The present invention relates to a front end loading interface used in the loading of workpieces in semiconductor processing equipment.
Semiconductor processing equipment often has a plurality of chambers in which processing occurs. Arm assemblies or other robotic devices are generally used to move workpieces, generally wafers from a wafer queuing station to various chambers for processing. When the processing is finished the wafer is returned to the queuing station. For an example of prior art processing equipment, see U.S. Pat. No. 4,715,921 issued to Maher, et al. for a Ouad Processor.
Semiconductor processing is typically done in a vacuum. Therefore, a wafer queuing station into which is placed a cassette of wafers to be processed must be pumped down before the wafers may be accessed. This significantly increases the time the semiconductor processing equipment is idle while waiting for a cassette of processed wafers to be exchanged for a cassette of unprocessed wafers and subsequent pumping down of the wafer queuing station.
In accordance with the preferred embodiment of the present invention, a workpiece loading interface is presented for inclusion within a workpiece processing system. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of workpieces, typically wafers, from a first chamber are being accessed, a second cassette or wafers may be loaded in the second chamber and the second chamber may then be pumped down. This can significantly increase throughput of wafers through the workpiece processing system.
In the preferred embodiment, each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette of wafers is on a support with no side panels, facilitating the replacement of a cassette of processed wafers with a cassette of unprocessed wafers by an automated device.
The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
In
Semiconductor processing equipment 1, includes, for example, a processing chamber 3, a processing chamber 4, a processing chamber 5 and a processing chamber 6. A central chamber 2 may be used to temporarily store wafers on robotic equipment 7 when wafers are being moved to or from various of the processing chambers.
Semiconductor processing equipment 1 also includes dual cassette load locks. In chamber 8, a wafer cassette 16 holds wafers 10. In chamber 9, a wafer cassette 17 holds wafers 11. Wafer tray 17 pivots around a pivot point 15. When wafers 11 from tray 17 are accessed by semiconductor processing equipment 1 for processing, wafer tray 17 is flush against a gate 13, as shown, and easily accessed by robotic equipment 7 for transportation into central chamber 2. When wafer tray 17 is ready to be removed from chamber 9, wafer tray 17 is pivoted back from gate 13 in preparation for the opening of chamber 9 and removal of wafer tray 17.
Similarly, wafer tray 16 pivots around a pivot point 14. When wafers 10 from tray 16 are accessed by semiconductor processing equipment 1 for processing, wafer tray 16 is flush against a gate 12 and easily accessed by robotic equipment 7 for transportation into central chamber 2. When wafer tray 16 is ready to be removed from chamber 8, wafer tray 16 may be pivoted back an angle 18 from gate 12, as shown, in preparation or the opening of chamber 8 and removal or wafer tray 16. In the preferred embodiment, angle 18 is about twenty-one degrees.
Chamber 8 and chamber 9 may be separately and individually pumped down. A vacuum pump 19 is able to provide a vacuum in chamber 8. A vacuum pump 20 is able to provide a vacuum in chamber 9. In
Once door 21 is lowered, wafer tray 16, on a support structure 43, may then be lowered out of chamber 8, much like a draw bridge is lowered at a castle entrance. Wafer tray 16 may then be removed and a new wafer tray placed upon support structure 43. Support structure 43 is designed with a hollow bottom so that when door 21 is opened and wafer tray 16 is lowered, a laminar airflow may sweep downward through wafers 10.
In
When door 21 is opened, spring 34 compresses causing gap 33 to reappear and links 35 and 36 to 20 straighten, thus moving door 21 horizontally away from chamber 8.
In
Number | Date | Country | |
---|---|---|---|
Parent | 10223540 | Aug 2002 | US |
Child | 11410797 | Apr 2006 | US |
Parent | 09070854 | May 1998 | US |
Child | 10223540 | Aug 2002 | US |
Parent | 07511481 | Apr 1990 | US |
Child | 08481546 | Jun 1995 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08700267 | Aug 1996 | US |
Child | 09070854 | May 1998 | US |
Parent | 08481546 | Jun 1995 | US |
Child | 08700267 | Aug 1996 | US |