Semiconductor device manufacturers are constantly striving to increase product performance while decreasing their cost of manufacture. A cost intensive area in the manufacture of semiconductor devices is the packaging of semiconductor chips. Integrated circuits are fabricated on wafers which are then singulated to produce semiconductor chips. Subsequently, the semiconductor chips may be mounted on electrically conductive carriers, such as leadframes. Packaging methods providing high yield at low expense are desirable.
Diffusion soldering is one technique for mounting a semiconductor chip to a carrier, and involves depositing a structured diffusion solder layer on metal surfaces of the chips to be connected to a carrier, such as a chip BSM (back side metallization), for example. Two primary techniques are available for the structured deposition of the diffusion solder layer, ECD (electro chemical deposition) and PVD (physical vapor deposition). Each technique is costly and has drawbacks.
With ECD, deposition of the diffusion solder layer across the entire chip surface is necessary, as required materials cannot be successively deposited and patterned in a desired order since the plating bath dissolves the previous layer. However, subsequent etching of the full-face diffusion solder layer can lead to under-etching of the BSM and cannot be used with all materials. With PVD, the high temperatures required can be damaging and residues can be left behind after lift-off of a patterning mask. Additionally, regardless of the technique, when applied as part of front end processing, the diffusion solder layer can be damaged during wafer singulation, particularly as wafer thicknesses continue to decrease.
For these and other reasons, there is a need for the teachings of the present disclosure.
One example provides a method, the method including providing a first and a second joining partner each having a first main surface, wherein at least a portion of the first main surfaces of the first and joining partners each comprise a metal layer. The method further includes applying a plurality of solder preforms to the metal layer of the first main surface of at least one of the first and second joining partners, positioning the first and second joining partners so that the solder preforms contact the metal layers of the first main surfaces of the first and second joining partners, and melting the plurality of solder preforms under pressure to form a single continuous thin layer area interconnect comprising a diffusion solder bond which bonds together the metal layers of the of the first main surfaces of the first and second joining partners.
The accompanying drawings are included to provide a further understanding of embodiments and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and together with the description serve to explain principles of embodiments. Other embodiments and many of the intended advantages of embodiments will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the disclosure may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
It is to be understood that the features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.
As used herein, the term “electrically coupled” does not mean means that the elements must be directly coupled together, but that intervening elements may be provided between the “electrically coupled” elements.
According to one example, as illustrated by
In other examples, as will be described in greater detail below, first joining partner 20 and second joining partner 30 may be combinations of other types of semiconductor device components, such as two leadframes, a leadframe and a contact clip, and a semiconductor chip and a contact clip, for example. Furthermore, in other examples, as will also be described in greater detail below, more than two joining partners may be simultaneously joined in accordance with processes of the present disclosure.
In
As illustrated by
Solder preforms 40 may be applied to BSM 26 using any suitable technique. According to one example, where solder preforms comprise solder balls 40, solder balls 40 are applied in a desired pattern to BSM 26 using a process known as Laser Solder Jetting (LSJ). According to such a process, an outer portion of each of the solder balls 40 is melted by a laser, and the partially melted solder ball 40 is jetted at a desired location onto BSM 26. The partially melted portion of the jetted solder ball 40 reacts with BSM 26 and secures solder ball 40 to BSM 26. LSJ does not employ flux and, thus, eliminates the cleaning of flux residues and works with any number of diameters for solder balls 40 and any number of solder materials (e.g., SnAg, SnAgCu, and AuSn).
According to another example, standard solder ball placement techniques are employed wherein solder balls 40 are glued to BSM 26 at desired locations using a flux material as a bonding agent. According to another standard ball placement technique, a mechanical mask is employed to place the solder balls 40 at desired positions on BSM 26, wherein the geometry of the mask is dedicated to the specific geometry of the joining partner, in this case to BSM 26 of semiconductor chip 20. Once aligned at the desired positions, a partial reflow process is performed, wherein the solder balls 40 are heated to just above their melting point so that a portion of the solder balls 40 melt and affix the solder balls 40 at the desired locations on BSM 26.
With reference to
In one example, solder preforms 40, in this case, solder balls 40, have an inner core 41a of a first solder material and an outer layer 41b of a second solder material, wherein the second solder material has a lower melting temperature than the first solder material. In this fashion, outer layer 41b defines a bond line thickness between solder balls 40 and carrier 30 when solder balls 40 are applied to upper main surface 32, wherein the bond line thickness can be adjusted based on a thickness of outer layer 41b.
As illustrated by
While in oven 50, solder balls 40 are heated to a temperature above a melting point of the solder material forming solder balls 40, and the solder balls 40 begin to remelt while under pressure from force F. By way of example, Sn has a melting point of 232° C. As solder balls 40 remelt, the pressure provided by force F distributes the molten solder material between backside surface 22 of semiconductor chip 22 and upper main surface 32 of carrier 30. In one example, press 60 applies a force F of at least 1 N/mm2.
The molten solder material reacts with the material of BSM 26 and the material of upper main surface 32 of carrier 30 and forms an intermetallic phase by diffusion, wherein the intermetallic phase has a higher melting point than the solder material of the original solder balls 40. At the end of the dwell time within oven 50, all of the solder material of solder balls 40 has melted and reacted with the material of BSM 26 and the upper main surface of carrier 20 and completely transformed to the intermetallic phase to form a single, contiguous thin layer area interconnect 70 between semiconductor chip 20 and carrier 30. The diffusion solder bond of thin layer interconnect 70 has a higher melting temperature than the original material of solder balls 42, is highly mechanically stable, and has a high electrical and thermal conductivity.
While different temperatures T and dwell times may be employed, in general, temperature T is above a melting point of the solder material of solder balls 40 but below a melting temperature of the resulting intermetallic phases of thin layer area interconnect 70, as well as being below temperatures that might result in damage to any semiconductor components and of oven 50. In one example, the temperature T and dwell times within oven 50 may depend on the material of solder balls 40, the material of metal layer 26 and carrier 20, and on an area and a thickness “Th” of thin layer area interconnect 70 (i.e. the volume of solder material). In one example, the temperature T is at least 10K (Kelvin) above a melting point of the material of solder balls 40, but below a temperature that might result in damage to semiconductor components and components of oven 50. In one example, the desired temperature T is maintained for a dwell time of 30 minutes. In one example, thin layer area interconnect 70 can be produced with a thickness in range from 1 μm to 30 μm.
In one example, the size and layout of solder balls 40 on BSM 26 is selected so as to obtain an optimal distribution of molten solder after reflow of solder balls 40 while in oven 50 so as to achieve a thin layer area interconnect that entirely covers a desired area (e.g. backside surface 22 of semiconductor chip 20) and has a uniform thickness “Th”. In one example, employing smaller solder balls 40 rather than larger solder balls having a same combined volume of solder material provides a better pre-distribution of solder material between the surfaces of the joining partners prior and improves distribution of molten solder during the reflow process in oven 50.
Although not illustrated, according to one example, at least surfaces of first and second joining partners 20 and 30 to which will be in contact with thin layer area interconnect 70, such as BSM 26 and upper main surface 32 of carrier 30, may be passivated in order to prevent oxidation and provide improved and quicker bonding of the solder material with the surfaces when forming thin layer area interconnect 70. Surface passivation can be achieved using conventional processes such as OSP (Organic Surface Protection) and a noble metal flash, for example.
Furthermore, although illustrated by
By using currently available solder preforms (e.g. solder balls) to form diffusion solder bond thin layer area interconnects in accordance with the present application, thin layer area interconnects can be formed more cost effectively than present frontend processes (which typically involve costly deposition of a thin layer of AuSn solder on a wafer backside), and can be formed of any number of solder materials (solder preforms are available in any number of materials), including lead-free, tin-based solder (e.g. greater than 80% tin). Additionally, according to the techniques of the present application, thin layer area interconnects can be applied to individual chips after wafer singulation, thereby eliminating problems associated with cutting of solder layers applied during front-end processes, and enabling thin layer area interconnects to be selectively applied to known “good dies” (i.e., dies that have been tested). Furthermore, thicknesses of thin layer area interconnects can be readily controlled by controlling the total volume of solder preforms used to form the thin layer area interconnect.
In
Aspects of the process described in conjunction with
In
Inserts 62 and 64 are provided with a negative of the shapes of semiconductor chip 20, carrier 30, and contact clip 100 in order to evenly distribute pressure so that the thin layer area interconnects 70 and 72 are evenly distributed and have uniform thicknesses. Additionally, solder balls 40 and 42 may be of the same or different materials, and may be of the same or different sizes, depending on the metals used for back side and front side electrodes 26 and 28 of semiconductor chip 20, carrier 30, and contact clip 100, and on the areas and desired thicknesses of thin layer area interconnects 70 and 72.
Aspects of the process described in conjunction with
In
Similar to that described above with regard to
Similar to that described above with respect to
In one example, back side electrode 26 and front side electrode 28 of semiconductor chip 20 are load electrodes. In one example, with reference to
According to one example, semiconductor chip 20 is configured as a power transistor, such as a power MOSFET, IGBT, JFET, or a power bipolar transistor, for example, or a power diode. In the case of a power MOSFET or a JFET, the back side electrode 26 is a drain electrode, front side electrode 28 is a source electrode, and third electrode 29 is a gate electrode. In the case of an IGBT, the back side electrode 26 is a collector electrode, the front side electrode 26 is an emitter electrode, and the third electrode 29 is a gate electrode. In the case of a power bipolar transistor, the back side electrode 26 is a collector electrode, the front side electrode is an emitter electrode, and the third electrode 29 is a base electrode. In the case of a power diode, the back and front side electrodes 26 and 28 are anode and cathode, and there is no third electrode 29.
In one example, as illustrated by the top view of
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
6872464 | Hubner et al. | Mar 2005 | B2 |
7115446 | Koo et al. | Oct 2006 | B2 |
7851910 | Riedl | Dec 2010 | B2 |
7893532 | Bauer et al. | Feb 2011 | B2 |
8177878 | Heinrich et al. | May 2012 | B2 |
8283756 | Galesic et al. | Oct 2012 | B2 |
8710678 | Ganitzer et al. | Apr 2014 | B2 |
8736052 | Oeschler et al. | May 2014 | B2 |
8828804 | Nikitin et al. | Sep 2014 | B2 |
9034751 | Heinrich et al. | May 2015 | B2 |
20010023995 | Nguyen | Sep 2001 | A1 |
20020172244 | Li | Nov 2002 | A1 |
20070018308 | Schott et al. | Jan 2007 | A1 |
20090273066 | Nikitin | Nov 2009 | A1 |
20120208323 | Heinrich | Aug 2012 | A1 |
20120313230 | Mengel et al. | Dec 2012 | A1 |
20130200532 | Otremba | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160358890 A1 | Dec 2016 | US |