Integrating tool, module, and fab level control

Abstract
Semiconductor wafers are processed in a fab in a manner that integrates control at multiple functional unit levels. Examples of functional units include fabs, modules, tools, and the like. Initially, a number of functional unit property targets are received at a functional unit. The functional unit property targets are utilized to generate a number of tool targets for any number of tool level functional units. From there, the tool targets are forwarded to the corresponding tool level functional units. At these tool level functional units, a number of tool recipes, each of which define a number of process setpoints, may be generated by processing the tool targets. The process setpoints define a number of parameters which must be satisfied in order to attain the corresponding tool targets. In addition, in at least some embodiments, the tool targets and tool recipes are determined utilizing feedback information including functional unit states and measurements of controlled parameters.
Description
FIELD OF THE INVENTION

The present invention relates generally to semiconductor manufacture. More particularly, the present invention relates to techniques for integrating tool, module, and fab level control in a semiconductor manufacturing process.


BACKGROUND OF THE INVENTION

Present-day semiconductor wafer fabrication factories (or ‘fabs’) are extremely complex environments that require an extraordinary amount of coordination. For example, a typical fab may consist of hundreds of wafer processing tools, each of which may be responsible for performing one or more of a variety of operations or processes. Thus, where a wafer is processed into items such as logic (e.g., central processing units) or memory (e.g., DRAMs), each tool performs one or more operations or series of operations on the wafer. After a tool performs its operation, the wafer may be forwarded to a downstream tool where additional operations or series of operations may be performed. Each tool may process wafers according to hundreds of distinct processes, with each having hundreds of individual steps. Ultimately, the sum of operations performed by these tools on the wafer results in the final product or the final state of the wafer.


To further complicate matters, each tool may be logically or physically grouped with a number of other tools in one or more modules, submodules, or other functional units. For instance, the tools may be grouped together as a module to provide some related function (e.g., to produce a higher level product) or combination of functions within the fab. Similarly, the tools may be grouped together based on geographical or physical considerations. In any event, the tools in a module or submodule operate in a coordinated fashion to produce a portion of the desired fab final product. The sum of these portions produces the final product. Thus, each functional unit completes one or more jobs on the wafers before they are advanced to any subsequent modules or submodules in the fab.


To manage these functional units (i.e., the fab, modules, submodules and/or tools), any number of controllers may be implemented at each level. Each controller directs its functional unit in performing a process or series of processes on a wafer. The controllers may utilize any number of models to determine parameter targets necessary for producing the functional unit final product. Thus, each model determines the targets that must be obtained by the processes or operations of the functional unit required to obtain the desired product, as specified by an inputted target. The controller then directs the functional unit to perform the operation or series of operations.


These levels of management or control, while helpful in increasing efficiency, add to the complexity of the system. Thus, even in the simplest cases, fabs are extremely complex. Clearly then, the sheer volume of information has made the operation and control of fabs a major problem.


Despite the large volumes of data and multiple levels of control involved in its management, fab management has been accomplished primarily by manual methods. For instance, in the example described above, the targets and other inputs have traditionally been entered manually by, for example, fab technicians and/or process engineers. In this manner, many of the controller responsibilities were assumed by these technicians and engineers. To implement a change to a final product, new targets are entered into the functional units at each level by these technicians. Thus, with a new fab product, alterations (e.g., inputting a new target) are made manually to the product parameters at all module, submodule, and tool level functional units.


In a similar manner, changes to the operating state of a tool (or other functional unit) due to for example normal wear, also require modifications to the targets of the functional unit by the process engineers. Also, in addition to the changes at the functional unit, modifications must be made to higher level and surrounding functional units (i.e., other modules and tools) to account for these changes as well. Like the above, the process engineers must also make these target modifications manually.


To alter the final product of a wafer fab, a process engineer first identifies the new product and its target parameters. Subsequently, each of the functional units of the fab is ordered to produce a result, which when combined with the results of the other functional units of the fab, produces the final product. Hence, each module, submodule, and tool must be told, by a technician or engineer, what to do and how to do it. Each functional unit requires a process engineer to enter the target or desired result of the functional unit. In the past, controllers capable of generating certain targets above the tool level have been implemented. However, no techniques have been developed for forwarding information to the tool level or for generating tool level targets. Thus, at the tool level, a target wafer output (i.e., a desired result after processing by an individual tool), such as a required thickness, must be identified and entered by the process engineer. The tool may then identify or select a recipe (i.e., a set of predefined process parameters required to effectuate a processing outcome) for obtaining the target wafer output (thickness in this case). Thus, with each alteration to a final product of a fab, hundreds if not thousands of modifications must be made by these technicians or engineers.


What is therefore needed is a technique for automating these and similar modifications at the functional units. Instead of entering target parameters or implementing modifications at each level, what would be highly useful is a technique that can be utilized to implement control at one functional unit level, which in turn controls functional units at other or lower levels. For example, it would be highly useful if control could be implemented at a single functional unit for the entire fab. In this manner, a product specification may be entered at one level, thus allowing targets at other levels to be generated automatically.


SUMMARY OF THE INVENTION

The present invention addresses the problems described above by processing semiconductor wafers in a fab in a manner that integrates control at multiple functional unit levels. Examples of these levels of functional units could include fabs, modules, tools, and the like. To facilitate one or more embodiments of the present invention (as envisioned by one or more embodiments thereof), one or more first functional unit property targets (for producing a given semiconductor device or portion thereof) are initially received at a functional unit. The functional unit property targets are utilized to generate a number of other functional unit property targets. For example, it may generate a number of tool targets for any number of tool level functional units. From there, the tool targets are forwarded to the corresponding tool level functional units. At these tool level functional units, a number of tool recipes, each of which define a number of process setpoints, may be generated by processing the tool targets. The process setpoints define a number of parameters which must be satisfied in order to attain the corresponding tool targets.


In one or more embodiments of the present invention, the tool targets and tool recipes are determined in part by utilizing feedback information. Examples of such feedback information include functional unit states and measurements of controlled parameters. In at least some of these embodiments, at least one of the tool level functional units includes an integrated metrology device or sensor for measuring the controlled parameters.





BRIEF DESCRIPTION OF THE DRAWINGS

Various objects, features, and advantages of the present invention can be more fully appreciated as the same become better understood with reference to the following detailed description of the present invention when considered in connection with the accompanying drawings, in which:



FIG. 1 depicts one example of a block diagram representation of a semiconductor manufacturing facility or fab utilizable for implementing one or more aspects of the present invention;



FIG. 2 depicts one example of a high level process implementable for integrating control of multiple levels of functional units;



FIG. 3 depicts one example of a process implementable for integrating control of multiple levels of functional units with multiple functional units at each level;



FIG. 4 depicts one example of a process utilizable for generating targets for lower level functional units;



FIG. 5 depicts one example of an application of the process of one or more embodiments of the present invention in an inter-layer dielectric (ILD) module;



FIG. 6 depicts one example of a process utilizable for constructing models (i.e., generating targets at various functional levels);



FIG. 7 is a high-level block diagram depicting aspects of computing devices contemplated as part of and for use with one or more embodiments of the present invention; and



FIG. 8 illustrates one example of a memory medium which may be used for storing a computer implemented process of one or more embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In accordance with one or more embodiments of the present invention, semiconductor wafers are processed in a fab in a manner that integrates control at multiple functional unit levels. Examples of these levels of functional units include fabs, modules, tools, and the like. Examples of modules include physical vapor deposition (PVD) modules, copper wiring modules, dep-etch modules, etc. Examples of tools include chemical vapor deposition (CVD), chemical mechanical planarization (CMP), etch, copper barrier seed, tools etc. According to one or more embodiments of the present invention, any number of functional unit property targets are initially received at a functional unit. Examples of these targets include a set of electrical parameters associated with a product, thickness uniformity, sheet resistance, film thickness, uniformity profiles, trench depth, etc. The functional unit property targets are utilized to generate a number of tool targets for any number of tool level functional units. From there, the tool targets are forwarded to the corresponding tool level functional units. At these tool level functional units, a number of tool recipes, each of which define a number of process setpoints, may be generated by processing the tool targets. The process setpoints define a number of parameters which must be satisfied in order to attain the corresponding tool targets. In addition, in one or more embodiments, the tool targets and tool recipes are determined utilizing any number of types of feedback information. Some examples include functional unit states and measurements of controlled parameters. For instance, actual measured processing results (measured by, e.g., an in situ sensor or the like) may be fed back to a tool or other functional unit and utilized in generating subsequent tool recipes. Likewise, the condition of a tool or other functional unit (e.g., the condition of a polishing pad) may be fed back to a tool for similar purposes.



FIG. 1 depicts one example of a block diagram representation of a semiconductor manufacturing facility or fab 100 utilizable for implementing one or more aspects of the present invention. Fab 100 may be used to process semiconductor wafers to produce any number of semiconductor products, such as DRAMs, processors, etc. As shown in FIG. 1, fab 100 includes, among other components, any number tools 130 grouped logically or physically into any number of modules 120. Modules 120 process wafers to produce a module final product and operate in conjunction with each other to produce a fab final product. Examples of modules include physical vapor deposition (PVD) modules, copper wiring modules, dep-etch modules, and the like. Thus, wafers are passed from one module to another where any number of operations may be performed, the ultimate goal of which is to arrive at the fab final product.


Referring again to FIG. 1, each module includes any number of tools 130. In a manner analogous to the above, tools 130 process wafers to produce a tool final product and operate in conjunction with each other to produce a module final product. Examples of tools include chemical vapor deposition, chemical mechanical planarization tools, etch, copper barrier seed, ECP tools, and the like. Thus, similar to the module level, wafers are passed from one tool to another where any number of operations may be performed, the ultimate goal of which is to arrive at the module final product. In one or more embodiments of the present invention, at least some of the tools can be “cluster tools” (or the like) capable of performing multiple functions. In general, it should be understood that the functions performed at various levels may be interchangeable, such that e.g., the module level of a particular embodiment of the present invention may be performed at, e.g., the tool level of another embodiment of the present invention, and vise versa.


Tools 130, modules 120, and fab 100 serve as examples of the distinct levels of functional units of the present invention. In this example, fab 100 sits at the top of the hierarchy as the highest level functional unit. At the next level, modules 120 serve as intermediate level functional units. Tools 130 thus operate as the lowest level functional units in this example. Although three levels of functional units are depicted in this example, it is to be understood that any number of levels of functional units may be utilized without departing from the scope of the present invention. For example, any number of “supermodule” (e.g., a number of modules grouped together within a fab), “submodule” (e.g., a number of tools grouped together within a module), and/or “subtool” (e.g., a number of chambers operating in conjunction within a tool) level functional units may also be implemented.


In accordance with one or more embodiments of the present invention, each functional unit is associated with at least one controller. These controllers are responsible for directing the operation of their associated functional units. Based on a desired or target product, as defined by any number of parameters, the controller may direct its functional unit to perform the tasks or operations required to obtain those desired targets. The controllers may be stand-alone computing units or integrated within one or more of the functional units.


Generally speaking, each controller utilizes any number of models to obtain these targets. As known to those of ordinary skill in the art, the models are typically created through physical understanding, experimentation, and/or previous observation. The models optimize or determine the processes or operations required to produce an output that is within an acceptable range of the target. As mentioned above, these models receive as inputs the target and any number of other inputs or information, such as feedback from previous runs or the runs of other functional units and/or state information from the functional units. The models subsequently determine or identify the processes or operations (as defined by, for example, a set of lower level targets) believed to be necessary to achieve the desired targets.


Referring again to FIG. 1, fab 100 includes fab controller 110, which in turn has implemented therein fab-wide model 114. Fab-wide model 114 receives as input, for example, the targets of a fab final product (i.e., the specifics or characteristics defining the final product). Examples include a set of electrical parameters associated with a memory or logic unit. In addition to these final product specifics, feedback from and state information concerning fab 110, modules 120 and/or tools 130 may also be received as input. Subsequently, fab-wide model 114 generates the module level targets (i.e., the desired results of processing by each module) used to achieve or obtain the fab level final product. Examples of such module level targets can include a thickness uniformity, sheet resistance, etc.


In a similar manner, modules 120 include module controllers 124, which in turn have implemented therein module models 126. Module models 126 receive as input from fab controller 110 one or more module targets. In accordance with one or more embodiments of the present invention, and as discussed above, these targets may be generated by fab-wide model 114 as results to be used for obtaining the fab final product. In addition to these targets, module model 126 may also accept as inputs, feedback and/or state information from tools 130 and other modules 120. After receiving such inputs, module model 126 determines or identifies the tool level targets (i.e., the desired results of processing by each tool) required to achieve or obtain the module level final product. Examples of tool level targets can include film thickness, uniformity, profiles, via depth, trench depth, etc.


Tools 130 include tool controllers 134, which in turn have implemented therein tool models 136. One example of a tool controller includes iAPC offered by Applied Materials, Inc. of Santa Clara, Calif. During processing, tool models 136 receive as input from module controller 124 one or more tool targets. In accordance with one or more embodiments of the present invention, and as discussed above, these targets may be generated by module model 126 as a result to be used for obtaining the module final product. In addition to these targets, tool model 136 may also accept as inputs, feedback and/or state information from tools 130.


After receiving such inputs, tool model 136 generates a recipe for obtaining the wafer characteristics believed to be required to achieve or obtain the tool level final product. These recipes constitute a set of predefined process parameters required to effectuate a tool processing outcome. For example, a typical recipe may dictate one or more setpoints for any number of processes required to effect a desired tool output. Thus, a recipe may identify the required temperature, pressure, power, processing time, lift position, and flow rate of a material needed to produce a particular wafer result. An example of a technique utilizable for generating recipes is described in U.S. patent application Ser. No. 09/998,372, filed on Nov. 30, 2001, assigned to Applied Materials, Inc., of Santa Clara, Calif., which is incorporated herein by reference.


Referring to FIG. 2, one example of a high level process implementable for integrating (in conjunction with FIG. 1), control of multiple levels of functional units is illustrated. In accordance with one or more embodiments of the present invention, processing commences with high-level product specifications being entered into fab wide model 114 via fab controller 110 (STEP 220). As an example, and as discussed above, these high-level product specifications may describe the characteristics of a desired fab final product.


From there, fab wide model 114 generates a number of module level targets, which are to be used for obtaining the fab final product as defined by the high level product specifications entered earlier. These targets are forwarded to any number of module controllers 124 for use by the module level models 126 implemented therein (STEP 230). These module level targets define or characterize a module level final product to be generated by the corresponding module. Thus, the sum of processing by each module in a fab, with each module producing a result satisfying an associated module level target, produces that fab's final product.


One or more embodiments of the present invention also contemplate utilizing, in addition to the inputted high level product specifications, lower level information to generate these module level targets (STEP 234). For example, fab wide model 114 may also utilize state information from lower level or other functional units (e.g., the fab modules and/or tools) and actual measured parameters from previous processing runs (from, e.g., the fab, modules and/or tools) to generate module targets. Consideration of these additional inputs by fab wide model 114 may increase the accuracy of the predicted module level targets.


As mentioned above, the module level targets generated by fab wide model 114 are subsequently forwarded to the module level models 126, where a number of tool level targets are generated (STEP 240). Similar to the module level targets, the tool level targets define the characteristics for producing a higher level product (i.e., module level in this case). Thus, the sum of processing by each tool in a module, with each tool product satisfying an associated tool level target, produces that module's final product.


Like processing at the fab level, one or more embodiments of the present invention also contemplate utilizing, in addition to the forwarded module level product targets, additional information to generate these tool level targets (STEP 244). For example, module model 126 may also utilize state information from lower level or other functional units (e.g., tools and/or other modules) and actual measured parameters from previous processing runs (from e.g., the module and/or tools) to generate tool level targets. Consideration of these additional inputs by module model 126 may increase the accuracy of the predicted tool level targets.


After being generated by module level model 126, the tool level targets are forwarded to tool controllers 134 for use by tool level models 136 in controlling tools 130 (STEP 240). More specifically, tool level model 136 generates a recipe based on the tool level targets received from the module level (i.e., module level model 126). As mentioned above, these recipes constitute a set of predefined process parameters required to effectuate a tool processing outcome (i.e., a tool final product) for each tool. Generally speaking, the recipes dictate one or more setpoints for any number of processes required to effect the tool level target received from the module level.


Once generated, the recipes are downloaded onto tool 130 for use in controlling the corresponding tool processes (STEP 250). In accordance with one or more embodiments of the present invention, during or immediately after tool processing, any number of sensors (e.g., inline, integrated or in situ sensors) andlor other metrology tools may be utilized to measure wafer or product properties of the tool process output 270 (i.e., measurements of controlled parameters) (STEP 260). As noted above, these properties depend on the type of tool(s) at issue, and may include film thickness, uniformity, etc. The resulting tool level information may be fed back to tool model 136 (STEP 264).


In one or more embodiments of the present invention, these wafer or product properties may then be forwarded to tool level model 136 for use in generating subsequent tool recipes. Consideration of these additional inputs by tool level model 136 may increase the accuracy of the recipes generated by tool level models 136.



FIG. 3 (in conjunction with FIG. 1) illustrates an example of a process implementable for integrating control of multiple levels of functional units with multiple functional units at the module and tool level. In particular, a technician or process engineer starts the process by entering a high-level product specification into fab controller 110 at the fab level (STEP 310). Again, as discussed above, these high-level product specifications may describe the characteristics of a desired fab final product.


In fab controller 110, fab wide model 114 generates a number of lower level functional unit targets (STEP 314). In this example, module level targets are generated by fab wide model 114. These lower level functional unit targets are then forwarded to any number of, for example, module controllers 124 (STEP 316). As mentioned above, these module level targets, when taken together, represent the results of the processes to be used to produce the fab final product.


At module controllers 124, associated module models 126 generate targets for lower level functional units (STEP 320). In this example, tool level targets are generated. These tool level targets, when combined, represent the parameters to be used to produce the module final product. The tool level functional unit targets generated by the module level models are then forwarded to any number of, for example, tool controllers 134 (STEP 324).


From there, the tool level targets may be utilized by tool level models 136 to dictate the behavior of tools 130 (STEP 328). In one example, as discussed above, tool level model 136 generates a recipe based on the tool level target received from the module level (i.e., module level model 126), which in turn is used to direct the processing or operation of tool 130.


In accordance with one or more embodiments of the present invention, and as discussed above, feedback from the functional units may be forwarded for use in the modeling processes. For example, wafer properties measured at the tool level may be forwarded to module controllers 124 for use in generating subsequent tool level targets (STEP 332). Similarly, properties measured at the module (e.g., a thickness uniformity of a wafer) and/or tool (e.g. a film thickness of a wafer) level may be forwarded to fab controller 124 for use in generating subsequent module level targets (not shown).


Communication between functional units (e.g., the transfer of information including functional unit targets, state information, measurements of controlled parameters, etc.) may be facilitated utilizing any known techniques. For instance, standard communication networks may be implemented utilizing, for example, transmission control protocol (TCP) and Internet protocol (IP). Thus, according to one or more embodiments of the present invention, tool level targets generated at one module may be transmitted from a module controller associated with that module to a lower level function unit, such as a tool, via TCP/IP. In a similar manner, data from one functional unit may be transmitted to other functional units using similar and analogous techniques.


Referring to FIG. 4, one example of a process utilizable for generating targets for lower level functional units is illustrated. In accordance with one or more embodiments of the present invention, and as mentioned above, targets for these functional units are generated by a model utilizing a number of inputs. In the example shown in FIG. 4, a model 420 (e.g., a fab wide, module, or tool model) is implemented on an associated controller 410. As discussed above, controller 410 and model 420 are responsible for controlling an associated functional unit.


In accordance with one or more embodiments of the present invention, model 420 generates one or more targets for lower level functional units (STEP 430). The targets are generated by model 420 based on a number of inputs. One input includes one or more current level targets (STEP 440). The current level targets are targets requested of the functional unit corresponding to controller 410 by, e.g., a higher (or parallel) level functional unit. The current level targets are expected to be achieved upon completion of each of the lower level targets generated by model 420 in STEP 430. Stated in other words, each of the lower level targets generated by model 420 in STEP 430 will be achieved in order to obtain the current level target.


In addition to the current level target entered in STEP 440, other inputs may also be considered by model 420 in generating targets for lower level functional units. For example, measurements of controlled parameters (i.e., the actual parameters measured after processing by a functional unit) may be considered (STEP 450). Examples of these measurements include a wafer thickness, profile, etc. taken after processing at a functional unit. Similarly, state information for other functional units may be considered (STEP 460). One example of this type of state information includes the condition of a pad in a CMP tool. Thus, a functional unit may receive and utilize in subsequent processes information pertaining to, e.g., whether a pad is new or nearly worn out.



FIG. 5 depicts one example of an application of the process of one or more embodiments of the present invention in an inter-layer dielectric ILD module. In this case, the technique of the present invention (i.e., the integration of multiple levels of control) is implemented in the ILD module utilizing two processing tools. In the example depicted in FIG. 5, CVD tool 528 and CMP tool 550 are utilized in conjunction with one another to obtain a module final product 505. More specifically, and in accordance with one or more embodiments of the present invention, module final product 505 is attained by using one tool (e.g., CVD tool 528) to assist in obtaining a tool target at a downstream tool (e.g., CMP tool 550).


In the example shown in FIG. 5, processing commences with a higher level controller (not shown) forwarding a module target 502 to an ILD module controller 510 (STEP 506). As discussed above, this target is generated by the higher level controller for purposes of obtaining module final product 505 and, ultimately (and in conjunction with other module final products), a final product associated with the higher level functional unit.


Subsequently, tool targets are generated by module controller 510 via, for example, a module model. As discussed above, the results of the tool operations (i.e., the final products of CVD tool 528 and CMP tool 550) may be summed to produce module final product 505. In this example, the target profiles of seven annular regions of a wafer are generated by module controller 510 and forwarded to a CVD tool controller 520 (STEP 514) and CMP tool controller 554 (STEP 558). In addition, optimal profiles for CMP tool 550, as determined by module controller 510 are also forwarded to CVD tool controller 520 (STEP 516). Thus, information concerning a downstream tool (e.g., CMP tool 550) is forwarded to an upstream tool (e.g., CVD tool 528) to assist in producing the downstream tool's final product and, ultimately, a module final product.


Based on the target profiles received from module controller 510, and using other optional information and inputs, including measured control outputs from, for example, previous CVD tool runs, any state information from CVD tool 528 or CMP tool 550 (or other tools), and optimal downstream tool information (received in STEP 516), CVD tool controller 520 identifies a recipe for attaining the desired target profiles (STEP 524). As described above, this recipe directs CVD tool 528 to operate in a manner expected to produce the desired target profiles. From there, CVD tool 528 performs its operations or series of operations on the wafer and, in this case, produces a wafer with seven annular regions having profiles within an acceptable limit of the target profiles (STEP 532).


In accordance with one or more embodiments of the present invention, the actual results (i.e., the measured controlled outputs) of the CVD processing are measured and fed back to CVD tool controller 520 for use in optimizing subsequent runs (STEP 536). Specifically, the actual measured controlled outputs may be measured using integrated metrology tools such as, for example, in situ or other sensors integrated within the CVD tool. By doing so, the technique of the present invention may be utilized to integrate control of multiple levels of functional units on a wafer to wafer basis.


After processing by the CVD tool, the wafer being processed is forwarded to a downstream tool (i.e., CMP tool 550) for additional processing. In accordance with one or more embodiments of the present invention, and as mentioned above, at this point, the operations performed on the wafer have been optimized, to some extent, for CMP tool 550 by CVD tool 528. Thus, the final product of the upstream tool (i.e., CVD tool 528) has been produced, at least to some extent, according to the requirements of the downstream tool (i.e., CMP tool 550).


At CMP tool 550, processing is performed on the wafer to produce a tool final product (STEP 560). As discussed above, this product, when taken together or summed with the final products of the other tools in the module (e.g., CVD tool 528) results in module final product 505. In this example, the module final product includes a region thickness (or uniformity) falling within a particular range.


Processing at CMP tool 550 occurs in a manner similar to CVD tool 528. Specifically, tool targets forwarded by module controller 510 to CMP tool controller 554 (in STEP 558), and, for example, previous CMP tool runs as measured by, for example, any number of sensors or other metrology tools (STEP 564), and any state information from CVD tool 528 or CMP tool 550 (or other tools) are utilized by CMP tool controller 554 in identifying a recipe for attaining the desired target profiles (STEP 568). This recipe may then be utilized to direct the processing performed by CMP tool 550. The final product of CMP tool 550 then is summed with the final products of the other tools in the module (e.g., CVD tool 528) and results in module final product 505.


In accordance with one or more embodiments of the present invention, any number of techniques may be utilized to construct models such as, for example, module level models. One or more embodiments of the present invention contemplate generating targets (i.e., constructing models) at the various functional levels utilizing design of experiment techniques or via knowledge of the functional unit physics or empirical models. Furthermore, although the examples described below discuss the construction of module level models, it is to be understood that the embodiments of the present invention are applicable to the construction of the models of other levels including, for example, fab wide level models and the like.


In one example, module-level experiments derived from design of experiments (DOE) based techniques may be used to construct the models. Generally speaking, DOE based techniques refer to a methodology where a set of experiments are determined to optimally provide information for developing a model or specific correlation structure. Thus, the models may be generated based on, for example, experimentation, previous observation, or knowledge of the desired results. This example is particularly appropriate at the module level, where the output of the module is a function of the output of the tools of the module.


Specifically, utilizing knowledge (via, e.g., a model) that relates tool recipe parameters to controlled outputs previously determined by DOE techniques or other empirical mechanisms, input targets (at, e.g., the module level) are varied and processed through the individual tool models of the module. In addition, information (e.g., state information or measurements) from one tool may be fed forward to other tools. Subsequently, the final product of the module may be determined based on each of the final products of the individual tools. Then, based on these input targets and resulting outputs (and the relationships therebetween), a model relating tool targets to module final products may be obtained.


One specific example of the above-described approach relates to a PMD module (which as discussed above includes one or more CVD and CMP tools). One goal of PMD modules is to maintain the flatness of a post CMP profile. The inputs in this case include a set of targets for the CVD tool for generating a thickness profile of a wafer, which in turn is forwarded for processing by the CMP tool. The module final product, then, includes the profile after polishing by the CMP tool. The model thus is constructed (i.e., any targets may be generated) by inputting a number of distinct profiles from the CVD tool into the CMP tool model and obtaining each of the different post profiles. Accordingly, the relationship between the incoming CVD profile and the post CMP profile can be identified to construct the module level model.


Another example of a process utilizable for constructing models (i.e., generating targets at the various functional levels) is now described with reference to FIG. 6. Specifically, targets in the models may be generated based on constraints derived from known relationships between inputs, functional unit physics, and/or empirical models. In this example, a top down approach, with information flowing down from the high level specification to lower level requirements, is utilized. As with the example described above, the technique assumes an understanding of the physical (i.e., functional unit physics) and empirical relationships (i.e., empirical models) between tool performance and behavior and module output. More specifically, functional unit physics relate to the study of physical relationships that govern the performance of integrated circuits while empirical models relate to quantitative models that are developed based on correlations between observed variables.


As shown in FIG. 6, one or more high level device targets are entered into the fab wide controller (STEP 612). One example of such a high level device target includes a clock speed. This clock speed relates, in a known manner, to a number of wafer characteristics including, for example, a resistance-capacitance (RC) time constant. In addition, a number of design constraints may be obtained utilizing these relationships based on known technological capabilities. Examples of these constraints include minimum achievable film dielectric constants, an achievable critical dimension (CD) control, a minimum copper thickness that can be successfully processed, and/or an achievable aspect ratio for a via chain resistance. In accordance with one or more embodiments of the present invention, these constraints may then be used to generate obtainable targets at the various functional unit levels (i.e., to generate models at various functional unit levels).


Once such constraints have been identified, they may be incorporated into one or more functional unit levels (i.e., fab, module and/or tool levels) of the present invention. For instance, in the above example, a specific resistance for a wafer may be known based upon the inputted clock speed and any dielectric constants may be available based on technological capabilities. Subsequently, fab level targets for a particular device parameter or structure such as resistance and capacitance can be derived using a combination of physical and empirical knowledge of the fab process and design constraints (STEP 614). For example, a resistance may be determined using a known via chain resistance and a snake resistance to be obtained (via e.g., the relationship: R=1/snake resistance+1/via chain resistance+other contributing factors). Similarly, a capacitance may be determined using the known dielectric constant (via e.g., the relationship: capacitance=dielectric constant*area/depth). From there, lower level targets (e.g., at the module level) such as snake resistance and via chain resistance can be determined using the higher level targets (i.e., resistance and capacitance) (STEP 618). These targets can be used to generate targets for various modules such as dep-etch and/or copper wiring modules (STEP 622). In a similar manner, the module targets can be further broken down to individual tool level processes such as BLOk™, Black Diamond™, nitride, or fluorinated silica glass (FSG) deposition processes, dishing and erosion for CMP or deposition thickness for electroplating (STEP 626). Finally, as discussed above, the tool targets may be used to identify tool recipes for directing the individual tools (STEP 630). Thus, information such as fab level specifications are driven down for use by lower level functional units and design constraints are driven bottom up based on the individual tool processing capabilities.



FIG. 7 illustrates a block diagram of one example of the internal hardware of any of the controllers utilized to implement the models discussed above, examples of which include any of a number of different types of computers such as those having Pentium™ based processors as manufactured by Intel Corporation of Santa Clara, Calif. A bus 756 serves as the main information link interconnecting the other components of the system. CPU 758 is the central processing unit of the system, performing calculations and logic operations required to execute the processes of the instant invention as well as other programs. Read only memory (ROM) 760 and random access memory (RAM) 762 constitute the main memory of the system. Disk controller 764 interfaces one or more disk drives to the system bus 756. These disk drives are, for example, floppy disk drives 770, or CD ROM or DVD (digital video disks) drives 766, or internal or external hard drives 768. CPU 758 can be any number of different types of processors, including those manufactured by Intel Corporation or Motorola of Schaumberg, Ill. The memory/storage devices can be any number of different types of memory devices such as DRAM and SRAM as well as various types of storage devices, including magnetic and optical media. Furthermore, the memory/storage devices can also take the form of a transmission.


A display interface 772 interfaces display 748 and permits information from the bus 756 to be displayed on display 748. Display 748 is also an optional accessory. Communications with external devices such as the other components of the system described above, occur utilizing, for example, communication port 774. For example, port 774 may be interfaced with a bus/network linked to a CMP tool. Optical fibers and/or electrical cables and/or conductors and/or optical communication (e.g., infrared, and the like) and/or wireless communication (e.g., radio frequency (RF), and the like) can be used as the transport medium between the external devices and communication port 774. Peripheral interface 754 interfaces the keyboard 750 and mouse 752, permitting input data to be transmitted to bus 756. In addition to these components, the control system also optionally includes an infrared transmitter (not shown) and/or infrared receiver (not shown). Infrared transmitters are optionally utilized when the computer system is used in conjunction with one or more of the processing components/stations that transmits/receives data via infrared signal transmission. Instead of utilizing an infrared transmitter or infrared receiver, the control system may also optionally use a low power radio transmitter 780 and/or a low power radio receiver 782. The low power radio transmitter transmits the signal for reception by components of the production process, and receives signals from the components via the low power radio receiver.



FIG. 8 is an illustration of an exemplary computer readable memory medium 884 utilizable for storing computer readable code or instructions including the model(s), recipe(s), etc). As one example, medium 884 may be used with disk drives illustrated in FIG. 7. Typically, memory media such as floppy disks, or a CD ROM, or a digital video disk will contain, for example, a multi-byte locale for a single byte language and the program information for controlling the above system to enable the computer to perform the functions described herein. Alternatively, ROM 760 and/or RAM 762 can also be used to store the program information that is used to instruct the central processing unit 758 to perform the operations associated with the instant processes. Other examples of suitable computer readable media for storing information include magnetic, electronic, or optical (including holographic) storage, some combination thereof, etc. In addition, one or more embodiments of the present invention contemplate that the computer readable medium can be a transmission.


Embodiments of the present invention contemplate that various portions of software for implementing the various aspects of the present invention as previously described can reside in the memory/storage devices.


In general, it should be emphasized that the various components of embodiments of the present invention can be implemented in hardware, software, or a combination thereof. In such embodiments, the various components and steps would be implemented in hardware and/or software to perform the functions of the present invention. Any presently available or future developed computer software language and/or hardware components can be employed in such embodiments of the present invention. For example, at least some of the functionality mentioned above could be implemented using C or C++ programming languages.


Further, it is to be understood that terms, such as “first” or “second,” used in describing components, such as, for example, functional units and other components of the present invention herein (and in the claims), do not denote any form of order. Rather, such terms are used merely for convenience to differentiate between multiple and distinct components.


It is also to be appreciated and understood that the specific embodiments of the invention described hereinbefore are merely illustrative of the general principles of the invention. Various modifications may be made by those skilled in the art consistent with the principles set forth hereinbefore.

Claims
  • 1. A computer-implemented method for processing wafers, said method comprising the steps of: (1) receiving, at a first non tool level functional unit, one or more wafer characteristics;(2) generating, at the first non tool level functional unit, from the one or more wafer characteristics one or more tool targets for one or more tool level functional units;(3) forwarding said one or more tool targets from said first non tool level functional unit to said one or more tool level functional units; and(4) generating, at a tool level functional unit, from said one or more tool targets one or more tool recipes defining one or more process setpoints.
  • 2. The method of claim 1, wherein said first non tool level functional unit comprises a fab.
  • 3. The method of claim 1, wherein said first non tool level functional unit comprises a module.
  • 4. The method of claim 1, wherein said one or more tool recipes are generated according to tool measurements of controlled parameters.
  • 5. The method of claim 1, wherein said one or more tool targets are generated according to state information from at least one tool level functional unit other than said one or more tool level functional units.
  • 6. The method of claim 1, wherein said one or more tool recipes are generated according to measurements of controlled parameters measured from a second non tool level functional unit or said tool level functional units.
  • 7. The method of claim 1, wherein said one or more tool recipes are generated according to state information from a second non tool level functional unit or said tool level functional units.
  • 8. The method of claim 1, further comprising utilizing a tool recipe of said one or more tool recipes corresponding to a first tool level functional unit in obtaining a tool final product associated with a second tool level functional unit.
  • 9. The method of claim 1, further comprising: receiving, at a second non tool level functional unit, one or more wafer characteristics associated with said second non tool level functional unit;generating said one or more wafer characteristics for at least said first non tool level functional unit from the one or more wafer characteristics associated with said second non tool level functional unit; andforwarding said one or more wafer characteristics generated for said first non tool level functional unit from said second non tool level functional unit to said first non tool level functional unit.
  • 10. The method of claim 1, wherein at least one tool level functional unit of said one or more tool level functional units includes an integrated metrology device or sensor for measuring controlled parameters.
  • 11. The method of claim 1, wherein said one or more tool recipes are generated on a wafer to wafer basis.
  • 12. The method of claim 1, wherein one or more models are used to generate said one or more tool targets.
  • 13. The method of claim 1, wherein one or more models are used to generate said one or more tool recipes.
  • 14. The method of claim 1, wherein one or more models are used to generate said one or more tool targets and wherein said one or more models are constructed utilizing design of experiment techniques.
  • 15. The method of claim 1, wherein one or more models are used to generate said one or more tool targets and wherein said one or more models are constructed utilizing design constraints based on physical and/or empirical knowledge of said first non tool level functional unit or said tool level functional units.
  • 16. The method of claim 1, wherein said wafer characteristics associated with said first non tool level functional unit are used to generate one or more wafer characteristics associated with a second non tool level functional unit, and wherein said one or more tool targets are generated by processing said one or more wafer characteristics associated with said second non tool level functional unit.
  • 17. The method of claim 1, further comprising the step of: (5) executing said one or more tool recipes on said one or more tool level functional units.
  • 18. A system for processing wafers, said system comprising: a first non tool level functional unit comprising a controller capable of receiving one or more wafer characteristics associated with said first non tool level functional unit and generating one or more tool targets for one or more tool level functional units associated with said first non tool level functional unit;said one or more tool level functional units capable of receiving said one or more tool targets from said first non tool level functional unit and generating one or more tool recipes defining one or more process setpoints, by processing said one or more tool targets, wherein said one or more tool targets may be accomplished by attaining said one or more process setpoints.
  • 19. The system of claim 18, further comprising an integrated metrology device or sensor for measuring controlled parameters.
  • 20. The system of claim 18, further comprising: a second non tool level functional unit comprising a controller capable of receiving one or more wafer characteristics associated with said second non tool level functional unit, generating said one or more tool targets for at least said first tool level functional unit from the wafer characteristics associated with said second non tool level functional unit, and forwarding said one or more tool targets generated by said second non tool level functional unit to said first non tool level functional unit.
  • 21. The system of claim 18, wherein said one or more tool targets are generated according to state information from at least one tool level functional unit other than said one or more tool level functional units.
  • 22. The system of claim 18, wherein said one or more tool recipes are generated according to measurements of controlled parameters measured from a second non tool level functional unit or said tool level functional units.
  • 23. The system of claim 18, wherein said one or more tool recipes are generated according to state information from a second non tool level functional unit or said tool level functional units.
  • 24. The system of claim 18, wherein a tool recipe of said one or more tool recipes corresponding to a first tool level functional unit in obtaining a tool final product is associated with a second tool level functional unit.
  • 25. The system of claim 18, wherein said one or more tool recipes are generated according to tool measurements of controlled parameters.
  • 26. The system of claim 18, wherein one or more models are used to generate said one or more tool targets and wherein said one or more models are constructed utilizing design constraints based on physical and/or empirical knowledge of said first non tool level functional unit or said tool level functional units.
  • 27. The system of claim 18, further comprising a first non tool level functional unit controller for generating one or more wafer characteristics associated with a second non tool level functional unit, and wherein said one or more tool targets are generated by processing said one or more wafer characteristics associated with said second non tool level functional unit.
  • 28. The system of claim 18, wherein said first non tool level functional unit comprises a fab.
  • 29. The system of claim 18, wherein said first non tool level functional unit comprises a module.
  • 30. A system for processing wafers, said system comprising: means for receiving, at a first non tool level functional unit, one or more wafer characteristics associated with said first non tool level functional unit;means for generating, at the first non tool level functional unit, from the one or more wafer characteristics one or more tool targets for one or more tool level functional units;means for forwarding said one or more tool targets from said first non tool level functional unit to said one or more tool level functional units; andmeans for generating, at a tool level functional unit, from said one or more tool targets one or more tool recipes defining one or more process setpoints.
  • 31. The system of claim 30, further comprising means for measuring controlled parameters.
  • 32. The system of claim 30, wherein said one or more tool targets are generated according to state information from at least one tool level functional unit other than said one or more tool level functional units.
  • 33. The system of claim 30, wherein said one or more tool recipes are generated according to measurements of controlled parameters measured from a second non tool level functional unit or said tool level functional units.
  • 34. The system of claim 30, wherein said one or more tool recipes are generated according to state information from a second non tool level functional unit or said tool level functional units.
  • 35. The system of claim 30, further comprising means for utilizing a tool recipe of said one or more tool recipes corresponding to a first tool level functional unit in obtaining a tool final product associated with a second tool level functional unit.
  • 36. The system of claim 30, further comprising: means for receiving, at a second non tool level functional unit, one or more wafer characteristics associated with said second non tool level functional unit;means for generating said one or more wafer characteristics for at least said first non tool level functional unit from said one or more wafer characteristics associated with said second non tool level functional unit; andmeans for forwarding said one or more wafer characteristics generated for said first non tool level functional unit from said second non tool level functional unit to said first non tool level functional unit.
  • 37. The system of claim 30, wherein one or more models are used to generate said one or more tool targets and wherein said one or more models are constructed utilizing design constraints based on physical and/or empirical knowledge of said first non tool level functional unit or said tool level functional units.
  • 38. A computer readable medium for use in processing wafers, said computer readable medium comprising: computer readable instructions for receiving, at a first non tool level functional unit, one or more wafer characteristics;computer readable instructions for generating, at the first functional unit, from the one or more wafer characteristics one or more tool targets for one or more tool level functional units;computer readable instructions for forwarding said one or more tool targets from said first functional unit to said one or more tool level functional units; andcomputer readable instructions for generating, at a tool level functional unit, from said one or more tool targets one or more tool recipes defining one or more process setpoints.
  • 39. The computer readable medium of claim 38, further comprising computer readable instructions for executing said one or more tool recipes on said one or more tool level functional units.
  • 40. The computer readable medium of claim 38, wherein said one or more tool recipes are generated according to measurements of controlled parameters measured from a second non tool level functional unit or said tool level functional units.
  • 41. The computer readable medium of claim 38, wherein said one or more tool recipes are generated according to state information from a second non tool level functional unit or said tool level functional units.
  • 42. The computer readable medium of claim 38, further comprising computer readable instructions for utilizing a tool recipe of said one or more tool recipes corresponding to a first tool level functional unit in obtaining a tool final product associated with a second tool level functional unit.
  • 43. The computer readable medium of claim 38, further comprising: computer readable instructions for receiving, at a second non tool level functional unit, one or more wafer characteristics associated with said second non tool level functional unit;computer readable instructions for generating said one or more tool targets for at least said first non tool level functional unit, by processing said one or more wafer characteristics associated with said second non tool level functional unit; andcomputer readable instructions for forwarding said one or more tool targets associated with said second non tool level functional unit to said first non tool level functional unit.
  • 44. The computer readable medium of claim 38, further comprising computer readable instructions for measuring controlled parameters.
  • 45. The computer readable medium of claim 38, wherein said one or more tool targets are generated according to state information from at least one tool level functional unit other than said one or more tool level functional units.
  • 46. The method according to claim 1, wherein at least one of said one or more tool level functional units utilize feedback for use in optimizing subsequent runs.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Applications 60/298,878 and 60/365,770, filed respectively on Jun. 19, 2001 and Mar. 21, 2002, both of which are incorporated herein by reference.

US Referenced Citations (334)
Number Name Date Kind
3205485 Noltingk Sep 1965 A
3229198 Libby Jan 1966 A
3767900 Chao et al. Oct 1973 A
3920965 Sohrwardy Nov 1975 A
4000458 Miller et al. Dec 1976 A
4207520 Flora et al. Jun 1980 A
4209744 Gerasimov et al. Jun 1980 A
4302721 Urbanek et al. Nov 1981 A
4368510 Anderson Jan 1983 A
4609870 Lale et al. Sep 1986 A
4616308 Morshedi et al. Oct 1986 A
4663703 Axelby et al. May 1987 A
4698766 Entwistle et al. Oct 1987 A
4750141 Judell et al. Jun 1988 A
4755753 Chern Jul 1988 A
4757259 Charpentier Jul 1988 A
4796194 Atherton Jan 1989 A
4938600 Into Jul 1990 A
4957605 Hurwitt et al. Sep 1990 A
4967381 Lane et al. Oct 1990 A
5014208 Wolfson May 1991 A
5089970 Lee et al. Feb 1992 A
5108570 Wang Apr 1992 A
5128588 Kameya et al. Jul 1992 A
5208765 Turnbull May 1993 A
5220517 Sierk et al. Jun 1993 A
5226118 Baker et al. Jul 1993 A
5231585 Kobayashi et al. Jul 1993 A
5236868 Nulman Aug 1993 A
5240552 Yu et al. Aug 1993 A
5260868 Gupta et al. Nov 1993 A
5270222 Moslehi Dec 1993 A
5283141 Yoon et al. Feb 1994 A
5295242 Mashruwala et al. Mar 1994 A
5305221 Atherton Apr 1994 A
5309221 Fischer et al. May 1994 A
5329463 Sierk et al. Jul 1994 A
5338630 Yoon et al. Aug 1994 A
5347446 Iino et al. Sep 1994 A
5367624 Cooper Nov 1994 A
5369544 Mastrangelo Nov 1994 A
5375064 Bollinger Dec 1994 A
5398336 Tantry et al. Mar 1995 A
5402367 Sullivan et al. Mar 1995 A
5408405 Mozumder et al. Apr 1995 A
5410473 Kaneko et al. Apr 1995 A
5420796 Weling et al. May 1995 A
5427878 Corliss Jun 1995 A
5444632 Kline et al. Aug 1995 A
5444837 Bomans et al. Aug 1995 A
5469361 Moyne Nov 1995 A
5485082 Wisspeintner et al. Jan 1996 A
5490097 Swenson et al. Feb 1996 A
5495417 Fuduka et al. Feb 1996 A
5497316 Sierk et al. Mar 1996 A
5497381 O'Donoghue et al. Mar 1996 A
5503707 Maung et al. Apr 1996 A
5508947 Sierk et al. Apr 1996 A
5511005 Abbe et al. Apr 1996 A
5519605 Cawlfield May 1996 A
5525808 Irie et al. Jun 1996 A
5526293 Mozumder et al. Jun 1996 A
5534289 Bilder et al. Jul 1996 A
5541510 Danielson Jul 1996 A
5546312 Mozumder et al. Aug 1996 A
5546326 Tai et al. Aug 1996 A
5553195 Meijer Sep 1996 A
5586039 Hirsch et al. Dec 1996 A
5599423 Parker et al. Feb 1997 A
5602492 Cresswell et al. Feb 1997 A
5603707 Trombetta et al. Feb 1997 A
5617023 Skalski Apr 1997 A
5617321 Frizelle et al. Apr 1997 A
5627083 Tounai May 1997 A
5629216 Wijaranakula et al. May 1997 A
5642296 Saxena Jun 1997 A
5646870 Krivokapic et al. Jul 1997 A
5649169 Berezin et al. Jul 1997 A
5654903 Reitman et al. Aug 1997 A
5655951 Meikle et al. Aug 1997 A
5657254 Sierk et al. Aug 1997 A
5661669 Mozumder et al. Aug 1997 A
5663797 Sandhu Sep 1997 A
5664987 Renteln Sep 1997 A
5665199 Sahota et al. Sep 1997 A
5665214 Iturralde Sep 1997 A
5666297 Britt et al. Sep 1997 A
5667424 Pan Sep 1997 A
5674787 Zhao et al. Oct 1997 A
5689432 Blaauw et al. Nov 1997 A
5694325 Fukuda et al. Dec 1997 A
5695810 Dubin et al. Dec 1997 A
5698989 Nulman Dec 1997 A
5719495 Moslehi Feb 1998 A
5719796 Chen Feb 1998 A
5735055 Hochbein et al. Apr 1998 A
5740429 Wang et al. Apr 1998 A
5751582 Saxena et al. May 1998 A
5754297 Nulman May 1998 A
5761064 La et al. Jun 1998 A
5764543 Kennedy Jun 1998 A
5777901 Berezin et al. Jul 1998 A
5781454 Alexander Jul 1998 A
5787021 Samaha Jul 1998 A
5787269 Hyodo Jul 1998 A
5808303 Schlagheck et al. Sep 1998 A
5812407 Sato et al. Sep 1998 A
5823854 Chen Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5825356 Habib et al. Oct 1998 A
5825913 Rostami et al. Oct 1998 A
5828778 Hagi et al. Oct 1998 A
5831851 Eastburn et al. Nov 1998 A
5832224 Fehskens et al. Nov 1998 A
5838595 Sullivan et al. Nov 1998 A
5838951 Song Nov 1998 A
5844554 Geller et al. Dec 1998 A
5857258 Penzes et al. Jan 1999 A
5859777 Yokoyama et al. Jan 1999 A
5859964 Wang et al. Jan 1999 A
5859975 Brewer et al. Jan 1999 A
5863807 Jang et al. Jan 1999 A
5867389 Hamada et al. Feb 1999 A
5870306 Harada Feb 1999 A
5871805 Lemelson Feb 1999 A
5883437 Maruyama et al. Mar 1999 A
5889991 Consolatti et al. Mar 1999 A
5903455 Sharpe, Jr. et al. May 1999 A
5910011 Cruse Jun 1999 A
5910846 Sandhu Jun 1999 A
5912678 Saxena et al. Jun 1999 A
5914879 Wang et al. Jun 1999 A
5916016 Bothra Jun 1999 A
5923553 Yi Jul 1999 A
5930138 Lin et al. Jul 1999 A
5940300 Ozaki Aug 1999 A
5943237 Van Boxem Aug 1999 A
5943550 Fulford, Jr. et al. Aug 1999 A
5960185 Nguyen Sep 1999 A
5960214 Sharpe, Jr. et al. Sep 1999 A
5961369 Bartels et al. Oct 1999 A
5963881 Kahn et al. Oct 1999 A
5975994 Sandhu et al. Nov 1999 A
5978751 Pence et al. Nov 1999 A
5982920 Tobin, Jr. et al. Nov 1999 A
6012048 Gustin et al. Jan 2000 A
6017771 Yang et al. Jan 2000 A
6036349 Gombar Mar 2000 A
6037664 Zhao et al. Mar 2000 A
6041263 Boston et al. Mar 2000 A
6041270 Steffan et al. Mar 2000 A
6054379 Yau et al. Apr 2000 A
6059636 Inaba et al. May 2000 A
6064759 Buckley et al. May 2000 A
6072313 Li et al. Jun 2000 A
6077412 Ting et al. Jun 2000 A
6078845 Friedman Jun 2000 A
6096649 Jang Aug 2000 A
6097887 Hardikar et al. Aug 2000 A
6100195 Chan et al. Aug 2000 A
6108092 Sandhu Aug 2000 A
6112130 Fukuda et al. Aug 2000 A
6113462 Yang Sep 2000 A
6114238 Liao Sep 2000 A
6127263 Parikh Oct 2000 A
6128016 Coelho et al. Oct 2000 A
6136163 Cheung et al. Oct 2000 A
6141660 Bach et al. Oct 2000 A
6143646 Wetzel Nov 2000 A
6148099 Lee et al. Nov 2000 A
6148239 Funk et al. Nov 2000 A
6148246 Kawazome Nov 2000 A
6150270 Matsuda et al. Nov 2000 A
6157864 Schwenke et al. Dec 2000 A
6159075 Zhang Dec 2000 A
6159644 Satoh et al. Dec 2000 A
6161054 Rosenthal et al. Dec 2000 A
6169931 Runnels Jan 2001 B1
6172756 Chalmers et al. Jan 2001 B1
6173240 Sepulveda et al. Jan 2001 B1
6175777 Kim Jan 2001 B1
6178390 Jun Jan 2001 B1
6181013 Liu et al. Jan 2001 B1
6183345 Kamono et al. Feb 2001 B1
6185324 Ishihara et al. Feb 2001 B1
6191864 Sandhu Feb 2001 B1
6192291 Kwon Feb 2001 B1
6197604 Miller et al. Mar 2001 B1
6204165 Ghoshal Mar 2001 B1
6210983 Atchison et al. Apr 2001 B1
6211094 Jun et al. Apr 2001 B1
6212961 Dvir Apr 2001 B1
6214734 Bothra et al. Apr 2001 B1
6217412 Campbell et al. Apr 2001 B1
6219711 Chari Apr 2001 B1
6222936 Phan et al. Apr 2001 B1
6226563 Lim May 2001 B1
6226792 Goiffon et al. May 2001 B1
6228280 Li et al. May 2001 B1
6230069 Campbell et al. May 2001 B1
6236903 Kim et al. May 2001 B1
6237050 Kim et al. May 2001 B1
6238937 Toprac et al. May 2001 B1
6240328 LaLonde et al. May 2001 B1
6240330 Kurtzberg et al. May 2001 B1
6240331 Yun May 2001 B1
6246972 Klimasauskas Jun 2001 B1
6248602 Bode et al. Jun 2001 B1
6249712 Boiquaye Jun 2001 B1
6252412 Talbot et al. Jun 2001 B1
6253366 Mutschler, III Jun 2001 B1
6259160 Lopatin et al. Jul 2001 B1
6263255 Tan et al. Jul 2001 B1
6268270 Scheid et al. Jul 2001 B1
6271670 Caffey Aug 2001 B1
6276989 Campbell et al. Aug 2001 B1
6277014 Chen et al. Aug 2001 B1
6278899 Piche et al. Aug 2001 B1
6280289 Wiswesser et al. Aug 2001 B1
6281127 Shue Aug 2001 B1
6284622 Campbell et al. Sep 2001 B1
6287879 Gonzales et al. Sep 2001 B1
6290572 Hofmann Sep 2001 B1
6291367 Kelkar Sep 2001 B1
6292708 Allen et al. Sep 2001 B1
6298274 Inoue Oct 2001 B1
6298470 Breiner et al. Oct 2001 B1
6303395 Nulman Oct 2001 B1
6304999 Toprac et al. Oct 2001 B1
6307628 Lu et al. Oct 2001 B1
6314379 Hu et al. Nov 2001 B1
6317643 Dmochowski Nov 2001 B1
6320655 Matsushita et al. Nov 2001 B1
6324481 Atchison et al. Nov 2001 B1
6334807 Lebel et al. Jan 2002 B1
6336841 Chang Jan 2002 B1
6339727 Ladd Jan 2002 B1
6345315 Mishra Feb 2002 B1
6355559 Havemann et al. Mar 2002 B1
6360133 Campbell et al. Mar 2002 B1
6360184 Jacquez Mar 2002 B1
6366934 Cheng et al. Apr 2002 B1
6368883 Bode et al. Apr 2002 B1
6368884 Goodwin et al. Apr 2002 B1
6379980 Toprac Apr 2002 B1
6381564 David et al. Apr 2002 B1
6388253 Su May 2002 B1
6389491 Jacobson et al. May 2002 B1
6391780 Shih et al. May 2002 B1
6395152 Wang May 2002 B1
6397114 Eryurek et al. May 2002 B1
6400162 Mallory et al. Jun 2002 B1
6405096 Toprac et al. Jun 2002 B1
6405144 Toprac et al. Jun 2002 B1
6417014 Lam et al. Jul 2002 B1
6427093 Toprac Jul 2002 B1
6432728 Tai et al. Aug 2002 B1
6435952 Boyd et al. Aug 2002 B1
6438438 Takagi et al. Aug 2002 B1
6440295 Wang Aug 2002 B1
6442496 Pasadyn et al. Aug 2002 B1
6449524 Miller et al. Sep 2002 B1
6455415 Lopatin et al. Sep 2002 B1
6455937 Cunningham Sep 2002 B1
6465263 Coss, Jr. et al. Oct 2002 B1
6479902 Lopatin et al. Nov 2002 B1
6479990 Mednikov et al. Nov 2002 B1
6484064 Campbell Nov 2002 B1
6495452 Shih Dec 2002 B1
6503839 Gonzales et al. Jan 2003 B1
6515368 Lopatin et al. Feb 2003 B1
6517413 Hu et al. Feb 2003 B1
6517414 Tobin et al. Feb 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6529789 Campbell et al. Mar 2003 B1
6532555 Miller et al. Mar 2003 B1
6535783 Miller et al. Mar 2003 B1
6537912 Agarwal Mar 2003 B1
6540591 Pasadyn et al. Apr 2003 B1
6541401 Herner et al. Apr 2003 B1
6546508 Sonderman et al. Apr 2003 B1
6556881 Miller Apr 2003 B1
6563308 Nagano et al. May 2003 B1
6580958 Takano Jun 2003 B1
6587744 Stoddard et al. Jul 2003 B1
6588007 Pasadyn et al. Jul 2003 B1
6605549 Leu et al. Aug 2003 B1
6607976 Chen et al. Aug 2003 B1
6609946 Tran Aug 2003 B1
6616513 Osterheld Sep 2003 B1
6624075 Lopatin et al. Sep 2003 B1
6630741 Lopatin et al. Oct 2003 B1
6652355 Wiswesser et al. Nov 2003 B1
6660633 Lopatin et al. Dec 2003 B1
6678570 Pasadyn et al. Jan 2004 B1
6708074 Chi et al. Mar 2004 B1
6708075 Sonderman et al. Mar 2004 B1
6725402 Coss, Jr. et al. Apr 2004 B1
6728587 Goldman et al. Apr 2004 B1
6735492 Conrad et al. May 2004 B1
6751518 Sonderman et al. Jun 2004 B1
6774998 Wright et al. Aug 2004 B1
6842659 Parikh et al. Jan 2005 B1
20010001755 Sandhu et al. May 2001 A1
20010003084 Finarov Jun 2001 A1
20010006873 Moore Jul 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010039462 Mendez et al. Nov 2001 A1
20010040997 Tsap et al. Nov 2001 A1
20010042690 Talieh Nov 2001 A1
20020032499 Wilson et al. Mar 2002 A1
20020058460 Lee et al. May 2002 A1
20020070126 Sato et al. Jun 2002 A1
20020077031 Johansson et al. Jun 2002 A1
20020081951 Boyd et al. Jun 2002 A1
20020089676 Pecen et al. Jul 2002 A1
20020102853 Li et al. Aug 2002 A1
20020107599 Patel et al. Aug 2002 A1
20020113039 Mok et al. Aug 2002 A1
20020127950 Hirose et al. Sep 2002 A1
20020128805 Goldman et al. Sep 2002 A1
20020149359 Crouzen et al. Oct 2002 A1
20020165636 Hasan Nov 2002 A1
20020183986 Stewart et al. Dec 2002 A1
20020185658 Inoue et al. Dec 2002 A1
20020193899 Shanmugasundram et al. Dec 2002 A1
20020193902 Shanmugasundram et al. Dec 2002 A1
20020197745 Shanmugasundram et al. Dec 2002 A1
20020197934 Paik Dec 2002 A1
20020199082 Shanmugasundram et al. Dec 2002 A1
20030017256 Shimane Jan 2003 A1
20030020909 Adams et al. Jan 2003 A1
20030020928 Ritzdorf et al. Jan 2003 A1
20030154062 Daft et al. Aug 2003 A1
Foreign Referenced Citations (80)
Number Date Country
2050247 Aug 1991 CA
2165847 Aug 1991 CA
2194855 Aug 1991 CA
0 397 924 Nov 1990 EP
0 621 522 Oct 1994 EP
0 747 795 Dec 1996 EP
0 869 652 Oct 1998 EP
0 877 308 Nov 1998 EP
0 881 040 Dec 1998 EP
0 895 145 Feb 1999 EP
0 910 123 Apr 1999 EP
0 932 194 Jul 1999 EP
0 932 195 Jul 1999 EP
1 066 925 Jan 2001 EP
1 067 757 Jan 2001 EP
1 071 128 Jan 2001 EP
1 083 470 Mar 2001 EP
1 092 505 Apr 2001 EP
1072967 Nov 2001 EP
1 182 526 Feb 2002 EP
2 347 885 Sep 2000 GB
2 365 215 Feb 2002 GB
61-66104 Apr 1986 JP
61-171147 Aug 1986 JP
01-283934 Nov 1989 JP
3-202710 Sep 1991 JP
05-151231 Jun 1993 JP
05-216896 Aug 1993 JP
05-266029 Oct 1993 JP
06-110894 Apr 1994 JP
06-176994 Jun 1994 JP
06-184434 Jul 1994 JP
06-252236 Sep 1994 JP
06-260380 Sep 1994 JP
8-23166 Jan 1996 JP
08-50161 Feb 1996 JP
08-149583 Jun 1996 JP
08-304023 Nov 1996 JP
09-34535 Feb 1997 JP
9-246547 Sep 1997 JP
10-34522 Feb 1998 JP
10-173029 Jun 1998 JP
11-67853 Mar 1999 JP
11-126816 May 1999 JP
11-135601 May 1999 JP
2000-183001 Jun 2000 JP
2001-76982 Mar 2001 JP
2001-284299 Oct 2001 JP
2001-305108 Oct 2001 JP
2002-9030 Jan 2002 JP
2002-343754 Nov 2002 JP
434103 May 2001 TW
436383 May 2001 TW
455938 Sep 2001 TW
455976 Sep 2001 TW
WO 9534866 Dec 1995 WO
WO 9805066 Feb 1998 WO
WO 9845090 Oct 1998 WO
WO 9909371 Feb 1999 WO
WO 9925520 May 1999 WO
WO 0000874 Jan 2000 WO
WO 0005759 Feb 2000 WO
WO 0035063 Jun 2000 WO
WO 0054325 Sep 2000 WO
WO 0079355 Dec 2000 WO
WO 0111679 Feb 2001 WO
WO 0115865 Mar 2001 WO
WO 0118623 Mar 2001 WO
WO 0125865 Apr 2001 WO
WO 0133277 May 2001 WO
WO 0133501 May 2001 WO
WO 0150206 Jul 2001 WO
WO 0152055 Jul 2001 WO
WO 0157823 Aug 2001 WO
WO 01080306 Oct 2001 WO
WO 0217150 Feb 2002 WO
WO 0231613 Apr 2002 WO
WO 0231613 Apr 2002 WO
WO 0233737 Apr 2002 WO
WO 02074491 Sep 2002 WO
Related Publications (1)
Number Date Country
20020193902 A1 Dec 2002 US
Provisional Applications (2)
Number Date Country
60298878 Jun 2001 US
60365770 Mar 2002 US