The present invention relates to a flip-chip packaging diode with a multichip structure, in particular to a diode having at least two flip-chips installed horizontally on the top of a lower guide plate and with an interval apart from each other, and a series circuit formed between the at least two flip-chips, so that the diode has a voltage resistance characteristic which is applicable for the flip-chip packaging of a general rectification/protection diode, and particularly for the flip-chip packaging of a high-voltage diode.
With reference to
In
In the SMD diodes manufactured by the conventional packaging technology, if a rectification/protection circuit or any circuit requiring a high-voltage resistance is used, more diodes are installed to the circuit to increase the voltage, and there is another alternative of improving the voltage resistance characteristic of each diode. However, the improvement is very limited.
In
In the aforementioned single SMD diode, the series circuit formed by the upper and lower stacked chips 100 is provided for improving the voltage resistance characteristic, so as to enhance the voltage resistance characteristic significantly. However, the figure clearly shows that the upper and lower stacked chips 100 increase the total height of the diode, and the increased height (or thickness) is not conducive to the height (or thickness) requirement of the circuit board of 3C products. In addition, it is necessary to bend the upper electrode pin 101 to a larger angle and extend it to a farther distance before it can be soldered to the top of the upper chip.
Since the two electrode pins are formed by stamping and bending a plate material, therefore the bending angle and length of extension cause tremendous limitation and inconvenience in the manufacturing process, and that is why most conventional way of packaging diodes at most use two chips, and any manufacturing process exceeding two chips will be very difficult.
In order to reduce the volume of the diode, the flip-chip packaging technology becomes a very important milestone for the development of packaging the SMD diodes. The so-called “flip-chip” is to form a bump at a chip connecting point during the manufacturing process, and then the chip is flipped such that the bump is directly connected to a lower guide plate (or a substrate). Unlike the conventional chip packaging as shown in
In
In view of the advantages of the flip-chip packaging technology, the inventor of the present invention made use of the flip-chip packaging technology to overcome the aforementioned drawbacks of the conventional SMD diodes including the size limitation and the limited CSP voltage resistance characteristic and developed a flip-chip packaging diode with a multichip structure in accordance with the present invention.
Therefore, it is a primary objective of the present invention to overcome the drawbacks of the prior art and provide a flip-chip packaging diode with a multichip structure not just capable of reducing the size of the conventional diodes only, but also capable of conveniently increasing the quantity of flip-chips depending on the voltage resistance requirement and fitting the flip-chip packaging of general rectification/protection diodes, and particularly the flip-chip packaging of high-voltage diodes.
To achieve the aforementioned and other objectives, the present invention discloses a flip-chip packaging diode with a multichip structure comprising at least one first flip-chip and a second flip-chip arranged with an interval apart from one another and horizontally disposed at the top of a lower guide plate, characterized in that the bottom of the first flip-chip and the bottom of the second flip-chip are electrically coupled to the lower guide plate, and each of the top of the first flip-chip and the top of the second flip-chip has a conductive layer; an insulating material is filled between the first flip-chip and the second flip-chip and the outer periphery of the first flip-chip and the outer periphery of the second flip-chips, so that the conductive layers at the top of the first flip-chip and the top of the second flip-chips are separated from each other; a tin platform or a metal layer is disposed on the conductive layers at the top of the first flip-chip and the top of the second flip-chip and exposed from the insulating material to serve as a first electrode and a second electrode respectively for electrically coupling an external circuit; and an electrical transmission path sequentially passing from the first electrode through the first flip-chip, the lower guide plate, and the second flip-chip to the second electrode forms a series circuit.
Wherein, the first flip-chip and the second flip-chip are unidirectionally conducted unidirectional flip-chips, and the bottom of the first flip-chip and the bottom of the second flip-chip are arranged in different polar directions.
In a preferred embodiment of the unidirectional flip-chip, each of the bottom of the first flip-chip and the bottom of the second flip-chip has a vertical and downward laminate flip-chip, or a plurality of vertical and downward laminate flip-chips arranged in different polar directions at their adjacent electrical connection surfaces, characterized in that the two laminate flip-chips disposed at the bottom of the first flip-chip and the bottom of the second flip-chip are arranged in different polar directions at the electrical connection surface between the first flip-chip and the second flip-chip, and the bottoms of the two laminate flip disposed on the top of the lower guide plate are arranged in different polar directions and electrically coupled to the lower guide plate; and an electrical transmission path sequentially passing from the first electrode through the first flip-chip, the one or more laminate flip-chips, the lower guide plate, the one or more laminate flip-chips, and the second flip-chip to the second electrode forms a series circuit.
In a preferred embodiment of the unidirectional flip-chip, the first flip-chip and the second flip-chip have a third flip-chip and a fourth flip-chip horizontally disposed with an interval apart from each other, and the lower guide plate is cut and separated into a first lower guide plate and a second lower guide plate, characterized in that the third flip-chip and the first flip-chip are arranged in different polar directions with respect to each other, and the bottom of the third flip-chip and the bottom of the first flip-chip are electrically coupled to the first lower guide plate; the fourth flip-chip and the second flip-chip are arranged in different polar directions with respect to each other, and the fourth flip-chip and the second flip-chip bottom are electrically coupled to the second lower guide plate; the third flip-chip and the fourth flip-chip are arranged in different polar directions with respect to each other, and an upper guide plate is bridged between the top of the third flip-chip and the top of the fourth flip-chip; and an electrical transmission path sequentially passing from the first electrode through the first flip-chip, the first lower guide plate, the third flip-chip, the upper guide plate, the fourth flip-chip, the second lower guide plate, and the second flip-chip to the second electrode forms a series circuit.
Wherein, the first flip-chip, the second flip-chip, the third flip-chip and the fourth flip-chip come with a plural quantity and are vertically stacked with respect to one another, and the plurality of stacked first flip-chips, second flip-chips, third flip-chips and fourth flip-chips are arranged in different polar directions at their adjacent electrical connection surfaces; wherein the first lower guide plate is electrically coupled to the bottom-layer third flip-chip and the bottom-layer first flip-chip bottom, and the second lower guide plate is electrically coupled to the bottom-layer fourth flip-chip and the bottom-layer second flip-chip bottom, and the upper guide plate is bridged between the top of the top-layer third flip-chip and the top of the top-layer fourth flip-chip.
Wherein, the first flip-chip and the second flip-chip are bidirectionally conducted bidirectional flip-chips, and the bottom of the first flip-chip and the bottom of the second flip-chip are arranged in the same polar direction.
In a preferred embodiment of the bidirectional flip-chip, each of the bottom of the first flip-chip and the bottom of the second flip-chip has a vertical and downward laminate flip-chip, or a plurality of vertical and downward laminate flip-chips arranged in the same polar direction at their adjacent electrical connection surfaces, characterized in that the two laminate flip-chips disposed at the bottom of the first flip-chip and the bottom of the second flip-chip are in arranged the same polar direction at the electrical connection surface between the first flip-chip and the second flip-chip, and the bottoms of the two laminate flip-chips disposed on the top of the lower guide plate are arranged in the same polar direction and electrically coupled to the lower guide plate; and an electrical transmission path sequentially passing from the first electrode through the first flip-chip, the one or more laminate flip-chips, the lower guide plate, the one or more laminate flip-chips, and the second flip-chip to the second electrode forms a series circuit, and an electrical transmission path in the reverse direction is also a series circuit.
In a preferred embodiment of the bidirectional flip-chip, the first flip-chip and the second flip-chip have a third flip-chip and a fourth flip-chip arranged parallel to each other and with an interval apart from each other, and the lower guide plate is cut and separated into a first lower guide plate and a second lower guide plate, characterized in that the third flip-chip and the first flip-chip are arranged in the same polar direction, and the bottom of the third flip-chip and the bottom of the first flip-chip are electrically coupled to the first lower guide plate; the fourth flip-chip and the second flip-chip are arranged in the same polar direction, and the bottom of the fourth flip-chip and the bottom of the second flip-chip are electrically coupled to the second lower guide plate; the third flip-chip and the fourth flip-chip are arranged in the same polar direction, and an upper guide plate is bridged between the top of the third flip-chip and the top of the fourth flip-chip; and an electrical transmission path sequentially passing from the first electrode through the first flip-chip, the first lower guide plate, the third flip-chip, the upper guide plate, the fourth flip-chip, the second lower guide plate, and the second flip-chip to the second electrode forms a series circuit, and an electrical transmission path in the reverse direction is also a series circuit.
Wherein, the first flip-chip, the second flip-chip, the third flip-chip and the fourth flip-chip come with a plural quantity and are vertically stacked with respect to one another, and the plurality of stacked first flip-chips, second flip-chips, third flip-chips and fourth flip-chips are arranged in the same polar direction at their adjacent electrical connection surfaces; wherein the first lower guide plate is electrically coupled to the bottom of the bottom-layer third flip-chip and the bottom of the bottom-layer first flip-chip; the second lower guide plate is electrically coupled to the bottom of the bottom-layer fourth flip-chip and the bottom of the bottom-layer second flip-chip, and the upper guide plate is bridged between the top of the top-layer third flip-chip and the top of the top-layer fourth flip-chip.
Compared with the conventional packaging method which is capable of vertically stacking and connecting at most two chips in series, the flip-chip packaging diode of the present invention not just increases the voltage resistance significantly in the condition of the same height only, but also conveniently and unlimitedly increases the quantity of flip-chips depending on the voltage resistance requirement, which is applicable for the flip-chip packaging of general rectification/protection diodes, and particularly for the flip-chip packaging of high-voltage diodes.
The above and other objects, features and advantages of this disclosure will become apparent from the following detailed description taken with the accompanying drawings.
With reference to
During the use of the aforementioned diode, the first electrode 50 and the second electrode 60 are coupled to the positive and negative electrodes of the external circuit, and an electrical transmission path passing from the first electrode 50 through the first flip-chip 10, the lower guide plate 30, and the second flip-chip 20 to the second electrode 60 forms a series circuit, wherein the first flip-chip 10 and the second flip-chip 20 are connected in series to improve the electrical characteristic of the voltage resistance without increasing the total height of the diode. Compared with the conventional packaging process, the present invention is much more convenient and applicable for the flip-chip packaging of general rectification/protection diodes, and particularly for the flip-chip packaging of high-voltage diodes.
In
In the aforementioned structure, the flip-chip is not limited by the conventional plate material, so that the present invention may increase the quantity of flip-chips conveniently. In the preferred embodiment of the unidirectional flip-chip as shown in
Wherein, the two laminate flip-chip 70a, 70b disposed at the bottom of the first flip-chip 10 and the bottom of the second flip-chip 20 are arranged in different polar directions at the electrical connection surface between the first flip-chip 10 and the second flip-chip 20, and the bottoms of the two laminate flip-chips 70a, 70b are electrically coupled to the lower guide plate 30. Similarly, if a plurality of laminate flip-chips 70a, 70b are vertically and downwardly stacked, then the vertically stacked laminate flip-chip 70a, 70b are in different polar directions at their adjacent electrical connection surfaces, and the two bottom-layer laminate flip-chips 70a, 70b are electrically coupled to the lower guide plate 30.
Therefore, an electrical transmission path sequentially passing from the first electrode 50 through the first flip-chip 10, the one or more laminate flip-chips 70a, the lower guide plate 30, the one or more laminate flip-chips 70b, and the second flip-chip 20 to the second electrode 60 forms a series circuit.
In a preferred embodiment of the unidirectional flip-chip as shown in
Wherein, the third flip-chip 80 and the first flip-chip 10 are arranged in different polar directions with respect to each other, and the bottom of the third flip-chip 80 and the bottom of the first flip-chip 10 are electrically coupled to the first lower guide plate 31; the fourth flip-chip 90 and the second flip-chip 20 are arranged in different polar directions with respect to each other, and the bottom of the fourth flip-chip 90 and the bottom of the second flip-chip 20 are electrically coupled to the second lower guide plate 32; and the third flip-chip 80 and the fourth flip-chip 90 are arranged in different polar directions with respect to each other, and an upper guide plate 33 is bridged between the top of the third flip-chip 80 and the top of the fourth flip-chip 90.
By the aforementioned electrical connection, an electrical transmission path sequentially passing from the first electrode 50 through the first flip-chip 10, the first lower guide plate 31, the third flip-chip 80, the upper guide plate 33, the fourth flip-chip 90, the second lower guide plate 32, and the second flip-chip 20 to the second electrode 60 forms a series circuit, so as to achieve the effect of increasing the quantity of flip-chips. Similarly, a fifth flip-chip and a sixth flip-chip may be arranged horizontally with an interval apart from each other, and a third lower guide plate and a second upper guide plate (not shown in the figure) may be added. As long as the increased number of the flip-chips is even, and the electrical transmission path forms a series circuit, such design can be implemented.
In
With reference to
In
While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 105140864 | Dec 2016 | TW | national |