Embodiments of the present invention are related to nanoscale memristor devices.
Significant research and development efforts are currently directed towards designing and manufacturing nanoscale electronic devices, such as nanoscale memories. Nanoscale electronics promises significant advances, including significantly reduced features sizes and the potential for self-assembly and for other relatively inexpensive, non-photolithography-based fabrication methods. However, the design and manufacture of nanoscale electronic devices present many new problems compared with the current state-of-the-art.
Studies of switching in nanometer-scale transition-metal devices have previously reported that these devices could be reversibly switched and had an “on-to-off” conductance ratio of ˜103. These devices have been used to construct crossbar circuits and provide a promising route for the creation of ultra-high density non-volatile memory. A series connection of crossbar switches that can be used to fabricate, for example, latch circuit elements has also been demonstrated, which is an important component for logic circuits and for communication between logic and memory. New logic families that can be constructed entirely from crossbar arrays of resistive switches or as hybrid structures composed of resistive switches and transistors have been described. These new logic families have the potential to dramatically increase the computing efficiency of CMOS circuits, thereby enabling performance improvements of orders of magnitude without having to shrink transistors, or to even replace CMOS for some applications if necessary. However, it is desired to improve the performance of the devices that are presently fabricated.
Various embodiments of the present invention are directed to nanoscale, electronic devices, which are nonvolatile and combine reconfigurable diode rectifying states with memristive switching. A memristor device configured in accordance with embodiments of the present invention is composed of an active region sandwiched between two electrodes. The two interfaces between the active region and the electrodes are Schottky-like contacts. This multilayered junction is a diode that can be switched into one of four different rectifying states by applying an electrical field of an appropriate magnitude and polarity across the active region. The electric field changes the electrostatic potential distribution near the interfaces to have Ohmic-like barriers and/or Schottky-like barriers, thus enabling the active region to be re-configured so the device can operate as one of the following four types of rectifiers: a forward rectifier, a reverse rectifier, a shunted rectifier, and a head-to-head rectifier. The active region remains in a particular rectifying state provided operating voltages applied to the device do not exceed the magnitude of the electric field used to switch the rectifying state of the active region.
The active region is likely operated by positioning and repositioning dopants, which modify the electrical conductivity of the active region. Traditionally dopants are formed in the active region via chemical agents that thermally diffuse through one of the electrodes to an interface between the electrode and the active region. However, the grains comprising the electrode can be too large to allow a sufficient amount of agents to reach the interface. As a result, dopants fail to form in sufficient concentrations. In addition, the amount and distribution of the formed dopants are random and difficult to control. Embodiments of the present invention are directed to memristor devices with an active region that includes a selectively and controllably implanted dopant region or a selectively and controllably implanted material that forms a dopant region within the active region.
The detailed description is organized as follows: A description of electronically actuated devices is provided in a first subsection. A description of switching the rectifying state of the devices is provided in a second subsection. Various materials that can be used to fabricate the devices are provided in a third subsection. An example implementation of the devices in crossbar arrays is provided in a fourth subsection.
The basic mode of operation is to apply an electrical field of an appropriate magnitude and polarity across the active region 102. When the magnitude and polarity of the electrical field, also called a “drift field,” exceeds a threshold, the dopants become mobile in the primary active material, and the dopants can drill into or out of the primary active material via ionic transport from the secondary material. The ionic species are specifically chosen from those that act as electrical dopants for the primary active material, and thereby change the resistance of the primary active material. For example, applying a drift field that introduces dopants from the secondary active material into the primary active material lowers the resistance of the primary active material, while applying a drift field that drives dopants from the primary active material into the secondary active material increases the resistance of the primary active material. In addition, the primary active material and the dopants are chosen such that the drift of the dopants into or out of the primary active material is possible but not too facile that dopants can diffuse into or out of the primary active material when no voltage is applied. Some diffusion resistance is required to ensure that the active region 102 remains in a particular rectifying state for a reasonable period of time, perhaps for many years at room temperature. This ensures that the active region 102 is nonvolatile because the active region 102 retains its rectifying state even after the drift field has been removed. Applying a drift field with a large enough magnitude causes both electron current and dopants to drift, whereas applying operating voltages with lower relative voltage magnitudes than the drift field causes negligible dopant drift enabling the device to retain its rectifying state during operation.
The device 100 is a memristor because the resistance changes in a non-volatile fashion depending on the amount and distribution of charge in the device. Memristance is a non-volatile, charge-dependent resistance denoted by m(q). The term “memristor” is short for “memory resistor.” Memristors are a class of passive circuit elements that maintain a functional relationship between the time integrals of current and voltage. This results in resistance varying according to the device's memristance function. Specifically engineered memristors provide controllable resistance useful for switching current. The memristor is a special ease in so-called “memristive systems,” described as a class of mathematical models useful for certain empirically observed phenomena, such as the firing of neurons. The definition of the memristor is based solely on fundamental circuit variables, similar to the resistor, capacitor, and inductor. Unlike those more familiar elements, the necessarily nonlinear memristors may be described by any of a variety of time-varying functions. As a result, memristors do not belong to Linear Time-independent circuit models. A linear time-independent memristor is simply a conventional resistor.
A memristor is a element in which the ‘magnetic flux’ (defined as an integral of bias voltage over time) Φ between the terminals is a function of the amount of electric charge q that has passed through the device. Each memristor is characterized by its memristance function describing the charge-dependent rate of change of flux with charge as follows:
Based on Faraday's law of induction that magnetic flux Φ is the time integral of voltage, and charge q is the time integral of current, the memristance can be written as
Thus, as stated above, the memristance is simply nonvolatile charge-dependent resistance. When m(q) is constant, the memristance reduces to Ohm's Law R=V/I. When m(q) is not constant, the equation is not equivalent to Ohm's Law because q and m(q) can vary with time. Solving for voltage as a function of time gives:
V(t)=m[q(t)]I(t)
This equation reveals that memristance defines a linear relationship between current and voltage, as long as charge does not vary. However, nonzero current implies instantaneously varying charge. Alternating current may reveal the linear dependence in circuit operation by inducing a measurable voltage without net charge movement, as long as the maximum change in q does not cause change in m. Furthermore, the memristor is static when no current is applied. When I(t) and V(t) are 0, m(t) is constant. This is the essence of the memory effect.
The material comprising the primary active layer 112 can be single crystalline, poly-crystalline, nanocrystalline, nanoporous, or amorphous. The mobility of the dopants in nanocrystalline, nanoporous or amorphous materials, however, is much higher than in bulk crystalline material, since drift can occur through grain boundaries, pores or through local structural imperfections in a nanocrystalline, nanoporous, or amorphous material. Also, because the primary active material is relatively thin, the amount of time needed for dopants to drift into or out of the primary active material enables the primary active materials conductivety to be rapidly changed. For example, the time needed for a drift process varies as the square of the distance covered, so the time to drift one nanometer is one-millionth the time to drift one micrometer.
The primary active layer 112 and the secondary active layer 114 are contacted on either side by metal electrodes 104 and 106, or one of the electrodes can be composed of a semiconductor material and the other a metal. When the active region 102 is composed of a semiconductor material, the contact between a metal electrode and the active region 102 depletes the active region 102 of free charge carriers. Thus, the net charge of the active region 102 depends on the identity of the dopant and is positive in the case of electron donors and negative in the case of electron acceptors.
The ability of the dopant to drift in and out of the primary active material is substantially improved if one of the interfaces connecting the active region 102 to a metal or semiconductor electrode is non-covalently bonded. Such an interface may be composed of a material that does not form covalent bonds with the electrode, the primary active material, or both. This non-covalently bonded interface lowers the activation energy of the atomic rearrangements that are needed for drift of the dopants in the primary active material. This interface is essentially an extremely thin insulator, and adds very little to the total series resistance of the device.
One potentially useful property of the primary active material is that it can be a weak ionic conductor. The definition of a weak ionic conductor depends on the application for which the device 100 is designed. The mobility μd and the diffusion constant D for a dopant in a lattice are related by the Einstein equation:
D=μdkT
where k is Boltzmann's constant, and T is absoulte temperature. Thus, if the mobility μd of a dopant in a lattice is high so is the diffusion constant D. In general, it is desired for the active region 102 of the device 100 to maintain a particular rectifying state for an amount of time that may range from a fraction of a second to years, depending on the application. Thus, it is desired that the diffusion constant D be low enough to ensure a desired level of stability, in order to avoid inadvertently turning the active region 102 from one rectifier to another rectifier via ionized dopant diffusion, rather than by intentionally setting the state of the active region 102 with an appropriate voltage. Therefore, a weakly ionic conductor is one in which the dopant mobility μd and the diffusion constant D are small enough to ensure the stability or non-volatility of the active region 102 for as long as necessary under the desired conditions. On the other hand, strongly ionic conductors would have relatively larger dopant mobilities and be unstable against diffusion.
In certain embodiments, the active region 102 can be operated so that Ohmic and Shottky barriers are created to control the flow of charge carriers through the active region 102. However, the traditional description of electrode/semiconductor Schottky and Ohmic barriers does not apply to a nanoscale device 100 because the materials comprising the electrodes 104 and 106 and the active region 102 are structured at the nanoscale. As a result, the structural and electronic properties are not averaged over the large distances for which the theory of metal-semiconductor contacts is developed. Instead, the electronic properties of undoped electrode/active region interfaces can electronically resemble Schottky barriers and are called “Schottky-like barriers,” and the electronic properties of doped electrode/semiconductor interfaces electronically resemble Ohmic barriers and are called “Ohmic-like barriers.”
Conduction of electrons through the active region 102 occurs via quantum mechanical tunneling through the Ohmic-like barrier.
Each of the four rectifiers corresponds to a different dopant distribution. When the dopant is located at or near an electrode/active region interface, the interface has an Ohmic-like harrier. Thus, charge carriers can readily tunnel through the Ohmic-like barrier into and out of the active region 102. On the other hand, an undoped portion of the active region 102 at or near an electrode/active region interface has a Schottky-like barrier that is either too high or wide to permit most charge carriers from tunneling through the active region 102.
The plots 220-223 of the I-V characteristic curves reveal the response of the device 100 to different operating voltage polarities and magnitudes. In particular, plot 220 reveals that when the device 100 is configured as the forward rectifier 211, current (lows from the first electrode 104 to the second electrode for positive polarity voltages exceeding a voltage 224 and resistance is large for negative polarity voltages. Plot 221 reveals that when the device 100 is configured as the reverse rectifier 212, current flows from the second electrode 106 to the first electrode 104 for negative polarity voltages exceeding a voltage 225 and resistance is large for positive polarity voltages. Plot 222 reveals that when the device 100 is configured as the shunted rectifier 213, current substantially flows undisturbed through the device 100 for positive and negative polarity voltages with magnitudes exceeding voltages 226 and 227. Finally, plot 223 reveals that when the device 100 is configured as a head-to-head rectifier 214, the resistance of the device 100 is high for positive and negative polarity voltages between voltages 228 and 229. Note that plots 220-223 show only operating voltage ranges. In other words, the magnitudes of voltages applied to the rectifiers 211-214 represented in plots 220-223 are not large enough to change the rectifier to a different rectifier or destroy the device 100.
The dopants are mobile under an appropriate drift field because the active region 102 may only be a few nanometers thick. The reconfiguration of the dopant profiles due to the drift of dopants under a drift field leads to electrical switching between the four rectifiers. As shown in
Opening is switching between the reverse rectifier 212 and the head-to-head rectifier 214. In this case, the undoped interface 230 remains unchanged and only the doped interface 232 is switched. The undoped interface contains few dopants and remains rectifying instead of Ohmic-like. A bias of an appropriate polarity and magnitude on the first electrode 104 forces dopants away from the interface 232 and switches the reverse rectifier 212 into the head-to-head rectifier 214, and vice versa. The switching between the forward rectifier 211 and the back-to-back rectifier 214 is also opening.
Inverting between the forward rectifier 211 and the reverse rectifier 212 involves simultaneously applying oppositely polarized biases to the electrodes 104 and 106. For example, switching from the forward rectifier 211 to the reverse rectifier 212 is accomplished by applying oppositely polarized biases to the electrodes 104 and 106 to force dopants away from the interface 230 and attract dopants to the interface 232. Switching from the reverse rectifier 212 to the forward rectifier 211 is accomplished by applying oppositely polarized biases to the electrodes 104 and 106 to force dopants away from the interface 232 and attract dopants to the interface 230. Therefore, the dopant profile across the active region 102 is essentially inverted and so is the rectifying orientation, resulting in a switching between a reverse rectifier and a forward rectifier.
The material of the primary active layer 112 can be composed of an oxide having at least one oxygen atom (“O”) and at least one other element. In particular, the primary active layer 112 can be composed of any of titania (“TiO2”), zirconia (“ZrO2”), and hafnia (“HfO2”). These materials are compatible with silicon (“Si”) integrated circuit technology because they do not create deep level dopants in Si. Other composition embodiments for the active region 102 include alloys of these oxides in pairs or with all three of the elements Ti, Zr, and Hf present. For example, the primary active layer can be composed of TixZryHfzO2, where x+y+z=1. Related compounds include titanates, zirconates, and hafnates. For example, titanates includes ATiO3, where A represents one of the divalent elements strontium (“Sr”), barium (“Ba”) calcium (“Ca”), magnesium (“Mg”), zinc (“Zn”), and cadmium (“Cd”). Tn general, the primary active layer can be composed of ABO3, where A represents a divalent element and B represents Ti, Zr, and Hf. The primary active layer can also be composed of alloys of these various compounds, such as CaaSrbBacTixZryHfzO3, where a+b+c=1 and x+y+z=1. There are also a large variety of other oxides of the transition and rare earth metals with different valences that may be used, both individually and as more complex compounds. In each case, the mobile dopant is an oxygen vacancy, denoted by VO. An oxygen vacancy effectively acts as a positively charged n-type dopant with one shallow and one deep energy level. For example, because even a relatively minor nonstoichiometry of about 0.1% oxygen vacancies in TiO2-x is approximately equivalent to 5×1019 dopants/cm3, modulating oxygen vacancy profiles have strong effect on electron transport.
In other embodiments, the primary active layer can be composed of a nitride having at least one nitrogen atom and at least one other element. For example, the primary active layer can be composed of but is not limited to, Si3N4, Be3N2, P3N5, TiN, Li3N, and a large variety of other nitrides. The mobile dopant can be a nitrogen vacancy.
In other embodiments, the primary active layer can be composed of a sulfide having at least one sulfur atom and at least one other element. For example, the primary active layer can be composed, but is not limited to, CdS, PbS, ZnS, CS2, and a large variety of other sulfides. The mobile dopant can be a sulfur vacancy.
In other embodiments, the primary active layer can be composed of a carbide having at least one carbon atom and at least one other element. For example, the primary active layer can be composed, but is not limited to, Na2C2, CaC2, LaC2, Li4C3, Mg2C3, B4C, SiC, and a large variety of other carbides. The mobile dopant can be a carbon vacancy.
The electrodes 104 and 106 can be composed of platinum, gold, copper, tungsten, or any other suitable metal, metallic compound (e.g. some perovskites such as BaTiO3 and Ba1-xLaxTiO3, PrCaMnO3) or semiconductor.
Note that in the following description “M” represents one of the following materials: Ti, Hf, Zr, TixZryHfz, ATi, AB, and CaaSrbBacTixZryHfz described above, and any other non-oxygen portion of an oxide, any non-nitrogen portion of a nitride, any non-sulfur portion of a sulfide, or any non-carbon portion of a carbide. Also, the letter “V” represents a vacancy, such as an oxygen vacancy, a nitrogen vacancy, a sulfur vacancy, or carbon vacancy.
However, in practice, the grains comprising the second electrode 303 may vary in size, and in many cases, the size of the grains may be large enough to prevent a sufficient amount of the material M from thermally diffusing into the interface 308.
Certain embodiments of the present invention are directed to a material M implanted or diffused into the primary active layer. The material forms a corresponding secondary active layer with a high concentration of vacancies.
In other embodiments, a vacancy region can be formed anywhere within the primary active layer and away from the first and second electrodes 301 and 303.
In other embodiments, implantation can also be used to implant a species that reduces vacancies in a layer composed of a material having a high initial concentration of vacancies:
Embodiments of the present invention are not limited to forming a single vacancy region, as described above with reference to
In other embodiments, the material M located adjacent to the primary active layer 302 and the electrode interface can diffuse into the primary active layer and serve as the dopant.
In other embodiments, the primary active layer material can be a semiconducting nitride or a semiconducting halide. For example, semiconducting nitrides include AlN, GaN, ScN, YN, LaN, rare earth nitrides, and alloys of these compounds and more complex mixed metal nitrides, and semiconducting halides include CuCl, CuBr, and AgCl. The primary active layer material can also be a phosphide or an arsenide of various transition and rare earth metals. In all of these compounds, the mobile dopant in the secondary active layer can be an anion vacancy or an aliovalent element.
In other embodiments, the primary active layer 302 can also be composed of a semiconductor material including various combinations of direct and indirect semiconductors. The indirect and direct semiconductors can be elemental and compound semiconductors. Indirect elemental semiconductors include Si and germanium (Ge), and compound semiconductors include III-V materials, where Roman numerals III and V represent elements in the IIIa and Va columns of the Periodic Table of the Elements. Compound semiconductors can be composed of column IIIa elements, such as aluminum (Al), gallium (Ga), and indium (In), in combination with column Va elements, such as nitrogen (N), phosphorus (P), arsenic (As), and antimony (Sb). Compound semiconductors can also be further classified according to the relative quantities of III and V elements. For example, binary semiconductor compounds include semiconductors with empirical formulas GaAs, InP, InAs, and GaP; ternary compound semiconductors include semiconductors with empirical formula GaAsyP1-y, where v ranges from greater than 0 to less than 1; and quaternary compound semiconductors include semiconductors with empirical formula InxGa1-xAsyP1-y, where both x and y independently range from greater than 0 to less than 1. Other types of suitable compound semiconductors include II-VI materials, where II and VI represent elements in the IIb and VIa columns of the periodic table. For example, CdSe, ZnSe, ZnS, and ZnO are empirical formulas of exemplary binary II-VI compound semiconductors. Other II-VI semiconductor materials can be used.
The mobile dopants in a semiconductor-based primary active layer 302 can be p-type impurities, which are atoms that introduce vacant electronic energy levels called “holes” to the electronic band gaps of the active region. These dopants are also called “electron acceptors.” The mobile dopants can be n-type impurities, which are atoms that introduce filled electronic energy levels to the electronic band gap of the active region. These dopants are called “electron donors.” For example, boron (B), Al, and Ga are p-type dopants that introduce vacant electronic energy levels near the valence band of Si; and P, As, and Sb are n-type dopants that introduce filled electronic energy levels near the conduction band of Si. In III-V compound semiconductors, column VI dopants substitute for column V sites in the III-V lattice and serve as n-type dopants, and column II dopants substitute for column III atoms in the III-V lattice to form p-type dopants.
The memristor devices 500, 600, 700, 800, and 900 can be implemented at nanowire intersections of nanowire crossbar arrays.
Although individual nanowires in
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. The foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive of or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations are possible in view of the above teachings. The embodiments are shown and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents:
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/000516 | 1/26/2009 | WO | 00 | 6/28/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/085225 | 7/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3843949 | Plough et al. | Oct 1974 | A |
3937989 | Meijer | Feb 1976 | A |
3972059 | DiStefano | Jul 1976 | A |
6127914 | Sasaki | Oct 2000 | A |
6780683 | Johnson | Aug 2004 | B2 |
7220983 | Lung | May 2007 | B2 |
20030143790 | Wu | Jul 2003 | A1 |
20030173612 | Krieger et al. | Sep 2003 | A1 |
20050006640 | Jackson | Jan 2005 | A1 |
20060043595 | Aratani et al. | Mar 2006 | A1 |
20070221953 | Sakamoto | Sep 2007 | A1 |
20080079029 | Williams | Apr 2008 | A1 |
20080090337 | Williams | Apr 2008 | A1 |
20080239797 | Tsukamoto et al. | Oct 2008 | A1 |
20080265235 | Kamigaichi et al. | Oct 2008 | A1 |
20110266510 | Quitoriano et al. | Nov 2011 | A1 |
Entry |
---|
“nonvolatile” Merriam-Webster Online Dictionary. 2012, http://www.merriam-webster.com (4 Nov. 4, 2012). |
PCT International Search Report, Application No. PCT/US2009/000516, Report dated Aug. 28, 2009. |
Driscoll, Tom, et al. “Phase-transition driven memristive system.” Applied Physics Letters 95.4 (2009): 043503-043503. |
PCT International Search Report, Application No. PCT/US2009/000518, Report dated Jun. 29, 2009. |
PCT International Search Report, Application No. PCT/US2009/050277, Report dated Apr. 12, 2010. |
Number | Date | Country | |
---|---|---|---|
20110266510 A1 | Nov 2011 | US |