Embodiments of the disclosure generally relate to fabrication of integrated circuits and particularly to an apparatus and method for annealing one or more semiconductor substrates.
Formation of a semiconductor device, such as memory devices, logic devices, microprocessors etc. involves deposition of one or more films over a semiconductor substrate. The films are used to create the circuitry required to manufacture the semiconductor device. Annealing is a heat treatment process used to achieve various effects on the deposited films to improve their electrical properties. For example, annealing can be used to activate dopants, densify the deposited films, or change states of grown films.
Semiconductor device geometries have dramatically decreased in size since their introduction several decades ago. Increasing device densities have resulted in structural features having decreased spatial dimensions. For example, the aspect ratio (ratio of depth to width) of gaps and trenches forming the structural features of modern semiconductor devices have narrowed to a point where filling the gap with material has become extremely challenging.
Thus, there is a need for an improved apparatus and method for annealing semiconductor substrates that can accommodate the challenges associated with manufacturing modern semiconductor devices.
Embodiments of the disclosure relate to an apparatus and method for annealing semiconductor substrates. In one embodiment, a processing chamber is disclosed. The processing chamber includes a chamber body enclosing an internal volume, a substrate support disposed in the internal volume and configured to support a substrate during processing, a gas panel configured to provide a processing fluid into the internal volume, and a temperature-controlled fluid circuit configured to maintain the processing fluid at a temperature above a condensation point of the processing fluid. The temperature-controlled fluid circuit includes a gas conduit fluidly coupled to a port on the chamber body at a first end and to the gas panel at a second end.
In another example, a processing chamber includes a chamber body enclosing an internal volume, a substrate support disposed in the internal volume and configured to support a substrate during processing, one or more chamber heaters operable to maintain the internal volume at a temperature above 300 degrees Celsius, a gas panel configured to provide a dry steam into the internal volume, one or more heat shields coupled to the chamber body and disposed around the internal volume, a condenser fluidly connected to the internal volume, the condenser configured to condense the dry steam, and a temperature-controlled fluid circuit coupling the internal volume of the chamber body to the gas panel. The temperature-controlled fluid circuit configured to maintain the dry steam at a temperature above a condensation point of the dry steam.
In another example, a method of annealing one or more substrates in a processing chamber is provided. The method includes loading the one or more substrates into an internal volume of the processing chamber, flowing a processing fluid through a gas conduit into the internal volume, and maintaining the processing fluid in the gas conduit and the internal volume at a temperature above a condensation point of the processing fluid.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the disclosure relate to an apparatus and method for annealing one or more semiconductor substrates. The substrates may be annealed as a single substrate or in batches inside a single chamber. The substrates are exposed to a processing fluid under high pressure at a high temperature during annealing. The processing fluid is flowed from a gas panel through a temperature-controlled fluid circuit into a chamber when the one or more substrates are processed. The processing fluid is maintained at a temperature above the condensation point of the processing fluid by one or more heaters coupled to the fluid circuit. The fluid circuit is coupled to a condenser, where the processing fluid is condensed into liquid phase after annealing is complete. The heaters on the fluid circuit are controlled using information from temperature measurements obtained through temperature sensors interfaced with different portions of the fluid circuit. A batch processing chamber 100 shown in
The batch processing chamber 100 has a door 120 configured to sealably enclose the internal volume 115 within the body 110 such that substrates may be transferred in and out of the internal volume 115 when the door 120 is open. A high-pressure seal 122 is utilized to seal the door 120 to the body 110 during processing. The high-pressure seal 122 may be made from a high-temperature polymer, such as but not limited to a perfluoroelastomer. A cooling channel 124 is disposed in the door 120 or the body 110 adjacent to the high-pressure seals 122 in order to maintain the high-pressure seals 122 below the maximum safe-operating temperature of the high-pressure seals 122. A cooling agent, such as but not limited to an inert, dielectric, and high-performance heat transfer fluid, may be circulated within the cooling channel 124. The flow of the cooling agent within the cooling channel 124 is controlled by a controller 180 through feedback received from a temperature sensor 116 or a flow sensor (not shown).
An anti-convection panel may be placed between the door 120 and the cassette 130. The anti-convection panel separates the internal volume 115 into a hot processing region in which the cassette 130 resides and a cooler region proximate the door 120. The anti-convection panel is generally a metal plate fabricated from the same materials as the chamber body 110. The anti-convection panel may be coupled to the door 120, the cassette 130 or other suitable structure. The anti-convection panel may include a face facing the cassette 130 that is configured to reduce the amount of heat transfer from the region in which the cassette 130 resides to the region of the body 110 proximate the door 120. The face may be large enough to inhibit convection between the hot processing and cooler regions. The face may also have a polished surface or heat reflecting coating. The anti-convection panel causes portions of the chamber body 110 bounding the cooler region to be shielded from and maintained at temperatures less than those of the portions of the chamber body 110 bounding the hot processing region. Thus, seals 122 proximate the door 120 and contacting the portions of the chamber body 110 bounding the cooler region are less likely to fail due to exceeding their maximum operational temperatures.
The batch processing chamber 100 has a port 117 formed through the body 110. The port 117 is fluidly connected to a temperature-controlled fluid circuit 190. The fluid circuit 190 connects a gas panel 150, a condenser 160 and the port 117. The fluid circuit 190 has a gas conduit 192, a source conduit 157, an inlet isolation valve 155, an exhaust conduit 163, and an outlet isolation valve 165. One or more heaters 152, 154, 158, 196, 164, 166 are interfaced with different portions of the fluid circuit 190. One or more temperature sensors 151, 153, 119, 167 and 169 are interfaced with different portions of the fluid circuit 190 to obtain temperature measurements and provide the temperature measurement information to the controller 180.
The gas conduit 192 is fluidly connected to the internal volume 115 through the port 117 at one end. The gas conduit 192 has four portions that include a chamber conduit 118, a T-conduit 194, an inlet conduit 159 and an outlet conduit 161. The T-conduit 194 has three ends: a first end connected to the inlet conduit 159, a second end connected to the outlet conduit 161 and a third end connected to the chamber conduit 118. The chamber conduit 118 is fluidly connected to the internal volume 115 via the port 117. The inlet conduit 159 is fluidly connected to the source conduit 157 via the inlet isolation valve 155. The outlet conduit 161 is fluidly connected to the exhaust conduit 163 via the outlet isolation valve 165. The source conduit 157 is fluidly coupled to the gas panel 150. The exhaust conduit 163 is fluidly coupled to the condenser 160.
The chamber conduit 118 is interfaced with the heater 158. The T-conduit 194, the inlet conduit 159 and the outlet conduit 161 are interfaced with the heater 196. The source conduit 157 is interfaced with the heater 152. The inlet isolation valve 155 is interfaced with the heater 154. The outlet isolation valve 165 is interfaced with the heater 164. The exhaust conduit 163 is interfaced with the heater 166. The heaters 152, 154, 158, 196, 164, and 166 are configured to maintain a processing fluid flowing through the fluid circuit 190 at a temperature above the condensation point of the processing fluid. For example, the heaters 152, 154, 158, 196, 164, and 166 may be configured to maintain a processing fluid flowing through the fluid circuit 190 at a temperature which maintains the processing fluid as dry steam or superheated steam. The heaters 152, 154, 158, 196, 164, and 166 may be optionally covered with a layer of thermal insulation to prevent loss of heat into the outside environment. The heaters 152, 154, 158, 196, 164, and 166 may be lamps, resistive heating elements, fluid conduits for flowing a transfer fluid or other suitable heating devices. In one embodiment, the heaters are resistive strips wound around the elements of the fluid circuit. The heaters 152, 154, 158, 196, 164, and 166 are individually coupled to a power source 145. In one embodiment, each of the heaters 152, 154, 158, 196, 164, and 166 may be independently controlled.
The temperature sensor 151 is interfaced with the source conduit 157 and configured to measure the temperature of the source conduit 157. The temperature sensor 153 is interfaced with the inlet isolation valve 155 and configured to measure the temperature of the inlet isolation valve 155. The temperature sensor 119 is interfaced with the chamber conduit 118 and configured to measure the temperature of the chamber conduit 118. A temperature reading device 156 receives and displays the temperature measurements from the temperature sensors 151, 153 and 119. The temperature sensor 167 is interfaced with the outlet isolation valve 165 and configured to measure the temperature of the outlet isolation valve 165. The temperature sensor 169 is interfaced with the exhaust conduit 163 and configured to measure the temperature of the exhaust conduit 163. A temperature reading device 162 receives and displays the temperature measurements from the temperature sensors 167 and 169. The temperature reading devices 156 and 162 send the temperature measurement information to the controller 180. The sensors 151, 153, 119, 167 and 169 may be a non-contact sensor, such as an infra-red sensor, or a contact sensor, such as a thermocouple.
The inlet isolation valve 155 and the outlet isolation valve 165 are shutoff valves. When the inlet isolation valve 155 is open, the outlet isolation valve 165 is closed such that a processing fluid flowing through source conduit 157 enters into the gas conduit 192 and the internal volume 115, preventing the flow of the processing fluid into the condenser 160. On the other hand, when the outlet isolation valve 165 is open, the inlet isolation valve 155 is closed such that a gaseous product is removed from the internal volume 115 and flows through the exhaust conduit 163 and into the condenser 160, preventing the flow of the gaseous product into the gas panel 150.
The gas panel 150 is configured to provide a processing fluid under pressure into the source conduit 157 for transmission into the internal volume 115 through the gas conduit 192. As shown in
The vaporizer 350 is fluidly connected to a common inlet conduit 354 by a conduit 352. The vaporizer 350 and the common inlet conduit 354 are also fluidly connected to a pressure safety valve 330 by a conduit 332. The pressure safety valve 330 is configured to release excess pressure in the conduit 352 and is generally known in the art.
The optional inert gas inlet 320 is configured to provide a pressure control gas from a pressure control gas source (not shown) that is utilized to control the pressure of the processing fluid delivered through the common inlet conduit 354. The pressure control gas provided by the gas source may be a reactive gas or an inert gas, such as but not limited to nitrogen, argon, and the like, or other suitable gas(es). The inert gas inlet 320 is fluidly connected to the common inlet conduit 354 by an isolation valve 325 and conduits 322, 324. The isolation valve 325 has a first (i.e., closed) state that prevent flow from the pressure control gas source from entering the common inlet conduit 354 through the conduit 324. The isolation valve 325 has a second (i.e., open) state that allows flow from the pressure control gas source to enter the common inlet conduit 354 through the conduit 324. The isolation valve 325 is also be configured or utilized with a mass flow meter to regulate the amount of pressure control gas flowing into the common inlet conduit 354.
The common inlet conduit 354 is fluidly connected to the common outlet conduit 357 by a valve 355 and a conduit 356. The valve 355 may be configured as an isolation valve to selectively isolate the vaporizer 350 and the inert gas inlet 320 from the fluid circuit 190. The common outlet conduit 357 is fluidly connected to the source conduit 157 coupling the gas panel 150 to the inlet isolation valve 155. In another example, the valve 355 may be configured as a flow control valve to selectively control the amount of processing fluid the vaporizer 350 and the inert gas inlet 320 flowing from the fluid circuit 190 into the internal volume 115 of the chamber body 110. Examples of flow control valves include needle valves, throttle valves, and modulating valves, among others.
A purge gas inlet 340 is also coupled to the source conduit 157 through the common outlet conduit 357. The purge gas inlet 340 is coupled to a source of purge gas (not shown). The purge gas may be an inert gas, such as but not limited to nitrogen, air, argon, and the like. The purge gas may be utilized to remove residuals of the processing fluid from the common outlet conduit 357 and the fluid circuit 190, when desired. The purge gas inlet 340 is fluidly connected to the common outlet conduit 357 by an isolation valve 345. The purge gas inlet 340 is fluidly connected to the isolation valve 345 by a conduit 342. The isolation valve 345 is configured to selectively isolate the purge gas inlet 340 from the common outlet conduit 357. The isolation valve 345 is fluidly connected to the common outlet conduit 357 by a conduit 344.
In some embodiments, the isolation valves 315, 325, 345 and 355 are shutoff valves. The operation of the isolation valves 315, 325, 345 and 355 are controlled by the controller 180. The pressure of the processing fluid introduced into the internal volume 115 is monitored by a pressure sensor 114 coupled to the body 110. As the fluid circuit 190 is continuously coupled to the internal volume 115, the pressure sensor 114 may also be utilized to determine the pressure within the fluid circuit 190. In embodiments where the fluid circuit 190 and the internal volume 115 have an isolation valve disposed therebetween or are configured such that a significant variation in pressure is expected, each of the fluid circuit 190 and the internal volume 115 may be equipped with separate pressure sensors 114.
The condenser 160 is fluidly coupled to a cooling fluid source (not shown) and configured to condense the gas phase processing fluid exiting the internal volume 115 through the gas conduit 192. The phase change in the condenser 160 pulls the processing fluid from the internal volume 115 and fluid circuit 190, which minimizes the need of purging gases. Optionally, condensed processing fluid exiting the condenser 160 may be routed through a heat exchanger 170 via an isolation valve 175. The heat exchanger 170 is configured to further cool the condensed processing fluid so that the processing fluid may be more easily managed. The condenser 160 is fluidly connected to the isolation valve 175 by a condenser conduit 168. The heat exchanger 170 is coupled to the isolation valve 175 by a heat exchanger conduit 172. A pump 176 is fluidly connected to the heat exchanger 170 by a pump conduit 174 and pumps out the liquefied processing fluid from the heat exchanger 170 to a container for recycling, reuse or disposal.
One or more heaters 140 are disposed on the body 110 and configured to heat the body 110 of the batch processing chamber 100. In some embodiments, the heaters 140 are disposed on an outer surface 112 of the body 110 as shown in
One or more heaters (not shown) are disposed in the body 110 and configured to heat the substrates 135 disposed in the cassette 130 while in the internal volume 115 of the batch processing chamber 100. Each of the heaters may be a resistive coil, a lamp, a ceramic heater, a graphite-based carbon fiber composite (CFC) heater, a stainless steel heater or an aluminum heater. In the embodiment depicted in
Since the heaters generally maintain the hot processing region of the internal volume 115 at a temperature significantly above the temperature of the fluid circuit 190, the dry steam exiting the fluid circuit 190 into the hot processing region becomes superheated. The superheated dry steam advantageously will not condensate within the hot processing region, then preventing fluid from condensing on the substrates 135 being processed within the processing chamber 100.
A cassette 130 coupled to an actuator (not shown) is moved in and out of the internal volume 115. The cassette 130 has a top surface 132, a bottom surface 134, and a wall 136. The wall 136 of the cassette 130 has a plurality of substrate storage slots 138. Each substrate storage slot 138 is evenly spaced along the wall 136 of the cassette 130. Each substrate storage slot 138 is configured to hold a substrate 135 therein. The cassette 130 may have as many as fifty substrate storage slots 138 for holding the substrates 135. The cassette 130 provides an effective vehicle both for transferring a plurality of substrates 135 into and out of the batch processing chamber 100 and for processing the plurality of substrates 135 in the internal volume 115.
The controller 180 includes a central processing unit (CPU) 182, a memory 184, and a support circuit 186. The CPU 182 may be any form of a general purpose computer processor that may be used in an industrial setting. The memory 184 may be a random access memory, a read-only memory, a floppy, or a hard disk drive, or other form of digital storage. The support circuit 186 is conventionally coupled to the CPU 182 and may include cache, clock circuits, input/output systems, power supplies, and the like.
The controller 180 controls the operation of various components of the batch processing chamber 100. The controller 180 controls the operation of the gas panel 150, the condenser 160, the pump 176, the inlet isolation valve 155, the outlet isolation valve 165 and the power source 145. The controller 180 is also communicatively connected to the temperature sensor 116, the pressure sensor 114, the cooling channel 124 and the temperature reading devices 156 and 162. The controller 180 receives as an input the type of processing fluid selected for the treating the substrates. Once the type of processing fluid is received by the controller 180, the controller 180 determines target pressure and temperature range which maintains the processing fluid in a gaseous state. The controller 180 uses information from the temperature sensors 116, 151, 153, 119, 167, 169 and the pressure sensor 114 to control the operation of heaters 140, 152, 154, 158, 196, 164, and 166 and the pressure provided within the internal volume 115 and fluid circuit 190. The controlled heat supplied by the heaters and pressure provided by the pressure control gas is utilized to maintain the processing fluid disposed in the fluid circuit 190 and the internal volume 115 at a temperature greater than the condensation point of the processing fluid for the applied pressure and temperature. The controller 180 uses information from the pressure sensor 114 to control the operation of the isolation valves 315, 325, 345 and 355 in the gas panel 150 to optimally supply the processing fluid into the fluid circuit 190 and maintain the processing fluid at a pressure less than the condensation pressure of the processing fluid at the applied temperature. The temperature and pressure of the internal volume 115 as well as the fluid circuit 190 are thus maintained such that the processing fluid stays in the gaseous phase.
It is contemplated that the processing fluid is selected according to the process requirements for the desired annealing of the substrates in the batch processing chamber 100. The processing fluid may comprise an oxygen-containing and/or nitrogen-containing gas, such as oxygen, steam, water, hydrogen peroxide, and/or ammonia. Alternatively or in addition to the oxygen-containing and/or nitrogen-containing gases, the processing fluid may comprise a silicon-containing gas such as but not limited to organosilicon, tetraalkyl orthosilicate gases and disiloxane gases. In some embodiments, the processing fluid may be steam or dry steam under pressure between about 5 bars and about 80 bars and the temperature may be maintained between about 150 degrees Celsius and about 250 degrees Celsius or even as much as 500 degrees Celsius. This ensures that the dry steam does not condense into water in the internal volume 115 and the fluid circuit 190, and additionally allows the dry steam to become superheated dry steam within the hot processing region in which the substrates 135 are exposed to the superheated dry steam for processing.
Another batch processing chamber including connections to a temperature-controlled fluid circuit is now described. The batch processing chamber is essentially the same as the batch processing chamber 100 described above, except instead of a single port 117 coupling the temperature-controlled fluid circuit 190 to both the condenser 160 and gas panel 150 as shown in
A temperature-controlled fluid circuit essentially identical to the temperature-controlled fluid circuit 190 is now described, with the subscripts A and B denoting elements that are coupled to the gas panel side (A) and the condenser side (B). Unlike the temperature-controlled fluid circuit 190 that fluidly couples the condenser 160 and gas panel 150 within the temperature-controlled fluid circuit 190 through a common chamber conduit 118 to the internal volume 115 of the chamber body 110, the temperature-controlled fluid circuit fluidly isolates the condenser 160 and the gas panel 150 and separately couples the condenser 160 and the gas panel 150 through separate chamber conduits 118A,B to the internal volume 115 of the chamber body 110 through separate dedicated ports 117A,B.
A substrate support 230 is disposed within the internal volume 215. The substrate support 230 has a stem 234 and a substrate-supporting member 232 held by the stem 234. The stem 234 passes through a passage 222 formed through the chamber body 210. A rod 239 connected to an actuator 238 passes through a second passage 223 formed through the chamber body 210. The rod 239 is coupled to a plate 235 having an aperture 236 accommodating the stem 234 of the substrate support 230. Lift pins 237 are connected to the substrate-supporting member 232. The actuator 238 actuates the rod 239 such that the plate 235 is moved up or down to connect and disconnect with the lift pins 237. As the lift pins 237 are raised or lowered, the substrate-supporting member 232 is raised or lowered within the internal volume 215 of the chamber 200. The substrate-supporting member 232 has a resistive heating element 231 embedded centrally within. A power source 233 is configured to electrically power the resistive heating element 231. The operation of the power source 233 as well as the actuator 238 is controlled by a controller 280.
The single-substrate processing chamber 200 has an opening 211 on the body 210 through which one or more substrates 220 can be loaded and unloaded to and from the substrate support 230 disposed in the internal volume 215. The opening 211 forms a tunnel 221 on the body 210. A slit valve 228 is configured to sealably close the tunnel 221 such that the opening 211 and the internal volume 215 can only be accessed when the slit valve 228 is open. A high-pressure seal 227 is utilized to seal the slit valve 228 to the body 210 in order to seal the internal volume 215 for processing. The high-pressure seal 227 may be made from a polymer, for example a fluoropolymer, such as but not limited to a perfluoroelastomer and polytetrafluoroethylene (PTFE). The high-pressure seal 227 may further include a spring member for biasing the seal to improve seal performance. A cooling channel 224 is disposed on the tunnel 221 adjacent to the high-pressure seals 227 in order to maintain the high-pressure seals 227 below the maximum safe-operating temperature of the high-pressure seals 227 during processing. A cooling agent from a cooling fluid source 226, such as but not limited to an inert, dielectric, and high-performance heat transfer fluid, may be circulated within the cooling channel 224. The flow of the cooling agent from the cooling fluid source 226 is controlled by the controller 280 through feedback received from a temperature sensor 216 or a flow sensor (not shown). An annular-shaped thermal choke 229 is formed around the tunnel 221 to prevent the flow of heat from the internal volume 215 through the opening 211 when the slit valve 228 is open.
The single-substrate processing chamber 200 has a port 217 through the body 210, which is fluidly connected to a fluid circuit 290 connecting the gas panel 250, the condenser 260 and the port 217. The fluid circuit 290 has substantially similar components as the fluid circuit 190 and functions in a substantially similar way as the fluid circuit 190. The fluid circuit 290 has a gas conduit 292, a source conduit 257, an inlet isolation valve 255, an exhaust conduit 263, and an outlet isolation valve 265. A number of heaters 296, 258, 252, 254, 264, 266 are interfaced with different portions of the fluid circuit 290. A number of temperature sensors 251, 253, 219, 267 and 269 are also placed at different portions of the fluid circuit 290 to take temperature measurements and send the information to the controller 280. The controller 280 uses the temperature measurement information to control the operation of the heaters 252, 254, 258, 296, 264, and 266 such that the temperature of the fluid circuit 290 is maintained at a temperature above the condensation point of the processing fluid disposed in the fluid circuit 290 and the internal volume 215.
The gas panel 250 and the pressure sensor 214 are substantially similar in nature and function as the gas panel 150 and the pressure sensor 114. The condenser 260 is substantially similar in nature and function as the condenser 160. The pump 270 is substantially similar in nature and function as the pump 176. One or more heaters 240 are disposed on the body 210 and configured to heat the internal volume 215 within the single-substrate processing chamber 200. The heaters 240 are also substantially similar in nature and function as the heaters 140 used in the batch processing chamber 100.
The controller 280 controls the operation of the single-substrate processing chamber 200. The controller 280 controls the operation of the gas panel 250, the condenser 260, the pump 270, the inlet isolation valve 255, the outlet isolation valve 265, the power sources 233 and 245. The controller 280 is also communicatively connected to the temperature sensor 216, the pressure sensor 214, the actuator 238, the cooling fluid source 226 and the temperature reading devices 256 and 262. The controller 280 is substantially similar in nature and function than the controller 180 used in the batch processing chamber 100.
The batch processing chamber 100 provides a convenient processing chamber to perform the method of annealing one or more substrates at a high temperature using a processing fluid under high pressure. The heaters 140 are powered on to heat the processing chamber 100 and maintain the internal volume 115 at a temperature above the condensation point of the processing fluid. At the same time, the heaters 152, 154, 158, 196, 164, and 166 are powered on to heat the fluid circuit 190.
A plurality of substrates 135 are loaded on the cassette 130 to be placed in the batch processing chamber 100. The door 120 of the batch processing chamber 100 is opened and the cassette 130 is moved into the internal volume 115. The door 120 is then closed to seal the substrates 135 within the processing chamber 100. A seal 122 ensure that there is no leakage from the internal volume 115 once the door 120 is closed.
A processing fluid is provided by the gas panel 150 into the internal volume 115 defined inside the processing chamber 100. The inlet isolation valve 155 is opened to allow the processing fluid to flow through the source conduit 157 and the gas conduit 192 into the internal volume 115. The outlet isolation valve 165 is kept closed at this time. The pressure at which the processing fluid is applied may be increased incrementally. The inlet isolation valve 155 is closed when a sufficient amount of processing fluid is present in the internal volume 115. Alternatively, the processing fluid may be continuously flowed through the internal volume 115 while processing the substrates 135.
During processing, the internal volume 115 as well as the fluid circuit 190 are maintained at a temperature and pressure such that the processing fluid is maintained in a gaseous phase. The temperatures of the internal volume 115 as well as the fluid circuit 190 are maintained at a temperature greater than the condensation point of the processing fluid at the applied pressure. The internal volume 115 as well as the fluid circuit 190 are maintained at a pressure less than the condensation pressure of the processing fluid at the applied temperature.
The processing is complete when the substrates 135 have achieved the desired effect through exposure to the processing fluid at the processing condition. The outlet isolation valve 165 is then opened to flow the processing fluid from the internal volume 115 through the gas conduit 192 and exhaust conduit 163 into the condenser 160. The processing fluid is condensed into a liquid phase in the condenser 160. The optional heat exchanger 170 may further cool the liquid phase processing fluid to ease in handling of the fluid. The condensed processing fluid is then removed by the pump 176. When the condensed processing fluid is removed, the outlet isolation valve 165 closes. The heaters 140, 152, 154, 158, 196, 164, and 166 maintain the processing fluid within the fluid circuit in a gaseous phase while the outlet isolation valve 165 to the condenser 160 is open to prevent condensation within the fluid circuit. The door 120 of the batch processing chamber 100 is then opened to remove the substrates 135 from the internal volume 115.
The single-substrate processing chamber 200 operates in substantially the same manner as the batch processing chamber 100. The single-substrate processing chamber 200 is used to anneal a single substrate 220 placed on the substrate support 230. The slit valve 228 is opened to load the substrate 220 through the tunnel 221 to the substrate support 230 in the internal volume 215. The heaters 252, 254, 258, 296, 264, and 266 maintain the processing fluid within the fluid circuit in a gaseous phase while delivered to the internal volume 215.
At block 420, a processing fluid is flowed through a gas conduit into the processing region within the single-substrate processing chamber or the batch processing chamber. In some embodiments, the processing fluid may be a processing fluid under high pressure. The single substrate or the plurality of substrates is exposed to the processing fluid at a high temperature during the annealing process. After processing is complete, the processing fluid is removed from the processing region through the gas conduit and condensed by a condenser into a liquid phase. The condensed processing fluid is subsequently removed by a pump.
At block 430, the processing fluid in the gas conduit is maintained at a temperature above a condensation point of the processing fluid. The gas conduit is coupled to one or more heaters configured to maintain the processing fluid flowing through the gas conduit at a temperature above the condensation point of the processing fluid such that the processing fluid remains in a gaseous phase. In some embodiments, the heaters may comprise a resistive heating element powered by a power source. The gas conduit has one or more temperature sensors operable to measure a temperature of the gas conduit. The temperature measurements from the gas conduit are sent to a controller which uses the information to control the operation of the heaters on the gas conduit.
The type of the processing fluid selected for the treating the substrates in inputted into a user interface of the controller or by provided to the controller via another channel. The controller uses information from the temperature and pressure sensors to control the operation of heaters interfaced with different portions of the fluid circuit and the chamber body and maintain the processing fluid present in the fluid circuit and the processing region at a temperature greater than the condensation point of the processing fluid for the sensed pressure. The controller also uses information from the temperature and pressure sensors coupled to the chamber body to control the flow of processing fluid and pressure control gas from a gas panel into the fluid circuit and maintain the processing fluid at a pressure less than the condensation pressure of the processing fluid at the sensed temperature. The temperature and pressure of the processing region as well as the fluid circuit are thus maintained such that the processing fluid remains in the gaseous phase. In one example, the pressure is maintained between about 5 bars and about 35 bars while the temperature is be maintained between about 150 degrees Celsius and about 250 degrees Celsius so that processing fluid predominantly in the form steam remains in a gas phase.
The fluid circuit 190, 290 used in the processing chambers 100, 200 offers the advantage of controlling and maintaining the temperature of a processing fluid above the condensation point of the processing fluid flowing through the fluid circuit 190, 290 into a high-pressure annealing chamber. A number of heaters and temperature sensors coupled to different portions of the fluid circuit 190, 290 help the controller 180, 280 control and maintain the heat supply to the fluid circuit 190, 290 and the internal volumes 115, 215 in the processing chambers 100, 200. As a result, the condensation of the processing fluid is prevented and the processing fluid is maintained in the gaseous phase.
The batch processing chamber 100 allows a plurality of substrates to be annealed in batches at the same time under the same conditions, thus reducing the cost of processing each substrate. On the other hand, the single-substrate processing chamber 200 allows more efficient processing of the substrate, thus offering excellent substrate temperature control over each substrate to be annealed. Moreover, the single-substrate processing chamber 200 may be readily integrated with vacuum cluster processing tools, thus providing efficient substrate processing and integration of processing chambers required for device integration.
While the foregoing is directed to particular embodiments of the present disclosure, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments to arrive at other embodiments without departing from the spirit and scope of the present inventions, as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/378,140, filed Apr. 8, 2019, which is a divisional of U.S. patent application Ser. No. 15/681,317, filed Aug. 18, 2017, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3684592 | Chang et al. | Aug 1972 | A |
3749383 | Voigt et al. | Jul 1973 | A |
3758316 | Sowards et al. | Sep 1973 | A |
4409260 | Pastor et al. | Oct 1983 | A |
4424101 | Nowicki | Jan 1984 | A |
4524587 | Kantor | Jun 1985 | A |
4576652 | Hovel et al. | Mar 1986 | A |
4589193 | Goth et al. | May 1986 | A |
4879259 | Reynolds et al. | Nov 1989 | A |
5050540 | Lindberg | Sep 1991 | A |
5114513 | Hosokawa et al. | May 1992 | A |
5126117 | Schumacher et al. | Jun 1992 | A |
5149378 | Ohmi et al. | Sep 1992 | A |
5167717 | Boitnott | Dec 1992 | A |
5175123 | Vasquez et al. | Dec 1992 | A |
5217757 | Olson et al. | Jun 1993 | A |
5300320 | Barron et al. | Apr 1994 | A |
5314541 | Saito et al. | May 1994 | A |
5319212 | Tokoro | Jun 1994 | A |
5366905 | Mukai | Nov 1994 | A |
5472812 | Sekine | Dec 1995 | A |
5503874 | Ackerman et al. | Apr 1996 | A |
5578132 | Yamaga et al. | Nov 1996 | A |
5590695 | Siegele et al. | Jan 1997 | A |
5597439 | Salzman | Jan 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5677230 | Weitzel et al. | Oct 1997 | A |
5747383 | Chen et al. | May 1998 | A |
5808245 | Wiese et al. | Sep 1998 | A |
5857368 | Grunes et al. | Jan 1999 | A |
5858051 | Komiyama et al. | Jan 1999 | A |
5877087 | Mosely et al. | Mar 1999 | A |
5879756 | Fathi et al. | Mar 1999 | A |
5880041 | Ong | Mar 1999 | A |
5886864 | Dvorsky | Mar 1999 | A |
5888888 | Talwar et al. | Mar 1999 | A |
5918149 | Besser et al. | Jun 1999 | A |
5940985 | Kamikawa et al. | Aug 1999 | A |
5950925 | Fukunaga et al. | Sep 1999 | A |
6042898 | Burns et al. | Mar 2000 | A |
6071810 | Wada et al. | Jun 2000 | A |
6077571 | Kaloyeros | Jun 2000 | A |
6082950 | Altwood et al. | Jul 2000 | A |
6086730 | Liu | Jul 2000 | A |
6103585 | Michaelis | Aug 2000 | A |
6136664 | Economikos et al. | Oct 2000 | A |
6140235 | Yao et al. | Oct 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6156382 | Rajagopalan et al. | Dec 2000 | A |
6162715 | Mak et al. | Dec 2000 | A |
6164412 | Allman | Dec 2000 | A |
6207487 | Kim et al. | Mar 2001 | B1 |
6242368 | Holmer et al. | Jun 2001 | B1 |
6242808 | Shimizu et al. | Jun 2001 | B1 |
6245192 | Dhindsa et al. | Jun 2001 | B1 |
6251242 | Fu et al. | Jun 2001 | B1 |
6251751 | Chu et al. | Jun 2001 | B1 |
6277249 | Gopalraja et al. | Aug 2001 | B1 |
6284646 | Leem | Sep 2001 | B1 |
6299753 | Chao et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6309713 | Mak et al. | Oct 2001 | B1 |
6319766 | Bakli et al. | Nov 2001 | B1 |
6319847 | Ishikawa | Nov 2001 | B1 |
6332926 | Pfaendtner et al. | Dec 2001 | B1 |
6334249 | Hsu | Jan 2002 | B2 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6335240 | Kim et al. | Jan 2002 | B1 |
6344249 | Maruyama et al. | Feb 2002 | B1 |
6344419 | Forster et al. | Feb 2002 | B1 |
6348376 | Lim et al. | Feb 2002 | B2 |
6355558 | Dixit | Mar 2002 | B1 |
6358829 | Yoon et al. | Mar 2002 | B2 |
6359089 | Hung et al. | Mar 2002 | B2 |
6368412 | Gomi | Apr 2002 | B1 |
6372598 | Kang et al. | Apr 2002 | B2 |
6379466 | Sahin et al. | Apr 2002 | B1 |
6387764 | Curtis et al. | May 2002 | B1 |
6399486 | Chen et al. | Jun 2002 | B1 |
6399491 | Jeon et al. | Jun 2002 | B2 |
6402898 | Brumer et al. | Jun 2002 | B1 |
6416822 | Chiang et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6437066 | Hung et al. | Aug 2002 | B1 |
6442980 | Preston et al. | Sep 2002 | B2 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6451695 | Sneh | Sep 2002 | B2 |
6458701 | Chae et al. | Oct 2002 | B1 |
6464779 | Powell et al. | Oct 2002 | B1 |
6468490 | Shamouilian et al. | Oct 2002 | B1 |
6468924 | Lee et al. | Oct 2002 | B2 |
6475910 | Sneh | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482262 | Elers et al. | Nov 2002 | B1 |
6482733 | Raaijmakers et al. | Nov 2002 | B2 |
6482740 | Soininen et al. | Nov 2002 | B2 |
6489214 | Kim et al. | Dec 2002 | B2 |
6500603 | Shioda | Dec 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6548424 | Putkonen | Apr 2003 | B2 |
6551929 | Kori et al. | Apr 2003 | B1 |
6569501 | Chiang et al. | May 2003 | B2 |
6583497 | Xia et al. | Jun 2003 | B2 |
6585823 | Van Wijck | Jul 2003 | B1 |
6599572 | Saanila et al. | Jul 2003 | B2 |
6599819 | Goto | Jul 2003 | B1 |
6607976 | Chen et al. | Aug 2003 | B2 |
6619304 | Worm | Sep 2003 | B2 |
6620670 | Song et al. | Sep 2003 | B2 |
6620723 | Byun et al. | Sep 2003 | B1 |
6620956 | Chen et al. | Sep 2003 | B2 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6630244 | Mao et al. | Oct 2003 | B1 |
6632279 | Ritala et al. | Oct 2003 | B1 |
6657304 | Woo et al. | Dec 2003 | B1 |
6660660 | Haukka et al. | Dec 2003 | B2 |
6677247 | Yuan et al. | Jan 2004 | B2 |
6686271 | Raaijmakers et al. | Feb 2004 | B2 |
6740585 | Yoon et al. | May 2004 | B2 |
6780777 | Yun et al. | Aug 2004 | B2 |
6784096 | Chen et al. | Aug 2004 | B2 |
6797336 | Garvey et al. | Sep 2004 | B2 |
6797340 | Fang et al. | Sep 2004 | B2 |
6805750 | Ristau et al. | Oct 2004 | B1 |
6809026 | Yoon et al. | Oct 2004 | B2 |
6811814 | Chen et al. | Nov 2004 | B2 |
6821891 | Chen et al. | Nov 2004 | B2 |
6825115 | Xiang et al. | Nov 2004 | B1 |
6825134 | Law et al. | Nov 2004 | B2 |
6827978 | Yoon et al. | Dec 2004 | B2 |
6831021 | Chua et al. | Dec 2004 | B2 |
6833161 | Wang et al. | Dec 2004 | B2 |
6838125 | Chung et al. | Jan 2005 | B2 |
6841432 | Takemura et al. | Jan 2005 | B1 |
6846516 | Yang et al. | Jan 2005 | B2 |
6849122 | Fair | Feb 2005 | B1 |
6867130 | Karlsson et al. | Mar 2005 | B1 |
6867152 | Hausmann et al. | Mar 2005 | B1 |
6869838 | Law et al. | Mar 2005 | B2 |
6872429 | Chen et al. | Mar 2005 | B1 |
6889627 | Hao | May 2005 | B1 |
6897118 | Poon et al. | May 2005 | B1 |
6905939 | Yuan et al. | Jun 2005 | B2 |
6911391 | Yang et al. | Jun 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6936538 | Byun | Aug 2005 | B2 |
6939801 | Chung et al. | Sep 2005 | B2 |
6939804 | Lai et al. | Sep 2005 | B2 |
6951804 | Seutter et al. | Oct 2005 | B2 |
6969448 | Lau | Nov 2005 | B1 |
6972267 | Cao et al. | Dec 2005 | B2 |
7026238 | Xi et al. | Apr 2006 | B2 |
7041335 | Chung | May 2006 | B2 |
7049226 | Chung et al. | May 2006 | B2 |
7055333 | Leitch et al. | Jun 2006 | B2 |
7081271 | Chung et al. | Jul 2006 | B2 |
7084079 | Conti et al. | Aug 2006 | B2 |
7101795 | Xi et al. | Sep 2006 | B1 |
7105061 | Shrinivasan et al. | Sep 2006 | B1 |
7111630 | Mizobata et al. | Sep 2006 | B2 |
7114517 | Sund et al. | Oct 2006 | B2 |
7211144 | Lu et al. | May 2007 | B2 |
7211508 | Chung et al. | May 2007 | B2 |
7211525 | Shanker et al. | May 2007 | B1 |
7241686 | Marcadal et al. | Jul 2007 | B2 |
7244683 | Chung et al. | Jul 2007 | B2 |
7262133 | Chen et al. | Aug 2007 | B2 |
7264846 | Chang et al. | Sep 2007 | B2 |
7265048 | Chung et al. | Sep 2007 | B2 |
7279432 | Xi et al. | Oct 2007 | B2 |
7282458 | Gates et al. | Oct 2007 | B2 |
7285312 | Li | Oct 2007 | B2 |
7317229 | Hung et al. | Jan 2008 | B2 |
7361231 | Fury et al. | Apr 2008 | B2 |
7371467 | Han et al. | May 2008 | B2 |
7396565 | Yang et al. | Jul 2008 | B2 |
7404985 | Chang et al. | Jul 2008 | B2 |
7405158 | Lai et al. | Jul 2008 | B2 |
7416979 | Yoon et al. | Aug 2008 | B2 |
7429402 | Gandikota et al. | Sep 2008 | B2 |
7429540 | Olsen | Sep 2008 | B2 |
7432200 | Chowdhury et al. | Oct 2008 | B2 |
7439191 | Law et al. | Oct 2008 | B2 |
7460760 | Cho et al. | Dec 2008 | B2 |
7465650 | Derderian | Dec 2008 | B2 |
7473655 | Wang et al. | Jan 2009 | B2 |
7491658 | Nguyen et al. | Feb 2009 | B2 |
7503334 | Shrinivasan et al. | Mar 2009 | B1 |
7507660 | Chen et al. | Mar 2009 | B2 |
7521089 | Hillman et al. | Apr 2009 | B2 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7531468 | Metzner et al. | May 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7547952 | Metzner et al. | Jun 2009 | B2 |
7569501 | Metzner et al. | Aug 2009 | B2 |
7573586 | Boyer et al. | Aug 2009 | B1 |
7576441 | Yin et al. | Aug 2009 | B2 |
7585762 | Shah et al. | Sep 2009 | B2 |
7595263 | Chung et al. | Sep 2009 | B2 |
7601652 | Singh et al. | Oct 2009 | B2 |
7629227 | Wang et al. | Dec 2009 | B1 |
7650965 | Thayer et al. | Jan 2010 | B2 |
7651955 | Ranish et al. | Jan 2010 | B2 |
7651959 | Fukazawa et al. | Jan 2010 | B2 |
7655532 | Chen et al. | Feb 2010 | B1 |
7691442 | Gandikota et al. | Apr 2010 | B2 |
7709320 | Cheng | May 2010 | B2 |
7732327 | Lee et al. | Jun 2010 | B2 |
7737028 | Wang et al. | Jun 2010 | B2 |
7759749 | Tanikawa | Jul 2010 | B2 |
7776395 | Mahajani | Aug 2010 | B2 |
7816200 | Kher | Oct 2010 | B2 |
7824743 | Lee et al. | Nov 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825042 | Mandal | Nov 2010 | B2 |
7833358 | Chu et al. | Nov 2010 | B2 |
7846840 | Kori et al. | Dec 2010 | B2 |
7867900 | Lee et al. | Jan 2011 | B2 |
7867914 | Xi et al. | Jan 2011 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7875119 | Gartland et al. | Jan 2011 | B2 |
7891228 | Ding et al. | Feb 2011 | B2 |
7910165 | Ganguli et al. | Mar 2011 | B2 |
7910446 | Ma et al. | Mar 2011 | B2 |
7964505 | Khandelwal et al. | Jun 2011 | B2 |
7964506 | Ponnuswamy et al. | Jun 2011 | B1 |
7972978 | Mahajani | Jul 2011 | B2 |
8027089 | Hayashi | Sep 2011 | B2 |
8043907 | Ma et al. | Oct 2011 | B2 |
8056652 | Lockwood et al. | Nov 2011 | B2 |
8227078 | Morra et al. | Jul 2012 | B2 |
8277670 | Heo et al. | Oct 2012 | B2 |
8278224 | Mui et al. | Oct 2012 | B1 |
8306026 | Anjum et al. | Nov 2012 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8349085 | Tahara et al. | Jan 2013 | B2 |
8449942 | Liang et al. | May 2013 | B2 |
8455368 | Chandler et al. | Jun 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
8470460 | Lee | Jun 2013 | B2 |
8481123 | Kim et al. | Jul 2013 | B2 |
8536065 | Seamons et al. | Sep 2013 | B2 |
8557712 | Antonelli et al. | Oct 2013 | B1 |
8563445 | Liang et al. | Oct 2013 | B2 |
8585873 | Ford et al. | Nov 2013 | B2 |
8647992 | Liang et al. | Feb 2014 | B2 |
8648253 | Woods et al. | Feb 2014 | B1 |
8668868 | Chiu et al. | Mar 2014 | B2 |
8741420 | Bunker et al. | Jun 2014 | B2 |
8741788 | Liang et al. | Jun 2014 | B2 |
8871297 | Barnett et al. | Oct 2014 | B2 |
8871656 | Mallick et al. | Oct 2014 | B2 |
8906761 | Kim et al. | Dec 2014 | B2 |
8936834 | Kim et al. | Jan 2015 | B2 |
9121515 | Yamamoto et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9157730 | Rajagopalan et al. | Oct 2015 | B2 |
9190321 | Cabral, Jr. et al. | Nov 2015 | B2 |
9255327 | Winter et al. | Feb 2016 | B2 |
9257314 | Rivera et al. | Feb 2016 | B1 |
9306026 | Toriumi et al. | Apr 2016 | B2 |
9330939 | Zope et al. | May 2016 | B2 |
9362107 | Thadani et al. | Jun 2016 | B2 |
9382621 | Choi et al. | Jul 2016 | B2 |
9423313 | Douba et al. | Aug 2016 | B2 |
9484406 | Sun et al. | Nov 2016 | B1 |
9502307 | Bao et al. | Nov 2016 | B1 |
9570551 | Balakrishnan et al. | Feb 2017 | B1 |
9583655 | Cheng | Feb 2017 | B2 |
9646850 | Pethe | May 2017 | B2 |
9679810 | Nag et al. | Jun 2017 | B1 |
9683281 | Meehan et al. | Jun 2017 | B2 |
9685371 | Zope et al. | Jun 2017 | B2 |
9695503 | Stowell et al. | Jul 2017 | B2 |
9741626 | Cheng et al. | Aug 2017 | B1 |
9777378 | Nemani et al. | Oct 2017 | B2 |
9777583 | Leggett | Oct 2017 | B2 |
9873940 | Xu et al. | Jan 2018 | B2 |
10049927 | Mebarki et al. | Aug 2018 | B2 |
10083834 | Thompson et al. | Sep 2018 | B2 |
10096516 | Leschkies et al. | Oct 2018 | B1 |
10179941 | Khan et al. | Jan 2019 | B1 |
10224224 | Liang et al. | Mar 2019 | B2 |
10234630 | Meyer Timmerman Thijssen et al. | Mar 2019 | B2 |
10269571 | Wong et al. | Apr 2019 | B2 |
10276411 | Delmas et al. | Apr 2019 | B2 |
10287899 | Dierberger | May 2019 | B2 |
10369593 | Barnett et al. | Aug 2019 | B2 |
10403729 | Lee | Sep 2019 | B2 |
10410918 | Wu et al. | Sep 2019 | B2 |
10529585 | Manna et al. | Jan 2020 | B2 |
10529603 | Liang et al. | Jan 2020 | B2 |
10566188 | Clemons et al. | Feb 2020 | B2 |
10622214 | Wong et al. | Apr 2020 | B2 |
10633740 | Melnik et al. | Apr 2020 | B2 |
10636669 | Chen et al. | Apr 2020 | B2 |
10636677 | Delmas et al. | Apr 2020 | B2 |
10636704 | Mebarki et al. | Apr 2020 | B2 |
10643867 | Delmas et al. | May 2020 | B2 |
10675581 | Khan et al. | Jun 2020 | B2 |
10685830 | Delmas | Jun 2020 | B2 |
10714331 | Balseanu et al. | Jul 2020 | B2 |
10720341 | Liang et al. | Jul 2020 | B2 |
10748783 | Khan et al. | Aug 2020 | B2 |
10790183 | Sun et al. | Sep 2020 | B2 |
10847360 | Wong et al. | Nov 2020 | B2 |
10854483 | Schaller et al. | Dec 2020 | B2 |
10916433 | Ren et al. | Feb 2021 | B2 |
10950429 | Citla et al. | Mar 2021 | B2 |
10957533 | Jiang et al. | Mar 2021 | B2 |
11018032 | Delmas et al. | May 2021 | B2 |
11101174 | Jiang et al. | Aug 2021 | B2 |
20010006853 | Tanabe et al. | Jul 2001 | A1 |
20010016429 | Mak et al. | Aug 2001 | A1 |
20010029108 | Tometsuka | Oct 2001 | A1 |
20010041122 | Kroeker | Nov 2001 | A1 |
20010050096 | Costantini et al. | Dec 2001 | A1 |
20010055649 | Ogure et al. | Dec 2001 | A1 |
20020002258 | Hung et al. | Jan 2002 | A1 |
20020045782 | Hung et al. | Apr 2002 | A1 |
20020066535 | Brown et al. | Jun 2002 | A1 |
20020073922 | Frankel et al. | Jun 2002 | A1 |
20020098715 | Lane et al. | Jul 2002 | A1 |
20020117399 | Chen et al. | Aug 2002 | A1 |
20020122885 | Ahn | Sep 2002 | A1 |
20020127336 | Chen et al. | Sep 2002 | A1 |
20020134439 | Kawasaki et al. | Sep 2002 | A1 |
20020148492 | Yamagata et al. | Oct 2002 | A1 |
20020151128 | Lane et al. | Oct 2002 | A1 |
20020155714 | Suzuki | Oct 2002 | A1 |
20020192056 | Reimer et al. | Dec 2002 | A1 |
20020197806 | Furukawa et al. | Dec 2002 | A1 |
20030010451 | Tzu et al. | Jan 2003 | A1 |
20030022487 | Yoon et al. | Jan 2003 | A1 |
20030030945 | Heinonen et al. | Feb 2003 | A1 |
20030049372 | Cook et al. | Mar 2003 | A1 |
20030053893 | Matsunaga et al. | Mar 2003 | A1 |
20030057526 | Chung et al. | Mar 2003 | A1 |
20030059535 | Luo et al. | Mar 2003 | A1 |
20030059538 | Chung et al. | Mar 2003 | A1 |
20030072884 | Zhang et al. | Apr 2003 | A1 |
20030082301 | Chen et al. | May 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030121887 | Garvey et al. | Jul 2003 | A1 |
20030123216 | Yoon et al. | Jul 2003 | A1 |
20030124262 | Chen et al. | Jul 2003 | A1 |
20030129832 | Fujikawa | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030136520 | Yudovsky et al. | Jul 2003 | A1 |
20030139005 | Song et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030148631 | Kuo et al. | Aug 2003 | A1 |
20030157760 | Xi et al. | Aug 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030194615 | Krauth | Oct 2003 | A1 |
20030198754 | Xi et al. | Oct 2003 | A1 |
20030203616 | Chung et al. | Oct 2003 | A1 |
20030207593 | Derderian et al. | Nov 2003 | A1 |
20030215570 | Seutter et al. | Nov 2003 | A1 |
20030232512 | Dickinson et al. | Dec 2003 | A1 |
20030235961 | Metzner et al. | Dec 2003 | A1 |
20040009665 | Chen et al. | Jan 2004 | A1 |
20040013803 | Chung et al. | Jan 2004 | A1 |
20040018738 | Liu | Jan 2004 | A1 |
20040025908 | Douglas et al. | Feb 2004 | A1 |
20040060519 | Beauchaine et al. | Apr 2004 | A1 |
20040074869 | Wang et al. | Apr 2004 | A1 |
20040079648 | Khan et al. | Apr 2004 | A1 |
20040097060 | San et al. | May 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040171280 | Conley et al. | Sep 2004 | A1 |
20040180510 | Ranade | Sep 2004 | A1 |
20040184792 | Hamelin et al. | Sep 2004 | A1 |
20040219800 | Tognetti | Nov 2004 | A1 |
20040248392 | Narwankar et al. | Dec 2004 | A1 |
20040255979 | Fury et al. | Dec 2004 | A1 |
20050003310 | Bai et al. | Jan 2005 | A1 |
20050003655 | Cathey et al. | Jan 2005 | A1 |
20050008780 | Ackerman et al. | Jan 2005 | A1 |
20050014365 | Moon et al. | Jan 2005 | A1 |
20050019593 | Mancini et al. | Jan 2005 | A1 |
20050022737 | Shimizu et al. | Feb 2005 | A1 |
20050051194 | Sakashita et al. | Mar 2005 | A1 |
20050053467 | Ackerman et al. | Mar 2005 | A1 |
20050074956 | Autryve et al. | Apr 2005 | A1 |
20050082281 | Uemori et al. | Apr 2005 | A1 |
20050085031 | Lopatin et al. | Apr 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050136684 | Mukai et al. | Jun 2005 | A1 |
20050158590 | Li | Jul 2005 | A1 |
20050161158 | Schumacher | Jul 2005 | A1 |
20050164445 | Lin et al. | Jul 2005 | A1 |
20050186765 | Ma et al. | Aug 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050198971 | Leitch et al. | Sep 2005 | A1 |
20050205210 | Devine et al. | Sep 2005 | A1 |
20050227479 | Feng et al. | Oct 2005 | A1 |
20050250347 | Bailey et al. | Nov 2005 | A1 |
20050255329 | Hazel | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20050260357 | Olsen et al. | Nov 2005 | A1 |
20050269291 | Kent | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20060003596 | Fucsko et al. | Jan 2006 | A1 |
20060019032 | Wang et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060035035 | Sakama | Feb 2006 | A1 |
20060040052 | Fang et al. | Feb 2006 | A1 |
20060062917 | Muthukrishnan et al. | Mar 2006 | A1 |
20060079086 | Boit et al. | Apr 2006 | A1 |
20060084283 | Paranjpe et al. | Apr 2006 | A1 |
20060091493 | Wu | May 2006 | A1 |
20060105107 | Lindeboom et al. | May 2006 | A1 |
20060105515 | Amos et al. | May 2006 | A1 |
20060105557 | Klee et al. | May 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060124613 | Kumar et al. | Jun 2006 | A1 |
20060128150 | Gandikota et al. | Jun 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060153995 | Narwankar et al. | Jul 2006 | A1 |
20060175012 | Lee | Aug 2006 | A1 |
20060207633 | Kim et al. | Sep 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228895 | Chae et al. | Oct 2006 | A1 |
20060240187 | Weidman | Oct 2006 | A1 |
20060246213 | Moreau et al. | Nov 2006 | A1 |
20060279025 | Heidari et al. | Dec 2006 | A1 |
20060286819 | Seutter et al. | Dec 2006 | A1 |
20060290017 | Yanagisawa | Dec 2006 | A1 |
20070009658 | Yoo et al. | Jan 2007 | A1 |
20070009660 | Sasaki et al. | Jan 2007 | A1 |
20070012402 | Sneh | Jan 2007 | A1 |
20070045753 | Pae et al. | Mar 2007 | A1 |
20070049043 | Muthukrishnan et al. | Mar 2007 | A1 |
20070054487 | Ma et al. | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070087533 | Nishikawa et al. | Apr 2007 | A1 |
20070095651 | Ye et al. | May 2007 | A1 |
20070099415 | Chen et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070134518 | Feist et al. | Jun 2007 | A1 |
20070145416 | Ohta | Jun 2007 | A1 |
20070187386 | Kim et al. | Aug 2007 | A1 |
20070202254 | Ganguli et al. | Aug 2007 | A1 |
20070204797 | Fischer | Sep 2007 | A1 |
20070209931 | Miller | Sep 2007 | A1 |
20070212850 | Ingle et al. | Sep 2007 | A1 |
20070243317 | Du Bois et al. | Oct 2007 | A1 |
20070254471 | Kameyama et al. | Nov 2007 | A1 |
20070254477 | Muraoka et al. | Nov 2007 | A1 |
20070256559 | Chen et al. | Nov 2007 | A1 |
20070259111 | Singh et al. | Nov 2007 | A1 |
20070274837 | Taylor et al. | Nov 2007 | A1 |
20080001196 | Cheng | Jan 2008 | A1 |
20080032510 | Olsen | Feb 2008 | A1 |
20080038578 | Li | Feb 2008 | A1 |
20080056905 | Golecki | Mar 2008 | A1 |
20080073691 | Konno et al. | Mar 2008 | A1 |
20080074658 | Davis et al. | Mar 2008 | A1 |
20080076230 | Cheng | Mar 2008 | A1 |
20080083109 | Shibata et al. | Apr 2008 | A1 |
20080085611 | Khandelwal et al. | Apr 2008 | A1 |
20080090425 | Olsen | Apr 2008 | A9 |
20080113095 | Gorman et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080121882 | Hwang et al. | May 2008 | A1 |
20080132050 | Lavoie | Jun 2008 | A1 |
20080135914 | Krishna et al. | Jun 2008 | A1 |
20080210273 | Joe | Sep 2008 | A1 |
20080241384 | Jeong et al. | Oct 2008 | A1 |
20080246099 | Varghese et al. | Oct 2008 | A1 |
20080251904 | Theuss et al. | Oct 2008 | A1 |
20080268154 | Kher et al. | Oct 2008 | A1 |
20080268635 | Yu et al. | Oct 2008 | A1 |
20080311711 | Hampp et al. | Dec 2008 | A1 |
20080315762 | Hamada et al. | Dec 2008 | A1 |
20090004386 | Makela et al. | Jan 2009 | A1 |
20090004850 | Ganguli et al. | Jan 2009 | A1 |
20090018688 | Chandler et al. | Jan 2009 | A1 |
20090029126 | Tanikawa | Jan 2009 | A1 |
20090035915 | Su | Feb 2009 | A1 |
20090035952 | Chua et al. | Feb 2009 | A1 |
20090053426 | Lu et al. | Feb 2009 | A1 |
20090053893 | Khandelwal et al. | Feb 2009 | A1 |
20090061613 | Choi et al. | Mar 2009 | A1 |
20090081884 | Yokota et al. | Mar 2009 | A1 |
20090087981 | Suzuki et al. | Apr 2009 | A1 |
20090098289 | Deininger et al. | Apr 2009 | A1 |
20090098346 | Li | Apr 2009 | A1 |
20090110622 | Chiu et al. | Apr 2009 | A1 |
20090148965 | Kim et al. | Jun 2009 | A1 |
20090155976 | Ahn et al. | Jun 2009 | A1 |
20090180847 | Guo et al. | Jul 2009 | A1 |
20090183992 | Fredenberg et al. | Jul 2009 | A1 |
20090186481 | Suzuki et al. | Jul 2009 | A1 |
20090233449 | Lebouitz et al. | Sep 2009 | A1 |
20090243126 | Washiya et al. | Oct 2009 | A1 |
20090246952 | Ishizaka et al. | Oct 2009 | A1 |
20090269507 | Yu et al. | Oct 2009 | A1 |
20090283735 | Li et al. | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090298257 | Lee et al. | Dec 2009 | A1 |
20100006211 | Wolk et al. | Jan 2010 | A1 |
20100012292 | Yamazaki | Jan 2010 | A1 |
20100022068 | Chen et al. | Jan 2010 | A1 |
20100032838 | Kikuchi et al. | Feb 2010 | A1 |
20100062149 | Ma et al. | Mar 2010 | A1 |
20100062614 | Ma et al. | Mar 2010 | A1 |
20100072569 | Han et al. | Mar 2010 | A1 |
20100075499 | Olsen | Mar 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100110451 | Biswas et al. | May 2010 | A1 |
20100120245 | Tjandra et al. | May 2010 | A1 |
20100159150 | Kirby et al. | Jun 2010 | A1 |
20100167527 | Wu et al. | Jul 2010 | A1 |
20100173470 | Lee et al. | Jul 2010 | A1 |
20100173495 | Thakur et al. | Jul 2010 | A1 |
20100196626 | Choi et al. | Aug 2010 | A1 |
20100203725 | Choi et al. | Aug 2010 | A1 |
20100239758 | Kher et al. | Sep 2010 | A1 |
20100248419 | Woodruff et al. | Sep 2010 | A1 |
20100270609 | Olsen et al. | Oct 2010 | A1 |
20100273324 | Lin et al. | Oct 2010 | A1 |
20100297854 | Ramamurthy et al. | Nov 2010 | A1 |
20100304027 | Lee et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20100323517 | Baker-O'Neal et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110011737 | Wu et al. | Jan 2011 | A1 |
20110048524 | Nam et al. | Mar 2011 | A1 |
20110124192 | Ganguli et al. | May 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110163449 | Kelly et al. | Jul 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110174363 | Munteanu | Jul 2011 | A1 |
20110175038 | Hou et al. | Jul 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20110204518 | Arunachalam | Aug 2011 | A1 |
20110233110 | Koseoglu et al. | Sep 2011 | A1 |
20110233778 | Lee et al. | Sep 2011 | A1 |
20110237019 | Horng et al. | Sep 2011 | A1 |
20110240464 | Rasheed et al. | Oct 2011 | A1 |
20110263091 | Yamazaki | Oct 2011 | A1 |
20110293825 | Atwal et al. | Dec 2011 | A1 |
20110303147 | Tachibana et al. | Dec 2011 | A1 |
20110305836 | Murata et al. | Dec 2011 | A1 |
20120024403 | Gage et al. | Feb 2012 | A1 |
20120048304 | Kitajima et al. | Mar 2012 | A1 |
20120056173 | Pieralisi | Mar 2012 | A1 |
20120060868 | Gray | Mar 2012 | A1 |
20120082783 | Barnett et al. | Apr 2012 | A1 |
20120100678 | Sako et al. | Apr 2012 | A1 |
20120112224 | Le Bellac et al. | May 2012 | A1 |
20120138146 | Furuhata et al. | Jun 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120142198 | Wang et al. | Jun 2012 | A1 |
20120148944 | Oh et al. | Jun 2012 | A1 |
20120153483 | Akolkar et al. | Jun 2012 | A1 |
20120175822 | Inamiya et al. | Jul 2012 | A1 |
20120252207 | Lei et al. | Oct 2012 | A1 |
20120252210 | Tohnoe | Oct 2012 | A1 |
20120258602 | Subramani et al. | Oct 2012 | A1 |
20120276306 | Ueda | Nov 2012 | A1 |
20120285492 | Lee et al. | Nov 2012 | A1 |
20120304485 | Hayashi et al. | Dec 2012 | A1 |
20120309190 | Kelly et al. | Dec 2012 | A1 |
20120318773 | Wu et al. | Dec 2012 | A1 |
20130048605 | Sapre et al. | Feb 2013 | A1 |
20130068391 | Mazzocco et al. | Mar 2013 | A1 |
20130069174 | Chuang et al. | Mar 2013 | A1 |
20130145761 | McAlister | Jun 2013 | A1 |
20130164456 | Winter et al. | Jun 2013 | A1 |
20130194350 | Watanabe et al. | Aug 2013 | A1 |
20130233170 | Spiegelman et al. | Sep 2013 | A1 |
20130241037 | Jeong et al. | Sep 2013 | A1 |
20130256125 | Young et al. | Oct 2013 | A1 |
20130277760 | Lu et al. | Oct 2013 | A1 |
20130288485 | Liang et al. | Oct 2013 | A1 |
20130292655 | Becker et al. | Nov 2013 | A1 |
20130302916 | Kim et al. | Nov 2013 | A1 |
20130330042 | Nara et al. | Dec 2013 | A1 |
20130337171 | Sasagawa | Dec 2013 | A1 |
20140003892 | Yamamoto et al. | Jan 2014 | A1 |
20140023320 | Lee et al. | Jan 2014 | A1 |
20140034632 | Pan et al. | Feb 2014 | A1 |
20140045300 | Chen et al. | Feb 2014 | A1 |
20140051264 | Mallick et al. | Feb 2014 | A1 |
20140076494 | Miyashita et al. | Mar 2014 | A1 |
20140102877 | Yamazaki | Apr 2014 | A1 |
20140103284 | Hsueh et al. | Apr 2014 | A1 |
20140134827 | Swaminathan et al. | May 2014 | A1 |
20140138802 | Starostine et al. | May 2014 | A1 |
20140144462 | Verhaverbeke et al. | May 2014 | A1 |
20140159135 | Fujimoto et al. | Jun 2014 | A1 |
20140183743 | Matsumoto et al. | Jul 2014 | A1 |
20140213070 | Hong et al. | Jul 2014 | A1 |
20140231384 | Underwood et al. | Aug 2014 | A1 |
20140234583 | Ryu et al. | Aug 2014 | A1 |
20140235068 | Ashihara et al. | Aug 2014 | A1 |
20140239291 | Son et al. | Aug 2014 | A1 |
20140239292 | Kim et al. | Aug 2014 | A1 |
20140264237 | Chen et al. | Sep 2014 | A1 |
20140264297 | Kumar et al. | Sep 2014 | A1 |
20140268080 | Beasley et al. | Sep 2014 | A1 |
20140271220 | Leggett | Sep 2014 | A1 |
20140273335 | Abushama | Sep 2014 | A1 |
20140284821 | Hubbard | Sep 2014 | A1 |
20140319129 | Ahmad | Oct 2014 | A1 |
20140319462 | Huang et al. | Oct 2014 | A1 |
20140322921 | Ahmad et al. | Oct 2014 | A1 |
20150000870 | Hosotani et al. | Jan 2015 | A1 |
20150017324 | Barnett et al. | Jan 2015 | A1 |
20150021672 | Chuang et al. | Jan 2015 | A1 |
20150024592 | Chandrashekar et al. | Jan 2015 | A1 |
20150050807 | Wu et al. | Feb 2015 | A1 |
20150056819 | Wong et al. | Feb 2015 | A1 |
20150091009 | Yamazaki et al. | Apr 2015 | A1 |
20150093891 | Zope et al. | Apr 2015 | A1 |
20150099342 | Tsai et al. | Apr 2015 | A1 |
20150102340 | Shimoda et al. | Apr 2015 | A1 |
20150140835 | Tateno et al. | May 2015 | A1 |
20150144999 | Ching et al. | May 2015 | A1 |
20150145002 | Lee et al. | May 2015 | A1 |
20150159272 | Yoon et al. | Jun 2015 | A1 |
20150179501 | Jhaveri et al. | Jun 2015 | A1 |
20150184296 | Xu et al. | Jul 2015 | A1 |
20150197455 | Pranov | Jul 2015 | A1 |
20150203961 | Ha et al. | Jul 2015 | A1 |
20150221541 | Nemani et al. | Aug 2015 | A1 |
20150246329 | Itonaga et al. | Sep 2015 | A1 |
20150255581 | Lin et al. | Sep 2015 | A1 |
20150279635 | Subramani et al. | Oct 2015 | A1 |
20150292736 | Hirson et al. | Oct 2015 | A1 |
20150309073 | Mirkin et al. | Oct 2015 | A1 |
20150322286 | Cabrini et al. | Nov 2015 | A1 |
20150348824 | Kuenle et al. | Dec 2015 | A1 |
20150357195 | Lam et al. | Dec 2015 | A1 |
20150364348 | Park et al. | Dec 2015 | A1 |
20150364554 | Kim et al. | Dec 2015 | A1 |
20160010472 | Murphy et al. | Jan 2016 | A1 |
20160027661 | Sato et al. | Jan 2016 | A1 |
20160027887 | Yuan et al. | Jan 2016 | A1 |
20160035600 | Rivera et al. | Feb 2016 | A1 |
20160053366 | Stowell et al. | Feb 2016 | A1 |
20160064209 | Lee et al. | Mar 2016 | A1 |
20160064482 | Hashemi et al. | Mar 2016 | A1 |
20160076149 | Yamazaki et al. | Mar 2016 | A1 |
20160086831 | Rivera et al. | Mar 2016 | A1 |
20160093726 | Ching et al. | Mar 2016 | A1 |
20160111272 | Girard et al. | Apr 2016 | A1 |
20160111337 | Hatcher et al. | Apr 2016 | A1 |
20160118260 | Mebarki et al. | Apr 2016 | A1 |
20160118391 | Zhao et al. | Apr 2016 | A1 |
20160126104 | Shaviv et al. | May 2016 | A1 |
20160163540 | Liao et al. | Jun 2016 | A1 |
20160181414 | Huang et al. | Jun 2016 | A1 |
20160186363 | Merzaghi et al. | Jun 2016 | A1 |
20160204027 | Lakshmanan et al. | Jul 2016 | A1 |
20160208414 | Odawara et al. | Jul 2016 | A1 |
20160251972 | Dierberger | Sep 2016 | A1 |
20160260526 | Otto | Sep 2016 | A1 |
20160268127 | Yamazaki | Sep 2016 | A1 |
20160273758 | Fujimura | Sep 2016 | A1 |
20160274454 | Beasley et al. | Sep 2016 | A1 |
20160281230 | Varadarajan et al. | Sep 2016 | A1 |
20160284882 | Jang | Sep 2016 | A1 |
20160298222 | Meehan et al. | Oct 2016 | A1 |
20160300709 | Posseme et al. | Oct 2016 | A1 |
20160308048 | Ching et al. | Oct 2016 | A1 |
20160314964 | Tang et al. | Oct 2016 | A1 |
20160328635 | Dave et al. | Nov 2016 | A1 |
20160329190 | Evans et al. | Nov 2016 | A1 |
20160329458 | Evans et al. | Nov 2016 | A1 |
20160334162 | Kim et al. | Nov 2016 | A1 |
20160336405 | Sun et al. | Nov 2016 | A1 |
20160336475 | Mackie et al. | Nov 2016 | A1 |
20160353522 | Rathi et al. | Dec 2016 | A1 |
20160355927 | Weaver et al. | Dec 2016 | A1 |
20160358809 | Brown et al. | Dec 2016 | A1 |
20160358815 | Yu et al. | Dec 2016 | A1 |
20160372319 | Zeng et al. | Dec 2016 | A1 |
20160377972 | Hofmann et al. | Dec 2016 | A1 |
20160379853 | Schaller et al. | Dec 2016 | A1 |
20160379854 | Vopat et al. | Dec 2016 | A1 |
20170005188 | Cheng et al. | Jan 2017 | A1 |
20170005204 | Hosoba et al. | Jan 2017 | A1 |
20170008040 | Jeong et al. | Jan 2017 | A1 |
20170011932 | Pethe et al. | Jan 2017 | A1 |
20170053784 | Subramani et al. | Feb 2017 | A1 |
20170053946 | Matsuzaki et al. | Feb 2017 | A1 |
20170076968 | Wang et al. | Mar 2017 | A1 |
20170084425 | Uziel et al. | Mar 2017 | A1 |
20170084487 | Chebiam et al. | Mar 2017 | A1 |
20170104062 | Bi et al. | Apr 2017 | A1 |
20170110616 | Dissanayake et al. | Apr 2017 | A1 |
20170117379 | Chen et al. | Apr 2017 | A1 |
20170140996 | Lin et al. | May 2017 | A1 |
20170160012 | Kobayashi et al. | Jun 2017 | A1 |
20170162413 | Rebstock | Jun 2017 | A1 |
20170194430 | Wood et al. | Jul 2017 | A1 |
20170200642 | Shaviv | Jul 2017 | A1 |
20170213570 | Cheng et al. | Jul 2017 | A1 |
20170225119 | Mahecha-Botero et al. | Aug 2017 | A1 |
20170233930 | Keuleers et al. | Aug 2017 | A1 |
20170253968 | Yahata | Sep 2017 | A1 |
20170263702 | Chan et al. | Sep 2017 | A1 |
20170263773 | Yamazaki | Sep 2017 | A1 |
20170287842 | Fu et al. | Oct 2017 | A1 |
20170292445 | Nelson et al. | Oct 2017 | A1 |
20170301767 | Niimi et al. | Oct 2017 | A1 |
20170314125 | Fenwick et al. | Nov 2017 | A1 |
20170317109 | Wang et al. | Nov 2017 | A1 |
20170358483 | Roy et al. | Dec 2017 | A1 |
20180003567 | Petry et al. | Jan 2018 | A1 |
20180006215 | Jeong et al. | Jan 2018 | A1 |
20180019249 | Zhang et al. | Jan 2018 | A1 |
20180023192 | Chandra et al. | Jan 2018 | A1 |
20180033615 | Tjandra | Feb 2018 | A1 |
20180051368 | Liu et al. | Feb 2018 | A1 |
20180053725 | Edelstein et al. | Feb 2018 | A1 |
20180068890 | Zope et al. | Mar 2018 | A1 |
20180087418 | Cadigan et al. | Mar 2018 | A1 |
20180096847 | Thompson et al. | Apr 2018 | A1 |
20180096874 | Schaller et al. | Apr 2018 | A1 |
20180105932 | Fenwick et al. | Apr 2018 | A1 |
20180127868 | Xu et al. | May 2018 | A1 |
20180182856 | Lee | Jun 2018 | A1 |
20180204720 | Tanaka et al. | Jul 2018 | A1 |
20180204742 | Tateno et al. | Jul 2018 | A1 |
20180209037 | Citla et al. | Jul 2018 | A1 |
20180240682 | Lai et al. | Aug 2018 | A1 |
20180258533 | Liang et al. | Sep 2018 | A1 |
20180261480 | Liang et al. | Sep 2018 | A1 |
20180261516 | Lin et al. | Sep 2018 | A1 |
20180261686 | Lin et al. | Sep 2018 | A1 |
20180264516 | Fujikawa et al. | Sep 2018 | A1 |
20180286674 | Manna et al. | Oct 2018 | A1 |
20180308669 | Bokka et al. | Oct 2018 | A1 |
20180315626 | Franklin | Nov 2018 | A1 |
20180323093 | Zhang et al. | Nov 2018 | A1 |
20180329189 | Banna et al. | Nov 2018 | A1 |
20180337027 | L'Heureux et al. | Nov 2018 | A1 |
20180339314 | Bhoyar et al. | Nov 2018 | A1 |
20180342384 | Wong et al. | Nov 2018 | A1 |
20180342396 | Wong et al. | Nov 2018 | A1 |
20180350563 | Manna et al. | Dec 2018 | A1 |
20180351164 | Hellmich et al. | Dec 2018 | A1 |
20180358229 | Koshizawa et al. | Dec 2018 | A1 |
20180366328 | Ren et al. | Dec 2018 | A1 |
20190019690 | Choi et al. | Jan 2019 | A1 |
20190019708 | Weaver et al. | Jan 2019 | A1 |
20190032194 | Dieguez-Campo et al. | Jan 2019 | A2 |
20190057879 | Delmas et al. | Feb 2019 | A1 |
20190079388 | Fender et al. | Mar 2019 | A1 |
20190088543 | Lin et al. | Mar 2019 | A1 |
20190119769 | Khan et al. | Apr 2019 | A1 |
20190130731 | Hassan et al. | May 2019 | A1 |
20190139793 | Delmas et al. | May 2019 | A1 |
20190148178 | Liang et al. | May 2019 | A1 |
20190148186 | Schaller et al. | May 2019 | A1 |
20190157074 | Delmas | May 2019 | A1 |
20190170591 | Petry et al. | Jun 2019 | A1 |
20190198367 | Liang et al. | Jun 2019 | A1 |
20190198368 | Weaver et al. | Jun 2019 | A1 |
20190228982 | Chen et al. | Jul 2019 | A1 |
20190229004 | Schaller et al. | Jul 2019 | A1 |
20190237345 | Delmas et al. | Aug 2019 | A1 |
20190258153 | Nemani et al. | Aug 2019 | A1 |
20190259625 | Nemani et al. | Aug 2019 | A1 |
20190259638 | Schaller et al. | Aug 2019 | A1 |
20190271076 | Fenwick et al. | Sep 2019 | A1 |
20190279879 | Singh et al. | Sep 2019 | A1 |
20190284686 | Melnik et al. | Sep 2019 | A1 |
20190284692 | Melnik et al. | Sep 2019 | A1 |
20190284694 | Knisley et al. | Sep 2019 | A1 |
20190287808 | Goradia et al. | Sep 2019 | A1 |
20190311896 | Balseanu et al. | Oct 2019 | A1 |
20190311900 | Pandit et al. | Oct 2019 | A1 |
20190311909 | Bajaj et al. | Oct 2019 | A1 |
20190326138 | Forderhase et al. | Oct 2019 | A1 |
20190330746 | Britz et al. | Oct 2019 | A1 |
20190360100 | Nguyen et al. | Nov 2019 | A1 |
20190360633 | Schaller et al. | Nov 2019 | A1 |
20190368035 | Malik et al. | Dec 2019 | A1 |
20190371650 | Sun et al. | Dec 2019 | A1 |
20190375105 | Weaver et al. | Dec 2019 | A1 |
20190382879 | Jindal et al. | Dec 2019 | A1 |
20200027767 | Zang et al. | Jan 2020 | A1 |
20200035509 | Khan et al. | Jan 2020 | A1 |
20200035513 | Khan et al. | Jan 2020 | A1 |
20200043722 | Cheng et al. | Feb 2020 | A1 |
20200075392 | Brown et al. | Mar 2020 | A1 |
20200098574 | Wong et al. | Mar 2020 | A1 |
20200240018 | Melnik et al. | Jul 2020 | A1 |
20200361124 | Britz | Nov 2020 | A1 |
20200392626 | Chatterjee et al. | Dec 2020 | A1 |
20210167235 | Li et al. | Jun 2021 | A1 |
20210335626 | Xue et al. | Oct 2021 | A1 |
20220102175 | Chen et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1280875 | Oct 2006 | CN |
101871043 | Oct 2010 | CN |
102386052 | Mar 2012 | CN |
102856234 | Jan 2013 | CN |
104047676 | Sep 2014 | CN |
104089491 | Oct 2014 | CN |
105408985 | Mar 2016 | CN |
103035513 | Oct 2016 | CN |
0516344 | Dec 1992 | EP |
0670590 | Sep 1995 | EP |
1069213 | Jan 2001 | EP |
1107288 | Jun 2001 | EP |
0840365 | Oct 2003 | EP |
S63-004616 | Jan 1988 | JP |
S6367721 | Mar 1988 | JP |
H1218018 | Aug 1989 | JP |
H04355922 | Dec 1992 | JP |
H0521347 | Jan 1993 | JP |
H06283496 | Oct 1994 | JP |
H07048489 | May 1995 | JP |
H07158767 | Jun 1995 | JP |
H08195493 | Jul 1996 | JP |
H09048690 | Feb 1997 | JP |
H9296267 | Nov 1997 | JP |
H10214880 | Aug 1998 | JP |
H10335657 | Dec 1998 | JP |
H11209872 | Aug 1999 | JP |
H11354515 | Dec 1999 | JP |
2000221799 | Aug 2000 | JP |
2000357699 | Dec 2000 | JP |
2001053066 | Feb 2001 | JP |
2001110729 | Apr 2001 | JP |
2001274161 | Oct 2001 | JP |
200351474 | Feb 2003 | JP |
2003166065 | Jun 2003 | JP |
2003188387 | Jul 2003 | JP |
2003243374 | Aug 2003 | JP |
2004127958 | Apr 2004 | JP |
200579528 | Mar 2005 | JP |
2005064269 | Mar 2005 | JP |
2005530343 | Oct 2005 | JP |
2005333015 | Dec 2005 | JP |
2006526125 | Nov 2006 | JP |
2007524229 | Aug 2007 | JP |
2007242791 | Sep 2007 | JP |
2008073611 | Apr 2008 | JP |
2008118118 | May 2008 | JP |
2008153635 | Jul 2008 | JP |
2009117404 | May 2009 | JP |
2009129927 | Jun 2009 | JP |
2009539231 | Nov 2009 | JP |
201080949 | Apr 2010 | JP |
2010168607 | Aug 2010 | JP |
2010205854 | Sep 2010 | JP |
201129394 | Feb 2011 | JP |
2011108739 | Jun 2011 | JP |
2011258943 | Dec 2011 | JP |
2012503883 | Feb 2012 | JP |
2012204656 | Oct 2012 | JP |
2013105777 | May 2013 | JP |
2013516788 | May 2013 | JP |
2013175710 | Sep 2013 | JP |
2013179244 | Sep 2013 | JP |
2014019912 | Feb 2014 | JP |
2014103351 | Jun 2014 | JP |
2014525143 | Sep 2014 | JP |
2015067884 | Apr 2015 | JP |
2015086459 | May 2015 | JP |
2015115394 | Jun 2015 | JP |
2015233157 | Dec 2015 | JP |
19980063671 | Oct 1998 | KR |
2001-0051185 | Jun 2001 | KR |
20010046452 | Jun 2001 | KR |
20010046843 | Jun 2001 | KR |
20030052162 | Jun 2003 | KR |
100422433 | Jul 2004 | KR |
10-20040068969 | Aug 2004 | KR |
20050121750 | Dec 2005 | KR |
20070006602 | Jan 2007 | KR |
100684910 | Feb 2007 | KR |
20070048821 | May 2007 | KR |
20070068596 | Jul 2007 | KR |
20070075383 | Jul 2007 | KR |
20090011463 | Feb 2009 | KR |
1020090040867 | Apr 2009 | KR |
10-2009-0064279 | Jun 2009 | KR |
10-2010-0035000 | Apr 2010 | KR |
20110136532 | Dec 2011 | KR |
101287035 | Jul 2013 | KR |
101305904 | Sep 2013 | KR |
20140003776 | Jan 2014 | KR |
20140104112 | Aug 2014 | KR |
101438291 | Sep 2014 | KR |
20140135744 | Nov 2014 | KR |
20150006587 | Jan 2015 | KR |
20150062545 | Jun 2015 | KR |
10-2015-0130370 | Nov 2015 | KR |
20150122432 | Nov 2015 | KR |
20160044004 | Apr 2016 | KR |
20160061437 | May 2016 | KR |
200529284 | Sep 2005 | TW |
200721316 | Jun 2007 | TW |
201246274 | Nov 2012 | TW |
201507174 | Feb 2015 | TW |
201608672 | Mar 2016 | TW |
201708597 | Mar 2017 | TW |
200051938 | Sep 2000 | WO |
03023827 | Mar 2003 | WO |
2004102055 | Nov 2004 | WO |
2005057663 | Jun 2005 | WO |
2008047886 | Apr 2008 | WO |
2008089178 | Jul 2008 | WO |
2010115128 | Jan 2011 | WO |
2011002058 | Jan 2011 | WO |
2011103062 | Aug 2011 | WO |
2012133583 | Oct 2012 | WO |
2014115600 | Jul 2014 | WO |
2015195081 | Dec 2015 | WO |
2016018593 | Feb 2016 | WO |
2016065219 | Apr 2016 | WO |
2016111833 | Jul 2016 | WO |
2018187546 | Oct 2018 | WO |
Entry |
---|
Taiwan Office Action for Taiwan Patent Application No. 107125291 dated Mar. 3, 2022. |
Taiwan Office Action dated Feb. 21, 2020 for Application No. 108138212. |
Chen, Yang et al., “Analysis of Supercritical Carbon Dioxide Heat Exchangers in Cooling Process”, International Refrigeration and Air Conditioning Conference at Purdue, Jul. 17-20, 2006, pp. 1-8. |
International Search Report and Written Opinion for PCT/US2019/023431 dated Jul. 5, 2019. |
International Search Report and Written Opinion from PCT/US2019/012161 dated Apr. 30, 2019. |
Office Action for Japanese Patent Application No. 2020-500629 dated Jun. 8, 2021. |
Office Action for Japanese Application No. 2019-548976 dated Oct. 20, 2020. |
Japanese Office Action dated Apr. 20, 2021 for Application No. JP 2020-508603. |
International Search Report and Written Opinion dated Nov. 30, 2018 for Application No. PCT/US2018/041688. |
Extended European Search Report for EP Application No. 18876650.5 dated Jul. 19, 2021. |
Pedestal definition from Dictionary.com, printed on Feb. 10, 2020 (year 2020). |
International Search Report and Written Opinion for PCT/US2018/038822 dated Oct. 26, 2018. |
International Search Report and Written Opinion dated Jan. 31, 2019 for Application No. PCT/US2018/042760. |
Extended European Search Report for EP Application No. 18806169.1 dated Jul. 19, 2021. |
Office Action for Korean Application No. 10-2019-7029776 dated Jan. 18, 2021. |
Taiwan Office Action dated Nov. 19, 2019 for Application No. 108103415. |
Japanese Office Action dated Feb. 16, 2021 for Application No. 2019-564964. |
Korean Office Action dated Jul. 16, 2021 for Application No. 10-2020-7007956. |
International Search Report and Written Opinion for PCT/US2018/059676 dated May 23, 2019. |
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136151. |
International Search Report and Written Opinion from PCT/US2018/034036 dated Aug. 24, 2018. |
Office Action from Taiwan Patent Application No. 108104585 dated Jan. 30, 2020, with concise statement of relevance. |
International Search Report, Application No. PCT/US2018/028258 dated Aug. 9, 2018. |
Korean Office Action issued to Application No. 10-2019-7038099 dated May 1, 2021. |
International Search Report and Written Opinion for PCT/US2018/037539 dated Oct. 5, 2018. |
European International Search Report issued to 18764622.9 dated Nov. 20, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/040195 dated Oct. 25, 2019. |
Lee, Ho-Saeng et al., “The cooling heat transfer characteristics of the supercritical CO2 in mico-fin tube”, Springer, Oct. 2, 2012, pp. 173-184. |
Shimoyama, Takehiro et al., “Porous Aluminum for Heat Exchanger”, Hitachi Chemical, pp. 19-20. |
Office Action for Taiwan Patent Application No. 108111501 dated Nov. 14, 2019. |
International Search Report and Written Opinion for PCT/US2018/035210 dated Aug. 24, 2018. |
International Search Report and Written Opinion for PCT/US2019/056447 dated Feb. 7, 2020. |
KR Office Action dated Feb. 4, 2020 for Application No. 10-2018-0133399. |
International Search Report and Written Opinion for PCT/US2019/015339 dated May 15, 2019. |
International Search Report and Written Opinion for PCT/US2019/015332 dated May 15, 2019. |
Taiwan Office Action dated Jun. 11, 2019 for Application No. 107138905. |
International Search Report and Written Opinion dated Aug. 24, 2018 for Application No. PCT/US2018/034284. |
Taiwan Office Action dated Oct. 12, 2020 for Application No. 108140559. |
Kato, T. et al., “Heat Transfer Characteristics of a Plate-Fin Type Supercritical/Liquid Helium Heat Exchanger”, ICEC 14 Proceedings Supplement, 1992, pp. 260-263. |
Office Action for Japanese Patent Application No. 2019-548976 dated May 25, 2021. |
International Search Report and Written Opinion for PCT/US2018/050464 dated Jan. 4, 2019. |
Office Action for Japanese Application No. 2018-546484 dated Oct. 8, 2019. |
Office Action for Korean Application No. 10-2020-7004396 dated Apr. 5, 2021. |
International Search Report and Written Opinion for PCT/US2018/021715 dated Jun. 22, 2018. |
Office Action for Japanese Application No. 2018-517285 dated Oct. 23, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/059659 dated Feb. 26, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/029602 dated Aug. 14, 2019. |
Haskel Pressure on Demand, Pneumatic and Hydraulic Driven Gas Boosters, Apr. 30, 2016, 36 pp. |
Taiwan Office Action dated May 4, 2020 for Application No. 107121254. |
Extended European International Search Report issued to 18831823.2 dated Mar. 19, 2021. |
EPO Extended European Search Report dated Aug. 9, 2019, for European Patent Application No. 19166775.7. |
Ahn, Byung Du, et. al. “A review on the recent developments of solution processes for oxide thin film transistors,” Semiconductor Science and Technology, vol. 30, No. 6, May 8, 2015, 15 pages. |
European International Search Report issued to 19757893.3, dated Aug. 10, 2021. |
European International Search Report issued to 19764212.7 dated Aug. 11, 2021. |
Japanese Office Action for Application No. 2020-525886 dated Aug. 31, 2021. |
Japanese Office Action for Application No. 2020-547132 dated Nov. 10, 2021. |
Japanese Office Action for Application No. 2020-500629 dated Oct. 12, 2021. |
Korean Office Action dated Nov. 23, 2021, for Korean Patent Application No. 10-2021-7031756. |
Chinese Patent Application No. 201880074319.5, Office Action and Search Report dated Nov. 24, 2021, 14 pages. |
KR Office Action dated Nov. 23, 2021, for Korean Patent Application No. 10-2021-7031754. |
KR Office Action dated Dec. 14, 2021 for Application No. 10-2020-7027144. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/061995; dated Mar. 9, 2020; 13 total pages. |
Japanese Office Action dated Mar. 17, 2020, for Japanese Patent Application No. 2019-073230. |
International Search Report and Written Opinion dated Aug. 24, 2017 for Application No. PCT/US2017/033862. |
International Search Report and Written Opinion for PCT/US2018/043160 dated Jan. 31, 2019. |
International Search Report PCT/2020/046396 dated Nov. 26, 2020, 12 pages. |
Japanese Office Action for Application No. 2018-564195 dated Nov. 19, 2019. |
Korean Office Action dated Aug. 4, 2020, for Korean Patent Application No. 10-2019-0040236. |
Taiwan Office Action dated Jul. 28, 2021 for Application No. 107108016. |
Lin, Kevin L. et al.—“Nickel silicide for interconnects”, 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), IEEE, (XP032808874), May 18, 2015, pp. 169-172. |
Taiwan Office Action for Application No. 106119184 dated Mar. 6, 2019. |
T. Miyake et al., “Effects of atomic hydrogen on Cu reflow process”, AIP Conference Proceedings 418, 419 (1998). |
Japanese Office Action dated Nov. 10, 2020, for Japanese Patent Application No. 2019-073230. |
Office Action for Japanese Patent Application No. 2020-543976 dated Jul. 13, 2021. |
International Search Report and Written Opinion for PCT/US2021/014991 dated May 17, 2021. |
Taiwan Office Action dated Mar. 31, 2020, for Taiwan Patent Application No. 108111883. |
International Search Report and Written Opinion for International Application No. PCT/US2019/032609 dated Sep. 11, 2019. |
International Search Report and Written Opinion for PCT/US2018/059643 dated Feb. 26, 2019. |
Korean Office Action dated Aug. 26, 2021, for Korean Patent Application No. 10-2020-4016526. |
Number | Date | Country | |
---|---|---|---|
20220013375 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15681317 | Aug 2017 | US |
Child | 16378140 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16378140 | Apr 2019 | US |
Child | 17329948 | US |