The semiconductor integrated circuit (IC) industry has experienced exponential growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. Such scaling down has also increased the complexity of processing and manufacturing ICs.
For example, multi-gate field effect transistors (FETs) such as fin field effect transistors (FinFETs) have been developed for better gate controllability than traditional planar FETs in short channel transistors. Examples of the multi-gate FinFET include double-gate FET, triple-gate FFET, omega-gate FET, and gate-all-around (or surround-gate) FET. The multi-gate FETs are expected to scale the semiconductor process technology beyond the limitations of the conventional bulk metal-oxide-semiconductor FET (MOSFET) technology. However, as the transistor device structure scales down and becomes three dimensional, the transistor contact resistance exhibits increased impact on the device performance. Therefore, it is desirable to have new contact structures that reduce the contact resistance.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The present disclosure is generally related to semiconductor devices, and more particularly to semiconductor devices having multi-gate FETs that include conformal source and drain (S/D) contacts. Examples of the multi-gate FETs include double-gate FETs, triple-gate FETs, omega-gate FETs, and gate-all-around (GAA) FETs. Furthermore, the GAA FETs may include one or more of the nanowire channel, the bar-shaped channel, or other suitable channel structures. An object of the present disclosure is to provide a novel S/D contact structure for the multi-gate transistors so as to reduce the S/D contact resistance thereof. In embodiments, an interface between an S/D contact and an underlying semiconductor fin has a substantially conformal profile with respect to the shape of the underlying fin. In another word, the S/D contact effectively covers at least a top surface and two sidewall surfaces of the underlying fin. Such structure provides increased interface area between the S/D contact and the underlying fin, thereby reducing the S/D contact resistance compared to the conventional S/D contacts.
As shown, the device 100 is a multi-gate FinFET device. Furthermore, the device 100 may be an intermediate device fabricated during processing of an integrated circuit (IC), or a portion thereof, that may comprise static random access memory (SRAM) and/or other logic circuits, passive components such as resistors, capacitors, and inductors, and active components such as p-type FETs, n-type FETs, metal-oxide semiconductor field effect transistors (MOSFET), complementary metal-oxide semiconductor (CMOS) transistors, bipolar transistors, high voltage transistors, high frequency transistors, other memory cells, and combinations thereof.
Referring to
The device 100 further includes a plurality of semiconductor films 106. Each of the films 106 covers the S/D regions of a respective fin 104. The films 106 are substantially conformal to the shape of the fins 104. The term “substantially conformal” as used herein means that a top surface of the films 106 is substantially parallel to a top surface of the fins 104, and sidewall surfaces of the films 106 are substantially parallel to sidewall surfaces of the fins 104. However, the thickness of the films 106 may or may not be uniform in various embodiments. In the present embodiment, the top surface of the films 106 and the top surface of the fins 104 are in the (100) crystal orientation (the “x-y” plane as illustrated), and the sidewall surfaces of the films 106 and the fins 104 are in the (110) crystal orientation. In alternative embodiments, the aforementioned surfaces may be in other crystal orientations. For example, the sidewall surfaces of the films 106 and the fins 104 may be in the (551) crystal orientation in another embodiment. In the present embodiment, the films 106 include a doped semiconductor material that provides a conductive path between the S/D contacts 116 and the S/D regions of the fins 104.
In the present embodiment, the device 100 further includes a conduction layer 108 between the S/D contacts 116 and the semiconductor films 106. In an embodiment, the conduction layer 108 is a metallization of a portion of the semiconductor films 106, such as by silicidation or germanosilicidation. In another embodiment, the conduction layer 108 is an ultrathin dielectric layer that helps reduce Fermi-level pinning effects between a metallic material (e.g., the S/D contacts 116) and a semiconductor material (e.g., the semiconductor films 106).
As can be seen in
At operation 202, the method 200 (
The substrate 102 is a silicon substrate in the present embodiment. Alternatively, the substrate 102 may comprise another elementary semiconductor, such as germanium; a compound semiconductor including silicon carbide, gallium arsenic, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; an alloy semiconductor including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP; or combinations thereof.
The fins 104 may comprise at least a semiconductor material selected from the group consisting of silicon, silicon-germanium (Si1-xGex), germanium, and III-V compound semiconductors such as gallium arsenide, indium gallium arsenide (InmGa1-mAs), indium arsenide, indium phosphide, and indium antimonide. The fins 104 may comprise strained Si1-xGex formed on Si, or strained Si formed on relaxed silicon-germanium. In an embodiment, the fins 104 comprise strained Si1-xGex and the substrate 102 comprises a relaxed or partially relaxed silicon germanium alloy Si1-rGer layer, where the germanium mole fraction r is smaller than x. By selecting x to be larger than r, the natural lattice constant of the Si1-xGex channel is larger than that of Si1-rGer, and the Si1-xGex channel is under compressive stress or strain. In embodiments, the compressive strain in the channel in the longitudinal direction is larger than 0.5%, such as larger than 1%. In embodiments, the substrate 102 may also comprise a silicon oxide (SiO2) layer (i.e. silicon-on-insulator substrate), and the fins 104 may be formed from a silicon-on-insulator wafer.
Still referring to
The widths of the fin 104 at its top, central, and bottom (right above the isolation structure 103) portions along the “x” direction are Wfin-top, Wfin, and Wfin-bottom respectively. The fin 104 has a height Hfin above the isolation structure 103 along the “z” direction. The plurality of fins 104 are spaced from each other along the “x” direction with a spacing Sfin and an edge-to-edge pitch Pfin. In embodiments, the fin widths Wfin-top and Wfin-bottom may be 10 nanometers (nm) or smaller, such as 8 nm or smaller. In embodiments, Wfin-top may be equal to or smaller than Wfin which in turn may be equal to or smaller than Wfin-bottom. In embodiments, the fin height Hfin may be equal to or greater than 30 nm, such as 40 nm or greater, or even 50 nm or greater. In embodiments, the fin pitch Pfin may be 30 nm or smaller. In the present embodiment, the fin sidewall surfaces are of (110) crystal orientation and the fin top surface is of (100) crystal orientation. The fin sidewall surfaces may be of other crystal orientations such as (551). Other configurations and shapes of the fins 104 are possible and are within the scope of the present disclosure.
In embodiments, where the fins 104 comprise Si fins and Si1-xGex fins, Si1-xGex fins may be formed together with Si fins and Si1-xGex fins may be adjacent to Si fins. Further, Si1-xGex fins and Si fins need not have the same physical dimensions of Hfin, Wfin-top, and Wfin-bottom. The Si1-xGex fins may be used for p-channel transistors, while the Si fins may be used for n-channel transistors. In embodiments, as the Si fins 104 are formed on a fully or partially relaxed Si1-rGer layer in the substrate 102, the Si fins would be under tensile stress or strain in the longitudinal direction. The presence of tensile strain in the longitudinal direction increases the electron mobility in Si, and improves the drive current and speed performance of the n-channel Si transistors.
The fins 104 may be fabricated using suitable processes including photolithography and etching processes. The photolithography process may include forming a photoresist layer (resist) overlying the substrate 102, exposing the resist to a pattern, performing post-exposure bake processes, and developing the resist to form a masking element including the resist. The masking element is then used for etching recesses into the substrate 102, leaving the fins 104 on the substrate 102. The etching process can include dry etching, wet etching, reactive ion etching (RIE), and/or other suitable processes. Alternatively, the fins 104 may be formed using mandrel-spacer double patterning lithography. Numerous other embodiments of methods to form the fins 104 may be suitable.
The isolation structure 103 may be formed of silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate glass (FSG), a low-k dielectric material, and/or other suitable insulating material. The isolation structure 103 may be shallow trench isolation (STI) features. In an embodiment, the isolation structures 103 is formed by etching trenches in the substrate 102, e.g., as part of the fins 104 formation process. The trenches may then be filled with isolating material, followed by a chemical mechanical planarization (CMP) process. Other isolation structure such as field oxide, LOCal Oxidation of Silicon (LOCOS), and/or other suitable structures are possible. The isolation structure 103 may include a multi-layer structure, for example, having one or more thermal oxide liner layers.
At operation 204, the method 200 (
At operation 206, the method 200 (
Referring to
Referring to
At operation 207, the method 200 (
At operation 208, the method 200 (
In embodiments, the film 106 is a heavily doped and epitaxially grown semiconductor film. In some embodiments, the device 100 is a p-channel multi-gate FET, the fins 104 includes Si or Si1-xGex, and the film 106 may be boron-doped Si1-yGey, where y is equal to or larger than x to induce longitudinal compressive strain in the channel for hole mobility enhancement. In some embodiments, the device 100 is an n-channel multi-gate FET, the fins 104 includes Si, and the film 106 may be phosphorus-doped silicon (Si:P) or phosphorus-doped silicon-carbon (Si1-zCz:P). In embodiments, where the fins 104 include a compound semiconductor such as InmGa1-mAs, the doped epitaxial film 106 may be InnGa1-nAs, where n is smaller than or equal to m. In embodiments, where the device 100 includes both p-channel and n-channel FETs, the doped semiconductor films 106 may be formed separately in the p-channel and n-channel device regions. For example, an n-type film 106 is formed first with the p-channel device regions covered by a hard mask, and then a p-type film 106 is formed with the n-channel device regions covered by a hard mask.
In an embodiment, the semiconductor film 106 is formed by one or more selective epitaxy growth (SEG) processes. In one example, the SEG process is a low pressure chemical vapor deposition (LPCVD) process using a silicon-based precursor gas. To further this embodiment, the growth of different facets of the semiconductor film 106 is controlled so as to achieve a desired profile as shown in
In embodiments, the operation 208 in-situ dopes the grown semiconductor with an n-type dopant such as phosphorus, or arsenic, or combinations thereof for forming the doped silicon film 106 for n-type devices. In embodiments, the operation 208 in-situ dopes the grown semiconductor with a p-type dopant such as boron or indium for forming the doped SiGe film 106 for p-type devices. In embodiments, an optional thermal treatment may be performed to enhance the dopant activation in the film 106, e.g. using rapid thermal annealing (RTA), millisecond anneal (MSA) or spike anneal, laser annealing (LSA), or other annealing techniques.
At operation 210, the method 200 (
Referring to
Referring to
At operation 212, the method 200 (
At operation 214, the method 200 (
In another embodiment, the conduction layer 108 is an ultrathin dielectric layer that helps reduce Fermi-level pinning effects between a metallic material (e.g., the S/D contacts 116 of
In embodiments, the conduction layer 108 is formed over the film 106 before the ILD layer 114 and the contact hole 130 are formed. In such embodiments, the conduction layer 108 fully covers the film 106 in the S/D regions of the device 100. In the present embodiment, the conduction layer 108 is formed over the film 106 after the contact holes 130 are formed. In such embodiments, the conduction layer 108 only covers the portion of the film 106 exposed by the contact holes 130.
At operation 216, the method 200 (
At operation 218, the method 200 (
Although not intended to be limiting, one or more embodiments of the present disclosure provide many benefits to a semiconductor device and the formation thereof. For example, source/drain (S/D) contacts of the present disclosure provide larger contact areas to S/D regions of a transistor than conventional S/D contacts. The S/D contacts of the present disclosure provide a conformal contact interface that covers multiple surfaces of the S/D regions, including a top surface and two sidewall surfaces thereof. The larger contact areas contribute to lower S/D contact resistance.
In one exemplary aspect, the present disclosure is directed to a semiconductor device. The semiconductor device includes a fin having a first semiconductor material. The fin includes a source/drain (S/D) region and a channel region. The S/D region provides a top surface and two sidewall surfaces. A width of the S/D region is smaller than a width of the channel region. The semiconductor device further includes a semiconductor film over the S/D region and having a doped second semiconductor material. The semiconductor film provides a top surface and two sidewall surfaces that are substantially parallel to the top and two sidewall surfaces of the S/D region respectively. The semiconductor device further includes a metal contact over the top and two sidewall surfaces of the semiconductor film and operable to electrically communicate with the S/D region.
In another exemplary aspect, the present disclosure is directed to a method of forming a field effect transistor (FET). The method includes providing a fin, wherein the fin includes a first semiconductor material and has a source region, a channel region, and a drain region for the FET. The method further includes forming a gate stack over the channel region and trimming the fin to reduce a width of the fin in the source and drain regions. The method further includes forming a semiconductor film over the source and drain regions, wherein the semiconductor film includes a doped second semiconductor material and is substantially conformal to the fin. The method further includes depositing a metal over the semiconductor film, wherein the metal is operable to electrically communicate with the source and drain regions.
In another exemplary aspect, the present disclosure is directed to a method of forming a field effect transistor (FET). The method includes providing a fin, wherein the fin includes a first semiconductor material and has a source region, a channel region, and a drain region for the FET. The method further includes forming a dummy gate stack over the channel region and forming a gate spacer over sidewalls of the dummy gate stack. The method further includes trimming the fin to reduce a width of the fin in the source and drain regions. The method further includes forming a semiconductor film over the source and drain regions, wherein the semiconductor film includes a doped second semiconductor material and is substantially conformal to the fin. The method further includes performing a replacement gate process thereby replacing the dummy gate stack with a metal gate. The method further includes forming contact holes to expose a top surface and two sidewall surfaces of the semiconductor film and depositing a metal in the contact holes.
The foregoing outlines features of several embodiments so that those of ordinary skill in the art may better understand the aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
7199430 | Babcock et al. | Apr 2007 | B2 |
7262086 | Yeo et al. | Aug 2007 | B2 |
7667271 | Yu et al. | Feb 2010 | B2 |
7910453 | Xu et al. | Mar 2011 | B2 |
7955928 | Chan et al. | Jun 2011 | B2 |
8236634 | Kanike | Aug 2012 | B1 |
8236659 | Tsai et al. | Aug 2012 | B2 |
8377779 | Wang | Feb 2013 | B1 |
8399931 | Liaw et al. | Mar 2013 | B2 |
8487378 | Goto et al. | Jul 2013 | B2 |
8652894 | Lin et al. | Feb 2014 | B2 |
8686516 | Chen et al. | Apr 2014 | B2 |
8716765 | Wu et al. | May 2014 | B2 |
8723272 | Liu et al. | May 2014 | B2 |
8729627 | Cheng et al. | May 2014 | B2 |
8729634 | Shen et al. | May 2014 | B2 |
8735993 | Lo et al. | May 2014 | B2 |
8736056 | Lee et al. | May 2014 | B2 |
8742492 | Chuang et al. | Jun 2014 | B2 |
8754470 | Chuang et al. | Jun 2014 | B1 |
8772109 | Colinge | Jul 2014 | B2 |
8785285 | Tsai et al. | Jul 2014 | B2 |
8815691 | Colinge et al. | Aug 2014 | B2 |
8816444 | Wann et al. | Aug 2014 | B2 |
8823065 | Wang et al. | Sep 2014 | B2 |
8826213 | Ho et al. | Sep 2014 | B1 |
8860148 | Hu et al. | Oct 2014 | B2 |
8887106 | Ho et al. | Nov 2014 | B2 |
20110073952 | Kwok | Mar 2011 | A1 |
20110272763 | Sasaki | Nov 2011 | A1 |
20120083107 | Chang et al. | Apr 2012 | A1 |
20130040455 | Chan et al. | Feb 2013 | A1 |
20140001574 | Chen et al. | Jan 2014 | A1 |
20140110755 | Colinge | Apr 2014 | A1 |
20140134818 | Cheng et al. | May 2014 | A1 |
20140151812 | Liaw | Jun 2014 | A1 |
20140282326 | Chen et al. | Sep 2014 | A1 |
20150145066 | Lu et al. | May 2015 | A1 |
20150318381 | Tsai et al. | Nov 2015 | A1 |
20160181404 | Wen et al. | Jun 2016 | A1 |
Entry |
---|
Saraswat, Krishna et al., “High Mobility MOSFETs,” Department of Electrical Engineering, Stanford University, INMP May 14, 2014, 15 pages. |
U.S. Appl. No. 14/597,115, filed Jan. 14, 2015, by inventors Chun Hsiung Tsai et al. for “Metal-Insensitive Epitaxy Formation,” 18 pages of text, 5 pages of drawings. |
Michael I. Current et al., “Microwave and RTA Annealing of Phos-Doped, Strained Si(100) and (110) Implanted with Molecular Caron Ions,” Ion Implantation and Annealing: New Process and Products section of SEMICON West 2013, San Francisco CA., Jul. 11, 2013, 17 pages, Junction Technology Group. |
Bo Lojek, “Low Temperature Microwave Annealing of S/D,” 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors—RTP2008, 9 pages. |
D. Hisamoto et al., “FinFET—A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, No. 12, pp. 2320-2325, Dec. 2000. |
X. Huang et al., “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, No. 5, pp. 880-886, May 2001. |
J. Kedzierski et al., “Extension and source/drain design for high performance FinFET devices,” IEEE Trans. Electron Devices, vol. 50, No. 4, pp. 952-958, Apr. 2003. |
J. Kedzierski et al., “Fabrication of metal gated FinFETs through complete gate silicidation with Ni,” IEEE Trans. Electron Devices, vol. 51, No. 12, pp. 2115-2120, Dec. 2004. |
J. Kavalieros et al., “Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering,” in Proc. Symp. VLSI Technology, 2006, pp. 50-51. |
C.-C. Yeh et al., “A low operating power FinFET transistor module featuring scaled gate stack and strain engineering for 32/28 nm SoC technology,” in Proc. IEEE International Electron Device Meeting, Dec. 2010, p. 772. |
C. Auth et al., “A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” in Proc. Symp. VLSI Technology, Jun. 2012, pp. 131-132. |
T.-Y. Liow et al., “Strained N-channel FinFETs with 25 nm gate length and silicon-carbon source/drain regions for performance enhancement,” in Proc. Symp. VLSI Technology, 2006, pp. 68-69. |
J. T. Park et al., “Multiple-gate SOI MOSFETs: Device design guidelines,” IEEE Trans Electron Dev, vol. 49, pp. 2222, 2002. |
F.-L. Yang et al., “25 nm CMOS Omega FET,” in Proc. IEEE International Electron Device Meeting, 2002, pp. 255. |
H. Takato et al., “High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs,” in Proc. IEEE International Electron Device Meeting, Dec. 1988, p. 222. |
D.-I. Moon et al., “Investigation of Silicon Nanowire Gate-All-Around Junctionless Transistors Built on a Bulk Substrate,” IEEE Trans. Electron Devices, vol. 60, No. 4, pp. 1355-1360, Apr. 2013. |
J.-P. Colinge, “Multi-gate SOI MOSFETs,” Solid-State Electronics, vol. 48, pp. 897, 2004. |
J.-P. Colinge et al., “Junctionless nanowire transistor (JNT): Properties and design guidelines,” Solid-State Electronics, vol. 65-66, pp. 33-37, 2011. |
S. Bangsaruntip et al., “Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond,” in Proc. IEEE International Electron Device Meeting, Dec. 2013, p. 385. |