Flip chip solder bump pad

Information

  • Patent Grant
  • 6180265
  • Patent Number
    6,180,265
  • Date Filed
    Monday, December 21, 1998
    25 years ago
  • Date Issued
    Tuesday, January 30, 2001
    23 years ago
Abstract
A method for forming a solder bump pad (22), and more particularly converting a wire bond pad (12) of a surface-mount IC device (10) to a flip chip solder bump pad (22), such that the IC device (10) can be flip-chip mounted to a substrate. The process generally entails an aluminum wire bond pad (12) on a substrate, with at least a portion of the wire bond pad (12) being exposed through a dielectric layer (16) on the substrate. A nickel layer (24) is then deposited on the portion of the wire bond pad (12) exposed through the dielectric layer (16). The nickel layer (24) is selectively deposited on the exposed portion of the wire bond pad (12) without use of a masking operation, such as by an electroless deposition technique. The nickel layer (24) completely overlies the aluminum wire bond pad (12), and therefore protects the bond pad (12) from oxidation due to exposure. Thereafter, the solder bump pad (22) is formed by depositing a solderable material on the nickel layer (24). The solder bump pad (22) is formed to cover only a limited portion of the nickel layer(24), and its shape is tailored to achieve the required geometric characteristics for a solder bump (26) subsequently formed on the solder bump pad (22).
Description




FIELD OF THE INVENTION




The present invention generally relates to surface-mount integrated circuit devices. More particularly, this invention relates to surface-mount integrated circuit devices configured for electrical connection by wire bonding, and to a method by which wire bond pads on such a device are modified to yield flip chip solder bump pads that enable the device to be flip-chip mounted to a conductor pattern.




BACKGROUND OF THE INVENTION




A flip chip is generally a monolithic semiconductor device, such as an integrated circuit (IC), having bead-like terminals formed on one of its surfaces. The terminals, usually in the form of solder bumps, serve to both secure the flip chip to a circuit board and electrically interconnect the chip circuitry to a conductor pattern formed on the circuit board. Flip chip technology is compatible with a variety of circuit board types, including ceramic substrates, printed wiring boards, flexible circuits, and silicon substrates. The solder bumps are typically located at the perimeter of the flip chip on electrically conductive bond pads that are electrically interconnected with the circuitry on the flip chip. Due to the numerous functions typically performed by the microcircuitry of a flip chip, a relatively large number of solder bumps are often required. The size of a flip chip is typically on the order of about thirteen millimeters per side, resulting in the solder bumps being crowded along the perimeter of the flip chip. As a result, flip chip conductor patterns are typically composed of numerous individual conductors that are often spaced apart about 0.1 millimeter or less.




Flip chips are widely used in the electronics industry as a result of their compact size and their characteristic of being directly attached to substrates without additional packaging. Another process for directly attaching an IC device to a substrate is by the wire bonding process. Such an IC device has a number of bond pads that are wire bonded to bond pads of a complementary conductor pattern on the substrate to which the device is being attached. The bond pads on the IC device are typically aluminum or an aluminum-base alloy for various known processing and performance-related reasons. The wire is often gold, which will bond well with the aluminum bond pad if the bonding operation is properly performed.




Though wire-bonded ICs are widely used, flip chips are generally smaller, less expensive to mount, and more versatile, being suitable for a wider variety of electronic products than are chip-and-wire ICs. Consequently, there has evolved a demand for flip chip bumping and attachment of surface-mount devices that were originally designed for attachment by wire bonding. Several alternatives have been contemplated for this conversion process. One example is illustrated in

FIGS. 1A through 1C

, which show an IC device


10


on which a wire bond pad


12


has been formed. The bond pad


12


is conventionally formed of aluminum or an aluminum-base alloy, and is therefore susceptible to corrosion if left exposed. Consequently, a passivation layer


16


overlies the surface of the device


10


, with a square-shaped opening


14


being formed in the passivation layer


16


to expose an interior region of the bond pad


12


. However, the exposed region of the bond pad


12


is too large for forming a solder bump for flip-chip mounting the device


10


. In particular, any attempt to form a solder bump on the exposed region of the bond pad


12


would yield a solder bump having inadequate height and a tendency to short with adjacent solder bumps.




Therefore, the process of

FIGS. 1A-1C

further entails depositing a second passivation layer


18


on the bond pad


12


and the original passivation layer


16


, and then developing a circular-shaped opening


20


in the second passivation layer


18


, as shown in FIG.


1


B. This step generally can be performed by spinning an organic dielectric material on the substrate


10


, photolithographically developing the opening


20


using known methods, and then curing the dielectric material. The opening


20


shown in

FIG. 1B

is sized and shaped to enable the deposition of a controlled amount of solderable material


22


on that portion of the bond pad


12


re-exposed by the opening


20


, the result of which is illustrated in FIG.


1


C. The solderable material


22


forms a bond pad that enables solder to be deposited and reflowed to form a suitable solder bump (not shown).




Though the process represented in

FIG. 1A through 1C

yields a suitable bond pad for a flip chip solder bump, the requirement for an additional passivation layer


18


and a masking operation to form the opening


20


represent a significant impact on processing costs and scheduling.




In view of the above, it would be desirable if a process were available that enabled wire bond pads to be converted to flip chip solder bump pads, but that avoided the cost and processing disadvantages of additional masking operations.




SUMMARY OF THE INVENTION




It is an object of this invention to provide a method for converting an aluminum wire bond pad to a flip chip solder bump pad, so as to enable an IC device originally configured for wire-bonding attachment to be mounted using a flip chip attachment technique.




It is a further object of this invention that such a method does not entail an additional masking operation.




It is another object of this invention that such a method yields a bond pad structure that protects the original aluminum wire bond pad.




In accordance with a preferred embodiment of this invention, these and other objects and advantages are accomplished as follows.




According to the present invention, there is provided a method for forming a solder bump pad, and more particularly converting a wire bond pad of a surface-mount IC device to a flip chip solder bump pad, such that the IC device can be flip-chip mounted to a substrate. As such, the process of this invention generally entails an aluminum wire bond pad on a substrate, with at least a portion of the wire bond pad being exposed through a dielectric layer on the substrate. A nickel layer is then deposited on the portion of the wire bond pad exposed through the dielectric layer. The nickel layer is selectively deposited on the exposed portion of the wire bond pad without use of a masking operation, such as by an electroless deposition technique. The nickel layer completely overlies the aluminum wire bond pad, and therefore protects the bond pad from oxidation due to exposure. Thereafter, a solderable material is deposited on the nickel layer, such that the solderable material forms the solder bump pad. The solder bump pad is formed to cover only a limited portion of the nickel layer, and its shape is tailored to achieve the required geometric characteristics for a solder bump subsequently formed thereon.




As described above, the process of this invention yields a flip chip solder bump pad from a wire bond pad without requiring an additional passivation layer or masking operation to properly size and shape the solder bump pad. Accordingly, this invention avoids the significant impact on processing costs and scheduling that these additional steps would incur, while achieving the accuracy and integrity required for flip chip bonding techniques.




Other objects and advantages of this invention will be better appreciated from the following detailed description.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:





FIGS. 1A-1C

are plan views illustrating processing steps performed to convert a wire bond pad to a flip chip solder bump pad in accordance with the prior art;





FIGS. 2A-2C

are plan views illustrating processing steps performed to convert a wire bond pad to a flip chip solder bump pad in accordance with the present invention; and





FIG. 3

is a cross sectional view of the flip chip solder bump pad of FIG.


2


C.











DETAILED DESCRIPTION OF THE INVENTION




Illustrated in

FIGS. 2A through 2C

is a process for converting a wire bond pad


12


(

FIG. 2A

) to a flip chip solder bump pad


22


(FIG.


2


C), such that a wire bond IC device can be modified to yield a flip chip IC device. IC devices modified according to this invention achieve the processing and performance benefits associated with flip chip IC devices, while incurring minimal additional processing and material costs.




As represented in

FIG. 2A

, an IC device


10


originally configured to be wire bonded to a substrate (not shown) is illustrated as having an aluminum wire bond pad


12


exposed through a square-shaped opening


14


formed in a passivation layer


16


that overlies the surface of the device


10


. As is conventional, the passivation layer


16


is formed by a thin layer of a suitable dielectric material, such as silicon dioxide, and serves to protect the underlying surface from moisture and electrical shorts. The first processing step of this invention is to deposit a nickel layer


24


on the exposed region of the bond pad


12


, the result of which is represented by FIG.


2


B. Deposition of the nickel layer


24


can be performed electrolessly, such that nickel is deposited only on the aluminum wire bond pad


12


without the use of a masking operation. Using an electroless process known in the art, the nickel completely covers, and therefore fully protects, the underlying aluminum of the bond pad


12


. As such, the process of this invention entails using a layer of nickel to perform the traditional function of a passivation layer in IC technology. The nickel layer


24


also maintains electrical accessibility to the wire bond pad


12


, such than an access via through the nickel layer


24


to the bond pad


12


is unnecessary.




As shown in

FIG. 2C

, processing continues by depositing a solderable material on the nickel layer


24


to form the flip chip solder bump pad


22


. The pad


22


is deposited to be properly sized and shaped to enable the formation of a suitable solder bump (


26


in

FIG. 3

) using known solder bumping reflow techniques. As shown in

FIG. 2C

, the pad


22


of solderable material has a circular shape that lies entirely on the square-shaped nickel layer


24


and entirely within the square-shaped opening


14


in the passivation layer


16


. The solderable material is selected to promote a metallurgically bond with the solder bump


26


, thereby providing a reliable mechanical and electrical connection between the IC device


10


and a conductor bond pad (not shown) formed on the substrate to which the IC device


10


is to be flip-chip mounted.




Various compositions could be used for the solderable material that forms the solder bump pad


22


of the present invention. A preferred metallurgy is a multilayer metal structure, with a bottom layer of aluminum deposited directly on the electroless nickel layer


24


, followed by a layer of a nickel-vanadium alloy and then a copper layer. A preferred process for depositing the layers of the multilayer bond pad


22


is sputtering, though it is foreseeable that other deposition processes could be employed. The copper layer of the bond pad


22


is readily solderable, i.e., can be wetted by and will metallurgically bond with solder alloys of the type used for solder bumps. As such, the copper layer promotes the formation of the solder bump


26


with known bumping techniques. The solder alloy for the solder bump


26


can be deposited on the bond pad


22


as a solder paste or by known electroplating or evaporation techniques, and upon reflow forms the solder bump


26


as shown in FIG.


3


.





FIG. 3

represents a cross-sectional view of the resulting bumped pad structure of this invention. The solder bump


26


has a spherical shape due to the reflow process by which the solder material is heated above its liquidus temperature, at which the solder material coalesces to form a bump or ball, and then cooled so as to metallurgically bond the solder bump


26


to the bond pad


22


.




While the invention has been described in terms of a preferred embodiment, it is apparent that other forms could be adopted by one skilled in the art. For example, other bond pad metallurgies could be substituted for the multilayer structure disclosed. Accordingly, the scope of the invention is to be limited only by the following claims.



Claims
  • 1. A flip chip solder bump pad structure on a surface-mount electronic device, the flip chip solder bump pad comprising:an aluminum wire bond pad; a dielectric layer overlying a peripheral surface portion of the aluminum wire bond pad so that an inner surface portion of the aluminum wire bond pad is exposed through an opening in the dielectric layer; a nickel layer completely covering the inner surface portion of the aluminum wire bond pad exposed through the dielectric layer; a solder bump pad covering a limited portion of the nickel layer so that at least a portion of the nickel layer remains exposed, the solder bump pad comprising a solderable material; and a spherical solder bump on the solder bump pad.
  • 2. A flip chip solder bump pad structure as recited in claim 1, wherein the solder bump pad comprises multiple metal layers, the multiple metal layers comprising an aluminum layer contacting the nickel layer and a copper layer that is a top layer of the multiple metal layers.
  • 3. A flip chip solder bump pad structure as recited in claim 1, wherein the solder bump pad has a circular shape to effect the spherical shape of the solder bump, and wherein the nickel layer and the opening in the dielectric layer have square shapes.
  • 4. A flip chip solder bump pad structure as recited in claim 1, wherein the spherical solder bump is wider than the solder bump pad and the nickel layer.
Parent Case Info

This is a division of application Ser. No. 08/883,694 filed on Jun. 27, 1997 now U.S. Pat. No. 5,891,756.

Government Interests

This invention was made with Government support under Agreement No. MDA972-95-3-0031 awarded by DARPA. The Government has certain rights in the invention.

US Referenced Citations (10)
Number Name Date Kind
4950623 Dishon Aug 1990
5137845 Lochon et al. Aug 1992
5268072 Agarwala et al. Dec 1993
5310701 Kaussen et al. May 1994
5376584 Agarwala Dec 1994
5542174 Chiu Aug 1996
5856705 Ting May 2000
5923955 Wong Jul 1999
5989993 Zakel et al. Nov 1999
6066551 Satou et al. May 2000
Foreign Referenced Citations (1)
Number Date Country
9718584 May 1997 WO