Detecting endolumenal buckling of flexible instruments

Information

  • Patent Grant
  • 11771309
  • Patent Number
    11,771,309
  • Date Filed
    Friday, March 29, 2019
    5 years ago
  • Date Issued
    Tuesday, October 3, 2023
    7 months ago
Abstract
A robotic system is described for determining whether a flexible instrument has buckled. The robotic system comprises a medical instrument comprising an elongate body, and further comprises a first sensor placed in a first portion of the elongate body, and a controller. A command is directed to the elongate body. The first sensor generates sensor data providing information regarding a first measured status of the portion of the elongate body. The controller receives sensor data generated from the first sensor, and compare the first measured status with a first expected status expected to be caused by the command; and responsive to the first measured status deviating from the first expected status one of more or less than a first associated threshold, determine that the elongate body has buckled.
Description
BACKGROUND
1. Field of Art

This description generally relates to surgical robotics, and particularly to controlling insertion of a surgical instrument into an anatomical lumen of a patient.


2. Description of the Related Art

Robotic technologies have a range of applications. In particular, robotic arms help complete tasks that a human would normally perform. For example, factories use robotic arms to manufacture automobiles and consumer electronics products. Additionally, scientific facilities use robotic arms to automate laboratory procedures such as transporting microplates. Recently, physicians and/or surgeons have started using robotic arms to help perform surgical procedures. For instance, physicians and/or surgeons use robotic arms to control surgical instruments such as endoscopes.


An endoscope is able to perform surgical procedures in a minimally invasive manner. The endoscope can be directed to a target location of a patient, such as the lung or blood vessel. The robotic arms applies a force to insert the endoscope into an open access point of a patient, e.g., mouth, anus, urethra, to the target location within the patient lumen. As the endoscope is inserted deeper into the patient anatomy, the endoscope may brush, rub, and push against internal anatomy that may be fragile and subject to tearing if too much insertion force is applied. Moreover, during the endoscope moves to the target location, the endoscope typically may buckle in response to slack or insertion insistence in the endoscope and incidental force from coming in contact with patient anatomy. When the endoscope buckles, the physicians and/or surgeons continue to push the scope, and increase insertion force beyond normal levels in order to advance the endoscope. This creates a danger of the buckled portion of the endoscope storing up undesirable potential energy, which may be potentially unwound in an uncontrollable way within the patient lumen/cavity or damage the endoscope.


SUMMARY

The present disclosure describes a flexible instrument having one or more sensors placed on one or more portions of an elongate body of the flexible instrument to detect buckling. The one or more sensors may be of the same or different types. As commands are directed to the elongate body, sensor data captured from the one or more sensors are compared with data expected to be received in response to the commands to determine if buckling has occurred.


Other aspects include methods, components, devices, systems, improvements, methods, processes, applications, computer readable mediums, and other technologies related to any of the above.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A illustrates a surgical robotic system according to one embodiment.



FIGS. 1B-1F show various perspective views of a robotic platform coupled to the surgical robotic system shown in FIG. 1A, according to one embodiment.



FIG. 2 illustrates a command console for a surgical robotic system according to one embodiment.



FIG. 3A illustrates multiple degrees of motion of an endoscope according to one embodiment.



FIG. 3B is a top view of an endoscope according to one embodiment.



FIG. 3C is a cross sectional isometric view of the leader of the endoscope according to one embodiment.



FIG. 4A is an isometric view of an instrument device manipulator of a surgical robotic system according to one embodiment.



FIG. 4B is an exploded isometric view of the instrument device manipulator shown in FIG. 4A according to one embodiment.



FIG. 4C is an isometric view of an independent drive mechanism of the instrument device manipulator shown in FIG. 4A according to one embodiment.



FIG. 4D illustrates a conceptual diagram that shows how forces may be measured by a strain gauge of the independent drive mechanism shown in FIG. 4C according to one embodiment.



FIG. 5A is a flowchart of a process for determining movements of an endoscope from a sequence of recorded images according to one embodiment.



FIG. 5B is a diagram of electromagnetic tracking system according to one embodiment.



FIG. 6A illustrates the distal end of an endoscope within an anatomical lumen according to one embodiment.



FIG. 6B illustrates the endoscope shown in FIG. 6A in use at an operative site according to one embodiment.



FIG. 6C illustrates the endoscope shown in FIG. 6B with an aspiration needle according to one embodiment.



FIGS. 7A, and 7B illustrate an example of endolumenal buckling occurred when an endoscope is inserted into a patient's lung to an operative site according to one embodiment.



FIGS. 8A and 8B illustrate examples of sensor regions used to place sensors according to one embodiment.



FIGS. 9A-9L illustrate examples of endolumenal buckling detection based on a comparison between measured status and expected status according to one embodiment.



FIG. 10 is a flowchart of a process for detecting endolumenal buckling based on a comparison between measured status and expected status according to one embodiment.



FIGS. 11A-11H illustrate examples of endolumenal buckling detection based on before and after (or during) a command, according to one embodiment.



FIG. 12 is a flowchart of a process for detecting endolumenal buckling based on status changes indicated by sensor data according to one embodiment.



FIGS. 13A-13F are examples of detecting buckling of an endoscope outside a patient according to one embodiment.



FIG. 14 is a flowchart of a process for detecting buckling outside a patient based using transmitter-receiver pairs according to one embodiment.



FIG. 15 illustrates another example of detecting buckling of an endoscope outside a patient according to one embodiment.



FIGS. 16A-C illustrate examples of adaptive insertion force thresholds used at different locations of an endoscope with different patients according to an embodiment.



FIG. 17 is a flowchart of a process for inserting an endoscope using an adaptive insertion force threshold according to one embodiment.





The figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION

I. Robotic Flexible Instrument System Basics


The methods and apparatus disclosed herein are well suited for use with one or more endoscope components or steps as described in U.S. application Ser. No. 14/523,760, filed on Oct. 24, 2014, published as U.S. Pat. Pub. No. US 2015/0119637, entitled “SYSTEM FOR ROBOTIC-ASSISTED ENDOLUMENAL SURGERY AND RELATED METHODS,” the full disclosure of which is incorporated herein by reference. The aforementioned application describes system components, endolumenal systems, virtual rail configurations, mechanism changer interfaces, instrument device manipulators (IDMs), endoscope tool designs, control consoles, endoscopes, instrument device manipulators, endolumenal navigation, and endolumenal procedures suitable for combination in accordance with embodiments disclosed herein. The principles described in the above application are also applicable to catheter designs. Generally, although the following sections of this description describe endoscope embodiments, this is merely one example, and the description that follows can also be implemented and/or used in conjunction with catheters as well, or more generally any flexible instrument comprising an elongate body.


I.A Surgical Robotic System



FIG. 1A illustrates a surgical robotic system 100 according to one embodiment. The surgical robotic system 100 includes a base 101 coupled to one or more robotic arms, e.g., robotic arm 102. The base 101 is communicatively coupled to a command console, which is further described with reference to FIG. 2 in Section I.B. Command Console. The base 101 can be positioned such that the robotic arm 102 has access to perform a surgical procedure on a patient, while a user such as a physician may control the surgical robotic system 100 from the comfort of the command console. In some embodiments, the base 101 may be coupled to a surgical operating table or bed for supporting the patient. Though not shown in FIG. 1 for purposes of clarity, the base 101 may include subsystems such as control electronics, pneumatics, power sources, optical sources, and the like. The robotic arm 102 includes multiple arm segments 110 coupled at joints 111, which provides the robotic arm 102 multiple degrees of freedom, e.g., seven degrees of freedom corresponding to seven arm segments. The base 101 may contain a source of power 112, pneumatic pressure 113, and control and sensor electronics 114—including components such as a central processing unit, data bus, control circuitry, and memory—and related actuators such as motors to move the robotic arm 102. The electronics 114 in the base 101 may also process and transmit control signals communicated from the command console.


In some embodiments, the base 101 includes wheels 115 to transport the surgical robotic system 100. Mobility of the surgical robotic system 100 helps accommodate space constraints in a surgical operating room as well as facilitate appropriate positioning and movement of surgical equipment. Further, the mobility allows the robotic arms 102 to be configured such that the robotic arms 102 do not interfere with the patient, physician, anesthesiologist, or any other equipment. During procedures, a user may control the robotic arms 102 using control devices such as the command console.


In some embodiments, the robotic arm 102 includes set up joints that use a combination of brakes and counter-balances to maintain a position of the robotic arm 102. The counter-balances may include gas springs or coil springs. The brakes, e.g., fail safe brakes, may be include mechanical and/or electrical components. Further, the robotic arms 102 may be gravity-assisted passive support type robotic arms.


Each robotic arm 102 may be coupled to an instrument device manipulator (IDM) 117 using a mechanism changer interface (MCI) 116. The IDM 117 can be removed and replaced with a different type of IDM, for example, a first type of IDM manipulates an endoscope, while a second type of IDM manipulates a laparoscope. The MCI 116 includes connectors to transfer pneumatic pressure, electrical power, electrical signals, and optical signals from the robotic arm 102 to the IDM 117. The MCI 116 can be a set screw or base plate connector. The IDM 117 manipulates surgical instruments such as the endoscope 118 using techniques including direct drive, harmonic drive, geared drives, belts and pulleys, magnetic drives, and the like. The MCI 116 is interchangeable based on the type of IDM 117 and can be customized for a certain type of surgical procedure. The robotic arm 102 can include a joint level torque sensing and a wrist at a distal end, such as the KUKA AG® LBR5 robotic arm.


The endoscope 118 is a tubular and flexible surgical instrument that is inserted into the anatomy of a patient to capture images of the anatomy (e.g., body tissue). In particular, the endoscope 118 includes one or more imaging devices (e.g., cameras or sensors) that capture the images. The imaging devices may include one or more optical components such as an optical fiber, fiber array, or lens. The optical components move along with the tip of the endoscope 118 such that movement of the tip of the endoscope 118 results in changes to the images captured by the imaging devices. The endoscope 118 is further described with reference to FIGS. 3A-3C in Section I.C. Endoscope.


Robotic arms 102 of the surgical robotic system 100 manipulate the endoscope 118 using elongate movement members. The elongate movement members may include pull wires, also referred to as pull or push wires, cables, fibers, or flexible shafts. For example, the robotic arms 102 actuate multiple pull wires coupled to the endoscope 118 to deflect the tip of the endoscope 118. The pull wires may include both metallic and non-metallic materials such as stainless steel, Kevlar, tungsten, carbon fiber, and the like. The endoscope 118 may exhibit nonlinear behavior in response to forces applied by the elongate movement members. The nonlinear behavior may be based on stiffness and compressibility of the endoscope 118, as well as variability in slack or stiffness between different elongate movement members.


The surgical robotic system 100 includes a controller 120, for example, a computer processor. The controller 120 includes image registration module 130, and a store 135. The surgical robotic system 100 uses the image registration module 130 for determining movement of the endoscope, which is further described in Section I.C.2. Optical Flow and I.C.3. EM Registration. In some embodiments, some or all functionality of the controller 120 is performed outside the surgical robotic system 100, for example, on another computer system or server communicatively coupled to the surgical robotic system 100.



FIGS. 1B-1F show various perspective views of the surgical robotic system 100 coupled to a robotic platform 150 (or surgical bed), according to various embodiments. Specifically, FIG. 1B shows a side view of the surgical robotic system 100 with the robotic arms 102 manipulating the endoscopic 118 to insert the endoscopic inside a patient's body, and the patient is lying on the robotic platform 150. FIG. 1C shows a top view of the surgical robotic system 100 and the robotic platform 150, and the endoscopic 118 manipulated by the robotic arms is inserted inside the patient's body. FIG. 1D shows a perspective view of the surgical robotic system 100 and the robotic platform 150, and the endoscopic 118 is controlled to be positioned horizontally parallel with the robotic platform. FIG. 1E shows another perspective view of the surgical robotic system 100 and the robotic platform 150, and the endoscopic 118 is controlled to be positioned relatively perpendicular to the robotic platform. In more detail, in FIG. 1E, the angle between the horizontal surface of the robotic platform 150 and the endoscopic 118 is 75 degree. FIG. 1F shows the perspective view of the surgical robotic system 100 and the robotic platform 150 shown in FIG. 1E, and in more detail, the angle between the endoscopic 118 and the virtual line 160 connecting one end 180 of the endoscopic and the robotic arm 102 that is positioned relatively farther away from the robotic platform is 90 degree.


I.B Command Console



FIG. 2 illustrates a command console 200 for a surgical robotic system 100 according to one embodiment. The command console 200 includes a console base 201, display modules 202, e.g., monitors, and control modules, e.g., a keyboard 203 and joystick 204. In some embodiments, one or more of the command module 200 functionality may be integrated into a base 101 of the surgical robotic system 100 or another system communicatively coupled to the surgical robotic system 100. A user 205, e.g., a physician, remotely controls the surgical robotic system 100 from an ergonomic position using the command console 200.


The console base 201 may include a central processing unit, a memory unit, a data bus, and associated data communication ports that are responsible for interpreting and processing signals such as camera imagery and tracking sensor data, e.g., from the endoscope 118 shown in FIG. 1. In some embodiments, both the console base 201 and the base 101 perform signal processing for load-balancing. The console base 201 may also process commands and instructions provided by the user 205 through the control modules 203 and 204. In addition to the keyboard 203 and joystick 204 shown in FIG. 2, the control modules may include other devices, for example, computer mice, trackpads, trackballs, control pads, video game controllers, and sensors (e.g., motion sensors or cameras) that capture hand gestures and finger gestures.


The user 205 can control a surgical instrument such as the endoscope 118 using the command console 200 in a velocity mode or position control mode. In velocity mode, the user 205 directly controls pitch and yaw motion of a distal end of the endoscope 118 based on direct manual control using the control modules. For example, movement on the joystick 204 may be mapped to yaw and pitch movement in the distal end of the endoscope 118. The joystick 204 can provide haptic feedback to the user 205. For example, the joystick 204 vibrates to indicate that the endoscope 118 cannot further translate or rotate in a certain direction. The command console 200 can also provide visual feedback (e.g., pop-up messages) and/or audio feedback (e.g., beeping) to indicate that the endoscope 118 has reached maximum translation or rotation.


In position control mode, the command console 200 uses a three-dimensional (3D) map of a patient and pre-determined computer models of the patient to control a surgical instrument, e.g., the endoscope 118. The command console 200 provides control signals to robotic arms 102 of the surgical robotic system 100 to manipulate the endoscope 118 to a target location. Due to the reliance on the 3D map, position control mode requires accurate mapping of the anatomy of the patient.


In some embodiments, users 205 can manually manipulate robotic arms 102 of the surgical robotic system 100 without using the command console 200. During setup in a surgical operating room, the users 205 may move the robotic arms 102, endoscopes 118, and other surgical equipment to access a patient. The surgical robotic system 100 may rely on force feedback and inertia control from the users 205 to determine appropriate configuration of the robotic arms 102 and equipment.


The display modules 202 may include electronic monitors, virtual reality viewing devices, e.g., goggles or glasses, and/or other means of display devices. In some embodiments, the display modules 202 are integrated with the control modules, for example, as a tablet device with a touchscreen. Further, the user 205 can both view data and input commands to the surgical robotic system 100 using the integrated display modules 202 and control modules.


The display modules 202 can display 3D images using a stereoscopic device, e.g., a visor or goggle. The 3D images provide an “endo view” (i.e., endoscopic view), which is a computer 3D model illustrating the anatomy of a patient. The “endo view” provides a virtual environment of the patient's interior and an expected location of an endoscope 118 inside the patient. A user 205 compares the “endo view” model to actual images captured by a camera to help mentally orient and confirm that the endoscope 118 is in the correct—or approximately correct—location within the patient. The “endo view” provides information about anatomical structures, e.g., the shape of an intestine or colon of the patient, around the distal end of the endoscope 118. The display modules 202 can simultaneously display the 3D model and computerized tomography (CT) scans of the anatomy the around distal end of the endoscope 118. Further, the display modules 202 may overlay pre-determined optimal navigation paths of the endoscope 118 on the 3D model and CT scans.


In some embodiments, a model of the endoscope 118 is displayed with the 3D models to help indicate a status of a surgical procedure. For example, the CT scans identify a lesion in the anatomy where a biopsy may be necessary. During operation, the display modules 202 may show a reference image captured by the endoscope 118 corresponding to the current location of the endoscope 118. The display modules 202 may automatically display different views of the model of the endoscope 118 depending on user settings and a particular surgical procedure. For example, the display modules 202 show an overhead fluoroscopic view of the endoscope 118 during a navigation step as the endoscope 118 approaches an operative region of a patient.


I.C. Endoscope



FIG. 3A illustrates multiple degrees of motion of an endoscope 118 according to one embodiment. The endoscope 118 is an embodiment of the endoscope 118 shown in FIG. 1. As shown in FIG. 3A, the tip 301 of the endoscope 118 is oriented with zero deflection relative to a longitudinal axis 306 (also referred to as a roll axis 306). To capture images at different orientations of the tip 301, a surgical robotic system 100 deflects the tip 301 on a positive yaw axis 302, negative yaw axis 303, positive pitch axis 304, negative pitch axis 305, or roll axis 306. The tip 301 or body 310 of the endoscope 118 may be elongated or translated in the longitudinal axis 306, x-axis 308, or y-axis 309.


The endoscope 118 includes a reference structure 307 to calibrate the position of the endoscope 118. For example, the surgical robotic system 100 measures deflection of the endoscope 118 relative to the reference structure 307. The reference structure 307 is located on a proximal end of the endoscope 118 and may include a key, slot, or flange. The reference structure 307 is coupled to a first drive mechanism for calculating movement and is coupled to a second drive mechanism, e.g., the IDM 117, to perform a surgical procedure.



FIG. 3B is a top view of an endoscope 118 according to one embodiment. The endoscope 118 includes a leader 315 tubular component nested or partially nested inside and longitudinally-aligned with a sheath 311 tubular component, such that the leader telescopes out of the sheath. The sheath 311 includes a proximal sheath section 312 and distal sheath section 313. The leader 315 has a smaller outer diameter than the sheath 311 and includes a proximal leader section 316 and distal leader section 317. The sheath base 314 and the leader base 318 actuate the distal sheath section 313 and the distal leader section 317, respectively, for example, based on control signals from a user of a surgical robotic system 100. The sheath base 314 and the leader base 318 are, e.g., part of the IDM 117 shown in FIG. 1.


Both the sheath base 314 and the leader base 318 include drive mechanisms (e.g., the independent drive mechanism further described with reference to FIG. 4A-D in Section II.C.4. Instrument Device Manipulator) to control pull wires coupled to the sheath 311 and leader 315. For example, the sheath base 314 generates tensile loads on pull wires coupled to the sheath 311 to deflect the distal sheath section 313. Similarly, the leader base 318 generates tensile loads on pull wires coupled to the leader 315 to deflect the distal leader section 317. Both the sheath base 314 and leader base 318 may also include couplings for the routing of pneumatic pressure, electrical power, electrical signals, or optical signals from IDMs to the sheath 311 and leader 314, respectively. A pull wire may include a steel coil pipe along the length of the pull wire within the sheath 311 or the leader 315, which transfers axial compression back to the origin of the load, e.g., the sheath base 314 or the leader base 318, respectively.


The endoscope 118 can navigate the anatomy of a patient with ease due to the multiple degrees of freedom provided by pull wires coupled to the sheath 311 and the leader 315. For example, four or more pull wires may be used in either the sheath 311 and/or the leader 315, providing eight or more degrees of freedom. In other embodiments, up to three pull wires may be used, providing up to six degrees of freedom. The sheath 311 and leader 315 may be rotated up to 360 degrees along a longitudinal axis 306, providing more degrees of motion. The combination of rotational angles and multiple degrees of freedom provides a user of the surgical robotic system 100 with a user friendly and instinctive control of the endoscope 118.



FIG. 3C is a cross sectional isometric view of the leader 315 of the endoscope 118 according to one embodiment. The leader 315 includes an imaging device 349 (e.g., image sensor, still or video camera, 2D or 3D detector array, charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) camera, imaging fiber bundle, etc.), light sources 350 (e.g., white light source, laser diode, light-emitting diode (LED), optic fiber illuminator, etc.), and at least one working channel 343 for other components. For example, other components include camera wires, an insufflation device, a suction device, electrical wires, fiber optics, an ultrasound transducer, position sensing components, electromagnetic (EM) sensing components, and optical coherence tomography (OCT) sensing components. In some embodiments, the leader 315 includes a pocket hole to accommodate insertion of a component into a working channel 343.


I.C.1. Instrument Device Manipulator



FIG. 4A is an isometric view of an instrument device manipulator 117 of the surgical robotic system 100 according to one embodiment. The robotic arm 102 is coupled to the IDM 117 via an articulating interface 401. The IDM 117 is coupled to the endoscope 118. The articulating interface 401 may transfer pneumatic pressure, power signals, control signals, and feedback signals to and from the robotic arm 102 and the IDM 117. The IDM 117 may include a gear head, motor, rotary encoder, power circuits, and control circuits. A tool base 403 for receiving control signals from the IDM 117 is coupled to the proximal end of the endoscope 118. Based on the control signals, the IDM 117 manipulates the endoscope 118 by actuating output shafts, which are further described below with reference to FIG. 4B.



FIG. 4B is an exploded isometric view of the instrument device manipulator shown in FIG. 4A according to one embodiment. In FIG. 4B, the endoscopic 118 has been removed from the IDM 117 to reveal the output shafts 405, 406, 407, and 408.



FIG. 4C is an isometric view of an independent drive mechanism of the instrument device manipulator 117 shown in FIG. 4A according to one embodiment. The independent drive mechanism can tighten or loosen the pull wires 421, 422, 423, and 424 (e.g., independently from each other) of an endoscope by rotating the output shafts 405, 406, 407, and 408 of the IDM 117, respectively. Just as the output shafts 405, 406, 407, and 408 transfer force down pull wires 421, 422, 423, and 424, respectively, through angular motion, the pull wires 421, 422, 423, and 424 transfer force back to the output shafts. The IDM 117 and/or the surgical robotic system 100 can measure the transferred force using a sensor, e.g., a strain gauge further described below.



FIG. 4D illustrates a conceptual diagram that shows how forces may be measured by a strain gauge 434 of the independent drive mechanism shown in FIG. 4C according to one embodiment. A force 431 may be directed away from the output shaft 405 coupled to the motor mount 433 of the motor 437. Accordingly, the force 431 results in horizontal displacement of the motor mount 433. Further, the strain gauge 434 horizontally coupled to the motor mount 433 experiences strain in the direction of the force 431. The strain may be measured as a ratio of the horizontal displacement of the tip 435 of strain gauge 434 to the overall horizontal width 436 of the strain gauge 434.


In some embodiments, the IDM 117 includes additional sensors, e.g., inclinometers or accelerometers, to determine an orientation of the IDM 117. Based on measurements from the additional sensors and/or the strain gauge 434, the surgical robotic system 100 can calibrate readings from the strain gauge 434 to account for gravitational load effects. For example, if the IDM 117 is oriented on a horizontal side of the IDM 117, the weight of certain components of the IDM 117 may cause a strain on the motor mount 433. Accordingly, without accounting for gravitational load effects, the strain gauge 434 may measure strain that did not result from strain on the output shafts.


I.C.2. Optical Flow


As the endoscope moves, the movement is reflected in changes from one image to the next. These changes may be detected using optical flow techniques that register one image to another, from which a movement may be estimated.



FIG. 5A is a flowchart of a process for determining movements of an endoscope from a sequence of recorded images according to one embodiment. The process 500 may include different or additional steps than those described in conjunction with FIG. 5A in some embodiments, or perform steps in different orders than the order described in conjunction with FIG. 5A.


The image registration module 130 of the surgical robotic system 100 shown in FIG. 1 determines movement of an endoscope tip based on changes in properties of a sample of images (e.g., grayscale or color) captured by an image sensor coupled to the endoscope tip, e.g., the imaging device 349 of endoscope 118 shown in FIG. 3C. Because the image sensor is coupled to the endoscope 118, the image registration module 130 assumes that changes between a pair of images of the sample are due to a shift in perspective of the image sensor corresponding to a movement of the endoscope tip, e.g., translation, rotation, and/or scaling in a pitch or yaw axis.


The image registration module 130 can filter the sample of images, for example, by removing every other image of the sample to help reduce the time required to process the sample. In some embodiments, the image registration module 130 extracts the sample of images from a video captured by the image sensor. Image registration does not require the source and target images to be subsequent frames of the camera. However, the accuracy of the motion estimated by image registration tends to be greater as the time period between images decreases. Thus, the image registration module 130 generates more accurate motion estimates (e.g., nearly continuous measurement of parameters associated with movement of the endoscope) by registering many images in sequence.


To determine translation movement, the image registration module 130 receives 510 a sample of images and analyzes pairs of images of the sample using an optical flow technique. In a pair of images, the image that occurs first is referred to as the source image and the image that occurs second is referred to as the target image. The order of the first and second images is arbitrary. Thus, the direction of translation (e.g., moving forward or backward in time) is determined based on which image is considered the source and which images is considered the target. In one embodiment, each image is a two-dimensional pixel array of N pixel values corresponding to light intensities (e.g., for grayscale images), vectors representing intensities of different colors of light (e.g., for color images), etc. The image registration module 130 can transform the two-dimensional pixel array into a corresponding 1-dimensional array with N elements for processing.


The image registration module 130 generates 520 a difference array D and generates 530 a gradient array G based on the pair of images. In some embodiments, the image registration module 130 generates a difference array and gradient array for each pair of images of the sample. The difference array D is based on the difference between a pixel value of the target image and a corresponding pixel value of the source image. The gradient array G is based on a weighted average of the rate of change (e.g., derivative) of a pixel value of the target image and the rate of change of a corresponding pixel value of the source image. In embodiments with a two-dimensional (e.g., x and y dimensions) pixel array, the rate of change of a pixel in the x-dimension Gx is based on the difference between the pixel and each of two or more adjacent pixels in the x-direction. Similarly, the rate of change of the pixel in the y-dimension Gy is based on the difference between the pixel and each of two or more adjacent pixels in the y-direction. The gradient array may be a weighted average of the rates of change in the x and y dimensions, e.g., equally weighted. The image registration module 130 can decompose the 2D gradient array into two sub-arrays, Gx and Gy, corresponding to partial derivatives in the x and y directions, respectively. Accordingly, the image registration module 130 represents G as an N×2 matrix: G=(Gx Gy), where Gx and Gy each include N components.


The image registration module 130 determines a motion of the endoscope base on the difference array D and the gradient array G. The motion can be represented by a vector p. The vector p often comprises a set of model parameters, and the identities of these parameters may be varied in order to detect different properties of motion. In general, p may be modeled as satisfying a linear equation of the form Ap=v, wherein A is a matrix determined by G and the form of p, and v is a vector corresponding to D. The value of p in the above equation may be solved by methods such as least-squares fitting, in which p may be estimated as p=(ATA)−1ATv, where AT represents the transpose of A and (ATA)−1 represents the inverse of the product of AT with A. The solved p represents a motion (e.g., translation, rotation) of the endoscope. The image registration module 130 can repeat the steps 520-540 of the process 500 for multiple pairs of images of the sample. Thus, the image registration module 130 generates a set of motion vectors corresponding to each processed pair of images.


I.C.3. EM Registration



FIG. 5B is a diagram of electromagnetic tracking system according to one embodiment. The spatial sensor 550 coupled to the tip of the endoscope 118 is an EM sensor 550 that detects an electromagnetic field (EMF) generated by one or more EMF generators 600 in proximity to the endoscope 118. The strength of the detected EMF is a function of the position and/or orientation of the endoscope 118. In one embodiment, a number of EMF generators 600 are located externally to a patient. The EMF generators 600 emit EM fields that are picked up by the EM sensor 550. The different EMF generators 600 may be modulated in a number of different ways so that when their emitted fields are captured by the EM sensor 550 and are processed by the controller 120 (or any computer system external to the surgical robotic system 100), their signals are separable. Further, the EMF generators 600 may be oriented relative to each other in Cartesian space at non-zero, non-orthogonal angles so that changes in orientation of the EM sensor 550 will result in the EM sensor 550 receiving at least some signal from at least one of the EMF generators 600 at any instant in time.


The controller 120 registers EM data captured by the EM sensor 550 to an image of the patient captured with a different technique other than EM (or whatever mechanism is used to capture the alignment sensor's data), such as a computed tomography (CT) scan, to establish a reference frame for the EM data. In some embodiments, the distal end of the endoscope may be tracked by EM sensors located in the tip. The relative location within the patient may be determined by comparing a pre-operative model generated from CT data to the absolute location measured by the EM tracking system.


For example, before registering EM data with a 3D model generated from the CT data, data points derived from the EM data are initially located far from the position of the endoscope tip moving along a planned navigation path expected from the 3D model. This position difference between the EM data and the 3D model reflects the lack of registration between the EM coordinates and the 3D model coordinates. The controller 120 may determine and adjust the points on the 3D model based on correlation between the 3D model itself, image data received from the imaging device (e.g., cameras) on the tip and robot data from robot commands (e.g., provided to the robotic arms of the surgical robotic system 100). The controller 120 uses the 3D transformation between these points and collected EM data points to determine the initial registration of the EM coordinate system to the 3D model coordinate system. After registering EM data with the 3D model, the data points derived from EM data fall along the planned navigation path derived from the 3D model, and each data point among the data points reflects a measurement of the position of endoscope tip in the coordinate system of the 3D model.


I.C.4 Endoscope Procedure



FIGS. 6A-C illustrate example surgical procedures using an endoscope, e.g., endoscope 118 shown in FIG. 3A. FIG. 6A illustrates the distal end of the endoscope 118 within an anatomical lumen 602 according to one embodiment. The endoscope 118 includes a sheath 311 and navigates through the anatomical lumen 602 inside a patient toward an operative site 603 for a surgical procedure.



FIG. 6B illustrates the endoscope 118 shown in FIG. 6A in use at the operative site 603 according to one embodiment. After reaching the operative site 603, the endoscope 118 extends a distal leader section 317, longitudinally aligned with the sheath 311, in the direction marked by arrow 605. The endoscope can also articulate the distal leader section 317 to direct surgical tools toward the operative site 603.



FIG. 6C illustrates the endoscope 118 shown in FIG. 6B with an aspiration needle 1007 according to one embodiment. In cases where the operative site 603 includes a lesion for biopsy, the distal leader section 317 articulates in the direction marked by arrow 606 to convey the aspiration needle 1007 to target the lesion.


In some embodiments, the distal leader section 317 is integrated with the sheath 311 (not shown in FIG. 6). The distal leader section 317 navigates with the sheath 311 through the anatomical lumen 602 inside a patient toward an operative site 603 for a surgical procedure. After reaching the operative site 603, surgical tools can be directed to the operative site 603 via the distal leader section 317.


In some embodiments, the distal leader section 317 can be deployed through a working channel that is off-axis (neutral axis) of the sheath 311, which allows the distal leader section 317 to operate without obscuring an image sensor (not shown in FIG. 6) coupled to the end of the sheath 311 (or any other location of the endoscope 118). This arrangement allows the image sensor to capture images inside the anatomical lumen while the endoscope 118 articulates the distal leader section 317 and keeps the sheath 311 stationary.


The construction, composition, capabilities, and use of distal leader section 317, which may also be referred to as a flexure section, are disclosed in U.S. patent application Ser. No. 14/201,610, filed Mar. 7, 2014, and U.S. patent application Ser. No. 14/479,095, filed Sep. 5, 2014, the entire contents of which are incorporated by reference.


II. Endolumenal Buckling Detection


As introduced above, endolumenal buckling is a phenomenon whereby a flexible instrument (e.g., endoscope) navigated within anatomical lumens towards an operative site or a surgical site prolapses in an undesired direction within the anatomical lumen in response to an insertion force.



FIGS. 7A and 7B illustrate an example of endolumenal buckling occurring when an endoscope is inserted into a patient's lung 700 to an operative site 710. The endoscope 118 is inserted into a patient's mouth, down the patient's trachea, and into the patent's lung 700. As shown in FIG. 7A, the endoscope bends normally towards the operative site 710 located in a left upper lobe of the lung 700. The sheath 740 of the endoscope is navigated to the left main bronchus first, and then the leader 730 is navigating in tertiary bronchi towards the operative site 710. As shown in FIG. 7B, as the leader 730 is navigating towards the operative site 710, a distal leader section of the leader 730 gets stuck or blocked and therefore does not move forward. As more insertion force is applied, a portion of the endoscope buckles 720 rather than to forcing the leader further.


Improper placement of the sheath 740 relative to the operative site 710 may also result in undesirable buckling of the endoscope. For example, if the sheath 740 is inserted and advanced only to the trachea, the leader 730 will not be supported when attempting to insert into the upper lobe of patient's lung 700 in order to reach the operative site 710. In this example, the insertion force on the sheath 740 is directed “downward”, i.e., towards the lower lobes of the patient's lung 700, in the opposite direction of the upper lobes, where the operative site 710 is located. In contrast, when the sheath 740 is positioned deeper into the lung, i.e, closer to the operative site, so the sheath 740 is directed in a more “upward” position, or at least a more “neutral” position, the insertion force vector on the leader 730 is may be more aligned with the direction of the operative site 710. In the latter example, greater insertion may be achieved with lower amounts of insertion force applied to the sheath 740, in addition to a reduction in prolapsing or buckling by the leader 730.


II.A. Detecting Endolumenal Buckling within a Patient Lumen


Endolumenal buckling may occur in a variety of ways. For example, the tip of the leader of the endoscope may become stuck or nearly stuck, and a portion of the leader or sheath may bends with a great amount of curvature as the endoscope is further inserted into the patient. The bucked portion stores potential energy and generates an opposing force that attempts to push the endoscope backward.


Accordingly, there are a number of regions of interest where it may be advantageous to place sensors to detect buckling. As an example, three main regions of arbitrary “size” can be defined. A first region may cover the volume near the tip of the leader. A second region covers a portion of the leader in a range from an end of the sheath within the patient to the edge of the first region. A third region may cover the end of the sheath where the leader extends from as well as the portion of the sheath proximal to its end (also referred to as the distal sheath section).


For each sensor region, one or more sensors can be placed in any one of several locations. Examples of sensor locations include outer surface of the sheath or the leader, walls of the sheath or the leader, inner surface of sheath's lumen, inner surface of conduits of the leader or the sheath, one or more locations on pull wires of the leader or the sheath, another suitable location within the sensor region to place sensors, or some combination thereof.



FIGS. 8A-B illustrate examples of sensor regions used to place sensors according to one embodiment. FIG. 8A shows the leader 730 bends normally towards the operative site 710 at time T=T1 860A, and FIG. 8B shows the leader 730 buckles when the leader 730 is inserted more at time T=T2 860B. T1 860A and T2 860B are consecutive, or are separated with a time interval. As shown in FIGS. 8A and 8B, a region of interest (ROI) 810 is selected and zoomed in. The ROI 810 includes the leader 730 and a portion of the sheath 740. The zoomed-in ROIs without lung structures are shown at bottom of FIG. 8A and FIG. 8B, respectively. Sensor region A 820 includes the tip of the leader 730 and a small portion proximal to the tip. The sensor region B 830 covers a portion of the leader 730 in the range from the end of the sheath 740 within the patient to the tip of the leader 730. The sensor region C 840 includes the end of the sheath and a small portion of the distal sheath section.


One or more different types of sensors can be placed in each sensor region. For example, one or more position sensors, one or more force sensors, one or more shape sensors or some combination thereof can be placed in each sensor region. Examples of types of sensors include a position sensor (e.g., EM sensor, optical sensor, accelerometer, gyroscope, magnetometer, another suitable type of sensor that detects motion, or some combination thereof), a force sensor (e.g., resistance sensor, pressure sensor, strain gauge, torque sensor, friction sensor, another suitable type of sensor that detects various types of forces, or some combination thereof), an image sensor (e.g., CCD, CMOS, NMOS, another suitable type of sensor that detects and conveys the information that constitutes an image, or some combination thereof), a shape sensor (e.g., optical fiber shape sensor, another suitable type of sensor that detects boundary, outline or surface of an object, or some combination thereof).


Sensor data captured from one or more sensor regions can be compared with expected data (also referred to as historical data or reference data) to determine if buckling has occurred. The expected data describes data associated with various characteristics caused by a motion of the endoscope during a navigation. Examples of the expected data include data associated with various expected statuses caused by the motion of the endoscope, sensor data captured from one or more different sensor regions, different types of sensor data captured from the same sensor region, different types of sensor data captured from one or more different sensor regions, or some combination thereof. More specifically, expected data includes data associated with various possible states/statuses caused by the motion of the endoscope. Examples of expected statuses include expected position of the tip or distal end of the sheath, expected position of a portion of the leader or sheath, expected bending shape of the leader or sheath, expected force generated by the expected bending of the leader or sheath, expected force detected by the tip of the leader or sheath, or any other measurable or derivable quantity relating to the state of the endoscope which may include, but is not limited to, shape, distance, length, slope, gradient, curvature, angle, etc., or some combination thereof.


The sensor data (also referred to measured data) collected from the sensors in the instrument during operation indicates a measured status based on an actual motion of the corresponding sensor regions where those sensors are placed. Examples of the measured statuses include a similar list of statuses as the list of expected statuses provided in the immediately previous paragraph. For example, sensor data collected from an imaging device on the tip (also referred to as optical flow data), or sensor data collected from an EM sensor located on the tip both can indicates a measured state (e.g., a position of the tip). In some embodiments, by comparing “endo view” with the sensor data, the surgical robotic system 100 determines a measured status indicating a relative location of the tip within the patient. When the measured status indicated by the sensor data does not match or correlate to the expected status indicated by the expected data, the surgical robotics system 100 determines that endolumenal buckling has occurred. Examples are further described in Section II.A.1.


Sensor data captured from one or more sensor regions can be compared with sensor data from the same and/or different sensor regions to determine if endolumenal buckling has occurred. For example, if sensor data captured from the one or more sensor regions indicates that the corresponding sensor regions of the endoscope have undergone a first status change (e.g., a status change indicating a force change in the first region), and sensor data from a different sensor region, or a different type of sensor data from the same sensor region indicates that the corresponding sensor region or sensor types has undergone a second status change (e.g., a status change indicating a force change in the third region, or a status change indicating that the tip has not moved in the first region), the surgical robotics system 100 determines that endolumenal buckling has occurred. Examples are further described in Section II.A.2.


Generally, a status change indicates that some quantity measureable or derivable from the sensor data, which may include measured and expected sensor data, has changed one of more or less than a threshold, often measured over some period of time (e.g., T1 and T2). There are a number of different types of status changes.


A first type of status change is a position change of some portion of the endoscope being less than a position threshold, representing a range of motion where the portion of the endoscope has not moved an appreciable distance, generally in response to an endoscope insertion command. A first example of the first type status change is where the tip of the leader or the end of the sheath within the patient has not moved or has moved less than a threshold amount in response to the command. For example, when an endoscope enters into an organ with a complex tubular network (e.g., a tubular network with variable bending, or with variable diameter), a certain insertion force is applied to the endoscope in order to move the endoscope to a target location. If the status change indicates that the tip of the leader or the end of the sheath within the patient has moved less than a threshold amount in response to the command, the surgical robotics system 100 may determine that endolumenal buckling has occurred based or this status change alone, or in combination with other types of status change, as further described in Section II.A.2. A second example is where a portion of the leader or a portion of the sheath does not move to an expected position, in response to the command. A third example is where a portion of the sheath (e.g., the end of sheath, a distal sheath section) has been retracted in response to the command.


A second type of status change is a force change above a threshold in response to a command that is detected at the tip of the leader, a portion of the distal leader section, the end of sheath, a portion of the distal sheath section.


A third type of status change identifies an unwanted motion, generally bending, along the leader or the sheath, generally in response to an endoscope insertion command. One example of the third type status change include a bending change (e.g., a slope change, a gradient change, a curvature change, etc.) among two or more points along the leader or the sheath equals or exceeds a bending threshold, representing a situation where the leader or the sheath has appreciably bent in an unexpected manner in response to the command. Another example of the third type status change include a distance change between two points along the leader or the sheath less than a distance threshold, representing a situation where the distance between the two points has been shortened unexpectedly, in response to the command. Another example of the third type of status change occurs in instances such as when navigating the endoscope through a turn in the patient's endolumenal network is such that bending is expected but where that bending does not occur along the section of the endoscope where it is expected to occur. Thus, a lack of a bending change as measured by sensors along some points of the endoscope may suggest that bending has instead occurred elsewhere along the endoscope.


Although the above description describes the sensors as being associated with regions, this region association does not need to be explicitly made use of in the data processing system that uses the sensor data to determine whether buckling has occurred. In such an implementation, assignment of sensors to regions merely serves as a convenient way for distinguishing different sensors placed within the instrument, and in practice other differentiable characteristics may be used such as position along the sheath or leader, etc.


II.A.1. Endolumenal Buckling Detection Based on a Comparison Between Measured Status and Expected Status



FIGS. 9A-9L illustrate examples of endolumenal buckling detection based on a comparison between measured status and expected status according to one embodiment. As discussed above, one or more different types of sensors can be placed in the same sensor region to detect endolumenal buckling. As shown in FIGS. 9A-9B, a sensor A, such as position or force sensor, is placed in the first sensor region (e.g., tip of the endoscope). FIGS. 9A-9B show a measured position A 915A and an expected position A 915B indicated by the sensor A 910. For example, in response to an insertion command to move the endoscope to an expected position A 915B, the endoscope is inserted to a measured position A 915A. Compared with the expected position A shown in FIG. 9B, the measured position A shown in FIG. 9A is still or has moved only slightly, thereby indicating that buckling has occurred. Similarly, a measured force in FIG. 9A (e.g., a friction force generated between the tip and the lung structure) may be greater than the expected force in FIG. 9B based on the command input, thereby indicating that buckling has occurred.


As shown in FIGS. 9C-9D, a sensor C and a sensor D are placed in the second sensor region (e.g., a portion of the leader). In a first embodiment, both sensors C and D are position sensors. In FIG. 9C, in response to a command to move the second region to an expected positions C and D, the sensor C detects a measured position C and the sensor D detects a measured position D. The measured position C and measured position D are compared with the expected position C and the expected position D. The comparison indicates whether the measured positions (based on the raw data or some derivation thereof such as the distance between them) deviate from the expected positions more than a threshold (not matching) or less than a threshold (matching). If measured and expected match, the surgical robotics system determines that buckling has not occurred, and that it has occurred if they do not. Examples of derived parameters used for detecting buckling include a slope, a distance, curvature, a gradient, another suitable parameter derived from the two positions, or some combination thereof.


In a second embodiment, sensors C and D are force sensors. In response to a command to insert the endoscope having an expected forces A and B in the second region, the sensor C detects a measured force A (e.g., a first torque) and the sensor D detects a measured force B (e.g., a first torque) in FIG. 9C. The measured force A and measured force B are compared with the expected force A and the expected force B. The comparison indicates whether the measured forces (based on the raw data or some derivation thereof) deviate from the expected forces more than a threshold (not matching) or less than a threshold (matching). If the measured and the expected match forces, the surgical robotic system 100 determines that buckling has not occurred, and that it has occurred if they do not.


In a third embodiment, the sensor C and the sensor D have different sensor types. For example, the sensor C is a position sensor and the sensor D is a force sensor. In response to a command to insert the endoscope having an expected position C and an expected force B in the second region, the sensor C detects a measured position C and the sensor D detects a measured force B. The measured position C is compared with the expected position C and the measured force B is compared with the expected force B. The comparisons indicate whether the measured position C deviates from expected position C more than a threshold (not matching) or less than a threshold (matching), and whether the measured force B deviates from the expected force B more than a threshold (not matching), or less than a threshold (matching). If the measured and the expected match, the surgical robotic system determines that buckling has not occurred, and that it has occurred if they do not match.


As shown in FIGS. 9E-9F, a sensor B is placed in the third sensor region (e.g., a portion of the distal sheath section). In response to a command to move the endoscope to an expected position E in the third region, the measured position E is compared with the expected position E shown in FIG. 9F. The measured position E shown in FIG. 9E has moved backward 960 indicating that the measured position E does not match the expected position E, the surgical robotic system determines buckling has occurred. The sensor B can also be a force sensor. For example, in response to a command to move the endoscope, the endoscope has an expected force C in the third region. The sensor B detects a measured force C (e.g., a friction between the third sensor region and the leader), and the measured force C is compared with the expected force C. The measured force is greater than the expected force C in FIG. 9F indicating that the measured force C does not match the expected C, the surgical robotic system determines that buckling has occurred.


The example embodiments illustrated in this section may be variously combined with each other to provide other possible sensor setups for an endoscope, as well as buckling detection processes that use the detection of status changes in more than region at a time to identify or verify that buckling has occurred. For example, expected vs. measured data from sensor A in the first sensor region A can be combined with expected vs. measured data from sensor B in the third sensor region as shown in FIGS. 9G-H. Similar to FIGS. 9C-9D, the sensor C and the sensor D can have the same or different sensor types.


The shape of the leader (or sheath) can be detected using multiple position sensors as shown in FIGS. 9I-9J or by a shape sensing optical fiber as shown in FIGS. 9K-9L. A shape sensing optical fiber may include a segment of a fiber Bragg grating (FBG). The FBG reflects certain wavelengths of light, while transmitting other wavelengths. The surgical robotics system generates reflection spectrum data based on the wavelengths of light reflected by the FBG. The system can analyze the reflection spectrum data to generate position and orientation data of the endoscope in two or three dimensional space. In particular, as the endoscope bends, the shape sensing optical fiber embedded inside also bends. The specific wavelengths of light reflected by the FBG changes based on the shape of the shape sensing optical fiber (e.g., a “straight” endoscope is in a different shape than a “curved” endoscope). Thus, the system can determine, for example, how many degrees the endoscope has bent in one or more directions (e.g., in response to commands from the surgical robotic system) by identifying differences in the reflection spectrum data.


Endolumenal bucking is detected based on a comparison between the measured shape and the expected shape as provided by the shape sensing optical sensor or the discrete sensors. A function can be used to estimate the shape of the leader (or sheath), e.g., linear (e.g., polynomial interpolation) or non-linear interpolations (e.g., spline interpolation), curve fitting based on one more fitting functions, linear or non-linear regression analysis, or some combination thereof.


As shown in FIGS. 9K-9L, a shape sensing optical fiber 950 is placed along the leader (or sheath, not shown). For example, the shape sensing sensor can be placed in conduits with the pull wires inside the length of walls of the leader (or the sheath). The shape sensing sensor can be placed in the outside of conduits but inside the length of walls of the leader (or the sheath).



FIG. 10 is a flowchart of a general process 1000 for detecting endolumenal buckling based on a comparison between measured status and expected status according to one embodiment. A controller of a surgical robotics system, for example, the controller 120 of the surgical robotics system 100 shown in FIG. 1, uses the process 1000 to detect endolumenal buckling. The process 1000 may include different or additional steps than those described in conjunction with FIG. 10 in some embodiments, or perform steps in different orders than the order described in conjunction with FIG. 10.


The controller 120 receives 1010 sensor data generated from a first sensor placed in a portion of the endoscope located within a patient lumen, and the sensor data indicates a measured status based on an actual motion of the portion of the endoscope. The portion of the endoscope can be the three sensor regions mentioned above as shown in FIGS. 8A-8B. Examples are described in FIGS. 9A-9L. The controller 120 receives 1020 expected data describing data associated with an expected status caused by an expected motion of the endoscope. In some embodiments, the expected data is robotic command data generated from an instrument device manipulator (IDM) physically coupled to the endoscope, where the robotic command data is configured to control the IDM to cause the portion of the endoscope to move within the patient towards an expected position. The robotic command data indicates the expected status based on the expected motion. The controller 130 compares 1030 the measured status with the expected status. Responsive to the measured status deviating from the expected status more or less than an associated threshold, the controller 130 determines 1040 that the endoscope has buckled. In some embodiments, the threshold indicates a match between the measured status and the expected status.


II.A.2. Endolumenal Buckling Detection Based on Status Changes Indicated by Sensor Data


In the prior section, buckling was described as being detected based on a difference between expected vs. measured behavior. This section describes how buckling can be detected on a change in endoscope state between two points in time, generally during the carrying out of a motion command by the endoscope (e.g., insertion).



FIGS. 11A-11H illustrate examples of endolumenal buckling detection based on before and after (or during) a command, according to one embodiment. Status change detection for each sensor region is similar to the examples described in FIGS. 9A-9H, with the exception that instead of using expected data and measured data to detect status change, measured data at two different points in time is used instead.


As a first example, as shown in FIGS. 11A-B, a sensor A 1125 is placed in a sensor region A 1120 (e.g., tip of the endoscope). At T=T1, the sensor A 1125 detects a measured status A (e.g., a position A, or a force A depending on sensor type of sensor A). At T=T2, the sensor A 1125 detects a measured status B (e.g., a position B, or a force B). If the measured status at T1 and T2 triggers one of the thresholds of one of the status changes (e.g., increase in force, insufficient change of position) for sensor A located near the tip, the system determines that buckling has occurred.


Although a status change can be sufficient to detect buckling, in some instances the identification of two or more status changes helps determine or verify that buckling has occurred. These detected status changes may originate from different sensors of the same or different type in the same or different regions. For example, if another sensor with different type (e.g., a force sensor) is placed in the sensor region A 1120, if that other sensor also detects a corresponding status change, then it may be better determined or verified that buckling has occurred.


Similarly, one or more sensors, of the same sensor type, or of different sensor types can be placed in more than one sensor region to evaluate if the endoscope has undergone corresponding status changes associated with respective sensor region. By combining at least two status changes detected from different regions based on measured data at two different points in time, the system will have a better ability to detect buckling as it occurs. FIGS. 11C-11H illustrate examples of two status changes being detected in two different regions. Examples include various combinations of sensors in region A, B, and C. FIGS. 11C and 11D illustrate detecting buckling based on status changes in regions A and B. FIGS. 11E and 11F illustrate detecting buckling based on status changes in regions A and C, and FIGS. 11G and 11H illustrate detecting buckling based on status changed in regions B and C. Although not shown, buckling may be detected based on status changes in all three regions.


II.A.3 Endolumenal Buckling Detection Based on a Comparison Between Status Changes Indicated by Sensor Data and Optical Flow Data



FIG. 12 is a flowchart of a process 1200 for detecting endolumenal buckling based on status changes indicated by sensor data according to one example embodiment. The process 1200 may include different or additional steps than those described in conjunction with FIG. 12 in some embodiments, or perform steps in different orders than the order described in conjunction with FIG. 12.


A controller 120 of a surgical robotics system receives 1210 first sensor data generated from a first sensor placed in a portion of the endoscope located within a patient lumen, the first sensor data indicating motion of the portion of the endoscope. In some embodiments, the first sensor is located in one of the three sensor regions (e.g., sensor regions A-C). For example, the first sensor is located in the sensor region C. Examples of the first sensor include a position sensor (e.g., EM sensor), an image sensor, a force sensor, or a resistance sensor.


The controller 120 receives 1220 second sensor data generated from a second sensor located at a distal tip of the endoscope, the second sensor data indicating motion of the distal tip of the endoscope. In some embodiments, the second sensor is an imaging device mounted on the distal tip (e.g., the imaging device 349 on the endoscope 118 in FIG. 3C). The second sensor data (also referred to as optical flow data) is images captured the imaging device. As described in Section I.C.2., the second sensor data is used to estimate motion of the endoscope based on changes between a pair of images.


The controller 120 evaluates 1230 the first sensor data to determine whether the portion of the endoscope has undergone a first status change (e.g., any type of status change mentioned above). The controller 120 evaluates 1240 the second sensor data to determine whether the distal tip of the endoscope has undergone a second status change (e.g., the tip does not move). Responsive to determining that the first sensor data indicates that the distal portion of the endoscope has had the first status change and that the second sensor data indicates that the distal tip of the endoscope has had the second status change, the controller 120 determines 1250 the endoscope has buckled.


II.B. Detecting Buckling Outside a Patient


Buckling of the endoscope may occur outside a patient. For example, a buckling may occur along a proximal leader section between the leader base and sheath base. FIGS. 13A-13F are examples of detecting buckling of an endoscope outside a patient according to one embodiment. As shown in FIG. 13A, sensors 1340 are placed on both leader base 1310 and sheath base 1320. Two sensors constitute a transmitter-receiver pair. For example, the transmitter transmits a light beam 1345 of infrared light or visible light, and the receiver coaxial with the transmitter or adjacent to the transmitter detects the light beam 1345. The transmitter 1340 is placed opposite to the receiver 1343 as shown in FIG. 13A, or vice versa.


The transmitter 1340 is placed around an exit 1315 of the proximal leader section 1330 on the leader base 1310 at a distance 1350 between the transmitter and the exit. The corresponding receiver 1343 is placed around an entrance 1325 of the proximal leader section 1330 on the sheath base 1320 at the same distance between the receiver and the entrance 1325. The distance 1350 is within a threshold, representing a suitable distance range for detecting buckling. When buckling occurs, as shown in FIGS. 13D-13F, a buckled portion of the proximal leader section fully or partially blocks the light beam, and no light signal is detected by the receiver, or the light signal detected by the receiver is reduced accordingly.


The transmitter-receiver pair may be placed on the same side of the proximal leader section, as shown in FIG. 13C. For example, the transmitter-receiver pair is placed around the exit 1315 and a reflector 1360 is placed around the entrance 1325 to reflect a light beam transmitted from the transmitter to the corresponding receiver. As shown in FIG. 13C, the transmitter 1340 is placed at a distance A 1350 and a receiver 1343 is placed at a distance B 1355. The distances A 1350 and B 1355 are within the threshold for detecting buckling. When buckling occurs, a buckled portion of the proximal leader section fully or partially block the light beam, and no light signal is detected by the receiver, or the light signal detected by the receiver is reduced accordingly.


More than one set of transmitter-receiver pairs may be used to detect buckling at different directions. For example, multiple transmitters are placed around the exit 1315 between each transmitter and the exit 1315. The multiple transmitter-receiver pairs may be distributed to generate parallel light beams from each other, or they may be distributed to generate crossed light beams to better cover the cylindrical surface area around the endoscope. In some embodiments, the transmitted light beams are focused light, such as laser beams, how they may also be dispersed in nature and matched with receivers configured to receive the type of light emitted.



FIG. 14 is a flowchart of a process 1400 for detecting buckling outside a patient based using transmitter-receiver pairs according to one embodiment. A controller of a surgical robotics system, for example, the controller 120 of the surgical robotics system 100 shown in FIG. 1, uses the process 1400 to detect buckling. The process 1400 may include different or additional steps than those described in conjunction with FIG. 14 in some embodiments, or perform steps in different orders than the order described in conjunction with FIG. 14.


The controller 120 provides 1410 one or more commands from the surgical robotic system 100 to one or more actuators, for example, the sheath base 1320 and leader base 1310 shown in FIGS. 13A-13F, to move the endoscope 118 for a surgical procedure.


The controller 120 receives receiver data generated from at least one transmitter-receiver pair placed along a length of the endoscope outside the patient, the transmitter-receiver pair configured to transmit a light beam from a transmitter to a receiver, the receiver data indicating whether the receiver has had received light beam transmitted from the transmitter. For example, the transmitter is placed on the sheath base and the receiver is placed on the leader base as shown in FIG. 13B and FIGS. 13D-13F.


Responsive to the receiver data indicating that the light from the transmitter has been blocked, the controller 120 determines that the endoscope has buckled.


Rather than using optical sensors, in an alternate implementation one or more force sensors can be placed in a sensor region around an entrance on a sheath base to detect buckling outside the patient. FIG. 15 illustrates another example of detecting buckling of an endoscope outside a patient according to one embodiment. As shown in FIG. 15, the sensor region 1540 located around the connection 1525 of the leader base 1520 is in contact with a proximal leader section 1530. When a buckling along the proximal leader section occurs, force between the sensor and contacted portion of the proximal leader section is increased. Sensors, include strain gauges or load cells in rigid connection with the proximal leader section 1530. Examples of strain configuration are described in U.S. application Ser. No. 14/542,403, filed on Nov. 14, 2014, published as U.S. Pat. Pub. No. US 2015/0119638, entitled “INSTRUMENT DEVICE MANIPULATOR WITH TENSION SENSING APPARATUS,” the full disclosure of which is incorporated herein by reference.


III. Other Buckling Considerations


The controller 120 generates feedback for a user indicating that the endoscope has buckled and provides the feedback to users. For example, the controller 120 generates a message or a warning indicating that the endoscope has buckled. This message or warning may be provided for display on a graphical user interface (GUI), for example one or more monitors being used by the operator to control the operation. The controller 120 can also generate a recommendation to users. To do this, the controller 120 determines one or more modifications to a command to move the endoscope. The modification is based on at least in part on the sensor data. For example, the controller 120 may adjust the command to smooth the buckled portion of the endoscope. Examples of command include moving the endoscope backward, adjusting movement of the tip, adjusting insertion force provided by the IDM, another suitable command that adjusts endoscope's movements, stopping movement of the endoscope, or some combination thereof.


Although the above description is generally described with respect to examples that focus on the leader, endolumenal buckling may also occur along the sheath. Similar methods to those described above for the leader can also be applied to the sheath. For example, the first sensor region can be the tip of the endoscope or a small region around the end of the sheath. The second sensor region can be a portion of the sheath. The third sensor region may be omitted, or interpreted as another region along the sheath located further from the sheath tip than the second region.


IV. Endoscope Insertion Using Adaptive Insertion Force Threshold


As mentioned earlier, a surgical robotic system 100 uses one or more robotic arms 102 to control an endoscope 118 in a patient for surgical procedures. The robotic arms apply an insertion force to insert and advance the endoscope to an operative site. As the endoscope is advanced, the force required to further advance the endoscope will change over time depending on a variety of factors including the location of the operative site, the path taken within the patient cavity to get there, the size of the endoscope, etc. Correspondingly, depending at least on the path chosen, the amount of force that may be safely applied without injuring the patient lumen will vary. For example, within a single lung network in a patient, a single force threshold limit that may be set to avoid injury is not applicable for all lobes. Generally the upper lobes need more insertion force than the lower lobes due to bending in the endoscope to enter those areas. As such, a dynamic force insertion threshold is needed to allow operations to be performed safely while still preventing the application of a level of force above that dynamic threshold.


IV.A. Determining an Adaptive Insertion Force Threshold


As described herein, the surgical robotics system makes use of an adaptive insertion force threshold to regulate insertion force for different locations within a patient's lumen to avoid unsafe further insertion to the patient. The adaptive insertion force threshold is determined based on endoscopic data and patient data.


The endoscopic data describes data associated with the endoscope during a navigation. Examples of the endoscopic data include a friction force between a sheath and a leader, a friction force between the sheath and internal anatomy, a friction force between the leader and the internal anatomy, a current location of the endoscope, a target location of the endoscope, insertion length of the sheath, insertion length of the leader, a distance between the sheath and the leader (e.g., a difference between the insertion length of the sheath and the insertion length of the leader, a distance between a distal end of the sheath and the tip of the endoscope), motion of the leader (e.g., translation, rotation, blending, etc.), motion of the sheath (e.g., translation, rotation, blending, etc.), motion of the tip (e.g., translation, rotation, deflection, etc.), a contact interaction between the tip and a portion of a tissue within a patient (e.g., contacting force), force on the leader within the patient, force on the sheath within the patient, force on the tip, another suitable data affecting movements of the endoscope, or some combination thereof.


The endoscope data can be obtained from one or more sensors placed on the endoscope. For example, a position sensor or an image sensor on the tip of the endoscope can obtain a current location of the endoscope, and motions of the tip. A force sensor on the tip can obtain a contacting force between the tip and a portion of a tissue within a patient, or other types of force between the tip and contacting tissue (e.g., friction, pressure, etc.). One or more sensors of different sensor types (e.g., position sensor, force sensor, shape sensor, etc.) can be placed on a portion of leader or sheath to detect length, motions, or different types of force associated with the leader or the sheath. Examples are described in Section II. above.


Patient data describes associated with a patient inserted by the endoscope. Examples of patent data include medical data (e.g., medical diagnosis, medical treatment, disease, medical history, other suitable medical data affecting navigation, or some combination thereof), general information (e.g., gender, age, habit, etc.), or some combination thereof. The patient data may be stored in a database included in and accessible by the robotic surgical system.


As introduced above, the adaptive insertion force threshold is determined by a function associated with the endoscopic data and patient data. In a first embodiment, the adaptive insertion force threshold is determined based on a nonlinear function associated with a relationship among an insertion force threshold, endoscopic data and patient data. By inputting the endoscopic data and patient data, the function generates an insertion force threshold. In a second embodiment, the adaptive insertion force threshold is determined based on optimizing a metric. The metric accounts for an effect of applying an insertion force within a safety range. The safety range describes a range that the insertion force doesn't damage contacting tissues or organs within the patient. For example, an optimization function is used to find a maximum insertion force within the safety range. In a third embodiment, the insertion force threshold is determined based on a machine learning algorithm. For example, by historical endoscope data and patient data regarding prior similar operations may be passed as a training data set into a machine learning model, and various parameters for determining the insertion force threshold is generated. The parameters may be the same parameters as there are types of patient and endoscopic data introduced above, however additional or different parameters may also be used. In some embodiments, patient data can be used as constraints to functions in above embodiments. For example, if a patient has an asthma disease, the walls of airways become inflamed and oversensitive. Consequently, the force insertion threshold may be set to a lower value than it would be for a patient without asthma.


The insertion force threshold may also be determined based on a look-up table. The look-up table includes data describing a plurality of insertion force thresholds having various characteristics. For example, the look-up table describes a plurality of insertion force thresholds associated with different endoscope's locations of a patient or of a group of patients. The look-up table may be obtained by statistical analysis of various endoscope data and various patient data, machine learning applied to various endoscope data and various patient data, data mining of various endoscope data and various patient data, or by any other suitable method. Various types of look-up tables may be stored by the surgical robotics system in different embodiments. Example types of look-up tables stored by the controller include: a probability distribution of a likelihood of insertion force thresholds relative to different locations of the endoscope, clusters of insertion force thresholds having different characteristics, or other suitable information (e.g., numbers, density, classification). In one example, the look-up table is obtained from application of patients having different characteristics (e.g., gender, age) by one or more robotic surgical systems. The look-up table may identify characteristics of insertion force thresholds obtained from a patient or from a threshold number or percentage of patients. In some embodiments, a look-up table is generated for each patient. Based on patient data and endoscopic data, an insertion force threshold can be determined. In some embodiments, a look-up table is generated for different types of patients.



FIGS. 16A-C illustrate examples of adaptive insertion force thresholds used at different locations of an endoscope with different patients according to an embodiment. FIG. 16A shows two examples of inserting an endoscope to an operative site. The first example shows the endoscope is inserted into an operative site A 1610A located in the left upper lobe of lung 1600. The second example shows the endoscope is inserted into an operative site B 1610B located in the right lower lobe of the lung 1600. As shown in FIG. 16A, the two examples have different endoscope data. For example, the two examples have different locations of the endoscope, different insertion lengths of the sheath 1630, different lengths of the leader 1620, different distances between the sheath 1630 and the leader 1620, different motions of the endoscope (e.g., the leader 1620A bends more than the leader 1620B), etc. Different endoscope data results in different insertion force thresholds. For example, the first example needs more insertion force to overcome a force (e.g., torque, friction) generated due to bending. Moreover, different patients may have different insertion force thresholds at the same operative site.


As shown in FIGS. 16B-16C, the insertion force threshold to allow insertion of the endoscope while preventing injury may not be a value that can be precisely determined based on available data. Consequently, the system may instead determine an insertion force threshold with size determined based on any of the techniques described previously. An insertion force threshold region indicates a probability distribution (e.g., a cluster or density) of a likelihood of insertion force threshold being safe (i.e., not harming the patient) relative to a location of the endoscope (e.g., a location proximal to the operative site), or statistical data of insertion force threshold relative to the location of the endoscope. In some embodiments, the insertion force threshold region indicates a plurality of possible insertion force thresholds relative to a plurality of possible locations during a navigation to an operative site.



FIGS. 16B-16C illustrate region 1645A from a first patient 1640 and an insertion force threshold region 1655A from a second patient 1650, both associated with operative site A 1610A, and similar insertion force threshold regions 1645B and 1655B for the first and second patients with respect to a second operative site 1610B. These figures illustrate the possible differences between threshold regions between patients for similar operative sites and procedures, and also the variance between operative sites for similar procedures.


In some embodiments, the surgical robotic system actively determines the insertion force threshold during a navigation. In some embodiments, the insertion force thresholds may be pre-determined and tagged to different portions of a pre-operative model as part of a robotic pre-operative planning stage.


The surgical robotic system compares the insertion force with the determined insertion force threshold. The insertion force can be detected by one or more force sensors coupled to a robotic arm of the surgical robotic system. When the insertion force is approaching the insertion force threshold within a predefined range or approaches the insertion force threshold, the surgical robotic system sends a visual and/or audio feedback to a user via the system GUI. For example, a warning indicating that the insertion force is very close to the insertion force threshold, or approaches the insertion force threshold. Different colors, such as green, yellow, and red, may be used to indicate relative distance to the insertion force threshold. In other embodiments, upon reaching the insertion force threshold, the surgical robotic system generates a recommendation to the user. To do this, the surgical robotic system determines one or more modifications to a command to insert the endoscope. The modification is based on at least in part on the endoscopic data and patient data. Examples of command includes ceasing one or more insertion forces from the surgical robotic system, reducing the insertion force, another suitable command that adjusts insertion force, or some combination thereof.


IV.B. Inserting an Endoscope Using an Adaptive Insertion Force Threshold



FIG. 17 is a flowchart of a process 1700 for inserting an endoscope using an adaptive insertion force threshold according to one embodiment. A controller of a surgical robotics system, for example, the controller 120 of the surgical robotics system 100 shown in FIG. 1, uses the process 1700 to insert the endoscope using the adaptive insertion force threshold. The process 1700 may include different or additional steps than those described in conjunction with FIG. 17 in some embodiments, or perform steps in different orders than the order described in conjunction with FIG. 17.


The controller 120 receives 1710 endoscopic data from an endoscope of a robotic surgical system, the endoscope data based in part on a current location of the endoscope. For example, the controller 120 can obtain sensor data as endoscopic data from one or more sensors placed on the endoscope (e.g., sheath, leader, or tip).


The controller 120 accesses 1720 patient data associated with a patient, the patient data based in part on medical data associated with the patient. For example, the controller 120 can access a patient data database stored in the robotic surgical system. The controller 120 can obtain the patient data by accessing one or more external databases via a network.


The controller 120 determines 1730 an adaptive force insertion threshold based on the endoscopic data and the patient data. For example, the controller 120 determines the adaptive force insertion threshold based on one or more functions or models, a look-up table, or based on insertion force threshold region.


The controller 120 receives 1740 an insertion force detected by one or more force sensors coupled to a robotic arm of the robotic surgical system, the insertion force applied by the arm to the endoscope. For example, one or more force sensors can be placed on one or more arm segments of the robotic arm, one or more joints of the robotic arm, a connection between the robotic arm with an IMD, other suitable location affecting movement of the robotic arm, or some combination thereof.


The controller 120 compares 1750 the insertion force with the adaptive insertion force threshold. Responsive to the insertion force exceeding the adaptive force threshold, the controller 120 sends 1760 an endoscope command recommendation to the robotic surgical system. For example, if the insertion force exceeds the adaptive force threshold, the controller 120 sends a message or a warning indicating that the insertion force exceeds the insertion force threshold. The controller 120 determines one or more modifications to a command to adjust the insertion force.


V. Alternative Considerations


Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope defined in the appended claims.


As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. For example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context unless otherwise explicitly stated.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.

Claims
  • 1. A method for detecting buckling of an endoscope, comprising: providing one or more commands to a robotic system to move the endoscope;receiving receiver data generated by a receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has received light from a transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being a different longitudinal position than the first position, the receiver being positioned on a first instrument component configured to control the endoscope and the transmitter being positioned on a second instrument component configured to control the endoscope; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
  • 2. The method of claim 1, wherein the receiver data indicates that the light from the transmitter has been partially blocked.
  • 3. The method of claim 1, wherein the receiver data indicates that the light from the transmitter has been fully blocked.
  • 4. The method of claim 1, further comprising: determining a direction in which the endoscope has buckled.
  • 5. The method of claim 1, wherein the first instrument component is coupled to a first robotic arm of the robotic system and the second instrument component is coupled to a second robotic arm of the robotic system.
  • 6. A medical system comprising: a first instrument base configured to control motion of an endoscope and including a receiver;a second instrument base configured to control motion of the endoscope and including a transmitter;one or more processors; andmemory communicatively coupled to the one or more processors and storing executable instructions that, when executed by the one or more processors, cause the one or more processors to perform operations comprising: causing a first robotic arm to move the endoscope;receiving receiver data generated by the receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has received light from the transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being a different longitudinal position than the first position; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
  • 7. The medical system of claim 6, wherein the receiver data indicates that the light from the transmitter has been partially blocked.
  • 8. The medical system of claim 6, wherein the receiver data indicates that the light from the transmitter has been fully blocked.
  • 9. The medical system of claim 6, further comprising: the first robotic arm configured to control the endoscope and coupled to the first instrument base; anda second robotic arm configured to control the endoscope and coupled to the second instrument base.
  • 10. A medical system comprising: an endoscope;a first instrument base configured to control motion of the endoscope and including a receiver;a second instrument base configured to control motion of the endoscope and including a transmitter;a first robotic arm coupled to the first instrument base;one or more processors; andmemory communicatively coupled to the one or more processors and storing executable instructions that, when executed by the one or more processors, cause the one or more processors to perform operations comprising: receiving receiver data generated by the receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has detected light from the transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being different than the first position; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
  • 11. The medical system of claim 10, wherein the receiver data indicates that the light from the transmitter has been partially blocked.
  • 12. The medical system of claim 10, wherein the receiver data indicates that the light from the transmitter has been fully blocked.
  • 13. The medical system of claim 10, wherein the transmitter is configured to transmit a light beam.
  • 14. The medical system of claim 10, further comprising: a second robotic arm coupled to the second instrument base.
  • 15. A method for detecting buckling of an endoscope, comprising: providing one or more commands to a robotic system to move the endoscope;receiving receiver data generated by a receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has received light from a transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being a different longitudinal position than the first position, the receiver being coupled to a first robotic arm of the robotic system and the transmitter being coupled to a second robotic arm of the robotic system; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
  • 16. A medical system comprising: a first robotic arm configured to control motion of an endoscope and including a receiver;a second robotic arm configured to control motion of the endoscope and including a transmitter;one or more processors; andmemory communicatively coupled to the one or more processors and storing executable instructions that, when executed by the one or more processors, cause the one or more processors to perform operations comprising: causing the first robotic arm to move the endoscope;receiving receiver data generated by the receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has received light from the transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being a different longitudinal position than the first position; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
  • 17. A medical system comprising: an endoscope;a first robotic arm configured to control motion of the endoscope and including a receiver;a second robotic arm configured to control motion of the endoscope and including a transmitter;one or more processors; andmemory communicatively coupled to the one or more processors and storing executable instructions that, when executed by the one or more processors, cause the one or more processors to perform operations comprising: receiving receiver data generated by the receiver positioned at a first position along a longitudinal dimension of the endoscope, the receiver data indicating whether the receiver has detected light from the transmitter that is positioned at a second position along the longitudinal dimension of the endoscope, the second position being different than the first position; andresponsive to the receiver data indicating that the light from the transmitter has been blocked, determining that the endoscope has buckled.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/392,917 (U.S. Pat. No. 10,244,926), filed Dec. 28, 2016, which is incorporated herein by reference in its entirety and for all purposes. This application is also related to U.S. patent application Ser. No. 15/392,868 (U.S. Pat. No. 10,543,048), entitled “FLEXIBLE INSTRUMENT INSERTION USING AN ADAPTIVE INSERTION FORCE THRESHOLD,” filed on Dec. 28, 2016, which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (935)
Number Name Date Kind
2556601 Schofield Jun 1951 A
2566183 Forss Aug 1951 A
2623175 Finke Dec 1952 A
2730699 Gratian Jan 1956 A
2884808 Mueller May 1959 A
3294183 Riley et al. Dec 1966 A
3472083 Schnepel Oct 1969 A
3513724 Box May 1970 A
3595074 Johnson Jul 1971 A
3734207 Fishbein May 1973 A
3739923 Totsuka Jun 1973 A
3784031 Niitu et al. Jan 1974 A
3790002 Guilbaud et al. Feb 1974 A
3921536 Savage Nov 1975 A
3926386 Stahmann et al. Dec 1975 A
4115869 Putnam Sep 1978 A
4141245 Brandstetter Feb 1979 A
4241884 Lynch Dec 1980 A
4243034 Brandt Jan 1981 A
4351493 Sonnek Sep 1982 A
4357843 Peck et al. Nov 1982 A
4384493 Grunbaum May 1983 A
4507026 Lund Mar 1985 A
4530471 Inoue Jul 1985 A
4555960 King Dec 1985 A
4644237 Frushour et al. Feb 1987 A
4688555 Wardle Aug 1987 A
4745908 Wardle May 1988 A
4748969 Wardle Jun 1988 A
4784150 Voorhies et al. Nov 1988 A
4857058 W. Aug 1989 A
4907168 Boggs Mar 1990 A
4945790 Golden Aug 1990 A
5194791 Cull Mar 1993 A
5207128 Albright May 1993 A
5234428 Kaufman Aug 1993 A
5251611 Zehel et al. Oct 1993 A
5256150 Quiachon et al. Oct 1993 A
5273025 Sakiyama et al. Dec 1993 A
5277085 Tanimura et al. Jan 1994 A
5280781 Oku Jan 1994 A
5350101 Godlewski Sep 1994 A
5408263 Kikuchi Apr 1995 A
5426687 Goodall et al. Jun 1995 A
5507725 Savage et al. Apr 1996 A
5524180 Wang et al. Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5550953 Seraji Aug 1996 A
5559294 Hoium et al. Sep 1996 A
5672877 Liebig et al. Sep 1997 A
5709661 Egmond et al. Jan 1998 A
5767840 Selker Jun 1998 A
5769086 Ritchart Jun 1998 A
5779623 Bonnell Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5831614 Tognazzini et al. Nov 1998 A
5842390 Bouligny et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5899851 Koninckx May 1999 A
5921968 Lampropoulos et al. Jul 1999 A
5935075 Casscells et al. Aug 1999 A
5967934 Ishida et al. Oct 1999 A
6004016 Spector Dec 1999 A
6038467 Bliek et al. Mar 2000 A
6047080 Chen et al. Apr 2000 A
6059718 Taniguchi et al. May 2000 A
6063095 Wang et al. May 2000 A
6077219 Viebach et al. Jun 2000 A
6084371 Kress et al. Jul 2000 A
6154000 Rastegar et al. Nov 2000 A
6167292 Badano et al. Dec 2000 A
6171234 White et al. Jan 2001 B1
6185478 Koakutsu et al. Feb 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6203493 Ben-Haim Mar 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6246784 Summers et al. Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6272371 Shlomo Aug 2001 B1
6289579 Viza et al. Sep 2001 B1
6332089 Acker et al. Dec 2001 B1
6394998 Wallace et al. May 2002 B1
6401572 Provost Jun 2002 B1
6425865 Salcudean et al. Jul 2002 B1
6436107 Wang et al. Aug 2002 B1
6459926 Nowlin Oct 2002 B1
6466198 Feinstein Oct 2002 B1
6487940 Hart et al. Dec 2002 B2
6490467 Bucholz et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6553251 Lähdesmäki Apr 2003 B1
6665554 Charles et al. Dec 2003 B1
6690963 Ben-Haim et al. Feb 2004 B2
6690964 Bieger et al. Feb 2004 B2
6695818 Wollschläger Feb 2004 B2
6726675 Beyar Apr 2004 B1
6755797 Stouffer Jun 2004 B1
6786896 Madhani et al. Sep 2004 B1
6812842 Dimmer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6837846 Jaffe Jan 2005 B2
6899672 Chin et al. May 2005 B2
6926709 Bieger et al. Aug 2005 B2
7044936 Harding et al. May 2006 B2
7172580 Hruska et al. Feb 2007 B2
7180976 Wink et al. Feb 2007 B2
7197354 Sobe Mar 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7233820 Gilboa Jun 2007 B2
7276044 Ferry et al. Oct 2007 B2
7386339 Strommer et al. Jun 2008 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7615042 Beyar et al. Nov 2009 B2
7635342 Ferry et al. Dec 2009 B2
7756563 Higgins et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7766856 Ferry et al. Aug 2010 B2
7772541 Froggatt et al. Aug 2010 B2
7850642 Moll et al. Dec 2010 B2
7901348 Soper et al. Mar 2011 B2
7930065 Larkin Apr 2011 B2
7938809 Lampropoulos et al. May 2011 B2
7963288 Rosenberg et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7998020 Kidd et al. Aug 2011 B2
8052636 Moll et al. Nov 2011 B2
8155403 Tschirren et al. Apr 2012 B2
8157308 Pedersen Apr 2012 B2
8182415 Larkin et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8277417 Fedinec Oct 2012 B2
8291791 Light et al. Oct 2012 B2
8298135 Ito et al. Oct 2012 B2
8317746 Sewell et al. Nov 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8376934 Takahashi Feb 2013 B2
8394054 Wallace et al. Mar 2013 B2
8396595 Dariush Mar 2013 B2
8414505 Weitzner et al. Apr 2013 B1
8425465 Nagano et al. Apr 2013 B2
8442618 Strommer et al. May 2013 B2
8460236 Roelle et al. Jun 2013 B2
8469945 Schena Jun 2013 B2
8498691 Moll et al. Jul 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8554368 Fielding et al. Oct 2013 B2
8671817 Bogusky Mar 2014 B1
8720448 Reis et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8821376 Tolkowsky Sep 2014 B2
8827948 Romo et al. Sep 2014 B2
8858424 Hasegawa et al. Oct 2014 B2
8870815 Bhat et al. Oct 2014 B2
8894610 MacNamara et al. Nov 2014 B2
8929631 Pfister et al. Jan 2015 B2
8945095 Blumenkranz Feb 2015 B2
8961533 Stahler et al. Feb 2015 B2
8968333 Yu et al. Mar 2015 B2
8992542 Hagag et al. Mar 2015 B2
9014851 Wong et al. Apr 2015 B2
9023060 Cooper et al. May 2015 B2
9084623 Gomez et al. Jul 2015 B2
9125639 Mathis et al. Sep 2015 B2
9125690 Wohlgemuth Sep 2015 B2
9129417 Zheng Sep 2015 B2
9138129 Diolaiti Sep 2015 B2
9173713 Hart et al. Nov 2015 B2
9183354 Baker et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9199372 Henderson et al. Dec 2015 B2
9204933 Reis et al. Dec 2015 B2
9226796 Bowling Jan 2016 B2
9256940 Carelsen et al. Feb 2016 B2
9259281 Griffiths et al. Feb 2016 B2
9272416 Hourtash et al. Mar 2016 B2
9289578 Walker et al. Mar 2016 B2
9302702 Schepmann Apr 2016 B1
9314306 Yu Apr 2016 B2
9326822 Ewis et al. May 2016 B2
9345456 Tsonton et al. May 2016 B2
9358682 Ruiz Morales Jun 2016 B2
9408669 Kokish et al. Aug 2016 B2
9446177 Millman et al. Sep 2016 B2
9452018 Yu Sep 2016 B2
9452276 Duindam et al. Sep 2016 B2
9457168 Moll et al. Oct 2016 B2
9459087 Dunbar et al. Oct 2016 B2
9498601 Tanner et al. Nov 2016 B2
9504604 Alvarez Nov 2016 B2
9522034 Johnson Dec 2016 B2
9561083 Yu et al. Feb 2017 B2
9603668 Weingarten et al. Mar 2017 B2
9622827 Yu et al. Apr 2017 B2
9629595 Walker et al. Apr 2017 B2
9629682 Wallace et al. Apr 2017 B2
9636184 Lee et al. May 2017 B2
9636483 Hart et al. May 2017 B2
9668814 Kokish Jun 2017 B2
9675422 Hourtash et al. Jun 2017 B2
9710921 Wong et al. Jul 2017 B2
9713509 Schuh et al. Jul 2017 B2
9717563 Tognaccini et al. Aug 2017 B2
9726476 Ramarurthy et al. Aug 2017 B2
9727963 Mintz et al. Aug 2017 B2
9737371 Romo et al. Aug 2017 B2
9737373 Schuh Aug 2017 B2
9744335 Jiang Aug 2017 B2
9763741 Alvarez et al. Sep 2017 B2
9788910 Schuh Oct 2017 B2
9789608 Itkowitz et al. Oct 2017 B2
9802317 Watts et al. Oct 2017 B1
9844353 Walker et al. Dec 2017 B2
9844412 Bogusky et al. Dec 2017 B2
9867635 Alvarez et al. Jan 2018 B2
9918659 Chopra et al. Mar 2018 B2
9918681 Wallace et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
9949749 Noonan et al. Apr 2018 B2
9955986 Shah May 2018 B2
9962228 Schuh et al. May 2018 B2
9980785 Schuh May 2018 B2
9993313 Schuh et al. Jun 2018 B2
9993614 Pacheco et al. Jun 2018 B2
10016900 Meyer et al. Jul 2018 B1
10022192 Ummalaneni Jul 2018 B1
10046140 Kokish et al. Aug 2018 B2
10080576 Romo et al. Sep 2018 B2
10098701 Tsusaka et al. Oct 2018 B2
10123755 Walker et al. Nov 2018 B2
10130345 Wong et al. Nov 2018 B2
10136950 Schoenefeld Nov 2018 B2
10136959 Mintz et al. Nov 2018 B2
10143360 Roelle et al. Dec 2018 B2
10143526 Walker et al. Dec 2018 B2
10145747 Lin et al. Dec 2018 B1
10149720 Romo Dec 2018 B2
10159532 Ummalaneni Dec 2018 B1
10159533 Moll et al. Dec 2018 B2
10169875 Mintz et al. Jan 2019 B2
10213264 Tanner et al. Feb 2019 B2
10219874 Yu et al. Mar 2019 B2
10231793 Romo Mar 2019 B2
10231867 Alvarez et al. Mar 2019 B2
10244926 Noonan et al. Apr 2019 B2
10258285 Hauck et al. Apr 2019 B2
10278778 State et al. May 2019 B2
10285574 Landey et al. May 2019 B2
10299870 Connolly et al. May 2019 B2
10314463 Agrawal et al. Jun 2019 B2
10383765 Alvarez et al. Aug 2019 B2
10398518 Yu et al. Sep 2019 B2
10405939 Romo Sep 2019 B2
10405940 Romo Sep 2019 B2
10426559 Graetzel et al. Oct 2019 B2
10426661 Kintz Oct 2019 B2
10434660 Meyer et al. Oct 2019 B2
10454347 Covington et al. Oct 2019 B2
10464209 Ho et al. Nov 2019 B2
10470830 Hill et al. Nov 2019 B2
10478595 Kokish Nov 2019 B2
10482599 Mintz et al. Nov 2019 B2
10492741 Walker et al. Dec 2019 B2
10493239 Hart et al. Dec 2019 B2
10493241 Jiang Dec 2019 B2
10500001 Yu et al. Dec 2019 B2
10517692 Yre et al. Dec 2019 B2
10524866 Srinivasan et al. Jan 2020 B2
10524867 Kokish et al. Jan 2020 B2
10531864 Wong et al. Jan 2020 B2
10539478 Lin et al. Jan 2020 B2
10543047 Yu Jan 2020 B2
10543048 Noonan Jan 2020 B2
10555778 Ummalaneni Feb 2020 B2
10556092 Yu et al. Feb 2020 B2
10569052 Kokish et al. Feb 2020 B2
10582974 Zhao et al. Mar 2020 B2
10638953 Duindam et al. May 2020 B2
10639114 Schuh et al. May 2020 B2
10667875 DeFonzo Jun 2020 B2
10743751 Landey et al. Aug 2020 B2
10751140 Wallace et al. Aug 2020 B2
10765487 Ho et al. Sep 2020 B2
20010000040 Adams et al. Mar 2001 A1
20010021843 Bosselmann et al. Sep 2001 A1
20010039421 Heilbrun et al. Nov 2001 A1
20010042643 Krueger et al. Nov 2001 A1
20020035330 Cline Mar 2002 A1
20020045905 Gerbi et al. Apr 2002 A1
20020065455 Ben-Haim et al. May 2002 A1
20020077533 Bieger et al. Jun 2002 A1
20020098938 Milbourne et al. Jul 2002 A1
20020100254 Dharssi Aug 2002 A1
20020107573 Steinberg Aug 2002 A1
20020117017 Bernhardt et al. Aug 2002 A1
20020120188 Brock et al. Aug 2002 A1
20020161280 Chatenever et al. Oct 2002 A1
20020161355 Wollschlager Oct 2002 A1
20020161426 Iancea Oct 2002 A1
20020173878 Watanabe Nov 2002 A1
20020177789 Ferry et al. Nov 2002 A1
20030045778 Ohline Mar 2003 A1
20030056561 Butscher et al. Mar 2003 A1
20030105603 Hardesty Jun 2003 A1
20030125622 Schweikard et al. Jul 2003 A1
20030167623 Lorenz Sep 2003 A1
20030181809 Hall et al. Sep 2003 A1
20030182091 Kukuk Sep 2003 A1
20030195664 Nowlin et al. Oct 2003 A1
20030212308 Bendall Nov 2003 A1
20040015053 Bieger et al. Jan 2004 A1
20040047044 Dalton Mar 2004 A1
20040072066 Cho et al. Apr 2004 A1
20040152972 Hunter Aug 2004 A1
20040186349 Ewers et al. Sep 2004 A1
20040243147 Lipow Dec 2004 A1
20040249267 Gilboa Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040257021 Chang et al. Dec 2004 A1
20040263535 Birkenbach et al. Dec 2004 A1
20050004579 Schneider et al. Jan 2005 A1
20050027397 Niemeyer Feb 2005 A1
20050043718 Madhani Feb 2005 A1
20050060006 Pflueger et al. Mar 2005 A1
20050065400 Banik Mar 2005 A1
20050085714 Foley et al. Apr 2005 A1
20050107679 Geiger et al. May 2005 A1
20050107917 Smith et al. May 2005 A1
20050143649 Minai et al. Jun 2005 A1
20050143655 Satoh Jun 2005 A1
20050177026 Hoeg et al. Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050183532 Najafi et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050222554 Wallace et al. Oct 2005 A1
20050234293 Yamamoto Oct 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050261551 Couvillon Nov 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20060004286 Chang et al. Jan 2006 A1
20060015096 Hauck et al. Jan 2006 A1
20060025668 Peterson et al. Feb 2006 A1
20060041245 Ferry et al. Feb 2006 A1
20060041293 Mehdizadeh Feb 2006 A1
20060058643 Florent et al. Mar 2006 A1
20060079745 Viswanathan et al. Apr 2006 A1
20060084860 Geiger et al. Apr 2006 A1
20060095066 Chang et al. May 2006 A1
20060098851 Shoham et al. May 2006 A1
20060111692 Hlavka et al. May 2006 A1
20060146010 Schneider Jul 2006 A1
20060149134 Soper et al. Jul 2006 A1
20060173290 Lavallee et al. Aug 2006 A1
20060184016 Glossop Aug 2006 A1
20060200026 Wallace et al. Sep 2006 A1
20060200049 Leo et al. Sep 2006 A1
20060201688 Jenner et al. Sep 2006 A1
20060209019 Hu Sep 2006 A1
20060229587 Beyar et al. Oct 2006 A1
20060237205 Sia et al. Oct 2006 A1
20060258935 Pile-Spellman et al. Nov 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20070000498 Glynn et al. Jan 2007 A1
20070013336 Nowlin et al. Jan 2007 A1
20070032826 Schwartz Feb 2007 A1
20070043455 Viswanathan Feb 2007 A1
20070055128 Glossop Mar 2007 A1
20070055144 Neustadter et al. Mar 2007 A1
20070060879 Weitzner et al. Mar 2007 A1
20070073136 Metzger Mar 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070100201 Komiya et al. May 2007 A1
20070100254 Murakami et al. May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070119274 Devengenzo et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070135886 Maschke Jun 2007 A1
20070142971 Schena Jun 2007 A1
20070149946 Viswanathan et al. Jun 2007 A1
20070150155 Kawai Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070167743 Honda et al. Jul 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070185485 Hauck et al. Aug 2007 A1
20070191177 Nagai et al. Aug 2007 A1
20070208252 Makower Sep 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070245175 Zheng et al. Oct 2007 A1
20070249911 Simon Oct 2007 A1
20070253599 White et al. Nov 2007 A1
20070265527 Wohlgemuth Nov 2007 A1
20070269001 Maschke Nov 2007 A1
20070287992 Diolaiti Dec 2007 A1
20070293721 Gilboa Dec 2007 A1
20070299353 Harlev et al. Dec 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080027313 Shachar Jan 2008 A1
20080039255 Jinno et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080064921 Arkin et al. Mar 2008 A1
20080065103 Cooper et al. Mar 2008 A1
20080071140 Gattani et al. Mar 2008 A1
20080079421 Jensen Apr 2008 A1
20080103389 Begelman et al. May 2008 A1
20080118118 Berger May 2008 A1
20080118135 Averbuch et al. May 2008 A1
20080123921 Gielen et al. May 2008 A1
20080198870 Wiita et al. May 2008 A1
20080140087 Barbagli et al. Jun 2008 A1
20080147011 Urmey Jun 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080159653 Dunki-Jacobs et al. Jul 2008 A1
20080161681 Hauck Jul 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080183064 Chandonnet et al. Jul 2008 A1
20080183068 Carls et al. Jul 2008 A1
20080183073 Higgins et al. Jul 2008 A1
20080183188 Carls et al. Jul 2008 A1
20080201016 Finlay Aug 2008 A1
20080207997 Higgins et al. Aug 2008 A1
20080212082 Froggatt et al. Sep 2008 A1
20080214925 Wilson et al. Sep 2008 A1
20080218770 Moll et al. Sep 2008 A1
20080231221 Ogawa Sep 2008 A1
20080243064 Stahler et al. Oct 2008 A1
20080243142 Gildenberg Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249640 Vittor et al. Oct 2008 A1
20080253108 Ellenburg et al. Oct 2008 A1
20080255505 Carlson et al. Oct 2008 A1
20080262297 Gilboa et al. Oct 2008 A1
20080262301 Gibbons et al. Oct 2008 A1
20080275349 Halperin et al. Nov 2008 A1
20080287963 Rogers et al. Nov 2008 A1
20080302200 Tobey Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080312501 Hasegawa et al. Dec 2008 A1
20080312771 Sugiura Dec 2008 A1
20090005768 Sharareh Jan 2009 A1
20090030307 Govari et al. Jan 2009 A1
20090054729 Mori et al. Feb 2009 A1
20090062813 Prisco Mar 2009 A1
20090076476 Barbagli et al. Mar 2009 A1
20090076534 Shelton Mar 2009 A1
20090082722 Munger et al. Mar 2009 A1
20090098971 Ho et al. Apr 2009 A1
20090105645 Kidd et al. Apr 2009 A1
20090149867 Glozman et al. Jun 2009 A1
20090163948 Sunaoshi et al. Jun 2009 A1
20090165580 Fisher et al. Jul 2009 A1
20090171371 Nixon et al. Jul 2009 A1
20090184825 Anderson Jul 2009 A1
20090198298 Kaiser et al. Aug 2009 A1
20090227861 Ganatra et al. Sep 2009 A1
20090245600 Hoffman Oct 2009 A1
20090247944 Kirschenman et al. Oct 2009 A1
20090248036 Hoffman et al. Oct 2009 A1
20090248039 Cooper et al. Oct 2009 A1
20090256905 Tashiro Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090262109 Markowitz et al. Oct 2009 A1
20090287354 Choi Nov 2009 A1
20090292166 Ito et al. Nov 2009 A1
20090295797 Sakaguchi Dec 2009 A1
20090324161 Prisco Dec 2009 A1
20100008555 Trumer et al. Jan 2010 A1
20100030023 Yoshie Feb 2010 A1
20100030061 Canfield Feb 2010 A1
20100030115 Fujimoto Feb 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100041949 Tolkowsky Feb 2010 A1
20100054536 Huang et al. Mar 2010 A1
20100057099 Fujimoto Mar 2010 A1
20100069833 Wenderow et al. Mar 2010 A1
20100069920 Naylor et al. Mar 2010 A1
20100073150 Olson et al. Mar 2010 A1
20100076263 Tanaka Mar 2010 A1
20100113852 Sydora May 2010 A1
20100121138 Goldenberg et al. May 2010 A1
20100121139 OuYang et al. May 2010 A1
20100130923 Cleary et al. May 2010 A1
20100130987 Wenderow et al. May 2010 A1
20100160733 Gilboa Jun 2010 A1
20100161022 Tolkowsky Jun 2010 A1
20100161129 Costa et al. Jun 2010 A1
20100168562 Zhao et al. Jul 2010 A1
20100168918 Zhao Jul 2010 A1
20100175701 Reis et al. Jul 2010 A1
20100204646 Plicchi et al. Aug 2010 A1
20100204713 Ruiz Aug 2010 A1
20100210923 Li et al. Aug 2010 A1
20100225209 Goldberg et al. Sep 2010 A1
20100228266 Hourtash Sep 2010 A1
20100234856 Stoianovici et al. Sep 2010 A1
20100240989 Stoianovici et al. Sep 2010 A1
20100248177 Mangelberger et al. Sep 2010 A1
20100249506 Prisco Sep 2010 A1
20100256812 Tsusaka et al. Oct 2010 A1
20100274078 Kim et al. Oct 2010 A1
20100290530 Huang et al. Nov 2010 A1
20100292565 Meyer et al. Nov 2010 A1
20100298641 Tanaka Nov 2010 A1
20100328455 Nam et al. Dec 2010 A1
20100332033 Diolaiti et al. Dec 2010 A1
20110009880 Prisco Jan 2011 A1
20110015484 Alvarez et al. Jan 2011 A1
20110015648 Alvarez et al. Jan 2011 A1
20110015650 Choi et al. Jan 2011 A1
20110021926 Spencer Jan 2011 A1
20110028991 Ikeda et al. Feb 2011 A1
20110054303 Barrick et al. Mar 2011 A1
20110082366 Scully et al. Apr 2011 A1
20110082462 Suarez Apr 2011 A1
20110092808 Shachar et al. Apr 2011 A1
20110130718 Kidd et al. Jun 2011 A1
20110137122 Kawai Jun 2011 A1
20110147030 Blum et al. Jun 2011 A1
20110152880 Alvarez et al. Jun 2011 A1
20110153252 Govari Jun 2011 A1
20110160570 Kariv Jun 2011 A1
20110184238 Higgins et al. Jul 2011 A1
20110196199 Donhowe et al. Aug 2011 A1
20110218676 Okazaki Sep 2011 A1
20110234780 Ito et al. Sep 2011 A1
20110238082 Wenderow et al. Sep 2011 A1
20110238083 Moll et al. Sep 2011 A1
20110245665 Nentwick Oct 2011 A1
20110248987 Mitchell Oct 2011 A1
20110249016 Zhang et al. Oct 2011 A1
20110257480 Takahashi et al. Oct 2011 A1
20110258842 Dukesherer et al. Oct 2011 A1
20110261183 Ma et al. Oct 2011 A1
20110264038 Fujimoto Oct 2011 A1
20110276179 Banks et al. Nov 2011 A1
20110277775 Holop et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110306836 Ohline et al. Dec 2011 A1
20110319815 Roelle et al. Dec 2011 A1
20110319910 Roelle et al. Dec 2011 A1
20120000427 Nilsson Jan 2012 A1
20120046521 Hunter et al. Feb 2012 A1
20120046522 Naito Feb 2012 A1
20120056986 Popovic Mar 2012 A1
20120059249 Verard et al. Mar 2012 A1
20120062714 Liu et al. Mar 2012 A1
20120065481 Hunter et al. Mar 2012 A1
20120069167 Liu et al. Mar 2012 A1
20120071752 Sewell Mar 2012 A1
20120071782 Patil et al. Mar 2012 A1
20120071821 Yu Mar 2012 A1
20120071822 Romo et al. Mar 2012 A1
20120071894 Tanner et al. Mar 2012 A1
20120071895 Stahler et al. Mar 2012 A1
20120082351 Higgins et al. Apr 2012 A1
20120120305 Takahashi May 2012 A1
20120123441 Au May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120132018 Tang et al. May 2012 A1
20120143226 Belson et al. Jun 2012 A1
20120150154 Brisson et al. Jun 2012 A1
20120165656 Montag et al. Jun 2012 A1
20120186194 Schlieper Jul 2012 A1
20120191079 Moll et al. Jul 2012 A1
20120191107 Tanner et al. Jul 2012 A1
20120203168 Fujimoto Aug 2012 A1
20120209069 Popovic et al. Aug 2012 A1
20120209293 Carlson Aug 2012 A1
20120215094 Rahimian et al. Aug 2012 A1
20120219185 Hu et al. Aug 2012 A1
20120232476 Bhat et al. Sep 2012 A1
20120239012 Aurent et al. Sep 2012 A1
20120253276 Govari et al. Oct 2012 A1
20120277730 Salahieh et al. Nov 2012 A1
20120283745 Goldberg et al. Nov 2012 A1
20120283747 Popovic Nov 2012 A1
20120289777 Chopra et al. Nov 2012 A1
20120289783 Duindam et al. Nov 2012 A1
20120302869 Koyrakh et al. Nov 2012 A1
20120328077 Bouvier Dec 2012 A1
20130018306 Ludwin Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130066335 Barwinkel et al. Mar 2013 A1
20130085330 Ramamurthy et al. Apr 2013 A1
20130090530 Ramamurthy Apr 2013 A1
20130102846 Sjostrom Apr 2013 A1
20130131503 Schneider et al. May 2013 A1
20130144116 Cooper et al. Jun 2013 A1
20130165854 Sandhu et al. Jun 2013 A1
20130165945 Roelle et al. Jun 2013 A9
20130204124 Duindam et al. Aug 2013 A1
20130218005 Desai Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130231678 Wenderow et al. Sep 2013 A1
20130243153 Sra et al. Sep 2013 A1
20130246334 Ahuja et al. Sep 2013 A1
20130259315 Angot et al. Oct 2013 A1
20130303891 Chopra Nov 2013 A1
20130303892 Zhao et al. Nov 2013 A1
20130304084 Beira et al. Nov 2013 A1
20130317519 Romo et al. Nov 2013 A1
20130325030 Hourtash et al. Dec 2013 A1
20130345519 Piskun et al. Dec 2013 A1
20130345718 Crawford et al. Dec 2013 A1
20140000411 Shelton, IV et al. Jan 2014 A1
20140058406 Tsekos Feb 2014 A1
20140066944 Taylor et al. Mar 2014 A1
20140069437 Reis et al. Mar 2014 A1
20140107390 Brown et al. Apr 2014 A1
20140114180 Jain Apr 2014 A1
20140135985 Coste-Maniere et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140148808 Inkpen et al. May 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140166023 Kishi Jun 2014 A1
20140171778 Tsusaka et al. Jun 2014 A1
20140180063 Zhao et al. Jun 2014 A1
20140222019 Brudniok Aug 2014 A1
20140222207 Bowling et al. Aug 2014 A1
20140235943 Paris et al. Aug 2014 A1
20140243849 Saglam et al. Aug 2014 A1
20140257746 Dunbar et al. Sep 2014 A1
20140264081 Walker et al. Sep 2014 A1
20140275988 Walker et al. Sep 2014 A1
20140276033 Brannan et al. Sep 2014 A1
20140276233 Murphy Sep 2014 A1
20140276389 Walker Sep 2014 A1
20140276394 Wong et al. Sep 2014 A1
20140276594 Tanner et al. Sep 2014 A1
20140276935 Yu Sep 2014 A1
20140276936 Kokish et al. Sep 2014 A1
20140276937 Wong et al. Sep 2014 A1
20140277333 Lewis et al. Sep 2014 A1
20140277334 Yu et al. Sep 2014 A1
20140296655 Akhbardeh et al. Oct 2014 A1
20140296657 Izmirli et al. Oct 2014 A1
20140296870 Stern et al. Oct 2014 A1
20140309527 Namati et al. Oct 2014 A1
20140309649 Alvarez et al. Oct 2014 A1
20140316420 Ballard et al. Oct 2014 A1
20140343416 Panescu et al. Nov 2014 A1
20140343569 Turner Nov 2014 A1
20140350391 Prisco et al. Nov 2014 A1
20140357984 Wallace et al. Dec 2014 A1
20140364739 Liu et al. Dec 2014 A1
20140364870 Alvarez et al. Dec 2014 A1
20140375784 Massetti Dec 2014 A1
20140379000 Romo et al. Dec 2014 A1
20150012134 Robinson et al. Jan 2015 A1
20150051482 Liu et al. Feb 2015 A1
20150051592 Kintz Feb 2015 A1
20150054929 Ito et al. Feb 2015 A1
20150057498 Akimoto et al. Feb 2015 A1
20150073266 Brannan et al. Mar 2015 A1
20150073267 Brannan Mar 2015 A1
20150088161 Hata Mar 2015 A1
20150090063 Antermann et al. Apr 2015 A1
20150101442 Romo Apr 2015 A1
20150104284 Riedel Apr 2015 A1
20150119628 Bharat et al. Apr 2015 A1
20150119637 Alvarez et al. Apr 2015 A1
20150119638 Yu et al. Apr 2015 A1
20150133963 Barbagli May 2015 A1
20150141808 Elhawary et al. May 2015 A1
20150141858 Razavi et al. May 2015 A1
20150142013 Tanner et al. May 2015 A1
20150144514 Brennan et al. May 2015 A1
20150148600 Ashinuma et al. May 2015 A1
20150150635 Kilroy et al. Jun 2015 A1
20150164594 Romo et al. Jun 2015 A1
20150164596 Romo et al. Jun 2015 A1
20150182250 Conlon et al. Jul 2015 A1
20150202015 Elhawary Jul 2015 A1
20150223725 Engel et al. Aug 2015 A1
20150223897 Kostrzewski et al. Aug 2015 A1
20150223902 Walker et al. Aug 2015 A1
20150231364 Blanchard et al. Aug 2015 A1
20150255782 Kim et al. Sep 2015 A1
20150265087 Messick, Jr. Sep 2015 A1
20150265359 Camarillo Sep 2015 A1
20150265368 Chopra et al. Sep 2015 A1
20150265807 Park et al. Sep 2015 A1
20150275986 Cooper Oct 2015 A1
20150287192 Sasaki Oct 2015 A1
20150297133 Jouanique-Dubuis et al. Oct 2015 A1
20150297864 Kokish Oct 2015 A1
20150305650 Hunter et al. Oct 2015 A1
20150311838 Moule Oct 2015 A1
20150313503 Seibel et al. Nov 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342695 He Dec 2015 A1
20150359597 Gombert et al. Dec 2015 A1
20150374445 Gombert et al. Dec 2015 A1
20150374956 Bogusky Dec 2015 A1
20160000302 Brown et al. Jan 2016 A1
20160000414 Brown et al. Jan 2016 A1
20160000495 Elliott Jan 2016 A1
20160000512 Gombert et al. Jan 2016 A1
20160000520 Lachmanovich et al. Jan 2016 A1
20160001038 Romo et al. Jan 2016 A1
20160005168 Merlet Jan 2016 A1
20160005220 Weingarten Jan 2016 A1
20160005576 Tsukamoto Jan 2016 A1
20160008033 Hawkins et al. Jan 2016 A1
20160016319 Remirez Jan 2016 A1
20160045269 Elhawary et al. Feb 2016 A1
20160051221 Dickhans et al. Feb 2016 A1
20160066794 Klinder et al. Mar 2016 A1
20160073928 Soper Mar 2016 A1
20160075030 Takahashi Mar 2016 A1
20160081568 Kolberg Mar 2016 A1
20160100772 Ikuma Apr 2016 A1
20160111192 Suzara Apr 2016 A1
20160128992 Hudson et al. May 2016 A1
20160135908 Takahashi et al. May 2016 A1
20160157945 Madhani et al. Jun 2016 A1
20160166234 Zhang et al. Jun 2016 A1
20160183841 Duindam et al. Jun 2016 A1
20160192860 Allenby et al. Jul 2016 A1
20160199134 Brown et al. Jul 2016 A1
20160206389 Miller Jul 2016 A1
20160213432 Flexman et al. Jul 2016 A1
20160213435 Hourtash et al. Jul 2016 A1
20160228032 Walker et al. Aug 2016 A1
20160235946 Lewis et al. Aug 2016 A1
20160270865 Andey et al. Sep 2016 A1
20160278865 Capote Sep 2016 A1
20160287053 Miura Oct 2016 A1
20160287111 Jacobsen Oct 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160287346 Hyodo et al. Oct 2016 A1
20160314710 Jarc et al. Oct 2016 A1
20160331469 Hall et al. Nov 2016 A1
20160338783 Romo et al. Nov 2016 A1
20160338785 Kokish et al. Nov 2016 A1
20160338787 Popovic Nov 2016 A1
20160346038 Helgeson et al. Dec 2016 A1
20160346049 Allen et al. Dec 2016 A1
20160346924 Hasegawa Dec 2016 A1
20160354057 Hansen et al. Dec 2016 A1
20160360947 Iida et al. Dec 2016 A1
20160360949 Hyodo Dec 2016 A1
20160372743 Cho et al. Dec 2016 A1
20160374541 Agrawal et al. Dec 2016 A1
20170007337 Dan Jan 2017 A1
20170007343 Yu Jan 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170056215 Nagesh et al. Mar 2017 A1
20170065364 Schuh et al. Mar 2017 A1
20170065365 Schuh Mar 2017 A1
20170068796 Passerini et al. Mar 2017 A1
20170071684 Kokish et al. Mar 2017 A1
20170079725 Hoffman et al. Mar 2017 A1
20170079726 Hoffman et al. Mar 2017 A1
20170084027 Mintz et al. Mar 2017 A1
20170100197 Zubiate Apr 2017 A1
20170100199 Yu et al. Apr 2017 A1
20170105804 Yu Apr 2017 A1
20170106904 Hanson Apr 2017 A1
20170119413 Romo May 2017 A1
20170119481 Romo et al. May 2017 A1
20170119484 Tanner et al. May 2017 A1
20170151027 Walker et al. Jun 2017 A1
20170151028 Ogawa et al. Jun 2017 A1
20170165011 Bovay et al. Jun 2017 A1
20170165503 Hautvast et al. Jun 2017 A1
20170172673 Yu et al. Jun 2017 A1
20170189118 Chopra et al. Jul 2017 A1
20170202627 Sramek et al. Jul 2017 A1
20170209073 Sramek et al. Jul 2017 A1
20170209672 Hart et al. Jul 2017 A1
20170215808 Shimol et al. Aug 2017 A1
20170215969 Zhai et al. Aug 2017 A1
20170238807 Vertikov Aug 2017 A9
20170245854 Zemlok Aug 2017 A1
20170245885 Lenker Aug 2017 A1
20170251988 Weber et al. Sep 2017 A1
20170252540 Weitzner et al. Sep 2017 A1
20170258366 Tupin, Jr. et al. Sep 2017 A1
20170258534 Hourtash et al. Sep 2017 A1
20170280978 Yamamoto Oct 2017 A1
20170281049 Yamamoto et al. Oct 2017 A1
20170290631 Lee et al. Oct 2017 A1
20170296032 Li Oct 2017 A1
20170296202 Brown Oct 2017 A1
20170296784 Kokish Oct 2017 A1
20170303889 Grim Oct 2017 A1
20170303941 Eisner Oct 2017 A1
20170304015 Tavallaei et al. Oct 2017 A1
20170312481 Covington et al. Nov 2017 A1
20170325715 Mehendale et al. Nov 2017 A1
20170325896 Donhowe et al. Nov 2017 A1
20170325932 Hoelzle Nov 2017 A1
20170333679 Jiang Nov 2017 A1
20170340241 Yamada Nov 2017 A1
20170340396 Romo et al. Nov 2017 A1
20170348067 Krimsky Dec 2017 A1
20170360508 Germain et al. Dec 2017 A1
20170365055 Mintz et al. Dec 2017 A1
20170367782 Schuh et al. Dec 2017 A1
20180025666 Ho et al. Jan 2018 A1
20180042464 Arai et al. Feb 2018 A1
20180042686 Peine Feb 2018 A1
20180049792 Eckert et al. Feb 2018 A1
20180055576 Koyrakh et al. Mar 2018 A1
20180055582 Krimsky Mar 2018 A1
20180056044 Choi et al. Mar 2018 A1
20180064498 Kapadia Mar 2018 A1
20180098690 Iwaki Apr 2018 A1
20180104820 Troy et al. Apr 2018 A1
20180116735 Tierney et al. May 2018 A1
20180177383 Noonan et al. Jun 2018 A1
20180177556 Noonan Jun 2018 A1
20180177561 Mintz et al. Jun 2018 A1
20180206927 Prisco et al. Jul 2018 A1
20180214011 Graetzel et al. Aug 2018 A1
20180217734 Koenig et al. Aug 2018 A1
20180221038 Noonan et al. Aug 2018 A1
20180221039 Shah Aug 2018 A1
20180240237 Donhowe et al. Aug 2018 A1
20180243048 Shan et al. Aug 2018 A1
20180250083 Schuh et al. Sep 2018 A1
20180250085 Simi Sep 2018 A1
20180271604 Grout et al. Sep 2018 A1
20180271616 Schuh et al. Sep 2018 A1
20180279852 Rafii-Tari et al. Oct 2018 A1
20180280660 Landey et al. Oct 2018 A1
20180286108 Hirakawa Oct 2018 A1
20180289243 Landey et al. Oct 2018 A1
20180289431 Draper et al. Oct 2018 A1
20180296299 Iceman Oct 2018 A1
20180303566 Soundararajan et al. Oct 2018 A1
20180308247 Gupta Oct 2018 A1
20180325499 Landey et al. Nov 2018 A1
20180326181 Kokish et al. Nov 2018 A1
20180333044 Jenkins Nov 2018 A1
20180360435 Romo Dec 2018 A1
20180368920 Ummalaneni Dec 2018 A1
20190000559 Berman et al. Jan 2019 A1
20190000560 Berman et al. Jan 2019 A1
20190000566 Graetzel et al. Jan 2019 A1
20190000568 Connolly et al. Jan 2019 A1
20190000576 Mintz et al. Jan 2019 A1
20190046814 Senden et al. Feb 2019 A1
20190066314 Abhari et al. Feb 2019 A1
20190083183 Moll et al. Mar 2019 A1
20190086349 Nelson et al. Mar 2019 A1
20190105776 Ho et al. Apr 2019 A1
20190105785 Meyer Apr 2019 A1
20190107454 Lin Apr 2019 A1
20190110839 Rafii-Tari et al. Apr 2019 A1
20190110843 Ummalaneni Apr 2019 A1
20190121361 Afrouzi et al. Apr 2019 A1
20190125164 Roelle et al. May 2019 A1
20190142537 Covington May 2019 A1
20190151148 Alvarez et al. May 2019 A1
20190167366 Ummalaneni et al. Jun 2019 A1
20190167367 Walker et al. Jun 2019 A1
20190175009 Mintz et al. Jun 2019 A1
20190175062 Rafii-Tari et al. Jun 2019 A1
20190175287 Hill Jun 2019 A1
20190175799 Hsu et al. Jun 2019 A1
20190183585 Rafii-Tari et al. Jun 2019 A1
20190183587 Rafii-Tari et al. Jun 2019 A1
20190209252 Walker et al. Jul 2019 A1
20190216548 Ummalaneni Jul 2019 A1
20190216550 Eyre Jul 2019 A1
20190216576 Eyre et al. Jul 2019 A1
20190223967 Abbott et al. Jul 2019 A1
20190223974 Romo et al. Jul 2019 A1
20190228525 Mintz et al. Jul 2019 A1
20190228528 Mintz et al. Jul 2019 A1
20190231458 DiMaio et al. Aug 2019 A1
20190239723 Duindam Aug 2019 A1
20190246882 Graetzel et al. Aug 2019 A1
20190262086 Connolly et al. Aug 2019 A1
20190269468 Hsu et al. Sep 2019 A1
20190274764 Romo Sep 2019 A1
20190287673 Michihata et al. Sep 2019 A1
20190290109 Agrawal et al. Sep 2019 A1
20190298160 Ummalaneni et al. Oct 2019 A1
20190298460 Al-Jadda et al. Oct 2019 A1
20190298465 Chin et al. Oct 2019 A1
20190328213 Landey et al. Oct 2019 A1
20190336238 Yu et al. Nov 2019 A1
20190365201 Noonan et al. Dec 2019 A1
20190365209 Ye et al. Dec 2019 A1
20190365479 Rafii-Tari Dec 2019 A1
20190365486 Srinivasan et al. Dec 2019 A1
20190374297 Wallace et al. Dec 2019 A1
20190375383 Auer Dec 2019 A1
20190380787 Ye et al. Dec 2019 A1
20190380797 Yu et al. Dec 2019 A1
20200000530 DeFonzo et al. Jan 2020 A1
20200000533 Schuh et al. Jan 2020 A1
20200008874 Barbagli et al. Jan 2020 A1
20200022767 Hill et al. Jan 2020 A1
20200038123 Graetzel Feb 2020 A1
20200039086 Meyer et al. Feb 2020 A1
20200046434 Graetzel et al. Feb 2020 A1
20200054405 Schuh et al. Feb 2020 A1
20200054408 Schuh et al. Feb 2020 A1
20200060516 Baez, Jr. Feb 2020 A1
20200078103 Duindam et al. Mar 2020 A1
20200086087 Hart et al. Mar 2020 A1
20200091799 Covington et al. Mar 2020 A1
20200093549 Chin et al. Mar 2020 A1
20200093554 Schuh et al. Mar 2020 A1
20200100845 Julian Apr 2020 A1
20200100853 Ho et al. Apr 2020 A1
20200100855 Leparmentier et al. Apr 2020 A1
20200101264 Jiang Apr 2020 A1
20200107894 Wallace et al. Apr 2020 A1
20200121502 Kintz Apr 2020 A1
20200129252 Kokish et al. Apr 2020 A1
20200146769 Eyre et al. May 2020 A1
20200155084 Walker et al. May 2020 A1
20200155245 Yu May 2020 A1
20200155801 Kokish et al. May 2020 A1
20200170630 Wong et al. Jun 2020 A1
20200170720 Ummalaneni Jun 2020 A1
20200188043 Yu et al. Jun 2020 A1
20200197112 Chin et al. Jun 2020 A1
20200206472 Ma et al. Jul 2020 A1
20200217733 Lin et al. Jul 2020 A1
20200222134 Schuh et al. Jul 2020 A1
20200230360 Yu et al. Jul 2020 A1
20200237458 DeFonzo et al. Jul 2020 A1
20200246591 Bogusky Aug 2020 A1
20200261172 Romo et al. Aug 2020 A1
20200268459 Noonan Aug 2020 A1
20200268460 Tse et al. Aug 2020 A1
Foreign Referenced Citations (94)
Number Date Country
1364275 Aug 2002 CN
1511249 Jul 2004 CN
1846181 Oct 2006 CN
1857877 Nov 2006 CN
101147676 Mar 2008 CN
101161426 Apr 2008 CN
101222882 Jul 2008 CN
101325920 Dec 2008 CN
101500470 Aug 2009 CN
102015759 Apr 2011 CN
201884596 Jun 2011 CN
102316817 Jan 2012 CN
102327118 Jan 2012 CN
102341055 Feb 2012 CN
102458295 May 2012 CN
102665590 Sep 2012 CN
102711586 Oct 2012 CN
102834043 Dec 2012 CN
102973317 Mar 2013 CN
103037799 Apr 2013 CN
103533909 Jan 2014 CN
103565529 Feb 2014 CN
103735313 Apr 2014 CN
103767659 May 2014 CN
103930063 Jul 2014 CN
104684502 Jun 2015 CN
105030331 Nov 2015 CN
105147393 Dec 2015 CN
105559850 May 2016 CN
105559886 May 2016 CN
105611881 May 2016 CN
105611881 May 2016 CN
105643642 Jun 2016 CN
106821498 Jun 2017 CN
107028659 Aug 2017 CN
104931059 Sep 2018 CN
19649082 Jan 1998 DE
102004020465 Sep 2005 DE
102013100605 Jul 2014 DE
1 250 986 Oct 2002 EP
1442720 Aug 2004 EP
1491139 Dec 2004 EP
1 566 150 Aug 2005 EP
1 800 593 Jun 2007 EP
2 158 834 Mar 2010 EP
2 392 435 Dec 2011 EP
2229892 Jan 2012 EP
2567670 Mar 2013 EP
3 025 630 Jun 2016 EP
3562423 Nov 2019 EP
2005205198 Aug 2005 JP
2007136173 Jun 2007 JP
2007527296 Sep 2007 JP
2008-528130 Jul 2008 JP
2009-509654 Mar 2009 JP
2009139187 Jun 2009 JP
2009-524530 Jul 2009 JP
2010046384 Mar 2010 JP
2011-088260 May 2011 JP
2013-510662 Mar 2013 JP
2014134530 Jul 2014 JP
2015505507 Feb 2015 JP
2019529044 Oct 2019 JP
1020140009359 Jan 2014 KR
2569699 Nov 2015 RU
WO 0156457 Aug 2001 WO
02074178 Sep 2002 WO
WO 04029782 Apr 2004 WO
2005087128 Sep 2005 WO
WO 05087128 Sep 2005 WO
WO 06122061 Nov 2006 WO
2007146987 Dec 2007 WO
2009092059 Jul 2009 WO
2009097461 Aug 2009 WO
WO 09120940 Oct 2009 WO
2011005335 Jan 2011 WO
WO 11132409 Oct 2011 WO
2012037506 Mar 2012 WO
WO 12044334 Apr 2012 WO
2013116140 Aug 2013 WO
2013179600 Dec 2013 WO
WO 14114551 Jul 2014 WO
2015061756 Apr 2015 WO
2015089013 Jun 2015 WO
2015127231 Aug 2015 WO
WO 15142957 Sep 2015 WO
2017049163 Mar 2017 WO
WO 17048194 Mar 2017 WO
2017059412 Apr 2017 WO
2017066108 Apr 2017 WO
2017151993 Sep 2017 WO
2017167754 Oct 2017 WO
2018057633 Mar 2018 WO
2018125917 Jul 2018 WO
Non-Patent Literature Citations (70)
Entry
Lawton et al., 1999, Ribbons and groups: A thin rod theory for catheters and filaments, J. Phys. A., 1999, 32:1709-1735.
Kukuk, Oct. 5, 2001, TBNA-protocols: Guiding TransBronchial Needle Aspirations Without a Computer in the Operating Room, MICCAI 2001, 2208:997-1006.
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12.
International Search Report and Written Opinion in application No. PCT/US2017/068535, dated May 18, 2018.
Blankenstein, Jun. 2008, Dynamic Registration and High Speed Visual Servoing in Robot-Assisted Surgery, Katholieke Universiteit Leuven, Leuven, Belgium.
CN office action for Appl. No. 201780021756.1, dated Mar. 1, 2021, 7 pages.
CN 3rd Office Action for appl No. 201780021723, dated Aug. 31, 2021, 4 pages.
Al-Ahmad et al., dated 2005, Early experience with a computerized robotically controlled catheter system, Journal of Interventional Cardiac Electrophysiology, 12:199-202, 4 pages.
Ciuti et al., 2012, Intra-operative monocular 3D reconstruction for image guided navigation in active locomotion capsule endoscopy.“” Biomedical Robotics And Biomechatronics (Biorob), 4th IEEE Ras & Embs International Conference On IEEE, 7 pages.
EP search report for U.S. Appl. No. 18/889,789, dated Jun. 1, 2021, 2 pages.
EP written opinion for U.S. Appl. No. 18/889,789, dated Jun. 1, 2021, 4 pages.
Fallavollita et al., 2010, Acquiring multiview C-arm images to assist cardiac ablation procedures, EURASIP Journal on Image and Video Processing, vol. 2010, Article ID 871408, 10 pages.
Final Rejection for U.S. Appl. No. 16/219,766, dated Dec. 22, 2021, 6 pages.
Final Rejection for U.S. Appl. No. 16/219,766, dated Nov. 8, 2019, 8 pages.
Gutierrez et al., Mar. 2008, A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system, Med. Phys, 35(3):997-1007, 11 pages.
Haigron et al., 2004, Depth-map-based scene analysis for active navigation in virtual angioscopy, IEEE Transactions on Medical Imaging, 23(11):1380-1390, 11 pages.
Hansen Medical, Inc. 2005, System Overview, product brochure, dated as available at http://hansenmedical.com/system.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine), 2 pages.
Hansen Medical, Inc. Bibliography, product brochure, dated as available at http://hansenmedical.com/bibliography.aspx on Jul. 14, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine), 1 page.
Hansen Medical, Inc. dated 2007, Introducing the Sensei Robotic Catheter System, product brochure, 10 pages.
Hansen Medical, Inc. dated 2009, Sensei X Robotic Catheter System, product brochure, 5 pages.
Hansen Medical, Inc. Technology Advantages, product brochure, dated as available at http://hansenmedical.com/ advantages.aspx on Jul. 13, 2006 (accessed Jun. 25, 2019 using the internet archive way back machine), 1 page.
International Search Report and Written Opinion dated Feb. 26, 2019 in application No. PCT/US2018/065530, 13 pages.
International Search Report and Written Opinion in application No. PCT/US2017/068535, dated Jul. 5, 2018, 15 pages.
JP Office Action for appl No. 2019534667, dated Dec. 3, 2021, 13 pages.
Kiraly et al., 2002, Three-dimensional Human Airway Segmentation Methods for Clinical Virtual Bronchoscopy, Acad Radio, 9:1153-1168, 16 pages.
Kiraly et al., Sep. 2004, Three-dimensional path planning for virtual bronchoscopy, IEEE Transactions on Medical Imaging, 23(9):1365-1379, 15 pages.
Konen et al., 1998, The VN-project: endoscopic image processing for neurosurgery, Computer Aided Surgery, 3:1-6, 6 pages.
Kumar et al., 2014, Stereoscopic visualization of laparoscope image using depth information from 3D model, Computer methods and programs in biomedicine 113(3):862-868, 7 pages.
Livatino et al., 2015, Stereoscopic visualization and 3-D technologies in medical endoscopic teleoperation, IEEE, 11 pages.
Luo et al., 2010, Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation, Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, 13 pages.
Marrouche et al., dated May 6, 2005, AB32-1, Preliminary human experience using a novel robotic catheter remote control, Heart Rhythm, 2(5):S63, 1 page.
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac- 20394974?p=1, downloaded from the internet on Jul. 12, 2018, 2 pp.
Mourgues et al., 2002, Flexible calibration of actuated stereoscopic endoscope for overlay in robot assisted surgery, International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberq, 10 pages.
Nadeem et al., 2016, Depth Reconstruction and Computer-Aided Polyp Detection in Optical Colonoscopy Video Frames, arXiv preprint arXiv:1609.01329, 12 pages.
Non Final Rejection for U.S. Appl. No. 16/219,766, dated Apr. 30, 2019, 6 pages.
Non Final Rejection for U.S. Appl. No. 16/219,766, dated Oct. 23, 2020, 7 pages.
Non Final Rejection for U.S. Appl. No. 16/219,766, dated Sep. 8, 2021, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/219,766, dated Mar. 19, 2021, 7 pages.
Oh et al., dated May 2005, P5-75, Novel robotic catheter remote control system: safety and accuracy in delivering RF Lesions in all 4 cardiac chambers, Heart Rhythm, 2(5):S277-S278, 2 pages.
Point Cloud, Sep. 10, 2010, Wikipedia, 2 pp.
Racadio et al., Dec. 2007, Live 3D guidance in the interventional radiology suite, Ajr, 189:W357-W364, 8 pages.
Reddy et al., May 2005, P1-53. Porcine pulmonary vein ablation using a novel robotic catheter control system and real- time integration of CT imaging with electroanatomical mapping, Hearth Rhythm, 2(5):S121, 1 page.
Sato et al., 2016, Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP), Journal ofThoracic Disease, 8(Suppl 9):S716, 15 pages.
Shen et al., 2015, Robust camera localisation with depth reconstruction for bronchoscopic navigation. International Journal of Computer Assisted Radiology and Surgery, 10(6):801-813, 13 pages.
Shi et al., Sep. 14-18, 2014, Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2024-2029, 6 pages.
Slepian, dated 2010, Robotic Catheter Intervention: the Hansen Medical Sensei Robot Catheter System, PowerPoint presentation, 28 pages.
Solheim et al., May 14, 2009, Navigated resection of giant intracranial meningiomas based on intraoperative 3D ultrasound, Acta Neurochir, 151:1143-1151, 9 pages.
Solomon et al., Dec. 2000, Three-dimensional CT- Guided Bronchoscopy With a Real-Time Electromagnetic Position Sensor A Comparison of Two Image Registration Methods, Chest, 118(6):1783-1787, 5 pages.
Song et al., 2012, Autonomous and stable tracking of endoscope instrument tools with monocular camera, Advanced Intelligent Mechatronics (AIM), 2012 IEEE-ASME International Conference on IEEE, 6 pages.
Vemuri et al., Dec. 2015, Inter-operative biopsy site relocations in endoluminal surgery, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, <10.1109/TBME.2015.2503981>, 13 pages.
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 um Er:YAG laser, Proceedings of SPIE, vol. 8221, 1 page.
Wilson et al., 2008, a buyer's guide to electromagnetic tracking systems for clinical applications, Proc. of SPCI, 6918:69182B-1 p. 6918B-11, 12 pages.
Yip et al., 2012, Tissue tracking and registration for image-guided surgery, IEEE transactions on medical imaging 31(11):2169-2182, 14 pages.
Zhou et al., 2010, Synthesis of stereoscopic views from monocular endoscopic videos, Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on IEEE, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/219,766, dated Mar. 16, 2022, 7 pages.
Zhou et al., 2010, Synthesis of stereoscopic views from monocular endoscopic videos, Compute Vision and Pattern Recognition Workshops (CVPRVV), 2010 IEEE Computer Society Conference on IEE, 8 pages.
AU Examination Report for Appl. No. 2017388217, dated Jul. 19, 2022, 3 pages.
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac- 20394974?p=1, downloaded from the internet on Jul. 12, 2018, 2 pgs.
Non-Final Rejection for U.S. Appl. No. 16/773,740, dated Jun. 14, 2022, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/219,766, dated Jul. 11, 2022, 9 pages.
Notice of Preliminary Rejection for Appl. No. 1020187028120, dated May 18, 2022, 5 pages.
Office Action and Search Report for Appl. No. 20180044521.3, dated Jul. 1, 2022, 12 pages.
Final Rejection for U.S. Appl. No. 16/773,740, dated Oct. 24, 2022, 8 pages.
JP Office Action for Appl. No. 2019534667, dated Sep. 13, 2022, 2 pages.
KR Final Rejection for Appl. No. 1020187028120, dated Nov. 3, 2022, 3 pages.
Notice of Acceptance for Appl. No. 2017388217, dated Oct. 17, 2022, 3 pages.
CN 2nd Office Action for Appl. No. 201880044521.3, dated Mar. 14, 2023, 4 pages.
Notice of Allowance for KR Appl. No. 10-2018-7028120, dated Feb. 21, 2023, 1 page.
JP Office Action for Appl. No. 2020-531934, dated Jan. 10, 2023, 8 pages.
KR Office Action for Appl. No. 10-2018-7028120, dated Jun. 15, 2023, 5 pages.
Related Publications (1)
Number Date Country
20190365201 A1 Dec 2019 US
Continuations (1)
Number Date Country
Parent 15392917 Dec 2016 US
Child 16370465 US