The subject matter disclosed herein relates generally to light emitting diode (LED) packages and related methods. More particularly, the subject matter disclosed herein relates to LED packages having thin metal components, low thermal resistance, and improved brightness and manufacturing characteristics.
Light emitting devices, such as light emitting diodes (LEDs), may be used in packages or devices for providing white light (e.g., perceived as being white or near-white), and are developing as replacements for incandescent, fluorescent, and metal halide light products. In general, LED packages are either ceramic based with copper (Cu) traces or polymer-based with a Cu leadframe, where one or more LEDs electrically communicate with the Cu. For packages using a Cu leadframe, the leadframe needs to have a certain thickness for stability during processing and structural integrity to withstand injection molding forces. In conventional ceramic based packages, the Cu traces used are approximately 50 microns (μm) or greater in thickness. According to conventional wisdom, thick Cu traces are necessary to spread heat and assist with heat flow through the ceramic and away from the LED.
A prior art LED package, generally designated 10 is illustrated in
As known in the art, a gap 30 can be etched or otherwise formed between first and second traces 18 and 20, respectively, and typically results in a gap 30 having approximately a 1:1 aspect ratio between trace thickness and gap width. That is, Cu that is approximately 50 μm in thickness will result in a gap 30 having a depth D of approximately 50 μm and a width W of approximately 50 μm. Thicker gaps 30 can require a larger submount surface area, which is generally undesirable. The size of such a gap can also be disadvantageous as it provides an undesirable larger space for light from the LED to pass into the gap thereby reducing or limiting light output. The relatively high cost and processing time associated with manufacturing devices and packages using Cu traces that are approximately 50 μm or greater in thickness is also undesirable. However, as noted above and according to conventional wisdom, thick Cu traces are necessary to spread heat and assist with heat flow through the ceramic substrate and away from the LED. Despite conventional wisdom and manufacturing difficulties, the subject matter herein advantageously incorporated thinner Cu traces which led to unexpected results of no reduction in LED, device, and/or package performance over time when Cu trace thickness is minimized.
Despite availability of various LED devices and packages in the marketplace, a need remains for improved packages that can be manufactured at a lower cost in less amount of time without compromising LED performance. LED packages and methods disclosed herein advantageously use thin metal components, have low thermal resistance, and have improved light output performance which thereby improves device reliability. Advantages of using thin metal components can include, for example, more efficient LED designs, routing of electrical signal under parts (as opposed to around parts), a reduction in encapsulant, and a simplified, less-expensive manufacturing process (i.e., by eliminating Cu and electroplating processes).
In accordance with this disclosure, novel LED packages and related methods are provided. In particular, LED packages and related methods are provided with an area of conductive material comprising a thickness less than or equal to approximately 10 microns (μm). One or more thin gaps can be disposed between first and second areas of conductive material.
It is, therefore, an object of the disclosure herein to provide novel LED packages and methods as described for example in further detail herein. Such novel LED packages and methods can comprise low thermal resistance and increased optical performance. These and other objects as can become apparent from the disclosure herein are achieved, at least in whole or in part, by the subject matter described herein.
A full and enabling disclosure of the present subject matter including the best mode thereof to one of ordinary skill in the art is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to possible aspects or embodiments of the subject matter herein, one or more examples of which are shown in the figures. Each example is provided to explain the subject matter and not as a limitation. In fact, features illustrated or described as part of one embodiment can be used in another embodiment to yield still a further embodiment. It is intended that the subject matter disclosed and envisioned herein covers such modifications and variations.
As illustrated in the various figures, some sizes of structures or portions are exaggerated relative to other structures or portions for illustrative purposes and, thus, are provided to illustrate the general structures of the present subject matter. Furthermore, various aspects of the subject matter disclosed herein are described with reference to a structure or a portion being formed on other structures, portions, or both. As will be appreciated by those of skill in the art, references to a structure being formed “on” or “above” another structure or portion contemplates that additional structure, portion, or both may intervene. References to a structure or a portion being formed “on” another structure or portion without an intervening structure or portion may be described herein as being formed “directly on” the structure or portion. Similarly, it will be understood that when an element is referred to as being “connected”, “attached”, or “coupled” to another element, it can be directly connected, attached, or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly connected”, “directly attached”, or “directly coupled” to another element, no intervening elements are present.
Furthermore, relative terms such as “on”, “above”, “upper”, “top”, “lower”, or “bottom” are used herein to describe one structure's or portion's relationship to another structure or portion as illustrated in the figures. It will be understood that relative terms such as “on”, “above”, “upper”, “top”, “lower” or “bottom” are intended to encompass different orientations of the device in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, structure or portion described as “above” other structures or portions would now be oriented “below” the other structures or portions. Likewise, if devices in the figures are rotated along an axis, structure or portion described as “above”, other structures or portions would now be oriented “next to” or “left of” the other structures or portions. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures. Like numbers refer to like elements throughout.
Terms such as first, second, etc. may be used herein to describe various elements, members, components, regions, layers and/or sections, these elements, members, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the disclosure herein.
Light emitting devices according to embodiments described herein may comprise group III-V nitride (e.g., gallium nitride) based light emitting diodes (LEDs) or lasers fabricated on a silicon carbide substrate, such as those devices manufactured and sold by Cree, Inc. of Durham, N.C. For example, Silicon carbide (SiC) substrates/layers discussed herein may be 4H polytype silicon carbide substrates/layers. Other silicon carbide candidate polytypes, such as 3C, 6H, and 15R polytypes, however, may be used. Appropriate SiC substrates are available from Cree, Inc., of Durham, N.C., the assignee of the present subject matter, and the methods for producing such substrates are set forth in the scientific literature as well as in a number of commonly assigned U.S. patents, including but not limited to U.S. Pat. No. Re. 34,861; U.S. Pat. No. 4,946,547; and U.S. Pat. No. 5,200,022, the disclosures of which are incorporated by reference herein in their entireties. Any other suitable growth substrates are contemplated herein. For example, sapphire and gallium arsenide can be utilized as growth substrates for fabricating LEDs or lasers as described herein.
As used herein, the term “Group III nitride” refers to those semiconducting compounds formed between nitrogen and one or more elements in Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). The term also refers to binary, ternary, and quaternary compounds such as GaN, AlGaN and AlInGaN. The Group III elements can combine with nitrogen to form binary (e.g., GaN), ternary (e.g., AlGaN), and quaternary (e.g., AlInGaN) compounds. These compounds may have empirical formulas in which one mole of nitrogen is combined with a total of one mole of the Group III elements. Accordingly, formulas such as AlxGa1-xN where 1>x>0 are often used to describe these compounds. Techniques for epitaxial growth of Group III nitrides have become reasonably well developed and reported in the appropriate scientific literature, and in commonly assigned U.S. Pat. No. 5,210,051, U.S. Pat. No. 5,393,993, and U.S. Pat. No. 5,523,589, the disclosures of which are hereby incorporated by reference herein in their entireties.
Although various embodiments of LEDs disclosed herein comprise a growth substrate, it will be understood by those skilled in the art that the crystalline epitaxial growth substrate on which the epitaxial layers comprising an LED are grown may be removed, and the freestanding epitaxial layers may be mounted on a substitute carrier substrate or submount which may have different thermal, electrical, structural and/or optical characteristics than the original substrate. The subject matter described herein is not limited to structures having crystalline epitaxial growth substrates and may be used in connection with structures in which the epitaxial layers have been removed from their original growth substrates and bonded to substitute carrier substrates.
Group III nitride based LEDs according to some embodiments of the present subject matter, for example, may be fabricated on growth substrates (such as a silicon carbide substrates) to provide horizontal devices (with both electrical contacts on a same side of the LED) or vertical devices (with electrical contacts on opposite sides of the LED). Moreover, the growth substrate may be maintained on the LED after fabrication or removed (e.g., by etching, grinding, polishing, etc.). The growth substrate may be removed, for example, to reduce a thickness of the resulting LED and/or to reduce a forward voltage through a vertical LED. A horizontal device (with or without the growth substrate), for example, may be flip chip bonded (e.g., using solder) to a carrier substrate or printed circuit board (PCB), or wire bonded. A vertical device (with or without the growth substrate) may have a first terminal solder bonded to a carrier substrate, mounting pad, or PCB and a second terminal wire bonded to the carrier substrate, electrical element, or PCB. Examples of vertical and horizontal LED chip structures are discussed by way of example in U.S. Publication No. 2008/0258130 to Bergmann et al. and in U.S. Publication No. 2006/0186418 to Edmond et al., the disclosures of which are hereby incorporated by reference herein in their entireties.
Solid state light LEDs may be used individually or in combinations, optionally together with one or more luminescent materials (e.g., phosphors, scintillators, lumiphoric inks) and/or filters, to generate light of desired perceived colors (including combinations of colors that may be perceived as white). Inclusion of luminescent (also called ‘lumiphoric’) materials in LED packages may be accomplished by adding such materials to encapsulants, adding such materials to lenses, or by direct coating onto LEDs. Other materials, such as dispersers and/or index matching materials may be disposed in such encapsulants.
One or more of the LEDs can be coated, at least partially, with one or more phosphors with the phosphors absorbing at least a portion of the LED light and emitting a different wavelength of light such that the LED emits a combination of light from the LED and the phosphor. In one embodiment, such an LED emits a white light combination of LED and phosphor light. The LED can be coated and fabricated using many different methods, with one suitable method being described in U.S. patent application Ser. Nos. 11/656,759 and 11/899,790, both entitled “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method”, and both of which are incorporated herein by reference. Other suitable methods for coating one or more LEDs are described in U.S. patent application Ser. No. 12/014,404, entitled “Phosphor Coating Systems and Methods for Light Emitting Structures and Packaged Light Emitting Diodes Including Phosphor Coating” and the continuation-in-part application U.S. patent application Ser. No. 12/717,048, entitled “Systems and Methods for Application of Optical Materials to Optical Elements”, the disclosures of which are hereby incorporated by reference herein in their entireties. LEDs can also be coated using other methods such electrophoretic deposition (EPD), with a suitable EPD method described in U.S. patent application Ser. No. 11/473,089 entitled “Close Loop Electrophoretic Deposition of Semiconductor Devices”, which is also incorporated herein by reference. It is understood that LED packages and methods according to the present subject matter can also have multiple LEDs of different colors, one or more of which may be white emitting.
As noted above, one or more LEDs 44 in package 40 can optionally be coated with one or more phosphors or a phosphor containing material (not shown) using any suitable technique. The phosphors can absorb at least some of the light emitted from LED 44 and can in turn emit light having a different wavelength such that LED package 40 emits a combination of light from the LED 44 and phosphor. In one aspect, LED package 40 can emit light that is perceived as white light. In one aspect, one or more LEDs 44 selected for use can comprise wavelengths targeting cool white (CW) or warm white (WW) light upon, for example, mixing with light emitted from the phosphors or a phosphor containing material. Any suitable wavelength bin and/or phosphor combination can be selected depending upon the application and desired light emission.
The submount 42 used in LED package 40 can be selected from any suitable material, for example, an electrical insulating material with a low thermal resistance or high thermal conductivity (e.g., aluminum nitride (AlN)). For example, submount 42 can comprise a ceramic material that exhibits a high thermal conductivity of approximately 120 W/mK or higher at 100° C. or more, such as AlN. In some aspects, the thermal conductivity of AlN can range from approximately 140 W/mK to approximately 180 W/mK. AlN can have a low thermal resistance and a high thermal conductivity which allows heat to readily dissipate from the LED 44 and allows package 40 to run cooler at steady state, thereby increasing the lumen output of LED package 40. Notably, submount 42 comprises a low thermal resistance or high heat conductivity and is fully capable of removing large quantities of heat at a high enough rate away from LED 44 and/or through LED package 40 such that a thick heat spreader, for example, a thick metal trace, for example, a thick Cu trace, may not be required. As a result, thinner metal traces can be used which can provide such benefits as decreasing the cost and processing time associated with providing package 40 while unexpectedly maintaining or exceeding brightness and desired thermal performance. Notably, despite conventional wisdom that thick Cu traces are necessary for heat spreading purposes and despite manufacturing difficulties (e.g., plating and etching difficulties associated with thinner layers or films), LED packages and methods disclosed herein advantageously incorporate thinner Cu traces which led to unexpected results of no reduction in LED, device, and/or package performance over time.
One or more layers of conductive material, generally designated 46 can be provided over submount 42 using an electroless process or any other suitable technique. Electroless processes can be used for coating nonmetallic parts and can be similar to an electroplating process except that no outside current is needed. The metal ions can be reduced by chemical agents in the plating solutions and deposited on submount 42. Electroless plating or processing may be advantageous as a more uniform thickness of the metal layer can be obtained. In another aspect, submount 42 can be masked with photoresist and conductive material 46 can then be sputtered over submount thereby forming one or more areas of conductive material 46 or conductive traces. Any suitable electrically conductive material 46 can be used. In one aspect, conductive material 46 can comprise a layer of Cu that is approximately 50 μm or less in thickness, for example, a layer that is approximately 50, 45, 35, 25, or 15 μm in thickness. However, conductive material 46 of any thickness value of approximately 50 μm or less in thickness is contemplated herein. In one aspect, conductive material 46 can comprise a layer of Cu that is less than or equal to 10 μm in thickness. In other aspects, conductive material 46 can comprise a layer of Cu that is less than or equal to 5 μm in thickness. In some aspects, conductive material 46 can comprise a range of thickness from approximately 3 to 5 μm in thickness. Conductive material 46 is not limited to Cu, but can comprise any suitable electrically conducting material of any suitable thickness. In one aspect, conductive material 46 comprises any suitable electrically conducting metal or metal alloy. Notably, LED package 40 uses conductive material 46 that is approximately 50 μm or less in thickness as compared, for example, to the prior art package discussed in
Gap 48 can be formed using any suitable technique. In one aspect, gap 48 can be etched at least partially through conductive material 46. In other aspects, gap 48 can comprise an area of submount 42 that was masked with photoresist prior to sputtering conductive material 46 over submount 42. Formation of gap 48 between first and second areas of conductive material 50 and 52, respectively, can for example result in a gap 48 having a desired aspect ratio that can have a very thin gap width. While gap 48 can if desired have approximately a 1:1 or similar aspect ratio between trace thickness and gap width, gap 48 can also desirably have a width that can be less than the thickness (or depth) of gap 48. Etching a thin layer of conductive material 46 of approximately 50 μm or less in thickness T can result in a gap 48 having a depth of approximately 50 μm or less and a width W of approximately 50 μm or less (i.e., the ratio of T:W can comprise a 1:1 ratio). However, conductive material 46 of any thickness value of approximately 50 μm or less in thickness is contemplated herein. Therefore, a depth and width W for gaps 48 of any value less than approximately 50 μm is also contemplated herein. For example, width W can be approximately 45, 35, 25, or 15 μm or less where there is approximately a 1:1 ratio between T:W. Notably, one significant advantage of the smaller trace width W is the design of more efficient LEDs 44. For example, current LEDs can be limited by substrate or submount technology in the amount of trace that can fit underneath or below the small devices. By implementing thinner traces having thinner trace widths W, several traces can fit below LEDs 44, thereby encouraging chip designs that are more efficient.
In some aspects, thickness T of conductive material 46 and width W of gap 48 can comprise approximately 10 μm or less. Thinner gaps 48 can advantageously trap or block less light than thicker gaps and can therefore increase device performance. Thinner gaps 48 have thin widths W which can also allow for a smaller submount surface area and can thereby provide devices having a smaller footprint. Thinner areas of conductive material 46 can also advantageously lower the cost and time associated with manufacturing devices and packages using traces that are less than or equal to approximately 10 μm in thickness as less material is needed and more efficient processing techniques can be used. In one aspect, electroless processing techniques, immersion plating baths, metal sputter, and evaporation techniques can be used instead of electroplating to get thicker films. These processing techniques can require less processing time and equipment when compared to electroplating, while producing finer line widths and gaps 48. This could significantly lower the cost of the substrate beyond just the cost reduction from the reduced metal thickness. The whole manufacturing of the substrate can be significantly simplified. For example, prior art methods of producing thicker Cu traces require sequentially sputtering a titanium (Ti) adhesion layer and a Cu seed layer and then growing a Cu layer via plating onto the copper seed layer. Methods disclosed herein can advantageously eliminate the extraneous Cu seed growth step and can simplify the deposition process by simply depositing a thin layer of Cu and subsequently only etching it.
Another advantage of using thin metal traces, or conductive material 46, is that the volume of encapsulant can be greatly reduced. Conventional substrates having large or deep gaps require a greater amount of encapsulant and a greater effort during dispensing of the encapsulant such that reliability failures caused by encapsulant getting under the LEDs 44 can be avoided. Thin conductive material 46 having fine gaps 48 will likely eliminate such reliability failures as well as reduce the amount of encapsulant used, both of which can significantly reduce the cost of manufacturing components with direct attach (i.e., flip chip) LEDs.
As noted above, while gap 48 can if desired have approximately a 1:1 or similar aspect ratio between trace thickness T and width W, gap 48 can also desirably have, without limitation, width W measuring less than the approximate thickness and/or length and width of each individual LED 44. Table 1 below contains typical values of LED 44 length, width, and thickness measurements. Table 1 also expresses gap width W, as a ratio (i.e., percentage) of LED 44 length, width, and thickness measurements, where gap width W is assumed to have a fine width W, as described herein (i.e., equal to approximately 50 μm or less, where the ratio values in Table 1 are calculated using a value of 50 μm for width W).
As Table 1 illustrates, in one aspect, and without limitation, gap 48 can comprise a width W ranging from approximately 20 to 100% of LED 44 thickness where gap width W is approximately equal to 50 μm (i.e., and ranging from approximately 4 to 20% where gap width W is approximately equal to 10 μm). The ratio of gap width W to LED 44 thickness can comprise a range of less than approximately 4 to 20% for values of gap width W that are less than 10 μm, and can be calculated accordingly. Table 1 further illustrates gap 48 comprising a width W ranging from approximately 8.6 to 22.7%, or less than 25% of LED 44 length where gap width W is approximately equal to 50 μm (i.e., and ranging from approximately 1.7 to 4.6%, or less than 5% of LED length where gap width W is approximately equal to 10 μm). The ratio of gap width W to LED 44 length can comprise a range of less than approximately 1.7 to 4.6%, or less than 5% for values of gap width W that are less than 10 μm, and can be calculated accordingly. Table 1 further illustrates gap 48 comprising a width W ranging from approximately 7.1 to 18.5%, or less than 20% of LED 44 width where gap width W is approximately equal to 50 μm (i.e., and ranging from approximately 1.4 to 3.7%, or less than 4% of LED width where gap width W is approximately equal to 10 μm). The ratio of gap width W to LED 44 width can comprise a range of less than approximately 1.4 to 3.7%, or less than 4% for values of gap width W that are less than 10 μm, and can be calculated accordingly.
In one aspect, and without limitation, gap 48 can comprise a width W of approximately 10% or less than the distance between LEDs 44, for example, in packages comprising more than one LED 44 where the LEDs 44 are spaced apart approximately 500 μm (i.e., approximately 2% where gap width W is approximately 10 μm, and less than 2% where gap width W is finer than 10 μm). For example, depending upon the angled side of the LED 44 chosen for use in package 40, LEDs 44 can be spaced apart as close as the gap width (i.e., approximately 50 μm or less such that gap width W is equal to the chip spacing) to as far apart as approximately 500 μm. As such, gap 48 can comprise a width W of approximately 10% or less of the distance between LEDs 44. In other aspects, where LED 44 spacing is less than approximately 500 μm, the percentage can increase from approximately 10% to approximately 100% (i.e., for cases where chip spacing becomes closer to and/or equals to gap width W).
Outer and inner portions 62 and 64, respectively, can comprise at least a first and a second area of conductive material 46. Outer and inner portions 62 and 64 can have a thickness of approximately 50 μm or less, for example, a layer that is approximately 50, 45, 35, 25, or 15 μm in thickness. However, outer and inner portions 62 and 64 of any thickness value of approximately 50 μm or less in thickness is contemplated herein. In one aspect, outer and inner portions 62 and 64 can comprise a thickness of approximately 10 μm or less. In one aspect, outer and inner portions 62 and 64 can comprise a thickness of less than or equal to approximately 5 μm. In one aspect, outer and inner portions 62 and 64 can comprise a range of thickness of approximately 3 to 5 μm. Outer portion 62 can comprise a substantially ring shaped portion disposed about a substantially circular shaped inner portion 64. Each of outer and inner portions 62 and 64 can be divided into one or more electrically and/or thermally isolated sections by one or more gaps 48. Gaps 48 can be formed using any suitable technique, for example, and not limited to the etching or masking techniques previously described. Where desired, gaps 48 can comprise a depth and a width approximately equal to the thickness of inner and outer portions 62 and 64 comprising conductive material 46.
Outer portion 62 can comprise one or more contact portions which can terminate adjacent an edge of LED package 60. For example, outer portion can comprise one or more sets of first, second and third contact portions 62A, 62B, and 62C, respectively. First contact portions 62A can extend substantially about inner portion 64 and can comprise a single, undivided portion which can terminate at opposing ends. First contact portions 62A can comprise outermost end portions with one or more sets of second and third contact portions 62B and 62C disposed therebetween. In one aspect, first contact portions 62A can form a contact pair (i.e., anode/cathode) with second contact portions 62B. That is, each 62A-62B contact pair can provide an interface for a controllable circuit. Second contact portions 62B can be disposed between first contact portion 62A and third contact portion 62C. One or more third contact portions 62C can be disposed parallel and adjacent each other along one side of LED package 60. Third contact portions 62C can form a contact pair, that is, portions 62C-62C can provide an interface for a controllable circuit.
Still referring to
As
Current spreading structure 45 can generally comprise conductive portions or fingers arranged substantially in a square or grid on LED 44 with the fingers spaced to enhance current spreading from bond pad 43 into the LED's 44 top surface. In operation, an electrical signal can be applied to LED 44, such as through conductive wire 54, and the electrical signal can spreads through the fingers of the current spreading structure 45 and the top surface into LED 44. Current spreading structures are often used in LEDs 44 where the top surface is a p-type material, but they can also be used for n-type materials. LEDs 44 can comprise Group III nitride LEDs as previously described either alone and/or LEDs 44 of any other suitable material system. For example, in one aspect LEDs 44 can comprise a combination of blue GaN based LEDs 44 and red AlInGaP LEDs 44. Alternatively, LEDs 44 can comprise all blue GaN based LEDs 44 or all red AlInGaP LEDs 44. LEDs 44 of the same color and/or material system may be used alone or a combination of any suitable color and/or material system is also contemplated herein. In one aspect and without limitation, gaps 48 between outer portion 62 and inner portion 64 can have a width W measuring less than the approximate length, width, and/or thickness values of each individual LED 44 as shown and described with respect to Table 1.
LED package 60 can further comprise one or more mounting pads 66 disposed at intervals about outer portion 62 adjacent edges of LED package 60. Mounting pads 66 can be used for mounting one or more ESD protection devices (not shown). ESD protection devices can comprise any suitable ESD device known in the art, for example only and not limited to a Zener diode, ceramic capacitor, transient voltage suppression (TVS) diode, multilayer varistor, a Shottky diode, and/or a different LED arranged reverse biased to LEDs 44. ESD protection device can be mounted over mounting pad 66 and electrically connected to outer portion 62. Notably, ESD protection devices can be arranged over mounting pads 66 along outermost edges or portions of LED package 60 such that the ESD protection devices will not block and/or absorb a substantial amount of light. Light output and performance of device 60 should, therefore, not become negatively affected by the positioning and/or placement of ESD protection devices.
LED package 60 can further comprise one or more alignment areas 68 and 70 (also known as fiducials) used during application of a solder mask (not shown) over submount. Alignment areas 68 can also be used to help during registration of other steps, such as solder mask patterning. The solder mask can be included on a top surface of submount 42, for example, in areas outside inner and outer portions 62 and 64 that are not illustrated in a cross-hatch pattern. Solder masks can be applied for protecting against solder materials depositing in undesired areas, which can result in damage to the areas or result in electrical shorting. Solder masks can serve as insulating and protective material that can reduce or prevent such dangers. Solder masks can also improve brightness by reflecting light from surfaces of LED packages described herein, and may be coated over all exposed surfaces of the AlN submount 42. Alignment areas 68 and 70 can provide for alignment during fabrication of package 60 and can also allow for alignment when mounted in place by an end user.
One or more conductive vias 76 can extend internally through submount 42 between electrical contact 56 and conductive material 46 as indicated by the phantom lines. Conductive vias 76 can extend between electrical contact 56 and outer and/or inner portions 62 and 64 (
Package 60 can also comprise a protective layer 82 covering top surface of submount 42 between lens 58 and one or more edges of submount 42. Layer 82 can provide additional protection to the conductive material 46 and LEDs 44 disposed on the top surface to reduce damage and/or contamination such as grease or debris during subsequent processing steps and use. For example, protective layer 82 can also protect the one or more areas of conductive material 42 and/or reflective material 72 from peeling or lifting during processing. Protective layer 82 can be formed during formation of lens 58 and can comprise the same material as lens 58. It is understood, however, that package 60 can also be provided without protective layer 82. Lens 58 can also withstand certain sheer forces before being displaced from submount 42. In one embodiment, lens 58 can withstand approximately 1 kilogram (kg) or more of sheer force. Embodiments of package 60 using silicones that are harder after curing and have a higher durometer reading, such as Shore A 70 or higher, in molding lens 58 may tend to better withstand sheer forces. Properties such as high adhesion and high tensile strength can also contribute to the ability of lens 58 to withstand sheer forces. It is understood that the lens arrangement of LED package 60 can easily be adapted for use with secondary lens or optics that can be included over lens 58 by the end user to facilitate beam shaping. These secondary lenses are generally known in the art, with many of them being commercially available.
As described above, in conventional packages, heat typically does not spread efficiently into the submount, particularly those made of materials such as Al2O3 or ceramic. In some embodiments, when an LED is provided on an mounting portion or pad that extends generally only under the LED, heat does not spread through most of the submount, and is generally concentrated to the area just below the LED. This can cause overheating of the LED which can limit the operating power level for the LED package. Thus, typical prior art packages use thick Cu traces or components to further dissipate and/or spread heat through the device and away from the LEDs 44. However, packages 40 and 60 can have improved thermal resistance in part by using an AlN submount 42 which can dissipate approximately 10 times more heat than Al2O3 (and maybe even greater than 10 times more heat). This can also allow LEDs to run cooler, which does not degrade or affect optical properties. Thus, thick Cu traces or layers of conductive material become unnecessary. For example, in one aspect, AlN spreads heat so well that the difference between no Cu metal and 100 μm of Cu metal is only about 0.4° C./W (as compared to about 7° C./W for Al2O3). Given such a small temperature difference, and other confounding factors, there is no degradation in optical properties by using thin metal, which is advantageous.
The improved, lower thermal resistance of packages 40 and 60 can lead to lower operating temperatures for the LED by allowing quicker heat dissipation therefrom. Such lower thermal resistance can thus lead to greater lumen performance of the attached LED(s), a greater lifetime for the LED(s), and greater device reliability. As described further below,
Still referring to
The size of submount 42 and package 60 can vary depending on different factors, such as, for example, the size of LED(s) 44. Submount 42 can comprise a thickness of approximately 0.5 millimeters (mm) as measured between top and bottom surfaces of submount 42. Thus, gap 48 can comprise a width W ranging from approximately 2 to 10% of submount 42 thickness (calculated based on gap width W ranging from 10 to 50 μm) and can be less than 2% of submount 42 thickness where gap 48 width is finer (i.e., thinner) than 10 μm. Submount 42 can comprise any suitable shape, for example and not limited to a square, rectangle, or circular shape. In one aspect, submount 42 can comprise a slightly rectangular shape having a length of approximately 13.15 mm and a width of approximately 12.15 mm. However, it is further understood that submount 42 and outer perimeter of package 60 can comprise other shapes, as viewed from above, including circular, rectangular or other multi-sided shapes.
Referring again to
Conventional packages 92 comprise an average luminous flux of approximately 1,143 lumens at 250 mA. Ninety-five percent (95%) of the packages tested exhibited a luminous flux between 1,114 and 1,172 lumens at 250 mA. Thus, even the brightest conventional packages, those measuring in the top 95% were dimmer than the average luminous flu (for packages using AlN either alone or in combination with thin metal. For example, packages which use AlN submounts 94 alone had an increased luminous flux over conventional packages 92 because the thermal resistance is lower. Packages using AlN submounts 94 comprise an average luminous flux of approximately 1,232 lumens at 250 mA with 95% of the packages exhibiting between approximately 1,225 and 1,239 lumens. Packages which use AlN submounts combined with thin metal 96 comprise an average luminous flux of approximately 1,253 lumens at 250 mA with 95% of the packages exhibiting between approximately 1,245 and 1,262 lumens at 250 mA. All values were rounded to the nearest whole integer value. Thus, packages which use AlN and thin metal can measure approximately 1.7% brighter on average than packages using AlN alone and can measure approximately 8.8% brighter on average than conventional packages. Such results are unexpected in light of conventional wisdom which required thicker conductive material and/or Cu traces.
As stated above, LED packages as described above used with at least one LED can utilize thin metal components and can have a reduced thermal resistance or high thermal conductivity as compared to conventional LED packages. Thin metal components can comprise areas of Cu having a thickness of approximately 3-5 and up to less than approximately 50 μm in thickness. This can significantly lower the cost of manufacturing LED packages disclosed herein by reducing the amount of processing time and cost of Cu. In addition, the thin metal has advantageously shrinks gap widths and depths significantly due to an improved aspect ratio of the Cu. There is no reduction in performance over time due to the proper utilization of high conductively ceramic such as AlN. In fact, optical performance and brightness of LED packages disclosed herein has been shown to become improved. Embodiments of the present disclosure shown in the drawings and described above are exemplary of numerous embodiments that can be made within the scope of the appended claims. It is contemplated that the configurations of LED packages and methods with thin metal components and high thermal conductivity can comprise numerous configurations of single and multi-LED arrays other than those specifically disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4939426 | Menard | Jul 1990 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5200022 | Kong et al. | Apr 1993 | A |
5210051 | Carter | May 1993 | A |
5334916 | Noguchi | Aug 1994 | A |
RE34861 | Robert et al. | Feb 1995 | E |
5393993 | Edmond et al. | Feb 1995 | A |
5523589 | Edmond et al. | Jun 1996 | A |
5847340 | Godesa | Dec 1998 | A |
5929568 | Eggers | Jul 1999 | A |
6362525 | Rahim | Mar 2002 | B1 |
6385226 | McMinn et al. | May 2002 | B2 |
6441558 | Muthu et al. | Aug 2002 | B1 |
6498440 | Stam et al. | Dec 2002 | B2 |
6531328 | Chen | Mar 2003 | B1 |
6611001 | Cappuzzo et al. | Aug 2003 | B2 |
6617795 | Bruning | Sep 2003 | B2 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6697130 | Weindorf et al. | Feb 2004 | B2 |
6753661 | Muthu et al. | Jun 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6864641 | Dygert | Mar 2005 | B2 |
6885035 | Bhat et al. | Apr 2005 | B2 |
6998594 | Gaines et al. | Feb 2006 | B2 |
7038399 | Lys et al. | May 2006 | B2 |
7067995 | Gunter et al. | Jun 2006 | B2 |
7084935 | Mandler et al. | Aug 2006 | B2 |
7091874 | Smithson | Aug 2006 | B2 |
7213940 | Van et al. | May 2007 | B1 |
7233831 | Blackwell | Jun 2007 | B2 |
7238898 | Czarnecki | Jul 2007 | B1 |
7245089 | Yang | Jul 2007 | B2 |
7291866 | Oshio et al. | Nov 2007 | B2 |
7352138 | Lys et al. | Apr 2008 | B2 |
7358679 | Lys et al. | Apr 2008 | B2 |
7365371 | Andrews | Apr 2008 | B2 |
7432668 | Zwanenburg et al. | Oct 2008 | B2 |
7515128 | Dowling | Apr 2009 | B2 |
7569987 | Naitou | Aug 2009 | B2 |
7655957 | Loh et al. | Feb 2010 | B2 |
7772757 | Kane et al. | Aug 2010 | B2 |
7808013 | Mendendorp, Jr. | Oct 2010 | B2 |
7808189 | Hollnberger | Oct 2010 | B2 |
7812553 | Kang et al. | Oct 2010 | B2 |
7821194 | Negley et al. | Oct 2010 | B2 |
7897980 | Yuan | Mar 2011 | B2 |
8044612 | Prendergast | Oct 2011 | B2 |
8058088 | Cannon | Nov 2011 | B2 |
D650343 | Andrews | Dec 2011 | S |
8174212 | Tziony | May 2012 | B2 |
8212275 | Yamada | Jul 2012 | B2 |
8278846 | Roberts | Oct 2012 | B2 |
8299715 | Philippbar | Oct 2012 | B2 |
8333631 | Emerson | Dec 2012 | B2 |
8354684 | West | Jan 2013 | B2 |
8405318 | Hatakenaka | Mar 2013 | B2 |
8410371 | Andrews | Apr 2013 | B2 |
8461613 | Chou et al. | Jun 2013 | B2 |
8471495 | Muguruma | Jun 2013 | B2 |
8507786 | Wieting | Aug 2013 | B1 |
8556438 | McKenzie | Oct 2013 | B2 |
8587205 | Ter Weeme et al. | Nov 2013 | B2 |
8593481 | Morgenbrod | Nov 2013 | B2 |
8610134 | Andrews | Dec 2013 | B2 |
8664892 | Radermacher | Mar 2014 | B2 |
8692799 | Landry | Apr 2014 | B1 |
8729589 | Hussell et al. | May 2014 | B2 |
8803201 | Andrews | Aug 2014 | B2 |
8835952 | Andrews | Sep 2014 | B2 |
8937557 | Loveland | Jan 2015 | B2 |
9155172 | Baragona | Oct 2015 | B2 |
9192013 | van de Ven | Nov 2015 | B1 |
9194567 | Hussell et al. | Nov 2015 | B2 |
D753612 | Hussell | Apr 2016 | S |
9538590 | Hussell | Jan 2017 | B2 |
20010032985 | Bhat et al. | Oct 2001 | A1 |
20020047624 | Stam et al. | Apr 2002 | A1 |
20030038295 | Koda | Feb 2003 | A1 |
20040065894 | Hashimoto | Apr 2004 | A1 |
20040079957 | Andrews et al. | Apr 2004 | A1 |
20040135156 | Takenaka | Jul 2004 | A1 |
20040169466 | Suehiro et al. | Sep 2004 | A1 |
20040245946 | Halter | Dec 2004 | A1 |
20050051789 | Negley et al. | Mar 2005 | A1 |
20050127381 | Vitta et al. | Jun 2005 | A1 |
20050199884 | Lee | Sep 2005 | A1 |
20050199899 | Lin et al. | Sep 2005 | A1 |
20050280376 | Hamidian et al. | Dec 2005 | A1 |
20060016960 | Morgan et al. | Jan 2006 | A1 |
20060157828 | Sorg | Jul 2006 | A1 |
20060180818 | Nagai et al. | Aug 2006 | A1 |
20060186418 | Edmond et al. | Aug 2006 | A1 |
20060186535 | Baker | Aug 2006 | A1 |
20060226956 | Young et al. | Oct 2006 | A1 |
20060273331 | Lim et al. | Dec 2006 | A1 |
20060278882 | Leung et al. | Dec 2006 | A1 |
20070040512 | Jungwirth et al. | Feb 2007 | A1 |
20070057364 | Wang et al. | Mar 2007 | A1 |
20070080360 | Mirsky | Apr 2007 | A1 |
20070085194 | Mao et al. | Apr 2007 | A1 |
20070115228 | Roberts | May 2007 | A1 |
20070115248 | Roberts et al. | May 2007 | A1 |
20070115662 | Roberts | May 2007 | A1 |
20070139920 | Van de Ven et al. | Jun 2007 | A1 |
20070158668 | Tarsa | Jul 2007 | A1 |
20070170447 | Negley et al. | Jul 2007 | A1 |
20070170454 | Andrews | Jul 2007 | A1 |
20070235751 | Radkov | Oct 2007 | A1 |
20070247089 | Summerland | Oct 2007 | A1 |
20070247855 | Yano | Oct 2007 | A1 |
20070252523 | Maeda et al. | Nov 2007 | A1 |
20070253209 | Loh et al. | Nov 2007 | A1 |
20070263393 | Van de Ven et al. | Nov 2007 | A1 |
20070267983 | Van de Ven et al. | Nov 2007 | A1 |
20080037257 | Bolta | Feb 2008 | A1 |
20080054286 | Loh et al. | Mar 2008 | A1 |
20080062070 | De Oto et al. | Mar 2008 | A1 |
20080136331 | Schmeikal | Jun 2008 | A1 |
20080164484 | Lee | Jul 2008 | A1 |
20080170396 | Yuan et al. | Jul 2008 | A1 |
20080173884 | Chitnis | Jul 2008 | A1 |
20080179602 | Negley et al. | Jul 2008 | A1 |
20080179611 | Chitnis | Jul 2008 | A1 |
20080215279 | Salsbury et al. | Sep 2008 | A1 |
20080258130 | Bergmann et al. | Oct 2008 | A1 |
20080304260 | Van et al. | Dec 2008 | A1 |
20080315214 | Wall, Jr. et al. | Dec 2008 | A1 |
20090079362 | Shteynberg et al. | Mar 2009 | A1 |
20090108281 | Keller | Apr 2009 | A1 |
20090121253 | Abe | May 2009 | A1 |
20090160363 | Negley | Jun 2009 | A1 |
20090184616 | Van de Ven et al. | Jul 2009 | A1 |
20090189529 | Negley et al. | Jul 2009 | A1 |
20090206758 | Kobilke | Aug 2009 | A1 |
20090207111 | Wang et al. | Aug 2009 | A1 |
20090212317 | Kolodin et al. | Aug 2009 | A1 |
20090230409 | Basin | Sep 2009 | A1 |
20090243509 | Barnett et al. | Oct 2009 | A1 |
20090262527 | Chou | Oct 2009 | A1 |
20090273001 | Shum | Nov 2009 | A1 |
20090289169 | Yang et al. | Nov 2009 | A1 |
20100001648 | De Clercq et al. | Jan 2010 | A1 |
20100002440 | Negley et al. | Jan 2010 | A1 |
20100014030 | Lin | Jan 2010 | A1 |
20100102199 | Negley et al. | Apr 2010 | A1 |
20100103660 | Van de Ven et al. | Apr 2010 | A1 |
20100127282 | Harbers et al. | May 2010 | A1 |
20100127283 | Van de Ven et al. | May 2010 | A1 |
20100140751 | Tay | Jun 2010 | A1 |
20100141159 | Shiu et al. | Jun 2010 | A1 |
20100155763 | Donofrio | Jun 2010 | A1 |
20100252851 | Emerson et al. | Oct 2010 | A1 |
20100258819 | Marfeld | Oct 2010 | A1 |
20100259930 | Yan | Oct 2010 | A1 |
20100270567 | Emerson et al. | Oct 2010 | A1 |
20100288536 | Chiang | Nov 2010 | A1 |
20100308738 | Shteynberg et al. | Dec 2010 | A1 |
20110012143 | Yuan et al. | Jan 2011 | A1 |
20110031516 | Basin | Feb 2011 | A1 |
20110037413 | Negley et al. | Feb 2011 | A1 |
20110049558 | Lin | Mar 2011 | A1 |
20110062872 | Jin et al. | Mar 2011 | A1 |
20110068696 | Van et al. | Mar 2011 | A1 |
20110068701 | Van et al. | Mar 2011 | A1 |
20110068702 | Van et al. | Mar 2011 | A1 |
20110084614 | Eisele et al. | Apr 2011 | A1 |
20110090691 | Markle | Apr 2011 | A1 |
20110140150 | Shum | Jun 2011 | A1 |
20110175136 | Lin et al. | Jul 2011 | A1 |
20110186340 | Kuramoto | Aug 2011 | A1 |
20110186874 | Shum | Aug 2011 | A1 |
20110193112 | Inoue | Aug 2011 | A1 |
20110216797 | Watanabe | Sep 2011 | A1 |
20110221330 | Negley et al. | Sep 2011 | A1 |
20110254022 | Sasano | Oct 2011 | A1 |
20110260199 | Andrews | Oct 2011 | A1 |
20110278638 | Lin | Nov 2011 | A1 |
20110287563 | Lin et al. | Nov 2011 | A1 |
20110291114 | Cheng | Dec 2011 | A1 |
20110310033 | Liu | Dec 2011 | A1 |
20120049213 | Chen | Mar 2012 | A1 |
20120049224 | Mizutani | Mar 2012 | A1 |
20120068198 | Andrews | Mar 2012 | A1 |
20120080713 | Agatani | Apr 2012 | A1 |
20120086024 | Andrews | Apr 2012 | A1 |
20120105228 | Loveland et al. | May 2012 | A1 |
20120126257 | Reiherzer | May 2012 | A1 |
20120175643 | West | Jul 2012 | A1 |
20120187430 | West et al. | Jul 2012 | A1 |
20120193649 | Donofrio | Aug 2012 | A1 |
20120193651 | Edmond | Aug 2012 | A1 |
20120193662 | Donofrio et al. | Aug 2012 | A1 |
20120205689 | Welch | Aug 2012 | A1 |
20120205790 | Haga | Aug 2012 | A1 |
20120305949 | Donofrio | Dec 2012 | A1 |
20120306370 | Van et al. | Dec 2012 | A1 |
20120306375 | Van et al. | Dec 2012 | A1 |
20130001618 | Imai | Jan 2013 | A1 |
20130001632 | Imai | Jan 2013 | A1 |
20130001633 | Imai | Jan 2013 | A1 |
20130009183 | Han | Jan 2013 | A1 |
20130020929 | van de Ven | Jan 2013 | A1 |
20130049045 | Lee | Feb 2013 | A1 |
20130052764 | Chen | Feb 2013 | A1 |
20130062640 | Yen et al. | Mar 2013 | A1 |
20130070480 | Griffin | Mar 2013 | A1 |
20130077299 | Hussell | Mar 2013 | A1 |
20130087367 | Imai | Apr 2013 | A1 |
20130088867 | Chung | Apr 2013 | A1 |
20130092960 | Wilcox et al. | Apr 2013 | A1 |
20130134467 | Ooyabu | May 2013 | A1 |
20130141905 | Hussell | Jun 2013 | A1 |
20130161658 | Lin et al. | Jun 2013 | A1 |
20130170208 | Kuwaharada | Jul 2013 | A1 |
20130193453 | Donofrio | Aug 2013 | A1 |
20130221386 | Mo et al. | Aug 2013 | A1 |
20130256710 | Andrews et al. | Oct 2013 | A1 |
20130258658 | Hussell et al. | Oct 2013 | A1 |
20130270581 | Lowes et al. | Oct 2013 | A1 |
20130301257 | Britt et al. | Nov 2013 | A1 |
20130322068 | Clark et al. | Dec 2013 | A1 |
20140017828 | Wu et al. | Jan 2014 | A1 |
20140021493 | Andrews et al. | Jan 2014 | A1 |
20140175466 | de Samber | Jun 2014 | A1 |
20140183568 | Andrews | Jul 2014 | A1 |
20140191655 | Kasakura | Jul 2014 | A1 |
20140209887 | Chang | Jul 2014 | A1 |
20140225152 | Asahi | Aug 2014 | A1 |
20140239316 | Andrews | Aug 2014 | A1 |
20140240974 | Hussell et al. | Aug 2014 | A1 |
20140268780 | Wang | Sep 2014 | A1 |
20140367713 | Zhang | Dec 2014 | A1 |
20150048390 | Imazu | Feb 2015 | A1 |
20160076750 | Lowenthal | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1992365 | Jul 2007 | CN |
101876406 | Nov 2010 | CN |
102044602 | May 2011 | CN |
102148316 | Aug 2011 | CN |
104040741 | Sep 2014 | CN |
104081112 | Mar 2016 | CN |
1670073 | Jun 2006 | EP |
2780955 | Sep 2014 | EP |
2003-192442 | Jul 2003 | JP |
2003273404 | Sep 2003 | JP |
2004-228413 | Aug 2004 | JP |
2005-266117 | Sep 2005 | JP |
2007-227680 | Sep 2007 | JP |
2007-323857 | Dec 2007 | JP |
2009049010 | Mar 2009 | JP |
2009-283829 | Dec 2009 | JP |
10-0699161 | Mar 2007 | KR |
10-2011-0028204 | Mar 2011 | KR |
WO 03096761 | Nov 2003 | WO |
WO 2010012999 | Feb 2010 | WO |
WO 2013074630 | May 2013 | WO |
Entry |
---|
Restriction Requirement for U.S. Appl. No. 13/152,772 dated Sep. 26, 2013. |
Non-Final Office Action for U.S. Appl. No. 13/152,640 dated Jul. 5, 2013. |
Rensselaer Polytechnic Institute, “What is color consistency?”, NLPIP, Lighting Research Center, vol. 8, Issue 1, Oct. 2004, Retrieved from http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisColorConsistency.asp. |
International Search Report for Application No. PCT/US2012/040189 dated Aug. 20, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2012/039984 dated Nov. 30, 2012 |
International Search Report and Written Opinion for Application No. PCT/US2012/064434 dated Jan. 25, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/065016 dated Mar. 29, 2013. |
Non-Final Office Action for U.S. Appl. No. 13/671,089 dated Mar. 29, 2013. |
Cree, Inc., “Cree XLamp MC-E LED,” Product Family Data Sheet, pp. 1-13 (2008). |
Co-pending U.S. Appl. No. 13/152,640, filed Jun. 3, 2011. |
Sutardja, P., “Design for High Quality and Low Cost SSL with Power Factor Correction”, “Marvell Semiconductor Inc.”, 2011. |
Non-Final Office Action for U.S. Appl. No. 13/152,772 dated Mar. 11, 2014. |
Supplemental European Search Report for Application No. 12849022 dated Jun. 9, 2015, This document has not been found in the record. |
Restriction Requirement for U.S. Appl. No. 13/671,089 dated Feb. 7, 2013. |
Ex Parte Quayle Office Action for U.S. Appl. No. 13/671,089 dated Aug. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/671,089 dated Oct. 22, 2013. |
Non-Final Office Action for U.S. Appl. No. 14/189,500 dated Jul. 15, 2014. |
Notice of Allowance for U.S. Appl. No. 14/189,500 dated Jan. 23, 2015. |
Notice of Allowance for U.S. Appl. No. 14/189,500 dated May 14, 2015. |
Notice of Allowance for U.S. Appl. No. 14/189,500 dated Jul. 17, 2015. |
Chinese Office Action for Application No. 201280067045 dated Mar. 7, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2012/063861 dated Mar. 18, 2013. |
Final Office Action for U.S. Appl. No. 13/152,772 dated Oct. 23, 2014. |
Advisory Action for U.S. Appl. No. 13/152,772 dated Apr. 23, 2015. |
Chinese Office Action and Search Report for Application No. 2012800661747 dated Jun. 3, 2015. |
Non-Final Office Action for U.S. Appl. No. 13/152,772 dated May 11, 2016. |
Chinese Notice of Grant for Application No. ZL 2012800661747 dated May 26, 2016. |
Final Rejection for U.S. Appl. No. 13/152,772 dated Nov. 29, 2016. |
Advisory Action with Interview Summary for U.S. Appl. No. 13/152,772 dtaed Apr. 6, 2017. |
Number | Date | Country | |
---|---|---|---|
20130119417 A1 | May 2013 | US |