The present disclosure relates to epitaxial semiconductor deposition or growth. More particularly, the present disclosure relates tools enabling the epitaxial deposition (also called growth) of monocrystalline silicon or other semiconducting materials, including but not limited to any binary and ternary monocrystalline alloys of silicon, germanium, carbon, as well as other compound semiconductors such as gallium arsenide.
Currently, crystalline silicon has the largest market share in the photovoltaics (PV) industry, accounting for over 85% of the overall PV market share. The relatively high efficiencies associated with crystalline solar cells compared to most thin-film technologies, combined with the abundance as well as the environmentally benign and non-toxic nature of the material, garner appeal for continued use and advancement. Going to thinner crystalline silicon solar cells is understood to be one of the most potent ways to reduce PV manufacturing cost and the resulting Levelized Cost of Electricity (LCOE) because of the relatively high material cost of crystalline silicon wafers used in solar cells as a fraction of the total PV module cost (being on the order of 50% of the total PV module cost). And while deposition of epitaxial silicon film has been in use in the semiconductor industry (for applications such as bipolar chips and smart power devices), the high-productivity production of epitaxial crystalline silicon layers, including the production of monocrystalline silicon utilizing a single or double sided epitaxial deposition process, for use in solar cells or other applications at high production volumes and at a low cost has posed many challenges.
In the monocrystalline silicon epitaxy (epi) process, the film is deposited using a mixture of a silicon source gas, such as trichlorosilane (TCS), and/or silicon tetrachloride, and hydrogen at temperatures typically ranging between 1050° C. to 1250° C. Since deposition may happen on any exposed heated surface after the precursor gases are heated, it is advantageous to reduce the chamber area allocated to gas heating as much as possible. However, as the number of wafers in a conventional batch epi chamber increases so does the gas flow rate and the total heat rate. And one problem with increasing the heating area to accommodate the total heat rate for the higher gas flow rate is that this exposes a larger portion of the chamber to unwanted or parasitic deposition.
Furthermore, it is desirable to reduce the heated epi chamber areas (parasitic deposition regions) that are not covered by the target silicon substrates. The lower the ratio of uncovered to covered areas, the higher the effective source gas utilization and, potentially in most cases, the less the maintenance cost of susceptor cleaning. For this and other productivity related reasons, it is desirable to increase the number of wafers (or the wafer batch size) within a given deposition chamber. Similarly, and for other reasons such as thermal budget considerations and substantially increasing the manufacturing productivity, it may be desirable to grow epi films on both sides of the silicon substrate—such as applications where epi films that are deposited on both sides of a reusable crystalline semiconductor template are harvested and lifted off for solar cell fabrication at essentially double the harvesting rate of the single-sided templates.
One of the most promising technologies to achieve high solar cell efficiency at low silicon usage is the use of deposition of silicon as a thin film or foil between a fraction of 1 micron and 100 micron (μm) thickness on carrier wafers (templates). These templates have a designated weak release or separation (or cleavage) layer or layer system, which may be a porous semiconductor or specifically porous silicon layer, for the subsequent removal of said deposited thin semiconductor film or foil, which may require the use of a reinforcement layer to prevent mechanical breakage due to the thin (≦100 μm) and large (≧100 cm2) substrate sizes of the thin film or foil. Thus, at least a portion of such porous layers are used as designated weak layers along which the deposited epi film may be lifted off from the substrate that it has been deposited on. However, current deposition equipment and processes are too costly and complex for large scale high volume deposition of epitaxial silicon thin film.
Another complication in high volume manufacturing of epi films is the amount of power required for each tool to heat the substrates and the gas to the necessary process temperature. Because the peak power required for each tool often reaches hundreds of kilowatts or even megawatts, individual or multi-tool start-ups can create huge electrical surges and sags in the plant if not managed.
Yet another concern for growing high quality epi film on a silicon substrate is the presence of moisture adsorbed or trapped in the substrate. This is particularly important if the substrate surface is made porous or contains several anodically etched porous layers, as is the case, for example, with thin monocrystalline silicon epitaxy films intended for subsequent lifting from the base material (reusable template) through the use of a sacrificial porous layer. This problem is confounded when epi films are deposited on bi-layer or multi-layer (or graded porosity) porous silicon structures.
Designing highly productive equipment requires a good understanding of the process requirements and reflecting those requirements in the equipment architecture. High manufacturing yield of thin film substrates requires a robust process and reliable deposition equipment. Thus, a highly productive, reliable, and efficient reactor is essential for the high-throughput production of low-cost, high-efficiency solar cells.
Therefore a need has arisen for high productivity thin film deposition methods and systems. In accordance with the disclosed subject matter, high productivity thin film deposition methods are provided which substantially reduce or eliminate disadvantages and problems associated with previously developed thin film deposition methods.
According to one aspect of the disclosed subject matter, high productivity thin film deposition methods and tools are provided wherein a thin film semiconductor material layer with a thickness in the range of less than 1 micron to 100 microns is deposited on a plurality of wafers in a reactor. The wafers are loaded on a batch susceptor and the batch susceptor is positioned in the reactor such that a tapered gas flow space is created between the susceptor and an interior wall of the reactor. Reactant gas is then directed into the tapered gas space and over each wafer thereby improving deposition uniformity across each wafer and from wafer to wafer.
These and other advantages of the disclosed subject matter, as well as additional novel features, will be apparent from the description provided herein. The intent of this summary is not to be a comprehensive description of the subject matter, but rather to provide a short overview of some of the subject matter's functionality. Other systems, methods, features and advantages here provided will become apparent to one with skill in the art upon examination of the following FIGURES and detailed description. It is intended that all such additional systems, methods, features and advantages included within this description be within the scope of the claims.
The features, nature, and advantages of the disclosed subject matter may become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numerals indicate like features and wherein:
Although the present disclosure is described with reference to specific embodiments, such as monocrystalline silicon and depletion-mode epitaxial deposition reactors, one skilled in the art could apply the principles discussed herein to other areas and/or embodiments without undue experimentation.
The present application discloses high-productivity depletion mode reactor (DMR) designs and manufacturing methods providing high-productivity, low-cost-of-ownership (low COO) batch wafer epitaxial deposition. The tools provided may utilize gas precursors such as trichlorosilane (TCS) in hydrogen (H2) for epitaxial silicon deposition or other precursors known in the art.
Further, the present disclosure references a “wafer” which may be viewed as equivalent to a work piece, semiconductor substrate, substrate, or template upon which the epitaxial deposition occurs. In one embodiment of the present disclosure, the wafer, after epitaxy, may be used repeatedly as a reusable template to grow and release crystalline wafers. The use to which the work piece or wafer is put to after epitaxial deposition is beyond the scope of the present disclosure: one of ordinary skill will recognize the myriad uses to which the wafer might be put without departing from the spirit of the present disclosure.
One novel aspect of the reactor of the present disclosure lies in the arrangement of the wafer susceptors (a susceptor is a material used for its ability to absorb electromagnetic energy, such as optical energy, and impart that energy, in the form of heat or thermal energy, to the wafers). Although the susceptors may be heated electromagnetically such as with inductive heating coils, optical heating lamps such as tungsten-halogen lamps or resistive heating can also be effective. Some preferred embodiments may use either optical heating lamps such as tungsten halogen lamps or inductive heating coils, with lamp heating being the most preferred.
The susceptors of the present disclosure may be stackable to provide very high productivity, yet they do not rely on stacking for providing the “building blocks” of the overall reactor. The reactors of the present disclosure may or may not be depletion mode reactors (DMRs). “Depletion mode” (DM) refers to the depletion or utilization of chemical along the direction of gas flow in order to achieve a relatively high precursor and gas utilization rate.
The disclosed subject matter addresses some of the current hurdles to the implementation of high productivity epitaxial deposition systems, mainly by providing leverage through uniformity and gas utilization improvement together with teaching an economic path for learning and adjusting complex deposition processes and equipment in order to minimize necessary learning cycles. The designs and methods include parallel usage of common handling systems for efficient and automated wafer transport.
A novel design of the present disclosure is a parallel and independent chamber system (relative to a serial chamber tool). This design, as depicted in
Typical depletion-mode reactors use a bi-directional gas injection system, such as the reactor shown in
The tapered flow design of
During dual side deposition, the wafer may be exposed to the heat source on both sides. Because of the thin nature of wafers, achieving heat source and wafer temperature uniformity is paramount. Arranging the heat lamps in a cross or staggered pattern will facilitate uniform heat across the wafer.
Wafer carrier 82, for example cassettes, are loaded into the automation system by operator 81, or other means. Robot 84, removes the wafers directly from wafer carrier 82, or as it is often customary from a conveyor belt attached to the wafer carrier station, and places the wafers onto wafer pockets of susceptor set 86. Susceptor set 86 comprises a left and right susceptor. The left and right susceptors when mated will form a channel with the top and bottom sides of the mated pair open for the purpose of gas flow.
After all pockets of the susceptor set 86 are loaded with new wafers, folding table 88 will close the susceptor set, by mating the right and left susceptors, forming a channel with wafers covering inside surfaces of the joined assembly. Then, overhead gantry 92 will load the loaded susceptor onto susceptor carrying tray 90. Carrying tray 90 may have space for any number of susceptors, including double the number of process reactors in this case 24, spaced at intervals equal to one half of the spacing between the reactors.
After the first susceptor is loaded onto the tray, gantry 90 will move another susceptor set onto folding table 88 and the susceptor set is then opened and the process of loading wafers from the wafer carriers onto the second susceptor set is repeated as described above. After all the susceptors are loaded, tray 90 moves to the susceptor loading position directly above the reactors.
Then, a separate vertical-motion gantry, such as vertical-motion gantry 100 shown in
While the deposition process is in progress, robot 84, folding table 88, and gantry 92 continue to load another set of susceptors with new wafers so that after the deposition process is completed the vertical gantry may lift the previous set of susceptors containing the processed wafers with deposited film from the reactors and exchange them with a new set of wafers ready for deposition. To facilitate the exchange, tray 90 or the vertical gantry may have a horizontal motion equal to one half of the spacing between the reactors.
And the use of highly doped silicon wafers enables two beneficial effects: firstly, the ease of formation of porous layer or layers and secondly, an improved thermal coupling depending on the heat source, due to higher electrical conductivity of such wafers over starting (less highly doped) wafers. As an example, wafers may have resistivities in the range of 0.01 to 0.02 ohmcm (Ω·cm); however other ranges may be utilized. Alternatively, the design supports single side deposition with wafers loaded back to back or with the use of a wafer susceptor plate.
A process cycle includes the heating of wafers and chamber internals, followed by deposition of epitaxial silicon film while desired process temperature is maintained, and then the cooling of wafers and chamber internals to an acceptable temperature for unloading. Depending on the desired thickness of semiconductor layer (from a fraction of one micron up to 10's of microns), the process cycle may range from about several minutes to several hours (with the preferred process cycle time being no longer than about 1 hour). As shown in
A key aspect of this example reactor is that hydrogen and TCS (or other silicon gas such as silicon tetrachloride) precursors may be separately heated via an inlet plenum/baffle arrangement. In this case, hydrogen can be preferably pre-heated to range on the order of deposition temperature, or more preferably to temperatures somewhat above the required wafer temperature for epitaxial deposition, so that after precursor gasses are mixed the equilibrium temperature of the mixture is close to the desired epi temperature. This may substantially eliminate any gas-loading-induced substrate cooling, slip dislocations, and deposition non-uniformities. The disclosed methods and systems provide sufficient heating areas or passages which may be utilized to heat the hydrogen gas without any deposition. As a result, the heating of large gas flow rates for a large number of wafers in high volume production may be achieved without increasing parasitic deposition. A small mixing area, seen in
The example BDMR chamber shown in
Such staged usage of electrical peak power may be accomplished, for example, through the use of sensors and/or factory control schedulers that control the operation cycles of the reactors within a fabrication environment. Such scheduling may cooperate with a cost-effective substrate and/or susceptor handling automated system if common automation robotics is used to load and unload several reactors. In such cases, the automation may, for example, load or unload one reactor while another reactor is ramping up temperature and other start up processes.
A small mixing area (shown
Sensors with optical detection, such as suitable cameras with absolute or comparative image processing may be implemented to identify and assist exchanging defective cassettes, susceptors, or cassette parts. Such cameras can be employed for instance during or after the unload cycle of a cassette. Further, one or more of the automation actuator components that actuates the motion of the cassettes in and out of the heating zone of the reactor or in and out of the wafer or cassette loading or unloading area to may also serve as a scan axis for inspection and detection of defects. Any such suitable inspection criteria may be employed to judge the need for a cassette or susceptor replacement.
In operation, the disclosed subject matter pertains to processing, including but not limited to deposition, of thin film materials in general, but more specifically to deposition of crystalline, including epitaxial monocrystalline silicon films (epi silicon films), for use in manufacturing of high efficiency solar photovoltaic cells as well as other semiconductor microelectronics and optoelectronics applications. Methods and production tools are conceived that allow fabrication of high quality single or dual-sided epi layers in large volumes. The proposed methods and equipment include new means of gas flow depletion compensation across a substrate, processing improvements, heating and channeling the flow of gaseous precursors, means for management of tool power, and ways to suitably precondition the wafer as part of the deposition tool.
The foregoing description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the claimed subject matter. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the innovative faculty. Thus, the claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
It is intended that all such additional systems, methods, features, and advantages that are included within this description be within the scope of the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/353,042 filed Jun. 9, 2010, which is hereby incorporated by reference in its entirety. This application also claims priority to U.S. Provisional Patent Application Ser. No. 61/389,154 filed Oct. 1, 2010, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3816166 | Eversteijn et al. | Jun 1974 | A |
4043894 | Gibbs | Aug 1977 | A |
4070206 | Kressel et al. | Jan 1978 | A |
4082570 | House et al. | Apr 1978 | A |
4165252 | Gibbs | Aug 1979 | A |
4249959 | Jebens | Feb 1981 | A |
4251679 | Zwan | Feb 1981 | A |
4348254 | Lindmayer | Sep 1982 | A |
4361950 | Amick | Dec 1982 | A |
4374110 | Darnell | Feb 1983 | A |
4409423 | Holt | Oct 1983 | A |
4427839 | Hall | Jan 1984 | A |
4430519 | Young | Feb 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4468283 | Ahmed | Aug 1984 | A |
4479847 | McCaldin et al. | Oct 1984 | A |
4626613 | Wenham et al. | Dec 1986 | A |
4672023 | Leung | Jun 1987 | A |
4836138 | Robinson | Jun 1989 | A |
4922277 | Carlson et al. | May 1990 | A |
4936251 | Yamazaki et al. | Jun 1990 | A |
5024953 | Uematsu et al. | Jun 1991 | A |
5073230 | Maracas et al. | Dec 1991 | A |
5112453 | Behr et al. | May 1992 | A |
5208068 | Davis | May 1993 | A |
5248621 | Sano | Sep 1993 | A |
5252132 | Oda et al. | Oct 1993 | A |
5316593 | Olson et al. | May 1994 | A |
5348618 | Canham et al. | Sep 1994 | A |
5397400 | Matsuno et al. | Mar 1995 | A |
5458755 | Fujiyama et al. | Oct 1995 | A |
5459099 | Hsu | Oct 1995 | A |
5494832 | Lehmann et al. | Feb 1996 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5567242 | Soderberg et al. | Oct 1996 | A |
5616185 | Kukulka | Apr 1997 | A |
5645684 | Keller | Jul 1997 | A |
5660680 | Keller | Aug 1997 | A |
5681392 | Swain | Oct 1997 | A |
5704992 | Willeke et al. | Jan 1998 | A |
5882988 | Haberem et al. | Mar 1999 | A |
5899360 | Mack et al. | May 1999 | A |
5928438 | Salami | Jul 1999 | A |
5994640 | Bansemir et al. | Nov 1999 | A |
6058945 | Fujiyama et al. | May 2000 | A |
6091021 | Ruby | Jul 2000 | A |
6093253 | Lofgren | Jul 2000 | A |
6096229 | Shahid | Aug 2000 | A |
6114046 | Hanoka | Sep 2000 | A |
6127623 | Nakamura et al. | Oct 2000 | A |
6132518 | Milinkovic et al. | Oct 2000 | A |
6143629 | Sato | Nov 2000 | A |
6204443 | Kiso et al. | Mar 2001 | B1 |
6225193 | Simpson et al. | May 2001 | B1 |
6294725 | Hirschberg et al. | Sep 2001 | B1 |
6331208 | Nishida et al. | Dec 2001 | B1 |
6399143 | Sun | Jun 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6428620 | Yamagata et al. | Aug 2002 | B1 |
6429037 | Wenham et al. | Aug 2002 | B1 |
6441297 | Keller et al. | Aug 2002 | B1 |
6461932 | Wang | Aug 2002 | B1 |
6448155 | Iwasaki et al. | Sep 2002 | B1 |
6524880 | Moon et al. | Feb 2003 | B2 |
6534336 | Iwane | Mar 2003 | B1 |
6551908 | Ukiyo et al. | Apr 2003 | B2 |
6555443 | Artmann et al. | Apr 2003 | B1 |
6566235 | Nishida et al. | May 2003 | B2 |
6602760 | Poortmans et al. | Aug 2003 | B2 |
6602767 | Nishida et al. | Aug 2003 | B2 |
6613148 | Rasmussen | Sep 2003 | B1 |
6624009 | Green et al. | Sep 2003 | B1 |
6645833 | Brendel | Nov 2003 | B2 |
6649485 | Solanki et al. | Nov 2003 | B2 |
6653722 | Blalock | Nov 2003 | B2 |
6664169 | Iwasaki et al. | Dec 2003 | B1 |
6756289 | Nakagawa et al. | Jun 2004 | B1 |
6818104 | Iwasaki et al. | Nov 2004 | B2 |
6843892 | McLeod | Jan 2005 | B1 |
6875279 | Chu | Apr 2005 | B2 |
6881644 | Malik et al. | Apr 2005 | B2 |
6946052 | Yanagita et al. | Sep 2005 | B2 |
6964732 | Solanki | Nov 2005 | B2 |
7014748 | Matsumura et al. | Mar 2006 | B2 |
7022585 | Solanki et al. | Apr 2006 | B2 |
7026237 | Lamb | Apr 2006 | B2 |
7147714 | Naito et al. | Dec 2006 | B2 |
7309658 | Lazovsky et al. | Dec 2007 | B2 |
7312440 | Degertekin et al. | Dec 2007 | B2 |
7368756 | Bruhns et al. | May 2008 | B2 |
7402523 | Nishimura | Jul 2008 | B2 |
7648927 | Singh et al. | Jan 2010 | B2 |
7682843 | Moriya et al. | Mar 2010 | B2 |
8656860 | Kamian et al. | Feb 2014 | B2 |
20020066409 | Brun | Jun 2002 | A1 |
20020079290 | Holdermann | Jun 2002 | A1 |
20020153039 | Moon et al. | Oct 2002 | A1 |
20020168592 | Vezenov | Nov 2002 | A1 |
20020179140 | Toyomura | Dec 2002 | A1 |
20030017712 | Brendel | Jan 2003 | A1 |
20030039843 | Johnson | Feb 2003 | A1 |
20030124761 | Baert | Jul 2003 | A1 |
20040028875 | Van Rijn | Feb 2004 | A1 |
20040173790 | Yeo | Sep 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040192044 | Degertekin et al. | Sep 2004 | A1 |
20040235406 | Duescher | Nov 2004 | A1 |
20040259335 | Narayanan | Dec 2004 | A1 |
20040265587 | Koyanagi | Dec 2004 | A1 |
20050160970 | Niira | Jul 2005 | A1 |
20050172998 | Gee et al. | Aug 2005 | A1 |
20050176164 | Gee et al. | Aug 2005 | A1 |
20050177343 | Nagae | Aug 2005 | A1 |
20050199279 | Yoshimine et al. | Sep 2005 | A1 |
20050274410 | Yuuki et al. | Dec 2005 | A1 |
20050281982 | Li | Dec 2005 | A1 |
20060021565 | Zahler et al. | Feb 2006 | A1 |
20060043495 | Uno | Mar 2006 | A1 |
20060054212 | Fraas et al. | Mar 2006 | A1 |
20060070884 | Momoi et al. | Apr 2006 | A1 |
20060105492 | Veres et al. | May 2006 | A1 |
20060177988 | Shea et al. | Aug 2006 | A1 |
20060196536 | Fujioka | Sep 2006 | A1 |
20060216416 | Sumakeris | Sep 2006 | A1 |
20060231031 | Dings et al. | Oct 2006 | A1 |
20060252243 | Kishimoto et al. | Nov 2006 | A1 |
20060266916 | Miller et al. | Nov 2006 | A1 |
20060283495 | Gibson | Dec 2006 | A1 |
20060286775 | Singh et al. | Dec 2006 | A1 |
20070077770 | Wang et al. | Apr 2007 | A1 |
20070082499 | Jung et al. | Apr 2007 | A1 |
20080047601 | Nag et al. | Feb 2008 | A1 |
20080128641 | Henley et al. | Jun 2008 | A1 |
20080157283 | Moslehi | Jul 2008 | A1 |
20080210294 | Moslehi | Sep 2008 | A1 |
20080241384 | Jeong | Oct 2008 | A1 |
20080264477 | Moslehi | Oct 2008 | A1 |
20080289684 | Moslehi | Nov 2008 | A1 |
20080295887 | Moslehi | Dec 2008 | A1 |
20090042320 | Wang et al. | Feb 2009 | A1 |
20090107545 | Moslehi | Apr 2009 | A1 |
20090217877 | Lopez | Sep 2009 | A1 |
20090229519 | Saitoh | Sep 2009 | A1 |
20090238972 | Clark et al. | Sep 2009 | A1 |
20090301549 | Moslehi | Dec 2009 | A1 |
20100022074 | Wang et al. | Jan 2010 | A1 |
20100116316 | Moslehi et al. | May 2010 | A1 |
20100144066 | Stephens et al. | Jun 2010 | A1 |
20100144080 | Ong | Jun 2010 | A1 |
20100148318 | Wang et al. | Jun 2010 | A1 |
20100148319 | Wang et al. | Jun 2010 | A1 |
20100154998 | Ong | Jun 2010 | A1 |
20100175752 | Wang et al. | Jul 2010 | A1 |
20100203711 | Wang et al. | Aug 2010 | A1 |
20100263587 | Sivaramakrishnan et al. | Oct 2010 | A1 |
20100267186 | Wang et al. | Oct 2010 | A1 |
20100267245 | Kamian et al. | Oct 2010 | A1 |
20100279494 | Wang et al. | Nov 2010 | A1 |
20100294333 | Wang et al. | Nov 2010 | A1 |
20100294356 | Parikh et al. | Nov 2010 | A1 |
20100300518 | Moslehi et al. | Dec 2010 | A1 |
20100304521 | Seutter et al. | Dec 2010 | A1 |
20100304522 | Rana et al. | Dec 2010 | A1 |
20110014742 | Parikh et al. | Jan 2011 | A1 |
20110030610 | Kamian et al. | Feb 2011 | A1 |
20120192789 | Kramer et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2763964 | Dec 1998 | FR |
2426252 | Nov 2006 | GB |
S55-110030 | Aug 1980 | JP |
06-151339 | May 1994 | JP |
06-260670 | Sep 1994 | JP |
PCTEP1999008573 | May 2000 | WO |
WO2010120850 | Oct 2010 | WO |
WO2011156657 | Dec 2011 | WO |
WO2012099700 | Jul 2012 | WO |
Entry |
---|
PCT International Search Report and Written Opinion dated May 11, 2012 issued in PCT/US2011/039877. |
PCT International Preliminary Report on Patentability dated Dec. 10, 2012 issued in PCT/US2011/039877. |
EP Extended Search Report dated Apr. 9, 2014 issued in EP 11793204.6. |
Alvin D. Compaan, Photovoltaics: Clean Power for the 21st Century, Solar Energy Materials & Solar Cells, 2006, pp. 2170-2180, vol. 90, Elsevier B.V. |
C.Berge, 150-mm Layer Transfer for Monocrystalline Silicon Solar Cells, Solar Energy Materials & Solar Cells, 2006, pp. 3102-3107, vol. 90, Elsevier B.V. |
C.Oules et al, Silicon on Insulator Structures Obtained by Epitaxial Growth of Silicon over Porous Silicon, Journal of the Electrochemical Society, Inc., 1992, p. 3595, vol. 139, No. 12, Meylan Cedex, France. |
C.S.Solanki, et al, Porous Silicon Layer Transfer Processes for Solar Cells, Solar Energy Materials & Solar Cells, 2004, pp. 101-113, vol. 83, Elsevier B.V., Leuven, Belgium. |
C.S.Solanki, et al, Self-Standing Porous Silicon Films by One-Step Anodizing, Journal of Electrochemical Society, 2004, pp. C307-C314, vol. 151, The Electrochemical Society, Inc., Leuven, Belgium. |
F.Duerinckx, et al, Reorganized Porous Silicon Bragg Reflectors for Thin-Film Silicon Solar Cells, IEEE Electron Device Letters, Oct. 2006, vol. 27, No. 10. |
Francois J. Henley, Layer-Transfer Quality Cleave Principles, SiGen, 2005, Jul. 8, pp. 1-6, The Silicon Genesis Corporation, San Jose, California. |
H.J.Kim, et al, Large-Area Thin-Film Free-Standing Monocrystalline Si Solar cells by Layer Transfer, Leuven, Belgium, IEEE. (2006). |
J.H.Werner et al, From Polycrystalline to Single Crystalline Silicon on Glass, Thin Solid Films, 2001, pp. 95-100, vol. 383, Issue 1-2, Elsevier Science B.V., Germany. |
J.J. Schermer et al., Epitaxial Lift-Off for large area thin film III/V devices, phys. Stat. sol. (a) 202, No. 4, 501-508 (2005). |
Jianhua Zhao, et al, A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping, IEEE Transactions on Electron Devices, 1999, vol. 46, No. 10. |
K. Van Nieuwenhuysen et al., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC, Journal of Crystal Growth, 2006, pp. 438-441, vol. 287, Elsevier B.V., Leuven, Belgium. |
K.L. Chopra et al., Thin-Film Solar Cells: An Overview, Progress in Photovoltaics: Research and Applications, 2004, pp. 69-92, vol. 12, John Wiley & Sons, Ltd. |
Lammert et al., The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight, IEEE Transactions on Electron Devices, pp. 337-342, (1977). |
MacDonald et al., “Design and Fabrication of Highly Topographic Nano-imprint Template for Dual Damascene Full 3-D Imprinting,” Dept. of Chemical Eng., University of Texas at Austin, Oct. 24, 2005. |
Martin A. Green, Consolidation of Thin-Film Photovoltaic Technology: The Coming Decade of Opportunity, Progress in Photovoltaics: Research and Applications, 2006, pp. 383-392, vol. 14, John Wiley & Sons, Ltd. |
Martin A. Green, Silicon Photovoltaic Modules: A Brief History of the First 50 Years, Progress in Photovoltaics: Research and Applications, 2005, pp. 447-455, vol. 13, John Wiley & Sons, Ltd. |
Nobuhiko Sato et al, Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator, Journal of Electrochemical Society, Sep. 1995, vol. 142, No. 9, The Electrochemical Society, Inc., Hiratsuka, Japan. |
P.J.Verlinden, et al, Sliver® Solar Cells: A New Thin-Crystalline Silicon Photovoltaic Technology, Solar Energy Materials & Solar Cells, 2006, pp. 3422-3430, vol. 90, Elsevier B.V. |
P.R. Hageman et al., Large Area, Thin Film Epitaxial Lift Off III/V Solar Cells, 25th PVSC, 1996, May 13-17, Washington D.C., IEEE. |
Photovoltaic Technology Research Advisory Council, A Vision for Photovoltaic Technology, 2005, pp. 1-41, European Commision Publications Office. |
Prometheus Institute, U.S. Solar Industry Year in Review: U.S. Solar Energy Industry Charging Ahead, (SEIA) the Solar Energy Industry Association, (2006). |
R.Brendel, et al, Sol-Gel Coatings for Light Trapping in Crystalline Thin Film Silicon Solar Cells, Journal of Non-Crystalline Solids, 1997, pp. 391-394, vol. 218, Elsevier Science B.V., Germany. |
Richard Auer et al, Simplified Transfer Process for High-Current Thin-Film Crystalline Si Solar Modules, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan. |
Richard M. Swanson, A Vision for Crystalline Silicon Photovoltaics, Progress in Photovoltaics: Research and Applications, 2006, pp. 443-453, vol. 14, John Wiley & Sons, Ltd. |
Rolf Brendel, A Novel Process for Ultrathin Monocrystalline Silicon Solar Cells on Glass, 14th European Photovolaic Solar Energy Conference, Jun. 30-Jul. 4, 1997, Barcelona, Spain. |
Rolf Brendel, Review of Layer Transfer Processes for Cystalline Thin-Film Silicon Solar Cells, the Japan Journal of Applied Physics, 2001, pp. 4431-4439, vol. 40, Part 1, No. 7, The Japan Society of Applied Physics, Japan. |
Rolf Brendel, Thin-Film Crystalline Silicone Mini-Modules Using Porous Si for Layer Transfer, Solar Energy, 2004, pp. 969-982, vol. 77, Elsevier Ltd., Germany. |
S. Hegedus, Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers, Progress in Photvoltaics: Research and Applications, 2006, pp. 393-411, vol. 14, John Wiley & Sons, Ltd. |
Takao Yonehara, et al, Epitaxial Layer Transfer by Bond and Etch Back of Porous Si, Applied Physics Letter 64, Apr. 18, 1994, vol. 16, American Institute of Physics. |
Toshiki Yagi, et al, Ray-Trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, Solar Energy Materials & Solar Cells, 2006, pp. 2647-2656, vol. 90, Elsevier B.V. |
Number | Date | Country | |
---|---|---|---|
20120085278 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61353042 | Jun 2010 | US | |
61389154 | Oct 2010 | US |