The present invention relates to a method of a double side stack package; and, more particularly, to a method for double side stack packaging a plurality of chips at both a top and a bottom surface of a substrate using a hole formed therein to reduce the thickness of the double side stack package and to enhance a packaging efficiency.
Referring to
The drawback of this conventional multi-stack chip size packaged device is that a thickness thereof is to be enlarged, e.g., about 1.4 mm, because of the molding material of the multi-stack CSP, i.e., the resin, to thereby require a long conductive wires 51, i.e., a long signal transmission path. Therefore, the characteristics of the multi-stack chip size packaged device are deteriorated and the applicability thereof is also reduced. In addition, heat dissipation thereof is not effective.
It is, therefore, an object of the present invention to provide a method for double side stack packaging a plurality of chips at both a top and a bottom surface of a substrate using a sidewall of a hole formed therein to reduce the thickness of the double size stack package and to enhance a packaging efficiency.
In accordance with the present invention, there is provided a method for double side stack packaging a plurality of chips, which including the steps of: forming a hole through a substrate; attaching a first chip to a bottom surface of the substrate to cover a bottom of the hole by using a thermo compression; electrically interconnecting the first chip to terminals formed on an inner sidewall of the hole using a wire bonding; coating an epoxy on the substrate and the first chip and installing thereon a first heat spreader and then curing the epoxy; attaching a second chip to a top surface of the substrate by using an epoxy; electrically interconnecting the second chip to terminals formed on the substrate using the wire bonding; and coating an encapsulation resin on the substrate and the first chip and installing thereon a second heat spreader and then curing the epoxy.
The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
A preferred embodiment in accordance with the present invention will now be described with reference to the accompanying drawings.
Referring to
Thereafter, the first chip 20 with a heat spreader 50 embedded thereon and the bottom surface of the substrate 10 are encapsulated by an insulating material, e.g., an epoxy 60. And then, the insulating material is cured. The heat spreader 50 facilitates a dissipation of heat to be generated in the first chip 20.
Next, the epoxy 80 is coated to a top surface of the substrate 10 and a second chip 70 is attached to the top surface of the substrate to cover a top of the hole. Next, bonding pads on the second chip 70 are electrically connected with terminals S2 on the substrate 10 by conductive wires 90 as shown in
Next, a resin, e.g., an epoxy molding compound (EMC) 110 is coated on the substrate 10 and the second chip 70 and a heat spreader 100 is installed on the resin and then the resin is cured.
Therefore, the double side stack packaged device in accordance with the preferred embodiment of the present invention uses the top and the bottom surface of the substrate 10 and the sidewall of the hole formed therein to thereby enhance a packaging efficiency. Also, by reducing the thickness of the device, e.g., less than 1.0 mm, that is to say, an electrical distance between the chips and the PCB, operational characteristics of the device can be enhanced.
While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2002-0086407 | Dec 2002 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6093969 | Lin | Jul 2000 | A |
6265782 | Yamamoto et al. | Jul 2001 | B1 |
6300163 | Akram | Oct 2001 | B1 |
6559525 | Huang | May 2003 | B1 |
6815251 | Akram et al. | Nov 2004 | B1 |
20030030151 | Morozumi | Feb 2003 | A1 |
20030064547 | Akram et al. | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040152235 A1 | Aug 2004 | US |