The present invention relates generally to an electrical assembly equipped with a heat sink, and particularly to using an additional auxiliary retention piece to assemble the heat sink thereon, and the method of assembling the heat sink with assistance of such an auxiliary retention piece.
U.S. Pat. No. 6,697,263 discloses an electrical connector mounted on a PCB (Printed Circuit Board) and receiving a CPU (Central Processing Unit) therein, wherein a heat sink is intimately seated upon an upper face of the CPU and fastened relative to the PCB by four screws. Anyhow, it is relatively difficult for the operator to fasten the heat sink relative to the PCB by simultaneously rotating all four screws in an even manner. Instead, the screws are fastened relative to the PCB one by one. Under this situation, the first operatively fastened screw may force the heat sink downwardly in an oblique manner, thus influencing the CPU thereunder and potentially damaging the corresponding contacts around said screw.
It is desired to have an electrical connector assembly equipped with an auxiliary retention piece for installing the heat sink upon the CPU in a relatively even manner for not tilting the CPU during the assembling procedure, thus avoiding damaging the corresponding contacts of the electrical connector.
An object of the invention is to provide an electrical assembly with an electrical connector mounted upon the PCB to receive a CPU therein. A securing seat is fixed on the PCB with four upwardly extending posts. A heat sink is secured to the posts by the nut screws and seated upon the CPU. A auxiliary retention piece is located upon the securing seat around one post so as to prevent the CPU from excessively tilting due to the screw nut fastening occurring on an opposite diagonal corner.
Referring to
The upper plate 1 is equipped with six fixing posts 11, of which two pairs are located respectively beside the opposite short sides 22 of the housing 21, and one pair are respectively located beside the opposite long sides 23.
The heat sink 3 includes a base 31, and a main body 32 extending upwardly from the base 31. The base 31 includes four corner sections 311 each having a through hole 312 extending therethrough in the vertical direction. The securing seat 4 includes four securing posts 41 with threads 411 thereof corresponding to the four through holes 312, and six through holes 42 corresponding to the six fixing posts 11. An auxiliary retention piece 6 is located beside one securing post 41.
The heat sink 3 is equipped with four securing parts 7 corresponding to the four through holes 312 and the associated four securing posts 41, respectively. Each securing part 7 includes a nut 71 coupling to the corresponding securing post 41, and a coil spring 72 surrounding the nut 71 and downwardly abutting against the base 31 around the corresponding through hole 312. During assembling the heat sink 3 upon the CPU 300, one nut 71 is firstly screwed, with compression of the corresponding coil spring 72, to the one specific/predetermined securing post 41 which is diagonal with regard to another one adjacent to the retention piece 6. Understandably, even though the predetermined securing post 41 and the corresponding nut 71 are firstly fastened together, the heat sink 3 will not be tilted at the diagonal/opposite corner section 311 due to engagement between the retention piece 6 and the base 31 in the vertical direction.
The resilient retention piece 6 includes a mounting part 61 with a securing hole/slot 611 therein for secured to a bottom section of the corresponding securing post 41, and a restriction part 62 extending upwardly from the mounting part 61. The restriction part 62 includes an upstanding part 621 extending upwardly from the mounting part 61, a hook section 622 at the top of the upstanding part 621 for engagement with the base 31 of the heat sink 3 when the nut 71 has not fastened to the corresponding securing post 41, and an operation section 623 opposite to the hook section 622
The whole assembling process is as follows. The securing seat 4 is firstly to have the through holes 42 secured to the corresponding fixing posts 11, and the retention piece 6 is assembled to the corresponding securing post 41 via interference. The CPU 300 is successively mounted upon the housing 21, and the heat sink 3 is positioned upon the CPU 300 to have the securing posts 41 extend through the corresponding through holes 312, respectively. One nut 71 associated with the corresponding coil spring 72 is first screwed to a specific/predetermined securing post 41 without upwardly raising an opposite diagonal corner section 31 due to engagement between the restriction piece 6 and the opposite diagonal corner section 31 in the vertical direction. The remaining three nuts 71 with the associated coil springs 72 are further assembled to the corresponding securing posts 41, respectively, to finalize the whole assembly. Because no significant tilting occurs of the heat sink 3, there is no significant tilting of the CPU 300 under the heat sink 3. As a result, because of no tilting of the CPU 300, there is no potential damage of the contacts around the first assembled nut 71 advantageously compared with the traditional one without the retention piece 6. Understandably, the engagement between the retention piece 6 and the base 31 will not exist once the four nuts 71 are completely fastened to the corresponding securing posts 41, respectively.
Number | Date | Country | Kind |
---|---|---|---|
2018 1 0939097 | Aug 2018 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5648893 | Loo | Jul 1997 | A |
5651688 | Lin | Jul 1997 | A |
5999402 | Jeffries | Dec 1999 | A |
6829143 | Russell | Dec 2004 | B2 |
7193853 | Chen | Mar 2007 | B2 |
8724326 | Yang | May 2014 | B2 |
9196565 | Lee | Nov 2015 | B2 |
10103086 | Lin | Oct 2018 | B2 |
20050152119 | Lee | Jul 2005 | A1 |
20190306985 | Ferguson | Oct 2019 | A1 |
20200126889 | Mao | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
1106898 | Aug 1995 | CN |
1229279 | Sep 1999 | CN |
2523023 | Nov 2002 | CN |
2681329 | Feb 2005 | CN |
1618127 | May 2005 | CN |
1874663 | Dec 2006 | CN |
2919529 | Jul 2007 | CN |
207459230 | Jun 2018 | CN |
2017037979 | Feb 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20200058572 A1 | Feb 2020 | US |