Decreasing the etch rate of silicon nitride by carbon addition

Information

  • Patent Grant
  • 7951730
  • Patent Number
    7,951,730
  • Date Filed
    Wednesday, February 4, 2009
    15 years ago
  • Date Issued
    Tuesday, May 31, 2011
    13 years ago
Abstract
Methods for forming silicon nitride hard masks are provided. The silicon nitride hard masks include carbon-doped silicon nitride layers and undoped silicon nitride layers. Carbon-doped silicon nitride layers that are deposited from a mixture comprising a carbon source compound, a silicon source compound, and a nitrogen source in the presence of RF power are provided. Also provided are methods of UV post-treating silicon nitride layers to provide silicon nitride hard masks. The carbon-doped silicon nitride layers and UV post-treated silicon nitride layers have desirable wet etch rates and dry etch rates for hard mask layers.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to the fabrication of integrated circuits. More particularly, embodiments of the present invention relate to methods for forming silicon nitride hard masks.


2. Description of the Related Art


Integrated circuits have evolved into complex devices that can include millions of transistors, capacitors and resistors on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit density. The demands for faster circuits with greater circuit densities impose corresponding demands on the materials used to fabricate such integrated circuits.


The demands for greater integrated circuit densities also impose demands on the process sequences used for integrated circuit manufacture. For example, in process sequences using conventional lithographic techniques, a layer of energy sensitive resist, such as a photoresist, is formed over a stack of layers on a substrate. An image of a pattern is introduced into the energy sensitive resist layer. Then, the pattern introduced into the energy sensitive resist layer is transferred into one or more layers of the stack of layers formed on the substrate using the layer of energy sensitive resist as a mask. The pattern introduced into the energy sensitive resist can be transferred into one or more layers of the material stack using a chemical etchant. The chemical etchant is designed to have a greater etch selectivity for the material layers of the stack than for the energy sensitive resist. That is, the chemical etchant etches the one or more layers of the material stack at a much faster rate than it etches the energy sensitive resist. The faster etch rate for the one or more material layers of the stack typically prevents the energy sensitive resist material from being consumed prior to completion of the pattern transfer.


However, demands for greater circuit densities on integrated circuits have necessitated smaller pattern dimensions (e.g., sub-micron or nanometer dimensions). As the pattern dimensions are reduced, the thickness of the energy sensitive resist must correspondingly be reduced in order to control pattern resolution. Such thinner resist layers can be insufficient to mask underlying layers during a pattern transfer step using a chemical etchant.


An intermediate layer, called a hard mask, is often used between the energy sensitive resist layer and the underlying layers to facilitate pattern transfer into the underlying layers. Like the energy sensitive resist layers, hard mask layers must be more resistant to the etchant that is used to etch an underlying layer in order to prevent erosion of the hard mask before the etching of the underlying layer is completed.


Silicon nitride layers that can be used as hard masks have been developed. The silicon nitride layers are typically deposited by a thermal process in a furnace at a high temperature, such as 800° C. Such high temperatures are disadvantageous for processes with stringent thermal budget demands, such as in very large scale or ultra-large scale integrated circuit (VLSI or ULSI) device fabrication.


Thus, there remains a need for methods of depositing silicon nitride layers at lower temperatures, wherein the silicon nitride layers have etch rate properties that enable them to be used as hard mask layers.


SUMMARY OF THE INVENTION

The present invention generally provides methods of forming silicon nitride hard masks. The silicon nitride hard masks may be silicon nitride layers or carbon-doped silicon nitride layers.


In one embodiment, a method of forming a carbon-doped silicon nitride hard mask includes introducing a carbon source compound into a chamber, introducing a silicon source compound into the chamber, introducing a nitrogen source into the chamber, and reacting the carbon source compound, silicon source compound, and nitrogen source in the presence of RF power to deposit a carbon-doped silicon nitride hard mask on a substrate in the chamber.


In another embodiment, a method of forming a carbon-doped silicon nitride hard mask includes introducing trimethylsilane into a chamber at a first flow rate, introducing silane into the chamber at a second flow rate, wherein the ratio of the second flow rate to the first flow rate is between about 50:1 and about 1:1, e.g., between about 10:1 and about 1:1, introducing NH3 into the chamber, and reacting the trimethylsilane, silane, and NH3 in the presence of RF power to deposit a carbon-doped silicon nitride hard mask on a substrate in the chamber.


In a further embodiment, a method of forming a silicon nitride hard mask is provided. The method comprises introducing a silicon source compound into the chamber, introducing a nitrogen source into the chamber, reacting the silicon source compound and a nitrogen source in the presence of RF power to deposit a silicon nitride layer on a substrate in the chamber, and UV post-treating the silicon nitride layer to form a silicon nitride hard mask. Carbon-doped silicon nitride layers that are deposited by reacting a carbon source compound, a silicon source compound, and a nitrogen source in the presence of RF power may also be UV post-treated.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIGS. 1A-1D depict schematic cross-sectional views of a substrate structure at different stages of a process sequence according to an embodiment of the invention.



FIG. 2 is a graph showing the wet etch rate ratios of carbon-doped silicon nitride layers provided according to embodiments of the invention.



FIG. 3 is a graph showing FTIR peak ratios of carbon-doped silicon nitride layers provided according to embodiments of the invention.





DETAILED DESCRIPTION

The present invention provides methods of depositing silicon nitride layers that can be used as hard masks. For example, a silicon nitride layer can be patterned, and the pattern formed in the silicon nitride layer can be transferred through a layer of a substrate. As defined herein, a “substrate” may include one or more layers, such as a stack of layers.



FIGS. 1A-1D show an example of a process sequence according to an embodiment of the invention. FIG. 1A shows a substrate 100 comprising an underlying layer 102 and a layer 104 on top of the layer 102. FIG. 1B shows a silicon nitride layer 106 of the invention that has been deposited on layer 104 of the substrate 100. FIG. 1C shows a feature 108 that has been formed in silicon nitride layer 106 such that layer 106 is patterned. FIG. 1D shows that the feature 108 in layer 106 has been transferred through the layer 104. Conventional patterning and etching techniques may be used to pattern and etch the silicon nitride layer 106 and the layer 104.


The substrate 100 may be part of a larger structure (not shown), such as a STI (shallow trench isolation) structure, a gate device for a transistor, a DRAM device, or a dual damascene structure, and thus, the silicon nitride layer may be used as a hard mask to pattern layers that are part of STI structures, a gate devices, DRAM devices, or dual damascene structures. The hard mask may be left in the structures after is it used to pattern an underlying layer or it may be removed after the patterning is completed.


The silicon nitride layers provided herein include carbon-doped silicon nitride layers and silicon nitride layers that do not contain carbon. The silicon nitride layers may be deposited to achieve layers of different thicknesses, such as thicknesses of between about 300 Å and about 5000 Å. In one embodiment, a carbon-doped silicon nitride layer is deposited on a substrate in a chamber by reacting a carbon source compound, a silicon source compound, and a nitrogen source in the chamber. The carbon-doped silicon nitride layer is deposited using plasma enhanced chemical vapor deposition (PECVD) in a chamber capable of performing chemical vapor deposition (CVD). The plasma may be generated using constant radio frequency (RF) power, pulsed RF power, high frequency RF power, dual frequency RF power, combinations thereof, or other plasma generation techniques.


The carbon source compound provides carbon to the deposited layers and may be an organosilicon compound. Alternatively, the carbon source compound may be an organic compound, such as a hydrocarbon compound, e.g., ethylene, or a compound comprising carbon, nitrogen, and hydrogen, instead of an organosilicon compound.


The term “organosilicon compound” as used herein is intended to refer to silicon-containing compounds containing carbon atoms in organic groups. Organic groups may include alkyl, alkenyl, cyclohexenyl, and aryl groups in addition to functional derivatives thereof. In certain embodiments, the organosilicon compound does not contain oxygen.


The organosilicon compound can be cyclic or linear. Suitable cyclic organosilicon compounds include a ring structure having three or more silicon atoms. An example of a cyclic organosilicon compound that may be used is 1,3,5-trisilano-2,4,6-trimethylene, —(—SiH2CH2—)3 —.


Suitable linear organosilicon compounds include aliphatic organosilicon compounds having linear or branched structures with one or more silicon atoms and one or more carbon atoms. Some exemplary linear organosilicon compounds include:


methylsilane, CH3—SiH3


dimethylsilane, (CH3)2—SiH2


trimethylsilane, (CH3)3—SiH


ethylsilane, CH3—CH2—SiH3


disilanomethane, SiH3—CH2—SiH3


bis(methylsilano)methane, CH3—SiH2—CH2—SiH2—CH3


1,2-disilanoethane, SiH3—CH2—CH2—SiH3


1,2-bis(methylsilano)ethane, CH3—SiH2—CH2—CH2—SiH2—CH3


2,2-disilanopropane, SiH3—C(CH3)2—SiH3


diethylsilane, (C2H5)2—SiH2


propylsilane, C3H7—SiH3


vinylmethylsilane, (CH2═CH)—SiH2—CH3


1,1,2,2-tetramethyldisilane, (CH3)2—SiH—SiH—(CH3)2


hexamethyldisilane, CH3)3—Si—Si—(CH3)3


1,1,2,2,3,3-hexamethyltrisilane, (CH3)2—SiH—Si(CH3)2—SiH—(CH3)2


1,1,2,3,3-pentamethyltrisilane, (CH3)2—SiH—SiH(CH3)—SiH—(CH3)2


1,3-bis(methylsilano)propane, CH3—SiH2—(CH2)3—SiH2—CH3


1,2-bis(dimethylsilano)ethane, (CH3)2—SiH—(CH2)2—SiH—(CH3)2 and


1,3-bis(dimethylsilano)propane, (CH3)2—SiH—(CH2)3—SiH—(CH3)2.


The silicon source compound provides silicon to the deposited layers and may be silane or tetrathoxysilane (TEOS). In certain embodiments, the non carbon-containing silicon compound is silane.


The nitrogen source provides nitrogen to the deposited layers and may be ammonia (NH3) or nitrogen gas (N2). In certain embodiments, the nitrogen source is ammonia (NH3).


Any chamber that is capable of performing plasma enhanced chemical vapor deposition may be used to deposit the carbon-doped silicon nitride layers and undoped silicon nitride provided herein. A PRODUCER® SE BLOK® chamber and a PRODUCER® SE silane chamber are two examples of chemical vapor deposition chambers that may be used. Both chambers are available from Applied Materials, Inc. of Santa Clara, Calif. An exemplary PRODUCERS® chamber is further described in U.S. Pat. No. 5,855,681, which is herein incorporated by reference.


The carbon source compound may be introduced into the chamber at a flow rate of between about 2 sccm and about 2000 sccm. The silicon source compound may be introduced into the chamber at a flow rate of between about 20 sccm and about 2000 sccm. The nitrogen source may be introduced into the chamber at a flow rate of between about 100 sccm and about 15000 sccm. Optionally, a carrier gas is introduced into the chamber at a flow rate of between about 0 sccm and about 20000 sccm. The carrier gas may be nitrogen gas or an inert gas. The flow rates are chosen such that only a small amount of carbon is incorporated into the deposited silicon nitride layer, providing a lightly carbon-doped silicon nitride layer. For example, the carbon source compound may be introduced into the chamber at a first flow rate, and the silicon source compound may be introduced into the chamber at a second flow rate such that the ratio of the second flow rate to the first flow rate is between about 50:1 and about 1:1, such as between about 10:1 and about 1:1, e.g., about 7:1. In certain embodiments, the carbon source compound is trimethylsilane, the silicon source compound is silane, the nitrogen source is ammonia, and the carrier gas is nitrogen.


The flow rates described above and throughout this application are provided with respect to a 300 mm chamber having two isolated processing regions, such as PRODUCER® SE chambers, available from Applied Materials, Inc. of Santa Clara, Calif. Thus, the flow rates experienced per each substrate processing region are half of the flow rates into the chamber.


During deposition of the carbon-doped silicon nitride layer on the substrate in the chamber, the substrate is typically maintained at a temperature between about 200° C. and about 700° C., preferably between about 480° C. and about 600° C., such as about 550° C. A RF power level of between about 20 W and about 1600 W for a 300 mm substrate is typically used in the chamber. The RF power is provided at a frequency between about 0.01 MHz and 300 MHz, preferably 13.56 MHz. The RF power is typically provided to a gas distribution assembly or “showerhead” electrode in the chamber. Alternatively or additionally, the RF power may be applied to a substrate support in the chamber. The RF power may be provided at a mixed frequency, such as at a high frequency of about 13.56 MHz and a low frequency of about 350 kHz. The RF power may be cycled or pulsed and continuous or discontinuous.


The spacing between the showerhead and substrate support during the deposition of the carbon-doped silicon nitride layer may be between about 280 mils and about 1500 mils, and the pressure in the chamber may be between about 1 Torr and about 8 Torr.



FIG. 2 is a graph showing the wet etch rate ratios of carbon-doped silicon nitride layers deposited using different amounts of trimethylsilane as the organosilicon compound according to embodiments of the invention. As shown in FIG. 2, the wet etch rate ratios decreased as the flow rate of trimethylsilane that was used to deposit the layers was increased.


FTIR analysis (not shown) of the carbon-doped silicon nitride layers indicates that the layers are very lightly carbon-doped, as Si—C and C—C bonds are not detected. However, the carbon-doped silicon nitride layers had a detectable difference (relative to silicon nitride layers deposited without an organosilicon compound) in the ratio of Si—H to Si—N bonds, as shown in FIG. 3.


In another embodiment, a silicon nitride hard mask is provided by reacting a silicon source compound and a nitrogen source in the presence of RF power to deposit a silicon nitride layer on a substrate in a chamber and then UV post-treating the silicon nitride layer to form a silicon nitride hard mask.


The silicon source compound may be silane or tetrathoxysilane (TEOS). In certain embodiments, the non carbon-containing silicon compound is silane.


The nitrogen source may be ammonia (NH3) or nitrogen gas (N2). In certain embodiments, the nitrogen source is ammonia (NH3).


The silicon source compound may be introduced into the chamber at a flow rate of between about 20 sccm and about 2000 sccm. The nitrogen source may be introduced into the chamber at a flow rate of between about 10 sccm and about 15000 sccm. Optionally, a carrier gas is introduced into the chamber at a flow rate of between about 0 sccm and about 20000 sccm. The carrier gas may be nitrogen gas or an inert gas.


During deposition of the silicon nitride layer on the substrate in the chamber, the substrate is typically maintained at a temperature between about 200-° C. and about 700° C., preferably between about 480° C. and about 600° C., such as about 550° C. A RF power level of between about 20 W and about 1600 W for a 300 mm substrate is typically used in the chamber. The RF power is provided at a frequency between about 0.01 MHz and 300 MHz, preferably 13.56 MHz. The RF power is typically provided to a gas distribution assembly or “showerhead” electrode in the chamber. Alternatively or additionally, the RF power may be applied to a substrate support in the chamber. The RF power may be provided at a mixed frequency, such as at a high frequency of about 13.56 MHz and a low frequency of about 350 kHz. The RF power may be cycled or pulsed and continuous or discontinuous.


The spacing between the showerhead and substrate support during the deposition of the silicon nitride layer may be between about 280 mils and about 1500 mils, and the pressure in the chamber may be between about 1 Torr and about 8 Torr.


After the silicon nitride layer is deposited, the layer is post-treated with UV radiation. Exemplary UV post-treatment conditions that may be used include a chamber pressure of between about 1 Torr and about 10 Torr and a substrate support temperature of between about 200° C. and about 500° C. A purge gas such as helium or argon is flowed into the chamber during the post-treatment. The UV post-treatment is typically performed for a period of time between about 1 minute and about 60 minutes, such as 30 minutes. The UV radiation may be provided by any UV source, such as mercury microwave arc lamps, e.g., a Nordson Hg lamp, pulsed xenon flash lamps, or high-efficiency UV light emitting diode arrays. The UV radiation may have a wavelength of between about 200 nm and about 400 nm, for example. The UV radiation can have a single ultraviolet wavelength or a broadband of ultraviolet wavelengths. A suitable exemplary single wavelength ultraviolet source comprises an excimer source that provides a single ultraviolet wavelength of 172 nm or 222 nm, for example. A suitable broadband source generates ultraviolet radiation having wavelengths of from about 200 to about 400 nm. Such ultraviolet sources can be obtained from Fusion Company, USA or Nordson Company, USA. Ultraviolet radiation having specific wavelengths that are generated by lamps that contain gas that radiates at specific wavelengths when electrically stimulated may be used. For example, a suitable ultraviolet lamp may comprise Xe gas, which generates ultraviolet radiation having a wavelength of 172 nm. Alternatively, the lamp may comprise other gases having different corresponding wavelengths, for example, mercury lamps that radiate at a wavelength of 243 nm, deuterium lamps that radiate at a wavelength of 140 nm, and KrCl2 lamps that radiate at a wavelength of 222 nm. Further details of UV chambers and treatment conditions that may be used are described in commonly assigned U.S. patent application Ser. No. 11/124,908, filed on May 9, 2005, which is incorporated by reference herein. The NanoCure™ chamber from Applied Materials, Inc. is an example of a commercially available chamber that may be used for UV post-treatments.


While the UV post-treatment provided above was discussed with respect to post-treating silicon nitride layers that do not comprise carbon, the UV post-treatment provided above may also be performed on the carbon-doped silicon nitride layers provided according to certain embodiments of the invention.


The following examples illustrate embodiments of the invention. The substrates in the examples were 300 mm substrates. The carbon-doped silicon nitride layers and silicon nitride layers were deposited on the substrates in PRODUCER® SE chambers.


EXAMPLE 1

A carbon-doped silicon nitride layer was deposited on a substrate at about 2 Torr, a temperature of about 550° C., and a spacing of about 480 mils. The following process gases and flow rates were used: trimethylsilane at 50 sccm; silane at 340 sccm; ammonia at 3200 sccm; and nitrogen at 4000 sccm. The trimethylsilane, silane, and ammonia were reacted in the presence of RF power applied to a showerhead electrode in the chamber at 60 W and a frequency of 13.56 MHz and to the substrate support at 50 W and a frequency of 350 kHz for plasma enhanced deposition of a carbon-doped silicon nitride layer. The carbon-doped silicon nitride layer had a wet etch rate of 2.0 Å/min in 100:1 diluted hydrofluoric acid (HF), a wet etch rate ratio (WERR) of 0.6, a wet etch rate uniformity of 4.5%, and a dry etch selectivity ratio of 1.1. The dry etch selectivity ratio is the ratio of the over etch depth of the film of interest vs. thermal nitride. Other film properties that were obtained were a within wafer thickness uniformity of 1.12%, a refractive index of 1.984, a stress of 66 MPa, a leakage current of 3.2×10−9 at 2 MV/cm, and a breakdown voltage of 6.9 MV/cm.


EXAMPLE 2

A silicon nitride layer was deposited on a substrate at about 2 Torr, a temperature of about 550° C., and a spacing of about 480 mils. The following process gases and flow rates were used: silane at 340 sccm; ammonia at 3200 sccm; and nitrogen at 4000 sccm. The silane and ammonia were reacted in the presence of RF power applied to a showerhead electrode in the chamber at 60 W and a frequency of 13.56 MHz and to the substrate support at 50 W and a frequency of 350 kHz for plasma enhanced deposition of a silicon nitride layer. The silicon nitride layer had a wet etch rate of 6.4 Å/min in 100:1 diluted hydrofluoric acid (HF), a wet etch rate uniformity of 2.6%, and a dry etch selectivity ratio of 1.25. Other film properties that were obtained were a within wafer thickness uniformity of 0.98%, a refractive index of 2.0077, a stress of −807 MPa, a leakage current of 2.0×10−9 at 2 MV/cm, and a breakdown voltage of 8.4 MV/cm.


The silicon nitride layer was then UV post-treated for 30 minutes using the following process conditions: a helium flow rate of 9 standard liters per minute (slm), a temperature of about 400° C., a pressure of about 8 Torr, and a spacing of about 800 mils. The UV treated silicon nitride layer had a wet etch rate of 5.7 Å/min in 100:1 diluted hydrofluoric acid (HF), a wet etch rate uniformity of 4.23%, and a dry etch selectivity ratio of 1.0. Other film properties that were obtained were a within wafer thickness uniformity of 1.18%, a refractive index of 2.0069, a stress of −750 MPa, a leakage current of 3.0×10−9 at 2 MV/cm, and a breakdown voltage of 7.4 MV/cm.


Returning to Example 1, it is noted that carbon-doped silicon nitride layers having a wet etch rate of 2.0 Å/min can be formed according to embodiments of the invention at a deposition temperature of 550° C. This is a significant improvement compared to a wet etch rate of 3.2 Å/min that was measured for undoped silicon nitride layers depositing in a thermal, i.e., not plasma enhanced, process at 800° C. in a furnace. The dry etch selectivity ratio of 1.1 obtained in Example 1 is comparable to the dry etch selectivity ratio of 1.0 that was measured for undoped silicon nitride layers depositing in the thermal process described above. The leakage current of the carbon-doped silicon nitride layer was similar to the leakage current of a thermally deposited, undoped silicon nitride layer, and only a small effect on the breakdown voltage of the carbon-doped silicon nitride layer was observed.


Example 2 illustrates that the UV post-treatment provided herein improved the wet etch rate of an undoped silicon nitride layer deposited in the presence of RF power in a PECVD process from 6.4 Å/min to 5.7 Å/min. The UV post-treatment also improved the dry etch selectivity ratio from 1.25 pre-treatment to 1.00 post-treatment, which is the dry etch selectivity ratio measured for undoped silicon nitride layers deposited in a thermal process at 800° C. in a furnace.


Thus, embodiments of the invention provide silicon nitride layers that are deposited using plasma-enhanced deposition and have at least comparable or improved etch rates relative to thermally deposited silicon nitride layers.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of forming a carbon-doped silicon nitride hard mask, comprising: introducing trimethylsilane into a chamber at a first flow rate;introducing silane into the chamber at a second flow rate, wherein the ratio of the second flow rate to the first flow rate is between about 50:1 and about 1:1;introducing NH3 into the chamber; andreacting the trimethylsilane, silane, and NH3 in the presence of RF power to deposit the carbon-doped silicon nitride hard mask on a substrate in the chamber.
  • 2. The method of claim 1, wherein the first flow rate is between about 2 sccm and about 2000 sccm, the second flow rate is between about 20 sccm and about 2000 sccm, and the NH3 is introduced into the chamber at a flow rate of between about 100 sccm and about 15000 sccm.
  • 3. The method of claim 1, wherein the RF power is provided at a power level of between 20 W and about 1600 W.
  • 4. The method of claim 1, wherein the substrate is maintained at a temperature between about 480° C. and about 600° C.
  • 5. The method of claim 1, further comprising patterning the carbon-doped silicon nitride hard mask and transferring the pattern in the carbon-doped silicon nitride hard mask through a layer of the substrate.
  • 6. A method of forming a carbon-doped silicon nitride hard mask, comprising: introducing a first precursor into a chamber at a first flow rate, wherein the first precursor is selected from the group consisting of methylsilane, dimethylsilane, trimethylsilane, ethylsilane, disilanomethane, bis(methylsilano)methane, 1,2-disilanoethane, 1,2-bis(methylsilano)ethane, 2,2-didilanopropane, dimethylsilane, propylesilane, vinylmethylsilane, 1,1,2,2-tetramethyldisilane, hexamethyldisilane, 1,1,2,2,3,3-hexamethyltrisilane, 1,1,2,3,3-pentamethyltrisilane, 1,3-bis (methylsilano)propane, 1,2-bis(dimethylsilane)ethane, 1,3-bis (dimethylsilane)propane, a hydrocarbon compound, and a compound comprising carbon, nitrogen, and hydrogen;introducing a second precursor into the chamber at a second flow rate, wherein the second precursor is selected from the group consisting of silane and tetraethoxysilane (TEOS);introducing a nitrogen source into the chamber; andreacting the first precursor, second precursor, and nitrogen source in the presence of radio frequency (RF) power to deposit the carbon-doped silicon nitride hard mask on a substrate in the chamber, wherein a ratio of the second flow rate to the first flow rate is between about 50:1 and about 1:1.
  • 7. The method of claim 6, wherein the second precursor is silane.
  • 8. The method of claim 7, wherein the nitrogen source is ammonia (NH3).
  • 9. The method of claim 6, wherein the second precursor is tetraethoxysilane (TEOS).
  • 10. The method of claim 6, wherein the first precursor is trimethylsilane.
  • 11. The method of claim 6, wherein the first precursor is a hydrocarbon compound or a compound comprising carbon, nitrogen, and hydrogen.
  • 12. The method of claim 6, wherein the substrate is maintained at a temperature between about 480° C. and about 600° C.
  • 13. The method of claim 6, further comprising patterning the carbon-doped silicon nitride hard mask and transferring the pattern in the carbon-doped silicon nitride hard mask through a layer of the substrate.
  • 14. The method of claim 6, wherein the ratio of the second flow rate to the first flow rate is between about 10:1 and about 1:1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 11/478,273, filed Jun. 29, 2006, now issued as U.S. Pat. No. 7,501,355, which is herein incorporated by reference.

US Referenced Citations (125)
Number Name Date Kind
4091169 Bohg et al. May 1978 A
4894352 Lane et al. Jan 1990 A
5300322 Lowden Apr 1994 A
5374570 Nasu et al. Dec 1994 A
5503875 Imai et al. Apr 1996 A
5772773 Wytman Jun 1998 A
5916365 Sherman Jun 1999 A
6079356 Umotoy et al. Jun 2000 A
6090442 Klaus et al. Jul 2000 A
6103014 Lei et al. Aug 2000 A
6153261 Xia et al. Nov 2000 A
6200893 Sneh Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271054 Ballantine et al. Aug 2001 B1
6277200 Xia et al. Aug 2001 B2
6284646 Leem et al. Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6305314 Sneh et al. Oct 2001 B1
6326658 Tsunashima et al. Dec 2001 B1
6333547 Tanaka et al. Dec 2001 B1
6342277 Sherman Jan 2002 B1
6351013 Luning et al. Feb 2002 B1
6379466 Sahin et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B2
6436824 Chooi et al. Aug 2002 B1
6451119 Sneh et al. Sep 2002 B2
6455417 Bao et al. Sep 2002 B1
6462371 Weimer et al. Oct 2002 B1
6468924 Lee et al. Oct 2002 B2
6500266 Ho et al. Dec 2002 B1
6511539 Raaijmakers et al. Jan 2003 B1
6528430 Kwan et al. Mar 2003 B2
6534395 Werkhoven et al. Mar 2003 B2
6559074 Chen et al. May 2003 B1
6562702 Yagi May 2003 B2
6566246 de Felipe et al. May 2003 B1
6566278 Harvey et al. May 2003 B1
6582522 Luo et al. Jun 2003 B2
6586343 Ho et al. Jul 2003 B1
6590251 Kang et al. Jul 2003 B2
6597003 Janos et al. Jul 2003 B2
6613637 Lee et al. Sep 2003 B1
6614181 Harvey et al. Sep 2003 B1
6616986 Sherman Sep 2003 B2
6620670 Song et al. Sep 2003 B2
6624088 Moore Sep 2003 B2
6630413 Todd Oct 2003 B2
6652924 Sherman Nov 2003 B2
6660660 Haukka et al. Dec 2003 B2
6664192 Satta et al. Dec 2003 B2
6696332 Visokay et al. Feb 2004 B2
6703708 Werkhoven et al. Mar 2004 B2
6720027 Yang et al. Apr 2004 B2
6730175 Yudovsky et al. May 2004 B2
6740605 Shiraiwa et al. May 2004 B1
6743681 Bhattacharyya Jun 2004 B2
6756085 Waldfried et al. Jun 2004 B2
6759321 Babich et al. Jul 2004 B2
6764546 Raaijmakers Jul 2004 B2
6773507 Jallepally et al. Aug 2004 B2
6777352 Tepman et al. Aug 2004 B2
6790755 Jeon Sep 2004 B2
6794215 Park et al. Sep 2004 B2
6825134 Law et al. Nov 2004 B2
6827815 Hytros et al. Dec 2004 B2
6828218 Kim et al. Dec 2004 B2
6828245 Chang Dec 2004 B2
6833310 Kim et al. Dec 2004 B2
6846516 Yang et al. Jan 2005 B2
6846743 Endo et al. Jan 2005 B2
6893985 Goodner May 2005 B2
20010030369 MacNeil et al. Oct 2001 A1
20020060363 Xi et al. May 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020164890 Kwan et al. Nov 2002 A1
20020179934 Cheng et al. Dec 2002 A1
20020179982 Cheng et al. Dec 2002 A1
20030010451 Tzu et al. Jan 2003 A1
20030015669 Janos et al. Jan 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030054115 Albano et al. Mar 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030124818 Luo et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030136520 Yudovsky et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030166318 Zheng et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030189232 Law et al. Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040033678 Arghavani et al. Feb 2004 A1
20040058090 Waldfried et al. Mar 2004 A1
20040096593 Lukas et al. May 2004 A1
20040096672 Lukas et al. May 2004 A1
20040099283 Waldfried et al. May 2004 A1
20040175501 Lukas et al. Sep 2004 A1
20040175957 Lukas et al. Sep 2004 A1
20040194701 Yadav et al. Oct 2004 A1
20040203255 Itsuki Oct 2004 A1
20040259386 Tanaka et al. Dec 2004 A1
20050064726 Reid et al. Mar 2005 A1
20050109276 Iyer et al. May 2005 A1
20050233555 Rajagopalan et al. Oct 2005 A1
20050287747 Chakravarti et al. Dec 2005 A1
20060084283 Paranjpe et al. Apr 2006 A1
20060199357 Wan et al. Sep 2006 A1
20060228903 McSwiney et al. Oct 2006 A1
20060251827 Nowak et al. Nov 2006 A1
20060286818 Wang et al. Dec 2006 A1
20060286819 Seutter et al. Dec 2006 A1
Foreign Referenced Citations (10)
Number Date Country
0835950 Apr 1998 EP
01143221 Jun 1989 JP
07300649 Nov 1995 JP
2001111000 Apr 2001 JP
WO-0016377 Mar 2000 WO
WO-0054320 Sep 2000 WO
WO-0115220 Mar 2001 WO
WO-0117692 Mar 2001 WO
WO-0129893 Apr 2001 WO
WO-0166832 Sep 2001 WO
Related Publications (1)
Number Date Country
20090137132 A1 May 2009 US
Continuations (1)
Number Date Country
Parent 11478273 Jun 2006 US
Child 12365669 US