Embedded leadframe semiconductor package

Abstract
A semiconductor package comprising a substrate having opposed top and bottom surfaces and a conductive pattern formed thereon. Disposed on the top surface of the substrate is a semiconductor die which is electrically connected to the conductive pattern. Also disposed on the top surface of the substrate is a leadframe which is electrically connected to the conductive pattern as well. A package body encapsulates the semiconductor die and partially encapsulates the leadframe such that a portion of the leadframe is exposed in one exterior surface of the package body, thus allowing a second semiconductor package to be stacked upon and electrically connected to the semiconductor package.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable


STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

The present invention relates generally to integrated circuit packaging and, more particularly, to a ball grid array (BGA) or lan grid array (LGA) semiconductor package including an embedded leadframe for allowing the vertical stacking of an LGA or leadframe package thereupon.


A staple component of the electronics industry is a ball grid array (BGA) semiconductor package. BGA packages typically comprise a substrate having a plurality of array-arranged solder balls on the bottom surface thereof. The solder balls act as I/O (input/output) connections for a semiconductor die which is attached to the opposite, top surface of the substrate. In this regard, the substrate is typically provided with a conductive pattern (e.g., pads, traces, vias, etc.), with the semiconductor die being electrically connected to the conductive pattern which is used to route signals from the semiconductor die to the solder balls. The semiconductor die is typically covered by a hardened encapsulant which also covers the top surface of the substrate and defines the package body of the BGA package. Thus, the solder balls deposited on the bottom surface of the substrate are used to electrically connect the semiconductor die to an external device, e.g., a printed circuit board (PCB). The conductive pattern of the substrate may be configured so as to facilitate the electrical connection of the semiconductor die to differently functioned solder balls to allow the BGA package to operate with multiple functions of grounding, powering, and signaling.


One of the notable drawbacks of currently known BGA packages is the absence therein of any elements which allow for the stacking of a second semiconductor package thereon. The increased signal processing and memory requirements of many electronic devices, coupled with the need to occupy a minimal amount of space within such devices, makes it highly desirable for BGA or LGA packages to be configured to allow for the stacking of a second semiconductor package thereupon. The present invention addresses this deficiency by providing a BGA package with an embedded leadframe which allows for the stacking of a second semiconductor package such as an LGA or leadframe package on top of the package. These, as well as other features and advantages of the present invention, will be described in more detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided a BGA or LGA semiconductor package which includes an embedded leadframe to enable the stacking of a second semiconductor package such as an LGA or leadframe package to the top of the package. In the present package, a leadframe is surface mounted to conductive pads on the top surface of the laminate substrate of the package. The conductive pads comprise part of the conductive pattern of the substrate, which also includes conductive pads on the bottom surface thereof, as well as conductive traces and/or vias extending along and/through the substrate. Also mounted to the top surface of the substrate is a semiconductor die which is itself electrically connected to the conductive pattern. In one embodiment of the present invention, the package may include a semiconductor die which is electrically connected to the conductive pattern of the substrate through the use of conductive wires. In an alternative embodiment of the present invention, the package may include a flip-chip semiconductor die which is electrically connected to the conductive pattern of the substrate through the use of conductive contacts or balls as opposed to wires.


After both the leadframe and the semiconductor die have been mounted to the substrate and electrically connected to the conductive pattern thereof, a molding operation is completed wherein a mold cap or package body is formed to fully cover or encapsulate the semiconductor die and conductive wires (if any), and partially cover or encapsulate the leadframe. Subsequent to the completion of the overmold, a deflashing process is completed to fully expose portions of the leads of the leadframe upon the top surface of the package body. Thereafter, the exposed portions of the leads may optionally be plated with a layer of a suitable conductive material. An etching or sawing process is then completed to effectively electrically isolate the leads of the leadframe from each other. The exposed portions of the leads of the leadframe (which define pads or terminals) provide a footprint to which a second semiconductor package may be electrically connected, and thus stacked upon the package.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a cross-sectional view of a semiconductor package constructed in accordance with a first embodiment of the present invention;



FIG. 2 is a cross-sectional view of a semiconductor package constructed in accordance with a second embodiment of the present invention;



FIG. 3 is a top plan view of the semiconductor package constructed in accordance with either the first or second embodiments of the present invention as shown in FIGS. 1 and 2;



FIGS. 4–9 illustrate an exemplary sequence of steps which may be used to facilitate the fabrication of the semiconductor package constructed in accordance with the first embodiment of the present invention shown in FIG. 1; and



FIG. 10 is a partial cross-sectional view illustrating the manner in which a second semiconductor package is stacked upon the semiconductor package constructed in accordance with the first embodiment of the present invention.





Common reference numerals are used throughout the drawings and detailed description to indicate like elements.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 illustrates an embedded leadframe BGA or LGA semiconductor package 10 constructed in accordance with a first embodiment of the present invention. FIG. 3 provides a top plan view of the completed package 10 of the first embodiment.


The package 10 includes a laminate substrate 12 which has a generally quadrangular (e.g., square, rectangular) configuration. The substrate 12 defines a generally planar top surface 14 and an opposed, generally planar bottom surface 16. The substrate 12 is formed to include a conductive pattern. The conductive pattern itself comprises a plurality of conductive pads 18 of a first set which are disposed on the top surface 14 in a prescribed pattern or array, and a plurality of conductive pads 20 of a second set which are disposed on the bottom surface 16 in a prescribed pattern or array. In addition to the pads 18, 20 of the first and second sets, the conductive pattern further includes conductive traces and/or vias which extend along and/or through the substrate 12, and are arranged so as to place at least some of the conductive pads 18 of the first set into electrical communication with at least one of the conductive pads 20 of the second set. It will be recognized that one or more pads 18 of the first set may be electrically isolated from the pads 20 of the second set, and used solely for communicating with a semiconductor package which is stacked upon the package 10.


The package 10 of the first embodiment further comprises a semiconductor die 22, the bottom surface of which is directly mounted to the top surface 14 of the substrate 12. Such attachment may be facilitated through the use of a suitable epoxy or adhesive. The terminals of the semiconductor die 22 are electrically connected to respective ones of the pads 18 of the first set through the use of conductive wires 24.


As further seen in FIG. 1, the package 10 of the first embodiment also includes a leadframe 26. The leadframe 26 itself comprises a central support plate 28 (shown in FIG. 3) which has a generally quadrangular (e.g., square) configuration. In addition to the support plate 28, the leadframe 28 comprises a plurality of elongate leads 30 which are arranged about the support plate 28 in spaced relation to the peripheral edge thereof. In the leadframe 26, each of the leads 30 has a bent configuration so as to define an upper terminal portion 32 and a lower mounting portion 34. As best seen in FIG. 1, the terminal and mounting portions 32, 34 of each lead 30 extend angularly relative to a central portion 36 thereof. In the package 10, the leadframe 26 is electrically connected to the conductive pattern of the substrate 12 by placing the mounting portions 34 of the leads 30 into direct, conductive contact with respective ones of the pads 18 of the first set. Due to the bent configuration of each of the leads 30, the electrical connection of the mounting portions 34 to the pads 18 results in the terminal portions 32 of the leads 30 being elevated substantially above the top surface 14 of the substrate 12, and extending in generally parallel relation thereto. The support plate 28 of the leadframe 26 is also elevated above and extends in generally parallel relation to the top surface 14, for reasons which will be described in more detail below. As best seen in FIG. 3, the configuration of the leadframe 26 is such that the terminal portions 32 thereof are arranged in a generally quadrangular pattern when the leadframe 26 is electrically connected to the conductive pattern of the substrate 12 in the above-described manner. In addition to the terminal portions 32 of the leads 30 being spaced from each other, they also extend along and in spaced relation to a respective one of the four peripheral edge segments defined by the quadrangular support plate 28 of the leadframe 26.


The package 10 of the first embodiment further comprises a package body 38 which is formed on the top surface 14 of the substrate 12. The package body 38 is fabricated from an encapsulant material. The encapsulant material is preferably a plastic (e.g., thermoset, thermoplastic) which, upon hardening, forms the package body 38. Such formation is itself preferably completed through the implementation of a molding process. The fully formed package body 38 defines a generally planar top surface 40 and a generally planar side surface 42 which extends generally perpendicularly from the top surface 40 is substantially flush or continuous with the peripheral edge of the substrate 12. As indicated above, the bottom surface of the package body 38 rests directly against the top surface 14 of the substrate 12. However, it is contemplated that the package body 38 may be formed so as not to extend all the way to the peripheral edge of the substrate 12.


In the package 10, the package body 38 is formed such that both the semiconductor die 22 and conductive wires 24 used to electrically connect the semiconductor die 22 to the conductive pattern of the substrate 12 are fully covered or encapsulated by the package body 38. The leadframe 26 of the package 10 is itself partially covered or encapsulated by the package body 38. In this regard, though both the mounting and central portions 34, 36 of each lead 30 of the leadframe 26 are covered by the package body 38, the terminal portion 32 of each lead 30 is partially exposed therein. More particularly, one surface of each terminal portion 32 is exposed in and substantially flush with the top surface 40 of the package body 38. Those of ordinary skill in the art will recognize that as an alternative to one surface of each terminal portion 32 being exposed in and substantially flush with the top surface 40 of the package body 38, each terminal portion 32 may slightly protrude from the top surface 40.


As further seen in FIG. 3 and in FIG. 9, also exposed in the package body 38 is one surface of the support plate 28 of the leadframe 26. More particularly, one surface of the support plate 28 is exposed in and substantially flush with the top surface 40 of the package body 38, in the same manner one surface of each terminal portion 32 is exposed in and substantially flush with the top surface 40. Thus, the exposed surfaces of the terminal portions 32 and the support plate 28 preferably extend in generally co-planar relation to each other. However, as described above in relation to the terminal portions 32, the support plate 28 may protrude slightly from the top surface 40 of the package body 38. As seen in FIG. 3 and as described above, the exposed surfaces of the terminal portions 32, in addition to being spaced from each other, also extend along and in spaced relation to a respective ones of the four peripheral edge segments defined by the exposed surface of the support plate 28. The leaframe 26 is preferably fabricated from a conductive metal material, such as copper.


The package 10 of the first embodiment further comprises a plurality of solder balls 44 which are formed on and conductively connected to respective ones of the pads 20 of the second set in the manner shown in FIG. 1. The solder balls 44 are used to electrically connect the package 10 to an external device such as a printed circuit board (PCB).


Referring now to FIG. 10, in the completed package 10, the exposed surfaces of the terminals 32 of the leads 30 of the leadframe 26 define a “footprint” which allows for the stacking of a second semiconductor package 46 upon the package 10, and electrical connection of the second semiconductor package 46 to the package 10. In this regard, such electrical connection is preferably facilitated by placing the leads 48 of the second semiconductor package 46 into electrical connection to respective ones of the exposed surfaces of the terminal portions 32 of the leadframe 26 of the package body 10.


Having thus described the structural attributes of the package 10 of the first embodiment, an exemplary method of fabricating the same will now be described with regard to FIGS. 4–9. In the initial step of the fabrication methodology, the substrate 12 is provided (FIG. 4). As indicated above, the substrate 12, as fabricated, includes the above-described conductive pattern which comprises the conductive pads 18, 20 of the first and second sets and the intervening traces and/or vias.


In the next step of the fabrication process, the semiconductor die 22 is attached to the top surface 14 of the substrate 12 in the above-described manner (FIG. 5). Thereafter, the terminals disposed on the top surface of the semiconductor die 22 are electrically connected to respective ones of the pads 18 of the first set through the use of the conductive wires 24 (FIG. 6). Subsequent to the electrical connection of the semiconductor die 22 to the conductive pattern of the substrate 12 through the use of the conductive wires 24, the leadframe 26 is itself electrically connected to the conductive pattern of the substrate 12 in the above-described manner (FIG. 7). More particularly, the mounting portions 34 of the leads 30 of the leadframe 26 are electrically connected to respective ones of the pads 18 of the first set. As is noted in FIG. 7, when the leadframe 26 is initially electrically connected to the substrate 12, each of the leads 30 is integrally connected to the support plate 28. In this regard, the leads 30 are segregated into four sets, with the terminal portions 32 of the leads 30 of each set being integrally connected to a respective one of the four peripheral edge segments defined by the support plate 28. When the leadframe 26 is in its original state (not shown), the leads 30 are not bent, and thus extend generally perpendicularly from respective ones of the peripheral edge segments of the support plate 28. In this regard, the bending of the leads 30 to cause the same to assume the above-described shape typically occurs subsequent to the initial formation of the support plate 28 and leads 30. When the leadframe 26 is attached to the substrate 12 in the above-described manner, the semiconductor die 22 resides between the substrate 12 and the support plate 28 of the leadframe 26.


Subsequent to the electrical connection of the leadframe 26 to the substrate 12, a molding process is completed to facilitate the formation of the package body 38 (FIG. 8). As described above, the package body 38 is preferably formed such that one surface of the support plate 28 and one surface of the terminal portion 32 of each of the leads 30 is exposed in and substantially flush with top surface 40 of the package body 38. Typically, in order to facilitate the exposure of such surfaces of the support plate 28 and terminal portions 32, a de-flashing process is completed subsequent to the initial formation of the package body 38. Upon the completion of such de-flashing process, the exposed surfaces of the terminal portions 32 of the leads 30 may optionally be plated with a layer of a suitable conductive material.


In the final step of the fabrication method for the semiconductor package 10, a singulation process is completed to effectively electrically isolate the terminal portions 32 of the leads 30 from the support plates 28 and each other (FIG. 9). Such singulation may be completed through either a chemical etching, sawing, or laser singulation process. In the sawing process, a pattern of cuts is made within the top surface 40 of the package body as needed to completely sever the terminal portions 32 of the leads 30 from the support plate 28. Similarly, in the etching process, the exposed surfaces of the leadframe 26 are initially masked such that the chemical etchant thereafter applied thereto removes only enough metal of the leadframe 26 as is necessary to completely sever the terminal portions 32 of the leads 30 from the support plate 28. The completion of the sawing or etching process described above completes the fabrication of the package 10.


Referring now to FIG. 2, there is shown an embedded leadframe package 50 constructed in accordance with a second embodiment of the present invention. The package 50 is substantially similar in construction to the package 10 of the first embodiment, the primary distinction being that the package 50 includes a flip-chip semiconductor die 52 as an alternative to the semiconductor die 22 described above in relation to the package 10. In this regard, the contacts or terminals 54 of the flip-chip semiconductor die 52 are electrically connected to respective ones of the pads 18 of the first set. As will be recognized, the number of pads 18 of the first set included on the substrate 12 used in the package 50 may exceed the number of pads 18 included on the substrate 12 used in the package 10. In this regard, the increased number of pads 18 in the package 50 may be needed to accommodate the terminals 54 of the flip-chip semiconductor die 52. Thus, the package 50 avoids the use of the above-described conductive wires 24 due to the electrical connection between the flip-chip semiconductor die 52 and conductive pattern of the substrate 12 being facilitated by the contact between the terminals 54 and the pads 18. The fabrication methodology employed for the package 50 is also substantially similar to that described above in relation to the package 10, the distinction lying in the manner in which the flip-chip semiconductor die 52 is electrically connected to the substrate 12 in comparison to the manner in which the semiconductor die 22 is electrically connected to the substrate 12.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A semiconductor package, comprising: a substrate having opposed top and bottom surfaces and a conductive pattern formed thereon;a semiconductor die disposed on the top surface of the substrate and electrically connected to the conductive pattern;a leadframe disposed on the top surface of the substrate, the leadframe comprising a support plate and a plurality of leads arranged about the support plate, the leads being electrically isolated from the support plate and each other; anda package body encapsulating the semiconductor die and partially encapsulating the leadframe such that portions of the leadframe are exposed in a common surface of the package body.
  • 2. The semiconductor package of claim 1 wherein the leads are electrically connected to the conductive pattern.
  • 3. The semiconductor package of claim 1 wherein each of the leads of the leadframe includes: a central portion;a mounting portion extending angularly from one end of the central portion; anda terminal portion extending angularly from one end of the central portion;the mounting portion of each of the leads being electrically connected to the conductive pattern of the substrate, with the terminal portion of each of the leads being partially exposed in the package body.
  • 4. The semiconductor package of claim 3 wherein: the package body defines a generally planar top surface; andthe terminal portion of each of the leads defines a terminal surface which is exposed in and substantially flush with the top surface of the package body.
  • 5. The semiconductor package of claim 4 wherein the support plate of the leadframe defines a generally planar plate surface which is exposed in and substantially flush with the top surface of the package body.
  • 6. The semiconductor package of claim 3 wherein the conductive pattern of the substrate comprises: a first set of conductive pads disposed on the top surface of the substrate; anda second set of conductive pads disposed on the bottom surface of the substrate, at least some of the pads of the first set being electrically connected to at least one of the pads of the second set;the mounting portions of the leads of the leadframe being electrically connected to respective ones of the pads of the first set.
  • 7. The semiconductor package of claim 6 wherein the semiconductor die is electrically connected to the conductive pattern through the use of conductive wires which extend from the semiconductor die to respective ones of the pads of the first set.
  • 8. The semiconductor package of claim 6 wherein the semiconductor die is a flip-chip semiconductor die having a plurality of contacts which are electrically connected to respective ones of the pads of the first set.
  • 9. The semiconductor package of claim 6 further comprising a plurality of solder balls formed on respective ones of the pads of the second set.
  • 10. The semiconductor package of claim 1 wherein the semiconductor die is electrically connected to the conductive pattern through the use of conductive wires.
  • 11. The semiconductor package of claim 1 further in combination with a second semiconductor package electrically connected to the exposed portions of the leadframe.
  • 12. A semiconductor package, comprising: a substrate having opposed top and bottom surfaces and a conductive pattern formed thereon;a semiconductor die disposed on the top surface of the substrate and electrically connected to the conductive pattern;a package body formed on the substrate and encapsulating the semiconductor die; anda plurality of leads partially embedded in the package body and electrically connected to the conductive pattern, each of the leads including a terminal portion which is partially exposed in the package body for allowing a second semiconductor package to be stacked upon and electrically connected to the semiconductor package.
  • 13. A semiconductor package, comprising: a substrate having opposed top and bottom surfaces and a conductive pattern formed thereon;a semiconductor die disposed on the top surface of the substrate and electrically connected to the conductive pattern;a leadframe disposed on the top surface of the substrate and having a plurality of leads which are isolated from each other and electrically connected to the conductive pattern; anda package body encapsulating the semiconductor die and partially encapsulating the leadframe such that a portion of each of the leads of the leadframe is exposed in a common surface of the package body.
  • 14. The semiconductor package of claim 13 wherein each of the leads of the leadframe includes: a central portion;a mounting portion extending from one end of the central portion; anda terminal portion extending angularly from one end of the central portion;the mounting portion of each of the leads being electrically connected to the conductive pattern of the substrate, with the terminal portion of each of the leads being partially exposed in package body.
  • 15. The semiconductor package of claim 14 wherein: the package body defines a generally planar top surface; andthe terminal portion of each of the leads defines a terminal surface which is exposed in and substantially flush with the top surface of the package body.
  • 16. The semiconductor package of claim 14 wherein the conductive pattern of the substrate comprises: a first set of conductive pads disposed on the top surface of the substrate; anda second set of conductive pads disposed on the bottom surface of the substrate, each of the pads of the first set being electrically connected to at least one of the pads of the second set;the mounting portions of the leads of the leadframe being electrically connected to respective ones of the pads of the first set.
  • 17. The semiconductor package of claim 16 wherein the semiconductor die is electrically connected to the conductive pattern through the use of conductive wires which extend from the semiconductor die to respective ones of the pads of the first set.
  • 18. The semiconductor package of claim 16 wherein the semiconductor die is a flip-chip semiconductor die having a plurality of contacts which are electrically connected to respective ones of the pads of the first set.
  • 19. The semiconductor package of claim 16 further comprising a plurality of solder balls formed on respective ones of the pads of the second set.
  • 20. The semiconductor package of claim 13 wherein the semiconductor die is electrically connected to the conductive pattern through the use of conductive wires.
US Referenced Citations (306)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga et al. May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kikuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 LeMaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5796164 McGraw et al. Aug 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113474 Costantini et al. Sep 2000 A
6114752 Huang et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6190944 Choi Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karmezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijnders Oct 2002 B2
6476469 Huang et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6583503 Akram et al. Jun 2003 B2
6603196 Lee et al. Aug 2003 B2
6624005 DiCaprio et al. Sep 2003 B1
6667546 Huang et al. Dec 2003 B2
20010008305 McLellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030030131 Lee et al. Feb 2003 A1
20030073265 Hu et al. Apr 2003 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040065963 Karnezos Apr 2004 A1
20040183174 Huang et al. Sep 2004 A1
20050023670 Hata et al. Feb 2005 A1
Foreign Referenced Citations (72)
Number Date Country
19734794 Aug 1997 DE
5421117 Jun 1979 EP
5950939 Mar 1984 EP
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
098968 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160095 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
629639 Jan 1987 JP
6333854 Feb 1988 JP
63067762 Mar 1988 JP
63188964 Aug 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63289951 Nov 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
2129948 May 1990 JP
369248 Jul 1991 JP
3177060 Aug 1991 JP
4098864 Sep 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
864634 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10163401 Jun 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
00150765 May 2000 JP
556398 Oct 2000 JP
2001060648 Mar 2001 JP
200204397 Aug 2002 JP
941979 Jan 1994 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
0049944 Jun 2002 KR
9956316 Nov 1999 WO
9967821 Dec 1999 WO