Data center rack system with integrated liquid and dielectric immersion cooling

Information

  • Patent Grant
  • 12144145
  • Patent Number
    12,144,145
  • Date Filed
    Friday, March 18, 2022
    2 years ago
  • Date Issued
    Tuesday, November 12, 2024
    2 months ago
Abstract
A rack system for use, e.g., in data centers is disclosed. The rack system includes a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component. The heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed. The electronic device is immersed in a dielectric immersion cooling liquid. The rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid, the non-sealed immersion case configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame. Also disclosed are container-based data center modules based on the disclosed rack system, and a data center using numerous such container-based modules.
Description
CROSS-REFERENCE

The present patent application claims priority from European Patent Application Number 21305427.3, filed on Apr. 1, 2021 and from European Patent Application Number 21306189.8, filed on Aug. 31, 2021, the disclosures of both of which is incorporated by reference herein in their entirety.


FIELD OF TECHNOLOGY

The present technology relates to a rack system for electronic equipment. In particular, the present technology relates to a rack system for immersion-cooled electronic equipment.


BACKGROUND

Electronic equipment, for example servers, memory banks, computer discs, and the like, is conventionally grouped in equipment racks. Large data centers and other large computing facilities may contain thousands of racks supporting thousands or even tens of thousands of servers.


The racks, including equipment mounted in their backplanes, consume large amounts of electric power and generate significant amounts of heat. Cooling needs are important in such racks. Some electronic devices, such as processors, generate so much heat that they could fail within seconds in case of a lack of cooling.


Fans are commonly mounted within equipment racks to provide forced ventilation cooling to rack-mounted equipment. This solution merely displaces some of the heat generated within the racks to the general environment of the data center, and also takes up significant space on the racks, e.g., reducing the number of servers per square meter of data center space.


Liquid cooling, in particular water cooling, has recently been introduced as an addition or replacement to traditional forced-air cooling. Cold plates, for example water blocks having internal channels for water circulation, may be mounted on heat-generating components, such as processors to displace heat from the processors toward heat exchangers. Air-to-liquid heat exchangers, for example finned tubes heat exchangers similar to radiators, may be mounted to the racks to absorb and transport some of this displaced heat toward external cooling equipment, for example cooling towers, located outside of the data center.


Immersion cooling (sometimes called immersive cooling) was more recently introduced. Electronic components are inserted in a container that is fully or partially filled with a non-conducting cooling liquid, for example an oil-based dielectric cooling liquid. Good thermal contact is obtained between the electronic components and the dielectric cooling liquid. However, an electronic component, for example a server, includes some devices such as processors may generate most of the heat while other devices such as memory boards may generate much less heat. It is generally required to ensure circulation of the dielectric cooling liquid, within the container, at a level that is sufficient to cool the hottest devices within the electronic components. This requires the use of efficient pumps that consume a significant amount of energy. Heat sinks may be mounted on some heat-generating devices. Some other heat-generating devices may have porous surfaces so that the contact between these devices and the dielectric cooling liquid is more intimate and thus more thermally efficient. These solutions only provide a modest reduction of the amount of energy required to operate the pumps that circulation the dielectric cooling liquid within the container.


Immersion cooling systems also commonly take the form of large tanks in which the electronic devices are submerged. These tanks and the liquid circulation and heat exchange systems that are conventionally used with them typically require a significant amount of space, and in many instances are not intended to be mounted in racks. While there are some immersion-cooled devices that can be mounted in racks, this typically requires that the cases surrounding the electronic devices and immersion cooling liquid in which they are submerged be sealed, to prevent spillage of the cooling liquids, and for use in “two phase” immersion systems in which the immersion cooling liquid may boil within the case. Such sealed systems may be expensive to manufacture, and may involve pumping systems to fill and drain the cases.


Even though the recent developments identified above may provide benefits, improvements are still desirable.


The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches.


SUMMARY

Embodiments of the present technology have been developed based on developers' appreciation of shortcomings associated with the prior art. In particular, such shortcomings may comprise (1) inability to address the cooling needs to devices that generate most of the heat; (2) significant power consumption of the cooling systems; and/or (3) inability to use current cooling technologies, such as immersion cooling, in high-density data centers.


In accordance with one aspect of the present disclosure, the technology is implemented as a rack system including a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component. The heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed. The electronic device is immersed in a dielectric immersion cooling liquid. The rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid. The non-sealed immersion case is configured to be non-sealed at all times, including during operation of the electronic device, such that the non-sealed immersion cooling case cannot be used for dual-phase immersion cooling. The non-sealed immersion case is further configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame.


In some embodiments, the rack-mounted assembly is mounted vertically with respect to the rack frame.


In some embodiments, the dielectric immersion cooling liquid is induced by gravity to flow over the electronic device.


In some embodiments, the dielectric immersion cooling liquid is contained within the non-sealed immersion case and circulates within the non-sealed immersion case due to convection.


In some of these embodiments, the rack-mounted assembly includes a convection-inducing element in thermal contact with at least a portion of the dielectric immersion cooling liquid and configured to induce convection within the dielectric immersion cooling liquid.


In some embodiments, the channelized cooling fluid is conveyed through the convection-inducing element.


In some embodiments, the convection-inducing element comprises a serpentine convection coil.


In some embodiments, the channelized cooling fluid is conveyed through a loop that includes both the liquid cooling block in thermal contact with the heat-generating component and the convection-inducing element.


In some embodiments, the density of the dielectric immersion cooling liquid is lower than the density of the channelized cooling fluid.


In some embodiments, a lower portion of the non-sealed immersion case includes a sensor configured to detect a leak of the channelized cooling fluid.


In some embodiments, a lower portion of the non-sealed immersion case includes an outlet configured for draining leaked channelized cooling fluid.


In some embodiments, the channelized cooling fluid is the same as the dielectric immersion cooling liquid.


In some embodiments, a plurality of vertically oriented rack-mounted assemblies are mounted adjacent to each other in the rack frame.


In another aspect, the technology is implemented in a container-based data center module including numerous rack systems as summarized above.


In a further aspect, the technology is implemented as a modular data center including numerous such container-based data center modules.


In the context of the present specification, unless expressly provided otherwise, a computer system may refer, but is not limited to, an “electronic device”, an “operation system”, a “system”, a “computer-based system”, a “controller unit”, a “monitoring device”, a “control device” and/or any combination thereof appropriate to the relevant task at hand.


In the context of the present specification, unless expressly provided otherwise, the expression “computer-readable medium” and “memory” are intended to include media of any nature and kind whatsoever, non-limiting examples of which include RAM, ROM, disks (CD-ROMs, DVDs, floppy disks, hard disk drives, etc.), USB keys, flash memory cards, solid state-drives, and tape drives. Still in the context of the present specification, “a” computer-readable medium and “the” computer-readable medium should not be construed as being the same computer-readable medium. To the contrary, and whenever appropriate, “a” computer-readable medium and “the” computer-readable medium may also be construed as a first computer-readable medium and a second computer-readable medium.


In the context of the present specification, unless expressly provided otherwise, the words “first”, “second”, “third”, etc. have been used as adjectives only for the purpose of allowing for distinction between the nouns that they modify from one another, and not for the purpose of describing any particular relationship between those nouns.


Implementations of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.


Additional and/or alternative features, aspects and advantages of implementations of the present technology will become apparent from the following description, the accompanying drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present technology will become better understood with regard to the following description, appended claims and accompanying drawings where:



FIG. 1 shows a perspective view of a rack system for housing numerous rack-mounted assemblies, in accordance with various embodiments of the present disclosure.



FIG. 2 shows another perspective view of the rack system, in accordance with various embodiments of the present disclosure.



FIG. 3 shows a perspective view of a rack-mounted assembly, in accordance with various embodiments of the disclosure.



FIG. 4 shows a conceptual block diagram of a rack-mountable, non-sealed hybrid liquid cooling system, in accordance with various embodiments of the disclosure.



FIG. 5 shows a vertically oriented flow-through non-sealed immersion cooling rack system, in accordance with various embodiments of the disclosure.



FIG. 6 shows a cut-away view of one of the rack-mounted assemblies that may be mounted in the rack system of FIG. 5.



FIG. 7 shows an inclined flow-through non-sealed immersion cooling rack system, in accordance with various embodiments of the disclosure.



FIG. 8 shows a further flow-through non-sealed immersion cooling rack system, in accordance with various embodiments of the disclosure.



FIG. 9 shows a configuration of numerous rack systems, arranged to fit within one side of a 20-foot transport container, in accordance with various embodiments of the disclosure.



FIG. 10 shows a container-based data center module, in accordance with various embodiments of the disclosure.



FIG. 11 shows a modular data center, in accordance with various embodiments of the disclosure.





It should also be noted that, unless otherwise explicitly specified herein, the drawings are not to scale.


DETAILED DESCRIPTION

The examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the present technology and not to limit its scope to such specifically recited examples and conditions. It will be appreciated that those skilled in the art may devise various arrangements that, although not explicitly described or shown herein, nonetheless embody the principles of the present technology.


Furthermore, as an aid to understanding, the following description may describe relatively simplified implementations of the present technology. As persons skilled in the art would understand, various implementations of the present technology may be of a greater complexity.


In some cases, what are believed to be helpful examples of modifications to the present technology may also be set forth. This is done merely as an aid to understanding, and, again, not to define the scope or set forth the bounds of the present technology. These modifications are not an exhaustive list, and a person skilled in the art may make other modifications while nonetheless remaining within the scope of the present technology. Further, where no examples of modifications have been set forth, it should not be interpreted that no modifications are possible and/or that what is described is the sole manner of implementing that element of the present technology.


Moreover, all statements herein reciting principles, aspects, and implementations of the present technology, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof, whether they are currently known or developed in the future. Thus, for example, it will be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative systems embodying the principles of the present technology.


In an aspect, the present technology introduces a cooling system having two pumps for circulating a dielectric cooling liquid in a container that receives one or more electronic components immersed in the dielectric cooling liquid. One pump is used to cause a circulation of the dielectric cooling liquid, broadly within the container. Another pump is used to direct a flow of the dielectric cooling liquid toward the electronic components. As such, the direct flow provided enhanced cooling of specific devices of the electronic components, such as for example processors that generate the most thermal energy, while the broad circulation of the liquid cooling within the container allows cooling other devices of the electronic components while generally controlling the temperature of the dielectric cooling liquid.


With these fundamentals in place, we will now consider some non-limiting examples to illustrate various implementations of aspects of the present disclosure.


Non-Sealed Immersion Cooling Rack System



FIG. 1 shows a perspective view of a rack system 100 for housing numerous rack-mounted assemblies 104, in accordance with various embodiments of the present disclosure. As shown, the rack system 100 may include a rack frame 102, rack-mounted assemblies 104, a liquid cooling inlet conduit 106 and a liquid cooling outlet conduit 108. As described more fully below, in accordance with some embodiments, the rack-mounted assemblies 104 may be oriented vertically with respect to the rack frame 102, resembling books on a library shelf. This arrangement may provide for mounting a large number of such rack-mounted assemblies 104 in the rack frame 102, relative to conventional arrangements, particularly with respect to conventional arrangements of immersion-cooled rack-mounted assemblies.



FIG. 2 shows another perspective view of the rack system 100, in accordance with various embodiments of the present disclosure. As shown, the rack system 100 may further comprise a power distribution unit 110, a switch 112, and liquid coolant inlet/outlet connectors 114. It is to be noted that the rack system 100 may include other components such as heat exchangers, cables, pumps or the like, however, such components have been omitted from FIGS. 1 and 2 for clarity of understanding. As shown in FIGS. 1 and 2, the rack frame 102 may include shelves 103 to accommodate one or more rack-mounted assemblies 104. As noted above, in some embodiments, the one or more rack-mounted assemblies 104 may be arranged vertically with respect to the on the shelves 103. In some embodiments, guide members (not shown) may be used on the shelves 103 to guide the rack-mounted assemblies 104 into position during racking and de-racking, and to provide proper spacing between the rack-mounted assemblies 104 for racking and de-racking.



FIG. 3 shows a perspective view of a rack-mounted assembly 104, in accordance with various embodiments of the disclosure. As shown, the rack-mounted assembly 104 may include a non-sealed immersion case 116 and a detachable frame 118. The detachable frame 118 may hold an electronic device 120 and may be immersed in the non-sealed immersion case 116.


It is contemplated that the electronic device 120 may generate a significant amount of heat. Consequently, the rack system 100 may use a cooling system to cool down the electronic device 120 to prevent the electronic device 120 from being damaged. In some embodiments, the cooling system may be an immersion cooling system. As used herein, an immersion cooling system is a cooling system in which the electronic device is in direct contact with a non-conductive (dielectric) cooling liquid, which either flows over at least portions of the electronic device, or in which at least portions of the electronic device are submerged. For example, in the rack-mounted assembly 104, the non-sealed immersion case 116 may contain an immersion cooling liquid (not shown in FIG. 3). Further, the detachable frame 118 including the electronic device 120 may be submerged in the immersion cooling case 116. In some embodiments, the immersion cooling liquid and the detachable frame 118 may be inserted into the non-sealed immersion case 116 via an opening 122 at the top of the non-sealed immersion case 116. In some embodiments, the opening 122 may remain at least partially open during operation of the electronic device 120, providing a non-sealed configuration for the non-sealed immersion case 116. Such non-sealed configurations may be easier to manufacture and maintain than sealed configurations. As would be understood from the description of the technology, the non-sealed immersion case 116 remains non-sealed at all times, including during operation of the electronic device 120.


It will be understood by those of ordinary skill in the art that a non-sealed configuration of an immersion case, such as is described herein, would not be usable in a dual-phase immersion system. This is because vapor from the boiling immersion liquid in such a dual-phase immersion system would escape into the surrounding atmosphere through the non-sealed immersion case and would be lost. In dual-phase immersion systems, this loss may occur to a limited extent even during installation and removal of the electronic device from the immersion liquid. For these reasons, immersion cases in dual-phase immersion systems need to be kept sealed during operation, and (in some instances) even when the electronic device is not in operation. One of ordinary skill in the art would understand this condition on the use of a dual-phase immersion system, and would therefore understand that a non-sealed immersion case, such as is described herein, would not be suitable for use with a dual-phase immersion system.


In some embodiments, the non-sealed immersion case 116 may also include a convection-inducing structure to cool/induce convection in the dielectric immersion liquid. For example, the convection-inducing structure may be a serpentine convection coil 124 attached to the detachable frame 118. The serpentine convection coil 124 may be fluidly coupled to the liquid cooling inlet conduit 106 and the liquid cooling outlet conduit 108 via the liquid coolant inlet/outlet connectors 114. The serpentine convection coil 124 may allow a flow of a circulating cooling liquid. The circulating cooling liquid, by means of convection, may cool down the dielectric immersion cooling system.


Further, the electronic device 120 may be connected to the power distribution unit 110 and the switch 112 via power and network cables (not illustrated) to facilitate powering the electronic device 120 and to facilitate communication between the electronic device 120 and external devices (not illustrated) through the switch 112.


In some embodiments, in addition to immersion cooling, certain heat-generating components of the electronic device 120 may be cooled using one or more thermal transfer devices, which may also be called “cold plates” or “water blocks” (although a liquid circulating through the “water blocks” may be any of a wide variety of known thermal transfer liquids, rather than water). Examples of heat-generating components that may be cooled using such a thermal transfer devices include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), neural processing units (NPUs), tensor processing units (TPUs), power supply circuitry, and application specific integrated circuits (ASICs), including, for example, ASICs configured for high-speed cryptocurrency mining.



FIG. 4 shows a conceptual block diagram of such an embodiment, which may be referred to as a “hybrid” liquid cooling system, since it includes both immersion cooling and a liquid cooling system that circulates a liquid coolant through a loop that includes thermal transfer devices, such as “water blocks” on some heat-generating components of the electronic device. As illustrated in FIG. 4, a hybrid liquid cooling system 400 is housed within a non-sealed immersion case 404, which is part of a rack-mounted assembly (not shown in full in FIG. 4) that is mounted in a rack frame 402, such as is described above with reference to FIGS. 1 and 2. The non-sealed immersion case 404 contains a volume of non-conductive dielectric immersion liquid 406 and at least one electronic device 408 that is submerged in the immersion cooling liquid 406.


The non-sealed immersion case 404 may also contain a serpentine convection coil 410 that is also submerged within the dielectric immersion cooling liquid 406. The serpentine convection coil 410 is structured with multiple hollow-channel coils to provide a high surface area exposure relative to the immersion liquid 406 while also maintaining compact overall length and width dimensions.


With this structure, the serpentine convection coil 410 is configured to cool the ambient temperature and induce natural thermal convection in the dielectric immersion cooling liquid 406 through direct channelized liquid cooling. That is, the serpentine convection coil 410 internally conveys a circulating channelized cooling fluid that operates to cool the immersion cooling liquid 406. The channelized cooling fluid may be a different liquid than the immersion cooling liquid 406. That is, the channelized cooling fluid may include water, alcohol, or any suitable liquid capable of sustaining adequate cooling temperatures.


As noted above, the electronic device 408 includes heat-generating components 411 and 412 that are also submerged within the immersion cooling liquid 406. To provide further cooling to the heat-generating components 411, 412, and as a supplement to the overall immersion cooling of the electronic device, channelized liquid cooling may be used. Cooling blocks 420, 422 may be arranged to be in direct thermal contact with the one or more heat-generating components 411, 412. The cooling blocks 420, 422 are structured to convey the circulating channelized cooling fluid to provide additional cooling to the heat-generating components 411, 412.


The channelized liquid cooling of the hybrid liquid cooling system 400 forms a fluid distribution loop. The fluid distribution loop circulates the channelized cooling fluid through the cooling blocks 420, 422 to cool the heat-generating components 411, 412, and through the serpentine convection coil 410, to cool and induce convection in the immersion cooling liquid 406. After absorbing heat from the heat-generating components 411, 412 and from the immersion cooling liquid 406, the heated channelized cooling fluid is conveyed through a heat exchange system (not shown), the operation of which will generally be familiar to those of skill in the art. The heat exchange system cools the channelized cooling fluid, after which it may be recirculated through the fluid distribution loop.


It will be understood that many additional features, combinations, and variations of such non-sealed immersion and/or hybrid systems. For example, in some embodiments, the channelized cooling fluid (often water, though other fluids may be used) has a higher density than the immersion cooling liquid (e.g., any of a number of commercially-available immersion cooling liquids with a density lower than the density of water, including, e.g., SMARTCOOLANT, produced by Submer Technologies, S.L., of Barcelona, Spain, or S5 X, developed jointly by Asperitas, of Amsterdam, Netherlands, and Shell plc, of London, UK). As a result of this, should the channelized cooling fluid leak into the immersion cooling liquid, it will sink to a bottom portion of the non-sealed immersion case. In some embodiments, the presence of the channelized cooling fluid in a bottom portion of the immersion case may be detected by a sensor, which may serve as a leak detection sensor. In some embodiments having this feature, the non-sealed immersion case may be configured to collect and drain such leaked channelized cooling fluid, for example, through an outlet in the bottom portion of the non-sealed immersion case.


In some embodiments, the non-sealed immersion case may include an overflow release (not shown), such as an opening or tube near the top of the non-sealed immersion case, that is configured to permit immersion liquid to flow into an overflow collection channel connected to the rack system in the event of an overflow of the immersion liquid. Because some of the dielectric liquids that are used as immersion liquids may be expensive, such an overflow release may prevent these liquids from being lost in the event of an overflow.


In some embodiments, the convection-inducing structure may not be a serpentine convection coil. For example, in some embodiments, a large cooling plate (not shown) either submerged in the cooling fluid of formed as part of the non-sealed immersion case may be used to induce convection.


Other variations may involve changing the order of the components and/or the serpentine convection coil in the fluid distribution loop. For example, the channelized cooling fluid may flow through the serpentine convection coil before flowing through the cooling blocks. In some embodiments, the serpentine convection coil may be part of a different fluid distribution loop than the cooling blocks.


These variations and additional features may be used in various combinations, and may be used in connection with the embodiments described above, or other embodiments.


Flow-Through Embodiments


Referring to FIGS. 5-8, flow-through embodiments of the technology are described. These embodiments share a common characteristic that the immersion cooling liquid flows over the electronic devices due to gravity. FIG. 5 shows such a rack system 500, in which numerous rack-mounted assemblies 502 are mounted vertically within a rack frame 504. A channel 506 for an immersion cooling liquid (not shown in FIG. 5) is mounted in the rack frame 504 above the rack-mounted assemblies 502, and a tray 508 for receiving immersion cooling liquid is mounted in the rack frame 504 below the rack-mounted assemblies 502. It will be understood that the channel 506 and tray 508 may be most any kind of receptacles capable of holding fluid, such as tanks, containers, and the like.


As seen in FIG. 6, which shows a cut-away view of one of the rack-mounted assemblies 502 of the rack system 500, the rack-mounted assembly 502 includes a non-sealed immersion case 520, in which an electronic device 522 is disposed. A top portion 524 of the non-sealed immersion case 520 is open, as is a bottom portion 526 of the non-sealed immersion case 520. The channel 506 includes openings 530, through which the immersion cooling liquid 532 pours onto the electronic device 522. The immersion cooling liquid 532 flows over the electronic device 522, and into the tray 508. As the immersion cooling liquid 532 flows over the electronic device 522, it absorbs heat from various heat-generating components of the electronic device 522 and conveys the heat away from those components. Heated immersion cooling liquid 532 is removed from the tray 508, e.g. by pumping or by gravity, and is pumped through a heat exchange system (not shown), the operation of which will generally be familiar to those of skill in the art. The heat exchange system cools the immersion cooling liquid 532, after which it is pumped back into a channel, such as the channel 506 of the system 500.


In some embodiments, in addition to immersion cooling, certain heat-generating components 550 of the electronic device 522 may be cooled using one or more thermal transfer devices 552, which may also be called “cold plates” or “water blocks” (although a liquid circulating through the “water blocks” may be any of a wide variety of known thermal transfer liquids, rather than water). Examples of heat-generating components 550 that may be cooled using the thermal transfer devices 552 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), neural processing units (NPUs), tensor processing units (TPUs), power supply circuitry, and application specific integrated circuits (ASICs), including, for example, ASICs configured for high-speed cryptocurrency mining.


It will be understood that there are many possible variations of the system 500 as described with reference to FIGS. 5 and 6. For example, in some embodiments, the channel 506 and/or the tray 508 may be parts of a rack-mounted assembly 502, so when the rack-mounted assembly 502 is de-racked, the channel 506 and/or tray 508 associated with that rack-mounted assembly 502 are also removed. In other embodiments, the channel 506 and/or tray 508 may be attached to the rack frame 504, such that when the rack-mounted assembly 502 is de-racked, the channel 506 and/or tray 508 remain attached to the rack frame 504.


Additionally, the channel 506 and tray 508 may be associated with a single rack-mounted assembly 502, or with more than one rack-mounted assembly 502. For example, in some embodiments, the channel 506 may cover the entire width of the rack frame 504, with openings providing immersion cooling liquid to an entire row of rack-mounted assemblies 502. Similarly, the tray 508 may collect immersion cooling liquid from, e.g., an entire row of rack-mounted assemblies 502.


It will similarly be understood that in some embodiments, the immersion cooling liquid 532 may flow over the electronic devices associated with more than one rack-mounted assembly 502 before pouring into the tray 508. For example, the rack-mounted assemblies may be arranged so that the opening in the bottom portion of the non-sealed immersion case of a first rack-mounted assembly is arranged above the opening in the top portion of the non-sealed immersion case of a second rack-mounted assembly, so that when the immersion cooling liquid pours out of the bottom of the first rack-mounted assembly, it pours into the top of the second rack-mounted assembly, to cool the electronic device associated with the second rack-mounted assembly. In this manner, a single stream of immersion cooling liquid may be used to cool numerous vertically aligned rack-mounted assemblies.


Additionally, in some embodiments, the openings 530 may include nozzles (not shown), which may be adjustable to control the flow of the immersion cooling liquid 532 from the channel 506. Such nozzles may also be configured to spray or mist the immersion cooling liquid 532 onto the electronic device rather than pouring or dripping the immersion cooling liquid 532 onto the electronic device. Pressure to accommodate such spraying of the immersion cooling liquid 532 onto the electronic device may be arranged, for example, by filling the channel 506 to increase the hydrostatic pressure or by pumping the immersion cooling liquid 532 through the channel 506 to provide hydraulic pressure.



FIG. 7 shows an arrangement of a flow-through rack system 700, which operates in a manner similar to the rack system 500, as discussed above. In the rack system 700, a rack frame 704 is configured to hold numerous rack-mounted assemblies 702, mounted at an incline a with respect to the rack frame 704. A channel (not shown) for an immersion cooling liquid (not shown) is mounted in the rack frame 704 above the rack-mounted assemblies 702, and a tray (not shown) for receiving immersion cooling liquid is mounted in the rack frame 704 below the rack-mounted assemblies 702. Alternatively, each of the rack-mounted assemblies 702, or subsets of the rack-mounted assemblies 702 may include a channel for the immersion cooling liquid and a tray for receiving immersion cooling liquid.


Due to the incline a, the immersion cooling liquid from the channels flows by gravity over electronic devices (not shown) mounted within the rack-mounted assemblies 702, to convey heat from the electronics devices. As in the embodiment described above with reference to FIGS. 5 and 6, the immersion cooling liquid flows into the tray, from which it is conveyed through a heat exchanger to be cooled and recirculated through the rack system 700.


Variations similar to those described above with reference to the system 500 of FIGS. 5 and 6 could also be used with the rack system 700. For example, nozzles (not shown) could be used to spray the immersion cooling liquid onto the electronic devices. All such variations and/or combinations of features described herein may be applicable, mutatis mutandis, with the inclined embodiments shown in FIG. 7. Additionally, the incline a may be varied, which will affect the velocity of the flow over the electronic devices due to gravity, and therefore the amount of heat that is conveyed. In general, a steeper incline a (up to a maximum of 90°) will lead to a faster flow of the immersion cooling liquid over the electronic devices.



FIG. 8 shows a further embodiment of a flow-through immersion-cooled rack system 800. The system 800 includes a rack frame 804 that is configured to hold numerous rack-mounted assemblies 802. A non-pressurized tank 806 for holding immersion cooling liquid 830 is disposed above the rack frame 804, and a tray 808 collects immersion cooling liquid 830 from the rack-mounted assemblies 802. It will be understood that, as in previous embodiments, the tank 806 and the tray 808 may be any kind of receptacles that are capable of containing a liquid.


The tank 806 may be disposed on a top portion of the rack frame 804 or may be disposed at a height h above the rack frame 804. For example, the tank 806 may be disposed in the ceiling of a data center above the rack frame 804. The static fluid pressure at the level of the rack-mounted assemblies 802 will depend on the height h of the tank 806 above the rack-mounted assemblies 802, with a greater height resulting in a greater static fluid pressure.


The immersion cooling liquid 830 flows over the electronic devices (not shown) housed in the rack-mounted assemblies 802, as is described above. The system 800 may be used in combination with the vertical flow-through rack-mounted assemblies of FIGS. 5-6 (as well as with any variations thereof), the inclined flow-through rack-mounted assemblies of FIG. 7 (as well as with any variations thereof), or with horizontal rack-mounted assemblies 802, as shown in FIG. 8. In the case of the horizontal rack-mounted assemblies 802, the electronic device within the rack-mounted assembly 802 may be mounted at an incline. Alternatively, instead of being poured or sprayed on the electronic devices, the electronic devices may be submerged in the immersion cooling liquid, which flows through the horizontal rack-mounted assemblies at a rate that permits the immersion cooling liquid to cover the electronic device.


As in the other flow-through immersion embodiments, the immersion cooling liquid flows into the tray 808, from which it is conveyed, e.g., by a pump, through a heat exchanger to be cooled and recirculated through the system 800.


Application in a Container-Based Data Center


The various embodiments described above facilitate dense packing of electronic devices in racks, while using immersion cooling as well as liquid-cooled thermal transfer devices, such as “waterblocks” to cool the devices. This use of immersion and liquid cooling provides increased power usage effectiveness, as compared to air cooled systems, as well as eliminating the need for bulky, noisy, and relatively inefficient fan assemblies attached to the racks. In the case of embodiments using convection cooling for circulation of immersion cooling liquid, there may be no need for use of pumps for circulating the immersion cooling liquid, further increasing power usage effectiveness of the cooling system.


It is contemplated that these features may be particularly advantageous in constructing data centers with large numbers of servers. In such data center applications, the electronic devices that are cooled by the various embodiments described above may be server computers (or “servers”), though other electronic devices that are used in data centers may also benefit from the cooling systems of the disclosure.


To provide for scalable data centers, as well as to provide environmental benefits from recycling, the rack system of the disclosure may be configured for use in recycled transport containers. FIG. 9 shows a configuration 902 of four rack systems 904, each of which holds 48 servers 906. The configuration 902 is approximately 5.4 meters in length, and approximately 0.6 meters deep, and fits on one side of a 20 foot transport container, while leaving sufficient space for cables and tubes or pipes for conveying liquid. A total of 192 servers 906 may be held in the configuration 902, each of which may be cooled as described above.



FIG. 10 shows a 20-foot transport container 1002, containing rack systems 1004 and 1006, each of which is similar to the rack configuration 902 described with reference to FIG. 9. This means that the container 1002 may hold 376 servers immersion cooled as disclosed above, as well as cables and tubes or pipes for the liquid cooling system. Such a container may be a module in a larger container-based data center.



FIG. 11 shows a modular data center 1102, in which container-based data center modules 1104, which have contents similar to the container 1002 described above, are arranged in a stack that is two containers 1104 high, two modules 1104 deep, and four modules 1104 wide. Thus, the data center 1102 includes approximately 6000 servers, all cooled as described above. The container-based data center modules 1104 have a footprint of approximately 120 square meters, so the data center includes approximately 50 servers per square meter of footprint. Given a “typical” power usage of current servers, it is expected that the power dissipation will be approximately eight kilowatts per square meter. To hold the heat exchangers (not shown) and/or other conventional cooling systems (not shown) for cooling the liquid that circulates through the data center 1102, an additional 40-foot transport container 1106 that includes this infrastructure may be used with the data center 1102. In some embodiments, the container 1106 may also include conventional equipment (not shown) for providing power to the data center 1102.


It will be understood that, although the embodiments presented herein have been described with reference to specific features and structures, various modifications and combinations may be made without departing from the disclosure. The specification and drawings are, accordingly, to be regarded simply as an illustration of the discussed implementations or embodiments and their principles as defined by the appended claims, and are contemplated to cover any and all modifications, variations, combinations or equivalents that fall within the scope of the present disclosure.

Claims
  • 1. A rack system comprising: a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component, wherein:the heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed;the electronic device is immersed in a dielectric immersion cooling liquid; andthe rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid, the non-sealed immersion case configured to be non-sealed at all times, including during operation of the electronic device, such that the non-sealed immersion cooling case cannot be used for dual-phase immersion cooling, the non-sealed immersion case further configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame, wherein: the dielectric immersion cooling liquid is contained within the non-sealed immersion case and circulates within the non-sealed immersion case due to convection induced by a convection-inducing element included in the rack-mounted assembly, the convection-inducing element being in thermal contact with at least a portion of the dielectric immersion cooling liquid and configured to induce convection within the dielectric immersion cooling liquid, and wherein the channelized cooling fluid is conveyed through the convection-inducing element.
  • 2. The rack system according to claim 1, wherein the rack-mounted assembly is mounted vertically with respect to the rack frame.
  • 3. The rack system according to claim 1, wherein the convection-inducing element comprises a serpentine convection coil.
  • 4. The rack system according to claim 1, wherein the channelized cooling fluid is conveyed through a loop that includes both the liquid cooling block in thermal contact with the heat-generating component and the convection-inducing element.
  • 5. The rack system according to claim 1, wherein a density of the dielectric immersion cooling liquid is lower than a density of the channelized cooling fluid.
  • 6. The rack system according to claim 1, wherein the channelized cooling fluid is a same type of fluid as the dielectric immersion cooling liquid.
  • 7. The rack system according to claim 1, wherein the rack-mounted assembly is vertically oriented within the rack frame and a plurality of other vertically oriented rack-mounted assemblies are mounted adjacent to each other in the rack frame.
  • 8. A rack system comprising: a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component, wherein:the heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed;the electronic device is immersed in a dielectric immersion cooling liquid, wherein a density of the dielectric immersion cooling liquid is lower than a density of the channelized cooling fluid; andthe rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid, the non-sealed immersion case configured to be non-sealed at all times, including during operation of the electronic device, such that the non-sealed immersion cooling case cannot be used for dual-phase immersion cooling, the non-sealed immersion case further configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame, wherein: the dielectric immersion cooling liquid is contained within the non-sealed immersion case and circulates within the non-sealed immersion case due to convection induced by a convection-inducing element included in the rack-mounted assembly, the convection-inducing element being in thermal contact with at least a portion of the dielectric immersion cooling liquid and configured to induce convection within the dielectric immersion cooling liquid, and wherein the channelized cooling fluid is conveyed through the convection-inducing element.
  • 9. The rack system according to claim 8, wherein the rack-mounted assembly is mounted vertically with respect to the rack frame.
  • 10. The rack system according to claim 8, wherein the convection-inducing element comprises a serpentine convection coil.
  • 11. The rack system according to claim 8, wherein the channelized cooling fluid is conveyed through a loop that includes both the liquid cooling block in thermal contact with the heat-generating component and the convection-inducing element.
  • 12. The rack system according to claim 8, wherein the channelized cooling fluid is a same type of fluid as the dielectric immersion cooling liquid.
  • 13. A modular data center comprising a plurality of container-based data center modules, the plurality of container-based data center modules comprising a plurality of rack systems, wherein each rack system comprises: a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component, wherein:the heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed;the electronic device is immersed in a dielectric immersion cooling liquid having a lower density than the channelized cooling fluid; andthe rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid, the non-sealed immersion case configured to be non-sealed at all times, including during operation of the electronic device, such that the non-sealed immersion cooling case cannot be used for dual-phase immersion cooling, the non-sealed immersion case further configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame.
  • 14. The modular data center according to claim 13, wherein each rack-mounted assembly is mounted vertically.
  • 15. The modular data center according to claim 13, wherein the channelized cooling fluid in the rack system is conveyed through a loop that includes both the liquid cooling block in thermal contact with the heat-generating component and a convection-inducing element.
  • 16. The modular data center according to claim 15, wherein the convection-inducing element in the rack system comprises a serpentine convection coil, the convection-inducing element being in thermal contact with at least a portion of the dielectric immersion cooling liquid and configured to induce convection within the dielectric immersion cooling liquid, and wherein the channelized cooling fluid is conveyed through the convection-inducing element.
Priority Claims (2)
Number Date Country Kind
21305427 Apr 2021 EP regional
21306189 Aug 2021 EP regional
US Referenced Citations (208)
Number Name Date Kind
2115501 Sergius Apr 1938 A
2316296 Simonds Apr 1943 A
3938689 De Munnik Feb 1976 A
4279966 Wakana et al. Jul 1981 A
4619316 Nakayama et al. Oct 1986 A
4888664 Rojc Dec 1989 A
5268814 Yakubowski Dec 1993 A
5307956 Richter et al. May 1994 A
5669524 Loedel Sep 1997 A
5907473 Przilas et al. May 1999 A
6023934 Gold Feb 2000 A
6746388 Edwards et al. Jun 2004 B2
6847525 Smith et al. Jan 2005 B1
6883593 Johnson et al. Apr 2005 B2
6899164 Li et al. May 2005 B1
7369410 Chen et al. May 2008 B2
7403392 Attlesey et al. Jul 2008 B2
7414845 Attlesey et al. Aug 2008 B2
7527085 Ijima et al. May 2009 B2
7724517 Attlesey et al. May 2010 B2
7885070 Campbell et al. Feb 2011 B2
7900796 Ungrady et al. Mar 2011 B2
7905106 Attlesey Mar 2011 B2
7911782 Attlesey et al. Mar 2011 B2
7911793 Attlesey Mar 2011 B2
8009419 Attlesey et al. Aug 2011 B2
8014150 Campbell et al. Sep 2011 B2
8089764 Attlesey Jan 2012 B2
8089765 Attlesey Jan 2012 B2
8089766 Attlesey Jan 2012 B2
8291964 Hwang et al. Oct 2012 B2
8305759 Attlesey Nov 2012 B2
8467189 Attlesey Jun 2013 B2
8619425 Campbell et al. Dec 2013 B2
8654529 Tufty et al. Feb 2014 B2
8934244 Shelnutt et al. Jan 2015 B2
8953317 Campbell et al. Feb 2015 B2
9049800 Shelnutt et al. Jun 2015 B2
9051502 Sedarous et al. Jun 2015 B2
9086859 Tufty et al. Jul 2015 B2
9128681 Tufty et al. Sep 2015 B2
9144179 Shelnutt et al. Sep 2015 B2
9155230 Eriksen Oct 2015 B2
9176547 Tufty et al. Nov 2015 B2
9195282 Shelnutt et al. Nov 2015 B2
9223360 Tufty et al. Dec 2015 B2
9328964 Shelnutt et al. May 2016 B2
9335802 Shelnutt et al. May 2016 B2
9351429 Shelnutt et al. May 2016 B2
9382914 Sharfi Jul 2016 B1
9426927 Shafer et al. Aug 2016 B2
9436235 Damaraju et al. Sep 2016 B2
9464854 Shelnutt et al. Oct 2016 B2
9529395 Franz et al. Dec 2016 B2
9699938 Shelnutt et al. Jul 2017 B2
9699939 Smith Jul 2017 B2
9717166 Eriksen Jul 2017 B2
9756766 Best Sep 2017 B2
9773526 Shelnutt et al. Sep 2017 B2
9781859 Wishman et al. Oct 2017 B1
9795065 Shelnutt et al. Oct 2017 B2
9839164 Shelnutt et al. Dec 2017 B2
9844166 Shelnutt et al. Dec 2017 B2
9921622 Shelnutt et al. Mar 2018 B2
9968010 Shelnutt et al. May 2018 B2
9992914 Best et al. Jun 2018 B2
10010013 Shelnutt et al. Jun 2018 B2
10018425 Shelnutt et al. Jul 2018 B2
10020242 Katsumata et al. Jul 2018 B2
10064314 Shelnutt et al. Aug 2018 B2
10104808 Scharinger et al. Oct 2018 B2
10130008 Shepard et al. Nov 2018 B2
10143113 Shelnutt et al. Nov 2018 B2
10143114 Shelnutt et al. Nov 2018 B2
10146231 Shelnutt et al. Dec 2018 B2
10149408 Fujiwara et al. Dec 2018 B2
10156873 Shelnutt et al. Dec 2018 B2
10172262 Shelnutt et al. Jan 2019 B2
10206312 Shelnutt et al. Feb 2019 B2
10212857 Eriksen Feb 2019 B2
10225958 Gao Mar 2019 B1
10238010 Shelnutt et al. Mar 2019 B2
10271456 Tufty et al. Apr 2019 B2
10321609 Hirai et al. Jun 2019 B2
10331144 Shelnutt et al. Jun 2019 B2
10399190 North et al. Sep 2019 B2
10542635 Nishiyama Jan 2020 B2
10598441 Kawabata et al. Mar 2020 B2
10617042 Shelnutt et al. Apr 2020 B2
10622283 Leobandung Apr 2020 B2
10624236 Inano et al. Apr 2020 B2
10624242 Best Apr 2020 B2
10638641 Franz et al. Apr 2020 B2
10645841 Mao et al. May 2020 B1
10653036 Gao May 2020 B1
10667434 Mao et al. May 2020 B1
10674641 Shepard et al. Jun 2020 B2
10716238 Brink Jul 2020 B2
10729039 Shelnutt et al. Jul 2020 B2
10791647 Miyamura et al. Sep 2020 B1
10809011 Chu et al. Oct 2020 B2
10871807 Best et al. Dec 2020 B2
10888032 Wakino et al. Jan 2021 B2
10917998 Shelnutt et al. Feb 2021 B2
10932390 Korikawa Feb 2021 B2
10939580 Gao Mar 2021 B2
10939581 Chen Mar 2021 B1
10990144 Wang et al. Apr 2021 B2
11006547 Gao May 2021 B2
11032939 Tufty et al. Jun 2021 B2
11071238 Edmunds et al. Jul 2021 B2
11107749 Taniguchi et al. Aug 2021 B2
11268739 Wang et al. Mar 2022 B2
11572614 Sakamoto et al. Feb 2023 B2
11751359 Heydari Sep 2023 B2
11822398 Heydari Nov 2023 B2
11924998 Hnayno Mar 2024 B2
20020159233 Patel et al. Oct 2002 A1
20040244947 Chen Dec 2004 A1
20050150637 Tan et al. Jul 2005 A1
20050248922 Chu et al. Nov 2005 A1
20070227756 Doerr et al. Oct 2007 A1
20090146294 Hillman et al. Jun 2009 A1
20090205590 Vetrovec Aug 2009 A1
20090260777 Attlesey et al. Oct 2009 A1
20100103620 Campbell et al. Apr 2010 A1
20100108292 Bhunia et al. May 2010 A1
20100118494 Campbell et al. May 2010 A1
20100170657 Kaslusky Jul 2010 A1
20100328889 Campbell et al. Dec 2010 A1
20110026776 Liang et al. Feb 2011 A1
20110028617 Hill et al. Feb 2011 A1
20110267768 Attlesey Nov 2011 A1
20110284194 Sarkar et al. Nov 2011 A1
20110286177 Attlesey Nov 2011 A1
20110317367 Campbell et al. Dec 2011 A1
20120007579 Apblett et al. Jan 2012 A1
20120014064 St Rock et al. Jan 2012 A1
20120058588 Mayer et al. Mar 2012 A1
20120075797 Attlesey Mar 2012 A1
20120120599 Chua et al. May 2012 A1
20120193068 Nemesh et al. Aug 2012 A1
20130105120 Campbell et al. May 2013 A1
20140123492 Campbell et al. May 2014 A1
20140216688 Shelnutt et al. Aug 2014 A1
20140218845 Peng et al. Aug 2014 A1
20140218861 Shelnutt et al. Aug 2014 A1
20140321054 Kaefer et al. Oct 2014 A1
20150061568 Martinez Mar 2015 A1
20150109730 Campbell et al. Apr 2015 A1
20150237767 Shedd et al. Aug 2015 A1
20150330718 St Rock et al. Nov 2015 A1
20160021793 Chen Jan 2016 A1
20160120059 Shedd et al. Apr 2016 A1
20160305565 Miller et al. Oct 2016 A1
20160330874 Sato et al. Nov 2016 A1
20160360637 Harvilchuck et al. Dec 2016 A1
20160366792 Smith Dec 2016 A1
20170105313 Shedd et al. Apr 2017 A1
20170127565 Campbell et al. May 2017 A1
20170181328 Shelnutt et al. Jun 2017 A1
20170241721 Liang Aug 2017 A1
20170265328 Sasaki et al. Sep 2017 A1
20180008467 Cater et al. Jan 2018 A1
20180027695 Wakino et al. Jan 2018 A1
20180042138 Campbell et al. Feb 2018 A1
20180070477 Saito Mar 2018 A1
20180084671 Matsumoto et al. Mar 2018 A1
20180092243 Saito Mar 2018 A1
20180153058 Hirai et al. May 2018 A1
20180196484 Saito Jul 2018 A1
20180246550 Inaba et al. Aug 2018 A1
20180295745 De Meijer et al. Oct 2018 A1
20180338388 Wei Nov 2018 A1
20190014685 So et al. Jan 2019 A1
20190090383 Tufty et al. Mar 2019 A1
20190098796 Wakino et al. Mar 2019 A1
20190218101 Huang et al. Jul 2019 A1
20190223324 Le et al. Jul 2019 A1
20190297747 Wakino et al. Sep 2019 A1
20200025451 Stone et al. Jan 2020 A1
20200093037 Enright et al. Mar 2020 A1
20200095667 Sakamoto et al. Mar 2020 A1
20200150731 Wang et al. May 2020 A1
20200196489 Chang et al. Jun 2020 A1
20200214169 Tsunoda Jul 2020 A1
20200267872 Harada et al. Aug 2020 A1
20200288600 Gao Sep 2020 A1
20200305307 Amos et al. Sep 2020 A1
20200323100 Chiu et al. Oct 2020 A1
20200323108 Bilan et al. Oct 2020 A1
20200389998 Tung et al. Dec 2020 A1
20200390007 Edmunds et al. Dec 2020 A1
20210051815 Van et al. Feb 2021 A1
20210076531 Tung et al. Mar 2021 A1
20210102294 Miljkovic et al. Apr 2021 A1
20210112683 Mohajer et al. Apr 2021 A1
20210185850 Kulkarni et al. Jun 2021 A1
20210321526 Kulkarni et al. Oct 2021 A1
20210327787 Yang et al. Oct 2021 A1
20210385971 Gorius et al. Dec 2021 A1
20210410292 Yang et al. Dec 2021 A1
20210410319 Manousakis et al. Dec 2021 A1
20210410320 Yang et al. Dec 2021 A1
20210410328 Yang et al. Dec 2021 A1
20220256744 Le et al. Aug 2022 A1
20230059446 Gao Feb 2023 A1
20240152163 Heger et al. May 2024 A1
Foreign Referenced Citations (42)
Number Date Country
201898432 Jul 2011 CN
103687443 Mar 2014 CN
106681459 May 2017 CN
107643813 Jan 2018 CN
110691490 Jan 2020 CN
210630126 May 2020 CN
211184672 Aug 2020 CN
110430725 Feb 2021 CN
3236727 Oct 2017 EP
3249496 Nov 2017 EP
3236727 Jan 2018 EP
3346491 Jul 2018 EP
3402316 Nov 2018 EP
3731611 Oct 2020 EP
3742097 Nov 2020 EP
2321849 Jan 2022 EP
2575680 Jan 2020 GB
2574632 Jul 2020 GB
H043451 Jan 1992 JP
2000092819 Mar 2000 JP
2020065002 Apr 2020 JP
1006486 Jan 1999 NL
I 678 961 Dec 2019 TW
2011006150 Jan 2011 WO
2012162986 Dec 2012 WO
2014169230 Oct 2014 WO
2016076882 May 2016 WO
2017040217 Mar 2017 WO
2018025016 Feb 2018 WO
2018054462 Mar 2018 WO
2019006437 Jan 2019 WO
2019060576 Mar 2019 WO
2019068916 Apr 2019 WO
2020102090 May 2020 WO
2020170079 Aug 2020 WO
2020183038 Sep 2020 WO
2020216954 Oct 2020 WO
2020223806 Nov 2020 WO
2020234600 Nov 2020 WO
2020254917 Dec 2020 WO
2021040841 Mar 2021 WO
2021161026 Aug 2021 WO
Non-Patent Literature Citations (44)
Entry
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed May 11, 2023.
Office Action with regard to the counterpart U.S. Appl. No. 17/701,422 mailed Mar. 28, 2023.
Office Action with regard to the counterpart U.S. Appl. No. 17/697,264 mailed Nov. 22, 2023.
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed Nov. 22, 2023.
“HP Expands Workstation Series to Include Desk-side, Mobile and Small Form Factor Mode”, TechPowerUp, Mar. 24, 2010, https://www.techpowerup.com/118323/hp-expands-workstation-series-to-include-desk-side-mobile-and-small-form-factor-mode, retrieved on Jul. 19, 2021, 6 pages.
“IBM's Hot-Water Supercomputer Goes Live”, Data Center Knowledge, retrieved on Jul. 19, 2021, 9 pages.
Extended European Search Report with regard to the EP Patent Application No. 21306771.3 completed May 23, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306173.2 completed Feb. 18, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306174.0 completed Feb. 14, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306172.4 completed Feb. 15, 2022.
English Abstract for JP2020065002 retrieved on Espacenet on Jun. 2, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306186.4 completed Feb. 10, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306187.2 completed Feb. 10, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306175.7 completed Apr. 8, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306188.0 completed Feb. 10, 2022.
English Abstract for JPH043451 retrieved on Feb. 22, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306171.6 completed Feb. 11, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306189.8 completed Feb. 10, 2022.
Extended European Search Report with regard to the EP Patent Application No. 21306170.8 completed Feb. 12, 2022.
English Abstract for NL1006486 retrieved on Espacenet on Jun. 3, 2022.
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/691,494 mailed Apr. 17, 2023.
Office Action with regard to the counterpart U.S. Appl. No. 17/694,765 mailed Dec. 21, 2023.
Extended European Search Report with regard to the counterpart EP Patent Application No. 22305018.8 completed Jun. 24, 2022.
Office Action with regard to the counterpart U.S. Appl. No. 17/698,480 mailed Sep. 7, 2023.
International Search Report and Written Opinion with regard to PCTIB2022053071 mailed Jun. 28, 2022.
International Search Report and Written Opinion with regard to PCT/IB2022/052975 mailed Jun. 20, 2022.
International Search Report and Written Opinion with regard to PCTIB2022052330 mailed May 30, 2022.
International Search Report and Written Opinion with regard to PCT/IB2022/052976 mailed Jun. 17, 2022.
International Search Report and Written Opinion with regard to PCT/IB2022/052977 mailed Jun. 20, 2022.
European Search Report with regard to EP21306170.8 completed Feb. 12, 2022.
European Search Report with regard to EP21306189.8 completed Feb. 10, 2022.
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/690,839 mailed Mar. 5, 2024.
Office Action with regard to the counterpart U.S. Appl. No. 17/697,616 mailed Feb. 26, 2024.
Office Action with regard to the counterpart U.S. Appl. No. 17/690,833 mailed Mar. 28, 2024.
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed Mar. 25, 2024.
Office Action with regard to te counterpart CN Patent Application No. 2022103375051 issued May 11, 2024.
Office Action with regard to te counterpart U.S. Appl. No. 17/690,839 issued Jun. 25, 2024.
Office Action with regard to te counterpart U.S. Appl. No. 17/698,480 issued Jul. 3, 2024.
Notice of Allowance with regard to te counterpart U.S. Appl. No. 17/697,616 issued Jul. 23, 2024.
Office Action with regard to te counterpart CN Patent Application No. 2022103326074 issued Jul. 29, 2024.
Office Action with regard to the counterpart CN Patent Application No. 2022103375314 issued Aug. 12, 2024.
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/707,200 issued Aug. 15, 2024.
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 issued Sep. 6, 2024.
Office Action with regard to the counterpart CN Patent Application No. 2022103478109 issued Aug. 30, 2024.
Related Publications (1)
Number Date Country
20220322572 A1 Oct 2022 US