Embodiments of the present invention pertain to the field of semiconductor processing and, in particular, to methods for dicing substrates, each substrate having an integrated circuit (IC) thereon.
In semiconductor substrate processing, ICs are formed on a substrate (also referred to as a wafer), typically composed of silicon or other semiconductor material. In general, thin film layers of various materials which are either semiconducting, conducting or insulating are utilized to form the ICs. These materials are doped, deposited and etched using various well-known processes to simultaneously form a plurality of ICs, such as memory devices, logic devices, photovoltaic devices, etc, in parallel on a same substrate.
Following device formation, the substrate is mounted on a supporting member such as an adhesive film stretched across a film frame and the substrate is “diced” to separate each individual device or “die” from one another for packaging, etc. Currently, the two most popular dicing techniques are scribing and sawing. For scribing, a diamond tipped scribe is moved across a substrate surface along pre-formed scribe lines. Upon the application of pressure, such as with a roller, the substrate separates along the scribe lines. For sawing, a diamond tipped saw cuts the substrate along the streets. For thin substrate singulation, such as <150 μms (μm) thick bulk silicon singulation, the conventional approaches have yielded only poor process quality. Some of the challenges that may be faced when singulating die from thin substrates may include microcrack formation or delamination between different layers, chipping of inorganic dielectric layers, retention of strict kerf width control, or precise ablation depth control.
While plasma dicing has also been contemplated, a standard lithography operation for patterning resist may render implementation cost prohibitive. Another limitation possibly hampering implementation of plasma dicing is that plasma processing of commonly encountered interconnect metals (e.g., copper) in dicing along streets can create production issues or throughput limits. For example microcracks formed during the laser scribing process may remain following a plasma etch.
Embodiments of the present invention include methods of laser scribing substrates. In the exemplary embodiment, the laser scribing is implemented with a laser beam having a centrally peaked spatial power profile to form a sloped ablated sidewall in a substrate.
In an embodiment, a method of dicing a semiconductor substrate having a plurality of ICs includes receiving a masked semiconductor substrate, the mask covering and protecting ICs on the substrate. The masked substrate is ablated along streets between the ICs with a laser beam having a centrally peaked spatial power profile. In one embodiment, a center portion of the mask thickness and a thin film device thickness in the street is ablated through to provide a patterned mask with a positively sloped profile. A portion of the substrate ablated by the laser also has a positively sloped profile along a plane substantially perpendicular to the direction of laser travel. Sloped sidewall of the substrate are etched with an anisotropic deep trench etch process to singulate the dice and remove microcracks in the substrate generated during laser scribe.
In another embodiment, a system for dicing a semiconductor substrate includes a laser scribe module and a plasma etch chamber, integrated onto a same platform. The laser scribe module is to ablate material with a laser beam having a centrally peaked spatial power profile and the plasma chamber is to etch through the substrate and singulate the IC chips in a manner which removes microcracks in the substrate generated by the laser ablation. The laser scribe module may include a beam shaper to provide the centrally peaked spatial power profile.
Embodiments of the present invention are illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:
Methods of dicing substrates, each substrate having a plurality of ICs thereon, are described. In the following description, numerous specific details are set forth, such as femtosecond laser scribing and deep silicon plasma etching conditions in order to describe exemplary embodiments of the present invention. However, it will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known aspects, such as IC fabrication, substrate thinning, taping, etc., are not described in detail to avoid unnecessarily obscuring embodiments of the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments. Also, it is to be understood that the various exemplary embodiments shown in the Figures are merely illustrative representations and are not necessarily drawn to scale.
The terms “coupled” and “connected,” along with their derivatives, may be used herein to describe structural relationships between components. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” my be used to indicate that two or more elements are in either direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements co-operate or interact with each other (e.g., as in a cause an effect relationship).
The terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one material layer with respect to other material layers. As such, for example, one layer disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer disposed between two layers may be directly in contact with the two layers or may have one or more intervening layers. In contrast, a first layer “on” a second layer is in contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations are performed relative to a substrate without consideration of the absolute orientation of the substrate.
Generally, described herein is a laser scribe process employing a laser having a beam with a centrally peaked and sloped spatial power profile to ablate a predetermined path through an unpatterned (i.e., blanket) mask layer, a passivation layer, and subsurface thin film device layers. The laser scribe process may then be terminated upon exposure of, or partial ablation of, the substrate. Any ablation of the substrate by the peaked beam profile will tend to advantageously form positively sloped substrate sidewalls. In accordance with an embodiment of the present invention, the peaked spatial profile is provided in a femtosecond laser. Femtosecond laser scribing is an essentially, if not completely, non-equilibrium process. For example, the femtosecond-based laser scribing may be localized with a negligible thermal damage zone. In an embodiment, femtosecond laser scribing is used to singulate ICs having ultra-low κ films (i.e., with a dielectric constant below 3.0). In one embodiment, direct writing with a laser eliminates a lithography patterning operation, allowing the masking material to be something other than a photo resist as is used in photolithography. In the exemplary hybrid dicing embodiment, the laser scribing process is followed by a plasma etch through the bulk of the substrate which removes most or all of microcracks in the substrate generated by the laser ablation. In one such embodiment, a substantially anisotropic etching is used to complete the dicing process in a plasma etch chamber; the anisotropic etch achieving a high directionality into the substrate by depositing on sidewalls of the etched trench an etch polymer.
While it has been found by the inventor and his associates that a femtosecond laser advantageously reduces the occurrence of all microcracks in the substrate, the inventor has further found that of the fewer remaining microcracks the ratio of vertically oriented microcracks to horizontally oriented microcracks can be increased significantly when a centrally peaked spatial power profile is employed
In embodiments, the laser beam spatial profile is such that the power (P) at the peak of the spatial power profile is sufficient to expose the substrate and the power at the full width quarter maximum (FWQM) is insufficient to expose the substrate. As further shown in
For certain beam embodiments employing the centrally peaked spatial profile 200, and more particularly those of a femtosecond laser, a greater percentage of microcracks generated in the substrate 208 may be vertically propagating microcracks 208 and as further illustrated in
Referring to operation 301 of
In embodiments, first and second ICs 425, 426 include memory devices or complimentary metal-oxide-semiconductor (CMOS) transistors fabricated in a silicon substrate 406 and encased in a dielectric stack. A plurality of metal interconnects may be formed above the devices or transistors, and in surrounding dielectric layers, and may be used to electrically couple the devices or transistors to form the ICs 425, 426. Materials making up the street 427 may be similar to or the same as those materials used to form the ICs 425, 426. For example, street 427 may include thin film layers of dielectric materials, semiconductor materials, and metallization. In one embodiment, the street 427 includes a test device similar to the ICs 425, 426. The width of the street 427 may be anywhere between 10 μm and 200 μm, measured at the thin film device layer stack/substrate interface.
In embodiments, the mask 402 may be one or more material layers including any of a plasma deposited polymer (e.g., CxFy), a water soluble material (e.g., poly(vinyl alcohol)), a photoresist, or similar polymeric material which may be removed without damage to an underlying passivation layer, which is often polyimide (PI) and/or bumps, which are often copper. The mask 402 is to be of sufficient thickness to survive a plasma etch process (though it may be very nearly consumed) and thereby protect the copper bumps which may be damaged, oxidized, or otherwise contaminated if exposed to the substrate etching plasma.
Referring back to
At operation 308 the aqueous solution is dried, for example on a hot plate, and the substrate unloaded for laser scribe or transferred in vacuum to a laser scribe module at operation 320 for completion of the method 300 (
Returning to
In an embodiment the laser radiation 412 entails beam with a pulse width (duration) in the femtosecond range (i.e., 10−15 seconds). Laser parameter selection, such as pulse width, may be critical to developing a successful laser scribing and dicing process that minimizes chipping, microcracks and delamination in order to achieve clean laser scribe cuts. As previously noted, laser pulse width in the femtosecond range advantageously mitigates heat damage issues relative longer pulse widths (e.g., picosecond or nanosecond). Although not bound by theory, as currently understood a femtosecond energy source avoids low energy recoupling mechanisms present for picosecond sources and provides for greater thermal nonequilibrium than does a nanosecond or even picosecond source. With nanosecond or picoseconds laser sources, the various thin film device layer materials present in the street 427 behave quite differently in terms of optical absorption and ablation mechanisms. For example, dielectrics layers such as silicon dioxide, is essentially transparent to all commercially available laser wavelengths under normal conditions. By contrast, metals, organics (e.g., low-κ materials) and silicon can couple photons very easily, particularly nanosecond-based or picosecond-based laser irradiation. If non-optimal laser parameters are selected, in a stacked structures that involve two or more of an inorganic dielectric, an organic dielectric, a semiconductor, or a metal, laser irradiation of the street 427 may disadvantageously cause delamination. For example, a laser penetrating through high bandgap energy dielectrics (such as silicon dioxide with an approximately of 9 eV bandgap) without measurable absorption may be absorbed in an underlying metal or silicon layer, causing significant vaporization of the metal or silicon layers. The vaporization may generate high pressures potentially causing severe interlayer delamination and microcracking. Femtosecond-based laser irradiation processes have been demonstrated to avoid or mitigate such microcracking or delamination of such material stacks.
In an embodiment, the laser source for operation 325 has a pulse repetition rate approximately in the range of 200 kHz to 10 MHz, although preferably approximately in the range of 500 kHz to 5 MHz. The laser emission generated at operation 201 may span any combination of the visible spectrum, the ultra-violet (UV), and/or infra-red (IR) spectrums for a broad or narrow band optical emission spectrum. Even for femtosecond laser ablation, certain wavelengths may provide better performance than others depending on the materials to be ablated. In a specific embodiment, a femtosecond laser suitable for semiconductor substrate or substrate scribing is based on a laser having a wavelength of approximately between 1570-200 nanometers, although preferably in the range of 540 nanometers to 250 nanometers. In a particular embodiment, pulse widths are less than or equal to 500 femtoseconds for a laser having a wavelength less than or equal to 540 nanometers. In an alternative embodiments, dual laser wavelengths (e.g., a combination of an IR laser and a UV laser) are used to generate the beam at operation 201. In an embodiment, the laser source delivers pulse energy at the work surface approximately in the range of 0.5 μJ to 100 μJ, although preferably approximately in the range of 1 μJ to 5 μJ.
At operation 325, the spatially peaked beam is controlled to travel a predetermined path relative to the substrate to ablate a point on the mask 402. In an embodiment, the laser scribing process runs along a work piece surface in the direction of travel at a speed approximately in the range of 500 mm/sec to 5 m/sec, although preferably approximately in the range of 600 mm/sec to 2 m/sec. At operation 220, method 200 returns to
Returning to
In one embodiment, a deep silicon etch (e.g., such as a through silicon via etch) is used to etch a single crystalline silicon substrate or substrate 406 at an etch rate greater than approximately 40% of conventional silicon etch rates while maintaining essentially precise profile control and virtually scallop-free sidewalls. Effects of the high power on any water soluble material layer present in the mask 402 are controlled through application of cooling power via an electrostatic chuck (ESC) chilled to −10° C. to −15° C. to maintain the water soluble mask material layer at a temperature below 100° C. and preferably between 70° C. and 80° C. throughout the duration of the plasma etch process. At such temperatures, water solubility is advantageously maintained.
In a specific embodiment, the plasma etch operation 330 further entails a plurality of protective polymer deposition cycles interleaved over time with a plurality of etch cycles. The duty cycle may vary with the exemplary duty cycle being approximately 1:1-1:2 (etch:dep). For example, the etch process may have a deposition cycle with a duration of 250 msec-750 msec and an etch cycle of 250 msec-750 msec. Between the deposition and etch cycles, an etching process chemistry, employing for example SF6 for the exemplary silicon etch embodiment, is alternated with a deposition process chemistry employing a polymerizing fluorocarbon (CHxFy) gas such as, but not limited to, C4F6 or C4F8 or fluorinated hydrocarbon (CHxFy with x>=1), or XeF2. Process pressures may further be alternated between etch and deposition cycles to favor each in the particular cycle, as known in the art.
At operation 340, method 300 is completed with removal of the mask 402. In an embodiment, a water soluble mask layer is washed off with water, for example with a pressurized jet of de-ionized water or through submergence in an ambient or heated water bath. In alternative embodiments, the mask 402 may be washed off with aqueous solvent solutions known in the art to be effective for etch polymer removal. Either of the plasma singulation operation 330 or mask removal process at operation 340 may further pattern the die attach film 408, exposing the top portion of the backing tape 410.
A single integrated process tool 600 may be configured to perform many or all of the operations in the hybrid laser ablation-plasma etch singulation process 300. For example,
A laser scribe apparatus 610 is also coupled to the FI 602.
Returning to
The cluster tool 606 may include other chambers suitable for performing functions in the hybrid laser ablation-plasma etch singulation process 100. In the exemplary embodiment illustrated in
Processor 702 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, etc. Processor 702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 702 is configured to execute the processing logic 726 for performing the operations and steps discussed herein.
The computer system 700 may further include a network interface device 708. The computer system 700 also may include a video display unit 710 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 712 (e.g., a keyboard), a cursor control device 714 (e.g., a mouse), and a signal generation device 716 (e.g., a speaker).
The secondary memory 718 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 731 on which is stored one or more sets of instructions (e.g., software 722) embodying any one or more of the methodologies or functions described herein. The software 722 may also reside, completely or at least partially, within the main memory 704 and/or within the processor 702 during execution thereof by the computer system 700, the main memory 704 and the processor 702 also constituting machine-readable storage media. The software 722 may further be transmitted or received over a network 720 via the network interface device 708.
The machine-accessible storage medium 731 may also be used to store pattern recognition algorithms, artifact shape data, artifact positional data, or particle sparkle data. While the machine-accessible storage medium 731 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
Thus, methods of dicing semiconductor substrates, each substrate having a plurality of ICs, have been disclosed. The above description of illustrative embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific implementations of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. The scope of the invention is therefore to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
This application is a Divisional Application of application Ser. No. 13/161,424 filed Jun. 15, 2011 which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4049944 | Garvin et al. | Sep 1977 | A |
4339528 | Goldman | Jul 1982 | A |
5336638 | Suzuki et al. | Aug 1994 | A |
5593606 | Owen et al. | Jan 1997 | A |
5684437 | Ago et al. | Nov 1997 | A |
5691794 | Hoshi et al. | Nov 1997 | A |
6051503 | Bhardwaj et al. | Apr 2000 | A |
6057180 | Sun et al. | May 2000 | A |
6117347 | Ishida | Sep 2000 | A |
6174271 | Kosmowski | Jan 2001 | B1 |
6300593 | Powell | Oct 2001 | B1 |
6306731 | Igarashi et al. | Oct 2001 | B1 |
6407363 | Dunsky et al. | Jun 2002 | B2 |
6426275 | Arisa | Jul 2002 | B1 |
6465158 | Sekiya | Oct 2002 | B1 |
6528864 | Arai | Mar 2003 | B1 |
6568899 | Kuribayashi | May 2003 | B1 |
6574250 | Sun et al. | Jun 2003 | B2 |
6582983 | Runyon et al. | Jun 2003 | B1 |
6593542 | Baird et al. | Jul 2003 | B2 |
6642127 | Kumar et al. | Nov 2003 | B2 |
6676878 | O'Brien et al. | Jan 2004 | B2 |
6696669 | Hembree et al. | Feb 2004 | B2 |
6706998 | Cutler | Mar 2004 | B2 |
6759275 | Lee et al. | Jul 2004 | B1 |
6803247 | Sekiya | Oct 2004 | B2 |
6887804 | Sun et al. | May 2005 | B2 |
6998571 | Sekiya et al. | Feb 2006 | B2 |
7128806 | Nguyen et al. | Oct 2006 | B2 |
7129150 | Kawai | Oct 2006 | B2 |
7179723 | Genda et al. | Feb 2007 | B2 |
7265033 | Shigematsu et al. | Sep 2007 | B2 |
7361990 | Lu et al. | Apr 2008 | B2 |
7364986 | Nagai et al. | Apr 2008 | B2 |
7435607 | Nagai | Oct 2008 | B2 |
7459377 | Ueda et al. | Dec 2008 | B2 |
7468309 | Shigematsu et al. | Dec 2008 | B2 |
7473866 | Morishige et al. | Jan 2009 | B2 |
7507638 | Mancini et al. | Mar 2009 | B2 |
7507639 | Nakamura | Mar 2009 | B2 |
7629228 | Haji et al. | Dec 2009 | B2 |
7678670 | Arita et al. | Mar 2010 | B2 |
7687740 | Bruland et al. | Mar 2010 | B2 |
7754584 | Kumakawa | Jul 2010 | B2 |
7767551 | Arita et al. | Aug 2010 | B2 |
7767554 | Arita et al. | Aug 2010 | B2 |
7776720 | Boyle et al. | Aug 2010 | B2 |
7804043 | Deshi | Sep 2010 | B2 |
7838323 | Utsumi et al. | Nov 2010 | B2 |
7859084 | Utsumi et al. | Dec 2010 | B2 |
7875898 | Maeda | Jan 2011 | B2 |
7906410 | Arita et al. | Mar 2011 | B2 |
7923351 | Arita | Apr 2011 | B2 |
7926410 | Bair | Apr 2011 | B2 |
7927973 | Haji et al. | Apr 2011 | B2 |
20010035401 | Manor | Nov 2001 | A1 |
20020012345 | Kalkunte et al. | Jan 2002 | A1 |
20020042189 | Tanaka | Apr 2002 | A1 |
20030045101 | Flanner et al. | Mar 2003 | A1 |
20030152756 | Yamada et al. | Aug 2003 | A1 |
20030162313 | Kim et al. | Aug 2003 | A1 |
20040080045 | Kimura et al. | Apr 2004 | A1 |
20040137700 | Sekiya | Jul 2004 | A1 |
20040157457 | Xu et al. | Aug 2004 | A1 |
20040212047 | Joshi et al. | Oct 2004 | A1 |
20040259329 | Boyle et al. | Dec 2004 | A1 |
20060024924 | Haji et al. | Feb 2006 | A1 |
20060043535 | Hiatt | Mar 2006 | A1 |
20060086898 | Cheng et al. | Apr 2006 | A1 |
20060088984 | Li et al. | Apr 2006 | A1 |
20060146910 | Koochesfahani et al. | Jul 2006 | A1 |
20060191865 | Nishimura | Aug 2006 | A1 |
20060205182 | Soejima | Sep 2006 | A1 |
20070272555 | Baird | Nov 2007 | A1 |
20070272666 | O'Brien et al. | Nov 2007 | A1 |
20080191121 | Yoo | Aug 2008 | A1 |
20080283848 | Yamazaki | Nov 2008 | A1 |
20090176375 | Benson et al. | Jul 2009 | A1 |
20090255911 | Krishnaswami et al. | Oct 2009 | A1 |
20090321748 | Lee | Dec 2009 | A1 |
20100013036 | Carey | Jan 2010 | A1 |
20100025387 | Arai et al. | Feb 2010 | A1 |
20100048001 | Harikai et al. | Feb 2010 | A1 |
20100120227 | Grivna et al. | May 2010 | A1 |
20100120230 | Grivna et al. | May 2010 | A1 |
20100246611 | Sun | Sep 2010 | A1 |
20100248451 | Pirogovsky et al. | Sep 2010 | A1 |
20110029124 | Boyle et al. | Feb 2011 | A1 |
20110309233 | Seo | Dec 2011 | A1 |
20130045554 | Yamazaki | Feb 2013 | A1 |
20130065378 | Johnson et al. | Mar 2013 | A1 |
20130230972 | Johnson et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
9216085 | Aug 1997 | JP |
10321908 | Dec 1998 | JP |
2001127011 | May 2001 | JP |
2001144126 | May 2001 | JP |
2003179005 | Jun 2003 | JP |
2004031526 | Jan 2004 | JP |
2004055684 | Feb 2004 | JP |
2007281526 | Oct 2007 | JP |
2009034694 | Feb 2009 | JP |
2010165963 | Jul 2010 | JP |
20100020727 | Feb 2010 | KR |
WO-03036712 | May 2003 | WO |
WO-03071591 | May 2003 | WO |
WO-2011163149 | Dec 2011 | WO |
WO-2012173758 | Dec 2012 | WO |
WO-2012173759 | Dec 2012 | WO |
WO-2012173768 | Dec 2012 | WO |
WO-2012173770 | Dec 2012 | WO |
Entry |
---|
Addae-Mensah et al., “Poly(vinyl alcohol) as a structure release layer for the microfabrication of polymer composite structures”, IOP Publishing. Journal of Micromechanics and Microengineering, 17 (2007), pp. N41-N46. |
Linder, et al., “Water-Soluble Sacrificial Layers for Surface Micromachining”, www.small-journal.com, 2005, 1, No. 7, 7 Pages. |
Singh, et al., “Apparatus and Methods for Dry Etch With Edge, Side and Back Protection”, U.S. Appl. No. 61/491,693, filed May 31, 2011 24 pgs. |
Restriction Requirement for U.S. Appl. No. 13/180,336 dated Sep. 11, 2012, 6 pages. |
International Search Report and Written Opinion from PCT/US2012/040303 dated Dec. 28, 2012, 9 pgs. |
Restriction Requirement for U.S. Appl. No. 13/161,006 dated Jan. 10, 2013, 6 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/040295 dated Dec. 27, 2012, 11 Pages. |
Restriction Requirement for U.S. Appl. No. 13/161,026 dated Jan. 17, 2013, 6 Pages. |
International Search Report and Written Opinion from PCT/US2012/040307 dated Dec. 28, 2012, 9 pgs. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/039746 dated Dec. 26, 2012, 10 Pages. |
Restriction Requirement for U.S. Appl. No. 13/161,036 dated Feb. 1, 2013, 6 Pages. |
Restriction Requirement for U.S. Appl. No. 13/160,973 dated Jan. 9, 2013, 6 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/039207 dated Dec. 26, 2012, 12 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/039209 dated Dec. 26, 2012, 8 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/039205 dated Dec. 26, 2012, 11 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/039753 dated Dec. 26, 2012, 9 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/040289 dated Jan. 2, 2013, 11 Pages. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2011/041126 dated Feb. 21, 2012, 10 Pages. |
International Preliminary Report on Patentability for PCT Patent Application No. PCT/US2011/041126 dated Jan. 10, 2013, 7 Pages. |
Restriction Requirement for U.S. Appl. No. 13/161,045 dated Feb. 19, 2013, 5 Pages. |
Van Borkulo, Jeroen et al., “Enabling Technology in Thin Wafer Dicing”, The Electrochemical Society, vol. 18, Issue 1, Packaging Technology, 2009, pp. 837-842. |
Non-Final Office Action for U.S. Appl. No. 13/180,336 dated Feb. 6, 2013, 15 Pages. |
Number | Date | Country | |
---|---|---|---|
20150217401 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13161424 | Jun 2011 | US |
Child | 14684290 | US |