This invention relates generally to semiconductor chips, and more specifically to an eDRAM (embedded dynamic random access memory) in an independently voltage controlled volume of silicon on an SOI (silicon on insulator) semiconductor chip.
An SOI chip has a substrate that is typically P− doped silicon, although substrates of opposite doping (i.e., N−) are also known. A buried oxide (BOX) layer may be implanted to isolate a circuit area above the BOX layer from the underlying substrate portion. The underlying substrate portion is typically connected to a voltage source (e.g., Gnd). Above the BOX, the circuit area may contain STI (shallow trench isolation) regions, source/drain implants for FETs (Field Effect Transistors), body regions under FET gate structures for the FETs, contacts, and wiring to interconnect the FETs.
In an embodiment of the invention, an eDRAM is formed in an independently voltage controlled silicon region which is created as a circuit element. A bottom of the independently voltage controlled silicon region is created with a deep implant such as boron to create an N region when the substrate is doped P−. Sides of the independently voltage controlled silicon region are formed with deep trench isolation, thereby insulating the independently voltage controlled silicon region on all sides (e.g., four sides if the independently voltage controlled silicon region is square or rectangular). A buried oxide region (BOX) forms a top surface of the independently voltage controlled silicon region, thereby completing electrical isolation of the independently voltage controlled silicon region. An electrical contact is formed through the BOX, and through any STI or silicon above the BOX, the electrical contact suitable for connecting the independently voltage controlled silicon region to a voltage such as Vdd, Gnd, or other voltage supply, or to a logic signal on the chip.
A voltage, such as from a voltage source or from a logic signal, may be placed on the independently voltage controlled silicon region via the contact. The voltage creates an electric field that passes through the BOX and determines a threshold voltage on a pass gate FET which is used to place charge in a deep trench capacitor used to store a “1” or a “0” in the eDRAM. The voltage also affects width of a charge depletion region around a portion of the eDRAM deep trench capacitor that is in the independently voltage controlled silicon region. Control of leakage through the pass gate FET and width of the charge depletion region by the voltage provides tradeoffs between retention time of the eDRAM and performance of the eDRAM.
While for exemplary purposes, eDRAM is described, it will be understood that, if all or a majority of a semiconductor chip comprises the teachings described herein, that the semiconductor chip may be simply called a DRAM (dynamic random access memory).
In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings, which form a part hereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
Embodiments of the present invention provide for creation of an independently voltage controlled volume of silicon which is a circuit element generally useful for providing selectable control of leakage/performance characteristics of an eDRAM (embedded dynamic random access memory) on a silicon chip.
A semiconductor silicon on insulator (SOI) chip 100 of
Logic area 150 comprises a portion of P− Silicon 101, which is typically connected to ground. A buried oxide (BOX) 103 provides an electric insulator under a logic FET (field effect transistor) 120. Logic FET 120 includes source/drain implants 121, a P− body region 125, a gate dielectric 126, source/drain contacts 122, gate sidewall spacers 123, and a gate 124 that may be electrically coupled to a logic signal or a voltage source. Logic FET 120, having a P− body and N+ source/drain regions is an NFET (N-channel field effect transistor). Typically, PFETs (P-channel field effect transistors) are also created in logic area 150 using known techniques to create an N− body region and P+ source/drain regions. The NFETs and PFETs in logic region 150 are configured to make logic gates (NANDs, NORs, XORs, latches, registers, and the like).
eDRAM area 151 comprises a pass gate NFET 130 to couple a bit line connected to a source/drain implant 131 to a deep trench capacitor 140 under control of a word line coupled to a gate 134. Pass gate NFET 130 includes the gate 134, a gate dielectric 136, source/drain implants 131 and 132, a body 135, a gate dielectric 136, sidewall spacers 133, and epitaxial growths 137 and 138. Deep trench capacitor 140 comprises a conductor 141 in a deep trench. The conductor may be tungsten, doped polysilicon, or other suitable conducting material placed in the deep trench. A dielectric material 142 isolates conductor 141 from P− silicon 101 and P− silicon 109. Dielectric material 142 may be, for examples HfO2 or SiO2, or other suitable dielectric material. Epitaxial growth 137 couples an adjacent source/drain region 132 over an upper portion of dielectric material 142 to make electrical contact between conductor 141 and the adjacent source/drain region 132.
eDRAM area 151 also comprises deep N implant 105, which forms a “floor”, or bottom, of independently voltage controlled silicon region 110, indicated by a dotted line in
A “ceiling”, or top, of the independently voltage controlled silicon region 110 is a portion of BOX 103. Sides of the independently voltage controlled silicon region 110 are formed by a deep trench isolation 106, best seen in
A contacting structure 107 is formed by etching through STI (shallow trench isolation) 102 and through BOX 103 and filled with a conductor such as tungsten or doped polysilicon to make electrical connection to P− Si 109. Contacting structure 107 may have a contact 108 to connect to a voltage (voltage source or a logic signal). Except for contacting structure 107, P− silicon 109 is completely isolated, as described above, from P− silicon 101 and circuitry (e.g., pass gate NFET 130) above BOX 103. Contacting structure 107 transfers the voltage placed on contact 108 to P− silicon 109, thereby providing a voltage on independently voltage controlled silicon region 110.
A single NFET pass gate 130 and an associated deep trench capacitor 140 is shown in eDRAM area 151, however it will be appreciated that a large number, perhaps one million or more, NFET pass gates 130 and associated capacitors 140 are typically placed in an eDRAM area 151. Similarly, for simplicity, a single LOGIC FET 120 is shown in logic area 150. However, in modern semiconductor chips 100, one million, or more, FETs 120 may be constructed.
It will also be appreciated that, while NFET pass gate 130 is shown as a switch to charge or discharge deep trench capacitor 140, and to, on reads, cause a charge on deep trench capacitor 140 to affect a bit line voltage, a PFET, with known processing above BOX 103 could also be used as a pass gate.
With reference now to
In
Another effect of the voltage (VA, VB) placed on P− Si 109A, 109B is that an electric field 302 (302A, 302B) passes through BOX 103 and affects threshold voltages of overlying FETs, such as NFET pass gates 130A, 130B. As shown, with the assumed values of VA, VB, electric field 302A is less than electric field 302B.
In terms of controlling characteristics of eDRAM cells in P− Si 109A, threshold voltage of NFET pass gate 130A will be higher than a threshold voltage of NFET pass gate 130B, thereby significantly lowering leakage of NFET pass gate 130A relative to NFET pass gate 130B. Capacitance of CA, as explained earlier is less than CB, but significantly reduced leakage from CA through NFET pass gate 130A versus leakage from CB through NFET pass gate 130B will cause retention of data in deep trench capacitor 140A (i.e., CA) to be longer than retention of data in deep trench capacitor 140B (i.e., CB) even though CB is a larger capacitance. Therefore, eDRAMs may be controlled to leak more or less by control of voltage applied to the associated P− Si 109 in independently voltage controlled silicon region 110. This leakage control capability is very desirable in low power modes of an eDRAM.
For performance, such as read speed, however, the eDRAM in independently voltage controlled silicon region 110B will be superior (faster) versus the eDRAM in independently voltage controlled silicon region 110A. NFET pass gate 130B, having a lower threshold voltage will conduct more strongly. Also, the larger capacitance of CB will pull a bit line down faster and further through NFET pass gate 130B than the lesser capacitance and less conductive structure associated with independently voltage controlled silicon region 110A. Therefore, eDRAMs may be controlled to operate faster (or slower) by control of the associated P− Si 109 in independently voltage controlled silicon region 110.
Applying the electric field 302 and capacitor C to
While for exemplary purposes, eDRAM is described, it will be understood that, if all or a majority of a semiconductor chip comprises the teachings described herein to provide dynamic control of retention of data in a deep trench capacitor and performance of the DRAM, that the semiconductor chip may be simply called a DRAM (dynamic random access memory) chip, and the memory simply called a DRAM.