High efficiency epitaxial chemical vapor deposition (CVD) reactor

Information

  • Patent Grant
  • 8656860
  • Patent Number
    8,656,860
  • Date Filed
    Wednesday, April 14, 2010
    14 years ago
  • Date Issued
    Tuesday, February 25, 2014
    10 years ago
Abstract
The present disclosure presents a chemical vapor deposition reactor having improved chemical utilization and cost efficiency. The wafer susceptors of the present disclosure may be used in a stackable configuration for processing many wafers simultaneously. The reactors of the present disclosure may be reverse-flow depletion mode reactors, which tends to provide uniform film thickness and a high degree of chemical utilization.
Description
FIELD

The present disclosure relates to epitaxial deposition. More particularly, the present disclosure relates to epitaxial deposition of silicon or other semiconducting materials.


BACKGROUND

Monocrystalline silicon is the most dominant material for photovoltaic applications. The high efficiencies associated with monocrystalline solar cells, combined with the abundance of material, garner appeal for continued use and advancement. But the high processing cost of crystalline silicon material limits the widespread use of these solar modules. At present, the cost of “wafering,” or crystallizing silicon and cutting a wafer, accounts for about 40% finished solar cell cost. If a more direct way of making wafers were possible, great headway could be made in lowering the cost of solar cells.


There are different known methods of growing monocrystalline silicon and releasing or transferring the grown wafer. Regardless of the method, a low cost epitaxial deposition process is assumed.


Silicon epitaxial (epi) deposition was originally developed for the semiconductor industry. The requirements for the semiconductor industry, in both film properties and cost, are nearly polar opposites of requirements in the solar field. For example, semiconductor epi films are typically less than 5 μm (1 μm=10−6 meter) thick, while solar requires 60-80 μm of silicon. In order to achieve economies in the solar industry, the silicon cost per watt must reside in the $0.25/watt or approximately $1.00/wafer (assuming a 4 watt cell).


The precursor chemistry for epi is predominantly trichlorosilane (TCS), although for thinner films silane (SiH4) may also be used. Epitaxial deposition for each chemical poses unique requirements and challenges in both equipment architecture and process conditions. Based on low cost and abundance, TCS is the chemistry of choice for the solar industry. The present disclosure will generally be described with regard to TCS, but one of ordinary skill in the art will recognize its applications to silane and other precursor chemicals.


In order to achieve the necessary economy for solar applications, process cost modeling is studied to identify and optimize equipment performance. Three categories of cost make up the total cost picture: fixed cost (FC), recurring cost (RC) and yield cost (YC). FC is made up of items such as equipment purchase price, installation cost, and robotics or automation cost. RC is largely made up of electricity, gases, chemicals, operator salaries, and maintenance technician support. YC may be interpreted as the total value of parts lost during production.


To achieve the cost of ownership (CoO) numbers required by the solar field, all aspects of the cost picture must be optimized. The qualities of a low-cost process are (in order of priority): 1) high productivity, 2) high yield, 3) low RC, and 4) low FC.


Designing highly productive equipment requires a good understanding of the process requirements and reflecting those requirements in the architecture. High yield requires a robust process and reliable equipment. Low RC turns out to be the dominant component in the cost model. RC can impact plant site selection based on, for example, cost of local power or availability of bulk chemicals. FC, although important, is diluted by equipment productivity.


With the above said, in summary, a highly productive, reliable, efficient reactor may be essential for the production of low cost solar cells.


SUMMARY

Therefore, it is an object of the present disclosure to provide a CVD reactor having improved chemical utilization and high yield, and thereby reduce costs and improve efficiency.


Achieving low RC requires efficient use of chemicals. In an effort to make use of a greater portion of TCS, a longer deposition zone will be described. Providing a longer deposition zone may allow a higher percentage of the TCS to be deposited. In this way, greater chemicals utilization may be realized. By choosing the optimal parameters (chemical concentration, gas speed, reaction dimensions, etc.), productivity and chemical utilization may be optimized. A further object of the present disclosure is minimization of deposition on surfaces other than the wafers, which is also important for effective chemical utilization. The disclosed reactor has a high wafer area to reactor surface area ratio, which tends to minimize parasitic losses.


These and other advantages of the disclosed subject matter, as well as additional novel features, will be apparent from the description provided herein. The intent of this summary is not to be a comprehensive description of the subject matter, but rather to provide a short overview of some of the subject matter's functionality. Other systems, methods, features and advantages here provided will become apparent to one with skill in the art upon examination of the following FIGURES and detailed description. It is intended that all such additional systems, methods, features and advantages included within this description be within the scope of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, nature, and advantages of the disclosed subject matter may become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numerals indicate like features and wherein:



FIG. 1 shows a top view of an embodiment of a wafer susceptor;



FIGS. 2A and 2B show a side view and an enlarged side view, respectively, of an embodiment of a wafer susceptor;



FIG. 3 shows a side view of an embodiment of a reactor with two sets of susceptor plates;



FIG. 4 shows a top view of a batch stack reactor (BSR) embodiment;



FIGS. 5A and 5B show a side view and an enlarged side view, respectively, of an embodiment of a double-sided deposition (DSD) susceptor arrangement;



FIG. 6 shows a top view of an embodiment comprising an array of susceptors; and



FIG. 7 shows a side view of an embodiment of a double-sided deposition reactor.





DETAILED DESCRIPTION

Although the present disclosure is described with reference to specific embodiments, one skilled in the art could apply the principles discussed herein to other areas and/or embodiments without undue experimentation.


The present disclosure references a “template,” which may be viewed as equivalent to a “wafer.” In one embodiment of the present disclosure, the template, after epitaxy, may be used repeatedly to grow and release crystalline wafers. But the use to which the template or wafer is put after epitaxial deposition is beyond the scope of the present disclosure: one of ordinary skill will recognize the myriad uses to which the template might be put without departing from the spirit of the present disclosure.


One novel aspect of the reactor of the present disclosure lies in the arrangement of the wafer susceptors (a susceptor is a material used for its ability to absorb electromagnetic energy and impart that energy, in the form of heat, to the wafers). Although the susceptors may be heated electromagnetically, lamps or resistive heating may also be effective.


The susceptors of the present disclosure may be stackable, yet they do not rely on stacking for providing the “building blocks” of the overall reactor. The reactors of the present disclosure may or may not be depletion mode reactors (DMRs). “Depletion mode” refers to the depletion or utilization of chemical along the direction of gas flow. As shown in FIG. 1, that direction may be reversed to even out film thickness from one end to the other. In embodiments where the direction is not reversed, a tendency to deposit more chemicals in the region closest to the source port may be exhibited. In a forward-flow (i.e. left-to-right) mode, port 10 comprises a source port, and port 12 comprises an exhaust port; in a reverse-flow mode, the opposite is true. For that reason, port 10 may be referred to as “source/exhaust port 10,” and port 12 may be referred to as “exhaust/source port 12.” FIGS. 1, 2A, and 2B show different views of the same susceptor arrangement: a top view, a side view, and a detail side view, respectively. As shown in FIGS. 2A and 2B, the design of ports 10 and 12 lends itself to the stackable nature of the wafer susceptors of the present disclosure.


Baffle channels 15 are shown in FIGS. 1, 2A, and 2B. These baffle channels comprise a part of the path through which the TCS or other chemical species flows. Pin holes 16, shown in FIG. 1 only, provide template lift during the epitaxial deposition process.


In these views, template 20 (shown in FIG. 2B) is shown inserted into insert pocket 18 (shown in FIG. 1).


The various dimensions of the reactor shown may be varied by one of ordinary skill without departing from the spirit of the present invention.


In this exemplary embodiment, the thickness of insert pocket 18 is approximately 6 mm, and the length of the whole assembly is approximately 50 cm. The diameter of ports 10 and 12 may be approximately 15 mm.



FIG. 3 shows reactor 30, which includes two sets of stacked susceptor plates, similar to the susceptor plates shown in the preceding three FIGURES. The reactor of FIG. 3 is a depletion mode reactor.


Reactor 30 includes source/exhaust port 40 and exhaust/source port 42. The maid body of reactor 30 is housed in quartz muffle 35. As shown, reactor 30 uses lamps 36 for heating the susceptor plates.


During the reaction (or reduction) of TCS with hydrogen gas, hydrochloric acid (HCl gas) is produced. In fact, if the reaction were fed with additional H2 and allowed to extend over a longer zone or time, the concentration of HCl could continue to rise past the point of reaction inhibition and begin to etch the silicon template. While this is generally a state to be avoided, etching of silicon may be employed to clean the downstream exhaust passages. In effect, by allowing a sufficient level of HCl to build up, one could operate the reactor of the present disclosure in a self-maintaining mode by having the produced HCl gas etch away unwanted deposited silicon.



FIG. 4 shows reactor 50, an embodiment of the present disclosure known as a batch stack reactor (BSR). In this configuration, the susceptor plates are stacked to increase the batch load to, in some embodiments, several hundred wafers. By purging the exterior of the susceptors with H2 gas, the quartz bell jar is protected from silicon deposition. Most known bell jar reactors are not protected from TCS and require periodic HCl cleaning to remove unwanted deposited silicon. This process may interrupt production, thereby adversely affecting the cost per wafer (i.e. CoO).


Reactor 50 is housed in quartz bell jar 52. In the embodiment shown, reactor 50 includes separate ports for TCS and H2, although this is not a necessary feature of the present disclosure; in other embodiments, TCS and H2 may be premixed and fed through the same ports. As shown, H2 source/exhaust ports 54 and TCS source/exhaust ports 55 are at one end of the reactor; H2 exhaust/source ports 56 and TCS exhaust/source ports 57 are at the other end. These ports may be differentiated only when acting as source ports. When a given port is being used in an exhaust capacity, it will be exhausting gas that has already been mixed inside the reactor.


TCS reduction with H2 may result when the gases are mixed at the appropriate temperature. FIG. 4 shows an arrangement of separating the precursors until the point of use at each susceptor. This method may further extend chemical utilization and runtime favoring further improved CoO.


In the arrangement shown in FIGS. 5A and 5B, each template is exposed to process gases on both sides. This feature enables dual side deposition, which has a compounding effect of both increased chemical utilization and lower epi cost per wafer.


The susceptors shown in FIGS. 5A and 5B are generally similar in use to the ones shown in FIGS. 2A and 2B, and may be incorporated into various types of reactor configurations.


The dual sided susceptors may be stackable (as shown in the embodiment of FIG. 3), yet they may also be arranged in a matrix as shown in FIG. 6.



FIG. 7 shows a side view of a depletion mode reactor using the dual sided susceptors of FIGS. 5A and 5B. It is generally similar in structure to the reactor shown in FIG. 3, but with a dual sided susceptor in place of the stacked susceptors.


Those with ordinary skill in the art will recognize that the disclosed embodiments have relevance to a wide variety of areas in addition to those specific examples described above. In particular, any of the disclosed susceptors could be placed into any of the disclosed reactor arrangements without undue experimentation by one of ordinary skill in the art.


The foregoing description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the claimed subject matter. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the innovative faculty. Thus, the claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.


It is intended that all such additional systems, methods, features, and advantages that are included within this description be within the scope of the claims.

Claims
  • 1. A depletion mode reactor for depositing a chemical on a first surface of a plurality of wafers simultaneously according to a chemical vapor deposition process, said reactor comprising: a reversible first port positioned on a first side of a first surface of a wafer and providing the supply or exhaust of a chemical;a plurality of first baffle channels, each of said first baffle channels coupled to said first port and through each of which a chemical may flow to a wafer insert pocket;a plurality of vertically stacked susceptor plates, each comprising a wafer insert pocket exposing a first surface of a wafer to said chemical, each of said wafer insert pockets being coupled to a first baffle channel and a second baffle channel, said vertically stacked susceptor plates providing a flow path for said chemical across a first surface of each of said wafers;a plurality of second baffle channels, each of said second baffle channels coupled to a second reversible port and through each of which a chemical may flow to said wafer insert pocket; anda reversible second port positioned on a second side of a first surface of a wafer and providing the supply or exhaust of a chemical;said reversible ports, said baffle channels, and said plurality of vertically stacked susceptor plates providing a chemical flow path;wherein said first reversible port and said reversible second port are capable of operating in either a supply mode or an exhaust mode to alternate the flow of chemical across said first surface of said wafer.
  • 2. The reactor of claim 1, further comprising a heating lamp.
  • 3. The reactor of claim 2, further comprising a quartz muffle.
  • 4. The reactor of claim 1, further comprising a quartz muffle.
  • 5. The reactor of claim 1 wherein said reactor is a batch stack reactor and said vertically stacked susceptor plates each comprise a plurality of wafer insert pockets arranged in a horizontal matrix.
  • 6. The reactor of claim 1 wherein said reversible first port comprises a plurality of reversible first ports having at least one TCS source port and at least one H2 source port, and said reversible second port comprises a plurality of second ports having at least one TCS source port and at least one H2 source port.
  • 7. A depletion mode reactor for depositing a chemical on a first primary surface and a second primary surface of a plurality of wafers simultaneously according to a chemical vapor deposition process, said reactor comprising: a reversible first port positioned on a first side of said first primary surface and said second primary surface of a wafer and providing the supply or exhaust of a chemical;a plurality of first double-sided baffle channels, each of said first double-sided baffle channels coupled to said first port and through each of which a chemical may flow to a wafer insert pocket;a plurality of vertically stacked dual sided susceptor plates each comprising a wafer insert pocket for exposing said first primary surface and said second primary surface of said wafer to said chemical, each of said wafer insert pockets being coupled to said first double-sided baffle channel and a second double-sided baffle channel, said vertically stacked dual sided susceptor plates providing a flow path for said chemical across a first surface of each of said wafers;a plurality of second double-sided baffle channels, each of said second double-sided baffle channels coupled to a second reversible port and through each of which a chemical may flow to said wafer insert pocket; anda reversible second port positioned on a second side of said first primary surface and said second primary surface of a wafer and providing the supply or exhaust of a chemical;said reversible ports, said double-sided baffle channels, and said plurality of vertically stacked susceptor plates providing a chemical flow path;wherein said reversible first port and said reversible second port are capable of operating in either a supply mode or an exhaust mode to alternate the flow of chemical across said first primary surface and said second primary surface of said wafer.
  • 8. The reactor of claim 7, further comprising a heating lamp.
  • 9. The reactor of claim 8, further comprising a quartz muffle.
  • 10. The reactor of claim 7, further comprising a quartz muffle.
  • 11. The reactor of claim 7 wherein said reactor is a batch stack reactor and said vertically stacked susceptor plates each comprise a plurality of wafer insert pockets arranged in a horizontal matrix.
  • 12. The reactor of claim 7 wherein said reversible first port comprises a plurality of reversible first ports having at least one TCS source port and at least one H2 source port, and said reversible second port comprises a plurality of second ports having at least one TCS source port and at least one H2 source port.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/169,139, which is hereby incorporated by reference in its entirety.

US Referenced Citations (113)
Number Name Date Kind
4043894 Gibbs Aug 1977 A
4070206 Kressel et al. Jan 1978 A
4082570 House et al. Apr 1978 A
4165252 Gibbs Aug 1979 A
4249959 Jebens Feb 1981 A
4251679 Zwan Feb 1981 A
4348254 Lindmayer Sep 1982 A
4361950 Amick Dec 1982 A
4409423 Holt Oct 1983 A
4427839 Hall Jan 1984 A
4461922 Gay et al. Jul 1984 A
4468283 Ahmed Aug 1984 A
4479847 McCaldin et al. Oct 1984 A
4626613 Wenham et al. Dec 1986 A
4672023 Leung Jun 1987 A
4922277 Carlson May 1990 A
5024953 Uematsu et al. Jun 1991 A
5073230 Maracas et al. Dec 1991 A
5112453 Behr et al. May 1992 A
5208068 Davis May 1993 A
5248621 Sano Sep 1993 A
5316593 Olson et al. May 1994 A
5348618 Canham et al. Sep 1994 A
5397400 Matsuno et al. Mar 1995 A
5459099 Hsu Oct 1995 A
5494832 Lehmann et al. Feb 1996 A
5538564 Kaschmitter Jul 1996 A
5645684 Keller Jul 1997 A
5660680 Keller Aug 1997 A
5681392 Swain Oct 1997 A
5882988 Haberern et al. Mar 1999 A
5899360 Mack et al. May 1999 A
5928438 Salami Jul 1999 A
6091021 Ruby Jul 2000 A
6096229 Shahid Aug 2000 A
6114046 Hanoka Sep 2000 A
6127623 Nakamura et al. Oct 2000 A
6204443 Kiso et al. Mar 2001 B1
6294725 Hirschberg et al. Sep 2001 B1
6331208 Nishida et al. Dec 2001 B1
6399143 Sun et al. Jun 2002 B1
6416647 Dordi et al. Jul 2002 B1
6429037 Wenham et al. Aug 2002 B1
6441297 Keller et al. Aug 2002 B1
6448155 Iwasaki et al. Sep 2002 B1
6461932 Wang Oct 2002 B1
6524880 Moon et al. Feb 2003 B2
6534336 Iwane Mar 2003 B1
6555443 Artmann et al. Apr 2003 B1
6566235 Nishida et al. May 2003 B2
6602760 Poortmans et al. Aug 2003 B2
6602767 Nishida et al. Aug 2003 B2
6613148 Rasmussen Sep 2003 B1
6624009 Green et al. Sep 2003 B1
6645833 Brendel Nov 2003 B2
6649485 Solanki et al. Nov 2003 B2
6653722 Blalock Nov 2003 B2
6664169 Iwasaki et al. Dec 2003 B1
6756289 Nakagawa et al. Jun 2004 B1
6881644 Malik et al. Apr 2005 B2
6946052 Yanagita et al. Sep 2005 B2
6964732 Solanki Nov 2005 B2
7022585 Solanki et al. Apr 2006 B2
7026237 Lamb Apr 2006 B2
7147714 Naito et al. Dec 2006 B2
7312440 Degertekin et al. Dec 2007 B2
7368756 Bruhns et al. May 2008 B2
7402523 Nishimura Jul 2008 B2
7648927 Singh et al. Jan 2010 B2
20020153039 Moon et al. Oct 2002 A1
20020168592 Vezenov Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20030017712 Brendel Jan 2003 A1
20030039843 Johnson Feb 2003 A1
20030124761 Baert Jul 2003 A1
20040028875 Van Rijn Feb 2004 A1
20040173790 Yeo Sep 2004 A1
20040175893 Vatus et al. Sep 2004 A1
20040192044 Degertekin et al. Sep 2004 A1
20040259335 Narayanan Dec 2004 A1
20040265587 Koyanagi Dec 2004 A1
20050160970 Niira Jul 2005 A1
20050172998 Gee et al. Aug 2005 A1
20050176164 Gee et al. Aug 2005 A1
20050177343 Nagae Aug 2005 A1
20050199279 Yoshimine et al. Sep 2005 A1
20050274410 Yuuki et al. Dec 2005 A1
20050281982 Li Dec 2005 A1
20060021565 Zahler et al. Feb 2006 A1
20060043495 Uno Mar 2006 A1
20060054212 Fraas et al. Mar 2006 A1
20060070884 Momoi et al. Apr 2006 A1
20060105492 Veres et al. May 2006 A1
20060196536 Fujioka Sep 2006 A1
20060231031 Dings et al. Oct 2006 A1
20060252243 Kishimoto et al. Nov 2006 A1
20060266916 Miller et al. Nov 2006 A1
20060283495 Gibson Dec 2006 A1
20060286775 Singh et al. Dec 2006 A1
20070077770 Wang et al. Apr 2007 A1
20070082499 Jung et al. Apr 2007 A1
20080047601 Nag et al. Feb 2008 A1
20080157283 Moslehi Jul 2008 A1
20080210294 Moslehi Sep 2008 A1
20080241384 Jeong et al. Oct 2008 A1
20080264477 Moslehi Oct 2008 A1
20080289684 Moslehi Nov 2008 A1
20080295887 Moslehi Dec 2008 A1
20090042320 Wang et al. Feb 2009 A1
20090107545 Moslehi Apr 2009 A1
20090301549 Moslehi Dec 2009 A1
20100022074 Wang et al. Jan 2010 A1
20100116316 Moslehi et al. May 2010 A1
Foreign Referenced Citations (5)
Number Date Country
2763964 Dec 1998 FR
2426252 Nov 2006 GB
06-260670 Sep 1994 JP
2002-2299661 Oct 2002 JP
PCTEP1999008573 May 2000 WO
Non-Patent Literature Citations (31)
Entry
Alvin D. Compaan, Photovoltaics: Clean Power for the 21st Century, Solar Energy Materials & Solar Cells, 2006, pp. 2170-2180, vol. 90, Elsevier B.V.
C.Berge, 150-mm Layer Transfer for Monocrystalline Silicon Solar Cells, Solar Energy Materials & Solar Cells, 2006, pp. 3102-3107, vol. 90, Elsevier B.V.
C.Oules et al, Silicon on Insulator Structures Obtained by Epitaxial Growth of Silicon over Porous Silicon, Journal of the Electrochemical Society, Inc., 1992, p. 3595, vol. 139, No. 12, Meylan Cedex, France.
C.S.Solanki, et al, Porous Silicon Layer Transfer Processes for Solar Cells, Solar Energy Materials & Solar Cells, 2004, pp. 101-113, vol. 83, Elsevier B.V., Leuven, Belgium.
C.S.Solanki, et al, Self-Standing Porous Silicon Films by One-Step Anodizing, Journal of Electrochemical Society, 2004, pp. C307-C314, vol. 151, The Electrochemical Society, Inc., Leuven, Belgium.
F.Duerinckx, et al, Reorganized Porous Silicon Bragg Reflectors for Thin-Film Silicon Solar Cells, IEEE Electron Device Letters, Oct. 2006, vol. 27, No. 10.
Francois J. Henley, Layer-Transfer Quality Cleave Principles, SiGen, Jul. 8, 2005, pp. 1-6, The Silicon Genesis Corporation, San Jose, California.
H.J.Kim, et al, Large-Area Thin-Film Free-Standing Monocrystalline Si Solar cells by Layer Transfer, Leuven, Belgium, IEEE.
J.H.Werner et al, From Polycrystalline to Single Crystalline Silicon on Glass, Thin Solid Films, 2001, pp. 95-100, vol. 383, Issue 1-2, Elsevier Science B.V., Germany.
J.J. Schermer et al., Epitaxial Lift-Off for large area thin film III/V devices, phys. Stat. sol. (a) 202, No. 4, 501-508 (2005).
Jianhua Zhao, et al, A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping, IEEE Transactions on Electron Devices, 1999, vol. 46, No. 10.
K. Van Nieuwenhuysen et al., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC, Journal of Crystal Growth, 2006, pp. 438-441, vol. 287, Elsevier B.V., Leuven, Belgium.
K.L. Chopra et al., Thin-Film Solar Cells: An Overview, Progress in Photovoltaics: Research and Applications, 2004, pp. 69-92, vol. 12, John Wiley & Sons, Ltd.
Lammert et al., The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight, IEEE Transactions on Electron Devices, pp. 337-342.
MacDonald et al., “Design and Fabrication of Highly Topographic Nano-imprint Template for Dual Damascene Full 3-D Imprinting,” Dept. of Chemical Eng., University of Texas at Austin, Oct. 24, 2005.
Martin A. Green, Consolidation of Thin-Film Photovoltaic Technology: The Coming Decade of Opportunity, Progress in Photovoltaics: Research and Applications, 2006, pp. 383-392, vol. 14, John Wiley & Sons, Ltd.
Martin A. Green, Silicon Photovoltaic Modules: A Brief History of the First 50 Years, Progress in Photovoltaics: Research and Applications, 2005, pp. 447-455, vol. 13, John Wiley & Sons, Ltd.
Nobuhiko Sato et al, Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator, Journal of Electrochemical Society, Sep. 1995, vol. 142, No. 9, The Electrochemical Society, Inc., Hiratsuka, Japan.
P.J.Verlinden, et al, Sliver® Solar Cells: A New Thin-Crystalline Silicon Photovoltaic Technology, Solar Energy Materials & Solar Cells, 2006, pp. 3422-3430, vol. 90, Elsevier B.V.
P.R. Hageman et al., Large Area, Thin Film Epitaxial Lift Off III/V Solar Cells, 25th PVSC, 1996, May 13-17, Washington D.C., IEEE.
Photovoltaic Technology Research Advisory Council, A Vision for Photovoltaic Technology, 2005, pp. 1-41, European Commision Publications Office.
Prometheus Institute, U.S. Solar Industry Year in Review: U.S. Solar Energy Industry Charging Ahead, (SEIA) The Solar Energy Industry Association.
R.Brendel, et al, Sol-Gel Coatings for Light Trapping in Crystalline Thin Film Silicon Solar Cells, Journal of Non-Crystalline Solids, 1997, pp. 391-394, vol. 218, Elsevier Science B.V., Germany.
Richard Auer et al, Simplified Transfer Process for High-Current Thin-Film Crystalline Si Solar Modules, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan.
Richard M. Swanson, A Vision for Crystalline Silicon Photovoltaics, Progress in Photovoltaics: Research and Applications, 2006, pp. 443-453, vol. 14, John Wiley & Sons, Ltd.
Rolf Brendel, A Novel Process for Ultrathin Monocrystalline Silicon Solar Cells on Glass, 14th European Photovolaic Solar Energy Conference, Jun. 30-Jul. 4, 1997, Barcelona, Spain.
Rolf Brendel, Review of Layer Transfer Processes for Cystalline Thin-Film Silicon Solar Cells, The Japan Journal of Applied Physics, 2001, pp. 4431-4439, vol. 40, Part 1, No. 7, The Japan Society of Applied Physics, Japan.
Rolf Brendel, Thin-Film Crystalline Silicone Mini-Modules Using Porous Si for Layer Transfer, Solar Energy, 2004, pp. 969-982, vol. 77, Elsevier Ltd., Germany.
S. Hegedus, Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers, Progress in Photvoltaics: Research and Applications, 2006, pp. 393-411, vol. 14, John Wiley & Sons, Ltd.
Takao Yonehara, et al, Epitaxial Layer Transfer by Bond and Etch Back of Porous Si, Applied Physics Letter 64, Apr. 18, 1994, vol. 16, American Institute of Physics.
Toshiki Yagi, et al, Ray-Trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, Solar Energy Materials & Solar Cells, 2006, pp. 2647-2656, vol. 90, Elsevier B.V.
Related Publications (1)
Number Date Country
20100267245 A1 Oct 2010 US
Provisional Applications (1)
Number Date Country
61169139 Apr 2010 US