT
52
5-8-5
2180





623697
121865
121882
GCCACACTTGGACTGGAC
88
5-8-5
2181





623698
121866
121883
AGCCACACTTGGACTGGA
89
5-8-5
2182





623699
121868
121885
TGAGCCACACTTGGACTG
59
5-8-5
2183





623700
121869
121886
TTGAGCCACACTTGGACT
62
5-8-5
2184





623701
121872
121889
CCTTTGAGCCACACTTGG
69
5-8-5
2185





623702
121874
121891
ATCCTTTGAGCCACACTT
64
5-8-5
2186





623703
121875
121892
TATCCTTTGAGCCACACT
69
5-8-5
2187





623704
121877
121894
ATTATCCTTTGAGCCACA
76
5-8-5
2188





623705
121878
121895
TATTATCCTTTGAGCCAC
76
5-8-5
2189





623706
121880
121897
GATATTATCCTTTGAGCC
54
5-8-5
2190





623707
121881
121898
TGATATTATCCTTTGAGC
65
5-8-5
2191





623708
121884
121901
GTTTGATATTATCCTTTG
94
5-8-5
2192





623709
121886
121903
GTGTTTGATATTATCCTT
85
5-8-5
2193





623710
121887
121904
CGTGTTTGATATTATCCT
78
5-8-5
2194





623711
121904
121921
ACTGCCGCCTCCCGGGAC
50
5-8-5
2195





623679
121913
121930
GGTACTCACACTGCCGCC
72
5-8-5
1654





623680
125753
125770
TATTTGCACCTGGAGATG
0
5-8-5
2196





623681
125835
125852
CAGGGCTACCTGGTTTAT
26
5-8-5
2197





623682
130128
130145
GGCCACCTCCTAGAACAC
8
5-8-5
2198





623683
130241
130258
CCCCTTTACCTTTTTATT
0
5-8-5
2199





623684
135466
135483
GGTTTCAATCTGCAAGAA
39
5-8-5
2200









Example 11: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells

Gapmers from studies described above exhibiting significant in vitro inhibition of tau mRNA were selected and tested at various doses in SH-SY5Y cells. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.938 μM, 0.1.875 μM, 3.750 μM, 7.500 μM, and 15.00 μM concentrations of antisense oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
















TABLE 40







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613369
57
67
81
91
96



613370
83
91
96
98
97



613371
68
78
95
95
97



613412
41
55
73
86
96



620887
53
76
90
93
95



621238
58
80
76
93
96



621251
68
77
87
89
90



621263
57
69
81
92
95



621302
46
66
80
78
87



621309
56
64
84
86
90



621311
38
54
69
77
86



621312
42
36
57
83
90



621318
40
54
71
87
87



621346
42
46
60
64
78



621870
42
62
76
85
92
























TABLE 41







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
14
45
68
84
92



620887
57
74
87
93
95



620888
63
78
76
94
96



620890
76
86
92
96
97



620891
67
79
91
96
96



620918
38
55
65
81
88



620940
38
52
73
89
96



620947
26
47
58
78
87



620958
32
38
61
79
93



621013
49
75
86
92
94



621049
38
45
68
78
80



621056
40
45
70
81
90



621078
23
28
48
67
84



621082
22
32
53
62
90



621088
26
43
59
80
92
























TABLE 42







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
17
45
62
84
89



620887
52
71
91
96
95



621147
28
37
59
69
84



621181
39
61
78
85
83



621183
31
43
64
72
87



621836
24
39
64
81
93



621838
33
59
70
91
97



621844
20
38
64
80
91



621845
30
37
62
72
90



621861
19
35
59
80
92



621869
30
56
64
83
91



622125
14
28
52
73
85



622129
26
36
60
71
84



622170
18
42
72
77
91



622196
11
39
59
74
89
























TABLE 43







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
21
42
64
82
95



620887
60
79
92
95
95



623746
19
43
54
81
91



623750
50
63
75
83
90



623758
37
54
72
80
82



623805
25
33
48
74
86



623807
15
29
44
75
88



623833
16
60
65
86
89



623860
51
71
80
85
85



623867
9
51
48
74
86



623874
24
28
72
84
94



623875
38
62
80
93
95



623876
40
63
83
93
95



623877
59
76
92
97
96



623878
50
73
90
94
95
























TABLE 44







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
8
25
58
77
87



620887
49
77
87
95
86



621360
27
46
68
83
90



621361
52
73
89
92
94



621363
28
45
71
76
77



621364
39
58
77
90
95



621407
38
60
75
82
78



621414
41
66
80
90
83



621424
54
72
87
94
90



621425
8
22
52
74
84



621426
33
46
63
84
91



621740
0
1
6
33
65



621793
4
15
30
41
52



621794
29
38
57
78
85



621810
15
39
45
73
79
























TABLE 45







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
40
72
78
92
94



620887
58
79
92
96
97



621431
62
63
79
85
87



621441
71
80
84
95
95



621446
53
70
82
89
94



621448
46
60
85
89
93



621454
63
70
81
89
94



621484
60
65
75
88
93



621570
26
55
81
79
90



621576
23
34
71
75
80



621578
30
45
67
81
90



621579
14
28
49
69
88



621598
38
55
73
88
94



621670
37
57
79
82
92



621675
31
35
51
79
87
























TABLE 46







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
21
38
70
84
92



620887
50
63
83
91
96



621894
35
16
32
54
70



621895
23
48
61
82
89



621961
8
14
47
57
75



621983
33
52
63
72
83



621991
36
56
68
86
92



622001
8
33
60
77
90



622080
29
53
69
67
93



622088
20
45
66
84
91



622091
14
33
47
70
82



622110
25
24
64
80
90



622111
17
41
74
86
92



623747
12
47
53
82
87
























TABLE 47







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
22
34
49
77
77



620887
51
68
83
94
95



623672
33
43
64
82
88



623697
37
53
59
80
90



623698
32
57
63
84
92



623708
47
68
82
88
95



623709
14
37
62
76
89



623712
22
45
70
86
92



623732
18
37
54
76
87



623756
23
38
68
86
94



623782
50
72
83
90
93



623791
58
71
87
93
95



623796
44
57
74
79
85



623808
30
55
73
84
91



623809
31
42
66
82
93










Example 12: Antisense Inhibition of Human Tau in HepG2 Cells by 5-10-5 MOE, 5-8-5 MOE, 4-8-6 MOE, or 6-8-4 MOE Gapmers

Antisense oligonucleotides were designed targeting a tau nucleic acid and were tested for their effects on tau mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. ISIS 613412 was also included in the assays. The results for each experiment are presented in separate tables shown below. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 8,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-8-5 MOE, 4-8-6 MOE, or 6-8-4 MOE gapmers. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 4-8-6 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising four and six nucleosides respectively. The 6-8-4 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising six and four nucleosides respectively. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkage motif throughout for each gapmer in the tables below, except for ISIS 613412, is 5′-sooosssssssssooss-3′, wherein each “s” represents a phosphorothioate internucleoside linkage and wherein each “o” represents a phosphodiester internucleoside linkage. The internucleoside linkage motif for ISIS 613412 is 5′-soooossssssssssooss-3′, wherein each “s” represents a phosphorothioate internucleoside linkage and wherein each “o” represents a phosphodiester internucleoside linkage. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000).









TABLE 48







Inhibition of tau mRNA by 5-10-5 MOE


gapmers targeting SEQ ID NO: 1














SEQ
SEQ







ID
ID



NO: 1
NO: 1



SEQ


ISIS
Start
Stop


%
ID


NO
Site
Site
Sequence
Motif
inhibition
NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
5-10-5
90
25





620887
98891
98908
GTTTTCAAACACACCTTC
5-10-5
93
665



98928
98945





623888
20951
20968
TTCGATTTGTTATTGGGA
5-10-5
79
2201





623889
20953
20970
ACTTCGATTTGTTATTGG
5-10-5
61
2202





623890
20954
20971
GACTTCGATTTGTTATTG
5-10-5
30
2203





623891
20955
20972
TGACTTCGATTTGTTATT
5-10-5
62
2204





623892
20956
20973
CTGACTTCGATTTGTTAT
5-10-5
60
2205





623893
20957
20974
GCTGACTTCGATTTGTTA
5-10-5
43
2206





623894
20958
20975
AGCTGACTTCGATTTGTT
5-10-5
83
2207





623895
20959
20976
CAGCTGACTTCGATTTGT
5-10-5
68
2208





623896
20961
20978
CCCAGCTGACTTCGATTT
5-10-5
11
2209





623897
20964
20981
ACGCCCAGCTGACTTCGA
5-10-5
65
2210





623898
27148
27165
TGCCTTATATATGCTGAA
5-10-5
82
2211





623899
27153
27170
TTACATGCCTTATATATG
5-10-5
31
2212





623900
27156
27173
CAGTTACATGCCTTATAT
5-10-5
33
2213





623901
27158
27175
TTCAGTTACATGCCTTAT
5-10-5
72
2214





623902
27159
27176
GTTCAGTTACATGCCTTA
5-10-5
92
2215





623903
27169
27186
AAAGTGCTGTGTTCAGTT
5-10-5
71
2216





623904
27174
27191
CCTCTAAAGTGCTGTGTT
5-10-5
35
2217





623905
28215
28232
GACTTTTCTCAATGTAAC
5-10-5
43
2218





623906
28220
28237
CTGCAGACTTTTCTCAAT
5-10-5
61
2219





623907
28226
28243
ACCTCTCTGCAGACTTTT
5-10-5
79
2220





623908
28227
28244
CACCTCTCTGCAGACTTT
5-10-5
81
2221





623909
28228
28245
GCACCTCTCTGCAGACTT
5-10-5
82
2222





623910
28229
28246
GGCACCTCTCTGCAGACT
5-10-5
81
2223





623911
28230
28247
TGGCACCTCTCTGCAGAC
5-10-5
36
2224





623912
28231
28248
CTGGCACCTCTCTGCAGA
5-10-5
11
2225





623913
28233
28250
TGCTGGCACCTCTCTGCA
5-10-5
51
2226





623914
28236
28253
TGATGCTGGCACCTCTCT
5-10-5
63
2227





623915
28241
28258
CCTTGTGATGCTGGCACC
5-10-5
79
2228





623916
75133
75150
TTTTTAGCATTAAAAGAG
5-10-5
0
2229





623917
75144
75161
GTGTTTTCTTATTTTTAG
5-10-5
80
2230





623918
75149
75166
GCAAGGTGTTTTCTTATT
5-10-5
55
2231





623919
86762
86779
TAGGCCTCTTCTGCATTT
5-10-5
27
2232





623920
86767
86784
CTGGCTAGGCCTCTTCTG
5-10-5
54
2233





623921
86770
86787
ATCCTGGCTAGGCCTCTT
5-10-5
69
2234





623922
86772
86789
AAATCCTGGCTAGGCCTC
5-10-5
67
2235





623923
86773
86790
GAAATCCTGGCTAGGCCT
5-10-5
55
2236





623924
86774
86791
TGAAATCCTGGCTAGGCC
5-10-5
64
2237





623925
86775
86792
GTGAAATCCTGGCTAGGC
5-10-5
77
2238





623926
86776
86793
GGTGAAATCCTGGCTAGG
5-10-5
57
2239





623927
86777
86794
TGGTGAAATCCTGGCTAG
5-10-5
8
2240





623928
86778
86795
CTGGTGAAATCCTGGCTA
5-10-5
45
2241





623929
86780
86797
TGCTGGTGAAATCCTGGC
5-10-5
63
2242





623930
86783
86800
CACTGCTGGTGAAATCCT
5-10-5
70
2243





623931
121716
121733
ACCCTGGACCCGCCTACT
5-10-5
49
2244





623932
121721
121738
GCGCCACCCTGGACCCGC
5-10-5
84
2245





623933
121724
121741
CATGCGCCACCCTGGACC
5-10-5
52
2246





623934
121726
121743
GACATGCGCCACCCTGGA
5-10-5
80
2247





623935
121727
121744
TGACATGCGCCACCCTGG
5-10-5
74
2248





623936
121728
121745
GTGACATGCGCCACCCTG
5-10-5
90
2249





623937
121729
121746
AGTGACATGCGCCACCCT
5-10-5
84
2250





623938
121730
121747
GAGTGACATGCGCCACCC
5-10-5
92
2251





623939
121731
121748
TGAGTGACATGCGCCACC
5-10-5
86
2252





623940
121732
121749
ATGAGTGACATGCGCCAC
5-10-5
64
2253





623941
121734
121751
CGATGAGTGACATGCGCC
5-10-5
76
2254





623942
121737
121754
TTTCGATGAGTGACATGC
5-10-5
60
2255





623943
121742
121759
TCCACTTTCGATGAGTGA
5-10-5
34
2256





623944
121938
121955
CAGCACGGCGCATGGGAC
5-10-5
26
2257





623945
121939
121956
ACAGCACGGCGCATGGGA
5-10-5
62
2258





623946
121940
121957
CACAGCACGGCGCATGGG
5-10-5
57
2259





621455
121941
121958
CCACAGCACGGCGCATGG
5-10-5
44
1232





623804
121942
121959
GCCACAGCACGGCGCATG
5-10-5
85
1657





623947
121943
121960
AGCCACAGCACGGCGCAT
5-10-5
83
2260





623948
121944
121961
AAGCCACAGCACGGCGCA
5-10-5
56
2261





623949
121946
121963
TCAAGCCACAGCACGGCG
5-10-5
58
2262





623950
121949
121966
AATTCAAGCCACAGCACG
5-10-5
52
2263





623951
121954
121971
CTAATAATTCAAGCCACA
5-10-5
56
2264





623952
125424
125441
GACATTTGCTCAGCAAAC
5-10-5
74
2265





623953
125426
125443
CAGACATTTGCTCAGCAA
5-10-5
62
2266





623954
125427
125444
CCAGACATTTGCTCAGCA
5-10-5
75
2267





623955
125428
125445
CCCAGACATTTGCTCAGC
5-10-5
65
2268





623956
125429
125446
ACCCAGACATTTGCTCAG
5-10-5
30
2269





623957
125430
125447
GACCCAGACATTTGCTCA
5-10-5
30
2270





623958
125431
125448
AGACCCAGACATTTGCTC
5-10-5
41
2271





623959
125432
125449
AAGACCCAGACATTTGCT
5-10-5
69
2272





623960
125434
125451
GCAAGACCCAGACATTTG
5-10-5
73
2273





623961
125437
125454
TGTGCAAGACCCAGACAT
5-10-5
62
2274





623962
125442
125459
GTCATTGTGCAAGACCCA
5-10-5
87
2275
















TABLE 49







Inhibition of tau mRNA by 5-10-5 MOE, 5-8-5 MOE, 4-8-6


MOE, and 6-8-4 gapmers targeting SEQ ID NO: 1














SEQ ID








NO: 1
SEQ ID



SEQ



Start
NO: 1


%
ID


ISIS NO
Site
Stop Site
Sequence
Motif
inhibition
NO
















613412
73879
73898
GTGATCTTCCATCACTTCGA
5-10-5
87
25





620887
98891
98908
GTTTTCAAACACACCTTC
5-8-5
96
665



98928
98945





620888
98881
98898
ACACCTTCATTTACTGTC
5-8-5
96
897



98918
98935





620889
98890
98907
TTTTCAAACACACCTTCA
5-8-5
85
898



98927
98944





620890
98892
98909
GGTTTTCAAACACACCTT
5-8-5
95
899



98929
98946





620891
98893
98910
TGGTTTTCAAACACACCT
5-8-5
96
900



98930
98947





623963
73877
73894
TCTTCCATCACTTCGAAC
5-8-5
58
2276





623964
73878
73895
ATCTTCCATCACTTCGAA
5-8-5
44
2277





623965
73880
73897
TGATCTTCCATCACTTCG
5-8-5
51
2278





623966
73881
73898
GTGATCTTCCATCACTTC
5-8-5
45
2279





623967
73931
73948
ATGGTGTAGCCCCCCTGA
5-8-5
66
2280





623968
73932
73949
CATGGTGTAGCCCCCCTG
5-8-5
87
2281





623969
73934
73951
TGCATGGTGTAGCCCCCC
5-8-5
94
2282





623970
73935
73952
GTGCATGGTGTAGCCCCC
5-8-5
90
2283





623971
73957
73974
CCGTGTCACCCTCTTGGT
5-8-5
83
2284





623972
73958
73975
TCCGTGTCACCCTCTTGG
5-8-5
79
2285





623973
73960
73977
CGTCCGTGTCACCCTCTT
5-8-5
92
2286





623974
83429
83446
TCTTAGCATCAGAGGTTT
5-8-5
70
2287





623975
83430
83447
CTCTTAGCATCAGAGGTT
5-8-5
76
2288





623976
83432
83449
TGCTCTTAGCATCAGAGG
5-8-5
72
2289





623977
83433
83450
GTGCTCTTAGCATCAGAG
5-8-5
86
2290





623978
95266
95283
CTCCTCCGAGTGCGCCTG
5-8-5
24
2291





623979
95267
95284
GCTCCTCCGAGTGCGCCT
5-8-5
77
2292





623980
95269
95286
ATGCTCCTCCGAGTGCGC
5-8-5
58
2293





623981
95270
95287
AATGCTCCTCCGAGTGCG
5-8-5
79
2294





623982
95272
95289
CAAATGCTCCTCCGAGTG
5-8-5
34
2295





623983
98557
98574
TTACTGACCATGCGAGCT
5-8-5
79
2296





623984
98558
98575
TTTACTGACCATGCGAGC
5-8-5
73
2297





623985
98560
98577
CTTTTACTGACCATGCGA
5-8-5
85
2298





623986
98561
98578
GCTTTTACTGACCATGCG
5-8-5
91
2299





623987
98563
98580
TTGCTTTTACTGACCATG
5-8-5
96
2300





623988
135784
135801
ACTGCGAGGAGCAGCTGG
5-8-5
43
2301





623989
135785
135802
AACTGCGAGGAGCAGCTG
5-8-5
31
2302





623990
135787
135804
CGAACTGCGAGGAGCAGC
5-8-5
62
2303





623991
135788
135805
CCGAACTGCGAGGAGCAG
5-8-5
73
2304





623992
135790
135807
AACCGAACTGCGAGGAGC
5-8-5
73
2305





623993
135868
135885
TGCTCTTACTCCCATCAC
5-8-5
59
2306





623994
135869
135886
TTGCTCTTACTCCCATCA
5-8-5
85
2307





623995
135871
135888
ATTTGCTCTTACTCCCAT
5-8-5
77
2308





623996
135872
135889
AATTTGCTCTTACTCCCA
5-8-5
80
2309





625423
98879
98896
ACCTTCATTTACTGTCAG
5-8-5
90
2310





625424
98880
98897
CACCTTCATTTACTGTCA
5-8-5
94
2311





625425
98882
98899
CACACCTTCATTTACTGT
5-8-5
89
2312



98919
98936

5-8-5





625426
98883
98900
ACACACCTTCATTTACTG
5-8-5
87
2313



98920
98937





625427
98884
98901
AACACACCTTCATTTACT
5-8-5
86
2314



98921
98938





625428
98885
98902
AAACACACCTTCATTTAC
5-8-5
49
2315



98922
98939





625429
98886
98903
CAAACACACCTTCATTTA
5-8-5
66
2316



98923
98940





625430
98887
98904
TCAAACACACCTTCATTT
5-8-5
70
2317



98924
98941





625431
98888
98905
TTCAAACACACCTTCATT
5-8-5
74
2318



98925
98942





625432
98889
98906
TTTCAAACACACCTTCAT
5-8-5
81
2319



98926
98943





625433
98894
98911
TTGGTTTTCAAACACACC
5-8-5
92
2320





625434
75128
75145
AGCATTAAAAGAGAAAAG
5-8-5
13
2321





625435
75136
75153
TTATTTTTAGCATTAAAA
5-8-5
0
2322





625436
75138
75155
TCTTATTTTTAGCATTAA
5-8-5
52
2323





625437
75139
75156
TTCTTATTTTTAGCATTA
5-8-5
86
2324





625438
75140
75157
TTTCTTATTTTTAGCATT
5-8-5
40
2325





625439
75141
75158
TTTTCTTATTTTTAGCAT
5-8-5
0
2326





625440
75142
75159
GTTTTCTTATTTTTAGCA
5-8-5
82
2327





625441
75143
75160
TGTTTTCTTATTTTTAGC
5-8-5
68
2328





625442
75146
75163
AGGTGTTTTCTTATTTTT
5-8-5
83
2329





625443
75154
75171
GGGCTGCAAGGTGTTTTC
5-8-5
69
2330





625444
98881
98898
ACACCTTCATTTACTGTC
4-8-6
90
897



98918
98935





625445
98882
98899
CACACCTTCATTTACTGT
4-8-6
82
2312



98919
98936





625446
98883
98900
ACACACCTTCATTTACTG
4-8-6
84
2313



98920
98937





625447
98884
98901
AACACACCTTCATTTACT
4-8-6
40
2314



98921
98938





625448
98889
98906
TTTCAAACACACCTTCAT
4-8-6
83
2319



98926
98943





625449
98890
98907
TTTTCAAACACACCTTCA
4-8-6
0
898



98927
98944





625450
98891
98908
GTTTTCAAACACACCTTC
4-8-6
94
665



98928
98945





625451
98892
98909
GGTTTTCAAACACACCTT
4-8-6
94
899



98929
98946





625452
98893
98910
TGGTTTTCAAACACACCT
4-8-6
94
900



98930
98947





625453
98881
98898
ACACCTTCATTTACTGTC
6-8-4
96
897



98918
98935





625454
98882
98899
CACACCTTCATTTACTGT
6-8-4
96
2312



98919
98936





625455
98883
98900
ACACACCTTCATTTACTG
6-8-4
93
2313



98920
98937





625456
98884
98901
AACACACCTTCATTTACT
6-8-4
88
2314



98921
98938





625457
98889
98906
TTTCAAACACACCTTCAT
6-8-4
85
2319



98926
98943





625458
98890
98907
TTTTCAAACACACCTTCA
6-8-4
90
898



98927
98944





625459
98891
98908
GTTTTCAAACACACCTTC
6-8-4
97
665



98928
98945





625460
98892
98909
GGTTTTCAAACACACCTT
6-8-4
97
899



98929
98946





625461
98893
98910
TGGTTTTCAAACACACCT
6-8-4
96
900



98930
98947









Example 13: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells by MOE Gapmers

Gapmers from studies described above exhibiting significant in vitro inhibition of tau mRNA were selected and tested at various doses in SH-SY5Y cells. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.938 μM, 0.1.875 μM, 3.750 μM, 7.500 μM and 15.00 μM concentrations of antisense oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
















TABLE 50







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
57
53
49
83
91



620887
68
84
95
95
97



620919
35
54
76
95
96



620930
32
49
76
86
92



620946
41
61
73
90
92



620971
61
63
75
88
96



620976
40
68
80
91
96



620978
49
49
78
93
94



620988
64
58
76
92
95



621031
51
72
90
89
92



621032
35
55
81
89
96



621041
48
73
80
88
95



621236
62
59
78
86
88



621239
46
62
63
94
94



621254
63
67
88
84
87
























TABLE 51







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
33
54
63
89
95



620887
72
90
95
96
96



620889
20
45
72
87
95



621417
52
68
81
88
92



621434
45
64
69
84
76



621440
58
72
77
88
87



621492
40
60
80
78
83



621599
43
73
83
91
95



621615
36
67
74
81
87



621620
48
74
88
95
98



621644
4
28
33
55
65



623685
30
48
73
87
93



623872
31
61
80
90
94



623879
22
50
74
88
95



623932
39
62
80
91
95
























TABLE 52







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
23
51
50
87
94



620887
64
82
92
95
96



620891
79
89
93
96
96



623757
38
58
73
85
95



623783
30
40
67
78
91



623804
51
70
81
87
92



623902
62
77
90
87
95



623936
46
70
84
91
94



623937
48
58
79
91
93



623938
39
63
76
90
93



623939
29
57
77
91
93



623962
44
68
78
87
91



625442
32
57
66
82
88



625459
74
87
95
96
98



625460
88
94
97
97
98
























TABLE 53







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
6
11
20
0
35



620887
71
86
92
95
96



620888
73
89
93
95
96



620890
82
90
94
95
96



623969
41
62
84
94
n.d.



623987
46
71
89
96
97



625424
50
73
88
94
96



625433
64
83
90
95
95



625450
69
84
91
96
97



625451
85
91
95
93
95



625452
67
83
91
93
95



625453
72
85
91
94
96



625454
73
86
93
95
96



625455
44
68
86
92
94



625461
75
84
94
95
97
























TABLE 54







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM









613412
11
30
65
82
83



620887
59
77
66
95
79



623968
43
57
72
86
93



623970
29
54
77
88
94



623973
48
65
80
93
94



623977
38
60
72
82
89



623986
45
53
80
91
96



625423
43
57
75
77
95



625425
39
49
78
88
93



625426
15
43
61
82
92



625427
16
35
64
81
93



625437
30
45
64
84
91



625444
28
45
67
84
92



625446
16
33
58
76
92



625456
27
43
57
86
91



625458
19
45
61
85
93
























TABLE 55







ISIS
0.938
1.875
3.750
7.500
15.00



No
μM
μM
μM
μM
μM























613412
0
10
31
71
77



620887
33
58
74
82
92



621842
7
31
45
72
87



621846
0
0
28
62
90



623903
0
0
25
71
83



623985
0
17
41
74
84



623994
19
42
67
81
83



625457
0
5
57
69
80










Example 14: Design of 5-7-6 MOE, 5-8-5 MOE, 5-9-5 MOE, and 5-10-5 MOE Gapmers with Phosphorothioate and Phosphodiester Internucleoside Linkages at a Hot Spot Region of Human Tau

Antisense oligonucleotides were designed targeting a tau nucleic acid at a region identified as a ‘hotspot’ in the studies above.


The newly designed chimeric antisense oligonucleotides in the Table below were designed as 5-7-6 MOE, 5-8-5 MOE, 5-9-5 MOE, or 5-10-5 MOE gapmers. The 5-7-6 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of seven 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five and six nucleosides respectively. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 5-9-5 MOE gapmers are 19 nucleosides in length, wherein the central gap segment comprises of nine 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are either phosphorothioate linkages or phosphodiester linkages. The ‘Chemistry’ column describes the internucleoside linkages of each oligonucleotide. ‘s’ indicates phosphorothioate linkage and ‘o’ indicates phosphodiester linkage. All cytosine residues throughout each gapmer are 5-methylcytosines.


“Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the Table below is targeted to either the human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000) or to the human tau mRNA sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3). ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 56







MOE gapmers targeting SEQ ID NOs: 1 and 2
















SEQ
SEQ

SEQ
SEQ






ID
ID

ID
ID



NO: 1
NO: 1

NO: 2
NO: 2


SEQ


ISIS
Start
Stop

Start
Stop


ID


NO
Site
Site
Sequence
Site
Site
Linkage chemistry
Motif
NO


















664511
135820
135837
GACAAAAGCAGGTTAAGT
2783
2800
sooosssssssssooss
5-8-5
2331





664714
135820
135838
TGACAAAAGCAGGTTAAGT
2783
2801
sooossssssssssooss
5-9-5
2332





664661
135820
135839
GTGACAAAAGCAGGTTAAGT
2783
2802
sooosssssssssssooss
5-10-5
2333





664767
135820
135837
GACAAAAGCAGGTTAAGT
2783
2800
sooossssssssoooss
5-7-6
2331





664512
135821
135838
TGACAAAAGCAGGTTAAG
2784
2801
sooosssssssssooss
5-8-5
2334





664715
135821
135839
GTGACAAAAGCAGGTTAAG
2784
2802
sooossssssssssooss
5-9-5
2335





664662
135821
135840
AGTGACAAAAGCAGGTTAAG
2784
2803
sooosssssssssssooss
5-10-5
2336





664768
135821
135838
TGACAAAAGCAGGTTAAG
2784
2801
sooossssssssoooss
5-7-6
2334





622109
135822
135839
GTGACAAAAGCAGGTTAA
2785
2802
sooosssssssssooss
5-8-5
2038





664716
135822
135840
AGTGACAAAAGCAGGTTAA
2785
2803
sooossssssssssooss
5-9-5
2337





664663
135822
135841
GAGTGACAAAAGCAGGTTAA
2785
2804
sooosssssssssssooss
5-10-5
2338





664769
135822
135839
GTGACAAAAGCAGGTTAA
2785
2802
sooossssssssoooss
5-7-6
2038





664513
135823
135840
AGTGACAAAAGCAGGTTA
2786
2803
sooosssssssssooss
5-8-5
2339





664717
135823
135841
GAGTGACAAAAGCAGGTTA
2786
2804
sooossssssssssooss
5-9-5
2340





664664
135823
135842
CGAGTGACAAAAGCAGGTTA
2786
2805
sooosssssssssssooss
5-10-5
2341





664770
135823
135840
AGTGACAAAAGCAGGTTA
2786
2803
sooossssssssoooss
5-7-6
2339





664514
135824
135841
GAGTGACAAAAGCAGGTT
2787
2804
sooosssssssssooss
5-8-5
2342





664718
135824
135842
CGAGTGACAAAAGCAGGTT
2787
2805
sooossssssssssooss
5-9-5
2343





664665
135824
135843
CCGAGTGACAAAAGCAGGTT
2787
2806
sooosssssssssssooss
5-10-5
2344





664771
135824
135841
GAGTGACAAAAGCAGGTT
2787
2804
sooossssssssoooss
5-7-6
2342





622110
135825
135842
CGAGTGACAAAAGCAGGT
2788
2805
sooosssssssssooss
5-8-5
2039





664719
135825
135843
CCGAGTGACAAAAGCAGGT
2788
2806
sooossssssssssooss
5-9-5
2345





664666
135825
135844
GCCGAGTGACAAAAGCAGGT
2788
2807
sooosssssssssssooss
5-10-5
2346





664772
135825
135842
CGAGTGACAAAAGCAGGT
2788
2805
sooossssssssoooss
5-7-6
2039





664515
135826
135843
CCGAGTGACAAAAGCAGG
2789
2806
sooosssssssssooss
5-8-5
2347





664720
135826
135844
GCCGAGTGACAAAAGCAGG
2789
2807
sooossssssssssooss
5-9-5
2348





664667
135826
135845
AGCCGAGTGACAAAAGCAGG
2789
2808
sooosssssssssssooss
5-10-5
2349





664773
135826
135843
CCGAGTGACAAAAGCAGG
2789
2806
sooossssssssoooss
5-7-6
2347





664516
135827
135844
GCCGAGTGACAAAAGCAG
2790
2807
sooosssssssssooss
5-8-5
2350





664721
135827
135845
AGCCGAGTGACAAAAGCAG
2790
2808
sooossssssssssooss
5-9-5
2351





664668
135827
135846
AAGCCGAGTGACAAAAGCAG
2790
2809
sooosssssssssssooss
5-10-5
2352





664774
135827
135844
GCCGAGTGACAAAAGCAG
2790
2807
sooossssssssoooss
5-7-6
2350





622111
135828
135845
AGCCGAGTGACAAAAGCA
2791
2808
sooosssssssssooss
5-8-5
2040





664722
135828
135846
AAGCCGAGTGACAAAAGCA
2791
2809
sooossssssssssooss
5-9-5
2353





664669
135828
135847
AAAGCCGAGTGACAAAAGCA
2791
2810
sooosssssssssssooss
5-10-5
2354





664775
135828
135845
AGCCGAGTGACAAAAGCA
2791
2808
sooossssssssoooss
5-7-6
2040





664517
135829
135846
AAGCCGAGTGACAAAAGC
2792
2809
sooosssssssssooss
5-8-5
2355





664723
135829
135847
AAAGCCGAGTGACAAAAGC
2792
2810
sooossssssssssooss
5-9-5
2356





664670
135829
135848
CAAAGCCGAGTGACAAAAGC
2792
2811
sooosssssssssssooss
5-10-5
2357





664776
135829
135846
AAGCCGAGTGACAAAAGC
2792
2809
sooossssssssoooss
5-7-6
2355





664518
135830
135847
AAAGCCGAGTGACAAAAG
2793
2810
sooosssssssssooss
5-8-5
2358





664724
135830
135848
CAAAGCCGAGTGACAAAAG
2793
2811
sooossssssssssooss
5-9-5
2359





664671
135830
135849
CCAAAGCCGAGTGACAAAAG
2793
2812
sooosssssssssssooss
5-10-5
2360





664777
135830
135847
AAAGCCGAGTGACAAAAG
2793
2810
sooossssssssoooss
5-7-6
2358





622112
135831
135848
CAAAGCCGAGTGACAAAA
2794
2811
sooosssssssssooss
5-8-5
2041





664725
135831
135849
CCAAAGCCGAGTGACAAAA
2794
2812
sooossssssssssooss
5-9-5
2361





664672
135831
135850
GCCAAAGCCGAGTGACAAAA
2794
2813
sooosssssssssssooss
5-10-5
2362





664778
135831
135848
CAAAGCCGAGTGACAAAA
2794
2811
sooossssssssoooss
5-7-6
2041





664519
135832
135849
CCAAAGCCGAGTGACAAA
2795
2812
sooosssssssssooss
5-8-5
2363





664726
135832
135850
GCCAAAGCCGAGTGACAAA
2795
2813
sooossssssssssooss
5-9-5
2364





664673
135832
135851
AGCCAAAGCCGAGTGACAAA
2795
2814
sooosssssssssssooss
5-10-5
2365





664779
135832
135849
CCAAAGCCGAGTGACAAA
2795
2812
sooossssssssoooss
5-7-6
2363





664520
135833
135850
GCCAAAGCCGAGTGACAA
2796
2813
sooosssssssssooss
5-8-5
2366





664727
135833
135851
AGCCAAAGCCGAGTGACAA
2796
2814
sooossssssssssooss
5-9-5
2367





664674
135833
135852
GAGCCAAAGCCGAGTGACAA
2796
2815
sooosssssssssssooss
5-10-5
2368





664780
135833
135850
GCCAAAGCCGAGTGACAA
2796
2813
sooossssssssoooss
5-7-6
2366





622113
135834
135851
AGCCAAAGCCGAGTGACA
2797
2814
sooosssssssssooss
5-8-5
2042





664728
135834
135852
GAGCCAAAGCCGAGTGACA
2797
2815
sooossssssssssooss
5-9-5
2369





664675
135834
135853
CGAGCCAAAGCCGAGTGACA
2797
2816
sooosssssssssssooss
5-10-5
2419





664781
135834
135851
AGCCAAAGCCGAGTGACA
2797
2814
sooossssssssoooss
5-7-6
2042





664521
135835
135852
GAGCCAAAGCCGAGTGAC
2798
2815
sooosssssssssooss
5-8-5
2420





664729
135835
135853
CGAGCCAAAGCCGAGTGAC
2798
2816
sooossssssssssooss
5-9-5
2421





664676
135835
135854
CCGAGCCAAAGCCGAGTGAC
2798
2817
sooosssssssssssooss
5-10-5
2422





664782
135835
135852
GAGCCAAAGCCGAGTGAC
2798
2815
sooossssssssoooss
5-7-6
2420





664522
135836
135853
CGAGCCAAAGCCGAGTGA
2799
2816
sooosssssssssooss
5-8-5
2423





664730
135836
135854
CCGAGCCAAAGCCGAGTGA
2799
2817
sooossssssssssooss
5-9-5
2424





664677
135836
135855
CCCGAGCCAAAGCCGAGTGA
2799
2818
sooosssssssssssooss
5-10-5
2425





664783
135836
135853
CGAGCCAAAGCCGAGTGA
2799
2816
sooossssssssoooss
5-7-6
2423





622114
135837
135854
CCGAGCCAAAGCCGAGTG
2800
2817
sooosssssssssooss
5-8-5
2043





664731
135837
135855
CCCGAGCCAAAGCCGAGTG
2800
2818
sooossssssssssooss
5-9-5
2426





664678
135837
135856
TCCCGAGCCAAAGCCGAGTG
2800
2819
sooosssssssssssooss
5-10-5
2427





664784
135837
135854
CCGAGCCAAAGCCGAGTG
2800
2817
sooossssssssoooss
5-7-6
2043





664523
135838
135855
CCCGAGCCAAAGCCGAGT
2801
2818
sooosssssssssooss
5-8-5
2428





664732
135838
135856
TCCCGAGCCAAAGCCGAGT
2801
2819
sooossssssssssooss
5-9-5
2429





664679
135838
135857
GTCCCGAGCCAAAGCCGAGT
2801
2820
sooosssssssssssooss
5-10-5
2430





664785
135838
135855
CCCGAGCCAAAGCCGAGT
2801
2818
sooossssssssoooss
5-7-6
2428





664524
135839
135856
TCCCGAGCCAAAGCCGAG
2802
2819
sooosssssssssooss
5-8-5
2431





664733
135839
135857
GTCCCGAGCCAAAGCCGAG
2802
2820
sooossssssssssooss
5-9-5
2432





664680
135839
135858
AGTCCCGAGCCAAAGCCGAG
2802
2821
sooosssssssssssooss
5-10-5
2433





664786
135839
135856
TCCCGAGCCAAAGCCGAG
2802
2819
sooossssssssoooss
5-7-6
2431





622115
135840
135857
GTCCCGAGCCAAAGCCGA
2803
2820
sooosssssssssooss
5-8-5
2044





664734
135840
135858
AGTCCCGAGCCAAAGCCGA
2803
2821
sooossssssssssooss
5-9-5
2434





664681
135840
135859
AAGTCCCGAGCCAAAGCCGA
2803
2822
sooosssssssssssooss
5-10-5
2435





664787
135840
135857
GTCCCGAGCCAAAGCCGA
2803
2820
sooossssssssoooss
5-7-6
2044





664525
135841
135858
AGTCCCGAGCCAAAGCCG
2804
2821
sooosssssssssooss
5-8-5
2436





664735
135841
135859
AAGTCCCGAGCCAAAGCCG
2804
2822
sooossssssssssooss
5-9-5
2437





664682
135841
135860
GAAGTCCCGAGCCAAAGCCG
2804
2823
sooosssssssssssooss
5-10-5
2438





664788
135841
135858
AGTCCCGAGCCAAAGCCG
2804
2821
sooossssssssoooss
5-7-6
2436





664526
135842
135859
AAGTCCCGAGCCAAAGCC
2805
2822
sooosssssssssooss
5-8-5
2439





664736
135842
135860
GAAGTCCCGAGCCAAAGCC
2805
2823
sooossssssssssooss
5-9-5
2440





664683
135842
135861
TGAAGTCCCGAGCCAAAGCC
2805
2824
sooosssssssssssooss
5-10-5
2441





664789
135842
135859
AAGTCCCGAGCCAAAGCC
2805
2822
sooossssssssoooss
5-7-6
2439





622116
135843
135860
GAAGTCCCGAGCCAAAGC
2806
2823
sooosssssssssooss
5-8-5
2045





664737
135843
135861
TGAAGTCCCGAGCCAAAGC
2806
2824
sooossssssssssooss
5-9-5
2442





664684
135843
135862
TTGAAGTCCCGAGCCAAAGC
2806
2825
sooosssssssssssooss
5-10-5
2443





664790
135843
135860
GAAGTCCCGAGCCAAAGC
2806
2823
sooossssssssoooss
5-7-6
2045





664527
135844
135861
TGAAGTCCCGAGCCAAAG
2807
2824
sooosssssssssooss
5-8-5
2478





664738
135844
135862
TTGAAGTCCCGAGCCAAAG
2807
2825
sooossssssssssooss
5-9-5
2532





664685
135844
135863
TTTGAAGTCCCGAGCCAAAG
2807
2826
sooosssssssssssooss
5-10-5
2533





664791
135844
135861
TGAAGTCCCGAGCCAAAG
2807
2824
sooossssssssoooss
5-7-6
2478





664528
135845
135862
TTGAAGTCCCGAGCCAAA
2808
2825
sooosssssssssooss
5-8-5
2479





664739
135845
135863
TTTGAAGTCCCGAGCCAAA
2808
2826
sooossssssssssooss
5-9-5
2534





664686
135845
135864
TTTTGAAGTCCCGAGCCAAA
2808
2827
sooosssssssssssooss
5-10-5
2535





664792
135845
135862
TTGAAGTCCCGAGCCAAA
2808
2825
sooossssssssoooss
5-7-6
2479





622117
135846
135863
TTTGAAGTCCCGAGCCAA
2809
2826
sooosssssssssooss
5-8-5
2046





664740
135846
135864
TTTTGAAGTCCCGAGCCAA
2809
2827
sooossssssssssooss
5-9-5
2536





664687
135846
135865
ATTTTGAAGTCCCGAGCCAA
2809
2828
sooosssssssssssooss
5-10-5
2537





664793
135846
135863
TTTGAAGTCCCGAGCCAA
2809
2826
sooossssssssoooss
5-7-6
2538





664529
135847
135864
TTTTGAAGTCCCGAGCCA
2810
2827
sooosssssssssooss
5-8-5
2480





664741
135847
135865
ATTTTGAAGTCCCGAGCCA
2810
2828
sooossssssssssooss
5-9-5
2539





664688
135847
135866
GATTTTGAAGTCCCGAGCCA
2810
2829
sooosssssssssssooss
5-10-5
2540





664794
135847
135864
TTTTGAAGTCCCGAGCCA
2810
2827
sooossssssssoooss
5-7-6
2480





664530
135848
135865
ATTTTGAAGTCCCGAGCC
2811
2828
sooosssssssssooss
5-8-5
2481





664742
135848
135866
GATTTTGAAGTCCCGAGCC
2811
2829
sooossssssssssooss
5-9-5
2541





664689
135848
135867
TGATTTTGAAGTCCCGAGCC
1644
1663
sooosssssssssssooss
5-10-5
56





664795
135848
135865
ATTTTGAAGTCCCGAGCC
2811
2828
sooossssssssoooss
5-7-6
2481





622118
135849
135866
GATTTTGAAGTCCCGAGC
2812
2829
sooosssssssssooss
5-8-5
2047





664743
135849
135867
TGATTTTGAAGTCCCGAGC
2812
2830
sooossssssssssooss
5-9-5
2542





664690
135849
135868
CTGATTTTGAAGTCCCGAGC
2812
2831
sooosssssssssssooss
5-10-5
464





664796
135849
135866
GATTTTGAAGTCCCGAGC
2812
2829
sooossssssssoooss
5-7-6
2047





664531
135850
135867
TGATTTTGAAGTCCCGAG
2813
2830
sooosssssssssooss
5-8-5
2482





664744
135850
135868
CTGATTTTGAAGTCCCGAG
2813
2831
sooossssssssssooss
5-9-5
2543





664691
135850
135869
ACTGATTTTGAAGTCCCGAG
2813
2832
sooosssssssssssooss
5-10-5
2544





664797
135850
135867
TGATTTTGAAGTCCCGAG
2813
2830
sooossssssssoooss
5-7-6
2482





664532
135851
135868
CTGATTTTGAAGTCCCGA
2814
2831
sooosssssssssooss
5-8-5
2483





664745
135851
135869
ACTGATTTTGAAGTCCCGA
2814
2832
sooossssssssssooss
5-9-5
2545





664692
135851
135870
CACTGATTTTGAAGTCCCGA
2814
2833
sooosssssssssssooss
5-10-5
2546





664798
135851
135868
CTGATTTTGAAGTCCCGA
2814
2831
sooossssssssoooss
5-7-6
2483





622119
135852
135869
ACTGATTTTGAAGTCCCG
2815
2832
sooosssssssssooss
5-8-5
2048





664746
135852
135870
CACTGATTTTGAAGTCCCG
2815
2833
sooossssssssssooss
5-9-5
2547





664693
135852
135871
TCACTGATTTTGAAGTCCCG
2815
2834
sooosssssssssssooss
5-10-5
2548





664799
135852
135869
ACTGATTTTGAAGTCCCG
2815
2832
sooossssssssoooss
5-7-6
2549





664533
135853
135870
CACTGATTTTGAAGTCCC
2816
2833
sooosssssssssooss
5-8-5
2370





664747
135853
135871
TCACTGATTTTGAAGTCCC
2816
2834
sooossssssssssooss
5-9-5
2371





664694
135853
135872
ATCACTGATTTTGAAGTCCC
1649
1668
sooosssssssssssooss
5-10-5
57





664800
135853
135870
CACTGATTTTGAAGTCCC
2816
2833
sooossssssssoooss
5-7-6
2370





664534
135854
135871
TCACTGATTTTGAAGTCC
2817
2834
sooosssssssssooss
5-8-5
2372





664748
135854
135872
ATCACTGATTTTGAAGTCC
2817
2835
sooossssssssssooss
5-9-5
2373





664695
135854
135873
CATCACTGATTTTGAAGTCC
2817
2836
sooosssssssssssooss
5-10-5
2374





664801
135854
135871
TCACTGATTTTGAAGTCC
2817
2834
sooossssssssoooss
5-7-6
2372





622120
135855
135872
ATCACTGATTTTGAAGTC
2818
2835
sooosssssssssooss
5-8-5
1668





664749
135855
135873
CATCACTGATTTTGAAGTC
2818
2836
sooossssssssssooss
5-9-5
2375





664696
135855
135874
CCATCACTGATTTTGAAGTC
2818
2837
sooosssssssssssooss
5-10-5
2376





664802
135855
135872
ATCACTGATTTTGAAGTC
2818
2835
sooossssssssoooss
5-7-6
1668





664535
135856
135873
CATCACTGATTTTGAAGT
2819
2836
sooosssssssssooss
5-8-5
2377





664750
135856
135874
CCATCACTGATTTTGAAGT
2819
2837
sooossssssssssooss
5-9-5
2378





664697
135856
135875
CCCATCACTGATTTTGAAGT
2819
2838
sooosssssssssssooss
5-10-5
2379





664803
135856
135873
CATCACTGATTTTGAAGT
2819
2836
sooossssssssoooss
5-7-6
2377





664536
135857
135874
CCATCACTGATTTTGAAG
2820
2837
sooosssssssssooss
5-8-5
2380





664751
135857
135875
CCCATCACTGATTTTGAAG
2820
2838
sooossssssssssooss
5-9-5
2381





664698
135857
135876
TCCCATCACTGATTTTGAAG
2820
2839
sooosssssssssssooss
5-10-5
2382





664804
135857
135874
CCATCACTGATTTTGAAG
2820
2837
sooossssssssoooss
5-7-6
2380





622121
135858
135875
CCCATCACTGATTTTGAA
2821
2838
sooosssssssssooss
5-8-5
1669





664752
135858
135876
TCCCATCACTGATTTTGAA
2821
2839
sooossssssssssooss
5-9-5
2383





664699
135858
135877
CTCCCATCACTGATTTTGAA
2821
2840
sooosssssssssssooss
5-10-5
2384





664805
135858
135875
CCCATCACTGATTTTGAA
2821
2838
sooossssssssoooss
5-7-6
1669





664537
135859
135876
TCCCATCACTGATTTTGA
2822
2839
sooosssssssssooss
5-8-5
2385





664753
135859
135877
CTCCCATCACTGATTTTGA
2822
2840
sooossssssssssooss
5-9-5
2386





664700
135859
135878
ACTCCCATCACTGATTTTGA
2822
2841
sooosssssssssssooss
5-10-5
2387





664806
135859
135876
TCCCATCACTGATTTTGA
2822
2839
sooossssssssoooss
5-7-6
2385





664538
135860
135877
CTCCCATCACTGATTTTG
2823
2840
sooosssssssssooss
5-8-5
2388





664754
135860
135878
ACTCCCATCACTGATTTTG
2823
2841
sooossssssssssooss
5-9-5
2389





664701
135860
135879
TACTCCCATCACTGATTTTG
2823
2842
sooosssssssssssooss
5-10-5
2390





664807
135860
135877
CTCCCATCACTGATTTTG
2823
2840
sooossssssssoooss
5-7-6
2388





622122
135861
135878
ACTCCCATCACTGATTTT
2824
2841
sooosssssssssooss
5-8-5
1670





664755
135861
135879
TACTCCCATCACTGATTTT
2824
2842
sooossssssssssooss
5-9-5
2391





664702
135861
135880
TTACTCCCATCACTGATTTT
2824
2843
sooosssssssssssooss
5-10-5
2392





664808
135861
135878
ACTCCCATCACTGATTTT
2824
2841
sooossssssssoooss
5-7-6
1670





664539
135862
135879
TACTCCCATCACTGATTT
2825
2842
sooosssssssssooss
5-8-5
2393





664756
135862
135880
TTACTCCCATCACTGATTT
2825
2843
sooossssssssssooss
5-9-5
2394





664703
135862
135881
CTTACTCCCATCACTGATTT
2825
2844
sooosssssssssssooss
5-10-5
2395





664809
135862
135879
TACTCCCATCACTGATTT
2825
2842
sooossssssssoooss
5-7-6
2393





664540
135863
135880
TTACTCCCATCACTGATT
2826
2843
sooosssssssssooss
5-8-5
2396





664757
135863
135881
CTTACTCCCATCACTGATT
2826
2844
sooossssssssssooss
5-9-5
2397





664704
135863
135882
TCTTACTCCCATCACTGATT
2826
2845
sooosssssssssssooss
5-10-5
2398





664810
135863
135880
TTACTCCCATCACTGATT
2826
2843
sooossssssssoooss
5-7-6
2396





622123
135864
135881
CTTACTCCCATCACTGAT
2827
2844
sooosssssssssooss
5-8-5
1671





664758
135864
135882
TCTTACTCCCATCACTGAT
2827
2845
sooossssssssssooss
5-9-5
2399





664705
135864
135883
CTCTTACTCCCATCACTGAT
2827
2846
sooosssssssssssooss
5-10-5
2400





664811
135864
135881
CTTACTCCCATCACTGAT
2827
2844
sooossssssssoooss
5-7-6
1671





664541
135865
135882
TCTTACTCCCATCACTGA
2828
2845
sooosssssssssooss
5-8-5
2401





664759
135865
135883
CTCTTACTCCCATCACTGA
2828
2846
sooossssssssssooss
5-9-5
2402





664706
135865
135884
GCTCTTACTCCCATCACTGA
2828
2847
sooosssssssssssooss
5-10-5
2403





664812
135865
135882
TCTTACTCCCATCACTGA
2828
2845
sooossssssssoooss
5-7-6
2401





664542
135866
135883
CTCTTACTCCCATCACTG
2829
2846
sooosssssssssooss
5-8-5
2404





664760
135866
135884
GCTCTTACTCCCATCACTG
2829
2847
sooossssssssssooss
5-9-5
2405





664707
135866
135885
TGCTCTTACTCCCATCACTG
2829
2848
sooosssssssssssooss
5-10-5
2406





664813
135866
135883
CTCTTACTCCCATCACTG
2829
2846
sooossssssssoooss
5-7-6
2404





622124
135867
135884
GCTCTTACTCCCATCACT
2830
2847
sooosssssssssooss
5-8-5
1672





664761
135867
135885
TGCTCTTACTCCCATCACT
2830
2848
sooossssssssssooss
5-9-5
2407





664708
135867
135886
TTGCTCTTACTCCCATCACT
2830
2849
sooosssssssssssooss
5-10-5
2408





664814
135867
135884
GCTCTTACTCCCATCACT
2830
2847
sooossssssssoooss
5-7-6
1672





623993
135868
135885
TGCTCTTACTCCCATCAC
2831
2848
sooosssssssssooss
5-8-5
2306





664762
135868
135886
TTGCTCTTACTCCCATCAC
2831
2849
sooossssssssssooss
5-9-5
2409





664709
135868
135887
TTTGCTCTTACTCCCATCAC
2831
2850
sooosssssssssssooss
5-10-5
2410





664815
135868
135885
TGCTCTTACTCCCATCAC
2831
2848
sooossssssssoooss
5-7-6
2306





623994
135869
135886
TTGCTCTTACTCCCATCA
2832
2849
sooosssssssssooss
5-8-5
2307





664763
135869
135887
TTTGCTCTTACTCCCATCA
2832
2850
sooossssssssssooss
5-9-5
2411





664710
135869
135888
ATTTGCTCTTACTCCCATCA
2832
2851
sooosssssssssssooss
5-10-5
2412





664816
135869
135886
TTGCTCTTACTCCCATCA
2832
2849
sooossssssssoooss
5-7-6
2307





622125
135870
135887
TTTGCTCTTACTCCCATC
2833
2850
sooosssssssssooss
5-8-5
1673





664764
135870
135888
ATTTGCTCTTACTCCCATC
2833
2851
sooossssssssssooss
5-9-5
2413





664711
135870
135889
AATTTGCTCTTACTCCCATC
2833
2852
sooosssssssssssooss
5-10-5
2414





664817
135870
135887
TTTGCTCTTACTCCCATC
2833
2850
sooossssssssoooss
5-7-6
1673





623995
135871
135888
ATTTGCTCTTACTCCCAT
2834
2851
sooosssssssssooss
5-8-5
2308





664765
135871
135889
AATTTGCTCTTACTCCCAT
2834
2852
sooossssssssssooss
5-9-5
2415





664712
135871
135890
AAATTTGCTCTTACTCCCAT
2834
2853
sooosssssssssssooss
5-10-5
2416





664818
135871
135888
ATTTGCTCTTACTCCCAT
2834
2851
sooossssssssoooss
5-7-6
2308





623996
135872
135889
AATTTGCTCTTACTCCCA
2835
2852
sooosssssssssooss
5-8-5
2309





664766
135872
135890
AAATTTGCTCTTACTCCCA
2835
2853
sooossssssssssooss
5-9-5
2417





664713
135872
135891
GAAATTTGCTCTTACTCCCA
2835
2854
sooosssssssssssooss
5-10-5
2418





664819
135872
135889
AATTTGCTCTTACTCCCA
2835
2852
sooossssssssoooss
5-7-6
2309









Example 15: Intracerebroventricular Administration of Antisense Oligonucleotides Against Human Tau mRNA in Htau Mice

Selected compounds were tested for efficacy by ICV administration in human tau transgenic mice (Duff et al., Neurobiology of Disease 7:87-98, 2000).


Treatment and Surgery


Groups of 4 mice each were administered ISIS 613255, ISIS 613329, ISIS 613344, ISIS 613361, ISIS 613369, ISIS 613370, ISIS 613397, ISIS 613045, ISIS 613099, ISIS 613118, ISIS 613136 with a 200 μg dose delivered by ICV bolus injection. A control group of 2 mice was similarly treated with ISIS 424880 and a control group of 4 mice was similarly treated with PBS. All procedures were performed under isoflourane anesthesia and in accordance with IACUC regulations. For mouse ICV bolus injections, the antisense oligonucleotide was injected into the right lateral ventricle of human tau transgenic mice. Ten microliters of solution containing 300 μg of oligonucleotide in PBS was injected over approximately 10 seconds. Tissue was collected 14 days after oligonucleotide administration.


RNA Analysis


On day 14 after the oligonucleotide administration, RNA was extracted from the hippocampus, spinal cord and cortex for real-time PCR analysis of tau mRNA levels. Human tau mRNA levels were measured using the human primer probe set RTS3104. Results were calculated as percent inhibition of human tau mRNA expression compared to the control. All the antisense oligonucleotides effect significant inhibition of human tau mRNA levels.









TABLE 57







Percent reduction of human tau mRNA levels in hTau mice












ISIS


Spinal



No
Cortex
Hippocampus
Cord







613255
30
46
36



613329
20
69
67



613344
41
42
34



613361
69
57
72



613369
17
48
46



613370
42
61
63



613397
33
41
57



613045
12
38
47



613099
42
55
54



613118
64
73
58



613136
26
39
27



424880
50
53
55










Example 16: Antisense Inhibition of Human Tau in SH-SY5Y Cells 5-7-6 MOE, 5-8-5 MOE, 5-9-5 MOE, and 5-10-5 MOE Gapmers

The antisense oligonucleotides described in the Examples above, as well as newly designed antisense oligonucleotides targeting a human tau nucleic acid, were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured SH-SY5Y cells were transfected using electroporation with 8,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 5-7-6 MOE, 5-8-5 MOE, 5-9-5 MOE, or 5-10-5 MOE gapmers. The 5-7-6 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of seven 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five and six nucleosides respectively. The 5-8-5 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises of eight 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 5-9-5 MOE gapmers are 19 nucleosides in length, wherein the central gap segment comprises of nine 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. The internucleoside linkages throughout each gapmer are either phosphorothioate linkages or phosphodiester linkages. The ‘Linkage Chemistry’ column describes the internucleoside linkages of each oligonucleotide. ‘s’ indicates phosphorothioate linkage and ‘o’ indicates phosphodiester linkage. All cytosine residues throughout each gapmer are 5-methylcytosines.


“Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the Table below is targeted to either the human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000) or to the human tau mRNA sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3). ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.


















TABLE 58






SEQ
SEQ

SEQ
SEQ







ID
ID

ID
ID



NO: 1
NO: 1

NO: 2
NO: 2



SEQ


ISIS
start
stop

start
stop
Linkage

%
ID


NO
site
site
Sequence
site
site
Chemistry
Motif
inhibition
NO
























623965
73880
73897
TGATCTTCCATCACTTCG
n/a
n/a
sooosssssssssooss
5-8-5
52
2278





620887
98891
98908
GTTTTCAAACACACCTTC
n/a
n/a
sooosssssssssooss
5-8-5
91
665



98928
98945





664511
135820
135837
GACAAAAGCAGGTTAAGT
2783
2800
sooosssssssssooss
5-8-5
65
2331





664767
135820
135837
GACAAAAGCAGGTTAAGT
2783
2800
sooossssssssoooss
5-7-6
21
2331





664512
135821
135838
TGACAAAAGCAGGTTAAG
2784
2801
sooosssssssssooss
5-8-5
60
2334





664768
135821
135838
TGACAAAAGCAGGTTAAG
2784
2801
sooossssssssoooss
5-7-6
30
2334





622109
135822
135839
GTGACAAAAGCAGGTTAA
2785
2802
sooosssssssssooss
5-8-5
72
2038





664769
135822
135839
GTGACAAAAGCAGGTTAA
2785
2802
sooossssssssoooss
5-7-6
49
2038





664513
135823
135840
AGTGACAAAAGCAGGTTA
2786
2803
sooosssssssssooss
5-8-5
56
2339





664770
135823
135840
AGTGACAAAAGCAGGTTA
2786
2803
sooossssssssoooss
5-7-6
45
2339





664514
135824
135841
GAGTGACAAAAGCAGGTT
2787
2804
sooosssssssssooss
5-8-5
84
2342





664771
135824
135841
GAGTGACAAAAGCAGGTT
2787
2804
sooossssssssoooss
5-7-6
63
2342





622110
135825
135842
CGAGTGACAAAAGCAGGT
2788
2805
sooosssssssssooss
5-8-5
77
2039





664772
135825
135842
CGAGTGACAAAAGCAGGT
2788
2805
sooossssssssoooss
5-7-6
37
2039





664515
135826
135843
CCGAGTGACAAAAGCAGG
2789
2806
sooosssssssssooss
5-8-5
70
2347





664773
135826
135843
CCGAGTGACAAAAGCAGG
2789
2806
sooossssssssoooss
5-7-6
62
2347





664516
135827
135844
GCCGAGTGACAAAAGCAG
2790
2807
sooosssssssssooss
5-8-5
79
2350





664774
135827
135844
GCCGAGTGACAAAAGCAG
2790
2807
sooossssssssoooss
5-7-6
70
2350





622111
135828
135845
AGCCGAGTGACAAAAGCA
2791
2808
sooosssssssssooss
5-8-5
75
2040





664775
135828
135845
AGCCGAGTGACAAAAGCA
2791
2808
sooossssssssoooss
5-7-6
78
2040





664517
135829
135846
AAGCCGAGTGACAAAAGC
2792
2809
sooosssssssssooss
5-8-5
67
2355





664776
135829
135846
AAGCCGAGTGACAAAAGC
2792
2809
sooossssssssoooss
5-7-6
50
2355





664518
135830
135847
AAAGCCGAGTGACAAAAG
2793
2810
sooosssssssssooss
5-8-5
47
2358





664777
135830
135847
AAAGCCGAGTGACAAAAG
2793
2810
sooossssssssoooss
5-7-6
42
2358





622112
135831
135848
CAAAGCCGAGTGACAAAA
2794
2811
sooosssssssssooss
5-8-5
46
2041





664778
135831
135848
CAAAGCCGAGTGACAAAA
2794
2811
sooossssssssoooss
5-7-6
34
2041





664519
135832
135849
CCAAAGCCGAGTGACAAA
2795
2812
sooosssssssssooss
5-8-5
57
2363





664779
135832
135849
CCAAAGCCGAGTGACAAA
2795
2812
sooossssssssoooss
5-7-6
34
2363





664520
135833
135850
GCCAAAGCCGAGTGACAA
2796
2813
sooosssssssssooss
5-8-5
63
2366





664780
135833
135850
GCCAAAGCCGAGTGACAA
2796
2813
sooossssssssoooss
5-7-6
66
2366





622113
135834
135851
AGCCAAAGCCGAGTGACA
2797
2814
sooosssssssssooss
5-8-5
70
2042





664781
135834
135851
AGCCAAAGCCGAGTGACA
2797
2814
sooossssssssoooss
5-7-6
74
2042





664521
135835
135852
GAGCCAAAGCCGAGTGAC
2798
2815
sooosssssssssooss
5-8-5
71
2420





664782
135835
135852
GAGCCAAAGCCGAGTGAC
2798
2815
sooossssssssoooss
5-7-6
31
2420





664522
135836
135853
CGAGCCAAAGCCGAGTGA
2799
2816
sooosssssssssooss
5-8-5
50
2423





664783
135836
135853
CGAGCCAAAGCCGAGTGA
2799
2816
sooossssssssoooss
5-7-6
30
2423





622114
135837
135854
CCGAGCCAAAGCCGAGTG
2800
2817
sooosssssssssooss
5-8-5
72
2043





664784
135837
135854
CCGAGCCAAAGCCGAGTG
2800
2817
sooossssssssoooss
5-7-6
76
2043





664523
135838
135855
CCCGAGCCAAAGCCGAGT
2801
2818
sooosssssssssooss
5-8-5
70
2428





664785
135838
135855
CCCGAGCCAAAGCCGAGT
2801
2818
sooossssssssoooss
5-7-6
56
2428





664524
135839
135856
TCCCGAGCCAAAGCCGAG
2802
2819
sooosssssssssooss
5-8-5
55
2431





664786
135839
135856
TCCCGAGCCAAAGCCGAG
2802
2819
sooossssssssoooss
5-7-6
36
2431





622115
135840
135857
GTCCCGAGCCAAAGCCGA
2803
2820
sooosssssssssooss
5-8-5
59
2044





664787
135840
135857
GTCCCGAGCCAAAGCCGA
2803
2820
sooossssssssoooss
5-7-6
54
2044





664525
135841
135858
AGTCCCGAGCCAAAGCCG
2804
2821
sooosssssssssooss
5-8-5
74
2436





664788
135841
135858
AGTCCCGAGCCAAAGCCG
2804
2821
sooossssssssoooss
5-7-6
77
2436





664789
135842
135859
AAGTCCCGAGCCAAAGCC
2805
2822
sooossssssssoooss
5-7-6
42
2439





664790
135843
135860
GAAGTCCCGAGCCAAAGC
2806
2823
sooossssssssoooss
5-7-6
38
2045





664791
135844
135861
TGAAGTCCCGAGCCAAAG
2807
2824
sooossssssssoooss
5-7-6
44
2478





664792
135845
135862
TTGAAGTCCCGAGCCAAA
2808
2825
sooossssssssoooss
5-7-6
44
2479





664793
135846
135863
TTTGAAGTCCCGAGCCAA
2809
2826
sooossssssssoooss
5-7-6
29
2046





664794
135847
135864
TTTTGAAGTCCCGAGCCA
2810
2827
sooossssssssoooss
5-7-6
32
2480





664795
135848
135865
ATTTTGAAGTCCCGAGCC
2811
2828
sooossssssssoooss
5-7-6
15
2481





664796
135849
135866
GATTTTGAAGTCCCGAGC
2812
2829
sooossssssssoooss
5-7-6
76
2047





664797
135850
135867
TGATTTTGAAGTCCCGAG
2813
2830
sooossssssssoooss
5-7-6
70
2482





664798
135851
135868
CTGATTTTGAAGTCCCGA
2814
2831
sooossssssssoooss
5-7-6
75
2483





664799
135852
135869
ACTGATTTTGAAGTCCCG
2815
2832
sooossssssssoooss
5-7-6
79
2048





664800
135853
135870
CACTGATTTTGAAGTCCC
2816
2833
sooossssssssoooss
5-7-6
82
2370





664534
135854
135871
TCACTGATTTTGAAGTCC
2817
2834
sooosssssssssooss
5-8-5
78
2372





664801
135854
135871
TCACTGATTTTGAAGTCC
2817
2834
sooossssssssoooss
5-7-6
29
2372





664802
135855
135872
ATCACTGATTTTGAAGTC
2818
2835
sooossssssssoooss
5-7-6
52
1668





664803
135856
135873
CATCACTGATTTTGAAGT
2819
2836
sooossssssssoooss
5-7-6
55
2377





664804
135857
135874
CCATCACTGATTTTGAAG
2820
2837
sooossssssssoooss
5-7-6
38
2380





664805
135858
135875
CCCATCACTGATTTTGAA
2821
2838
sooossssssssoooss
5-7-6
62
1669





664806
135859
135876
TCCCATCACTGATTTTGA
2822
2839
sooossssssssoooss
5-7-6
72
2385





664807
135860
135877
CTCCCATCACTGATTTTG
2823
2840
sooossssssssoooss
5-7-6
55
2388





664808
135861
135878
ACTCCCATCACTGATTTT
2824
2841
sooossssssssoooss
5-7-6
38
1670





664809
135862
135879
TACTCCCATCACTGATTT
2825
2842
sooossssssssoooss
5-7-6
54
2393





664810
135863
135880
TTACTCCCATCACTGATT
2826
2843
sooossssssssoooss
5-7-6
39
2396





664811
135864
135881
CTTACTCCCATCACTGAT
2827
2844
sooossssssssoooss
5-7-6
39
1671





664812
135865
135882
TCTTACTCCCATCACTGA
2828
2845
sooossssssssoooss
5-7-6
45
2401





664813
135866
135883
CTCTTACTCCCATCACTG
2829
2846
sooossssssssoooss
5-7-6
61
2404





664814
135867
135884
GCTCTTACTCCCATCACT
2830
2847
sooossssssssoooss
5-7-6
14
1672





664815
135868
135885
TGCTCTTACTCCCATCAC
2831
2848
sooossssssssoooss
5-7-6
70
2306





664816
135869
135886
TTGCTCTTACTCCCATCA
2832
2849
sooossssssssoooss
5-7-6
72
2307





664817
135870
135887
TTTGCTCTTACTCCCATC
2833
2850
sooossssssssoooss
5-7-6
62
1673





664818
135871
135888
ATTTGCTCTTACTCCCAT
2834
2851
sooossssssssoooss
5-7-6
69
2308





664819
135872
135889
AATTTGCTCTTACTCCCA
2835
2852
sooossssssssoooss
5-7-6
67
2309

























TABLE 59










SEQ








SEQ ID


ID



SEQ ID
NO: 1

SEQ ID
NO: 2



SEQ


ISIS
NO: 1
stop

NO: 2
stop
Linkage

%
ID


NO
start site
site
Sequence
start site
site
Chemistry
Motif
inhibition
NO
























665045
21592
21609
ACATCCAAATAACAATAT
n/a
n/a
sooosssssssssooss
5-8-5
1
2444





665046
21617
21634
TCCTGTCTCAAACACCTA
n/a
n/a
sooosssssssssooss
5-8-5
44
2445





665047
30083
30100
AGCTTATCACAGTAGGTG
n/a
n/a
sooosssssssssooss
5-8-5
94
2446





665048
30108
30125
CCTTTGCTTCACACACCA
n/a
n/a
sooosssssssssooss
5-8-5
67
2447





621013
30133
30150
AGCTCACTACAGCAGGCA
n/a
n/a
sooosssssssssooss
5-8-5
90
868





665049
30158
30175
TGGTTCTACAACCTGCCC
n/a
n/a
sooosssssssssooss
5-8-5
57
2448





665050
30183
30200
CCTTTGTAACCTTGGAAC
n/a
n/a
sooosssssssssooss
5-8-5
25
2449





665051
33838
33855
AGTTAAAAGATGGCAACC
n/a
n/a
sooosssssssssooss
5-8-5
32
2450





665052
33863
33880
CTGGGCATTTTGATAAAA
n/a
n/a
sooosssssssssooss
5-8-5
28
2451





621031
33888
33905
GGTATAATTTGTTTGGAC
n/a
n/a
sooosssssssssooss
5-8-5
85
886





665053
33913
33930
AGTGCCAGACATTTTCAA
n/a
n/a
sooosssssssssooss
5-8-5
20
2452





665054
33938
33955
CTGGCACAACAGGCATTG
n/a
n/a
sooosssssssssooss
5-8-5
25
2453





621041
35721
35738
TTGCCATCTTGGACAGGG
n/a
n/a
sooosssssssssooss
5-8-5
70
896





665055
35746
35763
GTGGTACAGAGGCTGTGT
n/a
n/a
sooosssssssssooss
5-8-5
47
2454





665056
35771
35788
TTGCAGATTCTGAATACC
n/a
n/a
sooosssssssssooss
5-8-5
78
2455





665057
64499
64516
TATGATTCCCAGGAGTCT
n/a
n/a
sooosssssssssooss
5-8-5
0
2456





621181
64543
64560
GTAGGTGTCATCATCATC
n/a
n/a
sooosssssssssooss
5-8-5
77
1113





665058
64568
64585
GTGACCCTTCAGGGCAAT
n/a
n/a
sooosssssssssooss
5-8-5
35
2457





665059
64593
64610
ATGCAGGTGCCTTGCAGG
n/a
n/a
sooosssssssssooss
5-8-5
36
2458





623965
73880
73897
TGATCTTCCATCACTTCG
n/a
n/a
sooosssssssssooss
5-8-5
48
2278





665060
77364
77381
CCTGCTGCCAACAGTAGA
n/a
n/a
sooosssssssssooss
5-8-5
51
2459





665061
77389
77406
CCCTCACGGGCTGTTGTG
n/a
n/a
sooosssssssssooss
5-8-5
20
2460





621236
77414
77431
TCATCTGTGAAGCGGACG
73377
73394
sooosssssssssooss
5-8-5
79
706





665062
77439
77456
ACGGTCTGAGCATGAGGC
n/a
n/a
sooosssssssssooss
5-8-5
77
2461





665063
77464
77481
AGCCATGGACCTGCTCTG
n/a
n/a
sooosssssssssooss
5-8-5
48
2462





665064
77731
77748
GACAGTATACCCCACATC
n/a
n/a
sooosssssssssooss
5-8-5
48
2463





621238
77781
77798
GTTATTTTGGAACAGTTT
73744
73761
sooosssssssssooss
5-8-5
89
708





665065
78142
78159
AAGAGTGGTAAAACCTAC
n/a
n/a
sooosssssssssooss
5-8-5
51
2464





665066
80259
80276
GCTCACCAGCAGGAACTT
n/a
n/a
sooosssssssssooss
5-8-5
56
2465





665067
80284
80301
AAGGGCCCAGTGTAGCAC
n/a
n/a
sooosssssssssooss
5-8-5
66
2466





621251
80309
80326
AGTCATTATCATGTCACC
76272
76289
sooosssssssssooss
5-8-5
73
721





665068
80334
80351
CCAATAAGTGGCAGTGAT
n/a
n/a
sooosssssssssooss
5-8-5
49
2467





665069
80359
80376
ACCATGCCTGGCAGATGA
n/a
n/a
sooosssssssssooss
5-8-5
66
2468





665070
80799
80816
CTTAGTCATCTTCCCTCA
n/a
n/a
sooosssssssssooss
5-8-5
64
2469





665071
80824
80841
ATTTCTGAATTCTTTGCC
n/a
n/a
sooosssssssssooss
5-8-5
69
2470





621254
80849
80866
GGTAACATGTAAAGCTTC
76812
76829
sooosssssssssooss
5-8-5
76
724





665072
82508
82525
CTTACACTCTGGAAGGTT
n/a
n/a
sooosssssssssooss
5-8-5
74
2471





665073
82533
82550
TATCCAGGGCTGAGCAGG
n/a
n/a
sooosssssssssooss
5-8-5
38
2472





621263
82558
82575
ATGGGCTTATCAATGCAT
78521
78538
sooosssssssssooss
5-8-5
80
733





665074
82583
82600
GGAGTCAATCTGCCCTGG
n/a
n/a
sooosssssssssooss
5-8-5
54
2473





665075
82608
82625
CTTCCCTGTGGCACTTTG
n/a
n/a
sooosssssssssooss
5-8-5
29
2474





665076
89600
89617
ATGCCTCACTCAACAAGG
n/a
n/a
sooosssssssssooss
5-8-5
26
2475





665077
89625
89642
CTCCACTTTGGGACCAGG
n/a
n/a
sooosssssssssooss
5-8-5
87
2476





621302
89650
89667
GCTATGACCTAGTAGGAA
n/a
n/a
sooosssssssssooss
5-8-5
68
772





665078
89675
89692
GGCACAGCACCCACATGC
n/a
n/a
sooosssssssssooss
5-8-5
66
2477





665079
89700
89717
GGTGATAAAAGTTCACTA
n/a
n/a
sooosssssssssooss
5-8-5
63
2531





620887
98891
98908
GTTTTCAAACACACCTTC
n/a
n/a
sooosssssssssooss
5-8-5
91
665



98928
98945





664526
135842
135859
AAGTCCCGAGCCAAAGCC
2805
2822
sooosssssssssooss
5-8-5
55
2439





622116
135843
135860
GAAGTCCCGAGCCAAAGC
2806
2823
sooosssssssssooss
5-8-5
63
2045





664527
135844
135861
TGAAGTCCCGAGCCAAAG
2807
2824
sooosssssssssooss
5-8-5
40
2478





664528
135845
135862
TTGAAGTCCCGAGCCAAA
2808
2825
sooosssssssssooss
5-8-5
61
2479





622117
135846
135863
TTTGAAGTCCCGAGCCAA
2809
2826
sooosssssssssooss
5-8-5
55
2046





664529
135847
135864
TTTTGAAGTCCCGAGCCA
2810
2827
sooosssssssssooss
5-8-5
25
2480





664530
135848
135865
ATTTTGAAGTCCCGAGCC
2811
2828
sooosssssssssooss
5-8-5
38
2481





622118
135849
135866
GATTTTGAAGTCCCGAGC
2812
2829
sooosssssssssooss
5-8-5
63
2047





664531
135850
135867
TGATTTTGAAGTCCCGAG
2813
2830
sooosssssssssooss
5-8-5
66
2482





664532
135851
135868
CTGATTTTGAAGTCCCGA
2814
2831
sooosssssssssooss
5-8-5
73
2483





622119
135852
135869
ACTGATTTTGAAGTCCCG
2815
2832
sooosssssssssooss
5-8-5
66
2048





664533
135853
135870
CACTGATTTTGAAGTCCC
2816
2833
sooosssssssssooss
5-8-5
72
2370





664534
135854
135871
TCACTGATTTTGAAGTCC
2817
2834
sooosssssssssooss
5-8-5
61
2372





622120
135855
135872
ATCACTGATTTTGAAGTC
2818
2835
sooosssssssssooss
5-8-5
47
1668





664535
135856
135873
CATCACTGATTTTGAAGT
2819
2836
sooosssssssssooss
5-8-5
59
2377





664536
135857
135874
CCATCACTGATTTTGAAG
2820
2837
sooosssssssssooss
5-8-5
34
2380





622121
135858
135875
CCCATCACTGATTTTGAA
2821
2838
sooosssssssssooss
5-8-5
49
1669





664537
135859
135876
TCCCATCACTGATTTTGA
2822
2839
sooosssssssssooss
5-8-5
61
2385





664538
135860
135877
CTCCCATCACTGATTTTG
2823
2840
sooosssssssssooss
5-8-5
76
2388





622122
135861
135878
ACTCCCATCACTGATTTT
2824
2841
sooosssssssssooss
5-8-5
38
1670





664539
135862
135879
TACTCCCATCACTGATTT
2825
2842
sooosssssssssooss
5-8-5
57
2393





664540
135863
135880
TTACTCCCATCACTGATT
2826
2843
sooosssssssssooss
5-8-5
32
2396





622123
135864
135881
CTTACTCCCATCACTGAT
2827
2844
sooosssssssssooss
5-8-5
33
1671





664541
135865
135882
TCTTACTCCCATCACTGA
2828
2845
sooosssssssssooss
5-8-5
50
2401





664542
135866
135883
CTCTTACTCCCATCACTG
2829
2846
sooosssssssssooss
5-8-5
58
2404





622124
135867
135884
GCTCTTACTCCCATCACT
2830
2847
sooosssssssssooss
5-8-5
64
1672





623993
135868
135885
TGCTCTTACTCCCATCAC
n/a
n/a
sooosssssssssooss
5-8-5
65
2306





623994
135869
135886
TTGCTCTTACTCCCATCA
n/a
n/a
sooosssssssssooss
5-8-5
63
2307





622125
135870
135887
TTTGCTCTTACTCCCATC
2833
2850
sooosssssssssooss
5-8-5
75
1673





623995
135871
135888
ATTTGCTCTTACTCCCAT
n/a
n/a
sooosssssssssooss
5-8-5
60
2308





623996
135872
135889
AATTTGCTCTTACTCCCA
n/a
n/a
sooosssssssssooss
5-8-5
72
2309

























TABLE 60









SEQ
SEQ










ID
ID



SEQ ID
SEQ ID

NO: 2
NO:



SEQ


ISIS
NO: 1
NO: 1

start
2 stop


%
ID


NO
start site
stop site
Sequence
site
site
Linkage Chemistry
Motif
inhibition
NO
























665043
73879
73897
TGATCTTCCATCACTTCGA
345
364
sooossssssssssooss
5-9-5
67
2484





665044
98890
98908
GTTTTCAAACACACCTTCA
n/a
n/a
sooossssssssssooss
5-9-5
90
2485



98927
98945





665081
120039
120057
TTTTCTTACCACCCTAACA
n/a
n/a
sooossssssssssooss
5-9-5
28
2486





665082
120041
120059
CGTTTTCTTACCACCCTAA
n/a
n/a
sooossssssssssooss
5-9-5
86
2487





665083
120045
120063
AAACCGTTTTCTTACCACC
n/a
n/a
sooossssssssssooss
5-9-5
86
2488





665084
120047
120065
AAAAACCGTTTTCTTACCA
n/a
n/a
sooossssssssssooss
5-9-5
65
2489





665085
120060
120078
AGCTCATCAAAGCAAAAAC
n/a
n/a
sooossssssssssooss
5-9-5
65
2490





665086
120110
120128
TCAAAAGACTATGTATTTT
n/a
n/a
sooossssssssssooss
5-9-5
54
2491





665087
120389
120407
TGTAAATAATTGCCAAGTG
n/a
n/a
sooossssssssssooss
5-9-5
61
2492





665088
120439
120457
TAAGCCACCATGCCTGTAA
n/a
n/a
sooossssssssssooss
5-9-5
61
2493





665089
121711
121729
TGGACCCGCCTACTTGCTC
n/a
n/a
sooossssssssssooss
5-9-5
85
2494





665090
121736
121754
TTTCGATGAGTGACATGCG
n/a
n/a
sooossssssssssooss
5-9-5
50
2495





665091
121761
121779
TGCTTGCTCGCAAGGACGC
n/a
n/a
sooossssssssssooss
5-9-5
80
2496





665092
121765
121783
CGCCTGCTTGCTCGCAAGG
n/a
n/a
sooossssssssssooss
5-9-5
82
2497





665093
121767
121785
CCCGCCTGCTTGCTCGCAA
n/a
n/a
sooossssssssssooss
5-9-5
92
2498





665094
121769
121787
GACCCGCCTGCTTGCTCGC
n/a
n/a
sooossssssssssooss
5-9-5
91
2499





665095
121771
121789
TGGACCCGCCTGCTTGCTC
n/a
n/a
sooossssssssssooss
5-9-5
83
2500





665096
121773
121791
CCTGGACCCGCCTGCTTGC
n/a
n/a
sooossssssssssooss
5-9-5
88
2501





665097
121775
121793
ACCCTGGACCCGCCTGCTT
n/a
n/a
sooossssssssssooss
5-9-5
60
2502





665098
121786
121804
AGTGACACGCCACCCTGGA
n/a
n/a
sooossssssssssooss
5-9-5
62
2503





665099
121811
121829
CCTTTGGTAGCCAGAAAAA
n/a
n/a
sooossssssssssooss
5-9-5
53
2504





665100
121817
121835
TCTGCACCTTTGGTAGCCA
n/a
n/a
sooossssssssssooss
5-9-5
84
2505





665101
121938
121956
ACAGCACGGCGCATGGGAC
n/a
n/a
sooossssssssssooss
5-9-5
54
2506





665102
121940
121958
CCACAGCACGGCGCATGGG
n/a
n/a
sooossssssssssooss
5-9-5
84
2507





665103
121942
121960
AGCCACAGCACGGCGCATG
n/a
n/a
sooossssssssssooss
5-9-5
85
2508





664714
135820
135838
TGACAAAAGCAGGTTAAGT
2783
2801
sooossssssssssooss
5-9-5
54
2332





664715
135821
135839
GTGACAAAAGCAGGTTAAG
2784
2802
sooossssssssssooss
5-9-5
65
2335





664716
135822
135840
AGTGACAAAAGCAGGTTAA
2785
2803
sooossssssssssooss
5-9-5
79
2337





664717
135823
135841
GAGTGACAAAAGCAGGTTA
2786
2804
sooossssssssssooss
5-9-5
70
2340





664718
135824
135842
CGAGTGACAAAAGCAGGTT
2787
2805
sooossssssssssooss
5-9-5
89
2343





664719
135825
135843
CCGAGTGACAAAAGCAGGT
2788
2806
sooossssssssssooss
5-9-5
84
2345





664720
135826
135844
GCCGAGTGACAAAAGCAGG
2789
2807
sooossssssssssooss
5-9-5
71
2348





664721
135827
135845
AGCCGAGTGACAAAAGCAG
2790
2808
sooossssssssssooss
5-9-5
81
2351





664722
135828
135846
AAGCCGAGTGACAAAAGCA
2791
2809
sooossssssssssooss
5-9-5
68
2353





664723
135829
135847
AAAGCCGAGTGACAAAAGC
2792
2810
sooossssssssssooss
5-9-5
51
2356





664724
135830
135848
CAAAGCCGAGTGACAAAAG
2793
2811
sooossssssssssooss
5-9-5
47
2359





664725
135831
135849
CCAAAGCCGAGTGACAAAA
2794
2812
sooossssssssssooss
5-9-5
69
2361





664726
135832
135850
GCCAAAGCCGAGTGACAAA
2795
2813
sooossssssssssooss
5-9-5
76
2364





664727
135833
135851
AGCCAAAGCCGAGTGACAA
2796
2814
sooossssssssssooss
5-9-5
64
2367





664728
135834
135852
GAGCCAAAGCCGAGTGACA
2797
2815
sooossssssssssooss
5-9-5
78
2369





664729
135835
135853
CGAGCCAAAGCCGAGTGAC
2798
2816
sooossssssssssooss
5-9-5
74
2421





664730
135836
135854
CCGAGCCAAAGCCGAGTGA
2799
2817
sooossssssssssooss
5-9-5
76
2424





664731
135837
135855
CCCGAGCCAAAGCCGAGTG
2800
2818
sooossssssssssooss
5-9-5
75
2426





664732
135838
135856
TCCCGAGCCAAAGCCGAGT
2801
2819
sooossssssssssooss
5-9-5
80
2429





664733
135839
135857
GTCCCGAGCCAAAGCCGAG
2802
2820
sooossssssssssooss
5-9-5
70
2432





664734
135840
135858
AGTCCCGAGCCAAAGCCGA
2803
2821
sooossssssssssooss
5-9-5
59
2434





664735
135841
135859
AAGTCCCGAGCCAAAGCCG
2804
2822
sooossssssssssooss
5-9-5
58
2437





664736
135842
135860
GAAGTCCCGAGCCAAAGCC
2805
2823
sooossssssssssooss
5-9-5
76
2440





664737
135843
135861
TGAAGTCCCGAGCCAAAGC
2806
2824
sooossssssssssooss
5-9-5
46
2442





664738
135844
135862
TTGAAGTCCCGAGCCAAAG
2807
2825
sooossssssssssooss
5-9-5
46
2550





664739
135845
135863
TTTGAAGTCCCGAGCCAAA
2808
2826
sooossssssssssooss
5-9-5
56
2551





664740
135846
135864
TTTTGAAGTCCCGAGCCAA
2809
2827
sooossssssssssooss
5-9-5
44
2552





664741
135847
135865
ATTTTGAAGTCCCGAGCCA
2810
2828
sooossssssssssooss
5-9-5
61
2553





664742
135848
135866
GATTTTGAAGTCCCGAGCC
2811
2829
sooossssssssssooss
5-9-5
59
2554





664743
135849
135867
TGATTTTGAAGTCCCGAGC
2812
2830
sooossssssssssooss
5-9-5
64
2555





664744
135850
135868
CTGATTTTGAAGTCCCGAG
2813
2831
sooossssssssssooss
5-9-5
67
2556





664745
135851
135869
ACTGATTTTGAAGTCCCGA
2814
2832
sooossssssssssooss
5-9-5
73
2557





664746
135852
135870
CACTGATTTTGAAGTCCCG
2815
2833
sooossssssssssooss
5-9-5
86
2558





664747
135853
135871
TCACTGATTTTGAAGTCCC
2816
2834
sooossssssssssooss
5-9-5
76
2371





664748
135854
135872
ATCACTGATTTTGAAGTCC
2817
2835
sooossssssssssooss
5-9-5
74
2373





664749
135855
135873
CATCACTGATTTTGAAGTC
2818
2836
sooossssssssssooss
5-9-5
50
2375





664750
135856
135874
CCATCACTGATTTTGAAGT
2819
2837
sooossssssssssooss
5-9-5
57
2378





664751
135857
135875
CCCATCACTGATTTTGAAG
2820
2838
sooossssssssssooss
5-9-5
64
2381





664752
135858
135876
TCCCATCACTGATTTTGAA
2821
2839
sooossssssssssooss
5-9-5
59
2383





664753
135859
135877
CTCCCATCACTGATTTTGA
2822
2840
sooossssssssssooss
5-9-5
73
2386





664754
135860
135878
ACTCCCATCACTGATTTTG
2823
2841
sooossssssssssooss
5-9-5
75
2389





664755
135861
135879
TACTCCCATCACTGATTTT
2824
2842
sooossssssssssooss
5-9-5
40
2391





664756
135862
135880
TTACTCCCATCACTGATTT
2825
2843
sooossssssssssooss
5-9-5
43
2394





664757
135863
135881
CTTACTCCCATCACTGATT
2826
2844
sooossssssssssooss
5-9-5
70
2397





664758
135864
135882
TCTTACTCCCATCACTGAT
2827
2845
sooossssssssssooss
5-9-5
61
2399





664759
135865
135883
CTCTTACTCCCATCACTGA
2828
2846
sooossssssssssooss
5-9-5
68
2402





664760
135866
135884
GCTCTTACTCCCATCACTG
2829
2847
sooossssssssssooss
5-9-5
82
2405





664761
135867
135885
TGCTCTTACTCCCATCACT
2830
2848
sooossssssssssooss
5-9-5
76
2407





664762
135868
135886
TTGCTCTTACTCCCATCAC
2831
2849
sooossssssssssooss
5-9-5
77
2409





664763
135869
135887
TTTGCTCTTACTCCCATCA
2832
2850
sooossssssssssooss
5-9-5
83
2411





664764
135870
135888
ATTTGCTCTTACTCCCATC
2833
2851
sooossssssssssooss
5-9-5
82
2413





664765
135871
135889
AATTTGCTCTTACTCCCAT
2834
2852
sooossssssssssooss
5-9-5
77
2415





664766
135872
135890
AAATTTGCTCTTACTCCCA
2835
2853
sooossssssssssooss
5-9-5
69
2417

























TABLE 61






SEQ
SEQ

SEQ
SEQ







ID
ID

ID
ID



NO: 1
NO: 1

NO: 2
NO: 2



SEQ


ISIS
start
stop

start
stop


% inhi-
ID


NO
site
site
Sequence
site
site
Linkage Chemistry
Motif
bition
NO
























665041
73879
73898
GTGATCTTCCATCACTTCGA
345
364
sooosssssssssssooss
5-10-5
86
25





665044
98890
98908
GTTTTCAAACACACCTTCA
n/a
n/a
sooossssssssssooss
5-9-5
90
2485



98927
98945





665201
102119
102138
GGTTTGTTTTTTAAACAATT
n/a
n/a
sooosssssssssssooss
5-10-5
57
2509





665202
102144
102163
GAACCCAATGAGAGTAGCAA
n/a
n/a
sooosssssssssssooss
5-10-5
86
2510





665203
102169
102188
TTGCCAAAATCAGGAATGGG
n/a
n/a
sooosssssssssssooss
5-10-5
87
2511





665204
102194
102213
TCAGGGCAATCTGGAAGCAT
n/a
n/a
sooosssssssssssooss
5-10-5
79
2512





665205
102659
102678
ACTCTCCACTCCATGTCAAT
n/a
n/a
sooosssssssssssooss
5-10-5
26
2513





665206
102684
102703
CAGAGCTCACAGCAATGATC
n/a
n/a
sooosssssssssssooss
5-10-5
78
2514





665207
102709
102728
TCAGCATGAGTTGTGCCAAG
n/a
n/a
sooosssssssssssooss
5-10-5
91
2515





665208
102734
102753
CCAGAGGAACTGTGTGCATT
n/a
n/a
sooosssssssssssooss
5-10-5
79
2516





665209
102759
102778
CCAAGTTCCCTGAGGACATT
n/a
n/a
sooosssssssssssooss
5-10-5
13
2517





665210
112934
112953
GTTGTGTTTTCTGGTTTATT
n/a
n/a
sooosssssssssssooss
5-10-5
96
2518





665211
112959
112978
TTTTTTTTTAAGTTAGGAGT
n/a
n/a
sooosssssssssssooss
5-10-5
20
2519





665212
112984
113003
TTTTACTGGTTGTGTTTTCT
n/a
n/a
sooosssssssssssooss
5-10-5
90
2520





665213
113009
113028
CAGCTCTTAATGCTGTTATA
n/a
n/a
sooosssssssssssooss
5-10-5
90
2521





665214
113498
113517
TTCAGCTCCTGCACCCAGCA
n/a
n/a
sooosssssssssssooss
5-10-5
54
2522





665215
113548
113567
TTTTGCTTTTGCTCTGAAGA
n/a
n/a
sooosssssssssssooss
5-10-5
57
2523





665216
115105
115124
TTGCTATTAAATATAATGTA
n/a
n/a
sooosssssssssssooss
5-10-5
35
2524





665217
115130
115149
GCTTTTTAAAGTGACAACTG
n/a
n/a
sooosssssssssssooss
5-10-5
78
2525





665218
115155
115174
TTCCACATAAATGTTCTACA
n/a
n/a
sooosssssssssssooss
5-10-5
93
2526





665219
115205
115224
CCCTGATTGAGGAGAGGCAA
n/a
n/a
sooosssssssssssooss
5-10-5
77
2527





665220
116595
116614
ATGTTTTTTTCTGGCCGGGC
n/a
n/a
sooosssssssssssooss
5-10-5
85
2528





665221
116620
116639
TTCAGTATCTGCCACATACT
n/a
n/a
sooosssssssssssooss
5-10-5
64
2529





665222
116645
116664
TGAATCAAAGGACATTAAGC
n/a
n/a
sooosssssssssssooss
5-10-5
69
2530





664661
135820
135839
GTGACAAAAGCAGGTTAAGT
2783
2802
sooosssssssssssooss
5-10-5
78
2333





664662
135821
135840
AGTGACAAAAGCAGGTTAAG
2784
2803
sooosssssssssssooss
5-10-5
18
2336





664663
135822
135841
GAGTGACAAAAGCAGGTTAA
2785
2804
sooosssssssssssooss
5-10-5
79
2338





664664
135823
135842
CGAGTGACAAAAGCAGGTTA
2786
2805
sooosssssssssssooss
5-10-5
66
2341





664665
135824
135843
CCGAGTGACAAAAGCAGGTT
2787
2806
sooosssssssssssooss
5-10-5
94
2344





664666
135825
135844
GCCGAGTGACAAAAGCAGGT
2788
2807
sooosssssssssssooss
5-10-5
89
2346





664667
135826
135845
AGCCGAGTGACAAAAGCAGG
2789
2808
sooosssssssssssooss
5-10-5
29
2349





664668
135827
135846
AAGCCGAGTGACAAAAGCAG
2790
2809
sooosssssssssssooss
5-10-5
72
2352





664669
135828
135847
AAAGCCGAGTGACAAAAGCA
2791
2810
sooosssssssssssooss
5-10-5
53
2354





664670
135829
135848
CAAAGCCGAGTGACAAAAGC
2792
2811
sooosssssssssssooss
5-10-5
55
2357





664671
135830
135849
CCAAAGCCGAGTGACAAAAG
2793
2812
sooosssssssssssooss
5-10-5
58
2360





664672
135831
135850
GCCAAAGCCGAGTGACAAAA
2794
2813
sooosssssssssssooss
5-10-5
80
2362





664673
135832
135851
AGCCAAAGCCGAGTGACAAA
2795
2814
sooosssssssssssooss
5-10-5
52
2365





664674
135833
135852
GAGCCAAAGCCGAGTGACAA
2796
2815
sooosssssssssssooss
5-10-5
71
2368





664675
135834
135853
CGAGCCAAAGCCGAGTGACA
2797
2816
sooosssssssssssooss
5-10-5
76
2419





664676
135835
135854
CCGAGCCAAAGCCGAGTGAC
2798
2817
sooosssssssssssooss
5-10-5
78
2422





664677
135836
135855
CCCGAGCCAAAGCCGAGTGA
2799
2818
sooosssssssssssooss
5-10-5
77
2425





664678
135837
135856
TCCCGAGCCAAAGCCGAGTG
2800
2819
sooosssssssssssooss
5-10-5
73
2427





664679
135838
135857
GTCCCGAGCCAAAGCCGAGT
2801
2820
sooosssssssssssooss
5-10-5
73
2430





664680
135839
135858
AGTCCCGAGCCAAAGCCGAG
2802
2821
sooosssssssssssooss
5-10-5
20
2433





664681
135840
135859
AAGTCCCGAGCCAAAGCCGA
2803
2822
sooosssssssssssooss
5-10-5
64
2435





664682
135841
135860
GAAGTCCCGAGCCAAAGCCG
2804
2823
sooosssssssssssooss
5-10-5
60
2438





664683
135842
135861
TGAAGTCCCGAGCCAAAGCC
2805
2824
sooosssssssssssooss
5-10-5
64
2441





664684
135843
135862
TTGAAGTCCCGAGCCAAAGC
2806
2825
sooosssssssssssooss
5-10-5
52
2443





664685
135844
135863
TTTGAAGTCCCGAGCCAAAG
2807
2826
sooosssssssssssooss
5-10-5
45
2559





664686
135845
135864
TTTTGAAGTCCCGAGCCAAA
2808
2827
sooosssssssssssooss
5-10-5
56
2560





664687
135846
135865
ATTTTGAAGTCCCGAGCCAA
2809
2828
sooosssssssssssooss
5-10-5
67
2561





664688
135847
135866
GATTTTGAAGTCCCGAGCCA
2810
2829
sooosssssssssssooss
5-10-5
73
2562





664689
135848
135867
TGATTTTGAAGTCCCGAGCC
1644
1663
sooosssssssssssooss
5-10-5
67
56





664690
135849
135868
CTGATTTTGAAGTCCCGAGC
2812
2831
sooosssssssssssooss
5-10-5
73
464





664691
135850
135869
ACTGATTTTGAAGTCCCGAG
2813
2832
sooosssssssssssooss
5-10-5
85
2563





664692
135851
135870
CACTGATTTTGAAGTCCCGA
2814
2833
sooosssssssssssooss
5-10-5
89
2564





664693
135852
135871
TCACTGATTTTGAAGTCCCG
2815
2834
sooosssssssssssooss
5-10-5
75
2565





424880
135853
135872
ATCACTGATTTTGAAGTCCC
2816
2835
sssssssssssssssssss
5-10-5
62
57





664694
135853
135872
ATCACTGATTTTGAAGTCCC
1649
1668
sooosssssssssssooss
5-10-5
85
57





664695
135854
135873
CATCACTGATTTTGAAGTCC
2817
2836
sooosssssssssssooss
5-10-5
83
2374





664696
135855
135874
CCATCACTGATTTTGAAGTC
2818
2837
sooosssssssssssooss
5-10-5
66
2376





664697
135856
135875
CCCATCACTGATTTTGAAGT
2819
2838
sooosssssssssssooss
5-10-5
58
2379





664698
135857
135876
TCCCATCACTGATTTTGAAG
2820
2839
sooosssssssssssooss
5-10-5
71
2382





664699
135858
135877
CTCCCATCACTGATTTTGAA
2821
2840
sooosssssssssssooss
5-10-5
32
2384





664700
135859
135878
ACTCCCATCACTGATTTTGA
2822
2841
sooosssssssssssooss
5-10-5
71
2387





664701
135860
135879
TACTCCCATCACTGATTTTG
2823
2842
sooosssssssssssooss
5-10-5
75
2390





664702
135861
135880
TTACTCCCATCACTGATTTT
2824
2843
sooosssssssssssooss
5-10-5
46
2392





664703
135862
135881
CTTACTCCCATCACTGATTT
2825
2844
sooosssssssssssooss
5-10-5
22
2395





664704
135863
135882
TCTTACTCCCATCACTGATT
2826
2845
sooosssssssssssooss
5-10-5
72
2398





664705
135864
135883
CTCTTACTCCCATCACTGAT
2827
2846
sooosssssssssssooss
5-10-5
70
2400





664706
135865
135884
GCTCTTACTCCCATCACTGA
2828
2847
sooosssssssssssooss
5-10-5
77
2403





664707
135866
135885
TGCTCTTACTCCCATCACTG
2829
2848
sooosssssssssssooss
5-10-5
88
2406





664708
135867
135886
TTGCTCTTACTCCCATCACT
2830
2849
sooosssssssssssooss
5-10-5
86
2408





664709
135868
135887
TTTGCTCTTACTCCCATCAC
2831
2850
sooosssssssssssooss
5-10-5
16
2410





664710
135869
135888
ATTTGCTCTTACTCCCATCA
2832
2851
sooosssssssssssooss
5-10-5
80
2412





664711
135870
135889
AATTTGCTCTTACTCCCATC
2833
2852
sooosssssssssssooss
5-10-5
65
2414





664712
135871
135890
AAATTTGCTCTTACTCCCAT
2834
2853
sooosssssssssssooss
5-10-5
60
2416





664713
135872
135891
GAAATTTGCTCTTACTCCCA
2835
2854
sooosssssssssssooss
5-10-5
85
2418









Example 17: Dose-Dependent Antisense Inhibition of Human Tau in SH-SY5Y Cells

Gapmers from studies described above exhibiting significant in vitro inhibition of tau mRNA were selected and tested at various doses in SH-SY5Y cells. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.247 μM, 0.741 μM, 2.22 μM, 6.67 μM and 20.00 μM concentrations of antisense oligonucleotide, as specified in the Tables below. After a treatment period of approximately 16 hours, RNA was isolated from the cells and tau mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3104 was used to measure mRNA levels. Tau mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of tau, relative to untreated control cells. Tau mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.

















TABLE 62







ISIS
0.247
0.741
2.22
6.67
20.00
IC50



No
μM
μM
μM
μM
μM
(μM)
























620887
18
39
71
88
95
1.2



664662
5
16
34
59
68
6.4



664665
16
41
69
89
96
1.2



664667
5
20
39
78
90
2.9



664680
7
11
21
56
81
5.9



664699
0
1
28
59
85
5.7



664709
8
16
48
66
89
3.1



665044
15
33
59
84
94
1.6



665205
0
7
35
51
86
5.3



665207
22
36
57
82
93
1.4



665210
15
47
74
94
97
1.0



665212
6
22
56
82
95
2.1



665213
0
18
57
78
93
2.5



665217
10
28
63
86
95
1.7



665218
10
31
64
85
93
1.7

























TABLE 63







ISIS
0.247
0.741
2.22
6.67
20.00
IC50



No
μM
μM
μM
μM
μM
(μM)
























664718
26
34
60
88
86
1.3



664745
34
39
67
87
95
0.9



664746
15
37
60
87
92
1.5



664760
32
50
75
89
97
0.7



665044
21
44
75
92
97
0.9



665082
5
27
67
87
96
1.7



665083
17
34
67
85
97
1.4



665089
9
26
53
84
94
2.0



665093
11
57
81
93
95
0.9



665094
25
53
76
91
93
0.7



665095
20
33
63
89
95
1.4



665096
5
37
57
86
95
1.8



665102
8
36
61
90
96
1.6



665103
6
24
59
83
92
2.1

























TABLE 64







ISIS
0.247
0.741
2.22
6.67
20.00
IC50



No
μM
μM
μM
μM
μM
(μM)
























620887
26
45
72
89
96
1.2



621013
26
49
82
93
97
0.7



621031
25
41
66
84
92
1.1



621041
26
55
70
89
92
0.7



621238
23
41
59
85
95
1.2



621251
33
56
74
88
92
0.5



664514
11
36
68
79
91
1.6



664516
16
36
64
82
94
1.5



664534
18
35
48
76
91
1.9



664775
24
30
59
79
92
1.6



664788
11
21
26
55
73
6.2



664799
26
37
63
79
90
1.3



664800
15
0
61
75
90
2.7



665047
43
65
82
95
98
0.2



665077
19
44
63
85
96
1.2










Example 18: Intracerebroventricular Administration of Antisense Oligonucleotides Against Human Tau mRNA in Htau Mice

Selected compounds were tested for efficacy by ICV administration in human tau transgenic mice (Duff et al., Neurobiology of Disease 7:87-98, 2000).


Treatment and Surgery


Groups of 4 mice each were administered ISIS 613099, ISIS 613361, ISIS 613370, ISIS 623782, or ISIS 623996 with a 200 μg dose delivered by ICV bolus injection. A control group of 2 mice was similarly treated with ISIS 424880 and a control group of 4 mice was similarly treated with PBS. All procedures were performed under isoflourane anesthesia and in accordance with IACUC regulations. For mouse ICV bolus injections, the antisense oligonucleotide was injected into the right lateral ventricle of human tau transgenic mice. Ten microliters of solution containing 200 μg of oligonucleotide in PBS was injected over approximately 10 seconds. Tissue was collected 14 days after oligonucleotide administration.


RNA Analysis


On day 14 after the oligonucleotide administration, RNA was extracted from the hippocampus, spinal cord and cortex for real-time PCR analysis of tau mRNA levels. Human tau mRNA levels were measured using the human primer probe set RTS3104. Results were calculated as percent inhibition of human tau mRNA expression compared to the control. All the antisense oligonucleotides effect significant inhibition of human tau mRNA levels in several tissues.









TABLE 65







Percent reduction of human tau mRNA levels in hTau mice












ISIS


Spinal



No
Cortex
Hippocampus
Cord







613099
41.8
55.2
54.1



613361
69.4
57.3
72.5



613370
42.2
61.0
63.0



623782
62.2
79.1
70.8



623996
74.1
69.2
76.4



424880
50.3
53.1
55.2










Example 19: Design of Oligonucleotides Targeting Human Tau

ISIS No. 603054 was designed to target human Tau. The nucleobase sequence and linkage chemistry of ISIS No. 603054 is given in table 66 below. ISIS No. 603054 is a 5-10-5 MOE gapmer. ISIS No. 603054 is 20 nucleosides in length, wherein the central gap segment comprises ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-MOE modification. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in Table 1 below is targeted to either the human tau genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NT_010783.15 truncated from nucleotides 9240000 to 9381000) or to the human tau mRNA sequence, designated herein as SEQ ID NO: 2 (GENBANK Accession No. NM_001123066.3).









TABLE 66







ICV in vivo study in hTau mice and WT C57Bl6 mice


















SEQ
SEQ








ID
ID



SEQ ID
SEQ ID

NO: 2
NO: 2

SEQ


ISIS
NO: 1
NO: 1

start
stop

ID


NO
start site
stop site
Sequence
site
site
Linkage Chemistry
NO





603054
135853
135872
ATCACTGATTTTGAAGTCCC
2816
2835
sooosssssssssssooos
57









Example 20: In Vivo Analysis in Mice of Oligonucleotides Targeting Human Tau

Oligonucleotides, shown in the table below, were designed to target Tau. Mice, either human tau transgenic mice “hTau” (Duff et al., Neurobiology of Disease 7:87-98, 2000; Davies et al. J. Neurochem. (2003) 86, 582-590) or wild-type WT C57B16 mice were separated into groups of 3 or 4 mice. Each mouse in each group of mice was administered a single ICV dose of either 300 ug or 200 ug each of the oligonucleotides in the table below. At 3 hours post injection, each mouse was evaluated according to 7 different criteria. The 7 criteria are (1) the mouse was bright, alert, and responsive; (2) the mouse was standing or hunched without stimuli; (3) the mouse shows any movement without stimuli (4) the mouse demonstrates forward movement after its lifted; (5) the mouse demonstrates any movement after its lifted; (6) the mouse responds to a tail pinch; (7) regular breathing. For each of the 7 different criteria, each mouse was given a sub-score of 0 if it met the criteria or 1 if it did not. After all of the 7 criteria were evaluated, the sub-scores were summed for each mouse and then averaged for each group. For example, if a mouse was bright, alert, and responsive 3 hours after the 300 μg ICV dose, and met all other criteria, it would get a summed score of 0. If another mouse was not bright, alert, and responsive 3 hours after the 300 μg ICV dose but met all other criteria, it would receive a score of 1. Saline treated mice generally receive a score of 0. Results are presented as the average score for each treatment group in Table 67 below. “ND” means no data. These results demonstrate that ISIS 613099, ISIS 613361, ISIS 613370, ISIS 623782, ISIS 623996, ISIS 424880, and ISIS 603054 were well tolerated.









TABLE 67







ICV in vivo study in hTau mice and WT C57Bl6 mice












Line:

hTau
WT C57Bl6












Dose:
300 ug
200 ug
300 ug







613099
0
ND
ND



613361
0
ND
ND



613370
0
ND
ND



623782
0
ND
ND



623996
0
ND
ND



424880
ND
3
ND



603054
ND
ND
0.25










Example 20: In Vivo Analysis in Rats of Oligonucleotides Targeting Human Tau

Sprague Dawley rats were separated into groups of 4 rats each. Each rat in each group of rats was administered a single 1 mg intrathecal (IT) dose or a single 3 mg intrathecal (IT) dose of ISIS 613099, ISIS 613361, ISIS 613370, ISIS 623782, ISIS 623996, ISIS 424880, or ISIS 603054. At 3 hours after injection, the movement of 7 different parts of the body was evaluated for each rat. The 7 body parts are (1) the rat's tail; (2) the rat's posterior posture; (3) the rat's hind limbs; (4) the rat's hind paws; (5) the rat's forepaws; (6) the rat's anterior posture; and (7) the rat's head. For each of the 7 different body parts, each rat was given a sub-score of 0 if the body part was moving or 1 if the body part was paralyzed. After each of the 7 body parts were evaluated, the sub-scores were summed for each rat and then averaged for each group. For example, if a rat's tail, head, and all other evaluated body parts were moving 3 hours after the 3 mg IT dose, it would get a summed score of 0. If another rat was not moving its tail 3 hours after the 3 mg IT dose but all other evaluated body parts were moving, it would receive a score of 1. Saline treated rats generally receive a score of 0. A score of at the top end of the range would be suggestive of toxicity. Results are presented as the average score for each treatment group in Table 68 below.









TABLE 68







1 mg and 3 mg IT bolus in vivo study










Score 3 hours after injection



ISIS
Dose









No.
1 mg
3 mg












613099
0.25
3


613361
0
0.33


613370
0
0


623782
0.25
0.75


623996
0
2


424880
2.3
6


603054
1.25
2.75








Claims
  • 1. A compound comprising a modified oligonucleotide consisting of 12 to 50 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of a sequence selected from among SEQ ID Nos: 56, 57, 248, 462-467, 1668-1698, 2025-2048, 2301-2309, 2331-2443, 2478-2483, and 2532-2565, wherein the nucleobase sequence of the modified oligonucleotide is at least 90% complementary to SEQ ID NO: 1, and wherein the modified oligonucleotide comprises at least one modified internucleoside linkage and/or at least one modified sugar.
  • 2. The compound of claim 1, wherein the modified oligonucleotide is a single-stranded oligonucleotide.
  • 3. The compound of claim 1, wherein at least one internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.
  • 4. The compound of claim 3, wherein the modified internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 5. The compound of claim 4, wherein at least one internucleoside linkage of the modified oligonucleotide is a phosphodiester internucleoside linkage.
  • 6. The compound of claim 1, wherein at least one nucleobase of the modified oligonucleotide is a modified nucleobase.
  • 7. The compound of claim 6, wherein the modified nucleobase is a 5-methylcytosine.
  • 8. The compound of claim 1, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.
  • 9. The compound of claim 8, wherein the at least one modified sugar is a bicyclic sugar.
  • 10. The compound of claim 9, wherein each bicyclic sugar comprises a chemical bridge between the 4′ and 2′ positions of the sugar, wherein each chemical bridge is independently selected from: 4′-CH(R)—O-2′ and 4′-(CH2)2—O-2′, wherein each R is independently selected from H, C1-C6 alkyl and C1-C6 alkoxy.
  • 11. The compound of claim 10, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is methyl.
  • 12. The compound of claim 8, wherein the at least one modified sugar comprises a 2′-O-methoxyethyl group or a 2′-O-methyl group.
  • 13. The compound of claim 1, wherein at least one nucleoside of the modified oligonucleotide comprises a sugar surrogate.
  • 14. The compound of claim 13, wherein the sugar surrogate is a morpholino or a peptide nucleic acid.
  • 15. The compound of claim 1, wherein the modified oligonucleotide comprises: a 5′ wing segment having from 1 to 6 nucleosides and wherein each nucleoside of the 5′ wing segment comprises a modified sugar;a 3′ wing segment having from 1 to 6 nucleosides and wherein each nucleoside of the 3′ wing segment comprises a modified sugar;a gap segment having from 8 to 15 nucleosides and wherein each nucleoside of the gap segment is a deoxynucleoside.
  • 16. The compound of claim 1, wherein the modified oligonucleotide comprises: a 5′ wing segment having from 1 to 6 nucleosides and wherein at least 4 nucleosides of the 5′ wing segment comprises a modified sugar;a 3′ wing segment having from 1 to 6 nucleosides and wherein at least 4 nucleosides of the 3′ wing segment comprises a modified sugar;a gap segment having from 8 to 15 nucleosides and wherein each nucleoside of the gap segment is a deoxynucleoside.
  • 17. The compound of claim 16, wherein 1 or 2 nucleosides of the 5′ wing segment is a deoxynucleoside and 1 or 2 nucleosides of the 3′ wing segment is a deoxynucleoside.
  • 18. The compound of claim 17, wherein the at least one modified sugar is a bicyclic sugar.
  • 19. The compound of claim 18, wherein each bicyclic sugar comprises a chemical bridge between the 4′ and 2′ positions of the sugar, wherein each chemical bridge is independently selected from: 4′-CH(R)—O-2′ and 4′-CH(2)2—O-2′, wherein each R is independently selected from H, C1-C6 alkyl and C1-C6 alkoxy.
  • 20. The compound of claim 19, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is methyl.
  • 21. The compound of claim 1, wherein the compound comprises a conjugate group.
  • 22. A composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier or diluent.
  • 23. A method of treating a tau associated disease comprising administering the composition of claim 22.
  • 24. The method of claim 23, wherein the tau associated disease is a neurodegenerative disorder.
  • 25. The method of claim 24, wherein the neurodegenerative disorder is selected from among a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome.
  • 26. The compound of claim 10, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is H.
  • 27. The compound of claim 10, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is —CH2—O—CH3.
  • 28. The compound of claim 19, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is H.
  • 29. The compound of claim 19, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is —CH2—O—CH3.
  • 30. A compound comprising a modified oligonucleotide consisting of 12 to 50 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases complementary to an equal length portion of nucleobases 135867 to 135887 of SEQ ID NO: 1, wherein the nucleobase sequence of the modified oligonucleotide is at least 90% complementary to SEQ ID NO: 1, and wherein the modified oligonucleotide comprises at least one modified internucleoside linkage and/or at least one modified sugar.
  • 31. The compound of claim 30, wherein the modified oligonucleotide is a single-stranded oligonucleotide.
  • 32. The compound of claim 30, wherein at least one internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.
  • 33. The compound of claim 32, wherein the modified internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 34. The compound of claim 33, wherein at least one internucleoside linkage of the modified oligonucleotide is a phosphodiester internucleoside linkage.
  • 35. The compound of claim 30, wherein at least one nucleobase of the modified oligonucleotide is a modified nucleobase.
  • 36. The compound of claim 35, wherein the modified nucleobase is a 5-methylcytosine.
  • 37. The compound of claim 30, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.
  • 38. The compound of claim 37, wherein the at least one modified sugar is a bicyclic sugar.
  • 39. The compound of claim 38, wherein each bicyclic sugar comprises a chemical bridge between the 4′ and 2′ positions of the sugar, wherein each chemical bridge is independently selected from: 4′-CH(R)—O-2′ and 4′-(CH2)2—O-2′, wherein each R is independently selected from H, C1-C6 alkyl and C1-C6 alkoxy.
  • 40. The compound of claim 39, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is methyl.
  • 41. The compound of claim 39, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is H.
  • 42. The compound of claim 39, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is —CH2—O—CH3.
  • 43. The compound of claim 37, wherein the at least one modified sugar comprises a 2′-O-methoxyethyl group or a 2′-O-methyl group.
  • 44. The compound of claim 30, wherein at least one nucleoside of the modified oligonucleotide comprises a sugar surrogate.
  • 45. The compound of claim 44, wherein the sugar surrogate is a morpholino or a peptide nucleic acid.
  • 46. The compound of claim 30, wherein the modified oligonucleotide comprises: a 5′ wing segment having from 1 to 6 nucleosides and wherein each nucleoside of the 5′ wing segment comprises a modified sugar;a 3′ wing segment having from 1 to 6 nucleosides and wherein each nucleoside of the 3′ wing segment comprises a modified sugar;a gap segment having from 8 to 15 nucleosides and wherein each nucleoside of the gap segment is a deoxynucleoside.
  • 47. The compound of claim 30, wherein the modified oligonucleotide comprises: a 5′ wing segment having from 1 to 6 nucleosides and wherein at least 4 nucleosides of the 5′ wing segment comprises a modified sugar;a 3′ wing segment having from 1 to 6 nucleosides and wherein at least 4 nucleosides of the 3′ wing segment comprises a modified sugar;a gap segment having from 8 to 15 nucleosides and wherein each nucleoside of the gap segment is a deoxynucleoside.
  • 48. The compound of claim 47, wherein 1 or 2 nucleosides of the 5′ wing segment is a deoxynucleoside and 1 or 2 nucleosides of the 3′ wing segment is a deoxynucleoside.
  • 49. The compound of claim 48, wherein the at least one modified sugar is a bicyclic sugar.
  • 50. The compound of claim 49, wherein each bicyclic sugar comprises a chemical bridge between the 4′ and 2′ positions of the sugar, wherein each chemical bridge is independently selected from: 4′-CH(R)—O-2′ and 4′-CH(2)2—O-2′, wherein each R is independently selected from H, C1-C6 alkyl and C1-C6 alkoxy.
  • 51. The compound of claim 50, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is methyl.
  • 52. The compound of claim 50, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is H.
  • 53. The compound of claim 50, wherein at least one chemical bridge is 4′-CH(R)—O-2′ and wherein R is —CH2—O—CH3.
  • 54. The compound of claim 30, wherein the compound comprises a conjugate group.
  • 55. A composition comprising a compound according to claim 30 and a pharmaceutically acceptable carrier or diluent.
  • 56. A method of treating a tau associated disease comprising administering the composition of claim 55.
  • 57. The method of claim 56, wherein the tau associated disease is a neurodegenerative disorder.
  • 58. The method of claim 57, wherein the neurodegenerative disorder is selected from among a Tauopathy, Alzheimer's Disease, Fronto-temporal Dementia (FTD), FTDP-17, Progressive Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE), Corticobasal Ganglionic Degeneration (CBD), Epilepsy, and Dravet's Syndrome.
US Referenced Citations (144)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
4845205 Huynh Dinh et al. Jul 1989 A
4880635 Janoff et al. Nov 1989 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
5034506 Summerton et al. Jul 1991 A
5130302 Spielvogel et al. Jul 1992 A
5134066 Rogers et al. Jul 1992 A
5149797 Pederson et al. Sep 1992 A
5166315 Summerton et al. Nov 1992 A
5175273 Bischofberger et al. Dec 1992 A
5185444 Summerton et al. Feb 1993 A
5367066 Urdea et al. Nov 1994 A
5432272 Benner Jul 1995 A
5434257 Matteucci et al. Jul 1995 A
5457187 Gmelner et al. Oct 1995 A
5459255 Cook et al. Oct 1995 A
5484908 Froehler et al. Jan 1996 A
5502177 Matteucci et al. Mar 1996 A
5525711 Hawkins et al. Jun 1996 A
5552540 Haralambidis Sep 1996 A
5587469 Cook et al. Dec 1996 A
5594121 Froehler et al. Jan 1997 A
5596091 Switzer Jan 1997 A
5614617 Cook et al. Mar 1997 A
5645985 Froehler et al. Jul 1997 A
5681941 Cook et al. Oct 1997 A
5698685 Summerton et al. Dec 1997 A
5750692 Cook et al. May 1998 A
5763588 Matteucci et al. Jun 1998 A
5801154 Baracchini et al. Sep 1998 A
5808027 Cook et al. Sep 1998 A
5811534 Cook et al. Sep 1998 A
5830653 Froehler et al. Nov 1998 A
5837853 Takashima et al. Nov 1998 A
5859221 Cook et al. Jan 1999 A
5948903 Cook et al. Sep 1999 A
6005096 Matteucci et al. Dec 1999 A
60130377 Pachuk et al. Jan 2000
60399998 Pachuk et al. Mar 2000
60419532 Pachuk et al. Mar 2000
6166199 Cook et al. Dec 2000 A
6268490 Imanishi et al. Jul 2001 B1
6525191 Ramasamy Feb 2003 B1
6582908 Fodor et al. Jun 2003 B2
6670461 Wengel et al. Dec 2003 B1
6673661 Liu et al. Jan 2004 B1
6770748 Imanishi et al. Aug 2004 B2
6794499 Wengel et al. Sep 2004 B2
7034133 Wengel et al. Apr 2006 B2
7053207 Wengel May 2006 B2
7084125 Wengel Aug 2006 B2
7217805 Imanishi et al. May 2007 B2
7314923 Kaneko et al. Jan 2008 B2
7399845 Seth et al. Jul 2008 B2
7427672 Imanishi et al. Sep 2008 B2
7547684 Seth et al. Jun 2009 B2
7569575 Sorensen et al. Aug 2009 B2
7569686 Bhat et al. Aug 2009 B1
7696345 Allerson et al. Apr 2010 B2
7741457 Seth et al. Jun 2010 B2
7750131 Woldike et al. Jul 2010 B2
7858747 Woldike et al. Dec 2010 B2
7875733 Bhat et al. Jan 2011 B2
7939677 Bhat et al. May 2011 B2
8022193 Swayze et al. Sep 2011 B2
8030467 Seth et al. Oct 2011 B2
8034909 Wengel et al. Oct 2011 B2
8080644 Wengel et al. Dec 2011 B2
8088746 Seth et al. Jan 2012 B2
8088904 Swayze et al. Jan 2012 B2
8124745 Allerson et al. Feb 2012 B2
8153365 Wengel et al. Apr 2012 B2
8178503 Rigoutsos et al. May 2012 B2
8268980 Seth et al. Sep 2012 B2
8278283 Seth et al. Oct 2012 B2
8278425 Prakash et al. Oct 2012 B2
8278426 Seth et al. Oct 2012 B2
8329890 Davidson et al. Dec 2012 B2
8440803 Swayze et al. May 2013 B2
8501805 Seth et al. Aug 2013 B2
8530640 Seth et al. Sep 2013 B2
8546556 Seth et al. Oct 2013 B2
RE44779 Imanishi et al. Feb 2014 E
8796437 Swayze et al. Aug 2014 B2
8871729 Yague et al. Oct 2014 B2
9005906 Swayze et al. Apr 2015 B2
9012421 Migawa et al. Apr 2015 B2
9084813 Roberson et al. Jul 2015 B2
9198982 Roberson et al. Dec 2015 B2
9644207 Rigo et al. May 2017 B2
9683235 Freier Jun 2017 B2
1027347 Miller et al. Apr 2019 A1
10407680 Kordasiewicz Sep 2019 B2
20010053519 Fodor et al. Dec 2001 A1
20020018995 Ghetti et al. Feb 2002 A1
20030158403 Manoharan et al. Aug 2003 A1
20030175906 Manoharan et al. Sep 2003 A1
20030219770 Eshleman et al. Nov 2003 A1
20030228597 Cowsert et al. Dec 2003 A1
20040054156 Draper et al. Mar 2004 A1
20040171570 Allerson et al. Sep 2004 A1
20040241651 Olek et al. Dec 2004 A1
20050108783 Koike et al. May 2005 A1
20050130923 Bhat et al. Jun 2005 A1
20050153336 Bennett et al. Jul 2005 A1
20050244851 Blume et al. Nov 2005 A1
20050255487 Khvorova et al. Nov 2005 A1
20060216722 Betsholtz et al. Sep 2006 A1
20070031844 Khvorova Feb 2007 A1
20070203333 McSwiggen et al. Aug 2007 A1
20070287831 Seth et al. Dec 2007 A1
20080003570 Rogers et al. Jan 2008 A1
20080039618 Allerson et al. Feb 2008 A1
20080249058 Roberson et al. Oct 2008 A1
20080318210 Bentwich Dec 2008 A1
20090012281 Swayze et al. Jan 2009 A1
20090076725 Bhogal et al. Mar 2009 A1
20090162365 Feinstein et al. Jun 2009 A1
20090176728 Yague et al. Jul 2009 A1
20100261175 Rasmussen et al. Oct 2010 A1
20110054005 Naito et al. Mar 2011 A1
20110150897 Meyer et al. Jun 2011 A1
20110244561 Davidson et al. Oct 2011 A1
20110263687 Mattick et al. Oct 2011 A1
20130046007 Bennett Feb 2013 A1
20130123133 Ward et al. May 2013 A1
20130130378 Manoharan et al. May 2013 A1
20130203836 Rajeev et al. Aug 2013 A1
20140155462 Brown et al. Jun 2014 A1
20140315983 Brown et al. Oct 2014 A1
20150057329 Bhanot et al. Feb 2015 A1
20150191727 Migawa et al. Jul 2015 A1
20150275205 Miller et al. Oct 2015 A1
20160032285 Rigo et al. Feb 2016 A1
20170211064 Rigo Jul 2017 A1
20180051283 Rigo Feb 2018 A1
20180094261 Kordasiewicz et al. Apr 2018 A1
20180119145 Kordasiewicz May 2018 A1
20190211332 Kordasiewicz Jul 2019 A1
20200032257 Miller et al. Jan 2020 A1
Foreign Referenced Citations (57)
Number Date Country
1696294 Nov 2005 CN
105264091 Jan 2016 CN
WO9839352 Sep 1998 WO
WO9914226 Mar 1999 WO
WO1999062548 Dec 1999 WO
WO0063364 Oct 2000 WO
WO2001032703 May 2001 WO
WO01072765 Oct 2001 WO
WO02081494 Oct 2002 WO
WO03004602 Jan 2003 WO
WO2004017072 Feb 2004 WO
WO2004035765 Apr 2004 WO
WO2004058940 Jul 2004 WO
WO 2004011613 Sep 2004 WO
WO2004106356 Dec 2004 WO
WO2005017143 Feb 2005 WO
WO2005021570 Mar 2005 WO
WO2005040180 May 2005 WO
WO2006047673 May 2006 WO
WO2007027775 Mar 2007 WO
WO2007107789 Sep 2007 WO
WO2007134181 Nov 2007 WO
WO2008101157 Aug 2008 WO
WO 2008124066 Oct 2008 WO
WO2008131807 Nov 2008 WO
WO2008150729 Dec 2008 WO
WO2008154401 Dec 2008 WO
WO2009006478 Jan 2009 WO
WO2009067647 May 2009 WO
WO2009100320 Aug 2009 WO
WO2010036698 Apr 2010 WO
WO2010148249 Dec 2010 WO
WO 2011005786 Jan 2011 WO
WO 2011005793 Jan 2011 WO
WO2011017521 May 2011 WO
WO2011131693 Oct 2011 WO
WO2011139702 Nov 2011 WO
WO 2012005898 Jan 2012 WO
WO 2012018881 Feb 2012 WO
WO 2012177639 Dec 2012 WO
WO2013148260 Oct 2013 WO
WO2013173647 Nov 2013 WO
WO 2014012081 Jan 2014 WO
WO2014114937 Jul 2014 WO
WO2014153236 Sep 2014 WO
WO2014179620 Nov 2014 WO
WO2015010135 Jan 2015 WO
WO2015106128 Jul 2015 WO
WO2016019063 Feb 2016 WO
WO2016126995 Aug 2016 WO
WO2016127002 Aug 2016 WO
WO2016151523 Sep 2016 WO
WO2017015555 Jan 2017 WO
WO2017109679 Jun 2017 WO
WO2013148283 Oct 2017 WO
WO 2018064593 Apr 2018 WO
WO2018064593 Apr 2018 WO
Non-Patent Literature Citations (144)
Entry
Chernolovskaya et al. Current Opinion in Molecular Therapeutics vol. 12(2), 2010.
Sazani et al., “Therapeutic Potential of Antisense Oligonucleotides as Modulators of Alternative Splicing,” J. Clinical Invest, 2003, 112:481-486.
Buck et al., “Design Strategies and Performance of Custom DNA Sequencing Primers,” Biotechniques, 1999, 27(3): 528-536.
GenBank Accession No. NM_001285455.1.
International Search Report for application PCT/US2017/054540 dated Jan. 18, 2018.
Agrawal, S. et al., Proc. Natl. Acad. Sci. USA 87, 1401-1405 (1990).
Albaek et al., J. Org. Chem., 2006, 71, 7731-7740.
Allshire, 2002, Science 297, 1818-1819.
Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637.
Altmann et al., Chimia, 1996, 50, 168-176.
Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926.
Altschul et al., J. Mol. Biol., 1990, 215, 403-410.
Andorfer et al., “Hyper phosphorylation and aggregation of tau in mice expressing normal human tau isoforms” Journal of Neurochemistry (2003) 86: 582-590.
Australian Patent Examination Report for Application No. 2013202595 dated Jul. 4, 2014, 15 pages.
Australian Patent Examination Report for Application No. 2013202595, dated Mar. 17, 2016, 3 pages.
Australian Patent Examination Report for Application No. 2016202220, dated Jan. 12, 2017, 4 pages.
Badiola et al., “Tau phosphorylation and aggregation as a therapeutic target in Tauopathies,” CNS Neurol. Disord. Drug Targets, Dec. 2010, vol. 9, No. 6, pp. 727-740.
Baker et al., J. Biol. Chem., 1997, 272, 11944-12000.
Baker, C. et al., Nucleic Acids Res. 18, 3537-3543 (1990).
Bevins, R.A. and Besheer, J., J. Nature Protocols, 2006, 1: 1306-1311.
Bi et al., Tau-Targeted Immunization Impedes Progression of Neurofibrillary Histopathology in Aged P30 IL Tau Transgenic Mice Plos ONE (2011) 6(12):e26860.
Boiziau et al., “Antisense 2-0-alkyl oligo ribonucleotides are efficient inhibitors of reverse transcription”, Nucleic Acids Research, 1995, 23(1)64-71.
Braasch et al., “Novel antisense and peptide nucleic acid strategies for controlling gene expression” Biochemistry (2002) 41(14):4503-4510.
Braasch et al., Chem. Biol., 2001, 8, 1-7.
Branch et al., “A good antisense molecule is hard to find,” TIBS (1998) 23:45-50.
Caceres et al., “Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons” Nature (1990) 343:461-463.
Caceres et al., “The Effect of Tau antisense Oligonucleotides on Neurite Formation of Cultured Cerebellar Macro neurons” J. Neuroscience (1991) 11(6):1515-1523.
Canadian Patent Office Action for Application No. 2866392, dated Feb. 5, 2018, 6 pages.
Chernolovskaya et al., “Chemical modification of siRNA”, Current Opinion in Molecular Therapeutics, 2010, 12(2):1-10.
Chin “On the Preparation and Utilization of Isolated and Purified Oligonucleotides” Document purportedly located on a CD-ROM and contributed to the public collection of the Katherine R. Everett Law Library of the University of North Carolina on Mar. 14, 2002.
ClinicalTrials.gov, “Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Ionis-Maptrx in patients with mild Alzheimer's Disease”, NCT03186989 online Jun. 14, 2017.
Craig et al., “Towards a small molecule inhibitor of tau exon 10 splicing: Identification of compounds that stabilize the 5'-splice site stem-loop” Alzheimer's & Dementia: The Journal of the Alzheimer's Assocation (2012) 8(4): P636.
Crooke et al., “Antisense Drug Technology”, Second Edition, CRC Press, 2008, Chapters 1-28.
Crooke et al., “Basic Principles of Antisense Therapeutics” Antisense Research and Application (1998) Chapter 1:1-50.
Crooke et al., “Pharmacokinetic Properties of Several Novel Oligonucleotide Analogs in mice” J. Pharmacol. Exp. Ther. (1996) 277(2):923-937.
Davies et al., “Hyper phosphorylation and aggregation of tau in mice expressing normal human tau isoforms”, Journal of Neurochemistry, 2003, 86:582-590.
Dawson, “Tau Exon 10 Splicing Tauopathy”, presentation given at CurePSP 2010 International Research Symposium, Nov. 18, 2010, San Diego, CA.
Dawson, “The Effects of the CBD-Associated Tau Gene H1 Haplotype on Tau Expression, ”Abstract presented at CurePSP 2010 International Research Symposium, Nov. 18, 2010, San Diego, CA (retrieved online Jan. 13, 2016), 39 pages.
Dawson, H.N. et al., J. Neurosci. 27: 9155-9168, 2007.
Deacon, R. M., Nat. Protocol. 2006, 1:1117-9.
DeVos et al., “Antisense oligonucleotides: treating neurodegeneration at the level of RNA” Neurotherapeutics (2013) 10(3):486-497.
DeVos et al., “Antisense Reduction of Human Tau in the CNS of P301S mice both Prevents and Reverses Hyper phosphorylated Tau Deposition” abstract presented at Keystone Symposium: Long Noncoding RNAs: Marching toward Mechanism. Feb. 27-Mar. 4, 2014, Santa Fe, NM, 1 page.
DeVos et al., “Antisense Reduction of Tau in Adult Mice Protects against Seizures” J. Neuroscience (2013) 33(31): 12887-12897.
DeVos et al., “Antisense Reduction of the Human Tau Transgene in the CNS of P301S mice Robustly Decreases Tau Deposition” abstract present at Keystone Symposia: New Frontiers in Neurodegenerative Disease Research, Feb. 3-8, 2013, Santa Fe, NM, 1 page.
DeVos et al., “Reducing Human Tau in the CNS of P301S mice Dramatically Reverses Tau Pathology” abstract presented at 14th International Conference on Alzheimer's Drug Discovery, Sep. 9-10, 2013, Jersey City, NJ, 1 page.
DeVos et al., “Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with Tauopathy”, Science Translational Medicine, 2017, 9(374):1-14.
DeVos et al., “Using antisense oligonucleotides to knockdown endogenous brain tau in vivo” Alzheimer's & Dementia: The Journal of the Alzheimer's Association (2012) 8(4): P205.
DeVos et al., “Using antisense oligonucleotides to knockdown endogenous brain tau in vivo” poster presentation at AAIC 2012; Jul. 14-19, 2012, 1 page.
Donahue et al., “Stabilization of the Tau Exon 10 Stem Loop Alters Pre-mRNA Splicing” J. Biol. Chem. (2006) 281(33):23302-23306.
Duff et al., “Characterization of Pathology in Transgenic Mice Over Expression Human Genomic and cDNA Tau Transgenes”, Neurology of Disease, 2000, 7:87-98.
Elayadi et al., Curr. Opinion Inves. Drugs, 2001, 2, 558-561.
Englisch et al., “Chemically Modified Oligonucleotides as Probes and Inhibitors” Angewandte Chemie, International Edition (1991) 30(6): 613-629.
European Patent Office Action for Application No. 13770075.3 dated Aug. 16, 2018, 8 pages.
European Patent Office Action for Application No. 13770075.3 dated Feb. 8, 2018, 5 pages.
Extended European Search Report for Application No. 13770075.3 dated Oct. 2, 2015, 8 pages.
Extended European Search Report for Application No. 14767904.7, dated Sep. 19, 2016, 10 pages.
Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443.
Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372.
Frost, S. Digital Telerential Screen, 2012, 91-100.
Furdon, P. et al., Nucleic Acids Res. 17, 9193-9204 (1989).
Gautschi et al., J. Natl. Cancer Inst., 93:463-471, 2001.
GenBank Accession No. AK226139.1 (2007), 3 pages.
GenBank Accession No. NM_001123066.3 (2015), 6 pages.
GenBank Accession No. NM_001123067.3 (2015), 5 pages.
GenBank Accession No. NM_001203251.1 (2015), 5 pages.
GenBank Accession No. NM_001203252.1 (2015), 6 pages.
GenBank Accession No. NM_001285455.1, 2013, 4 pages.
GenBank Accession No. NM_005910.5 (2015), 6 pages.
GenBank Accession No. NM_016834.4 (2015), 4 pages.
GenBank Accession No. NM_016835.4 (2015), 19 pages.
GenBank Accession NT_010783.15 (2013), 5 pages.
GenBank Accession NT010783.14 (2008)., 7 pages.
Goedert et al., “Cloning and Sequencing of the cDNA Encoding a Core Protein of the Paired Helical Filament of Alzheimer's Disease: Identification as the Microtubule-Associated Protein Tau” PNAS (1988) 85(11):4051-4055.
Goedert, M. et al., Neurosci. Lett. 1995, 167-9.
Gordon et al., “Antisense suppression of tau in cultured ray oligodendrocytes inhibits process formation”, Journal of Neuroscience Research, May 2008, 86(12):2591-2601.
Gupta, N. et al., Can. J. Ophtalmol., 2008, 43:53-60.
Hall et al., 2002, Science, 297, 2232-2237.
Hatta et al., “Mechanisms of the inhibition of reverse transcription by unmodified and modified antisense oligonucleotides”, 1993, 330(2):161-164.
Ho, W. L. et al., Molecular Vision, 2012, 18:2700-2710.
International Search Report and Written Opinion for Application No. PCT/US2013/31500 dated Jun. 5, 2013, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/047486, dated Feb. 9, 2015, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/042740, dated Dec. 15, 2015, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/042740, dated Feb. 4, 2016, 13 pages.
International Search Report for application PCT/US2014/029752 dated Sep. 18, 2014 , 10 pages.
Japanese Patent Office Action for Application No. 2015503306, dated Jun. 12, 2018, 13 pages with English Translation.
Japanese Patent Office Action for Application No. 2015503306, dated Nov. 22, 2016, 5 pages with English Translation.
Jenuwein, 2002, Science, 297, 2215-2218.
Jiang et al., “Aberrant Splicing of tau Pre-mRNA Caused by Intronic Mutations Associated with the Inherited Dementia Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17” Mol. Cell Biol. (2000) 20(11):4036-4048.
Jones et al., “Targeting hyper phosphorylated tau with sodium selenate suppresses seizures in rodent models” Neurobiology of Disease (2012) 897-901.
Jones, L.J. et al., Analytical Biochemistry, 1998, 265, 368-374.
Kabanov et al., “A new class of antivirals: antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza vims reproduction and synthesis of vims-specific proteins in MDCK cells” FEBS Lett. (1990) 259:327-330.
Kalbfuss, B. et al., “Correction of Alternative Splicing of Tau in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17,” Journal of Biological Chemistry, 2001, vol. 276, pp. 42986-42993.
Koshkin et al., Tetrahedron, 1998, 54, 3607-3630.
Kroschwitz, The Concise Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, 1990, 858-859.
Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222.
Lane et al., “Discovery and early clinical development of Ionis-Maptrx, The first tau-lowering antisense oligonucleotide, in patients with mild AD”, abstract presented at the Alzheimer's Association International Conference, Jul. 2017, London, England.
Letsinger et al., “Cholesteryl-conjugated oligonucleotides: Synthesis, properties, and activity as inhibitors of replication of human immunodeficiency vims in cell culture” PNAS (1989) 86:6553-6556.
Leumann, J. C., Bioorganic & Medicinal Chemistry, 2002, 10, 841-854.
Maher and Dolnick, Nuc. Acid. Res. 16:3341-3358, 1988.
Manoharan et al., “Chemical Modifications to Improve Uptake and Bioavailability of Antisense Oligonucleotides” Ann. N. Y. Acad. Sci. (1992) 660:306.
Manoharan et al., “Cholic Acid-Oligonucleotide Conjugates for Antisense Applications” Bioorg. Med. Chem. Lett. (1994) 4:1053-1060.
Manoharan et al., “Introduction of a Lipophilic Thioether Tether in the Minor Groove of Nucleic Acids for Antisense Applications” Bioorg. Med. Chem. Lett. (1993) 3(12):2765-2770.
Manoharan et al., “Lipidic Nucleic Acids”, Tetrahedron Lett., 1995, 36(21):3651-3564.
Martin, P., Helv. Chem. Acta, 1995, 78, 486-504.
Mishra et al., “Improved leishmanicidal effect of phosphorotioate antisense oligonucleotides by LDL-mediated delivery” Biochem. Biophys. Acta (1995) 1264:229-237.
Morita et al., Bioorganic Medicinal Chemistry, 2003, 11, 2211-2226.
New England Biolabs 1998/99 Catalog (cover page and pp. 121 and 284).
Nishina et al., “ Chimeric antisense oligonucleotide conjugated to alpha-tocopherol”, Molecular Therapy Nucleic Acids, 2015, 4:e220.
Nishina et al., “Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol”, Molecular Therapy, 2008, 16(4):734-740.
Oberhauser et al., “Effective incorporation of 2'-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modifications with thiocholesterol” Nucl. Acids Res. (1992) 20(3):533-538.
Oka et al., “An Oxazaphospholidine approach for the steroid controlled synthesis of oligonucleotide phosphorothioates”, J. Am. Chem. Soc., 2003, 125:8307-8317.
Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243.
Pal-Bhadra et al., 2004, Science, 303, 669-672.
Peacey et al., “Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing” Nucleic Acids Research (2012) 40(19):9836-9849.
Pizzi et al., “Antisense Strategy Unravels Tau Proteins as Molecular Risk Factors for Glutamate-Induced Neurodegeneration” Cellular and Molecular Neurobiology (1994) 14(5):569-578.
Reynolds et al., “Rational siRNA design for RNA interference” Nature Biotechnology (2004) 22(3):326-330.
Rodriguez-Martin, T. et al., Reprograming of tau alternative splicing by spliceosome-mediated RNA trans—splicing: Implications for Tauopathies, Proceedings of the National Academy of Sciences, 2005, vol. 102, No. 43, pp. 15659-15664.
Saison-Behmoaras et al., “Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation” EMBO J. (1991) 10(5):1111-1118.
Sanghvi et al., “Heterocyclic Base Modifications in Nucleic Acids and Their Applications in Antisense Oligonucleotides” Antisense Research and Applications (1993) pp. 273-288.
Sapir et al., “Tau's role in the developing Molecular Genetics (2012) 21(8):1681-1692 brain: implications for intellectual disability” Human Molecular Genetics (2012) 21(8):1681-1692.
Schoch et al., “Antisense oligonucleotide-mediated tau splicing reduces behavioral deficits and tau pathology in a Tauopathy model” abstract presented at Keystone Symposium: Alzheimer's Disease, Mar. 2-7, 2014, Keystone, CO.
Schoch et al., “Antisense oligonucleotide-mediated tau splicing reduces behavioral deficits and tau pathology in a Tauopathy model” poster presented at Keystone Symposium: Alzheimer's Disease, Mar. 2-7, 2014, Keystone, CO.
Shea et al., “Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates” Nucl. Acids Res. (1990) 18(13):3777-3783.
Singh et al., Chem. Commun., 1998, 4, 455-456.
Singh et al., J. Org. Chem., 1998, 63, 10035-10039.
Smith and Waterman, Adv. Appl. Math., 1981, 2, 482-489.
Spicakova et al., “Expression and silencing of the Microtubule-Associated Protein Tau in breast cancer cells”, Molecular Cancer Therapeutics, Nov. 2010, 9(11):2970-2981.
Sproat, B. et al., Nucleic Acids Res. 17, 3373-3386 (1989).
Srivastava et al., J. Am. Chem. Soc., 2007, 129(26), 8362-8379.
Svinarchuk et al., “Inhibition of HIV proliferation in MT-4 cells by antisense oligonucleotide conjugated to lipophilic groups” Biochemie (1993) 75:49-54.
Usman et al., “Exploiting the chemical synthesis of RNA”, Trends in Biochemical Sciences, Sep. 1992, 17(9):334-339.
Verdel et al., 2004, Science, 303, 672-676.
Volpe et al., 2002, Science, 297, 1833-1837.
Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638.
Walder, R. and Walder, J., Proc. Natl. Acad. Sci. USA 85, 5011-5015 (1988).
Wan et al., “Synthesis, biophysical properties oligonucleotides containing chiral phosphorothioate and biological activity of second generation antisense linkages”, Nucleic Acids Research, 2014, 42(22):13456-12468.
Wang et al., “A Novel Tau Transcript in Cultured Human Neuroblastoma Cells Expression Nuclear Tau” J. Cell Biol. (1993) 121(2):257-267.
Wolfe et al., “Tau Mutations in Neurodegenerative Diseases”, J. Biol Chem, 2009, 284(10):3021-3025.
Wolfe M.S., “The Roll of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target” Scientifica (2012) 1-20.
Woolf et al., Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992.
Yamada et al., Neurosci. 2011, 31: 13110-117.
Yoshiyama, Y. et al., Neuron 53: 337-351, 2007.
Zhang and Madden, Genome Res., 1997, 7, 649-656.
Zhou et al., “Fine Tuning of Electrostatics around the Internucleotidic Phosphate through Incorporation of Modified 2',4'-Carbocyclic-LNAs and—ENAs Leads to Significant Modulation of Antisense Properties” J. Org. Chem. (2009) 74:118-134.
Related Publications (1)
Number Date Country
20180094261 A1 Apr 2018 US
Provisional Applications (4)
Number Date Country
62014486 Jun 2014 US
61885371 Oct 2013 US
61879621 Sep 2013 US
61856551 Jul 2013 US
Divisions (1)
Number Date Country
Parent 14906047 US
Child 15593173 US