The present patent application claims priority from European Patent Application Number 21305427.3, filed on Apr. 1, 2021 and from European Patent Application Number 21306189.8, filed on Aug. 31, 2021, the disclosures of both of which is incorporated by reference herein in their entirety.
The present technology relates to a rack system for electronic equipment. In particular, the present technology relates to a rack system for immersion-cooled electronic equipment.
Electronic equipment, for example servers, memory banks, computer discs, and the like, is conventionally grouped in equipment racks. Large data centers and other large computing facilities may contain thousands of racks supporting thousands or even tens of thousands of servers.
The racks, including equipment mounted in their backplanes, consume large amounts of electric power and generate significant amounts of heat. Cooling needs are important in such racks. Some electronic devices, such as processors, generate so much heat that they could fail within seconds in case of a lack of cooling.
Fans are commonly mounted within equipment racks to provide forced ventilation cooling to rack-mounted equipment. This solution merely displaces some of the heat generated within the racks to the general environment of the data center, and also takes up significant space on the racks, e.g., reducing the number of servers per square meter of data center space.
Liquid cooling, in particular water cooling, has recently been introduced as an addition or replacement to traditional forced-air cooling. Cold plates, for example water blocks having internal channels for water circulation, may be mounted on heat-generating components, such as processors to displace heat from the processors toward heat exchangers. Air-to-liquid heat exchangers, for example finned tubes heat exchangers similar to radiators, may be mounted to the racks to absorb and transport some of this displaced heat toward external cooling equipment, for example cooling towers, located outside of the data center.
Immersion cooling (sometimes called immersive cooling) was more recently introduced. Electronic components are inserted in a container that is fully or partially filled with a non-conducting cooling liquid, for example an oil-based dielectric cooling liquid. Good thermal contact is obtained between the electronic components and the dielectric cooling liquid. However, an electronic component, for example a server, includes some devices such as processors may generate most of the heat while other devices such as memory boards may generate much less heat. It is generally required to ensure circulation of the dielectric cooling liquid, within the container, at a level that is sufficient to cool the hottest devices within the electronic components. This requires the use of efficient pumps that consume a significant amount of energy. Heat sinks may be mounted on some heat-generating devices. Some other heat-generating devices may have porous surfaces so that the contact between these devices and the dielectric cooling liquid is more intimate and thus more thermally efficient. These solutions only provide a modest reduction of the amount of energy required to operate the pumps that circulation the dielectric cooling liquid within the container.
Immersion cooling systems also commonly take the form of large tanks in which the electronic devices are submerged. These tanks and the liquid circulation and heat exchange systems that are conventionally used with them typically require a significant amount of space, and in many instances are not intended to be mounted in racks. While there are some immersion-cooled devices that can be mounted in racks, this typically requires that the cases surrounding the electronic devices and immersion cooling liquid in which they are submerged be sealed, to prevent spillage of the cooling liquids, and for use in “two phase” immersion systems in which the immersion cooling liquid may boil within the case. Such sealed systems may be expensive to manufacture, and may involve pumping systems to fill and drain the cases.
Even though the recent developments identified above may provide benefits, improvements are still desirable.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches.
Embodiments of the present technology have been developed based on developers' appreciation of shortcomings associated with the prior art. In particular, such shortcomings may comprise (1) inability to address the cooling needs to devices that generate most of the heat; (2) significant power consumption of the cooling systems; and/or (3) inability to use current cooling technologies, such as immersion cooling, in high-density data centers.
In accordance with one aspect of the present disclosure, the technology is implemented as a rack system including a rack frame and a rack-mounted assembly, including an electronic device disposed within the rack-mounted assembly, the electronic device including a heat-generating component. The heat-generating component is in thermal contact with a liquid cooling block through which a channelized cooling fluid is conveyed. The electronic device is immersed in a dielectric immersion cooling liquid. The rack-mounted assembly includes a non-sealed immersion case in which the electronic device is immersed in the dielectric immersion cooling liquid. The non-sealed immersion case is configured to be non-sealed at all times, including during operation of the electronic device, such that the non-sealed immersion cooling case cannot be used for dual-phase immersion cooling. The non-sealed immersion case is further configured to permit the rack-mounted assembly to be individually inserted into or removed from the rack frame.
In some embodiments, the rack-mounted assembly is mounted vertically with respect to the rack frame.
In some embodiments, the dielectric immersion cooling liquid is induced by gravity to flow over the electronic device.
In some embodiments, the dielectric immersion cooling liquid is contained within the non-sealed immersion case and circulates within the non-sealed immersion case due to convection.
In some of these embodiments, the rack-mounted assembly includes a convection-inducing element in thermal contact with at least a portion of the dielectric immersion cooling liquid and configured to induce convection within the dielectric immersion cooling liquid.
In some embodiments, the channelized cooling fluid is conveyed through the convection-inducing element.
In some embodiments, the convection-inducing element comprises a serpentine convection coil.
In some embodiments, the channelized cooling fluid is conveyed through a loop that includes both the liquid cooling block in thermal contact with the heat-generating component and the convection-inducing element.
In some embodiments, the density of the dielectric immersion cooling liquid is lower than the density of the channelized cooling fluid.
In some embodiments, a lower portion of the non-sealed immersion case includes a sensor configured to detect a leak of the channelized cooling fluid.
In some embodiments, a lower portion of the non-sealed immersion case includes an outlet configured for draining leaked channelized cooling fluid.
In some embodiments, the channelized cooling fluid is the same as the dielectric immersion cooling liquid.
In some embodiments, a plurality of vertically oriented rack-mounted assemblies are mounted adjacent to each other in the rack frame.
In another aspect, the technology is implemented in a container-based data center module including numerous rack systems as summarized above.
In a further aspect, the technology is implemented as a modular data center including numerous such container-based data center modules.
In the context of the present specification, unless expressly provided otherwise, a computer system may refer, but is not limited to, an “electronic device”, an “operation system”, a “system”, a “computer-based system”, a “controller unit”, a “monitoring device”, a “control device” and/or any combination thereof appropriate to the relevant task at hand.
In the context of the present specification, unless expressly provided otherwise, the expression “computer-readable medium” and “memory” are intended to include media of any nature and kind whatsoever, non-limiting examples of which include RAM, ROM, disks (CD-ROMs, DVDs, floppy disks, hard disk drives, etc.), USB keys, flash memory cards, solid state-drives, and tape drives. Still in the context of the present specification, “a” computer-readable medium and “the” computer-readable medium should not be construed as being the same computer-readable medium. To the contrary, and whenever appropriate, “a” computer-readable medium and “the” computer-readable medium may also be construed as a first computer-readable medium and a second computer-readable medium.
In the context of the present specification, unless expressly provided otherwise, the words “first”, “second”, “third”, etc. have been used as adjectives only for the purpose of allowing for distinction between the nouns that they modify from one another, and not for the purpose of describing any particular relationship between those nouns.
Implementations of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
Additional and/or alternative features, aspects and advantages of implementations of the present technology will become apparent from the following description, the accompanying drawings and the appended claims.
These and other features, aspects and advantages of the present technology will become better understood with regard to the following description, appended claims and accompanying drawings where:
It should also be noted that, unless otherwise explicitly specified herein, the drawings are not to scale.
The examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the present technology and not to limit its scope to such specifically recited examples and conditions. It will be appreciated that those skilled in the art may devise various arrangements that, although not explicitly described or shown herein, nonetheless embody the principles of the present technology.
Furthermore, as an aid to understanding, the following description may describe relatively simplified implementations of the present technology. As persons skilled in the art would understand, various implementations of the present technology may be of a greater complexity.
In some cases, what are believed to be helpful examples of modifications to the present technology may also be set forth. This is done merely as an aid to understanding, and, again, not to define the scope or set forth the bounds of the present technology. These modifications are not an exhaustive list, and a person skilled in the art may make other modifications while nonetheless remaining within the scope of the present technology. Further, where no examples of modifications have been set forth, it should not be interpreted that no modifications are possible and/or that what is described is the sole manner of implementing that element of the present technology.
Moreover, all statements herein reciting principles, aspects, and implementations of the present technology, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof, whether they are currently known or developed in the future. Thus, for example, it will be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative systems embodying the principles of the present technology.
In an aspect, the present technology introduces a cooling system having two pumps for circulating a dielectric cooling liquid in a container that receives one or more electronic components immersed in the dielectric cooling liquid. One pump is used to cause a circulation of the dielectric cooling liquid, broadly within the container. Another pump is used to direct a flow of the dielectric cooling liquid toward the electronic components. As such, the direct flow provided enhanced cooling of specific devices of the electronic components, such as for example processors that generate the most thermal energy, while the broad circulation of the liquid cooling within the container allows cooling other devices of the electronic components while generally controlling the temperature of the dielectric cooling liquid.
With these fundamentals in place, we will now consider some non-limiting examples to illustrate various implementations of aspects of the present disclosure.
Non-Sealed Immersion Cooling Rack System
It is contemplated that the electronic device 120 may generate a significant amount of heat. Consequently, the rack system 100 may use a cooling system to cool down the electronic device 120 to prevent the electronic device 120 from being damaged. In some embodiments, the cooling system may be an immersion cooling system. As used herein, an immersion cooling system is a cooling system in which the electronic device is in direct contact with a non-conductive (dielectric) cooling liquid, which either flows over at least portions of the electronic device, or in which at least portions of the electronic device are submerged. For example, in the rack-mounted assembly 104, the non-sealed immersion case 116 may contain an immersion cooling liquid (not shown in
It will be understood by those of ordinary skill in the art that a non-sealed configuration of an immersion case, such as is described herein, would not be usable in a dual-phase immersion system. This is because vapor from the boiling immersion liquid in such a dual-phase immersion system would escape into the surrounding atmosphere through the non-sealed immersion case and would be lost. In dual-phase immersion systems, this loss may occur to a limited extent even during installation and removal of the electronic device from the immersion liquid. For these reasons, immersion cases in dual-phase immersion systems need to be kept sealed during operation, and (in some instances) even when the electronic device is not in operation. One of ordinary skill in the art would understand this condition on the use of a dual-phase immersion system, and would therefore understand that a non-sealed immersion case, such as is described herein, would not be suitable for use with a dual-phase immersion system.
In some embodiments, the non-sealed immersion case 116 may also include a convection-inducing structure to cool/induce convection in the dielectric immersion liquid. For example, the convection-inducing structure may be a serpentine convection coil 124 attached to the detachable frame 118. The serpentine convection coil 124 may be fluidly coupled to the liquid cooling inlet conduit 106 and the liquid cooling outlet conduit 108 via the liquid coolant inlet/outlet connectors 114. The serpentine convection coil 124 may allow a flow of a circulating cooling liquid. The circulating cooling liquid, by means of convection, may cool down the dielectric immersion cooling system.
Further, the electronic device 120 may be connected to the power distribution unit 110 and the switch 112 via power and network cables (not illustrated) to facilitate powering the electronic device 120 and to facilitate communication between the electronic device 120 and external devices (not illustrated) through the switch 112.
In some embodiments, in addition to immersion cooling, certain heat-generating components of the electronic device 120 may be cooled using one or more thermal transfer devices, which may also be called “cold plates” or “water blocks” (although a liquid circulating through the “water blocks” may be any of a wide variety of known thermal transfer liquids, rather than water). Examples of heat-generating components that may be cooled using such a thermal transfer devices include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), neural processing units (NPUs), tensor processing units (TPUs), power supply circuitry, and application specific integrated circuits (ASICs), including, for example, ASICs configured for high-speed cryptocurrency mining.
The non-sealed immersion case 404 may also contain a serpentine convection coil 410 that is also submerged within the dielectric immersion cooling liquid 406. The serpentine convection coil 410 is structured with multiple hollow-channel coils to provide a high surface area exposure relative to the immersion liquid 406 while also maintaining compact overall length and width dimensions.
With this structure, the serpentine convection coil 410 is configured to cool the ambient temperature and induce natural thermal convection in the dielectric immersion cooling liquid 406 through direct channelized liquid cooling. That is, the serpentine convection coil 410 internally conveys a circulating channelized cooling fluid that operates to cool the immersion cooling liquid 406. The channelized cooling fluid may be a different liquid than the immersion cooling liquid 406. That is, the channelized cooling fluid may include water, alcohol, or any suitable liquid capable of sustaining adequate cooling temperatures.
As noted above, the electronic device 408 includes heat-generating components 411 and 412 that are also submerged within the immersion cooling liquid 406. To provide further cooling to the heat-generating components 411, 412, and as a supplement to the overall immersion cooling of the electronic device, channelized liquid cooling may be used. Cooling blocks 420, 422 may be arranged to be in direct thermal contact with the one or more heat-generating components 411, 412. The cooling blocks 420, 422 are structured to convey the circulating channelized cooling fluid to provide additional cooling to the heat-generating components 411, 412.
The channelized liquid cooling of the hybrid liquid cooling system 400 forms a fluid distribution loop. The fluid distribution loop circulates the channelized cooling fluid through the cooling blocks 420, 422 to cool the heat-generating components 411, 412, and through the serpentine convection coil 410, to cool and induce convection in the immersion cooling liquid 406. After absorbing heat from the heat-generating components 411, 412 and from the immersion cooling liquid 406, the heated channelized cooling fluid is conveyed through a heat exchange system (not shown), the operation of which will generally be familiar to those of skill in the art. The heat exchange system cools the channelized cooling fluid, after which it may be recirculated through the fluid distribution loop.
It will be understood that many additional features, combinations, and variations of such non-sealed immersion and/or hybrid systems. For example, in some embodiments, the channelized cooling fluid (often water, though other fluids may be used) has a higher density than the immersion cooling liquid (e.g., any of a number of commercially-available immersion cooling liquids with a density lower than the density of water, including, e.g., SMARTCOOLANT, produced by Submer Technologies, S.L., of Barcelona, Spain, or S5 X, developed jointly by Asperitas, of Amsterdam, Netherlands, and Shell plc, of London, UK). As a result of this, should the channelized cooling fluid leak into the immersion cooling liquid, it will sink to a bottom portion of the non-sealed immersion case. In some embodiments, the presence of the channelized cooling fluid in a bottom portion of the immersion case may be detected by a sensor, which may serve as a leak detection sensor. In some embodiments having this feature, the non-sealed immersion case may be configured to collect and drain such leaked channelized cooling fluid, for example, through an outlet in the bottom portion of the non-sealed immersion case.
In some embodiments, the non-sealed immersion case may include an overflow release (not shown), such as an opening or tube near the top of the non-sealed immersion case, that is configured to permit immersion liquid to flow into an overflow collection channel connected to the rack system in the event of an overflow of the immersion liquid. Because some of the dielectric liquids that are used as immersion liquids may be expensive, such an overflow release may prevent these liquids from being lost in the event of an overflow.
In some embodiments, the convection-inducing structure may not be a serpentine convection coil. For example, in some embodiments, a large cooling plate (not shown) either submerged in the cooling fluid of formed as part of the non-sealed immersion case may be used to induce convection.
Other variations may involve changing the order of the components and/or the serpentine convection coil in the fluid distribution loop. For example, the channelized cooling fluid may flow through the serpentine convection coil before flowing through the cooling blocks. In some embodiments, the serpentine convection coil may be part of a different fluid distribution loop than the cooling blocks.
These variations and additional features may be used in various combinations, and may be used in connection with the embodiments described above, or other embodiments.
Flow-Through Embodiments
Referring to
As seen in
In some embodiments, in addition to immersion cooling, certain heat-generating components 550 of the electronic device 522 may be cooled using one or more thermal transfer devices 552, which may also be called “cold plates” or “water blocks” (although a liquid circulating through the “water blocks” may be any of a wide variety of known thermal transfer liquids, rather than water). Examples of heat-generating components 550 that may be cooled using the thermal transfer devices 552 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), neural processing units (NPUs), tensor processing units (TPUs), power supply circuitry, and application specific integrated circuits (ASICs), including, for example, ASICs configured for high-speed cryptocurrency mining.
It will be understood that there are many possible variations of the system 500 as described with reference to
Additionally, the channel 506 and tray 508 may be associated with a single rack-mounted assembly 502, or with more than one rack-mounted assembly 502. For example, in some embodiments, the channel 506 may cover the entire width of the rack frame 504, with openings providing immersion cooling liquid to an entire row of rack-mounted assemblies 502. Similarly, the tray 508 may collect immersion cooling liquid from, e.g., an entire row of rack-mounted assemblies 502.
It will similarly be understood that in some embodiments, the immersion cooling liquid 532 may flow over the electronic devices associated with more than one rack-mounted assembly 502 before pouring into the tray 508. For example, the rack-mounted assemblies may be arranged so that the opening in the bottom portion of the non-sealed immersion case of a first rack-mounted assembly is arranged above the opening in the top portion of the non-sealed immersion case of a second rack-mounted assembly, so that when the immersion cooling liquid pours out of the bottom of the first rack-mounted assembly, it pours into the top of the second rack-mounted assembly, to cool the electronic device associated with the second rack-mounted assembly. In this manner, a single stream of immersion cooling liquid may be used to cool numerous vertically aligned rack-mounted assemblies.
Additionally, in some embodiments, the openings 530 may include nozzles (not shown), which may be adjustable to control the flow of the immersion cooling liquid 532 from the channel 506. Such nozzles may also be configured to spray or mist the immersion cooling liquid 532 onto the electronic device rather than pouring or dripping the immersion cooling liquid 532 onto the electronic device. Pressure to accommodate such spraying of the immersion cooling liquid 532 onto the electronic device may be arranged, for example, by filling the channel 506 to increase the hydrostatic pressure or by pumping the immersion cooling liquid 532 through the channel 506 to provide hydraulic pressure.
Due to the incline a, the immersion cooling liquid from the channels flows by gravity over electronic devices (not shown) mounted within the rack-mounted assemblies 702, to convey heat from the electronics devices. As in the embodiment described above with reference to
Variations similar to those described above with reference to the system 500 of
The tank 806 may be disposed on a top portion of the rack frame 804 or may be disposed at a height h above the rack frame 804. For example, the tank 806 may be disposed in the ceiling of a data center above the rack frame 804. The static fluid pressure at the level of the rack-mounted assemblies 802 will depend on the height h of the tank 806 above the rack-mounted assemblies 802, with a greater height resulting in a greater static fluid pressure.
The immersion cooling liquid 830 flows over the electronic devices (not shown) housed in the rack-mounted assemblies 802, as is described above. The system 800 may be used in combination with the vertical flow-through rack-mounted assemblies of
As in the other flow-through immersion embodiments, the immersion cooling liquid flows into the tray 808, from which it is conveyed, e.g., by a pump, through a heat exchanger to be cooled and recirculated through the system 800.
Application in a Container-Based Data Center
The various embodiments described above facilitate dense packing of electronic devices in racks, while using immersion cooling as well as liquid-cooled thermal transfer devices, such as “waterblocks” to cool the devices. This use of immersion and liquid cooling provides increased power usage effectiveness, as compared to air cooled systems, as well as eliminating the need for bulky, noisy, and relatively inefficient fan assemblies attached to the racks. In the case of embodiments using convection cooling for circulation of immersion cooling liquid, there may be no need for use of pumps for circulating the immersion cooling liquid, further increasing power usage effectiveness of the cooling system.
It is contemplated that these features may be particularly advantageous in constructing data centers with large numbers of servers. In such data center applications, the electronic devices that are cooled by the various embodiments described above may be server computers (or “servers”), though other electronic devices that are used in data centers may also benefit from the cooling systems of the disclosure.
To provide for scalable data centers, as well as to provide environmental benefits from recycling, the rack system of the disclosure may be configured for use in recycled transport containers.
It will be understood that, although the embodiments presented herein have been described with reference to specific features and structures, various modifications and combinations may be made without departing from the disclosure. The specification and drawings are, accordingly, to be regarded simply as an illustration of the discussed implementations or embodiments and their principles as defined by the appended claims, and are contemplated to cover any and all modifications, variations, combinations or equivalents that fall within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
21305427 | Apr 2021 | EP | regional |
21306189 | Aug 2021 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2115501 | Sergius | Apr 1938 | A |
2316296 | Simonds | Apr 1943 | A |
3938689 | De Munnik | Feb 1976 | A |
4279966 | Wakana et al. | Jul 1981 | A |
4619316 | Nakayama et al. | Oct 1986 | A |
4888664 | Rojc | Dec 1989 | A |
5268814 | Yakubowski | Dec 1993 | A |
5307956 | Richter et al. | May 1994 | A |
5669524 | Loedel | Sep 1997 | A |
5907473 | Przilas et al. | May 1999 | A |
6023934 | Gold | Feb 2000 | A |
6746388 | Edwards et al. | Jun 2004 | B2 |
6847525 | Smith et al. | Jan 2005 | B1 |
6883593 | Johnson et al. | Apr 2005 | B2 |
6899164 | Li et al. | May 2005 | B1 |
7369410 | Chen et al. | May 2008 | B2 |
7403392 | Attlesey et al. | Jul 2008 | B2 |
7414845 | Attlesey et al. | Aug 2008 | B2 |
7527085 | Ijima et al. | May 2009 | B2 |
7724517 | Attlesey et al. | May 2010 | B2 |
7885070 | Campbell et al. | Feb 2011 | B2 |
7900796 | Ungrady et al. | Mar 2011 | B2 |
7905106 | Attlesey | Mar 2011 | B2 |
7911782 | Attlesey et al. | Mar 2011 | B2 |
7911793 | Attlesey | Mar 2011 | B2 |
8009419 | Attlesey et al. | Aug 2011 | B2 |
8014150 | Campbell et al. | Sep 2011 | B2 |
8089764 | Attlesey | Jan 2012 | B2 |
8089765 | Attlesey | Jan 2012 | B2 |
8089766 | Attlesey | Jan 2012 | B2 |
8291964 | Hwang et al. | Oct 2012 | B2 |
8305759 | Attlesey | Nov 2012 | B2 |
8467189 | Attlesey | Jun 2013 | B2 |
8619425 | Campbell et al. | Dec 2013 | B2 |
8654529 | Tufty et al. | Feb 2014 | B2 |
8934244 | Shelnutt et al. | Jan 2015 | B2 |
8953317 | Campbell et al. | Feb 2015 | B2 |
9049800 | Shelnutt et al. | Jun 2015 | B2 |
9051502 | Sedarous et al. | Jun 2015 | B2 |
9086859 | Tufty et al. | Jul 2015 | B2 |
9128681 | Tufty et al. | Sep 2015 | B2 |
9144179 | Shelnutt et al. | Sep 2015 | B2 |
9155230 | Eriksen | Oct 2015 | B2 |
9176547 | Tufty et al. | Nov 2015 | B2 |
9195282 | Shelnutt et al. | Nov 2015 | B2 |
9223360 | Tufty et al. | Dec 2015 | B2 |
9328964 | Shelnutt et al. | May 2016 | B2 |
9335802 | Shelnutt et al. | May 2016 | B2 |
9351429 | Shelnutt et al. | May 2016 | B2 |
9382914 | Sharfi | Jul 2016 | B1 |
9426927 | Shafer et al. | Aug 2016 | B2 |
9436235 | Damaraju et al. | Sep 2016 | B2 |
9464854 | Shelnutt et al. | Oct 2016 | B2 |
9529395 | Franz et al. | Dec 2016 | B2 |
9699938 | Shelnutt et al. | Jul 2017 | B2 |
9699939 | Smith | Jul 2017 | B2 |
9717166 | Eriksen | Jul 2017 | B2 |
9756766 | Best | Sep 2017 | B2 |
9773526 | Shelnutt et al. | Sep 2017 | B2 |
9781859 | Wishman et al. | Oct 2017 | B1 |
9795065 | Shelnutt et al. | Oct 2017 | B2 |
9839164 | Shelnutt et al. | Dec 2017 | B2 |
9844166 | Shelnutt et al. | Dec 2017 | B2 |
9921622 | Shelnutt et al. | Mar 2018 | B2 |
9968010 | Shelnutt et al. | May 2018 | B2 |
9992914 | Best et al. | Jun 2018 | B2 |
10010013 | Shelnutt et al. | Jun 2018 | B2 |
10018425 | Shelnutt et al. | Jul 2018 | B2 |
10020242 | Katsumata et al. | Jul 2018 | B2 |
10064314 | Shelnutt et al. | Aug 2018 | B2 |
10104808 | Scharinger et al. | Oct 2018 | B2 |
10130008 | Shepard et al. | Nov 2018 | B2 |
10143113 | Shelnutt et al. | Nov 2018 | B2 |
10143114 | Shelnutt et al. | Nov 2018 | B2 |
10146231 | Shelnutt et al. | Dec 2018 | B2 |
10149408 | Fujiwara et al. | Dec 2018 | B2 |
10156873 | Shelnutt et al. | Dec 2018 | B2 |
10172262 | Shelnutt et al. | Jan 2019 | B2 |
10206312 | Shelnutt et al. | Feb 2019 | B2 |
10212857 | Eriksen | Feb 2019 | B2 |
10225958 | Gao | Mar 2019 | B1 |
10238010 | Shelnutt et al. | Mar 2019 | B2 |
10271456 | Tufty et al. | Apr 2019 | B2 |
10321609 | Hirai et al. | Jun 2019 | B2 |
10331144 | Shelnutt et al. | Jun 2019 | B2 |
10399190 | North et al. | Sep 2019 | B2 |
10542635 | Nishiyama | Jan 2020 | B2 |
10598441 | Kawabata et al. | Mar 2020 | B2 |
10617042 | Shelnutt et al. | Apr 2020 | B2 |
10622283 | Leobandung | Apr 2020 | B2 |
10624236 | Inano et al. | Apr 2020 | B2 |
10624242 | Best | Apr 2020 | B2 |
10638641 | Franz et al. | Apr 2020 | B2 |
10645841 | Mao et al. | May 2020 | B1 |
10653036 | Gao | May 2020 | B1 |
10667434 | Mao et al. | May 2020 | B1 |
10674641 | Shepard et al. | Jun 2020 | B2 |
10716238 | Brink | Jul 2020 | B2 |
10729039 | Shelnutt et al. | Jul 2020 | B2 |
10791647 | Miyamura et al. | Sep 2020 | B1 |
10809011 | Chu et al. | Oct 2020 | B2 |
10871807 | Best et al. | Dec 2020 | B2 |
10888032 | Wakino et al. | Jan 2021 | B2 |
10917998 | Shelnutt et al. | Feb 2021 | B2 |
10932390 | Korikawa | Feb 2021 | B2 |
10939580 | Gao | Mar 2021 | B2 |
10939581 | Chen | Mar 2021 | B1 |
10990144 | Wang et al. | Apr 2021 | B2 |
11006547 | Gao | May 2021 | B2 |
11032939 | Tufty et al. | Jun 2021 | B2 |
11071238 | Edmunds et al. | Jul 2021 | B2 |
11107749 | Taniguchi et al. | Aug 2021 | B2 |
11268739 | Wang et al. | Mar 2022 | B2 |
11572614 | Sakamoto et al. | Feb 2023 | B2 |
11751359 | Heydari | Sep 2023 | B2 |
11822398 | Heydari | Nov 2023 | B2 |
11924998 | Hnayno | Mar 2024 | B2 |
20020159233 | Patel et al. | Oct 2002 | A1 |
20040244947 | Chen | Dec 2004 | A1 |
20050150637 | Tan et al. | Jul 2005 | A1 |
20050248922 | Chu et al. | Nov 2005 | A1 |
20070227756 | Doerr et al. | Oct 2007 | A1 |
20090146294 | Hillman et al. | Jun 2009 | A1 |
20090205590 | Vetrovec | Aug 2009 | A1 |
20090260777 | Attlesey et al. | Oct 2009 | A1 |
20100103620 | Campbell et al. | Apr 2010 | A1 |
20100108292 | Bhunia et al. | May 2010 | A1 |
20100118494 | Campbell et al. | May 2010 | A1 |
20100170657 | Kaslusky | Jul 2010 | A1 |
20100328889 | Campbell et al. | Dec 2010 | A1 |
20110026776 | Liang et al. | Feb 2011 | A1 |
20110028617 | Hill et al. | Feb 2011 | A1 |
20110267768 | Attlesey | Nov 2011 | A1 |
20110284194 | Sarkar et al. | Nov 2011 | A1 |
20110286177 | Attlesey | Nov 2011 | A1 |
20110317367 | Campbell et al. | Dec 2011 | A1 |
20120007579 | Apblett et al. | Jan 2012 | A1 |
20120014064 | St Rock et al. | Jan 2012 | A1 |
20120058588 | Mayer et al. | Mar 2012 | A1 |
20120075797 | Attlesey | Mar 2012 | A1 |
20120120599 | Chua et al. | May 2012 | A1 |
20120193068 | Nemesh et al. | Aug 2012 | A1 |
20130105120 | Campbell et al. | May 2013 | A1 |
20140123492 | Campbell et al. | May 2014 | A1 |
20140216688 | Shelnutt et al. | Aug 2014 | A1 |
20140218845 | Peng et al. | Aug 2014 | A1 |
20140218861 | Shelnutt et al. | Aug 2014 | A1 |
20140321054 | Kaefer et al. | Oct 2014 | A1 |
20150061568 | Martinez | Mar 2015 | A1 |
20150109730 | Campbell et al. | Apr 2015 | A1 |
20150237767 | Shedd et al. | Aug 2015 | A1 |
20150330718 | St Rock et al. | Nov 2015 | A1 |
20160021793 | Chen | Jan 2016 | A1 |
20160120059 | Shedd et al. | Apr 2016 | A1 |
20160305565 | Miller et al. | Oct 2016 | A1 |
20160330874 | Sato et al. | Nov 2016 | A1 |
20160360637 | Harvilchuck et al. | Dec 2016 | A1 |
20160366792 | Smith | Dec 2016 | A1 |
20170105313 | Shedd et al. | Apr 2017 | A1 |
20170127565 | Campbell et al. | May 2017 | A1 |
20170181328 | Shelnutt et al. | Jun 2017 | A1 |
20170241721 | Liang | Aug 2017 | A1 |
20170265328 | Sasaki et al. | Sep 2017 | A1 |
20180008467 | Cater et al. | Jan 2018 | A1 |
20180027695 | Wakino et al. | Jan 2018 | A1 |
20180042138 | Campbell et al. | Feb 2018 | A1 |
20180070477 | Saito | Mar 2018 | A1 |
20180084671 | Matsumoto et al. | Mar 2018 | A1 |
20180092243 | Saito | Mar 2018 | A1 |
20180153058 | Hirai et al. | May 2018 | A1 |
20180196484 | Saito | Jul 2018 | A1 |
20180246550 | Inaba et al. | Aug 2018 | A1 |
20180295745 | De Meijer et al. | Oct 2018 | A1 |
20180338388 | Wei | Nov 2018 | A1 |
20190014685 | So et al. | Jan 2019 | A1 |
20190090383 | Tufty et al. | Mar 2019 | A1 |
20190098796 | Wakino et al. | Mar 2019 | A1 |
20190218101 | Huang et al. | Jul 2019 | A1 |
20190223324 | Le et al. | Jul 2019 | A1 |
20190297747 | Wakino et al. | Sep 2019 | A1 |
20200025451 | Stone et al. | Jan 2020 | A1 |
20200093037 | Enright et al. | Mar 2020 | A1 |
20200095667 | Sakamoto et al. | Mar 2020 | A1 |
20200150731 | Wang et al. | May 2020 | A1 |
20200196489 | Chang et al. | Jun 2020 | A1 |
20200214169 | Tsunoda | Jul 2020 | A1 |
20200267872 | Harada et al. | Aug 2020 | A1 |
20200288600 | Gao | Sep 2020 | A1 |
20200305307 | Amos et al. | Sep 2020 | A1 |
20200323100 | Chiu et al. | Oct 2020 | A1 |
20200323108 | Bilan et al. | Oct 2020 | A1 |
20200389998 | Tung et al. | Dec 2020 | A1 |
20200390007 | Edmunds et al. | Dec 2020 | A1 |
20210051815 | Van et al. | Feb 2021 | A1 |
20210076531 | Tung et al. | Mar 2021 | A1 |
20210102294 | Miljkovic et al. | Apr 2021 | A1 |
20210112683 | Mohajer et al. | Apr 2021 | A1 |
20210185850 | Kulkarni et al. | Jun 2021 | A1 |
20210321526 | Kulkarni et al. | Oct 2021 | A1 |
20210327787 | Yang et al. | Oct 2021 | A1 |
20210385971 | Gorius et al. | Dec 2021 | A1 |
20210410292 | Yang et al. | Dec 2021 | A1 |
20210410319 | Manousakis et al. | Dec 2021 | A1 |
20210410320 | Yang et al. | Dec 2021 | A1 |
20210410328 | Yang et al. | Dec 2021 | A1 |
20220256744 | Le et al. | Aug 2022 | A1 |
20230059446 | Gao | Feb 2023 | A1 |
20240152163 | Heger et al. | May 2024 | A1 |
Number | Date | Country |
---|---|---|
201898432 | Jul 2011 | CN |
103687443 | Mar 2014 | CN |
106681459 | May 2017 | CN |
107643813 | Jan 2018 | CN |
110691490 | Jan 2020 | CN |
210630126 | May 2020 | CN |
211184672 | Aug 2020 | CN |
110430725 | Feb 2021 | CN |
3236727 | Oct 2017 | EP |
3249496 | Nov 2017 | EP |
3236727 | Jan 2018 | EP |
3346491 | Jul 2018 | EP |
3402316 | Nov 2018 | EP |
3731611 | Oct 2020 | EP |
3742097 | Nov 2020 | EP |
2321849 | Jan 2022 | EP |
2575680 | Jan 2020 | GB |
2574632 | Jul 2020 | GB |
H043451 | Jan 1992 | JP |
2000092819 | Mar 2000 | JP |
2020065002 | Apr 2020 | JP |
1006486 | Jan 1999 | NL |
I 678 961 | Dec 2019 | TW |
2011006150 | Jan 2011 | WO |
2012162986 | Dec 2012 | WO |
2014169230 | Oct 2014 | WO |
2016076882 | May 2016 | WO |
2017040217 | Mar 2017 | WO |
2018025016 | Feb 2018 | WO |
2018054462 | Mar 2018 | WO |
2019006437 | Jan 2019 | WO |
2019060576 | Mar 2019 | WO |
2019068916 | Apr 2019 | WO |
2020102090 | May 2020 | WO |
2020170079 | Aug 2020 | WO |
2020183038 | Sep 2020 | WO |
2020216954 | Oct 2020 | WO |
2020223806 | Nov 2020 | WO |
2020234600 | Nov 2020 | WO |
2020254917 | Dec 2020 | WO |
2021040841 | Mar 2021 | WO |
2021161026 | Aug 2021 | WO |
Entry |
---|
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed May 11, 2023. |
Office Action with regard to the counterpart U.S. Appl. No. 17/701,422 mailed Mar. 28, 2023. |
Office Action with regard to the counterpart U.S. Appl. No. 17/697,264 mailed Nov. 22, 2023. |
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed Nov. 22, 2023. |
“HP Expands Workstation Series to Include Desk-side, Mobile and Small Form Factor Mode”, TechPowerUp, Mar. 24, 2010, https://www.techpowerup.com/118323/hp-expands-workstation-series-to-include-desk-side-mobile-and-small-form-factor-mode, retrieved on Jul. 19, 2021, 6 pages. |
“IBM's Hot-Water Supercomputer Goes Live”, Data Center Knowledge, retrieved on Jul. 19, 2021, 9 pages. |
Extended European Search Report with regard to the EP Patent Application No. 21306771.3 completed May 23, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306173.2 completed Feb. 18, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306174.0 completed Feb. 14, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306172.4 completed Feb. 15, 2022. |
English Abstract for JP2020065002 retrieved on Espacenet on Jun. 2, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306186.4 completed Feb. 10, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306187.2 completed Feb. 10, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306175.7 completed Apr. 8, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306188.0 completed Feb. 10, 2022. |
English Abstract for JPH043451 retrieved on Feb. 22, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306171.6 completed Feb. 11, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306189.8 completed Feb. 10, 2022. |
Extended European Search Report with regard to the EP Patent Application No. 21306170.8 completed Feb. 12, 2022. |
English Abstract for NL1006486 retrieved on Espacenet on Jun. 3, 2022. |
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/691,494 mailed Apr. 17, 2023. |
Office Action with regard to the counterpart U.S. Appl. No. 17/694,765 mailed Dec. 21, 2023. |
Extended European Search Report with regard to the counterpart EP Patent Application No. 22305018.8 completed Jun. 24, 2022. |
Office Action with regard to the counterpart U.S. Appl. No. 17/698,480 mailed Sep. 7, 2023. |
International Search Report and Written Opinion with regard to PCTIB2022053071 mailed Jun. 28, 2022. |
International Search Report and Written Opinion with regard to PCT/IB2022/052975 mailed Jun. 20, 2022. |
International Search Report and Written Opinion with regard to PCTIB2022052330 mailed May 30, 2022. |
International Search Report and Written Opinion with regard to PCT/IB2022/052976 mailed Jun. 17, 2022. |
International Search Report and Written Opinion with regard to PCT/IB2022/052977 mailed Jun. 20, 2022. |
European Search Report with regard to EP21306170.8 completed Feb. 12, 2022. |
European Search Report with regard to EP21306189.8 completed Feb. 10, 2022. |
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/690,839 mailed Mar. 5, 2024. |
Office Action with regard to the counterpart U.S. Appl. No. 17/697,616 mailed Feb. 26, 2024. |
Office Action with regard to the counterpart U.S. Appl. No. 17/690,833 mailed Mar. 28, 2024. |
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 mailed Mar. 25, 2024. |
Office Action with regard to te counterpart CN Patent Application No. 2022103375051 issued May 11, 2024. |
Office Action with regard to te counterpart U.S. Appl. No. 17/690,839 issued Jun. 25, 2024. |
Office Action with regard to te counterpart U.S. Appl. No. 17/698,480 issued Jul. 3, 2024. |
Notice of Allowance with regard to te counterpart U.S. Appl. No. 17/697,616 issued Jul. 23, 2024. |
Office Action with regard to te counterpart CN Patent Application No. 2022103326074 issued Jul. 29, 2024. |
Office Action with regard to the counterpart CN Patent Application No. 2022103375314 issued Aug. 12, 2024. |
Notice of Allowance with regard to the counterpart U.S. Appl. No. 17/707,200 issued Aug. 15, 2024. |
Office Action with regard to the counterpart U.S. Appl. No. 17/697,452 issued Sep. 6, 2024. |
Office Action with regard to the counterpart CN Patent Application No. 2022103478109 issued Aug. 30, 2024. |
Number | Date | Country | |
---|---|---|---|
20220322572 A1 | Oct 2022 | US |