The present disclosure relates to epitaxial deposition. More particularly, the present disclosure relates to epitaxial deposition of silicon or other semiconducting materials.
Monocrystalline silicon is the most dominant material for photovoltaic applications. The high efficiencies associated with monocrystalline solar cells, combined with the abundance of material, garner appeal for continued use and advancement. But the high processing cost of crystalline silicon material limits the widespread use of these solar modules. At present, the cost of “wafering,” or crystallizing silicon and cutting a wafer, accounts for about 40% finished solar cell cost. If a more direct way of making wafers were possible, great headway could be made in lowering the cost of solar cells.
There are different known methods of growing monocrystalline silicon and releasing or transferring the grown wafer. Regardless of the method, a low cost epitaxial deposition process is assumed.
Silicon epitaxial (epi) deposition was originally developed for the semiconductor industry. The requirements for the semiconductor industry, in both film properties and cost, are nearly polar opposites of requirements in the solar field. For example, semiconductor epi films are typically less than 5 μm (1 μm=10−6 meter) thick, while solar requires 60-80 μm of silicon. In order to achieve economies in the solar industry, the silicon cost per watt must reside in the $0.25/watt or approximately $1.00/wafer (assuming a 4 watt cell).
The precursor chemistry for epi is predominantly trichlorosilane (TCS), although for thinner films silane (SiH4) may also be used. Epitaxial deposition for each chemical poses unique requirements and challenges in both equipment architecture and process conditions. Based on low cost and abundance, TCS is the chemistry of choice for the solar industry. The present disclosure will generally be described with regard to TCS, but one of ordinary skill in the art will recognize its applications to silane and other precursor chemicals.
In order to achieve the necessary economy for solar applications, process cost modeling is studied to identify and optimize equipment performance. Three categories of cost make up the total cost picture: fixed cost (FC), recurring cost (RC) and yield cost (YC). FC is made up of items such as equipment purchase price, installation cost, and robotics or automation cost. RC is largely made up of electricity, gases, chemicals, operator salaries, and maintenance technician support. YC may be interpreted as the total value of parts lost during production.
To achieve the cost of ownership (CoO) numbers required by the solar field, all aspects of the cost picture must be optimized. The qualities of a low-cost process are (in order of priority): 1) high productivity, 2) high yield, 3) low RC, and 4) low FC.
Designing highly productive equipment requires a good understanding of the process requirements and reflecting those requirements in the architecture. High yield requires a robust process and reliable equipment. Low RC turns out to be the dominant component in the cost model. RC can impact plant site selection based on, for example, cost of local power or availability of bulk chemicals. FC, although important, is diluted by equipment productivity.
With the above said, in summary, a highly productive, reliable, efficient reactor may be essential for the production of low cost solar cells.
Therefore, it is an object of the present disclosure to provide a CVD reactor having improved chemical utilization and high yield, and thereby reduce costs and improve efficiency.
Achieving low RC requires efficient use of chemicals. In an effort to make use of a greater portion of TCS, a longer deposition zone will be described. Providing a longer deposition zone may allow a higher percentage of the TCS to be deposited. In this way, greater chemicals utilization may be realized. By choosing the optimal parameters (chemical concentration, gas speed, reaction dimensions, etc.), productivity and chemical utilization may be optimized. A further object of the present disclosure is minimization of deposition on surfaces other than the wafers, which is also important for effective chemical utilization. The disclosed reactor has a high wafer area to reactor surface area ratio, which tends to minimize parasitic losses.
These and other advantages of the disclosed subject matter, as well as additional novel features, will be apparent from the description provided herein. The intent of this summary is not to be a comprehensive description of the subject matter, but rather to provide a short overview of some of the subject matter's functionality. Other systems, methods, features and advantages here provided will become apparent to one with skill in the art upon examination of the following FIGURES and detailed description. It is intended that all such additional systems, methods, features and advantages included within this description be within the scope of the claims.
The features, nature, and advantages of the disclosed subject matter may become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numerals indicate like features and wherein:
Although the present disclosure is described with reference to specific embodiments, one skilled in the art could apply the principles discussed herein to other areas and/or embodiments without undue experimentation.
The present disclosure references a “template,” which may be viewed as equivalent to a “wafer.” In one embodiment of the present disclosure, the template, after epitaxy, may be used repeatedly to grow and release crystalline wafers. But the use to which the template or wafer is put after epitaxial deposition is beyond the scope of the present disclosure: one of ordinary skill will recognize the myriad uses to which the template might be put without departing from the spirit of the present disclosure.
One novel aspect of the reactor of the present disclosure lies in the arrangement of the wafer susceptors (a susceptor is a material used for its ability to absorb electromagnetic energy and impart that energy, in the form of heat, to the wafers). Although the susceptors may be heated electromagnetically, lamps or resistive heating may also be effective.
The susceptors of the present disclosure may be stackable, yet they do not rely on stacking for providing the “building blocks” of the overall reactor. The reactors of the present disclosure may or may not be depletion mode reactors (DMRs). “Depletion mode” refers to the depletion or utilization of chemical along the direction of gas flow. As shown in
Baffle channels 15 are shown in
In these views, template 20 (shown in
The various dimensions of the reactor shown may be varied by one of ordinary skill without departing from the spirit of the present invention.
In this exemplary embodiment, the thickness of insert pocket 18 is approximately 6 mm, and the length of the whole assembly is approximately 50 cm. The diameter of ports 10 and 12 may be approximately 15 mm.
Reactor 30 includes source/exhaust port 40 and exhaust/source port 42. The maid body of reactor 30 is housed in quartz muffle 35. As shown, reactor 30 uses lamps 36 for heating the susceptor plates.
During the reaction (or reduction) of TCS with hydrogen gas, hydrochloric acid (HCl gas) is produced. In fact, if the reaction were fed with additional H2 and allowed to extend over a longer zone or time, the concentration of HCl could continue to rise past the point of reaction inhibition and begin to etch the silicon template. While this is generally a state to be avoided, etching of silicon may be employed to clean the downstream exhaust passages. In effect, by allowing a sufficient level of HCl to build up, one could operate the reactor of the present disclosure in a self-maintaining mode by having the produced HCl gas etch away unwanted deposited silicon.
Reactor 50 is housed in quartz bell jar 52. In the embodiment shown, reactor 50 includes separate ports for TCS and H2, although this is not a necessary feature of the present disclosure; in other embodiments, TCS and H2 may be premixed and fed through the same ports. As shown, H2 source/exhaust ports 54 and TCS source/exhaust ports 55 are at one end of the reactor; H2 exhaust/source ports 56 and TCS exhaust/source ports 57 are at the other end. These ports may be differentiated only when acting as source ports. When a given port is being used in an exhaust capacity, it will be exhausting gas that has already been mixed inside the reactor.
TCS reduction with H2 may result when the gases are mixed at the appropriate temperature.
In the arrangement shown in
The susceptors shown in
The dual sided susceptors may be stackable (as shown in the embodiment of
Those with ordinary skill in the art will recognize that the disclosed embodiments have relevance to a wide variety of areas in addition to those specific examples described above. In particular, any of the disclosed susceptors could be placed into any of the disclosed reactor arrangements without undue experimentation by one of ordinary skill in the art.
The foregoing description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the claimed subject matter. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the innovative faculty. Thus, the claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
It is intended that all such additional systems, methods, features, and advantages that are included within this description be within the scope of the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/169,139, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4043894 | Gibbs | Aug 1977 | A |
4070206 | Kressel et al. | Jan 1978 | A |
4082570 | House et al. | Apr 1978 | A |
4165252 | Gibbs | Aug 1979 | A |
4249959 | Jebens | Feb 1981 | A |
4251679 | Zwan | Feb 1981 | A |
4348254 | Lindmayer | Sep 1982 | A |
4361950 | Amick | Dec 1982 | A |
4409423 | Holt | Oct 1983 | A |
4427839 | Hall | Jan 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4468283 | Ahmed | Aug 1984 | A |
4479847 | McCaldin et al. | Oct 1984 | A |
4626613 | Wenham et al. | Dec 1986 | A |
4672023 | Leung | Jun 1987 | A |
4922277 | Carlson | May 1990 | A |
5024953 | Uematsu et al. | Jun 1991 | A |
5073230 | Maracas et al. | Dec 1991 | A |
5112453 | Behr et al. | May 1992 | A |
5208068 | Davis | May 1993 | A |
5248621 | Sano | Sep 1993 | A |
5316593 | Olson et al. | May 1994 | A |
5348618 | Canham et al. | Sep 1994 | A |
5397400 | Matsuno et al. | Mar 1995 | A |
5459099 | Hsu | Oct 1995 | A |
5494832 | Lehmann et al. | Feb 1996 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5645684 | Keller | Jul 1997 | A |
5660680 | Keller | Aug 1997 | A |
5681392 | Swain | Oct 1997 | A |
5882988 | Haberern et al. | Mar 1999 | A |
5899360 | Mack et al. | May 1999 | A |
5928438 | Salami | Jul 1999 | A |
6091021 | Ruby | Jul 2000 | A |
6096229 | Shahid | Aug 2000 | A |
6114046 | Hanoka | Sep 2000 | A |
6127623 | Nakamura et al. | Oct 2000 | A |
6204443 | Kiso et al. | Mar 2001 | B1 |
6294725 | Hirschberg et al. | Sep 2001 | B1 |
6331208 | Nishida et al. | Dec 2001 | B1 |
6399143 | Sun et al. | Jun 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6429037 | Wenham et al. | Aug 2002 | B1 |
6441297 | Keller et al. | Aug 2002 | B1 |
6448155 | Iwasaki et al. | Sep 2002 | B1 |
6461932 | Wang | Oct 2002 | B1 |
6524880 | Moon et al. | Feb 2003 | B2 |
6534336 | Iwane | Mar 2003 | B1 |
6555443 | Artmann et al. | Apr 2003 | B1 |
6566235 | Nishida et al. | May 2003 | B2 |
6602760 | Poortmans et al. | Aug 2003 | B2 |
6602767 | Nishida et al. | Aug 2003 | B2 |
6613148 | Rasmussen | Sep 2003 | B1 |
6624009 | Green et al. | Sep 2003 | B1 |
6645833 | Brendel | Nov 2003 | B2 |
6649485 | Solanki et al. | Nov 2003 | B2 |
6653722 | Blalock | Nov 2003 | B2 |
6664169 | Iwasaki et al. | Dec 2003 | B1 |
6756289 | Nakagawa et al. | Jun 2004 | B1 |
6881644 | Malik et al. | Apr 2005 | B2 |
6946052 | Yanagita et al. | Sep 2005 | B2 |
6964732 | Solanki | Nov 2005 | B2 |
7022585 | Solanki et al. | Apr 2006 | B2 |
7026237 | Lamb | Apr 2006 | B2 |
7147714 | Naito et al. | Dec 2006 | B2 |
7312440 | Degertekin et al. | Dec 2007 | B2 |
7368756 | Bruhns et al. | May 2008 | B2 |
7402523 | Nishimura | Jul 2008 | B2 |
7648927 | Singh et al. | Jan 2010 | B2 |
20020153039 | Moon et al. | Oct 2002 | A1 |
20020168592 | Vezenov | Nov 2002 | A1 |
20020179140 | Toyomura | Dec 2002 | A1 |
20030017712 | Brendel | Jan 2003 | A1 |
20030039843 | Johnson | Feb 2003 | A1 |
20030124761 | Baert | Jul 2003 | A1 |
20040028875 | Van Rijn | Feb 2004 | A1 |
20040173790 | Yeo | Sep 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040192044 | Degertekin et al. | Sep 2004 | A1 |
20040259335 | Narayanan | Dec 2004 | A1 |
20040265587 | Koyanagi | Dec 2004 | A1 |
20050160970 | Niira | Jul 2005 | A1 |
20050172998 | Gee et al. | Aug 2005 | A1 |
20050176164 | Gee et al. | Aug 2005 | A1 |
20050177343 | Nagae | Aug 2005 | A1 |
20050199279 | Yoshimine et al. | Sep 2005 | A1 |
20050274410 | Yuuki et al. | Dec 2005 | A1 |
20050281982 | Li | Dec 2005 | A1 |
20060021565 | Zahler et al. | Feb 2006 | A1 |
20060043495 | Uno | Mar 2006 | A1 |
20060054212 | Fraas et al. | Mar 2006 | A1 |
20060070884 | Momoi et al. | Apr 2006 | A1 |
20060105492 | Veres et al. | May 2006 | A1 |
20060196536 | Fujioka | Sep 2006 | A1 |
20060231031 | Dings et al. | Oct 2006 | A1 |
20060252243 | Kishimoto et al. | Nov 2006 | A1 |
20060266916 | Miller et al. | Nov 2006 | A1 |
20060283495 | Gibson | Dec 2006 | A1 |
20060286775 | Singh et al. | Dec 2006 | A1 |
20070077770 | Wang et al. | Apr 2007 | A1 |
20070082499 | Jung et al. | Apr 2007 | A1 |
20080047601 | Nag et al. | Feb 2008 | A1 |
20080157283 | Moslehi | Jul 2008 | A1 |
20080210294 | Moslehi | Sep 2008 | A1 |
20080241384 | Jeong et al. | Oct 2008 | A1 |
20080264477 | Moslehi | Oct 2008 | A1 |
20080289684 | Moslehi | Nov 2008 | A1 |
20080295887 | Moslehi | Dec 2008 | A1 |
20090042320 | Wang et al. | Feb 2009 | A1 |
20090107545 | Moslehi | Apr 2009 | A1 |
20090301549 | Moslehi | Dec 2009 | A1 |
20100022074 | Wang et al. | Jan 2010 | A1 |
20100116316 | Moslehi et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2763964 | Dec 1998 | FR |
2426252 | Nov 2006 | GB |
06-260670 | Sep 1994 | JP |
2002-2299661 | Oct 2002 | JP |
PCTEP1999008573 | May 2000 | WO |
Entry |
---|
Alvin D. Compaan, Photovoltaics: Clean Power for the 21st Century, Solar Energy Materials & Solar Cells, 2006, pp. 2170-2180, vol. 90, Elsevier B.V. |
C.Berge, 150-mm Layer Transfer for Monocrystalline Silicon Solar Cells, Solar Energy Materials & Solar Cells, 2006, pp. 3102-3107, vol. 90, Elsevier B.V. |
C.Oules et al, Silicon on Insulator Structures Obtained by Epitaxial Growth of Silicon over Porous Silicon, Journal of the Electrochemical Society, Inc., 1992, p. 3595, vol. 139, No. 12, Meylan Cedex, France. |
C.S.Solanki, et al, Porous Silicon Layer Transfer Processes for Solar Cells, Solar Energy Materials & Solar Cells, 2004, pp. 101-113, vol. 83, Elsevier B.V., Leuven, Belgium. |
C.S.Solanki, et al, Self-Standing Porous Silicon Films by One-Step Anodizing, Journal of Electrochemical Society, 2004, pp. C307-C314, vol. 151, The Electrochemical Society, Inc., Leuven, Belgium. |
F.Duerinckx, et al, Reorganized Porous Silicon Bragg Reflectors for Thin-Film Silicon Solar Cells, IEEE Electron Device Letters, Oct. 2006, vol. 27, No. 10. |
Francois J. Henley, Layer-Transfer Quality Cleave Principles, SiGen, Jul. 8, 2005, pp. 1-6, The Silicon Genesis Corporation, San Jose, California. |
H.J.Kim, et al, Large-Area Thin-Film Free-Standing Monocrystalline Si Solar cells by Layer Transfer, Leuven, Belgium, IEEE. |
J.H.Werner et al, From Polycrystalline to Single Crystalline Silicon on Glass, Thin Solid Films, 2001, pp. 95-100, vol. 383, Issue 1-2, Elsevier Science B.V., Germany. |
J.J. Schermer et al., Epitaxial Lift-Off for large area thin film III/V devices, phys. Stat. sol. (a) 202, No. 4, 501-508 (2005). |
Jianhua Zhao, et al, A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping, IEEE Transactions on Electron Devices, 1999, vol. 46, No. 10. |
K. Van Nieuwenhuysen et al., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC, Journal of Crystal Growth, 2006, pp. 438-441, vol. 287, Elsevier B.V., Leuven, Belgium. |
K.L. Chopra et al., Thin-Film Solar Cells: An Overview, Progress in Photovoltaics: Research and Applications, 2004, pp. 69-92, vol. 12, John Wiley & Sons, Ltd. |
Lammert et al., The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight, IEEE Transactions on Electron Devices, pp. 337-342. |
MacDonald et al., “Design and Fabrication of Highly Topographic Nano-imprint Template for Dual Damascene Full 3-D Imprinting,” Dept. of Chemical Eng., University of Texas at Austin, Oct. 24, 2005. |
Martin A. Green, Consolidation of Thin-Film Photovoltaic Technology: The Coming Decade of Opportunity, Progress in Photovoltaics: Research and Applications, 2006, pp. 383-392, vol. 14, John Wiley & Sons, Ltd. |
Martin A. Green, Silicon Photovoltaic Modules: A Brief History of the First 50 Years, Progress in Photovoltaics: Research and Applications, 2005, pp. 447-455, vol. 13, John Wiley & Sons, Ltd. |
Nobuhiko Sato et al, Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator, Journal of Electrochemical Society, Sep. 1995, vol. 142, No. 9, The Electrochemical Society, Inc., Hiratsuka, Japan. |
P.J.Verlinden, et al, Sliver® Solar Cells: A New Thin-Crystalline Silicon Photovoltaic Technology, Solar Energy Materials & Solar Cells, 2006, pp. 3422-3430, vol. 90, Elsevier B.V. |
P.R. Hageman et al., Large Area, Thin Film Epitaxial Lift Off III/V Solar Cells, 25th PVSC, 1996, May 13-17, Washington D.C., IEEE. |
Photovoltaic Technology Research Advisory Council, A Vision for Photovoltaic Technology, 2005, pp. 1-41, European Commision Publications Office. |
Prometheus Institute, U.S. Solar Industry Year in Review: U.S. Solar Energy Industry Charging Ahead, (SEIA) The Solar Energy Industry Association. |
R.Brendel, et al, Sol-Gel Coatings for Light Trapping in Crystalline Thin Film Silicon Solar Cells, Journal of Non-Crystalline Solids, 1997, pp. 391-394, vol. 218, Elsevier Science B.V., Germany. |
Richard Auer et al, Simplified Transfer Process for High-Current Thin-Film Crystalline Si Solar Modules, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan. |
Richard M. Swanson, A Vision for Crystalline Silicon Photovoltaics, Progress in Photovoltaics: Research and Applications, 2006, pp. 443-453, vol. 14, John Wiley & Sons, Ltd. |
Rolf Brendel, A Novel Process for Ultrathin Monocrystalline Silicon Solar Cells on Glass, 14th European Photovolaic Solar Energy Conference, Jun. 30-Jul. 4, 1997, Barcelona, Spain. |
Rolf Brendel, Review of Layer Transfer Processes for Cystalline Thin-Film Silicon Solar Cells, The Japan Journal of Applied Physics, 2001, pp. 4431-4439, vol. 40, Part 1, No. 7, The Japan Society of Applied Physics, Japan. |
Rolf Brendel, Thin-Film Crystalline Silicone Mini-Modules Using Porous Si for Layer Transfer, Solar Energy, 2004, pp. 969-982, vol. 77, Elsevier Ltd., Germany. |
S. Hegedus, Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers, Progress in Photvoltaics: Research and Applications, 2006, pp. 393-411, vol. 14, John Wiley & Sons, Ltd. |
Takao Yonehara, et al, Epitaxial Layer Transfer by Bond and Etch Back of Porous Si, Applied Physics Letter 64, Apr. 18, 1994, vol. 16, American Institute of Physics. |
Toshiki Yagi, et al, Ray-Trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, Solar Energy Materials & Solar Cells, 2006, pp. 2647-2656, vol. 90, Elsevier B.V. |
Number | Date | Country | |
---|---|---|---|
20100267245 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61169139 | Apr 2010 | US |