The present invention relates to continuum robots, and more specifically to apparatus and methods for.
Continuum robots offer a number of potential advantages over traditional rigid link robots in certain applications, particularly those involving reaching through complex trajectories in cluttered environments or where the robot must compliantly contact the environment along its length. The inherent flexibility of continuum robots makes them gentle to the environment, able to achieve whole arm manipulation, and gives rise to a unique form of dexterity—the shape of the robot is a product of both actuator and externally applied forces and moments. Thus, kinematic models which consider the effects of external loading have been active areas of recent research, and models that consider pneumatic actuation, multiple flexible push-pull rods, and a elastic member consisting of concentric, pre-curved tubes, have recently been derived.
Cosserat rod theory has shown promise as a general tool for describing continuum robots under load, but application of the theory to tendon-actuated continuum robots has not yet been fully explored. Simplified beam mechanics models have been widely used to successfully obtain free-space kinematic models for tendon-actuated robots. The consensus result is that when the tendons are tensioned, the elastic member assumes a piecewise constant curvature shape. This approach is analytically simple and has been thoroughly experimentally vetted on several different robots. However, this approach is limited in that it cannot be used to predict the large spatial deformation of the robot when subjected to additional external loads. Cosserat rod theory provides the modeling framework necessary to solve this problem, and initial work towards applying it to tendon actuated robots has been performed by considering planar deformations and using the simplifying assumption that the load from each tendon consists of a single point moment applied to the rod at the termination arc length. However, such models are limited.
Embodiments of the invention concern systems and method for controlling continuum robots. In a first embodiment of the invention, a continuum robot is provided. The continuum robot includes an elastic member, a plurality of guide portions disposed along the length of the elastic member, and at least one tendon extending through the plurality of guide portions. In the continuum robot, the tendon is arranged to extend through the plurality of guide portions to define a tendon path, where the tendon is configured to apply a deformation force to the elastic member via the plurality of guide portions, and where the tendon path and an longitudinal axis of the elastic member are not parallel.
In a second embodiment of the invention, a method for managing a continuum robot is provided. In the method, the robot includes an elastic member, a plurality of guide portions disposed along the length of the elastic member, and at least one tendon extending through the plurality of guide portions. In the continuum robot, the tendon is arranged to extend through the plurality of guide portions to define a tendon path, where the tendon is configured to apply a deformation force to the elastic member via the plurality of guide portions. The method includes the steps of applying a tension to the at least one tendon and computing the resulting shape of the elastic member resulting from said tension by solving a system of equations. In the method, the system of equations is given by
where u is the deformed curvature vector consisting of the angular rates of change of the attached rotation matrix R with respect to arc length s, v is a vector comprising linear rates of change of the attached frame with respect to arc length s, C and D are stiffness matrices for the elastic member, and matrices A, B, G, H, are functions of the tension applied to the at least one tendon, the tendon path, and its derivatives, d is vector based on the external force on the elastic member, and c is vector based on an external moment on the elastic member.
In a third embodiment of the invention, a method for managing a continuum robot is provided. In the method, the robot includes an elastic member, a plurality of guide portions disposed along the length of the elastic member, and at least one tendon extending through the plurality of guide portions. In the continuum robot, the tendon is arranged to extend through the plurality of guide portions to define a tendon path, where the tendon is configured to apply a deformation force to the elastic member via the plurality of guide portions. The method includes the steps of determining a target shape for the elastic member and computing a tension for the at least one tendon to provide the target shape by evaluating a system of equations. In the method, the system of equations is given by
where u is the defotmed curvature vector consisting of the angular rates of change of the attached rotation matrix R with respect to arc length s, v is a vector comprising linear rates of change of the attached frame with respect to arc length s, C and D are stiffness matrices for the elastic member, and matrices A, B, G, H, are functions of the tension applied to the at least one tendon, the tendon path, and its derivatives, d is vector based on the external force on the elastic member, and c is vector based on an external moment on the elastic member.
In a fourth embodiment of the invention, a continuum robot is provided. The robot includes an elastic member, a plurality of guide portions disposed along the length of the elastic member, and at least one tendon extending through the plurality of guide portions and arranged to extend through the plurality of guide portions to define a tendon path, wherein the at least one tendon is configured to apply a deformation force to the elastic member via the plurality of guide portions. The robot also includes an actuator for applying a tension to the at least one tendon; and a processing element for using a system of equations for controlling a shape of the elastic member and the tension. The system of equations is given by:
where u is the deformed curvature vector consisting of the angular rates of change of the attached rotation matrix R with respect to arc length s, v is a vector comprising linear rates of change of the attached frame with respect to arc length s, C and D are stiffness matrices for the elastic member, and matrices A, B, G, H, are functions of the tension applied to the at least one tendon, the tendon path, and its derivatives, d is vector based on the external force on the elastic member, and c is vector based on an external moment on the elastic member.
The present invention is described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the instant invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
The various embodiments of the invention provide systems and methods for the control of tendon-actuated continuum robots. In particular, the various embodiments of the invention extend previous work on the Cosserat rod-based approach by taking into account not only the attachment point moment, but also the attachment point force and the distributed wrench that the tendon applies along the length of the elastic member. This approach couples the classical Cosserat string and rod models to express tendon loads in terms of the rod's kinematic variables.
The difference between this new coupled model and the point moment model for out of plane loads is shown in
The various embodiments thus provide two new innovations over conventional methods. First, a new Cosserat rod-based model is provided for the spatial deformation of tendon actuated continuum robots under general external point and distributed wrench loads. This model is the first to treat the full effects of all of the tendon loads in a geometrically exact way for large 3D deflections. Second, the new model is the first to describe the mechanics of general tendon routing paths that need not run straight (along the undeformed robot configuration), as has been the case in prior prototypes. Thus, by providing a general model that can address most, if not all, types of tendon routing, this expands the design space and the set of shapes achievable for tendon-actuated robots.
In view of the foregoing, the various embodiments provide systems and methods for controlling continuum robots using exact models for the forward kinematics, statics, and dynamics and with general tendon routing experiencing external point and distributed loads. The models account for lance deformations due to bending, torsion, shear, and elongation. The static model is formulated as a set of nonlinear differential equations in standard form, and the dynamic model consists of a system of hyperbolic partial differential equations.
Using this approach, one can accurately predict the shape of a physical prototype with both straight and non-straight tendon routing paths and with external loading. With calibrated parameters, the mean tip error with respect to the total robot length can be significantly reduced as compared to conventional methods.
As illustrated in
The models in accordance with the various embodiments of the invention therefore allow new quasi-static and/or dynamic control techniques for tendon-actuated continuum robots in the future. Furthermore, the inclusion of general external loads in tendon actuated continuum robot models is an important step forward for future practical applications, given their significant sag under self-weight and when carrying payloads. Additionally, such models can be used to address the issue of modeling static friction, and real-time computation of static and dynamic robot shape.
A. Rod Kinematics
In Cosserat-rod theory, a rod is characterized by its centerline curve in space p(s)ε3 and its material orientation, R(s)εSO(3) as functions of a reference parameter sε[0 L]. Thus a homogeneous transformation can be used to describe the entire rod:
Kinematic variables v(s) and u(s) represent the linear and angular rates of change of g(s) with respect to s expressed in coordinates of the “body frame” g(s). Thus, the evolution of g(s) along s is defined by the following relationships;
{dot over (R)}(s)=R(s)û(s),{dot over (p)}(s)=R(s)v(s) (1)
where, the dot denotes a derivative with respect to s, and the ^ and {hacek over ( )} and operators are as defined by R. M. Murray, Z. Li, and S. S. Sastry in “A Mathematical Introduction to Robotic Manipulation.” Boca Raton, Fla.: CRC Press, 1994. See also the Derivation Appendix for an explanation of these operators.
Letting the undeformed reference configuration of the rod be g*(s), where the z axis of R*(s) is chosen to be tangent to the curve p*(s). One could use the Frenet-Serret or Bishop's convention to define the x and y axes of R*(s), or, if the rod has a cross section which is not radially symmetric, it is convenient to make the x and y axes align with the principal axes. The reference kinematic variables v* and u* can then be obtained by [v*T u*T]T=(g*−1(s)ġ*
If the reference configuration happens to be a straight cylindrical rod with s as the arc length along it, then v*=[0 0 1]T and u*(s)=[0 0 0]T.
B. Equilibrium Equations
One can the write the equations of static equilibrium for an arbitrary section of rod as shown in
{hacek over (n)}(s)+f(s)=0, (2)
{dot over (m)}(s)+{dot over (p)}(s)×n(s)+l(s)=0. (3)
C. Constitutive Laws
The difference between the kinematic variables in the rod's reference state and those in the deformed state can be directly related to various mechanical strains. For instance, transverse shear strains in the body-frame x and y directions correspond to vx-vx* and vy-vy* respectively, while axial elongation or stretch in the body-frame z direction corresponds to vz-vz*. Similarly, bending strains about the local x and y axes are related to ux-ux* and uy-uy* respectively, while torsional strain about the local z axis is related to uz-uz*.
One can use linear constitutive laws to map these strain variables to the internal forces and moments. Assuming that the x and y axes of g* are aligned with the principal axes of the cross section, one obtains
n(s)=R(s)D(s)(v(s)−v*(s)),
m(s)=R(s)C(s)(u(s)−u*(s)), (4)
where
D(s)=diag(GA(s),GA(s),EA(s)), and
C(s)=diag(EIxx(s),EIyy(s),EIxx(s)+EIyy(s)),
where A(s) is the area of the cross section, E(s) is Young's modulus, G(s) is the shear modulus, and Ixx(s) and Iyy(s) are the second moments of area of the tube cross section about the principal axes. (Note that Ixx(s)+Iyy(s) is the polar moment of inertia about the centroid.) One can use these linear relationships here because they are notationally convenient and accurate for many continuum robots, but the Cosserat rod approach does not require it.
D. Explicit Model Equations
Equations (2) and (3) can then be written in terms of the kinematic variables using equation (4), their derivatives, and equation (1). This leads to the full set of differential equations shown below.
{dot over (p)}=Rv
{dot over (R)}=Rû
{dot over (v)}={dot over (v)}*−D−1((ûD+{dot over (D)})(v−v*)+RTf)
{dot over (u)}={dot over (u)}*−C−1((ûC+Ċ)(u−u*)+{circumflex over (v)}D(v−v*)+RTl) (5)
Alternatively, an equivalent system can be obtained using in and n as state variables rather than v and u.
{dot over (p)}=R(D−1RTn+v*)
{dot over (R)}−R(C−1RTm+u*)−
{dot over (n)}=−f
{dot over (m)}=−{dot over (p)}×n−l (6)
Boundary conditions for a rod which is clamped at s=0 and subject to an applied force Fl and moment Ll at s=l would be R(0)=R0, p(0)=p0, m(l)=Ll, and n(l)=Fl
Having reviewed the classic Cosserat-rod model, the derivation anew model for tendon driven continuum manipulators in accordance with the various embodiments of the invention will now be presented. The derivation uses the Cosserat model of Section II to describe the elastic member and the classic Cosserat model for extensible strings to describe the tendons. For purposes of the model, the string and rod models are coupled together by deriving the distributed loads that the tendons apply to the elastic member in terms of the rod's kinematic variables, and then incorporating these loads into the rod model.
A. Assumptions
Two standard assumptions are employee in the derivation. First, an assumption of frictionless interaction between the tendons and the channel through which they travel. This implies that the tension is constant along the length of the tendon. Frictional forces are expected to increase as the curvature of the robot increases due to larger normal forces, but the assumption of zero friction is valid if low friction materials are used, which is the case for the experimental prototype discussed below. Second, the locations of the tendons within the cross section of the robot are assumed not to change during the deformation. This assumption is valid for designs which use embedded sleeves or channels with tight tolerances, as well as designs which use closely spaced tendon guide portions.
B. Tendon Kinematics
One can separate the terms f and l in the equations in (5) into truly external distributed loads, fe and le, and distributed loads due to tendon tension, ft and lt.
f=fe+ft
l=le+lt. (7)
In order to derive ft and lt, one starts by defining the path in which the tendon is routed along the robot length. Note that this path can be defined by channels or tUbes within a homogeneous elastic atructure, or support disks on an elastic member—both of which afford considerable flexibility in choosing tendon routing. In the experimental prototype, many holes are drilled around the periphery of each support disk, allowing easy reconfiguration of tendon path as desired.
A convenient way to mathematically describe the tendon routing path is to define the tendon location within the robot cross section as a function of the reference parameter s. Thus, the routing path of the ith tendon is defined by two functions xi(s) and yi(s) that give the body-frame coordinates of the tendon as it crosses the x-y plane of the attached elastic member frame at s. As shown in
ri(s)=[xi(s)yi(s)0]T. (8)
The parametric space curve defining the tendon path in the global frame when the robot is in its undeformed reference configuration is then given by
pi*(s)=R*(s)ri(s)+p*(s).
Similarly, when the robot is deformed due to tendon tension or external loads, the new tendon space curve will be
pi(s)=R(s)ri(s)+p(s). (9)
C. Distributed Forces on Tendons
The governing differential equations for an extensible string can be derived by taking the derivative of the static equilibrium conditions for a finite section. This results in the same equation for the internal force derivative as in equation (2).
{dot over (n)}i(s)+fi(s)=0. (10)
where fi(s) is the distributed force applied to the ith tendon per unit of s, and ni(s) is the internal force in the tendon. In contrast to a Cosserat rod, an ideal string has the defining constitutive property of being perfectly flexible, meaning it cannot support internal moments or shear forces, but only tension which is denoted by τi. This requires that the internal force be always tangent to the curve pi(s). Thus, one can write
If friction were present, τi would vary with s, but under the frictionless assumption, it is constant along the length of the tendon. Using (10) and (11) one can derive the following expression for the distributed force on the tendon (see Appendix for Derivation):
D. Tendon Loads on Elastic Member
One can now write the collective distributed loads ft and lt that the tendons apply to the elastic member, in terms of the individual forces on the tendons and their locations in the elastic member cross-section. The total distributed force is equal and opposite to the sum of the individual force distributions on the tendons shown in equation (12), namely,
The distributed moment at the elastic member centroid is the sum of the cross products of each moment arm with each force. Thus,
Substituting equation (12), yields
One can then express these total force and moment distributions in terms of the kinematic variables u, v, R and p so that one can substitute them into equations (7) and (5). To do this, one expands {dot over (p)} and {umlaut over (p)}. Differentiating equation (9) twice yields,
{dot over (p)}i=R(ûri+{dot over (r)}i+v),
{umlaut over (p)}i=R(û(ûri+{dot over (r)}i+v)+{dot over (û)}ri+û{dot over (r)}i+{umlaut over (r)}i+{dot over (v)}). (14)
It is noted that {umlaut over (p)} is a function of {dot over (u)} and {dot over (v)}. Therefore, substituting these results into equation (13), and equation (13) into the rod model equation (5) via equation (7), one can obtain an implicitly defined set of differential equations. Fortunately, the resulting equations are linear in u and v, and it is therefore possible to manipulate them into an explicit form. Rewriting them in this way (such that they are amenable to standard numnical methods) is the topic of the following subsection.
E. Explicit Decoupled Model Equations
The coupled rod & tendon model is given in implicit form by equations (5), (7), (13), and (14). In this subsection, these implicit equations are manipulated into explicit, order, state-vector form. To express the result concisely, some intermediate matrix and vector quantities are defined, starting with equation (14) expressed in body-frame coordinates, i.e.
{dot over (p)}ib=ûri+{dot over (r)}i+v.
{umlaut over (p)}ib=û{dot over (p)}ib+{dot over (û)}ri+û{dot over (r)}i+{umlaut over (r)}i+{dot over (v)}.
Now define Matrices Ai, A, Bi, and B, as well as vectors ai, a, bi, and b, as follows:
to find that ft and lt can now be expressed as
The vector terms Σi=1n Ai{dot over (û)}ri and Σi=1nBi{dot over (û)}ri are both linear in the elements of {dot over (u)}. Therefore, it is possible to express them both by equivalent linear operations on {dot over (u)}. That is, one can define matrices G and H as
where e1, e2, and e3 are the standard basis vectors [1 0 0], [0 1 0], and [0 0 1]. Then, equation (15) becomes
ft=R(a+A{dot over (v)}+G{dot over (u)}).
lt=R(b+B{dot over (v)}+H{dot over (u)}).
Substituting tendon load expressions into the last two equations in (5) and rearranging them provides
(D+A){dot over (v)}+G{dot over (u)}=d
B{dot over (v)}+(C+H){dot over (u)}=c
where the vectors c and d are functions of the state variables as shown below.
d=D{dot over (v)}*−(ûD+{dot over (D)})(v−v*)−RTfc−a
c=C{dot over (u)}*−(ûC+Ċ)(u−u*)−{circumflex over (v)}D(v−v*)−RTlc−b.
One can now easily write the governing equations as
{dot over (p)}=Rv
{dot over (R)}=Rû
Noting that the quantities on the right hand side of equation (17) are merely functions of the state variables and system inputs (u, R, τn, fe and le) one arrives at a system of differential equations in standard explicit form, describing the shape of a continuum robot with any number of generally routed tendons and with general external loads applied.
This system can be solved by any standard numerical integration routine for systems of the form {dot over (y)}=f(s,y). The required matrix inverse may be calculated (either numerically or by obtaining a closed fonn inverse) at every integration step, or one could alternatively rewrite the equations as a system with a state dependent mass matrix on the left hand side and use any standard numerical method for solving M(y,s){dot over (y)}=f(s,y). For purposes of the simulations and experiments in accordance with the various embodiments of the invention, numerically inversion is used.
F. Boundary Conditions
When tendon i terminates at s=li along the length of the robot, it applies a point force to its attachment point equal and opposite to the internal force in the tendon given by equation (11). Thus, the point force vector is given by
With a moment arm of pi(li)−p(li), this force creates a point moment Li at the elastic member centroid of,
If at some location s=σ, point loads F(σ) and L(σ) (resulting from tendon terminations or external loads) are applied to the elastic member, the internal force and moment change across the boundary s=σ by,
n(σ−)=n(σ+)+F(σ),
m(σ−)=m(σ+)+L(σ). (20)
where σ− and σ+ denote locations just before and just after s=σ. Any combination of external point loads and tendon termination loads can be accommodated in this way.
G. Point Moment Model
In prior tendon robot models, tendon actuation has often been modeled by simply applying the pure point moment in equation (19) to an elastic member model at the location where each tendon is attached, without considering the point force at the attachment point and the distributed tendon loads along the length (see
This approximation for planar robots is justified since the eftcts of the point force and the distributed loads effectively “cancel” each other, leaving only the point moment. Thus, as shown in
However, as shown in
Based on the coupled rod and tendon model presented above for static continuum robot deformations, a model for the dynamics of a continuum robot with general tendon routing is derived. Such a model will be useful for analyzing the characteristics of specific designs as well as the development of control algorithms similar to those derived for planar robotswith straight tendons. As shown below, adding the necessary dynamic terms and equations results in a hyperbolic system of partial differential equations, which can be expressed in the standard form
yt=f(s,t,y,ys), (21)
where a subscript s or t is used in this section to denote partial derivatives with respect to the reference parameter s and time t respectively.
Two new vector variables are introduced, q and w, which are the body frame linear and angular velocity of the rod at s. These are analogous to u and v respectively, but are defined with respect to time instead of arc length. Thus,
pt=Rq Rt=Rŵ. (22)
Recalling from equations in (5) that
ps=Rv Rs=Rû, (23)
and using the fact that pst=pts and Rst=Rts one can derive the following compatibility equations,
ut=ws+ûw vt=qs+ûq−ŵvs (24)
Equations (2) and (3) describe the static equilibrium of the rod. To describe dynamics, one can add the time derivatives of the linear and angular momentum per unit length in place of the zero on the right hand side, such that they become,
{dot over (n)}+f=ρApu, (25)
{dot over (m)}+{dot over (p)}×n+l=δt(RρJw), (26)
where ρ is the mass density of the rod, A is the cross sectional area of the elastic member, and J is the matrix of second area moments of the cross section. Expanding these and applying the equations in (24) one can obtain a complete system in the form of equation (21),
where ft and lt can be computed using the equations in (16). Typically, conditions at t=0 are given for all variables along the length of the robot, and the boundary conditions of Subsection III-F apply for all times.
A. Dynamic Simulation
To illustrate the capability of the equations in (27) to describe the time evolution of the shape of a continuum robot with general tendon routing, the following dynamic simulation of a robot whose elastic member is identical to that of the experimental prototype described in Section V is provided. The robot contains a single tendon routed in a helical where the tendon makes one complete revolution around the shaft as it passes from the base to the tip. This routing path is the same as the one for tendon 5 in the prototype, which is specified in Table 1.
The maximum length of the time step for any explicit time-marching algorithm for hyperbolic partial differential equations is limited by the Courant-Friedriechs-Lewy condition for stability. This is a fairly restrictive condition for dynamic rod problems because the shear, extension, and torsional vibrations are so fast that a very small is required in order to capture them without the simulation becoming unstable. An active research field in mechanics and computer graphics simulation is to find reduced-order models of rods that are physically accurate and yet capable of being simulated in real-time. This simulation confirms the intuition that the elastic member should move towards a helical very when the helical tendon undergoes a step in tension.
Below are described several different experiments conducted using a continuum robot prototype with a variety of tendon paths and external loading conditions applied
A. Prototype Constructions
A prototype robot in accordance with the various embodiments is shown in
Although the exemplary robot configuration utilizes standoff disks to provide the tendon guide portions, the various embodiments are not limited in this regard. Rather, any of means of coupling the tendons to the elastic member to cause deformation of the elastic member can be used in the various embodiments. Further, a particular combination of materials, spacing of guide portions, and openings in the guide portions is provided, the various embodiments are not limited in this regard. Rather, any variations on the combination recited above can be used with the various embodiments. Additionally, the methods above can be used with any number of tendons. In such embodiments, the tendons can extend along a same portion of the length of the elastic member or the tendons can extend over different portions of the length of the elastic member, including overlapping portions.
The tendon routing paths can be reconfigured on this robot by “re-threading” the tendons through a different set of holes in the various support disks. The robot's self-weight distribution was measured to be 0.47 N/m, which is enough to cause significant deformation, producing 44 mm of downward deflection at the tip (18% of the total arc length) for zero tendon tension. This weight was incorporated into all model calculations as a distributed force.
B. Experimental Procedure
In each of the following experiments, known tensions were applied to tendons behind the base of the robot by passing the tendons over approximately frictionless pulleys and attaching them to hanging calibration weights. In those cases with applied point loads, weights 812 were also hung from the tip of the robot, as shown in
In each experiment, a set of 3D elastic member points was collected by manually touching the elastic member with the tip of an optically tracked stylus as shown in
C. Calibration
The base frame position of the robot can be determined accurately using the optically tracked stylus. The angular orientation of the robot elastic member as it leaves the base support plate is more challenging to measure (Note that the elastic member cannot be assumed to exit exactly normal to the plate due to the tolerance between the elastic member and the hole drilled in the plate, and a 2° angular error in base frame corresponds to an approximately 8 mm tip error when the robot is straight). Also, the effective stiffness of the elastic member was increased due to the constraints of the standoff disks and Loctite adhesive at regular intervals. To account for these uncertainties the effective Young's modulus and the set of XYZ Euler angles (α, B, and γ) describing the orientation of the base frame were calibrated.
The calibration process was accomplished by sorting preconstrained nonlinear optimization problem to find the set of parameters which minimizes the sum of the positional errors at the tip of the device for the set of 25 experiments with straight tendon paths described in Sec. V-D and Table II.
In other words, for the parameter set P={E, α, B, γ}:
where ek=∥Pmodel(l)−Pdata(l)∥k is the Euclidean distance between the model tip prediction and the data in experiment k. To implement this minimization, the Nelder-Meade simplex algorithm was used.
To ensure fair comparison of the coupled model and the point moment model, the calibration procedure was performed separately for each model. Results are shown in Table III.
Note that the similarity in calibrated Euler angles and their low deviation from nominal provides confidence that the correct base frame was obtained for both models. It is also important to note that the models contain the same number of parameters, no a fair comparison can be made. As expected, the calibrated values for Young's modulus are higher than the nominal value of 210 GPa for spring steel, due to the increased stiffness provided by the disks and glue. Poisson's ratio was held constant at v=0.3125 during calibration so that the shear modulus was correctly scaled relative to Young's modulus.
D. Straight Tendon Results and Model Comparison
Table I details the location of the tendon routing paths used in the experiments in terms of xi(s) and yi(s) as defined in (8). Twenty-five (25) experiments were performed (detailed in Table II) with straight tendon paths in order to compare the accuracy of the new coupled model with that of the point moment model. The tip error statistics for both models with calibrated parameters is detailed in Table IV.
The results for in-plane loading are accurate for both models, as shown in
With calibrated parameters, the mean tip error over all 25 straight tendon experiments was 3.6 mm for the coupled model. This corresponds to 1.5% of the total arc length of the robot. Note that experimental data points lie close to the model prediction along the entire robot length, and the error increases gradually along the robot length, no that tip error normalized by the robot length is a reasonable metric for the accuracy of the model.
E. A High-Tension, Large-Load, Straight Tendon Experiment
Also performed was one additional straight tendon experiment to see how the two approaches compare for a case of large tension and large out-of-plane load, similar to the case which is simulated in
F. Experiments with Helical Tendon Routing
To explore more complex tendon routing, helical routing paths were also evaluated. As given in Table I, the helical routing path winds through one complete revolution as it traverses the robot from base to tip. The tensions and tip loads for these experiments are detailed in Table II. Using the parameters calibrated from the previous straight tendon dataset, the resulting data and model predictions are plotted in
G. Experiments with Polynomial Tendon Routing
In order to further illustrate the model's generality, an additional experiment with a general curved tendon routing choice was performed. In particular, the routing path variables were parameterized by two trigonometric functions whose arguments are defined by a polynomial function of degree 4 as follows:
x6(s)=8 cos(5887s4−2849s3+320s2+6s)
y6(s)=8 sin(5887s4−2849s3+320s2+6s), (28)
where s is in meters and x6 and y6 are in millimeters. This routing path starts at the top of the robot, wraps around to the right side for most of the length, and then returns to the top at the end of the robot. The tensions and loads are given in Table II, and the results are detailed in Table V and illustrated in
H. Sources of Error
The largest source of measurement is likely the procedure of manually placing the tip of the on the robot during data capture. It is estimated that this uncertainty is at most 2 mm. In general, the largest model errors occurred when the tendons were under the greatest tension. This agrees with the intuition that effects of static friction should become more significant as the tension and curvature increase, However, the low overall errors suggest that neglecting static friction is justifiable for this prototype.
Accordingly, in the view of the foregoing, the equations above can be integrated into a continuum robot system, as shown in
The system can have at least two modes of operation. In a first mode of operation, the actuator/sensor 1410 can generate signals indicative of a current tension on the tendon 1408. This signal can be recited by the control system 1412. The control system 1412 can then use the equations described above, particularly the governing equations at (17), to estimate a current or resulting shape of the member 1404. In particular, the governing equations at (17) can be solved to extract the shape of the member 1404. Additional sensors 1414, such as video sensors, can also be coupled to the control system 1412 to allow verification of this estimated shape. In a second mode of operation, the control system 1412 can also use the equations described above, particularly the governing equations at (17), to determine an amount of tension required for the member 1404 to achieve a desired shape. Thereafter, the control system 1412 can cause the actuator/sensor 1410 to adjust the tension on the tendon 1408. The additional sensors 141 can then be used to verify that the target shape has been achieved.
Using these two modes of operation, it is then possible to control the robot 1402 to perform various types of tasks, as the equations above allow one to detect and adjust the configuration of the robot 1402 in real-time based on measurement and adjustment of the tension of the tendon 1408. That is, a robot with increased dexterity can be provided. Such a robot can be useful for various applications. In particular, such robots would be useful for carry out procedures in confined spaces, as the increased dexterity would allow the user to maneuver the tip around obstructions in such spaces. For example, such robots could be used to reduce the invasiveness of some existing surgical procedures which currently cannot be performed using conventional robotic tools. Such procedures in transnasal skull base surgery, lung interventions, cochlear implantation procedures, to name a few. However, the various embodiments are not limited in this regard and the various methods and systems described herein can be used for any other procedure in which increased dexterity of the robot is desired or required.
Turning now to
The system bus 1510 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. A basic input/output (BIOS) stored in ROM 1540 or the like, may provide the basic routine that helps to transfer information between elements within the computing device 1500, such as during start-up. The computing device 1500 further includes storage devices 1560 such as a hard disk drive, a magnetic disk drive, an optical disk drive, tape drive or the like. The storage device 1560 can include software modules 1562, 1564, 1566 for controlling the processor 1520. Other hardware or software modules are contemplated. The storage device 1560 is connected to the system bus 1510 by a drive interface. The drives and the associated computer readable storage media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the computing device 1500. In one aspect, a hardware module that performs a particular function includes the software component stored in a tangible and/or intangible computer-readable medium in connection with the necessary hardware components, such as the processor 1520, bus 1510, display 1570, and so forth, to carry out the function. The basic components are known to those of skill in the art and appropriate variations are contemplated depending on the type of device, such as whether the device 1500 is a small, handheld computing device, a desktop computer, or a computer server.
Although the exemplary embodiment described herein employs the hard disk 1560, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, digital versatile disks, cartridges, random access memories (RAMs) 1550, read only memory (ROM) 1540, a cable or wireless signal containing a bit stream and the like, may also be used in the exemplary operating environment. Tangible, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
To enable user interaction with the computing device 1500, an input device 1590 represents any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 1570 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems enable a user to provide multiple types of input to communicate with the computing device 1500. The communications interface 1580 generally governs and manages the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
For clarity of explanation, the illustrative system embodiment is presented as including individual functional blocks including functional blocks labeled as a “processor” or processor 1520. The functions these blocks represent may be provided through the use of either shared or dedicated hardware, including, but not limited to, hardware capable of executing software and hardware, such as a processor 1520, that is purpose-built to operate as an equivalent to software executing on a general purpose processor. For example the functions of one or more processors presented in
The logical operations of the various embodiments are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a general use computer, (2) a sequence of computer implemented steps, operations, or procedures running on a specific-use programmable circuit; and/or (3) interconnected machine modules or program engines within the programmable circuits. The system 1500 shown in
A. Nomenclature
B. Derivation of fi(s)
Beginning with (11),
one can re-arrange and differentiate to obtain
Noting that ni×ni=0, one can take a cross product of the two results above to find,
and so
Applying the vector triple product identity, a×(b×c)=b(a·c)−c(a·b), one can expand the right-hand side of this equation. Since τi (the magnitude of ni) is constant with respect to s, then ni·{dot over (n)}i=0 and this results in
Using the fact that a×b=−b×a, and writing the cross products in skew-symmetric matrix notation in (a×b={dot over (a)}b), one arrives at (12)
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
For example, in some embodiments, the method described above can also be used to determine the load or external forces and moments being applied to the elastic member. In such embodiments, the 3D shape of the elastic member can be determined via some kind of sensing method (i.e., with cameras, or optical fibers, or magnetic tracking coils, or ultrasound, or fluoroscopy, etc.). Thereafter, using a known tension on the tendon and routing path for the tendon, the iterative model equations described above can be iteratively solved to determine the external forces and moments (fe and le) which result in the model-predicted shape that is close to the actual sensed shape. The resulting loads based on the model can then be used as an estimate of the loads acting on the elastic member. Accordingly, these loads can be used to provide useful information to one who is operating the continuum robot. Alternatively, a similar method can be used to compute the required tendon tension necessary to achieve forces and moments for the continuum robot to exert on its surroundings. In such embodiments, the 3D shape of the elastic member is also determined via some kind of sensing method. Thereafter, the external loads are estimated using the above-mentioned procedure. Finally, the adjustment in tension needed to achieve a desired load or shape can be determined iteratively using the system of equations.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
This application is a §371 national stage entry of International Application No. PCT/US2011/038539, filed May 31, 2011, which claims priority to U.S. Provisional Application No. 61/362,353, filed Jul. 8, 2010, both of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/038539 | 5/31/2011 | WO | 00 | 2/5/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/005834 | 1/12/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5317952 | Immega | Jun 1994 | A |
6986739 | Warren et al. | Jan 2006 | B2 |
8460236 | Roelle et al. | Jun 2013 | B2 |
8672837 | Roelle et al. | Mar 2014 | B2 |
20030018388 | Comer | Jan 2003 | A1 |
20050028237 | Greenhill et al. | Feb 2005 | A1 |
20090024141 | Stahler et al. | Jan 2009 | A1 |
20090123111 | Udd | May 2009 | A1 |
20090138025 | Stahler et al. | May 2009 | A1 |
20090182436 | Ferrara | Jul 2009 | A1 |
20100263470 | Bannasch et al. | Oct 2010 | A1 |
20110319815 | Roelle et al. | Dec 2011 | A1 |
20120010628 | Cooper et al. | Jan 2012 | A1 |
20130165945 | Roelle et al. | Jun 2013 | A9 |
Entry |
---|
Bergou et al., “Discrete elastic rods”, ACM Trans. Graph. (2008) 27(3). (12 pages). |
Buckingham et al., “Reaching the unreachable—Snake arm robots”, Retrieved on Aug. 27, 2013, from http://www.ocrobotics.com/downloads/EngineeringNov04.pdf (1 page). |
Camarillo et al., “Mechanics modeling of tendon-driven continuum manipulators”, IEEE Transactions on Robotics (2008) 24(6): 1262-1273. |
Chirikjian et al., “A modal approach to hyper-redundant manipulator kinematics”, IEEE Trans. Robot. Auton. (1994) 10(3): 343-353. |
Chirikjian, “Hyper-redundant manipulator dynamics: A continuum approximation”, Adv Robot (1995) 9(3): 217-243. |
Chirikjian et al., “Kinematically optimal hyper-redundant manipulator configurations”, IEEE Trans. Robot. Autom. (1995) 11(6): 794-806. |
Davis et al., “A model for the embedded tendon control of a slender three-dimensional flexible robot link”, Dynamics and Control (1994) 4(2): 185-208. |
Gravagne, “Design, analysis and experimentation: The fundamentals of continuum robotic manipulators”, Ph.D. Dissertation, Dept Elect Comput Eng, Clemson Univ. (2002). (135 pages). |
Gravagne et al., “Large deflection dynamics and control for planar continuum robots”, IEEE/ ASME Trans. Mechatron (2003) 8: 299-307. |
Gravagne et al., “Manipulability, force, and compliance analysis for planar continuum robots”, IEEE Tran. Robot. Autom (2002) 18(3): 263-273. |
International Search Report and the Written Opinion mailed on Feb. 9, 2012 in PCT Application No. PCT/US2011/038539, international filed May 31, 2011. (9 pages). |
Jones et al., “Three-dimensional statics for continuum robots”, Proc. IEEE/RSJ Inc. Conf. Intell. Robots Syst. (2009): 2659-2664. |
Li et al., “Design of continuous backbone, cable-driven robots”, ASME J Mech Design (2002) 124(2): 265-271. |
Murray et al., “A mathematical introduction to robotic manipulation”, CRC Press: Boca Raton (1994). (474 pages). |
Robinson et al., “Continuum robots—A state of the art”, Proc IEEE Int Conf Robot Autom (1999): 2849-2854. |
Rucker et al., “A geometrically exact model for externally loaded concentric-tube continuum robots”, IEEE Trans Robot (2010) 26(5): 769-780. |
Rucker et al., “Exact mechanics of continuum robots with general tendon routing”, Proc 12th Int Symp Exp Robot (2010): 1-10. |
Shampine, “Solving hyperbolic PDE's in MATLAB”, Appl. Numer. Anal. Comput. Math. (2005) 2(3): 346-358. |
Simaan et al., “Steerable continuum robot design for cochlear implant surgery”, Proc. IEEE Int. Conf. Robot. Autom. (2010): 36-38. |
Trivedi et al., “Soft robotics: Biological inspiration, state of the art, and future research”, Appl. Bionics Biomech (2008) 5(3): 99-117. |
Webster et al., “Design and kinematic modeling of constant curvature continuum robots: A review”, Int J Robot Res (2010 29: 1661-1683. |
Wilson et al., “The mechanics of positioning highly flexible manipulator limbs”, J Mech Transmiss Autom Design (1989) 111: 232-237. |
Xu et al., “Analytic formulation for kinematics, statics and shape restoration of multi-backbone continuum robots via elliptic integrals”, ASME J Mech Robot (2010) 2(1): 011 006-1-011 006-13. |
Xu et al., “Intrinsic wrench estimation and its performance index for multisegment continuum robots”, IEEE Trans Robot (2010) 26(3): 555-561. |
Number | Date | Country | |
---|---|---|---|
20130131868 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61362353 | Jul 2010 | US |