1. Field of the Invention
Embodiments of the invention generally relate to an electrochemical plating cell.
2. Description of the Related Art
Metallization of sub 100 nanometer sized features is a foundational technology for present and future generations of integrated circuit manufacturing processes. However, metallization of sub 100 nanometer features presents several challenges to conventional metallization apparatuses and techniques. For example, conventional metallization techniques for integrated circuit applications generally include depositing a conductive seed layer onto surfaces that are to be metallized, and then electrochemically plating a conductive layer onto the seed layer to metallize and fill the features. The seed layer is often deposited by a physical vapor deposition (PVD) process and generally has a thickness of between about 300 Å and about 700 Å. However, seed layer deposition becomes increasingly difficult with sub 100 nanometer features, as the opening at the top of the features tends to close off from field or horizontal surface deposition before the sidewalls or vertical surfaces of the features are adequately metallized by the seed layer. This closure of the opening of the feature inhibits subsequent processes from metallizing or filling the main body of the feature with the desired conductive material.
Deposition of the thin seed layer required for sub 100 nanometer features also presents challenges with respect to the continuity or resistance of the thin seed layer. More particularly, since the thickness of the conductive seed layer is directly proportional to the resistance of the layer, the decreasing thicknesses of seed layers in sub 100 nanometer features results in a substantially higher seed layer resistance. This increased resistance is known to cause an edge high plating condition, i.e., thicker plating near the edge of the substrate as a result of the decreased electric field near the center of the substrate from the high seed layer resistance.
Another challenge in metallization of sub 100 nanometer features is the metallization or feature filling process that is conducted after the seed layer is deposited. Metallization of integrated circuit devices is generally conducted with an electrochemical plating process, however, the small size of the feature opening and high aspect ratio of the feature body makes it very difficult to obtain continuous bottom up fill of the main body of the feature without closing the opening of the feature and preventing subsequent plating in the feature, thus generating an unfilled void or pocket in the feature.
Therefore, there is a need for an apparatus and method for metallizing sub 100 nanometer integrated circuit devices and minimizing edge high plating effects that result from thin seed layers.
Embodiments of the invention provide an electrochemical plating cell configured to metallize sub 100 nanometer features on integrated circuit devices. The plating cell includes a fluid basin having an anolyte solution compartment and a catholyte solution compartment, an ionic membrane positioned between the anolyte solution compartment and the catholyte solution compartment, an anode positioned in the anolyte solution compartment, and a cathode electrode positioned to electrically contact and support a substrate for processing in the fluid basin. The anolyte compartment is divided into a first and second anolyte compartments, such that the anode is positioned in the first compartment and a counter electrode is positioned in the second compartment. The first and second compartments both have an anolyte fluid flow therethrough, however, the first and second compartments are electrically isolated from each other.
Embodiments of the invention may further provide an electrochemical plating cell having a fluid container having an ionic membrane positioned across the fluid container, the ionic membrane being positioned to fluidly separate a catholyte volume from a first anolyte volume in the fluid container. The plating cell further includes an anode assembly positioned in fluid communication with the first anolyte volume, a cathode substrate support member positioned to support a substrate at least partially in the catholyte volume for a plating process, a counter electrode positioned in fluid communication with a second anolyte volume, the second anolyte volume being electrically isolated from the first anolyte volume, and a vent member positioned in fluid communication with the catholyte volume, the vent member being in ionic communication with the second anolyte volume.
Embodiments of the invention may further provide a fluid processing cell for depositing a conductive layer onto a substrate. The cell generally includes a catholyte solution fluid volume positioned to receive a substrate for plating, a first anolyte solution fluid volume at least partially ionically separated from the catholyte solution fluid volume, an anode assembly positioned in the first anolyte solution fluid volume, a second anolyte solution fluid volume, the second anolyte solution fluid volume being electrically isolated from the first anode solution fluid volume and at least partially in ionic communication with the cathode solution fluid volume, and a cathode counter electrode positioned in the second anolyte solution volume.
Embodiments of the invention may further provide an electrochemical plating cell having a fluid basin having an ionic membrane positioned across a middle portion of the basin, the ionic membrane separating the fluid basin into an upper catholyte volume and a lower anolyte volume, an anode assembly positioned in the lower anolyte volume, and a cathode substrate support member removably positioned in the catholyte volume. The plating cell further includes a counter electrode positioned in an isolated anolyte volume, the isolated anolyte volume being positioned below the ionic membrane and not in direct electrical communication with the lower anolyte volume, and a counter electrode vent positioned in an upper portion of the fluid basin at a position proximate an edge of a substrate being plated in the fluid basin, the counter electrode vent being in electrical communication with the counter electrode via a fluid conduit.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
a-7e illustrate exemplary anode configurations that may be used in the plating cell of the invention.
The present invention is directed to a plating cell configured to support metallization processes for sub 100 nanometer integrated circuits. The plating cell generally includes a partitioned fluid basin, i.e., the fluid volume in the plating cell fluid basin is separated into a catholyte solution volume and an anolyte solution volume. An example of this type of separation of a plating cell into an anolyte volume and a catholyte volume may be found in commonly assigned U.S. patent application Ser. No. 10/627,336, filed Jul. 24, 2003 entitled “Electrochemical Processing Cell”, which is hereby incorporated by reference in its entirety. The anolyte volume of the plating cell includes at least one anode electrode and at least one counter electrode, however, the counter electrode is positioned and configured to be electrically isolated from the anode electrode.
Fluid basin 108 further includes a membrane 116 positioned across the fluid basin 108 at a position below where the diffusion member 114 may be positioned, if used. Membrane 116 is generally an ionic membrane, and more particularly, a cationic membrane, that is generally configured to prevent fluid passage therethrough, while allowing ions, such as copper ions, to travel through the membrane 116 toward substrate 118. As such, membrane 116 generally operates to separate a catholyte volume 119 of the plating cell 100 from an anolyte volume 120 of the plating cell 100, wherein the catholyte volume 119 is generally defined as the fluid volume between the membrane 116 and the substrate 118, and the anolyte volume 120 is defined as the fluid volume below the membrane 116 adjacent the anode. A more thorough description of the membrane 116 and the separation of the anolyte from the catholyte may be found in commonly assigned U.S. patent application Ser. No. 10/627,336, filed Jul. 24, 2003 entitled “Electrochemical Processing Cell”, which is hereby incorporated by reference in its entirety.
The anolyte volume 120 generally contains an anode assembly 122 that includes at least one electrically conductive member positioned in contact with the anolyte solution flowing through the anolyte volume 120. The conductive member may be manufactured from a soluble material, such as copper, or from an insoluble material, such as platinum or another noble metal, etc. A counter electrode assembly 124, which is generally positioned radially outward of the perimeter of anode assembly 122, may also be manufactured from either a soluble or an insoluble material, such as copper, platinum, etc.
Although anode assembly 122 and the counter electrode 124 are generally positioned such that both assemblies 122, 124 are in communication with an anolyte solution, the respective assemblies 122, 124 are also positioned and configured such that the anode assembly 122 is electrically isolated from the counter electrode 124. More particularly, an electrically insulating spacer 126 is generally positioned between anode assembly 122 and counter electrode 124. Further, the anolyte solution fluid flow that is in fluid contact with the anode assembly 122 is not the same anolyte fluid flow that is in fluid contact with the counter electrode 124, as will be further discussed herein with respect to
A plating solution, also termed a catholyte, is supplied to the catholyte volume 119 by a fluid supply conduits 133a, 133b which is in fluid communication with a catholyte solution tank (not shown). The catholyte solution generally includes several constituents, including, for example, water, copper sulfate, halide ions, and one or more of a plurality plating additives (levelers, suppressors, accelerators, etc.). The catholyte solution supplied by conduits 133a, 133b overflows the weir 109 and is collected by collection volume 112. The anolyte solution is supplied to anolyte volume 120 by an anolyte supply conduit 131a and drained from anolyte volume 120 by an anolyte drain conduit 131b positioned on an opposing side from the supply conduit 131a. The positioning of the supply and drain conduits 131a, 131b generates directional flow of the anolyte across the upper surface of the anode 122, as described in commonly assigned U.S. patent application Ser. No. 10/268,284, filed Oct. 9, 2002 entitled “Electrochemical Processing Cell”, which is hereby incorporated by reference in its entirety.
Plating cell 100 also includes a second anolyte fluid inlet 132a and a second anolyte fluid drain 132b. The second anolyte fluid inlet 132a is configured to supply an anolyte solution to the volume 135 surrounding the counter electrode 124, while not fluidly or electrically communicating with the main anolyte volume 120 contained in the volume adjacent the anode 122 and supplied by conduits 131a, 131b as illustrated in
Although the membrane 116 provides a fluid barrier that prevents the anolyte solution from fluidly transferring therethrough, membrane 116 allows for ionic transfer, and more particularly, for positive ionic transfer. As such, although the anolyte cannot permeate membrane 116, ions such as copper and hydrogen ions may transfer through the membrane 116 into vent conduit 140, which contains catholyte. Thus, the combination of the volume 135 above the electrode 124 and the catholyte in vent conduit 140 generates an electrical path for current to travel from the cathode contact ring (the substrate) 106 to the counter electrode 124.
a illustrates the flux lines generated near the anode 122 and the counter electrode 124 during a plating process. The electrical flux immediately above the anode 122 is represented by the arrows labeled “C”. The flux above the anode 122 may be controlled by applying a different electrical power to the respective anode segments 122a, 122b, and 122c. Anode segments 122a, 122b, 122c may be concentric, symmetric, or any other configuration depending upon the desired flux.
Arrows “G” in
Arrows “E” indicate the fluid flow path for the catholyte solution that is supplied to the catholyte volume 119 of plating cell 100. The catholyte solution flows upward through conduit 132a, then generally horizontally across at least a portion of the upper surface of membrane 116, and then upward to an opening, i.e., vent conduit 140, that communicates with the catholyte region 119. The flow of the catholyte over the upper surface of the membrane is generally configured to be at a position that overlaps the volume 135 above the counter electrode 124, which provides a current path between the catholyte and the counter electrode 124 via transmission through membrane 116. This current path generally travels from the cathode contact ring 106 through vent 140 via the catholyte solution residing therein, through membrane 116, and through the anolyte residing in volume 135 to the counter electrode 124, as indicated by arrows “H” in
In operation, counter electrode 124 is used in combination with anode member 122, which may be one of the segmented anodes illustrated in
This reduction in the flux near the perimeter of the substrate, which may be controlled by the cathodic bias applied to the counter electrode 124, generally operates to reduce edge or perimeter high plating characteristics of conventional plating cells. More particularly, the counter electrode 124 operates as a cathodic source near the edge of the substrate 118 via the flux traveling from counter electrode 124 through vent 140 to the anode assembly 122, and therefore, reduces the flux near the edge of the substrate. This reduced flux has been shown to reduce the plating near the perimeter of the substrate.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, wherein the scope is determined by the claims that follow.