Managed memory component

Abstract
The present invention provides a system and method for combining a leaded package IC and a semiconductor die using a flex circuitry to reduce footprint for the combination. A leaded IC package is disposed along the obverse side of a flex circuit. In a preferred embodiment, leads of the leaded IC package are configured to allow the lower surface of the body of the leaded IC package to contact the surface of the flex circuitry either directly or indirectly through an adhesive. A semiconductor die is connected to the reverse side of the flex circuit. In one embodiment, the semiconductor die is disposed on the reverse side of the flex while, in an alternative embodiment, the semiconductor die is disposed into a window in the flex circuit to rest directly or indirectly upon the body of the leaded IC package. Module contacts are provided in a variety of configurations. In a preferred embodiment, the leaded IC package is a flash memory and the semiconductor die is a controller.
Description
TECHNICAL FIELD

This invention relates to integrated circuit modules and, in particular, to integrated circuit modules that provide memory and controller in a compact footprint module.


BACKGROUND

A variety of systems and techniques are known for combining integrated circuits in compact modules. Some techniques are suitable for combining packaged integrated circuits while other techniques are suitable for combining semiconductor die. Many systems and techniques employ flex circuitry as a connector between packaged integrated circuits in, for example, stacks of packaged leaded or chip-scale integrated circuits. Other techniques employ flex circuitry to “package” semiconductor die and function as a substitute for packaging.


Within the group of technologies that stack packaged integrated circuits, some techniques are devised for stacking chip-scale packaged devices (CSPs) while other systems and methods are better directed to leaded packages such as those that exhibit a set of leads extending from at least one lateral side of a typically rectangular package.


Integrated circuit devices (ICs) are packaged in both chip-scale (CSP) and leaded packages. However, techniques for stacking CSP devices are typically not optimum for stacking leaded devices, just as techniques for leaded device stacking are typically not suitable for CSP devices. Few technologies are, however, directed toward combining packaged integrated circuits with semiconductor die.


Although CSP devices are gaining market share, in many areas, integrated circuits continue to be packaged in high volumes in leaded packages. For example, the well-known flash memory integrated circuit is typically packaged in a leaded package with fine-pitched leads emergent from one or both sides of the package. A common package for flash memory is the thin small outline package commonly known as the TSOP typified by leads emergent from one or more (typically a pair of opposite sides) lateral sides of the package.


Flash memory devices are gaining wide use in a variety of applications. Typically employed with a controller for protocol adaption, flash memory is employed in solid state memory storage applications that are supplanting disk drive technologies. However, when flash memory is employed with controller logic, the application footprint typically expands to accommodate the multiple devices required to provide a module that is readily compatible with most memory subsystem interface requirements. Consequently, what is needed is a memory module that includes a controller logic and flash memory storage without substantial increases in footprint or thickness.


SUMMARY OF THE INVENTION

The present invention provides a system and method for combining a leaded package IC and a semiconductor die using a flex circuitry to reduce the footprint of the combination. A leaded packaged IC is disposed along an obverse side of a flex circuit. In a preferred embodiment, leads of the leaded packaged IC have a configuration that allows the lower surface of the body of the leaded packaged IC to contact the surface of the flex circuitry either directly or indirectly through an adhesive. A semiconductor die is connected to the reverse side of the flex circuit. In one embodiment, the semiconductor die is disposed on the reverse side of the flex while, in an alternative embodiment, the semiconductor die is disposed into a window in the flex circuit to rest upon the body of the leaded packaged IC either directly or indirectly. Module contacts are provided in a variety of configurations. The leaded packaged IC is preferably a flash memory device and the semiconductor die is preferably a controller.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an exemplar module devised in accordance with a preferred embodiment of the present invention.



FIG. 2 is an enlarged side view of the area marked “A” in FIG. 1 of a module devised in accordance with a preferred embodiment of the present invention.



FIG. 3 depicts an alternative embodiment in which the leads of a leaded packaged IC penetrate the flex circuitry employed in an module in accordance with a preferred embodiment of the present invention.



FIG. 4 depicts an alternative embodiment in accord with the present invention in which lead holes are present in the flex circuitry.



FIG. 5 depicts yet another embodiment in accordance with the present invention in which an area of flex circuitry is deflected.



FIG. 6 depicts yet another embodiment for connecting the leaded packaged IC to the flex circuitry in accordance with the present invention.



FIG. 7 depicts an alternative embodiment of the present invention in which flex circuitry has distal ends that contact an inner side of the leads of the leaded packaged IC.



FIG. 8 is a perspective view of a module devised in accordance with an embodiment of the present invention.



FIG. 9 is a plan view of another side of a circuit module in accordance with an embodiment of the present invention.



FIG. 10 depicts a major side of a flex circuitry as employed in a preferred embodiment of the present invention.



FIG. 11 depicts a second major side of a flex circuitry as employed in a preferred embodiment of the present invention.



FIG. 12 depicts an enlarged portion of a module devised in accordance with a preferred embodiment.



FIG. 13 depicts an exemplar module devised in accordance with an alternative embodiment.



FIG. 14 is an enlarged depiction of a portion of an exemplar module identified in FIG. 13 with the letter “B”.



FIG. 15 depicts recessed semiconductor die and illustrates the plural die pads and plural flex pads as well as wire bonds that connect the die to the flex circuitry in a preferred embodiment.



FIG. 16 is an enlarged depiction showing a cross-sectional view along the line identified as C-C in earlier FIG. 13.



FIG. 17 depicts a flex circuitry prepared for use with an alternative embodiment that recesses semiconductor die in a window in the flex circuitry in accordance with an embodiment of the present invention.



FIG. 18 depicts a flex circuitry prepared for use with a recessed semiconductor die arrangement for an exemplar module in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a side view of an exemplar module 10 devised in accordance with a preferred embodiment of the present invention. Exemplar module 10 is comprised of leaded IC 12 and semiconductor die 14 each connected to flex circuitry 20. In preferred embodiments, leaded IC 12 is a flash memory circuit and semiconductor die 14 is a controller. In a preferred embodiment, semiconductor die 14 is covered by an encapsulate 16 as shown.



FIG. 2 is an enlarged side view of the area marked “A” in FIG. 1 of a module devised in accordance with a preferred embodiment of the present invention. As shown in FIG. 2, leaded packaged IC 12 has upper side 29 and lower side 25 and is connected to flex circuitry 20 through leads 24 that are connected to leaded circuit pads 21 along one side of flex circuitry 20 which is identified as side 11 in later views. Leads 24 typically but not always, exhibit feet 36. Later views will show embodiments in which leads 24 do not exhibit feet 36. Leads 24 may be connected to either or both of the sides of flex circuitry 20 as will be later shown.


Preferably an adhesive 33 is used between body 27 of leaded IC 12 and flex circuit 20. Module contacts 18 which comprise module array 18A are, in the depicted embodiment, pads such as those found in land grid array (LGA) but other types of module contacts 18 may be employed in embodiments of the present invention.


Body 27 of leaded packaged IC 12 has a lower surface 25 that is in contact with flex circuitry 20. In this disclosure, “contact” between the lower surface 25 of leaded packaged IC 12 and the surface of flex circuit 20 includes not only direct contact between lower surface or side 25 of leaded packaged IC 12 and the flex circuitry but shall include those instances where intermediate materials such as depicted adhesive 33 is used between the respective leaded packaged IC and flex circuitry. As shown in FIGS. 1 and 2, leaded packaged IC 12 exhibits lateral sides S1 and S2 which, as those of skill will recognize, may be in the character of edges or sides and need not be perpendicular in aspect to the upper and lower surfaces 29 and 25, respectively. Leads 24 are emergent from sides S1 and S2 in the depicted leaded packaged IC 12 but those of skill will note that some leaded packaged ICs may have leads emergent from only one side or more than two sides. In the embodiment depicted in FIG. 2, leads 24 are configured within space SP defined by planes PL and PU which are defined by lower and upper surfaces 25 and 29, respectively, of the leaded IC to allow the lower surface 25 of the leaded packaged IC 12 to be in contact with the flex circuitry 20 (either directly or indirectly) when leaded packaged IC 12 is connected to the flex.


To realize the contact relationship between the lower side 25 of the leaded packaged IC 12 and the flex circuitry, leads 24 may be modified or reconfigured. This is preferably performed before mounting of the leaded IC to flex circuit 20. Those of skill will note that a preferred method for reconfiguration of leads 24, if desired, comprises use of a jig to fix the position of body 27 of the leaded packaged IC and, preferably, support the lead at the point of emergence from the body at sides S1 and S2 before deflection of the respective leads toward the upper plane PU to confine leads 24 to the space between planes PL and PU of the leaded packaged IC. This is because typically, leaded packaged ICs such as TSOPs are configured with leads that extend beyond the lower plane PL. In order for the lower surface 25 of the respective leaded packaged ICs to contact (either directly or through an adhesive or thermal intermediary, for example) the respective surfaces of the flex circuit, the leads 24 may need to be reconfigured.


Other configurations of leads 24 may not, however, require or exhibit configurations in which the lead is within space SP and yet lower surface 25 still exhibits contact with flex circuitry 20. For example, in FIG. 3, leaded packaged IC 12 exhibits a straight lead 24 that penetrates flex circuitry 20 and is connected to both sides 9 and 11 of flex circuitry 20 with solder 35.



FIG. 4 depicts an alternative embodiment in accord with the present invention in which flex circuitry 20 exhibits lead holes 22 through which leads 24 project so that leads 24 may be connected to leaded IC pads 21 which, in this instance, are on side 9 of flex circuitry 20 rather than side 11 as depicted in several other Figs. The result is that lower major surface 25 of leaded packaged IC 12 contacts flex circuitry 20.



FIG. 5 depicts yet another technique for connection of leaded packaged IC 12 to flex circuitry 20 while realizing contact between lower surface 25 and flex circuitry 20. As shown in FIG. 5, in this embodiment, an area 20CA of flex circuitry 20 is deflected to allow leads 24 and in particular, feet 36 of leads 24 to be connected to leaded IC pads 21 on side 11 of flex circuitry 20. Again the result is that lower surface 25 of leaded package IC 12 is in contact with flex circuitry 20.



FIG. 6 depicts yet another technique for connecting leaded packaged IC 12 to flex circuitry 20. In the embodiment depicted in FIG. 6, leads 24 penetrate deflected area 20CA of flex circuitry 20 which, in this embodiment, is deflected toward the body 27 of leaded packaged IC 12 rather than away from leaded packaged IC 12 as shown in earlier FIG. 5. In this depiction, leads 24 are connected to both sides 9 and 11 of flex circuitry 20. Leads 24 are also parallel with lower major surface 25 as shown. Lower major surface 25 of leaded packaged IC is in contact with flex circuitry 20 and, in particular, with side 11 of flex circuitry 20.



FIG. 7 depicts an alternative embodiment of the present invention in which flex circuitry 20 has distal ends 20D that are deflected to contact inner side 24I of leads 24 which has, as shown, an inner side 24I and an external side 24X. Thus, flex circuitry 20 accomodates the configuration of leads 24 and lower surface 25 is in contact with flex circuitry 20.



FIG. 8 is a perspective view of a module devised in accordance with an embodiment of the present invention. As depicted, semiconductor die 14 is connected through wire bonds 32 to flex circuit 20. As will be later shown, wire bonds 32 are attached to flex pads 20P along surface 9 of flex circuitry 20. Concurrently, leaded packaged IC 12 is connected to the other major side of flex circuitry 20 through leads 24.



FIG. 9 is a side view of an exemplar module 10 devised in accordance with a preferred embodiment of the present invention. Die 14 is shown encapsulated by encapsulate 16. A variety of methods can be employed to effectuate the encapsulation of die 14 and such methods are known to those of skill in the art.



FIG. 10 depicts a major side 11 of flex circuitry 20 as employed in a preferred embodiment of the present invention. The plurality of leaded IC pads 21 shown along side 11 of flex circuitry 20 provide contact sites for the leads 24 of leaded IC 12. As earlier shown, leaded IC pads 21 need not be on side 11 of flex circuitry 20 if leads 24 reach side 9 of flex circuitry 20 as shown in an earlier Fig. Flex circuitry 20 is preferably comprised from one or more conductive layers supported by one or more flexible substrate layers. The entirety of flex circuitry 20 may be flexible or, as those of skill in the art will recognize, the flexible circuitry may be made flexible in certain areas and rigid in other areas such as those areas where leaded packaged IC 12 is mounted, for example.



FIG. 11 depicts major surface 9 of flex circuit 20 illustrating module contacts array 18A and module contacts 18 as well as mounted semiconductor die 14 wire-bond connected to the plurality 20A of flex pads 20P. In FIG. 11, semiconductor die 14 is depicted as being mounted on the surface of flex circuitry 20. A later alternative embodiment is an example of an embodiment in which semiconductor die 14 is inset into a window in flex circuitry 20.



FIG. 12 depicts an enlarged portion of a module 10 devised in accordance with a preferred embodiment. In the depicted module of FIG. 12, module contacts 18 are illustrated as the commonly understood BGA type contacts often found along the surfaces of CSP devices. Other types of contacts may be employed as module contacts 18.



FIG. 13 depicts a module 10 devised in accordance with an alternative embodiment in which semiconductor die 14 is set into a window in flex circuitry 20. In the earlier depicted embodiments, semiconductor die 14 resided on flex circuit 20. In the depicted embodiment of an alternative embodiment, flex circuitry 20 has a window into which is set semiconductor die 14. Thus, in such embodiments, die 14 is not on the surface of flexible circuitry 20 and although it may be connected to either side of flexible circuitry 20, it is shown in enlarged detail in FIG. 16, for example, as being wire-bond connected to the upper surface of flexible circuitry 20 which corresponds to earlier identified major surface 9 of flexible circuitry 20. Consequently, semiconductor die 14 is shown with a lower profile than depicted in earlier depictions of this disclosure. In some Figs., a semiconductor die that is inset into a window in flex circuitry 20 will be identified as die 14R which is, as shown, preferably encapsulated as shown to protect, for example, the wire bonds and the die.


As those of skill will recognize, many techniques exist for connecting the leads of leaded packaged IC 12 to leaded pads 21. Such techniques include, as a non-limiting example, use of solder such as solder 35 shown in several of the preceding Figs., or other conductive attachment. Other forms of bonding other than solder between leaded IC pads 21 and leads 24 may also be employed (such as brazing, welding, tab bonding, or ultrasonic bonding, just as examples) but soldering techniques are well understood and adapted for use in large scale manufacturing.



FIG. 14 is an enlarged depiction of a portion of module 10 identified in FIG. 13 with the letter “B”. Inset semiconductor die 14R is identified in encapsulate 16 while leaded packaged IC 12 is shown connected to flex circuitry 20 through leads 24 connected to leaded circuit pads 21 of flexible circuitry 20 while both the upper and lower surfaces 29 and 25, respectively, of body 27 of leaded packaged IC 12 are preferably connected to flexible circuitry 20 through adhesive 33. The identification of “upper” and “lower” surfaces or sides of leaded packaged IC 12 is with reference to the normal orientation of the device and typically employed, but such oriented terms are not with reference to a relative “up” or “down” in the Figs. Those of skill will understand, therefore, that the identified upper side 29 is actually seen as being below the lower side 25 of leaded packaged IC 12 in the depiction of, for example, FIG. 14 when that depiction is viewed.



FIG. 15 depicts recessed semiconductor die 14R and illustrates the plural die pads 14P and plural flex pads 20P and the wire bonds 32 that connect die 14R to flex circuit 20. Die attach 14DA is also shown. As those of skill understand, die attach 14DA is typically an adhesive.



FIG. 16 is an enlarged depiction showing a cross-sectional view along the line identified as C-C in earlier FIG. 13. Body 27 of leaded packaged IC 12 is shown supporting recessed semiconductor die 14R which is attached to body 27 through die attach shown as 14DA. Exemplar die pad 14P is connected to flex pad 20P of flexible circuitry 20 through wire bond 32. The entire connection area is preferable encapsulated with encapsulate 16.



FIG. 17 depicts flex circuitry 20 prepared for use with an alternative embodiment that recesses semiconductor die 14 in a window W in the flex circuitry. Such constructions result in lower profiles for modules 10. Leaded pads 21 are shown along side 11 of flexible circuitry 20.



FIG. 18 depicts flex circuitry 20 prepared for use with a recessed semiconductor die arrangement for module 10. Flexible circuitry pads 20P along side 9 and array 18A of module contacts 18 are shown. Window W provides the space through which die 14 is disposed when a module 10 in accordance with an alternative embodiment is constructed. For sake of clarity, when semiconductor die 14 is recessed in a module 10 it is identified as die 14R, while in those instances where die 14 resides on flex circuitry 20, it is identified as semiconductor die 14. Those of skill will, however, recognize that a die can be used in either mode, recessed in a window W of flex circuitry 20 or on the surface of flex circuitry 20.


The present invention may also be employed with circuitry other than or in addition to memory such as the flash memory depicted in a number of the present Figs. Other exemplar types of circuitry that may be aggregated in accordance with embodiments of the invention include, just as non-limiting examples, DRAMs, FPGAs, and system stacks that include logic and memory as well as communications or graphics devices. It should be noted, therefore, that the depicted profile for leaded packaged IC 12 is not a limitation and that leaded packaged IC 12 does not have to be a TSOP or TSOP-like and the package employed may have more than one die or leads emergent from one, two, three or all sides of the respective package body. For example, a module 10 in accordance with embodiments of the present invention may employ a leaded packaged IC 12 that has more than one die within the package and may exhibit leads emergent from only one side of the package.


It will be seen by those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions, and alternations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.

Claims
  • 1. A circuit module comprising: flex circuitry having first and second sides, the flex circuitry having a plurality of leaded IC pads adapted for connection of a leaded packaged IC, the second side having an array of module contacts and plural flex pads;a semiconductor die disposed on the second side of the flex circuitry, the semiconductor die being connected to the flex circuitry;a leaded packaged IC having a body and upper and lower major surfaces, plural peripheral sides, and leads emergent from at least a first one of the plural peripheral sides of the leaded packaged IC, the leads being connected to the plurality of leaded IC pads of the flex circuitry and the lower major surface of the leaded packaged IC contacting the first side of the flex circuitry, the flex circuitry being folded about the body of the leaded packaged IC to place the semiconductor die closer to the lower major side than the upper major side of the leaded packaged IC.
  • 2. The circuit module of claim 1 in which the leads are connected to the leaded IC pads which are disposed on the first side of the flex circuitry.
  • 3. The circuit module of claim 1 in which the leads are connected to the leaded IC pads which are disposed on the second side of the flex circuitry.
  • 4. The circuit module of claim 1 in which the leads pass through the flex circuitry.
  • 5. The circuit module of claim 1 in which the leads are parallel to the lower major surface of the leaded packaged IC.
  • 6. The circuit module of claim 1 in which the leads pass through lead holes in the flex circuitry to contact the leaded IC pads which are disposed on the second side of the flex circuitry.
  • 7. The circuit module of claim 1 in which the flex circuitry further comprises a deflected area that bears the plurality of leaded IC pads.
  • 8. The circuit module of claim 1 in which the flex circuitry further comprises a deflected area that is deflected toward the body of the leaded packaged IC.
  • 9. The circuit module of claim 1 in which the flex circuitry has at least one distal end that contacts an inner side of one of the leads of the leaded packaged IC.
  • 10. The circuit module of claim 1 in which an adhesive is disposed between the lower major surface of the leaded packaged IC and the first side of the flex circuitry.
  • 11. The circuit module of claim 1 in which the leads of the leaded packaged IC have been configured to be confined to a space defined by first and second planes defined by the upper and lower major surfaces of the leaded packaged IC.
  • 12. The circuit module of claim 1 in which the leaded packaged IC is a flash memory device.
  • 13. The circuit module of claim 1 in which the semiconductor die is a controller.
  • 14. The circuit module of claim 1 in which the leaded packaged IC is flash memory circuit in TSOP packaging.
  • 15. The circuit module of claim 1 in which the connection of the semiconductor die with the flex circuitry is realized with wire bonds.
  • 16. The circuit module of claim 1 in which the semiconductor die is encapsulated.
  • 17. The circuit module of claim 1 in which the connection of the semiconductor die with the flex circuitry is realized with wire bonds between die pads of the semiconductor die and the flex pads of the flex circuitry.
  • 18. A circuit module comprising: flex circuitry having first and second sides, the first side having a plurality of leaded IC pads adapted for connection of a leaded packaged IC, the second side having an array of module contacts and plural flex pads;a semiconductor die disposed on the flex circuitry and connected to the flex pads; anda leaded packaged IC having a body and upper and lower major surfaces, plural peripheral sides, and leads emergent from at least a first one of the plural peripheral sides of the leaded packaged IC, the leads being connected to the plurality of leaded IC pads of the first side of the flex circuitry and configured to be confined to a space defined by first and second planes defined by the upper and lower major surfaces of the leaded packaged IC so that the lower major surface of the leaded packaged IC contacts the first side of the flex circuitry, the flex circuitry being folded about the body of the leaded packaged IC to place the flex circuitry bearing the semiconductor die over and proximal to the lower major surface of the leaded packaged IC.
  • 19. The circuit module of claim 18 in which the semiconductor die is a controller.
  • 20. The circuit module of claim 18 in which the leaded packaged IC is a flash memory device.
  • 21. The circuit module of claim 18 in which the contact of the lower major surface of the leaded packaged IC and the semiconductor die is effectuated with an adhesive disposed between the lower major surface of the leaded packaged IC and the first side of the flex circuitry.
  • 22. The circuit module of claim 18 in which the semiconductor die has a face with semiconductor die pads and that face is turned away from the lower major surface of the leaded packaged IC.
  • 23. The circuit module of claim 18 in which there is adhesive between the upper and lower major surfaces of the leaded packaged IC and the flex circuitry.
  • 24. The circuit module of claim 18 in which the leaded packaged IC is a flash memory device and the semiconductor die is a controller.
  • 25. The circuit module of claim 18 in which the semiconductor die is encapsulated.
  • 26. The circuit module of claim 18 in which the semiconductor die is attached to the flex pads with wire bonds.
  • 27. The circuit module of claim 26 in which the wire bonds are protected by encapsulate.
RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 11/330,307, filed Jan. 11, 2006, pending.

US Referenced Citations (405)
Number Name Date Kind
3436604 Hyltin Apr 1969 A
3654394 Gordon Apr 1972 A
3704455 Scarbrough Nov 1972 A
3746934 Stein Jul 1973 A
3766439 Isaacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
3983547 Almasi Sep 1976 A
4288841 Gogal Sep 1981 A
4398235 Lutz et al. Aug 1983 A
4406508 Sadigh-Behzadi Sep 1983 A
4437235 McIver Mar 1984 A
4513368 Houseman Apr 1985 A
4567543 Miniet Jan 1986 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4656605 Clayton Apr 1987 A
4682207 Akasaki et al. Jul 1987 A
4696525 Coller et al. Sep 1987 A
4709300 Landis Nov 1987 A
4733461 Nakano Mar 1988 A
4758875 Fujisawa et al. Jul 1988 A
4763188 Johnson Aug 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4850892 Clayton et al. Jul 1989 A
4862249 Carlson Aug 1989 A
4884237 Mueller et al. Nov 1989 A
4891789 Quattrini et al. Jan 1990 A
4894706 Sato et al. Jan 1990 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4972580 Nakamura Nov 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
5012323 Farnworth Apr 1991 A
5016138 Woodman May 1991 A
5025306 Johnson et al. Jun 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5050039 Edfors Sep 1991 A
5053853 Haj-Ali-Ahmadi et al. Oct 1991 A
5065277 Davidson Nov 1991 A
5081067 Shimizu et al. Jan 1992 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5117282 Salatino May 1992 A
5122862 Kajihara et al. Jun 1992 A
5138430 Gow et al. Aug 1992 A
5140405 King et al. Aug 1992 A
5159434 Kohno et al. Oct 1992 A
5159535 Desai et al. Oct 1992 A
5191404 Wu et al. Mar 1993 A
5198888 Sugano et al. Mar 1993 A
5198965 Curtis et al. Mar 1993 A
5208729 Cipolla et al. May 1993 A
5219794 Satoh et al. Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229916 Frankeny et al. Jul 1993 A
5229917 Harris et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewiez et al. Aug 1993 A
5243133 Engle et al. Sep 1993 A
5247423 Lin et al. Sep 1993 A
5252857 Kane et al. Oct 1993 A
5253010 Oku et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5262927 Chia et al. Nov 1993 A
5268815 Cipolla et al. Dec 1993 A
5276418 Klosowiak et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281852 Normington Jan 1994 A
5289062 Wyland Feb 1994 A
5289346 Carey et al. Feb 1994 A
5311401 Gates et al. May 1994 A
5313096 Eide May 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
5343075 Nishino Aug 1994 A
5345205 Kornrumpf Sep 1994 A
5347428 Carson et al. Sep 1994 A
5361228 Adachi et al. Nov 1994 A
5375041 McMahon Dec 1994 A
5377077 Burns Dec 1994 A
5386341 Olson et al. Jan 1995 A
5390844 Distefano et al. Feb 1995 A
5394010 Tazawa et al. Feb 1995 A
5394300 Yoshimura Feb 1995 A
5394303 Yamaji Feb 1995 A
5397916 Normington Mar 1995 A
5400003 Kledzik Mar 1995 A
5402006 O'Donley Mar 1995 A
5420751 Burns May 1995 A
5422435 Takiar et al. Jun 1995 A
5428190 Stopperan Jun 1995 A
5438224 Papageorge et al. Aug 1995 A
5446620 Burns et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5455740 Burns Oct 1995 A
5475920 Burns et al. Dec 1995 A
5477082 Buckley et al. Dec 1995 A
5484959 Burns Jan 1996 A
5491612 Nicewarner et al. Feb 1996 A
5499160 Burns Mar 1996 A
5502333 Bertin et al. Mar 1996 A
5514907 Moshayedi May 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5548091 DiStefano et al. Aug 1996 A
5552631 McCormick Sep 1996 A
5561591 Burns Oct 1996 A
5566051 Burns Oct 1996 A
5572065 Burns Nov 1996 A
5579207 Hayden et al. Nov 1996 A
5588205 Roane Dec 1996 A
5592364 Roane Jan 1997 A
5594275 Kwon et al. Jan 1997 A
5600541 Bone et al. Feb 1997 A
5612570 Eide et al. Mar 1997 A
5625221 Kim et al. Apr 1997 A
5631807 Griffin May 1997 A
5642055 Difrancesco Jun 1997 A
5644161 Burns Jul 1997 A
5646446 Nicewarner et al. Jul 1997 A
5654877 Burns Aug 1997 A
5657537 Saia et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5677566 King et al. Oct 1997 A
5677569 Choi et al. Oct 1997 A
5714802 Cloud et al. Feb 1998 A
5715144 Ameen et al. Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5744862 Ishii Apr 1998 A
5751553 Clayton May 1998 A
5754409 Smith May 1998 A
5764497 Mizumo Jun 1998 A
5776797 Nicewarner et al. Jul 1998 A
5778522 Burns Jul 1998 A
5778552 LeGuin Jul 1998 A
5783464 Burns Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5801437 Burns Sep 1998 A
5801439 Fujisawa et al. Sep 1998 A
5804870 Burns Sep 1998 A
5805422 Otake et al. Sep 1998 A
5805424 Purinton Sep 1998 A
5811879 Akram Sep 1998 A
5835988 Ishii Nov 1998 A
5844168 Schueller et al. Dec 1998 A
5861666 Bellaar Jan 1999 A
5869353 Levy et al. Feb 1999 A
5899705 Akram May 1999 A
5917242 Ball Jun 1999 A
5917709 Johnson et al. Jun 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5949657 Karabatsos Sep 1999 A
5953214 Dranchak et al. Sep 1999 A
5953215 Karabatsos Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bolleson Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5977640 Bertin et al. Nov 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6013948 Akram et al. Jan 2000 A
6014316 Eide Jan 2000 A
6021048 Smith Feb 2000 A
6025642 Burns Feb 2000 A
6028352 Eide Feb 2000 A
6028358 Suzuki Feb 2000 A
6028365 Akram et al. Feb 2000 A
6030856 DiStefano et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6072233 Corisis et al. Jun 2000 A
6080264 Ball Jun 2000 A
6084293 Ohuchi Jul 2000 A
6084294 Tomita Jul 2000 A
6084778 Malhi Jul 2000 A
6091145 Clayton Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6104089 Akram Aug 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6133640 Leedy Oct 2000 A
6137164 Yew et al. Oct 2000 A
6157541 Hacke Dec 2000 A
6166443 Inaba et al. Dec 2000 A
6172418 Iwase Jan 2001 B1
6172874 Bartilson Jan 2001 B1
6180881 Isaak Jan 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6214641 Akram Apr 2001 B1
6222737 Ross Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6225688 Kim et al. May 2001 B1
6232659 Clayton May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6239496 Asada May 2001 B1
6262476 Vidal Jul 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6265766 Moden Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6268649 Corisis et al. Jul 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6288924 Sugano et al. Sep 2001 B1
6294406 Bertin et al. Sep 2001 B1
6300163 Akram Oct 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6303981 Moden Oct 2001 B1
6303997 Lee Oct 2001 B1
6310392 Burns Oct 2001 B1
6313522 Akram et al. Nov 2001 B1
6313998 Kledzik Nov 2001 B1
6316825 Park et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6329708 Komiyama Dec 2001 B1
6329713 Farquhar et al. Dec 2001 B1
6336262 Dalal et al. Jan 2002 B1
6339254 Venkateshwaran et al. Jan 2002 B1
6351029 Isaak Feb 2002 B1
6360433 Ross Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6392162 Karabatsos May 2002 B1
6392953 Yamada et al. May 2002 B2
6404043 Isaak Jun 2002 B1
6404049 Shibamoto et al. Jun 2002 B1
6410857 Gonya Jun 2002 B1
6414384 Lo et al. Jul 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6428360 Hassanzadeh Aug 2002 B2
6433418 Fujisawa et al. Aug 2002 B1
6437990 Degani et al. Aug 2002 B1
6444490 Bertin et al. Sep 2002 B2
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6462408 Wehrly, Jr. Oct 2002 B1
6462412 Kamei et al. Oct 2002 B2
6462421 Hsu et al. Oct 2002 B1
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6472735 Isaak Oct 2002 B2
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6489178 Coyle et al. Dec 2002 B2
6489687 Hashimoto Dec 2002 B1
6492718 Ohmori Dec 2002 B2
6504104 Hacke et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514793 Isaak Feb 2003 B2
6514794 Haba et al. Feb 2003 B2
6521530 Peters et al. Feb 2003 B2
6522018 Tay et al. Feb 2003 B1
6522022 Murayama Feb 2003 B2
6525413 Cloud et al. Feb 2003 B1
6528870 Fukatsu et al. Mar 2003 B2
6531337 Akram et al. Mar 2003 B1
6531338 Akram et al. Mar 2003 B2
6532162 Schoenborn Mar 2003 B2
6552910 Moon et al. Apr 2003 B1
6560117 Moon May 2003 B2
6563217 Corisis et al. May 2003 B2
6572387 Burns et al. Jun 2003 B2
6573593 Syri et al. Jun 2003 B1
6576992 Cady et al. Jun 2003 B1
6583502 Lee et al. Jun 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6603198 Akram et al. Aug 2003 B2
6608763 Burns et al. Aug 2003 B1
6614664 Lee Sep 2003 B2
6620651 He et al. Sep 2003 B2
6627984 Bruce et al. Sep 2003 B2
6646335 Emoto Nov 2003 B2
6646936 Hamamatsu Nov 2003 B2
6650588 Yamagata Nov 2003 B2
6657134 Spielberger et al. Dec 2003 B2
6660561 Forthun Dec 2003 B2
6661092 Shibata et al. Dec 2003 B2
6673651 Ohuchi et al. Jan 2004 B2
6674644 Schulz Jan 2004 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6686656 Koh et al. Feb 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6707684 Andric et al. Mar 2004 B1
6710437 Takahashi et al. Mar 2004 B2
6712226 Williams, Jr. Mar 2004 B1
6720652 Akram et al. Apr 2004 B2
6726346 Shoji Apr 2004 B2
6737742 Sweterlitsch May 2004 B2
6737891 Karabatsos May 2004 B2
6740981 Hosomi May 2004 B2
6746894 Fee et al. Jun 2004 B2
6756661 Tsuneda et al. Jun 2004 B2
6759737 Seo et al. Jul 2004 B2
6760220 Canter et al. Jul 2004 B2
6765288 Damberg Jul 2004 B2
6768660 Kong et al. Jul 2004 B2
6774475 Blackshear et al. Aug 2004 B2
6777794 Nakajima Aug 2004 B2
6781240 Choi et al. Aug 2004 B2
6788560 Sugano et al. Sep 2004 B2
6798057 Bolkin et al. Sep 2004 B2
6812567 Kim et al. Nov 2004 B2
6815818 Moore et al. Nov 2004 B2
6826066 Kozaru Nov 2004 B2
6833984 Belgacem Dec 2004 B1
6838761 Karnezos Jan 2005 B2
6839266 Garrett et al. Jan 2005 B1
6841868 Akram et al. Jan 2005 B2
6849949 Lyu et al. Feb 2005 B1
6850414 Benisek et al. Feb 2005 B2
6853064 Bolken et al. Feb 2005 B2
6858910 Coyle et al. Feb 2005 B2
6869825 Chiu Mar 2005 B2
6873039 Beroz et al. Mar 2005 B2
6876074 Kim Apr 2005 B2
6878571 Isaak et al. Apr 2005 B2
6884653 Larson Apr 2005 B2
6893897 Sweterlitsch May 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6906416 Karnezos Jun 2005 B2
6908792 Bruce et al. Jun 2005 B2
6910268 Miller Jun 2005 B2
6913949 Pflughaupt et al. Jul 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
6927471 Salmon Aug 2005 B2
6940158 Haba et al. Sep 2005 B2
6940729 Cady et al. Sep 2005 B2
6943454 Gulachenski et al. Sep 2005 B1
6956883 Komoto Oct 2005 B2
6972481 Karnezos Dec 2005 B2
6977440 Pflughaupt et al. Dec 2005 B2
6978538 DiStefano et al. Dec 2005 B2
6989285 Ball Jan 2006 B2
7011981 Kim et al. Mar 2006 B2
7023701 Stocken et al. Apr 2006 B2
7053485 Bang et al. May 2006 B2
7053486 Shizuno May 2006 B2
7057278 Naka et al. Jun 2006 B2
7061088 Karnezos Jun 2006 B2
7061121 Haba Jun 2006 B2
7061122 Kim et al. Jun 2006 B2
7064426 Karnezos Jun 2006 B2
7071547 Kang et al. Jul 2006 B2
7078793 Ruckerbauer et al. Jul 2006 B2
7102221 Miyamoto et al. Sep 2006 B2
7109576 Bolken et al. Sep 2006 B2
7115982 Moxham Oct 2006 B2
7115986 Moon et al. Oct 2006 B2
7129571 Kang Oct 2006 B2
7149095 Warner et al. Dec 2006 B2
7161237 Lee Jan 2007 B2
7304382 Wehrly et al. Dec 2007 B2
20010013423 Dalal et al. Feb 2001 A1
20010040793 Inaba Nov 2001 A1
20020006032 Karabatsos Jan 2002 A1
20020094603 Isaak Jul 2002 A1
20020196612 Gall et al. Dec 2002 A1
20030064548 Isaak Apr 2003 A1
20030090879 Doblar et al. May 2003 A1
20030116835 Miyamoto et al. Jun 2003 A1
20030159278 Peddle Aug 2003 A1
20040000707 Roper et al. Jan 2004 A1
20040075991 Haba et al. Apr 2004 A1
20040115866 Bang et al. Jun 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040217461 Damberg Nov 2004 A1
20040217471 Haba Nov 2004 A1
20040245617 Damberg et al. Dec 2004 A1
20040267409 De Lorenzo et al. Dec 2004 A1
20050018495 Bhakta et al. Jan 2005 A1
20050018505 Wallace Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050040508 Lee Feb 2005 A1
20050085034 Akiba et al. Apr 2005 A1
20050108468 Hazelzet et al. May 2005 A1
20050133897 Baek et al. Jun 2005 A1
20050156297 Farnworth et al. Jul 2005 A1
20050245060 Chiu Nov 2005 A1
20060033217 Taggart et al. Feb 2006 A1
20060050498 Cady et al. Mar 2006 A1
20060050592 Cady et al. Mar 2006 A1
20060055024 Wehrly Mar 2006 A1
20060087013 Hsieh Apr 2006 A1
20060091521 Cady et al. May 2006 A1
Related Publications (1)
Number Date Country
20070159545 A1 Jul 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11330307 Jan 2006 US
Child 11436946 US