1. Technical Field
This invention relates in general to integrated circuit (IC) dice and, in particular, to devices and methods for testing dice in IC modules.
2. State of the Art
Integrated circuit (IC) dice are typically tested before they are packaged to determine if they have any failing circuitry. In general, one of the first steps in testing a die is to initiate a test mode in the die by applying control signals to selected bond pads on the die referred to as test bond pads. As an example, most Dynamic Random Access Memory (DRAM) dice manufactured by the Assignee of this invention, Micron Technology, Inc. of Boise, Id., are tested in a test mode initiated, in part, by applying a logic “0” signal to their Output Enable (OE) bond pad.
As shown in
One conventional solution to this problem, described in U.S. Pat. Nos. 5,278,839 and 4,519,078, is to eliminate the need to initiate a test mode in the manner described above by incorporating self test circuitry into dice. Because the self test circuitry is controlled through address and control bond pads that generally are not fixed to the reference voltage VSS or supply voltage VCC, a test mode can be initiated with the self test circuitry after the dice are packaged in an IC module. However, self test circuitry is a cumbersome and expensive solution that does not address the need for a solution that is easily incorporated into existing dice and IC modules.
Because it would be advantageous to have the flexibility to test dice after they are packaged in an IC module, there is a need in the art for an improved device and method for initiating and performing such testing.
An inventive integrated circuit (IC) module, such as a Multi-Chip Module (MCM), includes a terminal receiving a test mode initiate signal, such as a supply voltage VCC, and an IC die having a bond pad and a function circuit. A switching apparatus, such as a fuse, is connected with the bond pad between the terminal and the function circuit to conduct the test mode initiate signal to the function circuit, and an impedance apparatus, such as a resistor, connected between the function circuit and an operational mode signal, such as a reference voltage VSS, supports a difference in voltages between the test mode initiate signal at the function circuit and the operation mode signal. The function circuit responds to the test mode initiate signal by initiating a test mode in the die. The switching circuit also selectively isolates the function circuit from the die, and the impedance apparatus then conducts the operational mode signal to the function circuit. The function circuit responds to the operational mode signal by entering an operational mode. Thus, a test mode can be initiated in the die after it is packaged in the IC module by providing the test mode initiate signal at the terminal, and the test mode can then be disabled and the die fixed in the operational mode by selectively isolating the function circuit from the terminal with the switching apparatus, thereby ensuring that the test mode is not accidentally initiated by an end user in the field.
In one version of this inventive IC module, the switching apparatus and the impedance apparatus are both incorporated in the die, and in other versions one or both of the switching apparatus and impedance apparatus are incorporated in a substrate of the IC module. In another version, the IC module itself is incorporated into an electronic system, such as a computer system. In still other versions, the operational mode signal is provided by an operational mode signal circuit on the die, or is provided by external circuitry through another terminal in the IC module. Finally, in a modified version of this inventive IC module, the test mode initiate signal is generated on the die by a test mode initiate signal circuit responsive to external circuitry rather than being provided by external circuitry.
In another embodiment of this invention, an IC module includes one or more terminals receiving a test mode initiate signal and an operational mode signal. One or more IC dice in the IC module each have one or more function circuits and a plurality of bond pads, and a first subset of the bond pads is coupled to the function circuits while a second subset of the bond pads is adapted to receive signals other than the test mode initiate signal in the test mode. A dedicated conduction circuit coupled between the terminals and the first subset bond pads and isolated from the second subset bond pads conducts the test mode initiate and operational mode signals to the function circuits. When the function circuits receive the test mode initiate signal, they initiate a test mode, and when the function circuits receive the operational mode signal, they enter an operational mode. Thus, a test mode can be initiated in the dice after they are packaged in the IC module by providing the test mode initiate signal at the terminals, and an operational mode can be initiated by providing the operational mode signal at the terminals. In one version of this IC module, the IC module is incorporated into an electronic system. In other versions, the terminals comprise a first terminal receiving the test mode initiate signal and a second terminal receiving the operational mode signal, and the first and second terminals are coupled by an impedance element, such as a resistor, or by a link, such as a surface mount resistor or a jumper.
In a further embodiment of this invention, a method for initiating a test mode and an operational mode in dice in an IC module includes: receiving a test mode initiate signal at a terminal of the IC module; conducting the test mode initiate signal only to those bond pads on dice in the IC module adapted to receive the signal and from those bond pads to function circuits in the dice to initiate a test mode therein; discontinuing conduction of the test mode initiate signal to the function circuits; and conducting an operational mode initiate signal to each function circuit to initiate the operational mode therein.
In a still further embodiment, a method for testing one or more dice in an IC module includes: providing a test mode initiate signal to an externally accessible terminal of the IC module; conducting the test mode initiate signal exclusively to bond pads on the dice adapted to receive the signal to initiate a test mode in the dice; testing each die; receiving response signals from the dice; and evaluating the response signals to identify any failing elements in the dice.
As shown in
Also, it will be understood that the function circuits may be any circuitry on a die for initiating a test mode in the die, the test mode initiate signal may be any signal for initiating a test mode in a die, the module terminal 26 may be any terminal including, for example, an MCM pin (e.g., a SIMM, DIMM, RAM card, RAM module, ROM card, or ROM module pin), the switching circuit 28 may be, for example, a fuse or a transistor or any other device for selectively isolating the function circuits from the module terminal 26, and the test mode enable bond pads 30 may be any bond pads connectable to a function circuit for enabling a test mode in a die. Further, it should be understood that although the switching circuit 28 is shown in
In response to receiving the test mode initiate signal, the input buffers 24 initiate a test mode in the dice 22. In this mode, various test signals may be provided to the dice 22 in a well known manner to test the circuitry thereon, and the dice 22 then output various response signals indicating the presence of any failing circuitry. While the test mode initiate signal, such as the supply voltage VCC, is being provided to the test mode enable bond pads 30 and the input buffers 24, an impedance circuit 32, such as, for example, a resistor, resistance-connected MOS transistor, or anti-fuse, supports a difference in voltages between the test mode initiate signal at the test mode enable bond pads 30 and an operational mode enable signal, such as a reference voltage VSS, at a reference terminal 34, such as, for example, an MCM pin (e.g., a SIMM, DIMM, RAM card, RAM module, ROM card, or ROM module pin). It will be understood that although the impedance circuit 32 is shown in
Once testing of the dice 22 is complete, the switching circuit 28 isolates the input buffers 24 from the module terminal 26 to disable the test mode, and the impedance circuit 32 conducts the operational mode signal, such as the reference voltage VSS, to the input buffers 24. In response, the input buffers 24 initiate an operational mode in the dice 22 in which the dice 22 operate in accordance with their intended normal function. Thus, for example, if the dice 22 are DRAMs, they would perform normal memory operations in their operational mode.
Thus, the dice 22 in the IC module 20 are fully testable even after being packaged, and yet their test mode can be disabled as necessary so the IC module 20 can be used by end users in the field.
As will be described in more detail below with respect to
As shown in
As shown in
The IC module 68 includes a terminal 70, such as an MCM pin as discussed above, receiving a test mode initiate signal (e.g., the supply voltage VCC) from the processor device 66. The terminal 70 conducts the test mode initiate signal to a bond pad 72 of an IC die 74. As discussed above, it will be understood that the IC die 74 may be any die, including, for example, a DRAM die, SRAM die, SGRAM die, processor die, flash ROM die, SDRAM die, or Rambus RAM die.
To initiate a test mode in the die 74, a switching circuit 76 conducts the test mode initiate signal from the bond pad 72 to a function circuit 78 (e.g., an OE input buffer). In response, the function circuit 78 initiates a test mode in the die 74 as described above. While the test mode initiate signal is being conducted to the function circuit 78, an impedance circuit 80 supports a difference in voltages between the test mode initiate signal at the function circuit 78 and an operational mode signal, such as a reference voltage VSS, supplied by an operational mode voltage circuit 82.
It should be understood that the switching circuit 76 may, for example, comprise a fuse, a MOS transistor, or a flash memory cell, the function circuit 78 may comprise any circuit which enables or initiates a test mode in response to a test mode initiate signal, the impedance circuit 80 may, for example, comprise an anti-fuse, a MOS transistor, or a resistor, and the operational mode voltage circuit 82 may comprise any circuit for supplying an operational mode signal, such as a reference voltage VSS, on a die.
When testing is over, the switching circuit 76 isolates the function circuit 78 from the bond pad 72 to disable the test mode in the die 74 by, for example, blowing a fuse or de-activating a MOS transistor. The impedance circuit 80 then conducts the operational mode signal from the operational mode voltage circuit 82 to the function circuit 78 by, for example, blowing an anti-fuse or activating a MOS transistor. In response to the operational mode signal, the function circuit 78 initiates an operational mode in the die 74 as described above.
Thus, the die 74 is fully testable even after being packaged in the IC module 68, and yet the test mode of the die 74 can be disabled as necessary so the IC module 68 can be used by end users in the field.
As shown in detail in
As shown in
Also, it will be understood that the function circuits may be any circuitry on a die for initiating a test mode in the die, the test mode initiate signal may be any signal for initiating a test mode in a die, the first terminal 90 may be any terminal including, for example, an MCM pin, such as a SIMM, DIMM, RAM card, ROM card, RAM module, or ROM module pin, the dedicated conductor 92 may be, for example, any conductive structure or device connected exclusively to those bond pads 94 on the dice 86 adapted to receive the test mode initiate signal or unaffected by receipt of the test mode initiate signal, and the test mode enable bond pads 94 may be any bond pads connectable to a function circuit for enabling a test mode in a die.
In response to receiving the test mode initiate signal, the input buffers 88 initiate a test mode in the dice 86 in a well known manner as described above. Once testing of the dice 86 is complete, an operational mode signal, such as a reference voltage VSS, is provided through the first terminal 90 and the dedicated conductor 92 to the input buffers 88 to initiate an operational mode in the dice 86 in the well known manner described above. A second terminal 96 provides the reference voltage VSS to other circuits in the dice 86 via a reference conductor 97 and reference voltage bond pads 98.
Thus, the dice 86 in the IC module 84 are fully testable even after being packaged, and yet the operational mode can be enabled as necessary so the IC module 84 can be used by end users in the field.
As shown in
During testing, a test mode initiate signal, such as the supply voltage VCC, may be supplied to the first terminal 90 to initiate a test mode as described above with respect to
Once testing is complete, the operational mode signal, or no signal, may be supplied to the first terminal 90. At the same time, the surface mount resistor 104 conducts the operational mode signal from the second terminal 96 to the dedicated conductor 92, in order to initiate the operational mode as described above with respect to
As shown in
Once testing is complete, the operational mode signal, or no signal, may be supplied to the first terminal 90. At the same time, the link 106 is positioned to connect the second terminal to the dedicated conductor 92 through the conductive via 100 in the substrate 102, thereby conducting the operational mode signal from the second terminal 96 to the dedicated conductor 92 in order to initiate the operational mode as described above with respect to
Although the first and second terminals 90 and 96 are shown in
As shown in
It should be understood that the switching circuit 112 may, for example, comprise a fuse or a MOS transistor, the function circuit 114 may comprise any circuit which enables or initiates a test mode in response to a test mode voltage VTEST, the impedance circuit 116 may, for example, comprise an anti-fuse, a MOS transistor, or a resistor, and the operational mode voltage circuit 118 may comprise any circuit for supplying an operational mode voltage VOPER on a die.
When testing is over, the switching circuit 112 isolates the function circuit 114 from the test mode voltage VTEST to disable the test mode in the die 108 by, for example, blowing a fuse or de-activating a MOS transistor. The impedance circuit 116 then conducts the operational mode voltage VOPER from the operational mode voltage circuit 118 to the function circuit 114 by, for example, blowing an anti-fuse or activating a MOS transistor. In response to the operational mode voltage VOPER, the function circuit 118 initiates an operational mode in the die 108 as described above.
Thus, the die 108 is fully testable even after being packaged, and yet the test mode of the die 108 can be disabled as necessary so the die 108 can be used by end users in the field.
As shown in
A repair enablement device 142 in the test apparatus 120 may provide repair control signals to the redundancy circuit 132 in the die 124 directing the redundancy circuit 132 to replace any failing circuitry identified by the evaluator circuit 140 with redundant elements 144 in the die 124. The manner in which repair control signals may direct the redundancy circuit 132 to repair any failing circuitry in the die 124 is well known by those skilled in the art.
As shown in
As shown in still another embodiment of this invention in
As shown in
It will be understood that any or all of the steps 160-206 in the embodiment of
This invention thus advantageously provides a device and method for testing and repairing IC dice already packaged in IC modules.
Although this invention has been described with reference to particular embodiments, the invention is not limited to these described embodiments. Rather, the invention is limited only by the appended claims, which include within their scope all equivalent devices and methods that operate according to the principles of the invention as described.
This application is a continuation of application Ser. No. 11/389,874, filed Mar. 27, 2006, now U.S. Pat. No.7,519,881, which is a continuation of application Ser. No. 10/801,254, filed Mar. 16, 2004, now U.S. Pat. No. 7,034,560, issued Apr. 25, 2006, which is a continuation of application Ser. No. 10/396,163 filed Mar. 25, 2003, now U.S. Pat. No. 6,801,048, issued Oct. 5, 2004, which is a continuation of application Ser. No. 09/797,368, filed Mar. 1, 2001, now U.S. Pat. No. 6,605,956, issued Aug. 12, 2003, which is a continuation of application Ser. No. 09/097,427, filed Jun. 15, 1998, now U.S. Pat. No. 6,240,535, issued May 29, 2001, which is a continuation-in-part of application Ser. No. 08/718,173, filed Sep. 19, 1996, now U.S. Pat. No. 5,796,746, issued Aug. 18, 1998, which is a continuation-in-part of application Ser. No. 08/577,840, filed Dec. 22, 1995, now U.S. Pat. No. 5,825,697, issued Oct. 20, 1998, and application Ser. No. 08/666,247, filed Jun. 20, 1996, now U.S. Pat. No. 5,764,574, issued Jun. 9, 1998.
Number | Name | Date | Kind |
---|---|---|---|
4459685 | Sud et al. | Jul 1984 | A |
4459693 | Prang et al. | Jul 1984 | A |
4491857 | McElroy | Jan 1985 | A |
4519078 | Komonytsky | May 1985 | A |
4543594 | Mohsen et al. | Sep 1985 | A |
4598388 | Anderson | Jul 1986 | A |
4601019 | Shah et al. | Jul 1986 | A |
4752118 | Johnson | Jun 1988 | A |
4817093 | Jacobs et al. | Mar 1989 | A |
4881114 | Mohsen et al. | Nov 1989 | A |
4887239 | Turner | Dec 1989 | A |
4937465 | Johnson et al. | Jun 1990 | A |
4939694 | Eaton et al. | Jul 1990 | A |
5089993 | Neal et al. | Feb 1992 | A |
5110754 | Lowrey et al. | May 1992 | A |
5126971 | Lin et al. | Jun 1992 | A |
5157664 | Waite | Oct 1992 | A |
5241496 | Lowrey et al. | Aug 1993 | A |
5257229 | McClure et al. | Oct 1993 | A |
5278839 | Matsumoto et al. | Jan 1994 | A |
5301143 | Ohri et al. | Apr 1994 | A |
5305267 | Haraguchi et al. | Apr 1994 | A |
5324681 | Lowrey et al. | Jun 1994 | A |
5331196 | Lowrey et al. | Jul 1994 | A |
5355340 | Coker et al. | Oct 1994 | A |
5402018 | Koyanagi | Mar 1995 | A |
5406520 | Tay | Apr 1995 | A |
5412593 | Magel et al. | May 1995 | A |
5422850 | Sukegawa et al. | Jun 1995 | A |
5430679 | Hiltebeitel et al. | Jul 1995 | A |
5451489 | Leedy | Sep 1995 | A |
5455798 | McClure | Oct 1995 | A |
5491664 | Phelan | Feb 1996 | A |
5506499 | Puar | Apr 1996 | A |
5528600 | El Ayat et al. | Jun 1996 | A |
5539349 | Roy | Jul 1996 | A |
5550394 | Sukegawa et al. | Aug 1996 | A |
5566107 | Gilliam | Oct 1996 | A |
5576999 | Kim et al. | Nov 1996 | A |
5663902 | Bennett et al. | Sep 1997 | A |
5796746 | Farnworth et al. | Aug 1998 | A |
5896040 | Brannigan et al. | Apr 1999 | A |
5982188 | Lysinger | Nov 1999 | A |
6009536 | Rohwer | Dec 1999 | A |
6240535 | Farnworth et al. | May 2001 | B1 |
6605956 | Farnworth et al. | Aug 2003 | B2 |
7567091 | Farnworth et al. | Jul 2009 | B2 |
Number | Date | Country |
---|---|---|
0218852 | Apr 1987 | EP |
0584739 | Mar 1994 | EP |
06012878 | Jan 1994 | JP |
06069308 | Mar 1994 | JP |
06069342 | Mar 1994 | JP |
06176597 | Jun 1994 | JP |
07263563 | Oct 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20090027076 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11389874 | Mar 2006 | US |
Child | 12233334 | US | |
Parent | 10801254 | Mar 2004 | US |
Child | 11389874 | US | |
Parent | 10396163 | Mar 2003 | US |
Child | 10801254 | US | |
Parent | 09797368 | Mar 2001 | US |
Child | 10396163 | US | |
Parent | 09097427 | Jun 1998 | US |
Child | 09797368 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08718173 | Sep 1996 | US |
Child | 09097427 | US | |
Parent | 08666247 | Jun 1996 | US |
Child | 08718173 | US | |
Parent | 08577840 | Dec 1995 | US |
Child | 08666247 | US |