METABOLIC DISORDER-ASSOCIATED TARGET GENE IRNA COMPOSITIONS AND METHODS OF USE THEREOF

Abstract
The present invention relates to RNAi agents, e.g., double stranded RNA (dsRNA) agents, targeting a metabolic disorder-associated target gene, e.g., inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), or inhibin subunit beta C (INHBC) gene. The invention also relates to methods of using such RNAi agents to inhibit expression of a metabolic disorder-associated target gene and to methods of preventing and treating a metabolic disorder, e.g., metabolic syndrome.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML file format via Patent Center and is hereby incorporated by reference in its entirety. Said XML copy, created on Jan. 3, 2024, is named 121301_16307_SL.xml and is 58,454,450 bytes in size.


BACKGROUND OF THE INVENTION

With the successful conquest of many infectious diseases in most of the world, non-communicable diseases, metabolic disorders in particular, have become a major health hazard of the modern world. The increase in consumption of high calorie-low fiber fast food and the decrease in physical activity due to mechanized transportations and sedentary lifestyle have resulted in the spread of metabolic disorders such as metabolic syndrome, type 2 diabetes, hypertension, cardiovascular diseases, stroke, and other disabilities. Indeed, the occurrences of subjects with a metabolic disorder, such as, metabolic syndrome, who have a number of health conditions placing them at higher risk for heart disease, diabetes, stroke, and other diseases have increased in the recent years.


Current treatments for disorders of metabolic disorders include lifestyle changes, dieting, exercise and treatment with agents, such as lipid lowering agents, e.g., statins, and other drugs. However, these therapies and treatments are often limited by compliance, are not always effective, result in side effects, and result in drug-drug interactions. Accordingly, there is a need in the art for alternative treatments for subjects having metabolic disorders, such as metabolic syndrome and related diseases, e.g., diabetes, hypertension, and cardiovascular disease, such as an agent that can selectively and efficiently silence a metabolic disorder-associated target gene, i.e., inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), or inhibin subunit beta C (INHBC), using the cell's own RNAi machinery that has both high biological activity and in vivo stability, and that can effectively inhibit expression of the metabolic disorder-associated target INHBE gene.


SUMMARY OF THE INVENTION

The present invention provides iRNA compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a gene encoding a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC). The target gene may be within a cell, e.g., a cell within a subject, such as a human subject. The present invention also provides methods of using the iRNA compositions of the invention for inhibiting the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), and/or for treating a subject who would benefit from inhibiting or reducing the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), e.g., a subject suffering or prone to suffering from a metabolic disorder, e.g., metabolic syndrome, and/or cardiovascular disease.


Accordingly, in an aspect, the invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, such as an adipocyte and/or a liver cell, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from the nucleotide sequence of any one of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, or 55, and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from the corresponding portion of the nucleotide sequence of any one of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, or 56.


In another aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, such as an adipocyte and/or a liver cell, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding the target gene, and wherein the region of complementarity comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 2-17, 19 and 20.


In yet another aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, such as an adipocyte and/or a liver cell, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the sense nucleotide sequences in any one of Tables 2-17, 19 and 20 and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 2-17, 19 and 20. In some embodiments, these dsRNA agents further comprise one or more C22 hydrocarbon chains conjugated to one or more positions, e.g., internal positions, on at least one strand of the dsRNA agent.


In another aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, such as an adipocyte and/or a liver cell, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the sense nucleotide sequences in any one of Tables 2-17, 19 and 20 and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 2-17, 19 and 20. In some embodiments, these dsRNA agents further comprise one or more GalNAcligands conjugated to at least one strand of the dsRNA agent, e.g., through a bivalent or trivalent branched linker.


In one embodiment, the dsRNA agent comprises a sense strand comprising a contiguous nucleotide sequence which has at least 85%, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, nucleotide sequence identity over its entire length to any one of the nucleotide sequences of the sense strands in any one of Tables 2-17, 19 and 20 and an antisense strand comprising a contiguous nucleotide sequence which has at least 85%, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, nucleotide sequence identity over its entire length to any one of the nucleotide sequences of the antisense strands in any one of Tables 2-17, 19 and 20.


In one embodiment, the dsRNA agent comprises a sense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequences of the sense strands in any one of Tables 2-17, 19 and 20 and an antisense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequences of the antisense strands in any one of Tables 2-17, 19 and 20.


In one embodiment, the dsRNA agent comprises a sense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than two nucleotides from any one of the nucleotide sequences of the sense strands in any one of Tables 2-17, 19 and 20 and an antisense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, or 23 contiguous nucleotides differing by no more than two nucleotides from any one of the nucleotide sequences of the antisense strands in any one of Tables 2-17, 19 and 20.


In one embodiment, the dsRNA agent comprises a sense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than one nucleotide from any one of the nucleotide sequences of the sense strands in any one of Tables 2-17, 19 and 20 and an antisense strand comprising at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23 contiguous nucleotides differing by no more than one nucleotide from any one of the nucleotide sequences of the antisense strands in any one of Tables 2-17, 19 and 20.


In one embodiment, the dsRNA agent comprises a sense strand comprising or consisting of a nucleotide sequence selected from the group consisting of any one of the nucleotide sequences of the sense strands in any one of Tables 2-17, 19 and 20 and an antisense strand comprising or consisting of a nucleotide sequence selected from the group consisting of any one of the nucleotide sequences of the antisense strands in any one of Tables 2-17, 19 and 20.


In one embodiment, the target gene is INHBE.


In one embodiment, the target gene is ACVR1C.


In one embodiment, the target gene is PLIN1.


In one embodiment, the target gene is PDE3B.


In one embodiment, the target gene is INHBC.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE) in a cell, such as an adipocyte and/or a liver cell, wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the nucleotide sequences of nucleotides 400-422, 410-432, 518-540, 519-541, 640-662, 1430-1452, 1863-1885, or 1864-1886 of SEQ ID NO: 1, and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, differing by no more than 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO:2.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE) in a cell, such as an adipocyte and/or a liver cell, wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the nucleotide sequence of nucleotides 400-422, 410-432, 518-540, 519-541, 640-662, 1430-1452, 1863-1885, or 1864-1886 of SEQ ID NO: 1, and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO:2. In some embodiments, these dsRNA agents further comprise one or more C22 hydrocarbon chains conjugated to one or more positions, e.g., internal positions, on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE) in a cell, such as an adipocyte and/or a liver cell, wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the nucleotide sequence of nucleotides 400-422, 410-432, 518-540, 519-541, 640-662, 1430-1452, 1863-1885, or 1864-1886 of SEQ ID NO: 1, and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO:2. In some embodiments, these dsRNA agents further comprise one or more GalNAcligands conjugated to at least one strand of the dsRNA agent, e.g., through a bivalent or trivalent branched linker.


In some embodiments, the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-1706583, AD-1711744, AD-1706593, AD-1708473, AD-1706662, AD-1706761, AD-1707306, AD-1707639, AD-1707640.


In some embodiments, the sense and the antisense strand comprise at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the sense and the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-1706583, AD-1711744, AD-1706593, AD-1708473, AD-1706662, AD-1706761, AD-1707306, AD-1707639, AD-1707640.


In some embodiments, the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the antisense strand nucleotide sequences selected from the group consisting of











(SEQ ID NO: 57)



(a) 5′-AGUUAUTCUGGGACGACUGGUCA-3′;







(SEQ ID NO: 58)



(b) 5′-AGUUAUTCUGGGACGACUGGUCU-3′;







(SEQ ID NO: 59)



(c) 5′-ATGGAGGAUGAGUUAUUCUGGGA-3′;







(SEQ ID NO: 60)



(d) 5′-AUGAAGTGGAGUCUGUGACAGUA-3′;







(SEQ ID NO: 61)



(e) 5′-ACUGAAGUGGAGUCUGUGACAGU-3′;







(SEQ ID NO: 62)



(f) 5′-ACGGAAGAUCCTCAAGCAAAGAG-3′;







(SEQ ID NO: 63)



(g) 5′-ACAGACAAGAAAGUGCCCAUUUG-3′;







(SEQ ID NO: 64)



(h) 5′-AAGAAAGUAUAAAUGCUUGUCUC-3′;



and







(SEQ ID NO: 65)



(i) 5′-AAAGAAAGUAUAAAUGCUUGUCU-3′.






In some embodiments, the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides and the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the sense and antisense strand nucleotide sequences selected from the group consisting of











(SEQ ID NO: 66)



(a) 5′-ACCAGUCGUCCCAGAAUAACU-3′  



and







(SEQ ID NO: 57)



5′-AGUUAUTCUGGGACGACUGGUCA-3′;







(SEQ ID NO: 66)



(b) 5′-ACCAGUCGUCCCAGAAUAACU-3′  



and







(SEQ ID NO: 58)



5′-AGUUAUTCUGGGACGACUGGUCU-3′;







(SEQ ID NO: 67)



(c) 5′-CCAGAAUAACUCAUCCUCCAU-3′  



and







(SEQ ID NO: 59)



5′-ATGGAGGAUGAGUUAUUCUGGGA-3′;







(SEQ ID NO: 68)



(d) 5′-CUGUCACAGACUCCACUUCAU-3′  



and







(SEQ ID NO: 60)



5′-AUGAAGTGGAGUCUGUGACAGUA-3′;







(SEQ ID NO: 69)



(e) 5′-UGUCACAGACUCCACUUCAGU-3′  



and







(SEQ ID NO: 61)



5′-ACUGAAGUGGAGUCUGUGACAGU-3′;







(SEQ ID NO: 70)



(f) 5′-CUUUGCUUGAGGAUCUUCCGU-3′  



and







(SEQ ID NO: 62)



5′-ACGGAAGAUCCTCAAGCAAAGAG-3′;







(SEQ ID NO: 71)



(g) 5′-AAUGGGCACUUUCUUGUCUGU-3′  



and







(SEQ ID NO: 63)



5′-ACAGACAAGAAAGUGCCCAUUUG-3′;







(SEQ ID NO: 72)



(h) 5′-GACAAGCAUUUAUACUUUCUU-3′  



and







(SEQ ID NO: 64)



5′-AAGAAAGUAUAAAUGCUUGUCUC-3′;



and







(SEQ ID NO: 73)



(i) 5′-ACAAGCAUUUAUACUUUCUUU-3′  



and







(SEQ ID NO: 65)



5′-AAAGAAAGUAUAAAUGCUUGUCU-3′.






In one embodiment, the dsRNA agent comprises at least one modified nucleotide.


In one embodiment, substantially all of the nucleotides of the sense strand are modified nucleotides; substantially all of the nucleotides of the antisense strand are modified nucleotides; or substantially all of the nucleotides of the sense strand and substantially all of the nucleotides of the antisense strand are modified nucleotides.


In one embodiment, all of the nucleotides of the sense strand are modified nucleotides; all of the nucleotides of the antisense strand are modified nucleotides; or all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand are modified nucleotides.


In one embodiment, at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythimidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a thermally destabilizing nucleotide, a glycol modified nucleotide (GNA), a nucleotide comprising a 2′ phosphate, and a 2-O—(N-methylacetamide) modified nucleotide; and combinations thereof.


In one embodiment, at least one of the modified nucleotides is selected from the group consisting of LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C— allyl, 2′-fluoro, 2′-deoxy, 2′-hydroxyl, and glycol; and combinations thereof.


In one embodiment, at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a glycol modified nucleotide (GNA), e.g., Ggn, Cgn, Tgn, or Agn, a nucleotide with a 2′ phosphate, e.g., G2p, C2p, A2p or U2p, a nucleotide comprising a phosphorothioate group, and a vinyl-phosphonate nucleotide; and combinations thereof.


In another embodiment, at least one of the modified nucleotides is a nucleotide with a thermally destabilizing nucleotide modification.


In one embodiment, the thermally destabilizing nucleotide modification is selected from the group consisting of an abasic modification; a mismatch with the opposing nucleotide in the duplex; a destabilizing sugar modification, a 2′-deoxy modification, an acyclic nucleotide, an unlocked nucleic acid (UNA), and a glycerol nucleic acid (GNA).


In some embodiments, the modified nucleotide comprises a short sequence of 3′-terminal deoxythimidine nucleotides (dT).


In some embodiments, the dsRNA agents further comprise a phosphate or phosphate mimic at the 5′-end of the antisense strand.


In some embodiments, phosphate mimic is a 5′-vinyl phosphonate (VP).


In some embodiments, the 5′-end of the antisense strand of the dsRNA agent does not contain a 5′-vinyl phosphonate (VP).


In some embodiments, the dsRNA agent further comprises at least one terminal, chiral phosphorus atom.


A site specific, chiral modification to the internucleotide linkage may occur at the 5′ end, 3′ end, or both the 5′ end and 3′ end of a strand. This is being referred to herein as a “terminal” chiral modification. The terminal modification may occur at a 3′ or 5′ terminal position in a terminal region, e.g., at a position on a terminal nucleotide or within the last 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides of a strand. A chiral modification may occur on the sense strand, antisense strand, or both the sense strand and antisense strand. Each of the chiral pure phosphorus atoms may be in either Rp configuration or Sp configuration, and combination thereof. More details regarding chiral modifications and chirally-modified dsRNA agents can be found in PCT/US18/67103, entitled “Chirally-Modified Double-Stranded RNA Agents,” filed Dec. 21, 2018, which is incorporated herein by reference in its entirety.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In one embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In one embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, second, and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In one embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In one embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration; a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration; and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


In one embodiment, the dsRNA agent further comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.


In one embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand, e.g., the antisense strand or the sense strand.


In another embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand, e.g., the antisense strand or the sense strand.


In one embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the both the 5′- and 3′-terminus of one strand. In one embodiment, the strand is the antisense strand.


In one embodiment, the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


The double stranded region may be 19-30 nucleotide pairs in length; 19-25 nucleotide pairs in length; 19-23 nucleotide pairs in length; 23-27 nucleotide pairs in length; or 21-23 nucleotide pairs in length.


In one embodiment, each strand is independently no more than 30 nucleotides in length.


In one embodiment, the sense strand is 21 nucleotides in length and the antisense strand is 23 nucleotides in length.


The region of complementarity may be at least 17 nucleotides in length; between 19 and 23 nucleotides in length; or 19 nucleotides in length.


In one embodiment, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand comprises a 3′ overhang of at least 2 nucleotides.


In some embodiments, one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In some embodiments, the lipophilicity of the one or more C22 hydrocarbon chain, measured by octanol-water partition coefficient, log Kow, exceeds 0. The lipophilic moiety may possess a log Kow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10.


In some embodiments, the hydrophobicity of the dsRNA agent, measured by the unbound fraction in the plasma protein binding assay of the dsRNA agent, exceeds 0.2. In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. The hydrophobicity of the dsRNA agent, measured by fraction of unbound dsRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of dsRNA/


The C22 hydrocarbon chain may be saturated or unsaturated.


The C22 hydrocarbon chain may be linear or branched


In some embodiments, the internal positions include all positions except the three terminal positions from each end of the at least one strand.


In some embodiments, the internal positions exclude a cleavage site region of the sense strand.


In some embodiments, the internal positions exclude positions 9-12 or positions 11-13, counting from the 5′-end of the sense strand.


In some embodiments, the internal positions exclude a cleavage site region of the antisense strand.


In some embodiments, the internal positions exclude positions 12-14, counting from the 5′-end of the antisense strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to one or more of the following internal positions: positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to one or more of the following internal positions: positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand.


In some embodiments, the one or more C22 hydrocarbon chains is an aliphatic, alicyclic, or polyalicyclic compound, e.g., the one or more C22 hydrocarbon chains contains a functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


In some embodiments, the one or more C22 hydrocarbon chains is a C22 acid, e.g. the C22 acid is selected from the group consisting of docosanoic acid, 6-octyltetradecanoic acid, 10-hexylhexadecanoic acid, all-cis-7,10,13,16,19-docosapentaenoic acid, all-cis-4,7,10,13,16,19-docosahexaenoic acid, all-cis-13,16-docosadienoic acid, all-cis-7,10,13,16-docosatetraenoic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, and cis-13-docosenoic acid.




embedded image


In some embodiments, the one or more C22 hydrocarbon chains is a C22 alcohol, e.g., the C22 alcohol is selected from the group consisting of 1-docosanol, 6-octyltetradecan-1-ol, 10-hexylhexadecan-1-ol, cis-13-docosen-1-ol, docosan-9-ol, docosan-2-ol, docosan-10-ol, docosan-11-ol, and cis-4,7,10,13,16,19-docosahexanol.




embedded image


In some embodiments, the one or more C22 hydrocarbon chains is a C22 amide, e.g., the C22 amide is selected from the group consisting of (E)-Docos-4-enamide, (E)-Docos-5-enamide, (Z)-Docos-9-enamide, (E)-Docos-11-enamide, 12-Docosenamide, (Z)-Docos-13-enamide, (Z)—N-Hydroxy-13-docoseneamide, (E)-Docos-14-enamide, 6-cis-Docosenamide, 14-Docosenamide Docos-11-enamide, (4E,13E)-Docosa-4,13-dienamide, and (5E,13E)-Docosa-5,13-dienamide.


The one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via a direct attachment to the ribosugar of the dsRNA agent. Alternatively, the one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via a linker or a carrier. In some embodiments, the one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via internucleotide phosphate linkage.




embedded image


In certain embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via one or more linkers (tethers), e.g., a carrier that replaces one or more nucleotide(s) in the internal position(s).


In some embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a linker a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


In some embodiments, at least one of the linkers (tethers) is a redox cleavable linker (such as a reductively cleavable linker; e.g., a disulfide group), an acid cleavable linker (e.g., a hydrazone group, an ester group, an acetal group, or a ketal group), an esterase cleavable linker (e.g., an ester group), a phosphatase cleavable linker (e.g., a phosphate group), or a peptidase cleavable linker (e.g., a peptide bond).


In other embodiments, at least one of the linkers (tethers) is a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In certain embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a carrier that replaces one or more nucleotide(s). The carrier can be a cyclic group or an acyclic group. In one embodiment, the cyclic group is selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl, and decalin. In one embodiment, the acyclic group is a moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the carrier replaces one or more nucleotide(s) in the internal position(s) of the dsRNA agent.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a receptor which mediates delivery to adipose tissue. In one embodiment, the targeting ligand is selected from the group consisting of Angiopep-2, lipoprotein receptor related protein (LRP) ligand, bEnd.3 cell binding ligand, transferrin receptor (TfR) ligand, manose receptor ligand, glucose transporter protein, LDL receptor ligand, trans-retinol, RGD peptide, LDL receptor ligand, CD63 ligand, and carbohydrate based ligand.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a liver tissue.


In one embodiment, the targeting ligand is conjugated to the 3′ end of the sense strand of the dsRNA agent.


In some embodiments, the targeting ligand is a carbohydrate-based ligand.


In one embodiment, the targeting ligand is an N-acetylgalactosamine (GalNAc) derivative.


In one embodiment, the targeting ligand is one or more GalNAc derivatives attached through a monovalent, bivalent, or trivalent branched linker.


In one embodiment, the targeting ligand is




embedded image


In one embodiment, the dsRNA agent is conjugated to the targeting ligand as shown in the following schematic




embedded image


and, wherein X is O or S.


In one embodiment, the X is O.


In some embodiments, the one or more C22 hydrocarbon chains or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence ascscagucgUfCfCfcagaaaawu (SEQ ID NO: 74), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdGsuudAudTcuggdGaCfgacugguscsa (SEQ ID NO:75), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence ascscagucgUfCfCfcagaaaawu (SEQ ID NO: 74), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdGsuudAudTcuggdGaCfgacugguscsu (SEQ ID NO: 76), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence cscsagaauaAfCfUfcauccuccau (SEQ ID NO:77), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdTsggdAgdGaugadGuUfauucuggsgsa (SEQ ID NO: 78), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence csusgucaCfaGfAftfuccacuucau (SEQ ID NO: 79), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asUfsgadAg(Tgn)ggagucUfgUfgacagsusa (SEQ ID NO: 80), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; Tgn is thymidine-glycol nucleic acid (GNA) S-isomer; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence usgsucacagAfCfUfccacuucagu (SEQ ID NO: 81), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdCsugdAadGuggadGuCfugugacasgsu (SEQ ID NO: 82), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence csusuugcuuGfAfGfgaucuuccgu (SEQ ID NO: 83), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdCsggdAadGauccdTcAfagcaaagsasg (SEQ ID NO: 84), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asasugggcaCfUfUfucuugucugu (SEQ ID NO: 85), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdCsagdAcdAagaadAgUfgcccauususg (SEQ ID NO: 86), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence gsascaagcaUfUfUfauacuuucuu (SEQ ID NO: 87), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdAsgadAadGuauadAaUfgcuugucsusc (SEQ ID NO:88), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more positions on at least one strand of the dsRNA agent.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of inhibin subunit beta E (INHBE), wherein said dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence ascsaagcauUfUfAfuacuuucuuu (SEQ ID NO: 89), wherein the antisense strand comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides differencing by no more than 0, 1, 2, 3, or 4 nucleotides from the nucleotide sequence asdAsagdAadAguaudAaAfugcuuguscsu (SEQ ID NO:90), wherein a, g, c and u are 2′-O-methyl (2′-OMe) A, G, C, and U; Af, Gf, Cf, and Uf are 2′-fluoro A, G, C and U; dA, dG, dC and dT are 2′-deoxy A, G, C and T; s is a phosphorothioate linkage; and wherein the dsRNA comprises one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand of the dsRNA agent.


In some embodiments, the lipophilicity of the one or more C22 hydrocarbon chain, measured by octanol-water partition coefficient, log Kow, exceeds 0. The lipophilic moiety may possess a log Kow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10.


In some embodiments, the hydrophobicity of the dsRNA agent, measured by the unbound fraction in the plasma protein binding assay of the dsRNA agent, exceeds 0.2. In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. The hydrophobicity of the dsRNA agent, measured by fraction of unbound dsRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of dsRNA/


The C22 hydrocarbon chain may be saturated or unsaturated.


The C22 hydrocarbon chain may be linear or branched


In some embodiments, the internal positions include all positions except the three terminal positions from each end of the at least one strand.


In some embodiments, the internal positions exclude a cleavage site region of the sense strand.


In some embodiments, the internal positions exclude positions 9-12 or positions 11-13, counting from the 5′-end of the sense strand.


In some embodiments, the internal positions exclude a cleavage site region of the antisense strand.


In some embodiments, the internal positions exclude positions 12-14, counting from the 5′ end of the antisense strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to one or more of the following internal positions: positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to one or more of the following internal positions: positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In some embodiments, the one or more C22 hydrocarbon chains are conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand.


In some embodiments, the one or more C22 hydrocarbon chains is an aliphatic, alicyclic, or polyalicyclic compound, e.g., the one or more C22 hydrocarbon chains contains a functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


In some embodiments, the one or more C22 hydrocarbon chains is a C22 acid, e.g. the C22 acid is selected from the group consisting of docosanoic acid, 6-octyltetradecanoic acid, 10-hexylhexadecanoic acid, all-cis-7,10,13,16,19-docosapentaenoic acid, all-cis-4,7,10,13,16,19-docosahexaenoic acid, all-cis-13,16-docosadienoic acid, all-cis-7,10,13,16-docosatetraenoic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, and cis-13-docosenoic acid.




embedded image


In some embodiments, the one or more C22 hydrocarbon chains is a C22 alcohol, e.g., the C22 alcohol is selected from the group consisting of 1-docosanol, 6-octyltetradecan-1-ol, 10-hexylhexadecan-1-ol, cis-13-docosen-1-ol, docosan-9-ol, docosan-2-ol, docosan-10-ol, docosan-11-ol, and cis-4,7,10,13,16,19-docosahexanol.




embedded image


In some embodiments, the one or more C22 hydrocarbon chains is a C22 amide, e.g., the C22 amide is selected from the group consisting of (E)-Docos-4-enamide, (E)-Docos-5-enamide, (Z)-Docos-9-enamide, (E)-Docos-11-enamide, 12-Docosenamide, (Z)-Docos-13-enamide, (Z)—N-Hydroxy-13-docoseneamide, (E)-Docos-14-enamide, 6-cis-Docosenamide, 14-Docosenamide Docos-11-enamide, (4E,13E)-Docosa-4,13-dienamide, and (5E,13E)-Docosa-5,13-dienamide.


The one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via a direct attachment to the ribosugar of the dsRNA agent. Alternatively, the one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via a linker or a carrier. In some embodiments, the one or more C22 hydrocarbon chains may be conjugated to the dsRNA agent via internucleotide phosphate linkage.




embedded image


In certain embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via one or more linkers (tethers), e.g., a carrier that replaces one or more nucleotide(s) in the internal position(s).


In some embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a linker a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


In some embodiments, at least one of the linkers (tethers) is a redox cleavable linker (such as a reductively cleavable linker; e.g., a disulfide group), an acid cleavable linker (e.g., a hydrazone group, an ester group, an acetal group, or a ketal group), an esterase cleavable linker (e.g., an ester group), a phosphatase cleavable linker (e.g., a phosphate group), or a peptidase cleavable linker (e.g., a peptide bond).


In other embodiments, at least one of the linkers (tethers) is a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In certain embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a carrier that replaces one or more nucleotide(s). The carrier can be a cyclic group or an acyclic group. In one embodiment, the cyclic group is selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl, and decalin. In one embodiment, the acyclic group is a moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the carrier replaces one or more nucleotide(s) in the internal position(s) of the dsRNA agent.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a receptor which mediates delivery to adipose tissue. In one embodiment, the targeting ligand is selected from the group consisting of Angiopep-2, lipoprotein receptor related protein (LRP) ligand, bEnd.3 cell binding ligand, transferrin receptor (TfR) ligand, manose receptor ligand, glucose transporter protein, LDL receptor ligand, trans-retinol, RGD peptide, LDL receptor ligand, CD63 ligand, and carbohydrate based ligand.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a liver tissue.


In one embodiment, the targeting ligand is conjugated to the 3′ end of the sense strand of the dsRNA agent.


In some embodiments, the targeting ligand is a carbohydrate-based ligand.


In one embodiment, the targeting ligand is an N-acetylgalactosamine (GalNAc) derivative.


In one embodiment, the targeting ligand is one or more GalNAc derivatives attached through a monovalent, bivalent, or trivalent branched linker.


In one embodiment, the targeting ligand is




embedded image


In one embodiment, the dsRNA agent is conjugated to the targeting ligand as shown in the following schematic




embedded image


and, wherein X is O or S.


In one embodiment, the X is O.


In some embodiments, the one or more C22 hydrocarbon chains or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


The present invention also provides cells containing any of the dsRNA agents of the invention and pharmaceutical compositions comprising any of the dsRNA agents of the invention.


The pharmaceutical composition of the invention may include dsRNA agent in an unbuffered solution, e.g., saline or water, or the pharmaceutical composition of the invention may include the dsRNA agent is in a buffer solution, e.g., a buffer solution comprising acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof; or phosphate buffered saline (PBS).


In one aspect, the present invention provides a method of inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, such as an adipocyte and/or a liver cell. The method includes contacting the cell with any of the dsRNAs of the invention or any of the pharmaceutical compositions of the invention, thereby inhibiting expression of the target gene in the cell.


In one embodiment, the target gene is INHBE.


In one embodiment, the target gene is ACVR1C.


In one embodiment, the target gene is PLIN1.


In one embodiment, the target gene is PDE3B.


In one embodiment, the target gene is INHBC.


In one embodiment, the cell is within a subject, e.g., a human subject, e.g., a subject having a metabolic disorder, such as diabetes, metabolic syndrome, cardiovascular disease, or hypertension.


In one embodiment, the cell is an adipocyte.


In one embodiment, the cell is a hepatocyte.


In certain embodiments, the target gene expression is inhibited by at least about 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. In one embodiment, inhibiting expression of the target gene decreases target gene protein level in serum of the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.


In one aspect, the present invention provides a method of treating a metabolic disorder. The method includes administering to the subject a therapeutically effective amount of any of the dsRNAs of the invention or any of the pharmaceutical compositions of the invention, thereby treating the subject having the metabolic disorder.


In another aspect, the present invention provides a method of preventing at least one symptom in a subject having a metabolic disorder. The method includes administering to the subject a prophylactically effective amount of any of the dsRNAs of the invention or any of the pharmaceutical compositions of the invention, thereby preventing at least one symptom in the subject having the metabolic disorder.


In one embodiment, the target gene is INHBE.


In one embodiment, the target gene is ACVR1C.


In one embodiment, the target gene is PLIN1.


In one embodiment, the target gene is PDE3B.


In one embodiment, the target gene is INHBC.


In one embodiment, administration of a therapeutically or prophylactically effective amount decreases the waist-to-hip ratio adjusted for body mass index in the subject.


The metabolic disorder may be, e.g. metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight.


In some embodiments, the metabolic disorder is metabolic syndrome.


In some embodiments, the metabolic disorder is type 2 diabetes.


In some embodiments, the metabolic disorder is obesity.


In some embodiments, the metabolic disorder is elevated triglyceride level.


In some embodiments, the metabolic disorder is lipodystrophy.


In some embodiments, the metabolic disorder liver inflammation.


In some embodiments, the metabolic disorder is fatty liver disease.


In some embodiments, the metabolic disorder is hypercholesterolemia.


In some embodiments, the metabolic disorder is elevated liver enzyme.


In some embodiments, the metabolic disorder is nonalcoholic steatohepatitis (NASH).


In some embodiments, the metabolic disorder is cardiovascular disease.


In some embodiments, the metabolic disorder is hypertension.


In some embodiments, the metabolic disorder is cardiomyopathy.


In some embodiments, the metabolic disorder is heart failure.


In some embodiments, the metabolic disorder is kidney disease.


In certain embodiments, administration of the dsRNA to the subject causes a decrease target gene protein accumulation in the subject.


In a further aspect, the present invention also provides methods of inhibiting the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a subject. The methods include administering to the subject a therapeutically effective amount of any of the dsRNAs provided herein, thereby inhibiting the expression of the target gene in the subject.


In one embodiment, the subject is human.


In one embodiment, the dsRNA agent is administered to the subject at a dose of about 0.01 mg/kg to about 50 mg/kg.


In one embodiment, the dsRNA agent is administered to the subject subcutaneously.


In one embodiment, the methods of the invention include further determining the level of the target gene in a sample(s) from the subject.


In one embodiment, the level of the target gene in the subject sample(s) is a target gene protein level in a blood or serum or liver tissue sample(s).


In certain embodiments, the methods of the invention further comprise administering to the subject an additional therapeutic agent.


In certain embodiments, the additional therapeutic agent is selected from the group consisting of insulin, a glucagon-like peptide 1 agonist, a sulfonylurea, a seglitinide, a biguanide, a thiazolidinedione, an alpha-glucosidase inhibitor, an SGLT2 inhibitor, a DPP-4 inhibitor, an HMG-CoA reductase inhibitor, a statin, and a combination of any of the foregoing.


The present invention also provides kits comprising any of the dsRNAs of the invention or any of the pharmaceutical compositions of the invention, and optionally, instructions for use. In one embodiment, the invention provides a kit for performing a method of inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell by contacting a cell with a double stranded RNAi agent of the invention in an amount effective to inhibit expression of the target gene in the cell. The kit comprises an RNAi agent and instructions for use and, optionally, means for administering the RNAi agent to a subject.


The present invention further provides an RNA-induced silencing complex (RISC) comprising an antisense strand of any of the dsRNA agents of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of the study design to determine the pharmacodynamic activity of duplexes of interest targeting INHBE in non-human primates (NHP).



FIG. 2A is a graph depicting the level of INHBE mRNA in the liver of non-human primates subcutaneously administered a single 3 mg/kg dose of the indicated duplexes at Day 28 post-dose.



FIG. 2B is a graph depicting the level of INHBC mRNA in the liver of non-human primates subcutaneously administered a single 3 mg/kg dose of the indicated duplexes at Day 28 post-dose.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides iRNA compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC). The gene may be within a cell, such as an adipocyte and/or a liver cell, e.g., a cell within a subject, such as a human. The use of these iRNAs enables the targeted degradation of mRNAs of the corresponding gene (INHBE, ACVR1C, PLIN1, PDE3B, or INHBC) in mammals.


The iRNAs of the invention have been designed to target a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), including portions of the gene that are conserved in orthologs of other mammalian species. Without intending to be limited by theory, it is believed that a combination or sub-combination of the foregoing properties and the specific target sites or the specific modifications in these iRNAs confer to the iRNAs of the invention improved efficacy, stability, potency, durability, and safety.


Accordingly, the present invention provides methods for treating and preventing a metabolic disorder, e.g. metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight, using iRNA compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC).


The iRNAs of the invention include an RNA strand (the antisense strand) having a region which is up to about 30 nucleotides or less in length, e.g., 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of a metabolic disorder-associated target gene.


In certain embodiments, one or both of the strands of the double stranded RNAi agents of the invention is up to 66 nucleotides in length, e.g., 36-66, 26-36, 25-36, 31-60, 22-43, 27-53 nucleotides in length, with a region of at least 19 contiguous nucleotides that is substantially complementary to at least a part of an mRNA transcript of a metabolic disorder-associated target gene. In some embodiments, such iRNA agents having longer length antisense strands may, for example, include a second RNA strand (the sense strand) of 20-60 nucleotides in length wherein the sense and antisense strands form a duplex of 18-30 contiguous nucleotides.


The use of iRNAs of the invention enables the targeted degradation of mRNAs of the corresponding gene (INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene) in mammals. Using in vitro assays, the present inventors have demonstrated that iRNAs targeting the gene can potently mediate RNAi, resulting in significant inhibition of expression of the target gene. Thus, methods and compositions including these iRNAs are useful for treating a subject having a metabolic disorder, e.g. metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight.


Accordingly, the present invention provides methods and combination therapies for treating a subject having a metabolic disorder that would benefit from inhibiting or reducing the expression of a metabolic disorder associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight, using iRNA compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of INHBE, ACVR1C, PLIN1, PDE3B, or INHBC.


The present invention also provides methods for preventing at least one symptom in a subject having a disorder that would benefit from inhibiting or reducing the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight.


The following detailed description discloses how to make and use compositions containing iRNAs to inhibit the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), as well as compositions, uses, and methods for treating subjects that would benefit from inhibition and/or reduction of the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), e.g., subjects susceptible to or diagnosed with a metabolic disorder.


I. Definitions

In order that the present invention may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this invention.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element, e.g., a plurality of elements.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”.


The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise. For example, “sense strand or antisense strand” is understood as “sense strand or antisense strand or sense strand and antisense strand.”


The term “about” is used herein to mean within the typical ranges of tolerances in the art. For example, “about” can be understood as about 2 standard deviations from the mean. In certain embodiments, about means ±10%. In certain embodiments, about means ±5%. When about is present before a series of numbers or a range, it is understood that “about” can modify each of the numbers in the series or range.


The term “at least”, “no less than”, or “or more” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 19 nucleotides of a 21 nucleotide nucleic acid molecule” means that 19, 20, or 21 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “no more than” or “or less” is understood as the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, a duplex with an overhang of “no more than 2 nucleotides” has a 2, 1, or 0 nucleotide overhang. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range. As used herein, ranges include both the upper and lower limit.


As used herein, methods of detection can include determination that the amount of analyte present is below the level of detection of the method.


In the event of a conflict between an indicated target site and the nucleotide sequence for a sense or antisense strand, the indicated sequence takes precedence.


In the event of a conflict between a sequence and its indicated site on a transcript or other sequence, the nucleotide sequence recited in the specification takes precedence.


As used herein, the term “a metabolic disorder-associated target gene” or “target gene” refers to a gene encoding “inhibin subunit beta E” (“INHBE”), “activin A receptor type 1C” (“ACVR1C”), “perilipin-1” (“PLIN1”), “phosphodiesterase 3B” (“PDE3B”), or “inhibin subunit beta C” (“INHBC”).


In one embodiment, a metabolic disorder-associated target gene is inhibin subunit beta E (INHBE).


As used herein, “inhibin subunit beta E,” used interchangeably with the terms “INHBE,” refers to a growth factor that belongs to the transforming growth factor-β(TGF-β) family. INHBE mRNA is predominantly expressed in the liver (Fang J. et al. Biochemical & Biophysical Res. Comm. 1997; 231(3):655-61), and INHBE is involved in the regulation of liver cell growth and differentiation (Chabicovsky M. et al. Endocrinology. 2003; 144(8):3497-504). INHBE is also known as inhibin beta E chain, activin E, inhibin beta E subunit, inhibin beta E, and MGC4638. More specifically, INHBE is a hepatokine which has been shown to positively correlate with insulin resistance and body mass index in humans. Quantitative real time-PCR analysis also showed an increase in INHBE gene expression in liver samples from insulin-resistant human subjects. In addition, Inhbe gene expression was shown to be increased in the livers of an art-recognized animal model of a metabolic disorder, i.e., type 2 diabetes, the db/db mouse model. Inhibition of Inhbe expression in db/db mice was demonstrated to suppress body weight gain which was attributable to diminished fat rather than lean mass.


The sequence of a human INHBE mRNA transcript can be found at, for example, GenBank Accession No. GI: 1877089956 (NM_031479.5; SEQ ID NO:1; reverse complement, SEQ ID NO: 2). The sequence of mouse INHBE mRNA can be found at, for example, GenBank Accession No. GI: 1061899809 (NM_008382.3; SEQ ID NO:3; reverse complement, SEQ ID NO:4). The sequence of rat INHBE mRNA can be found at, for example, GenBank Accession No. GI: 148747589 (NM_031815.2; SEQ ID NO:5; reverse complement, SEQ ID NO: 6). The predicted sequence of Macaca mulatta INHBE mRNA can be found at, for example, GenBank Accession No. GI: 1622845604 (XM_001115958.3; SEQ ID NO:7; reverse complement, SEQ ID NO:8).


Additional examples of INHBE mRNA sequences are readily available through publicly available databases, e.g., GenBank, UniProt, OMIM, and the Macaca genome project web site.


Further information on INHBE can be found, for example, at www.ncbi.nlm.nih.gov/gene/?term=INHBE.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term INHBE, as used herein, also refers to variations of the INHBE gene including variants provided in the SNP database. Numerous sequence variations within the INHBE gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?term=INHBE, the entire contents of which is incorporated herein by reference as of the date of filing this application.


In one embodiment, a metabolic disorder-associated target gene is activin A receptor type 1C (ACVR1C).


As used herein, “activin A receptor type 1C,” used interchangeably with the terms “ACVR1C,” refers to a type I receptor for the TGF-β family of signaling molecule. ACVR1C has intrinsic serine/threonine kinase activities in its cytoplasmic domains, inducing phosphorylation and activation of the SMAD2/3/4 complex, which translocates into the nucleus where it binds SMAD-binding elements (SBE) to activate gene transcription. Expression levels of ACVR1C varies greatly among tissues, but white and brown adipose tissues have the highest level of expression. In addition to full length protein, variants of ACVR1C are also expressed in adipose tissues, brain and ovary (Murakami M et al. Biochem Genet. 2013; 51(3-4): 202-210). ACVR1C is also known as “activin receptor-like kinase 7” (ALK-7). A polymorphism in ACVR1C has been found to be associated with increased risk of metabolic syndrome in Chinese females and may be involved in cardiovascular remodeling in patients with metabolic syndrome (Zhang, W et al. Arq Bras Gambol. 2013: 101(2):134-140). Additionally, variants predicted to lead to loss of ACVR1C gene function are thought to influence body fat distribution and protect against type 2 diabetes (Emdin C A et al. Diabetes. 2019: 68(1):226-234). A study conducted in adipocytes of an obese mouse strain demonstrated that ACVR1C dysfunction (due to a nonsense mutation) caused increased lipolysis in adipocytes and led to decreased fat accumulation, and conversely, ACVR1C activation inhibited lipolysis by suppressing the expression of adipose lipases. Furthermore, ACVR1C-deficient mice with lower body weight exhibited enhanced glucose tolerance and insulin sensitivity, and measurement of metabolic rates in these mice revealed increased O2 consumption, decreased respiratory quotients, and increased energy expenditure (Yogosawa, S et al. Diabetes 2013: 62(1):115-123). The sequence of a human ACVR1C mRNA transcript can be found at, for example, GenBank Accession No. GI: 1519315475 (NM_145259.3, SEQ ID NO:9; reverse complement, SEQ ID NO:10), GI: 1890343165 (NM_001111031.2, SEQ ID NO:11; reverse complement, SEQ ID NO:12), GI: 1676439980 (NM_001111032.2, SEQ ID NO:13, reverse complement SEQ ID NO:14), and GI: 1676318472 (NM_001111033.2, SEQ ID NO:15, reverse complement, SEQ ID NO:16). The sequence of mouse ACVR1C mRNA can be found at, for example, GenBank Accession No. GI: 161333830 (NM_001111030.1, SEQ ID NO:17; reverse complement, SEQ ID NO:18) or GI: 161333829 (NM_001033369.3, SEQ ID NO:19; reverse complement, SEQ ID NO:20). The sequence of rat ACVR1C mRNA can be found at, for example, GenBank Accession No. GI: 1937875934 (NM_139090.2; SEQ ID NO:21; reverse complement, SEQ ID NO:22). The sequence of Macaca mulatta ACVR1C mRNA can be found at, for example, GenBank Accession No. GI: 388454445 (NM_001266690.1; SEQ ID NO:23; reverse complement, SEQ ID NO:24).


Additional examples of ACVR1C mRNA sequences are readily available through publicly available databases, e.g., GenBank, UniProt, OMIM, and the Macaca genome project web site.


Further information on ACVR1C can be found, for example, at www.ncbi.nlm.nih.gov/gene/?term=ACVR1C.


The term ACVR1C, as used herein, also refers to variations of the ACVR1C gene including variants provided in the SNP database. Numerous sequence variations within the ACVR1C gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?term=ACVR1C, the entire contents of which is incorporated herein by reference as of the date of filing this application).


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


In one embodiment, a metabolic disorder-associated target gene is perilipin-1 (PLIN1).


As used herein, “perilipin-1,” used interchangeably with the terms “PLIN1,” refers to a protein which coats lipid storage droplets in adipocytes, thereby protecting them until they can be broken down by hormone-sensitive lipase. PLIN1 expresses predominantly in adipose tissues. PLIN1 is also known as perilipin, lipid droplet-associated protein, PERI, PLIN and FPLD4.


Constitutive overexpression of PLIN1 in cultured adipocytes has been shown to block the ability of TNF-α to increase lipolysis. In animals, separate laboratories have independently generated lines of PLIN1-null mice and observed that the mice were lean and developed systemic insulin resistance as they got older. Studies comparing lipolysis in PLIN1-null and wild-type mice revealed that PLIN1-null adipocytes had increased rates of constitutive (unstimulated) lipolysis and reduced catecholamine-stimulated lipolysis. Several studies have found that polymorphisms in the PLIN1 gene influence body weight and the risk of metabolic disease. Interestingly, one PLIN1 polymorphism was found to be associated with reduced PLIN1 expression and increased rates of basal and stimulated adipocyte lipolysis; humans with this polymorphism tend to have reduced body weight and body fat mass (Greenberg, A S et al. J Clin Invest. 2011:121(6):2102-2110). Heterozygous frameshift variants in PLIN1 have also been implicated in familial partial lipodystrophy, a rare disease characterized by a limited capacity of peripheral fat to store triglycerides, which results in metabolic abnormalities including insulin resistance, hypertriglyceridemia, abd liver steatosis (Gandotra S, Le Dour C, Bottomley W, et al. N Eng J Med 2011; 364:740-748).


The sequence of a human PLIN1 mRNA transcript can be found at, for example, GenBank Accession No. GI: 1519242647 (NM_002666.5; SEQ ID NO:25; reverse complement, SEQ ID NO:26) and GI: 1675042447 (NM_001145311.2, SEQ ID NO:27; reverse complement, SEQ ID NO:28). The sequence of mouse PLIN1 mRNA can be found at, for example, GenBank Accession No. GI: 164698407 (NM_175640.2; SEQ ID NO:29; reverse complement, SEQ ID NO:30) and GI: 164698412 (NM_001113471.1, SEQ ID NO:31; reverse complement, SEQ ID NO:32). The sequence of rat PLIN1 mRNA can be found at, for example, GenBank Accession No. GI: 815890869 (NM_001308145.1; SEQ ID NO:33; reverse complement, SEQ ID NO:34). The predicted sequence of Macaca mulatta PLIN1 mRNA can be found at, for example, GenBank Accession No. GI: 1622954660 (XM_028851317.1; SEQ ID NO:35; reverse complement, SEQ ID NO:36).


Additional examples of PLIN1 mRNA sequences are readily available through publicly available databases, e.g., GenBank, UniProt, OMIM, and the Macaca genome project web site.


Further information on PLIN1 can be found, for example, at www.ncbi.nlm.nih.gov/gene/?term=PLIN1.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term PLIN1, as used herein, also refers to variations of the PLIN1 gene including variants provided in the SNP database. Numerous sequence variations within the PLIN1 gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?term=PLIN1, the entire contents of which is incorporated herein by reference as of the date of filing this application).


In one embodiment, a metabolic disorder-associated target gene is phosphodiesterase 3B (PDE3B).


As used herein, “phosphodiesterase 3B,” used interchangeably with the terms “PDE3B,” refers to a phosphodiesterase which hydrolyzes cAMP and cGMP and is expressed in cells of importance for regulation of energy homeostasis, including adipocytes, hepatocytes, hypothalamic cells and β cells. PDE3B is also known as CGMP-inhibited 3′,5′-cyclic phosphodiesterase B, cyclic GMP-inhibited phosphodiesterase B, CGIPDE1, CGIP1 and cyclic nucleotide phosphodiesterase.


PDE3B proteins are phosphorylated and activated in hepatocytes and adipocytes in response to stimulation by insulin and/or agents that increase cAMP. Activation of PDE3B leads to increased hydrolysis of cAMP and, thereby, inhibition of catecholamine-induced lipolysis. Mice that specifically over-express PDE3B in β cells show a decrease in glucose-induced insulin secretion. PDE3B knock-out (KO) mice demonstrate a number of alterations in the regulation of energy homeostasis, including reduced fat mass, smaller adipocytes, and reduced weight gain than control mice when maintained on a high fat diet (Degerman, E. et al. CurrOpin Pharmaco. 2011:11(6):676-682).


The sequence of a human PDE3B mRNA transcript can be found at, for example, GenBank Accession No. GI: 1889438535 (NM_001363570.2; SEQ ID NO:37; reverse complement, SEQ ID NO:38), GI: 1519241942 (NM_000922.4, SEQ ID NO:39; reverse complement, SEQ ID NO:40) and GI: 1889636835 (NM_001363569.2, SEQ ID NO:41; reverse complement, SEQ ID NO:42). The sequence of mouse PDE3B mRNA can be found at, for example, GenBank Accession No. GI: 112983647 (NM_011055.2; SEQ ID NO:43; reverse complement, SEQ ID NO:44). The sequence of rat PDE3B mRNA can be found at, for example, GenBank Accession No. GI: 1939401976 (NM_017229.2; SEQ ID NO:45; reverse complement, SEQ ID NO:46). The predicted sequence of Macaca mulatta PDE3B mRNA can be found at, for example, GenBank Accession No. GI: 1622864110 (XM_015114810.2; SEQ ID NO:47; reverse complement, SEQ ID NO:48).


Additional examples of PDE3B mRNA sequences are readily available through publicly available databases, e.g., GenBank, UniProt, OMIM, and the Macaca genome project web site.


Further information on PDE3B can be found, for example, at www.ncbi.nlm.nih.gov/gene/?term=PDE3B.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term PDE3B, as used herein, also refers to variations of the PDE3B gene including variants provided in the SNP database. Numerous sequence variations within the PDE3B gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?term=PDE3B, the entire contents of which is incorporated herein by reference as of the date of filing this application.


In one embodiment, a metabolic disorder-associated target gene is inhibin subunit beta C (INHBC).


As used herein, “inhibin subunit beta C,” used interchangeably with the terms “INHBC,” refers to the beta C chain of inhibin, a member of the TGF-β superfamily. INHBC mRNA is predominantly expressed in the liver, and INHBC is involved in the regulation of liver cell growth and differentiation (Chabicovsky M. et al. Endocrinology. 2003; 144(8):3497-504). INHBC is also known as inhibin beta C chain, inhibin beta C subunit, inhibin beta C, activin C, activin beta-C chain, and IHBC. In mice, overexpression of INHBC increased total liver weight as a percentage of body weight and increased both hepatocyte proliferation and apoptosis. INHBC has been demonstrated to be significantly upregulated in obese insulin-resistant subjects (Choi, et al. Front Physiol. 2019; 10: 379). SNPs at the INHBC locus were identified as having genome-wide significance with serum urate levels, and also associated with an increase risk of gout (Yang Q, et al. 2010, Circ. Cardiovasc. Genet., 3:523-530). In addition, the INHBC locus also colocalizes with GWAS signals for estimated glomerular filtration rate (eGFR), a marker of renal function (Gudjonsson A. et al., 2022, Nature Communication, 13: 480).


The sequence of a human INHBC mRNA transcript can be found at, for example, GenBank Accession No. GI: 1519246544 (NM_005538.4; SEQ ID NO:49; reverse complement, SEQ ID NO:50). The sequence of mouse INHBC mRNA can be found at, for example, GenBank Accession No. GI: 1049480142 (NM_010565.4; SEQ ID NO:51; reverse complement, SEQ ID NO:52). The sequence of rat INHBC mRNA can be found at, for example, GenBank Accession No. GI: 59709462 (NM_022614.2; SEQ ID NO:53; reverse complement, SEQ ID NO:54). The predicted sequence of Macaca mulatta INHBC mRNA can be found at, for example, GenBank Accession No. GI: 1622845603 (XM_001115940.4; SEQ ID NO:55; reverse complement, SEQ ID NO:56).


Additional examples of INHBC mRNA sequences are readily available through publicly available databases, e.g., GenBank, UniProt, OMIM, and the Macaca genome project web site.


Further information on INHBC can be found, for example, at www.ncbi.nlm.nih.gov/gene/?term=INHBC.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term INHBC, as used herein, also refers to variations of the INHBC gene including variants provided in the SNP database. Numerous sequence variations within the INHBC gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?term=INHBC, the entire contents of which is incorporated herein by reference as of the date of filing this application).


As used herein, “target sequence” or “target nucleic acid” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a target gene, including mRNA that is a product of RNA processing of a primary transcription product. In one embodiment, the target portion of the sequence will be at least long enough to serve as a substrate for RNAi-directed cleavage at or near that portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a target gene. In one embodiment, the target sequence is within the protein coding region of the target gene. In another embodiment, the target sequence is within the 3′ UTR of the target gene. The target nucleic acid can be a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state.


The target sequence may be from about 19-36 nucleotides in length, e.g., about 19-30 nucleotides in length. For example, the target sequence can be about 19-30 nucleotides, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length. In certain embodiments, the target sequence is 19-23 nucleotides in length, optionally 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


“G,” “C,” “A,” “T,” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine, and uracil as a base, respectively. However, it will be understood that the term “ribonucleotide” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety (see, e.g., Table 1). The skilled person is well aware that guanine, cytosine, adenine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base can base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine can be replaced in the nucleotide sequences of dsRNA featured in the invention by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the invention.


The terms “iRNA”, “RNAi agent,” “iRNA agent,”, “RNA interference agent” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. iRNA directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). The iRNA modulates, e.g., inhibits, the expression of a INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene in a cell, e.g., a liver cell and/or adipocyte, within a subject, such as a mammalian subject.


In one embodiment, an RNAi agent of the invention includes a single stranded RNA that interacts with a target RNA sequence, e.g., a metabolic disorder-associated target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory it is believed that long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in one aspect the invention relates to a single stranded RNA (siRNA) generated within a cell and which promotes the formation of a RISC complex to effect silencing of the target gene, i.e., a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC). Accordingly, the term “siRNA” is also used herein to refer to an iRNA as described above.


In certain embodiments, the RNAi agent may be a single-stranded siRNA (ssRNAi) that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease, Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150:883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150:883-894.


In certain embodiments, an “iRNA” for use in the compositions, uses, and methods of the invention is a double stranded RNA and is referred to herein as a “double stranded RNA agent,” “double stranded RNA (dsRNA) molecule,” “dsRNA agent,” or “dsRNA”. The term “dsRNA”, refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary nucleic acid strands, referred to as having “sense” and “antisense” orientations with respect to a target RNA, i.e., a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC). In some embodiments of the invention, a double stranded RNA (dsRNA) triggers the degradation of a target RNA, e.g., an mRNA, through a post-transcriptional gene-silencing mechanism referred to herein as RNA interference or RNAi.


In general, the majority of nucleotides of each strand of a dsRNA molecule are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide or a modified nucleotide. In addition, as used in this specification, an “iRNA” may include ribonucleotides with chemical modifications; an iRNA may include substantial modifications at multiple nucleotides. As used herein, the term “modified nucleotide” refers to a nucleotide having, independently, a modified sugar moiety, a modified internucleotide linkage, or modified nucleobase, or any combination thereof. Thus, the term modified nucleotide encompasses substitutions, additions or removal of, e.g., a functional group or atom, to internucleoside linkages, sugar moieties, or nucleobases. The modifications suitable for use in the agents of the invention include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “iRNA” or “RNAi agent” for the purposes of this specification and claims.


In certain embodiments of the instant disclosure, inclusion of a deoxy-nucleotide if present within an RNAi agent can be considered to constitute a modified nucleotide.


The duplex region may be of any length that permits specific degradation of a desired target RNA through a RISC pathway, and may range from about 19 to 36 base pairs in length, e.g., about 19-30 base pairs in length, for example, about 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 base pairs in length, such as about 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain embodiments, the duplex region is 19-21 base pairs in length, e.g., 21 base pairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” A hairpin loop can comprise at least one unpaired nucleotide. In some embodiments, the hairpin loop can comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 23 or more unpaired nucleotides. In some embodiments, the hairpin loop can be 10 or fewer nucleotides. In some embodiments, the hairpin loop can be 8 or fewer unpaired nucleotides. In some embodiments, the hairpin loop can be 4-10 unpaired nucleotides. In some embodiments, the hairpin loop can be 4-8 nucleotides.


In certain embodiment, the two strands of double-stranded oligomeric compound can be linked together. The two strands can be linked to each other at both ends, or at one end only. By linking at one end is meant that 5′-end of first strand is linked to the 3′-end of the second strand or 3′-end of first strand is linked to 5′-end of the second strand. When the two strands are linked to each other at both ends, 5′-end of first strand is linked to 3′-end of second strand and 3′-end of first strand is linked to 5′-end of second strand. The two strands can be linked together by an oligonucleotide linker including, but not limited to, (N)n; wherein N is independently a modified or unmodified nucleotide and n is 3-23. In some embodiments, n is 3-10, e.g., 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, the oligonucleotide linker is selected from the group consisting of GNRA, (G)4, (U)4, and (dT)4, wherein N is a modified or unmodified nucleotide and R is a modified or unmodified purine nucleotide. Some of the nucleotides in the linker can be involved in base-pair interactions with other nucleotides in the linker. The two strands can also be linked together by a non-nucleoside linker, e.g. a linker described herein. It will be appreciated by one of skill in the art that any oligonucleotide chemical modifications or variations describe herein can be used in the oligonucleotide linker.


Hairpin and dumbbell type oligomeric compounds will have a duplex region equal to or at least 14, 15, 15, 16, 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region can be equal to or less than 200, 100, or 50, in length. In some embodiments, ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.


The hairpin oligomeric compounds can have a single strand overhang or terminal unpaired region, in some embodiments at the 3′, and in some embodiments on the antisense side of the hairpin. In some embodiments, the overhangs are 1-4, more generally 2-3 nucleotides in length. The hairpin oligomeric compounds that can induce RNA interference are also referred to as “shRNA” herein.


Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not be, but can be covalently connected. Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi may comprise one or more nucleotide overhangs. In one embodiment of the RNAi agent, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand comprises a 3′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In other embodiments, at least one strand of the RNAi agent comprises a 5′ overhang of at least 1 nucleotide. In certain embodiments, at least one strand comprises a 5′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In still other embodiments, both the 3′ and the 5′ end of one strand of the RNAi agent comprise an overhang of at least 1 nucleotide.


In certain embodiments, an iRNA agent of the invention is a dsRNA, each strand of which comprises 19-23 nucleotides, that interacts with a target RNA sequence, e.g., a metabolic disorder-associated target gene sequence, to direct cleavage of the target RNA.


In some embodiments, an iRNA of the invention is a dsRNA of 24-30 nucleotides that interacts with a target RNA sequence, e.g., a metabolic disorder-associated target gene mRNA sequence, to direct the cleavage of the target RNA.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of a double stranded iRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand, or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end, or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., 0-3, 1-3, 2-4, 2-5, 4-10, 5-10, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the antisense strand of a dsRNA has a 1-10 nucleotides, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In certain embodiments, the overhang on the sense strand or the antisense strand, or both, can include extended lengths longer than 10 nucleotides, e.g., 1-30 nucleotides, 2-30 nucleotides, 10-30 nucleotides, 10-25 nucleotides, 10-20 nucleotides, or 10-15 nucleotides in length. In certain embodiments, an extended overhang is on the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′ end of the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′ end of the sense strand of the duplex. In certain embodiments, an extended overhang is on the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the antisense strand of the duplex. In certain embodiments, one or more of the nucleotides in the extended overhang is replaced with a nucleoside thiophosphate. In certain embodiments, the overhang includes a self-complementary portion such that the overhang is capable of forming a hairpin structure that is stable under physiological conditions.


“Blunt” or “blunt end” means that there are no unpaired nucleotides at that end of the double stranded RNA agent, i.e., no nucleotide overhang. A “blunt ended” double stranded RNA agent is double stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule. The RNAi agents of the invention include RNAi agents with no nucleotide overhang at one end (i.e., agents with one overhang and one blunt end) or with no nucleotide overhangs at either end. Most often such a molecule will be double-stranded over its entire length.


The term “antisense strand” or “guide strand” refers to the strand of an iRNA, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence, e.g., a metabolic disorder-associated target gene mRNA.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, e.g., an INHBE nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, or 3 nucleotides of the 5′- or 3′-end of the iRNA. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the antisense strand. In some embodiments, the antisense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the target mRNA, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the target mRNA. In some embodiments, the antisense strand double stranded RNA agent of the invention includes no more than 4 mismatches with the sense strand, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the sense strand. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the sense strand. In some embodiments, the sense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the antisense strand, e.g., the sense strand includes 4, 3, 2, 1, or 0 mismatches with the antisense strand. In some embodiments, the nucleotide mismatch is, for example, within 5, 4, 3 nucleotides from the 3′-end of the iRNA. In another embodiment, the nucleotide mismatch is, for example, in the 3′-terminal nucleotide of the iRNA agent. In some embodiments, the mismatch(s) is not in the seed region.


Thus, an RNAi agent as described herein can contain one or more mismatches to the target sequence. In one embodiment, an RNAi agent as described herein contains no more than 3 mismatches (i.e., 3, 2, 1, or 0 mismatches). In one embodiment, an RNAi agent as described herein contains no more than 2 mismatches. In one embodiment, an RNAi agent as described herein contains no more than 1 mismatch. In one embodiment, an RNAi agent as described herein contains 0 mismatches. In certain embodiments, if the antisense strand of the RNAi agent contains mismatches to the target sequence, the mismatch can optionally be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, in such embodiments, for a 23 nucleotide RNAi agent, the strand which is complementary to a region of a metabolic disorder-associated target gene, generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an RNAi agent containing a mismatch to a target sequence is effective in inhibiting the expression of a target gene. Consideration of the efficacy of RNAi agents with mismatches in inhibiting expression of an INHBE, ACVR1C, PLIN1, PDE3B, or INHBC target gene is important, especially if the particular region of complementarity in the target gene is known to have polymorphic sequence variation within the population.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an iRNA that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


As used herein, “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or 1 unmodified nucleotides.


As used herein, the term “cleavage region” refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions can include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing (see, e.g., “Molecular Cloning: A Laboratory Manual, Sambrook, et al. (1989) Cold Spring Harbor Laboratory Press). Other conditions, such as physiologically relevant conditions as can be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an iRNA, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they can form one or more, but generally not more than 5, 4, 3, or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression, in vitro or in vivo. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, can also include, or be formed entirely from, non-Watson-Crick base pairs or base pairs formed from non-natural and modified nucleotides, in so far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogsteen base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein can be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between two oligonucleotides or polynucleotides, such as the antisense strand of a double stranded RNA agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding a metabolic disorder-associated target gene). For example, a polynucleotide is complementary to at least a part of a metabolic disorder-associated target gene mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding a metabolic disorder-associated target gene.


Accordingly, in some embodiments, the antisense strand polynucleotides disclosed herein are fully complementary to the target gene sequence.


In some embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target gene sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 1, 3, 5, or 7 for INHBE, or a fragment of SEQ ID NOs: 1, 3, 5, or 7, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target INHBE sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 1 selected from the group of nucleotides 400-422, 410-432, 518-540, 519-541, 640-662, 1430-1452, 1863-1885, or 1864-1886 of SEQ ID NO: 1, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target INHBE sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 2-3, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 2-3, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target INHBE sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 2, 4, 6, or 8, or a fragment of any one of SEQ ID NOs: 2, 4, 6, or 8, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target INHBE sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 2-3, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 2-3, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, the sense and antisense strands are selected from any one of duplexes AD-1706583, AD-1711744, AD-1706593, AD-1708473, AD-1706662, AD-1706761, AD-1707306, AD-1707639, and AD-1707640.


In some embodiments, the sense and antisense strands are selected from duplex AD-1706583.


In some embodiments, the sense and antisense strands are selected from duplex AD-1711744.


In some embodiments, the sense and antisense strands are selected from duplex AD-1706593.


In some embodiments, the sense and antisense strands are selected from duplex AD-1708473.


In some embodiments, the sense and antisense strands are selected from duplex AD-1706662.


In some embodiments, the sense and antisense strands are selected from duplex AD-1706761.


In some embodiments, the sense and antisense strands are selected from duplex AD-1707306.


In some embodiments, the sense and antisense strands are selected from duplex AD-1707639.


In some embodiments, the sense and antisense strands are selected from duplex AD-1707640.


In other embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target gene sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 9, 11, 13, 15, 17, 19, 21, or 23 for ACVR1C, or a fragment of SEQ ID NOs: 9, 11, 13, 15, 17, 19, 21, or 23, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target ACVR1C sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 4-7, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 4-7, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target ACVR1C sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, or 24, or a fragment of any one of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, or 24, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target ACVR1C sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 4-7, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 4-7, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target gene sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs:25, 27, 29, 31, 33, or 35 for PLIN1, or a fragment of SEQ ID NOs: 25, 27, 29, 31, 33, or 35, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target PLIN1 sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 8-11, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 8-11, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target PLIN1 sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 26, 28, 30, 32, 34, or 36, or a fragment of any one of SEQ ID NOs: 26, 28, 30, 32, 34, or 36, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target PLIN1 sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 8-11, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 8-11, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target gene sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs:37, 39, 41, 43, 45, or 47 for PDE3B, or a fragment of SEQ ID NOs: 37, 39, 41, 43, 45, or 47, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target PDE3B sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 12-15, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 12-15, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target PDE3B sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 38, 40, 42, 44, 46, or 48, or a fragment of any one of SEQ ID NOs: 38, 40, 42, 44, 46, or 48, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target PDE3B sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 12-15, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 12-15, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense strand polynucleotides disclosed herein are substantially complementary to the target gene sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs:49, 51, 53, or 55 for INHBC, or a fragment of SEQ ID NOs: 49, 51, 53, or 55, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target INHBC sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of Tables 16-17, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 16-17, such as about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target INHBC sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 50, 52, 54, or 56, or a fragment of any one of SEQ ID NOs: 50, 52, 54, or 56, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target INHBC sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 16-17, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 16-17, such as about 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or about 99% complementary.


In some embodiments, the double-stranded region of a double-stranded iRNA agent is equal to or at least, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30 or more nucleotide pairs in length.


In some embodiments, the antisense strand of a double-stranded iRNA agent is equal to or at least 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In some embodiments, the sense strand of a double-stranded iRNA agent is equal to or at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each independently 15 to 30 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each independently 19 to 25 nucleotides in length.


In one embodiment, the sense and antisense strands of the double-stranded iRNA agent are each independently 21 to 23 nucleotides in length.


In one embodiment, the sense strand of the iRNA agent is 21-nucleotides in length, and the antisense strand is 23-nucleotides in length, wherein the strands form a double-stranded region of 21 consecutive base pairs having a 2-nucleotide long single stranded overhangs at the 3′-end.


In general, an “iRNA” includes ribonucleotides with chemical modifications. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a dsRNA molecule, are encompassed by “iRNA” for the purposes of this specification and claims.


In certain embodiments of the instant disclosure, inclusion of a deoxy-nucleotide if present within an RNAi agent can be considered to constitute a modified nucleotide.


In an aspect of the invention, an agent for use in the methods and compositions of the invention is a single-stranded antisense oligonucleotide molecule that inhibits a target mRNA via an antisense inhibition mechanism. The single-stranded antisense oligonucleotide molecule is complementary to a sequence within the target mRNA. The single-stranded antisense oligonucleotides can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. et al., (2002) Mol Cancer Ther 1:347-355. The single-stranded antisense oligonucleotide molecule may be about 14 to about 30 nucleotides in length and have a sequence that is complementary to a target sequence. For example, the single-stranded antisense oligonucleotide molecule may comprise a sequence that is at least about 14, 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from any one of the antisense sequences described herein.


The phrase “contacting a cell with an iRNA,” such as a dsRNA, as used herein, includes contacting a cell by any possible means. Contacting a cell with an iRNA includes contacting a cell in vitro with the iRNA or contacting a cell in vivo with the iRNA. The contacting may be done directly or indirectly. Thus, for example, the iRNA may be put into physical contact with the cell by the individual performing the method, or alternatively, the iRNA may be put into a situation that will permit or cause it to subsequently come into contact with the cell.


Contacting a cell in vitro may be done, for example, by incubating the cell with the iRNA. Contacting a cell in vivo may be done, for example, by injecting the iRNA into or near the tissue where the cell is located, or by injecting the iRNA into another area, e.g., the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the iRNA may contain or be coupled to a targeting ligand, e.g., GalNAc, that directs the iRNA to a site of interest, e.g., the liver. In other embodiments, the RNAi agent may contain or be coupled to one or more C22 hydrocarbon chains and one or more GalNAc derivatives. In other embodiments, the RNAi agent contains or is coupled to one or more C22 hydrocarbon chains and does not contain or is not coupled to one or more GalNAc derivatives. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


In certain embodiments, contacting a cell with an iRNA includes “introducing” or “delivering the iRNA into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an iRNA can occur through unaided diffusion or active cellular processes, or by auxiliary agents or devices. Introducing an iRNA into a cell may be in vitro or in vivo. For example, for in vivo introduction, iRNA can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or are known in the art.


The term “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., an iRNA or a plasmid from which an iRNA is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, a “subject” is an animal, such as a mammal, including a primate (such as a human, a non-human primate, e.g., a monkey, and a chimpanzee), a non-primate (such as a cow, a pig, a horse, a goat, a rabbit, a sheep, a hamster, a guinea pig, a cat, a dog, a rat, or a mouse), or a bird that expresses the target gene, either endogenously or heterologously. In an embodiment, the subject is a human, such as a human being treated or assessed for a disease or disorder that would benefit from reduction in metabolic disorder-associated target gene expression; a human at risk for a disease or disorder that would benefit from reduction in metabolic disorder-associated target gene expression; a human having a disease or disorder that would benefit from reduction in metabolic disorder-associated target gene expression; or human being treated for a disease or disorder that would benefit from reduction in metabolic disorder-associated target gene expression as described herein. In some embodiments, the subject is a female human. In other embodiments, the subject is a male human. In one embodiment, the subject is an adult subject. In another embodiment, the subject is a pediatric subject.


As used herein, the terms “treating” or “treatment” refer to a beneficial or desired result, such as reducing at least one sign or symptom of a metabolic disorder in a subject. Treatment also includes a reduction of one or more sign or symptoms associated with unwanted metabolic disorder-associated target gene expression; diminishing the extent of unwanted metabolic disorder-associated target gene activation or stabilization; amelioration or palliation of unwanted metabolic disorder-associated target gene activation or stabilization. “Treatment” can also mean prolonging survival as compared to expected survival in the absence of treatment.


The term “lower” in the context of the level a metabolic disorder-associated target gene in a subject or a disease marker or symptom refers to a statistically significant decrease in such level. The decrease can be, for example, at least 10%, 15%, 20%, 25%, 30%, %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In certain embodiments, a decrease is at least 20%. In certain embodiments, the decrease is at least 50% in a disease marker, e.g., protein or gene expression level. “Lower” in the context of the level of a metabolic disorder-associated target gene in a subject is a decrease to a level accepted as within the range of normal for an individual without such disorder. In certain embodiments, “lower” is the decrease in the difference between the level of a marker or symptom for a subject suffering from a disease and a level accepted within the range of normal for an individual. The term “lower” can also be used in association with normalizing a symptom of a disease or condition, i.e. decreasing the difference between a level in a subject suffering from a metabolic disorder towards or to a level in a normal subject not suffering from an metabolic disorder. As used herein, if a disease is associated with an elevated value for a symptom, “normal” is considered to be the upper limit of normal. If a disease is associated with a decreased value for a symptom, “normal” is considered to be the lower limit of normal.


As used herein, “prevention” or “preventing,” when used in reference to a disease, disorder or condition thereof, may be treated or ameliorated by a reduction in expression of a metabolic disorder-associated target gene, refers to a reduction in the likelihood that a subject will develop a symptom associated with such a disease, disorder, or condition, e.g., a symptom of a metabolic disorder, e.g., diabetes. The failure to develop a disease, disorder or condition, or the reduction in the development of a symptom associated with such a disease, disorder or condition (e.g., by at least about 10% on a clinically accepted scale for that disease or disorder), or the exhibition of delayed symptoms delayed (e.g., by days, weeks, months or years) is considered effective prevention.


The treatment and prophylactic methods of the invention are useful for treating any disease or disorder that is caused by, or associated with INHBE, ACVR1C, PLIN1, PDE3B, and/or INHBC gene expression or INHBE, ACVR1C, PLIN1, PDE3B, and/or INHBC protein production and includes a disease, disorder or condition that would benefit from a decrease in INHBE, ACVR1C, PLIN1, PDE3B, and/or INHBC gene expression, replication, or protein activity such as a metabolic disorder. In some embodiments, the metabolic disorder is metabolic syndrome.


A “metabolic disorder” is a disorder that disrupts normal metabolism, the process of converting food to energy on a cellular level. Metabolic diseases affect the ability of the cell to perform critical biochemical reactions that involve the processing or transport of proteins (amino acids), carbohydrates (sugars and starches), or lipids (fatty acids).


For example, metabolic disorders may be associated with a body fat distribution characterized by higher accumulation of fat around the waist (such as greater abdominal fat or larger waist circumference) and/or lower accumulation of fat around the hips (such as lower gluteofemoral fat or smaller hip circumference), resulting in a greater waist-to-hip ratio (WHR), and higher cardio-metabolic risk independent of body mass index (BMI).


Non-limiting examples of metabolic diseases include disorders of carbohydrates, e.g., diabetes, type I diabetes, type II diabetes, galactosemia, hereditary fructose intolerance, fructose 1,6-diphosphatase deficiency, glycogen storage disorders, congenital disorders of glycosylation, insulin resistance, insulin insufficiency, hyperinsulinemia, impaired glucose tolerance (IGT), abnormal glycogen metabolism; disorders of amino acid metabolism, e.g., maple syrup urine disease (MSUD), or homocystinuria; disorder of organic acid metabolism, e.g., methylmalonic aciduria, 3-methylglutaconic aciduria-Barth syndrome, glutaric aciduria or 2-hydroxyglutaric aciduria—D and L forms; disorders of fatty acid beta-oxidation, e.g., medium-chain acyl-CoA dehydrogenase deficiency (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD), very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD); disorders of lipid metabolism, e.g., GM1 Gangliosidosis, Tay-Sachs Disease, Sandhoff Disease, Fabry Disease, Gaucher Disease, Niemann-Pick Disease, Krabbe Disease, Mucolipidoses, or Mucopolysaccharidoses; disorders of lipid distribution and/or storage, e.g., lipodystrophy, mitochondrial disorders, e.g., mitochondrial cardiomyopathies; Leigh disease; mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS); myoclonic epilepsy with ragged-red fibers (MERRF); neuropathy, ataxia, and retinitis pigmentosa (NARP); Barth syndrome; peroxisomal disorders, e.g., Zellweger Syndrome (cerebrohepatorenal syndrome), X-Linked Adrenoleukodystrophy or Refsum Disease.


In certain embodiment, metabolic disorders are associated with body fat distribution and include, but are not limited to metabolic syndrome, type 2 diabetes, hyperlipidemia or dyslipidemia (high or altered circulating levels of low-density lipoprotein cholesterol (LDL-C), triglycerides, very low-density lipoprotein cholesterol (VLDL-C), apolipoprotein B or other lipid fractions), obesity (particularly abdominal obesity), lipodystrophy (such as an inability to deposit fat in adipose depots regionally (partial lipodystrophy) or in the whole body (lipoatrophy)), insulin resistance or higher or altered insulin levels at fasting or during a metabolic challenge, liver fat deposition or fatty liver disease and their complications (such as, for example, cirrhosis, fibrosis, or inflammation of the liver), nonalcoholic steatohepatitis, other types of liver inflammation, higher or elevated or altered liver enzyme levels or other markers of liver damage, inflammation or fat deposition in the liver, higher blood pressure and/or hypertension, higher blood sugar or glucose or hyperglycemia, metabolic syndrome, coronary artery disease, and other atherosclerotic conditions, and the complications of each of the aforementioned conditions.


In one embodiment, a metabolic disorder is metabolic syndrome. The term “metabolic syndrome,” as used herein, is disorder that includes a clustering of components that reflect overnutrition, sedentary lifestyles, genetic factors, increasing age, and resultant excess adiposity. Metabolic syndrome includes the clustering of abdominal obesity, insulin resistance, dyslipidemia, and elevated blood pressure and is associated with other comorbidities including the prothrombotic state, proinflammatory state, nonalcoholic fatty liver disease, and reproductive disorders. The prevalence of the metabolic syndrome has increased to epidemic proportions not only in the United States and the remainder of the urbanized world but also in developing nations. Metabolic syndrome is associated with an approximate doubling of cardiovascular disease risk and a 5-fold increased risk for incident type 2 diabetes mellitus.


Abdominal adiposity (e.g., a large waist circumference (high waist-to-hip ratio)), high blood pressure, insulin resistance and dislipidemia are central to metabolic syndrome and its individual components (e.g., central obesity, fasting blood glucose (FBG)/pre-diabetes/diabetes, hypercholesterolemia, hypertriglyceridemia, and hypertension).


In one embodiment, a metabolic disorder is a disorder of carbohydrates. In one embodiment, the disorder of carbohydrates is diabetes.


As used herein, the term “diabetes” refers to a group of metabolic disorders characterized by high blood sugar (glucose) levels which result from defects in insulin secretion or action, or both. There are two most common types of diabetes, namely type 1 diabetes and type 2 diabetes, which both result from the body's inability to regulate insulin. Insulin is a hormone released by the pancreas in response to increased levels of blood sugar (glucose) in the blood.


The term “type I diabetes,” as used herein, refers to a chronic disease that occurs when the pancreas produces too little insulin to regulate blood sugar levels appropriately. Type I diabetes is also referred to as insulin-dependent diabetes mellitus, IDDM, and juvenile onset diabetes. People with type I diabetes (insulin-dependent diabetes) produce little or no insulin at all. Although about 6 percent of the United States population has some form of diabetes, only about 10 percent of all diabetics have type I disorder. Most people who have type I diabetes developed the disorder before age 30. Type 1 diabetes represents the result of a progressive autoimmune destruction of the pancreatic β-cells with subsequent insulin deficiency. More than 90 percent of the insulin-producing cells (beta cells) of the pancreas are permanently destroyed. The resulting insulin deficiency is severe, and to survive, a person with type I diabetes must regularly inject insulin.


In type II diabetes (also referred to as noninsulin-dependent diabetes mellitus, NDDM), the pancreas continues to manufacture insulin, sometimes even at higher than normal levels. However, the body develops resistance to its effects, resulting in a relative insulin deficiency. Type II diabetes may occur in children and adolescents but usually begins after age 30 and becomes progressively more common with age: about 15 percent of people over age 70 have type II diabetes. Obesity is a risk factor for type II diabetes, and 80 to 90 percent of the people with this disorder are obese.


In some embodiments, diabetes includes pre-diabetes. “Pre-diabetes” refers to one or more early diabetic conditions including impaired glucose utilization, abnormal or impaired fasting glucose levels, impaired glucose tolerance, impaired insulin sensitivity and insulin resistance. Prediabetes is a major risk factor for the development of type 2 diabetes mellitus, cardiovascular disease and mortality. Much focus has been given to developing therapeutic interventions that prevent the development of type 2 diabetes by effectively treating prediabetes.


Diabetes can be diagnosed by the administration of a glucose tolerance test. Clinically, diabetes is often divided into several basic categories. Primary examples of these categories include, autoimmune diabetes mellitus, non-insulin-dependent diabetes mellitus (type 1 NDDM), insulin-dependent diabetes mellitus (type 2 IDDM), non-autoimmune diabetes mellitus, non-insulin-dependent diabetes mellitus (type 2 NIDDM), and maturity-onset diabetes of the young (MODY). A further category, often referred to as secondary, refers to diabetes brought about by some identifiable condition which causes or allows a diabetic syndrome to develop. Examples of secondary categories include, diabetes caused by pancreatic disease, hormonal abnormalities, drug- or chemical-induced diabetes, diabetes caused by insulin receptor abnormalities, diabetes associated with genetic syndromes, and diabetes of other causes. (see e.g., Harrison's (1996) 14th ed., New York, McGraw-Hill).


In one embodiment, a metabolic disorder is a lipid metabolism disorder. As used herein, a “lipid metabolism disorder” or “disorder of lipid metabolism” refers to any disorder associated with or caused by a disturbance in lipid metabolism. This term also includes any disorder, disease or condition that can lead to hyperlipidemia, or condition characterized by abnormal elevation of levels of any or all lipids and/or lipoproteins in the blood. This term refers to an inherited disorder, such as familial hypertriglyceridemia, familial partial lipodystrophy type 1 (FPLD1), or an induced or acquired disorder, such as a disorder induced or acquired as a result of a disease, disorder or condition (e.g., renal failure), a diet, or intake of certain drugs (e.g., as a result of highly active antiretroviral therapy (HAART) used for treating, e.g., AIDS or HIV). This term also refers to a disorder of fat distribution/storage, e.g., lipodystrophy.


Additional examples of disorders of lipid metabolism include, but are not limited to, atherosclerosis, dyslipidemia, hypertriglyceridemia (including drug-induced hypertriglyceridemia, diuretic-induced hypertriglyceridemia, alcohol-induced hypertriglyceridemia, β-adrenergic blocking agent-induced hypertriglyceridemia, estrogen-induced hypertriglyceridemia, glucocorticoid-induced hypertriglyceridemia, retinoid-induced hypertriglyceridemia, cimetidine-induced hypertriglyceridemia, and familial hypertriglyceridemia), acute pancreatitis associated with hypertriglyceridemia, chylomicron syndrome, familial chylomicronemia, Apo-E deficiency or resistance, LPL deficiency or hypoactivity, hyperlipidemia (including familial combined hyperlipidemia), hypercholesterolemia, lipodystrophy, gout associated with hypercholesterolemia, xanthomatosis (subcutaneous cholesterol deposits), hyperlipidemia with heterogeneous LPL deficiency, hyperlipidemia with high LDL and heterogeneous LPL deficiency, fatty liver disease, or non-alcoholic stetohepatitis (NASH).


Cardiovascular diseases are also considered “metabolic disorders”, as defined herein. These diseases may include coronary artery disease (also called ischemic heart disease), hypertension, inflammation associated with coronary artery disease, restenosis, peripheral vascular diseases, and stroke.


Kidney diseases are also considered “bolic disorders”, as defined herein. Such diseases may include chronic kidney disease, diabetic nephrophathy, diabetic kidney disease, or gout.


Disorders related to body weight are also considered “metabolic disorders”, as defined herein. Such disorders may include obesity, hypo-metabolic states, hypothyroidism, uremia, and other conditions associated with weight gain (including rapid weight gain), weight loss, maintenance of weight loss, or risk of weight regain following weight loss.


Blood sugar disorders are further considered “metabolic disorders”, as defined herein. Such disorders may include diabetes, hypertension, and polycystic ovarian syndrome related to insulin resistance. Other exemplary disorders of metabolic disorders may also include renal transplantation, nephrotic syndrome, Cushing's syndrome, acromegaly, systemic lupus erythematosus, dysglobulinemia, lipodystrophy, glycogenosis type I, and Addison's disease.


In one embodiment, a metabolic disorder is primary hypertension. “Primary hypertension” is a result of environmental or genetic causes (e.g., a result of no obvious underlying medical cause).


In one embodiment, a metabolic disorder is secondary hypertension. “Secondary hypertension” has an identifiable underlying disorder which can be of multiple etiologies, including renal, vascular, and endocrine causes, e.g., renal parenchymal disease (e.g., polycystic kidneys, glomerular or interstitial disease), renal vascular disease (e.g., renal artery stenosis, fibromuscular dysplasia), endocrine disorders (e.g., adrenocorticosteroid or mineralocorticoid excess, pheochromocytoma, hyperthyroidism or hypothyroidism, growth hormone excess, hyperparathyroidism), coarctation of the aorta, or oral contraceptive use.


In one embodiment, a metabolic disorder is resistant hypertension. “Resistant hypertension” is blood pressure that remains above goal (e.g., above 130 mm Hg systolic or above 90 diastolic) in spite of concurrent use of three antihypertensive agents of different classes, one of which is a thiazide diuretic. Subjects whose blood pressure is controlled with four or more medications are also considered to have resistant hypertension.


Additional diseases or conditions related to metabolic disorders that would be apparent to the skilled artisan and are within the scope of this disclosure.


“Therapeutically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having a metabolic disorder, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating, or maintaining the existing disease or one or more symptoms of disease). The “therapeutically effective amount” may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the subject to be treated.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having a metabolic disorder, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


A “therapeutically-effective amount” or “prophylactically effective amount” also includes an amount of an RNAi agent that produces some desired effect at a reasonable benefit/risk ratio applicable to any treatment. The iRNA employed in the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human subjects and animal subjects without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject being treated. Such carriers are known in the art. Pharmaceutically acceptable carriers include carriers for administration by injection.


The term “sample,” as used herein, includes a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs, or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from the liver (e.g., whole liver or certain segments of liver or certain types of cells in the liver, such as, e.g., hepatocytes). In some embodiments, a “sample derived from a subject” refers to urine obtained from the subject. A “sample derived from a subject” can refer to blood or blood derived serum or plasma from the subject.


II. iRNAs of the Invention

The present invention provides iRNAs which inhibit the expression of a metabolic disorder-associated target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC. In certain embodiments, the iRNA includes double stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of a metabolic disorder-associated target gene in a cell (e.g., an adipocyte and/or a hepatocyte), such as a cell within a subject, e.g., a mammal, such as a human susceptible to developing a metabolic disorder, e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight. The dsRNAi agent includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of a metabolic disorder-associated target gene. The region of complementarity is about 19-30 nucleotides in length (e.g., about 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, or 19 nucleotides in length).


Upon contact with a cell expressing the target gene, the iRNA inhibits the expression of the target gene (e.g., a human, a primate, a non-primate, or a rat INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene) by at least about 50% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by immunofluorescence analysis, using, for example, western blotting or flow cytometric techniques. In certain embodiments, inhibition of expression is determined by the qPCR method provided in the examples herein with the siRNA at, e.g., a 10 nM concentration, in an appropriate organism cell line provided therein. In certain embodiments, inhibition of expression in vivo is determined by knockdown of the human gene in a rodent expressing the human gene, e.g., a mouse or an AAV-infected mouse expressing the human target gene, e.g., when administered as single dose, e.g., at 3 mg/kg at the nadir of RNA expression.


A dsRNA includes two RNA strands that are complementary and hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of an INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


Generally, the duplex structure is 15 to 30 base pairs in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain embodiments, the duplex structure is 18 to 25 base pairs in length, e.g., 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-25, 20-24, 20-23, 20-22, 20-21, 21-25, 21-24, 21-23, 21-22, 22-25, 22-24, 22-23, 23-25, 23-24 or 24-25 base pairs in length, for example, 19-21 basepairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Similarly, the region of complementarity to the target sequence is 15 to 30 nucleotides in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, for example 19-23 nucleotides in length or 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


In some embodiments, the duplex structure is 19 to 30 base pairs in length. Similarly, the region of complementarity to the target sequence is 19 to 30 nucleotides in length.


In some embodiments, the dsRNA is about 19 to about 23 nucleotides in length, or about 25 to about 30 nucleotides in length. In general, the dsRNA is long enough to serve as a substrate for the Dicer enzyme. For example, it is well-known in the art that dsRNAs longer than about 21-23 nucleotides in length may serve as substrates for Dicer. As the ordinarily skilled person will also recognize, the region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to allow it to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway).


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of about 19 to about 30 base pairs, e.g., about 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs. Thus, in one embodiment, to the extent that it becomes processed to a functional duplex, of e.g., 15-30 base pairs, that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in one embodiment, a miRNA is a dsRNA. In another embodiment, a dsRNA is not a naturally occurring miRNA. In another embodiment, an iRNA agent useful to target INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein can further include one or more single-stranded nucleotide overhangs, e.g., 1-4, 2-4, 1-3, 2-3, 1, 2, 3, or 4 nucleotides. dsRNAs having at least one nucleotide overhang can have superior inhibitory properties relative to their blunt-ended counterparts. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand, or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end, or both ends of an antisense or sense strand of a dsRNA.


A dsRNA can be synthesized by standard methods known in the art. Double stranded RNAi compounds of the invention may be prepared using a two-step procedure. First, the individual strands of the double stranded RNA molecule are prepared separately. Then, the component strands are annealed. The individual strands of the siRNA compound can be prepared using solution-phase or solid-phase organic synthesis or both. Organic synthesis offers the advantage that the oligonucleotide strands comprising unnatural or modified nucleotides can be easily prepared. Similarly, single-stranded oligonucleotides of the invention can be prepared using solution-phase or solid-phase organic synthesis or both.


In an aspect, a dsRNA of the invention includes at least two nucleotide sequences, a sense sequence and an anti-sense sequence. The sense strand is selected from the group of sequences provided in any one of Tables 2-17, 19 and 20, and the corresponding antisense strand of the sense strand is selected from the group of sequences of any one of Tables 2-17, 19 and 20. In this aspect, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated in the expression of a-associated target gene. As such, in this aspect, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand in any one of Tables 2-17, 19 and 20, and the second oligonucleotide is described as the corresponding antisense strand of the sense strand in any one of Tables 2-17, 19 and 20.


In certain embodiments, the substantially complementary sequences of the dsRNA are contained on separate oligonucleotides. In other embodiments, the substantially complementary sequences of the dsRNA are contained on a single oligonucleotide.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of any one of duplexes AD-1706583, AD-1711744, AD-1706593, AD-1708473, AD-1706662, AD-1706761, AD-1707306, AD-1707639, and AD-1707640.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1706583.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1711744.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1706593.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1708473.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1706662.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1706761.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1707306.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1707639.


In some embodiments, the sense or antisense strands are selected from the sense or antisense strand of duplex AD-1707640.


It will be understood that, although the sequences in, for example, Table 2, are not described as modified or conjugated sequences, the RNA of the iRNA of the invention e.g., a dsRNA of the invention, may comprise any one of the sequences set forth in any one of Tables 2-17, 19 and 20 that is un-modified, un-conjugated, or modified or conjugated differently than described therein. In other words, the invention encompasses dsRNA of Tables 2-17, 19 and 20 which are un-modified, un-conjugated, modified, or conjugated, as described herein.


The skilled person is well aware that dsRNAs having a duplex structure of about 20 to 23 base pairs, e.g., 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., EMBO 2001, 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can also be effective (Chu and Rana (2007) RNA 14:1714-1719; Kim et al. (2005) Nat Biotech 23:222-226). In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in any one of Tables 2-17, 19 and 20. dsRNAs described herein can include at least one strand of a length of minimally 21 nucleotides. It can be reasonably expected that shorter duplexes having any one of the sequences in any one of Tables 2-17, 19 and 20 minus only a few nucleotides on one or both ends can be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a sequence of at least 19, 20, or more contiguous nucleotides derived from any one of the sequences of any one of Tables 2-17, 19 and 20, and differing in their ability to inhibit the expression of an INHBE gene by not more than about 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated to be within the scope of the present invention.


In addition, the RNAs provided in Tables 2-17, 19 and 20 identify a site(s) in a metabolic disorder-associated target gene transcript that is susceptible to RISC-mediated cleavage. As such, the present invention further features iRNAs that target within one of these sites. As used herein, an iRNA is said to target within a particular site of an RNA transcript if the iRNA promotes cleavage of the transcript anywhere within that particular site. Such an iRNA will generally include at least about 19 contiguous nucleotides from any one of the sequences provided in any one of Tables 2-17, 19 and 20 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a metabolic disorder-associated target gene.


III. Modifications for the RNAi Agents of the Invention

In certain embodiments, the RNA of the iRNA of the invention e.g., a dsRNA, is un modified, and does not comprise, e.g., chemical modifications or conjugations known in the art and described herein. In other embodiments, the RNA of an iRNA of the invention, e.g., a dsRNA, is chemically modified to enhance stability or other beneficial characteristics. In certain embodiments of the invention, substantially all of the nucleotides of an iRNA of the invention are modified. In other embodiments of the invention, all of the nucleotides of an iRNA or substantially all of the nucleotides of an iRNA are modified, i.e., not more than 5, 4, 3, 2, or 1 unmodified nucleotides are present in a strand of the iRNA.


In some embodiments, the dsRNA agents of the invention comprise at least one nucleic acid modification described herein. For example, at least one modification selected from the group consisting of modified internucleoside linkage, modified nucleobase, modified sugar, and any combinations thereof. Without limitations, such a modification can be present anywhere in the dsRNA agent of the invention. For example, the modification can be present in one of the RNA molecules.


In one embodiment, the dsRNA agents of the disclosure comprise one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand and do not comprise additional chemical modifications known in the art and described herein, in the remaining positions of the sense and anti-sense strands.


In some embodiments, the dsRNA agents of the invention comprise one or more C22 hydrocarbon chains conjugated to one or more internal positions on at least one strand, and comprise at least one additional nucleic acid modification described herein. For example, at least one modification selected from the group consisting of modified internucleoside linkage, modified nucleobase, modified sugar, and any combinations thereof. Without limitations, such a modification can be present anywhere in the dsRNA agent of the invention. For example, the modification can be present in one of the RNA molecules.


In one embodiment, the dsRNA agents of the disclosure comprise one or more targeting ligands, e.g., one or more GalNAc derivatives, and do not comprise additional chemical modifications known in the art and described herein, in the remaining positions of the sense and anti-sense strands.


In some embodiments, the dsRNA agents of the invention comprise one or more targeting ligands, e.g., one or more GalNAc derivatives, and comprise at least one additional nucleic acid modification described herein. For example, at least one modification selected from the group consisting of modified internucleoside linkage, modified nucleobase, modified sugar, and any combinations thereof. Without limitations, such a modification can be present anywhere in the dsRNA agent of the invention. For example, the modification can be present in one of the RNA molecules.


Modifications include, for example, end modifications, e.g., 5′-end modifications (phosphorylation, conjugation, inverted linkages) or 3′-end modifications (conjugation, DNA nucleotides, inverted linkages, etc.); base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases; sugar modifications (e.g., at the 2′-position or 4′-position) or replacement of the sugar; or backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNAi agents useful in the embodiments described herein include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In some embodiments, a modified RNAi agent will have a phosphorus atom in its internucleoside backbone.


A. Nucleobase Modifications

The naturally occurring base portion of a nucleoside is typically a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. For those nucleosides that include a pentofuranosyl sugar, a phosphate group can be linked to the 2′, 3′ or 5′ hydroxyl moiety of the sugar. In forming oligonucleotides, those phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The naturally occurring linkage or backbone of RNA and of DNA is a 3′ to 5′ phosphodiester linkage.


In addition to “unmodified” or “natural” nucleobases such as the purine nucleobases adenine (A) and guanine (G), and the pyrimidine nucleobases thymine (T), cytosine (C) and uracil (U), many modified nucleobases or nucleobase mimetics known to those skilled in the art are amenable with the compounds described herein. The unmodified or natural nucleobases can be modified or replaced to provide iRNAs having improved properties. For example, nuclease resistant oligonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine) and any one of the oligomer modifications described herein. Alternatively, substituted or modified analogs of any of the above bases and “universal bases” can be employed. When a natural base is replaced by a non-natural and/or universal base, the nucleotide is said to comprise a modified nucleobase and/or a nucleobase modification herein. Modified nucleobase and/or nucleobase modifications also include natural, non-natural and universal bases, which comprise conjugated moieties, e.g. a ligand described herein. Preferred conjugate moieties for conjugation with nucleobases include cationic amino groups which can be conjugated to the nucleobase via an appropriate alkyl, alkenyl or a linker with an amide linkage.


An oligomeric compound described herein can also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Exemplary modified nucleobases include, but are not limited to, other synthetic and natural nucleobases such as inosine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine, 2-(halo)adenine, 2-(alkyl)adenine, 2-(propyl)adenine, 2-(amino)adenine, 2-(aminoalkyll)adenine, 2-(aminopropyl)adenine, 2-(methylthio)-N6-(isopentenyl)adenine, 6-(alkyl)adenine, 6-(methyl)adenine, 7-(deaza)adenine, 8-(alkenyl)adenine, 8-(alkyl)adenine, 8-(alkynyl)adenine, 8-(amino)adenine, 8-(halo)adenine, 8-(hydroxyl)adenine, 8-(thioalkyl)adenine, 8-(thiol)adenine, N6-(isopentyl)adenine, N6-(methyl)adenine, N6, N6-(dimethyl)adenine, 2-(alkyl)guanine, 2-(propyl)guanine, 6-(alkyl)guanine, 6-(methyl)guanine, 7-(alkyl)guanine, 7-(methyl)guanine, 7-(deaza)guanine, 8-(alkyl)guanine, 8-(alkenyl)guanine, 8-(alkynyl)guanine, 8 (amino)guanine, 8-(halo)guanine, 8-(hydroxyl)guanine, 8-(thioalkyl)guanine, 8-(thiol)guanine, N-(methyl)guanine, 2-(thio)cytosine, 3-(deaza)-5-(aza)cytosine, 3-(alkyl)cytosine, 3-(methyl)cytosine, 5-(alkyl)cytosine, 5-(alkynyl)cytosine, 5-(halo)cytosine, 5-(methyl)cytosine, 5-(propynyl)cytosine, 5-(propynyl)cytosine, 5-(trifluoromethyl)cytosine, 6-(azo)cytosine, N4-(acetyl)cytosine, 3-(3-amino-3-carboxypropyl)uracil, 2-(thio)uracil, 5-(methyl)-2-(thio)uracil, 5-(methylaminomethyl)-2-(thio)uracil, 4-(thio)uracil, 5-(methyl)-4-(thio)uracil, 5-(methylaminomethyl)-4-(thio)uracil, 5-(methyl)-2,4-(dithio)uracil, 5-(methylaminomethyl)-2,4-(dithio)uracil, 5-(2-aminopropyl)uracil, 5-(alkyl)uracil, 5-(alkynyl)uracil, 5-(allylamino)uracil, 5-(aminoallyl)uracil, 5-(aminoalkyl)uracil, 5-(guanidiniumalkyl)uracil, 5-(1,3-diazole-1-alkyl)uracil, 5-(cyanoalkyl)uracil, 5-(dialkylaminoalkyl)uracil, 5-(dimethylaminoalkyl)uracil, 5-(halo)uracil, 5-(methoxy)uracil, uracil-5-oxyacetic acid, 5-(methoxycarbonylmethyl)-2-(thio)uracil, 5-(methoxycarbonyl-methyl)uracil, 5-(propynyl)uracil, 5-(propynyl)uracil, 5-(trifluoromethyl)uracil, 6-(azo)uracil, dihydrouracil, N3-(methyl)uracil, 5-uracil (i.e., pseudouracil), 2-(thio)pseudouracil, 4-(thio)pseudouracil, 2,4-(dithio)psuedouracil, 5-(alkyl)pseudouracil, 5-(methyl)pseudouracil, 5-(alkyl)-2-(thio)pseudouracil, 5-(methyl)-2-(thio)pseudouracil, 5-(alkyl)-4-(thio)pseudouracil, 5-(methyl)-4-(thio)pseudouracil, 5 (alkyl)-2,4-(dithio)pseudouracil, 5-(methyl)-2,4-(dithio)pseudouracil, 1-substituted pseudouracil, 1-substituted 2(thio)-pseudouracil, 1-substituted 4-(thio)pseudouracil, 1-substituted 2,4-(dithio)pseudouracil, 1-(aminocarbonylethylenyl)-pseudouracil, 1-(aminocarbonylethylenyl)-2(thio)-pseudouracil, 1-(aminocarbonylethylenyl)-4-(thio)pseudouracil, 1-(aminocarbonylethylenyl)-2,4-(dithio)pseudouracil, 1-(aminoalkylaminocarbonylethylenyl)-pseudouracil, 1-(aminoalkylamino-carbonylethylenyl)-2(thio)-pseudouracil, 1-(aminoalkylaminocarbonylethylenyl)-4-(thio)pseudouracil, 1-(aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil, 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 1,3,5-(triaza)-2,6-(dioxa)-naphthalene, inosine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, inosinyl, 2-aza-inosinyl, 7-deaza-inosinyl, nitroimidazolyl, nitropyrazolyl, nitrobenzimidazolyl, nitroindazolyl, aminoindolyl, pyrrolopyrimidinyl, 3-(methyl)isocarbostyrilyl, 5 (methyl)isocarbostyrilyl, 3-(methyl)-7-(propynyl)isocarbostyrilyl, 7-(aza)indolyl, 6-(methyl)-7-(aza)indolyl, imidizopyridinyl, 9-(methyl)-imidizopyridinyl, pyrrolopyrizinyl, isocarbostyrilyl, 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl, 2,4,5-(trimethyl)phenyl, 4-(methyl)indolyl, 4,6-(dimethyl)indolyl, phenyl, napthalenyl, anthracenyl, phenanthracenyl, pyrenyl, stilbenyl, tetracenyl, pentacenyl, difluorotolyl, 4-(fluoro)-6-(methyl)benzimidazole, 4-(methyl)benzimidazole, 6 (azo)thymine, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 6-(aza)pyrimidine, 2-(amino)purine, 2,6-(diamino)purine, 5-substituted pyrimidines, N2-substituted purines, N6-substituted purines, O6-substituted purines, substituted 1,2,4-triazoles, pyrrolo-pyrimidin-2-on-3-yl, 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, para-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl, 2-oxo-pyridopyrimidine-3-yl, or any O-alkylated or N-alkylated derivatives thereof. Alternatively, substituted or modified analogs of any of the above bases and “universal bases” can be employed.


As used herein, a universal nucleobase is any nucleobase that can base pair with all of the four naturally occurring nucleobases without substantially affecting the melting behavior, recognition by intracellular enzymes or activity of the iRNA duplex. Some exemplary universal nucleobases include, but are not limited to, 2,4-difluorotoluene, nitropyrrolyl, nitroindolyl, 8-aza-7-deazaadenine, 4-fluoro-6-methylbenzimidazle, 4-methylbenzimidazle, 3-methyl isocarbostyrilyl, 5-methyl isocarbostyrilyl, 3-methyl-7-propynyl isocarbostyrilyl, 7-azaindolyl, 6-methyl-7-azaindolyl, imidizopyridinyl, 9-methyl-imidizopyridinyl, pyrrolopyrizinyl, isocarbostyrilyl, 7-propynyl isocarbostyrilyl, propynyl-7-azaindolyl, 2,4,5-trimethylphenyl, 4-methylinolyl, 4,6-dimethylindolyl, phenyl, napthalenyl, anthracenyl, phenanthracenyl, pyrenyl, stilbenyl, tetracenyl, pentacenyl, and structural derivatives thereof (see for example, Loakes, 2001, Nucleic Acids Research, 29, 2437-2447).


Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808; those disclosed in International Application No. PCT/US09/038425, filed Mar. 26, 2009; those disclosed in the Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990; those disclosed by English et al., Angewandte Chemie, International Edition, 1991, 30, 613; those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijin, P. Ed. Wiley-VCH, 2008; and those disclosed by Sanghvi, Y. S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Eds., CRC Press, 1993. Contents of all of the above are herein incorporated by reference.


In certain embodiments, a modified nucleobase is a nucleobase that is fairly similar in structure to the parent nucleobase, such as for example a 7-deaza purine, a 5-methyl cytosine, or a G-clamp. In certain embodiments, nucleobase mimetic include more complicated structures, such as for example a tricyclic phenoxazine nucleobase mimetic. Methods for preparation of the above noted modified nucleobases are well known to those skilled in the art.


B. Sugar Modifications

DsRNA agent of the inventions provided herein can comprise one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more) monomer, including a nucleoside or nucleotide, having a modified sugar moiety. For example, the furanosyl sugar ring of a nucleoside can be modified in a number of ways including, but not limited to, addition of a substituent group, bridging of two non-geminal ring atoms to form a locked nucleic acid or bicyclic nucleic acid. In certain embodiments, oligomeric compounds comprise one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more) monomers that are LNA.


In some embodiments of a locked nucleic acid, the 2′ position of furnaosyl is connected to the 4′ position by a linker selected independently from —[C(R1)(R2)]n—, —[C(R1)(R2)]n—O—, [C(R1)(R2)]n—N(R1)-, —[C(R1)(R2)]n—N(R1)-O—, —[C(R1R2)]n—O—N(R1)-, —C(R1)=(R2)-O—, —C(R1)=N—, —C(R1)=N—O—, —C(═NR1)-, —C(═NR1)-O—, —C(═O)—, —C(═O)O—, —C(═S)—, —C(═S)O—, —C(═S)S—, —O—, —Si(R1)2-, —S(═O)x— and —N(R1)-;

    • wherein:
    • x is 0, 1, or 2;
    • n is 1, 2, 3, or 4;
    • each R1 and R2 is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and
    • each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl,
    • substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.


In some embodiments, each of the linkers of the LNA compounds is, independently, —[C(R1)(R2)]n-, —[C(R1)(R2)]n-O—, —C(R1R2) N(R1)-O— or —C(R1R2)-O—N(R1)-. In another embodiment, each of said linkers is, independently, 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′—CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R1)-2′ and 4′-CH2—N(R1)-O-2′- wherein each R1 is, independently, H, a protecting group or C1-C12 alkyl.


Certain LNA's have been prepared and disclosed in the patent literature as well as in scientific literature (Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; WO 94/14226; WO 2005/021570; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Examples of issued US patents and published applications that disclose LNA s include, for example, U.S. Pat. Nos. 7,053,207; 6,268,490; 6,770,748; 6,794,499; 7,034,133; and 6,525,191; and U.S. Pre-Grant Publication Nos. 2004-0171570; 2004-0219565; 2004-0014959; 2003-0207841; 2004-0143114; and 20030082807.


Also provided herein are LNAs in which the 2′-hydroxyl group of the ribosyl sugar ring is linked to the 4′ carbon atom of the sugar ring thereby forming a methyleneoxy (4′-CH2—O-2′) linkage to form the bicyclic sugar moiety (reviewed in Elayadi et al., Cuff. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8 1-7; and Orum et al., CWT. Opinion Mol. Ther., 2001, 3, 239-243; see also U.S. Pat. Nos. 6,268,490 and 6,670,461). The linkage can be a methylene (—CH2—) group bridging the 2′ oxygen atom and the 4′ carbon atom, for which the term methyleneoxy (4′-CH2—O-2′) LNA is used for the bicyclic moiety; in the case of an ethylene group in this position, the term ethyleneoxy (4′-CH2CH2—O-2′) LNA is used (Singh et al., Chem. Commun., 1998, 4, 455-456: Morita et al., Bioorganic Medicinal Chemistry, 2003, 11, 2211-2226). Methyleneoxy (4′-CH2—O-2′) LNA and other bicyclic sugar analogs display very high duplex thermal stabilities with complementary DNA and RNA (Tm=+3 to +10° C.), stability towards 3′-exonucleolytic degradation and good solubility properties. Potent and nontoxic antisense oligonucleotides comprising BNAs have been described (Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638).


An isomer of methyleneoxy (4′-CH2—O-2′) LNA that has also been discussed is alpha-L methyleneoxy (4′-CH2—O-2′) LNA which has been shown to have superior stability against a 3′-exonuclease. The alpha-L-methyleneoxy (4′-CH2—O-2′) LNA's were incorporated into antisense gapmers and chimeras that showed potent antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).


The synthesis and preparation of the methyleneoxy (4′-CH2—O-2′) LNA monomers adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). BNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.


Analogs of methyleneoxy (4′-CH2—O-2′) LNA, phosphorothioate-methyleneoxy (4′-CH2—O-2′) LNA and 2′-thio-LNAs, have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of locked nucleoside analogs comprising oligodeoxyribonucleotide duplexes as substrates for nucleic acid polymerases has also been described Mengel et al., WO 99/14226). Furthermore, synthesis of 2′-amino-LNA, a novel comformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2′-Amino- and 2′-methylamino-LNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.


Modified sugar moieties are well known and can be used to alter, typically increase, the affinity of the antisense compound for its target and/or increase nuclease resistance. A representative list of preferred modified sugars includes but is not limited to bicyclic modified sugars, including methyleneoxy (4′-CH2—O-2′) LNA and ethyleneoxy (4′-(CH2)2—O-2′ bridge) ENA; substituted sugars, especially 2′-substituted sugars having a 2′-F, 2′-OCH3 or a 2′-O(CH2)2—OCH3 substituent group; and 4′-thio modified sugars. Sugars can also be replaced with sugar mimetic groups among others. Methods for the preparations of modified sugars are well known to those skilled in the art. Some representative patents and publications that teach the preparation of such modified sugars include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; 5,700,920; 6,531,584; and 6,600,032; and WO 2005/121371.


Examples of “oxy”-2′ hydroxyl group modifications include alkoxy or aryloxy (OR, e.g., R═H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar); polyethyleneglycols (PEG), O(CH2CH2O)nCH2CH2OR, n=1-50; “locked” nucleic acids (LNA) in which the furanose portion of the nucleoside includes a bridge connecting two carbon atoms on the furanose ring, thereby forming a bicyclic ring system; O-AMINE or O—(CH2)nAMINE (n=1-10, AMINE=NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, ethylene diamine or polyamino); and O—CH2CH2(NCH2CH2NMe2)2.


“Deoxy” modifications include hydrogen (i.e. deoxyribose sugars, which are of particular relevance to the single-strand overhangs); halo (e.g., fluoro); amino (e.g. NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); NH(CH2CH2NH)nCH2CH2-AMINE (AMINE=NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino); NHC(O)R (R=alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar); cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; thioalkyl; alkyl; cycloalkyl; aryl; alkenyl and alkynyl, which can be optionally substituted with e.g., an amino functionality.


Other suitable 2′-modifications, e.g., modified MOE, are described in U.S. Patent Application Publication No. 20130130378, contents of which are herein incorporated by reference.


A modification at the 2′ position can be present in the arabinose configuration The term “arabinose configuration” refers to the placement of a substituent on the C2′ of ribose in the same configuration as the 2′-OH is in the arabinose.


The sugar can comprise two different modifications at the same carbon in the sugar, e.g., gem modification. The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, an oligomeric compound can include one or more monomers containing e.g., arabinose, as the sugar. The monomer can have an alpha linkage at the 1′ position on the sugar, e.g., alpha-nucleosides. The monomer can also have the opposite configuration at the 4′-position, e.g., C5′ and H4′ or substituents replacing them are interchanged with each other. When the C5′ and H4′ or substituents replacing them are interchanged with each other, the sugar is said to be modified at the 4′ position.


DsRNA agent of the inventions disclosed herein can also include abasic sugars, i.e., a sugar which lack a nucleobase at C-1′ or has other chemical groups in place of a nucleobase at C1′. See for example U.S. Pat. No. 5,998,203, content of which is herein incorporated in its entirety. These abasic sugars can also be further containing modifications at one or more of the constituent sugar atoms. DsRNA agent of the inventions can also contain one or more sugars that are the L isomer, e.g. L-nucleosides. Modification to the sugar group can also include replacement of the 4′-0 with a sulfur, optionally substituted nitrogen or CH2 group. In some embodiments, linkage between C1′ and nucleobase is in a configuration.


Sugar modifications can also include acyclic nucleotides, wherein a C—C bonds between ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-O4′, C1′-O4′) is absent and/or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′ or O4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar).


In some embodiments, sugar modifications are selected from the group consisting of 2′-H, 2′-O-Me (2′-O-methyl), 2′-O-MOE (2′-O-methoxyethyl), 2′-F, 2′-O-[2-(methylamino)-2-oxoethyl] (2′-O-NMA), 2′-S methyl, 2′-O—CH2-(4′-C) (LNA), 2′-O—CH2CH2-(4′-C) (ENA), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-O-dimethylaminoethyloxyethyl (2′-O-DMAEOE) and gem 2′-OMe/2′F with 2′-O-Me in the arabinose configuration.


It is to be understood that when a particular nucleotide is linked through its 2′-position to the next nucleotide, the sugar modifications described herein can be placed at the 3′-position of the sugar for that particular nucleotide, e.g., the nucleotide that is linked through its 2′-position. A modification at the 3′ position can be present in the xylose configuration The term “xylose configuration” refers to the placement of a substituent on the C3′ of ribose in the same configuration as the 3′-OH is in the xylose sugar.


The hydrogen attached to C4′ and/or C1′ can be replaced by a straight- or branched-optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, wherein backbone of the alkyl, alkenyl and alkynyl can contain one or more of O, S, S(O), SO2, N(R′), C(O), N(R′)C(O)O, OC(O)N(R′), CH(Z′), phosphorous containing linkage, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclic or optionally substituted cycloalkyl, where R′ is hydrogen, acyl or optionally substituted aliphatic, Z′ is selected from the group consisting of OR11, COR11, CO2R11,




embedded image


NR21R31, CONR21R31, CON(H)NR21R31, ONR21R31, CON(H)N═R41R51, N(R21)C(═NR31)NR21R31, N(R21)C(O)NR21R31, N(R21)C(S)NR21R31, OC(O)NR21R31, SC(O)NR21R31, N(R21)C(S)OR11, N(R21)C(O)OR11, N(R21)C(O)SR11, N(R21)N═R41R51, ON═C41R51, SO2R11, SOR11, SR11, and substituted or unsubstituted heterocyclic; R21 and R31 for each occurrence are independently hydrogen, acyl, unsubstituted or substituted aliphatic, aryl, heteroaryl, heterocyclic, OR11, COR11, CO2R11, or NR11R11′; or R21 and R31, taken together with the atoms to which they are attached, form a heterocyclic ring; R41 and R51 for each occurrence are independently hydrogen, acyl, unsubstituted or substituted aliphatic, aryl, heteroaryl, heterocyclic, OR11, COR11, or CO2R11, or NR11R11′; and R11 and R11′ are independently hydrogen, aliphatic, substituted aliphatic, aryl, heteroaryl, or heterocyclic. In some embodiments, the hydrogen attached to the C4′ of the 5′ terminal nucleotide is replaced.


In some embodiments, C4′ and C5′ together form an optionally substituted heterocyclic, preferably comprising at least one —PX(Y)—, wherein X is H, OH, OM, SH, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkylthio, optionally substituted alkylamino or optionally substituted dialkylamino, where M is independently for each occurrence an alki metal or transition metal with an overall charge of +1; and Y is O, S, or NR′, where R′ is hydrogen, optionally substituted aliphatic. Preferably this modification is at the 5 terminal of the iRNA.


In certain embodiments, LNA's include bicycle nucleotide having the formula:




embedded image




    • wherein:
      • Bx is a heterocyclic base moiety;
      • T1 is H or a hydroxyl protecting group;
      • T2 is H, a hydroxyl protecting group or a reactive phosphorus group;
      • Z is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, or substituted amide.





In some embodiments, each of the substituted groups, is, independently, mono or poly substituted with optionally protected substituent groups independently selected from halogen, oxo, hydroxyl, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 and CN, wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1.


In certain such embodiments, each of the substituted groups, is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, and NJ3C(═X)NJ1J2, wherein each J1, J2 and J3 is, independently, H, C1-C6 alkyl, or substituted C1-C6 alkyl and X is O or NJ1.


In certain embodiments, the Z group is C1-C6 alkyl substituted with one or more Xx, wherein each Xx is independently OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1. In another embodiment, the Z group is C1-C6 alkyl substituted with one or more Xx, wherein each Xx is independently halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—), substituted alkoxy or azido.


In certain embodiments, the Z group is —CH2Xx, wherein Xx is OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1. In another embodiment, the Z group is —CH2Xx, wherein Xx is halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—) or azido.


In certain such embodiments, the Z group is in the (R)-configuration:




embedded image


In certain such embodiments, the Z group is in the (S)-configuration:




embedded image


In certain embodiments, each T1 and T2 is a hydroxyl protecting group. A preferred list of hydroxyl protecting groups includes benzyl, benzoyl, 2,6-dichlorobenzyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, mesylate, tosylate, dimethoxytrityl (DMT), 9-phenylxanthine-9-yl (Pixyl) and 9 (p-methoxyphenyl)xanthine-9-yl (MOX). In certain embodiments, T1 is a hydroxyl protecting group selected from acetyl, benzyl, t-butyldimethylsilyl, t-butyldiphenylsilyl and dimethoxytrityl wherein a more preferred hydroxyl protecting group is T1 is 4,4′-dimethoxytrityl.


In certain embodiments, T2 is a reactive phosphorus group wherein preferred reactive phosphorus groups include diisopropylcyanoethoxy phosphoramidite and H-phosphonate. In certain embodiments T1 is 4,4′-dimethoxytrityl and T2 is diisopropylcyanoethoxy phosphoramidite.


In certain embodiments, the compounds of the invention comprise at least one monomer of the formula:




embedded image


or of the formula:




embedded image




    • wherein







embedded image




    • Bx is a heterocyclic base moiety;

    • T3 is H, a hydroxyl protecting group, a linked conjugate group or an internucleoside linking group attached to a nucleoside, a nucleotide, an oligonucleoside, an oligonucleotide, a monomeric subunit or an oligomeric compound;

    • T4 is H, a hydroxyl protecting group, a linked conjugate group or an internucleoside linking group attached to a nucleoside, a nucleotide, an oligonucleoside, an oligonucleotide, a monomeric subunit or an oligomeric compound;

    • wherein at least one of T3 and T4 is an internucleoside linking group attached to a nucleoside, a nucleotide, an oligonucleoside, an oligonucleotide, a monomeric subunit or an oligomeric compound; and

    • Z is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, or substituted amide.





In some embodiments, each of the substituted groups, is, independently, mono or poly substituted with optionally protected substituent groups independently selected from halogen, oxo, hydroxyl, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 and CN, wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1.


In some embodiments, each of the substituted groups, is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, and NJ3C(═X)NJ1J2, wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O or NJ1.


In certain such embodiments, at least one Z is C1-C6 alkyl or substituted C1-C6 alkyl. In certain embodiments, each Z is, independently, C1-C6 alkyl or substituted C1-C6 alkyl. In certain embodiments, at least one Z is C1-C6 alkyl. In certain embodiments, each Z is, independently, C1-C6 alkyl. In certain embodiments, at least one Z is methyl. In certain embodiments, each Z is methyl. In certain embodiments, at least one Z is ethyl. In certain embodiments, each Z is ethyl. In certain embodiments, at least one Z is substituted C1-C6 alkyl. In certain embodiments, each Z is, independently, substituted C1-C6 alkyl. In certain embodiments, at least one Z is substituted methyl. In certain embodiments, each Z is substituted methyl. In certain embodiments, at least one Z is substituted ethyl. In certain embodiments, each Z is substituted ethyl.


In certain embodiments, at least one substituent group is C1-C6 alkoxy (e.g., at least one Z is C1-C6 alkyl substituted with one or more C1-C6 alkoxy). In another embodiment, each substituent group is, independently, C1-C6 alkoxy (e.g., each Z is, independently, C1-C6 alkyl substituted with one or more C1-C6 alkoxy).


In certain embodiments, at least one C1-C6 alkoxy substituent group is CH3O— (e.g., at least one Z is CH3OCH2—). In another embodiment, each C1-C6 alkoxy substituent group is CH3O— (e.g., each Z is CH3OCH2—).


In certain embodiments, at least one substituent group is halogen (e.g., at least one Z is C1-C6 alkyl substituted with one or more halogen). In certain embodiments, each substituent group is, independently, halogen (e.g., each Z is, independently, C1-C6 alkyl substituted with one or more halogen). In certain embodiments, at least one halogen substituent group is fluoro (e.g., at least one Z is CH2FCH2—, CHF2CH2— or CF3CH2—). In certain embodiments, each halo substituent group is fluoro (e.g., each Z is, independently, CH2FCH2—, CHF2CH2— or CF3CH2—).


In certain embodiments, at least one substituent group is hydroxyl (e.g., at least one Z is C1-C6 alkyl substituted with one or more hydroxyl). In certain embodiments, each substituent group is, independently, hydroxyl (e.g., each Z is, independently, C1-C6 alkyl substituted with one or more hydroxyl). In certain embodiments, at least one Z is HOCH2—. In another embodiment, each Z is HOCH2—.


In certain embodiments, at least one Z is CH3—, CH3CH2—, CH2OCH3—, CH2F— or HOCH2—. In certain embodiments, each Z is, independently, CH3—, CH3CH2—, CH2OCH3—, CH2F— or HOCH2—.


In certain embodiments, at least one Z group is C1-C6 alkyl substituted with one or more Xx, wherein each Xx is, independently, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1. In another embodiment, at least one Z group is C1-C6 alkyl substituted with one or more Xx, wherein each Xx is, independently, halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—) or azido.


In certain embodiments, each Z group is, independently, C1-C6 alkyl substituted with one or more Xx, wherein each Xx is independently OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1. In another embodiment, each Z group is, independently, C1-C6 alkyl substituted with one or more Xx, wherein each Xx is independently halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—) or azido.


In certain embodiments, at least one Z group is —CH2Xx, wherein Xx is OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1 In certain embodiments, at least one Z group is —CH2Xx, wherein Xx is halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—) or azido.


In certain embodiments, each Z group is, independently, —CH2Xx, wherein each Xx is, independently, OJ1, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 or CN; wherein each J1, J2 and J3 is, independently, H or C1-C6 alkyl, and X is O, S or NJ1. In another embodiment, each Z group is, independently, —CH2Xx, wherein each Xx is, independently, halo (e.g., fluoro), hydroxyl, alkoxy (e.g., CH3O—) or azido.


In certain embodiments, at least one Z is CH3—. In another embodiment, each Z is, CH3—.


In certain embodiments, the Z group of at least one monomer is in the (R)-configuration represented by the formula:




embedded image


or the formula:




embedded image




    • or the formula:







embedded image


IN certain embodiments, the Z group of each monomer of the formula is in the (R)-configuration.


In certain embodiments, the Z group of at least one monomer is in the (S)-configuration represented by the formula:




embedded image




    • or the formula:







embedded image




    • or the formula:







embedded image


In certain embodiments, the Z group of each monomer of the formula is in the (S)-configuration.


In certain embodiments, T3 is H or a hydroxyl protecting group. In certain embodiments, T4 is H or a hydroxyl protecting group. In a further embodiment T3 is an internucleoside linking group attached to a nucleoside, a nucleotide or a monomeric subunit. In certain embodiments, T4 is an internucleoside linking group attached to a nucleoside, a nucleotide or a monomeric subunit. In certain embodiments, T3 is an internucleoside linking group attached to an oligonucleoside or an oligonucleotide. In certain embodiments, T4 is an internucleoside linking group attached to an oligonucleoside or an oligonucleotide. In certain embodiments, T3 is an internucleoside linking group attached to an oligomeric compound. In certain embodiments, T4 is an internucleoside linking group attached to an oligomeric compound. In certain embodiments, at least one of T3 and T4 comprises an internucleoside linking group selected from phosphodiester or phosphorothioate.


In certain embodiments, dsRNA agent of the invention comprise at least one region of at least two contiguous monomers of the formula:




embedded image




    • or of the formula:







embedded image




    • or of the formula:







embedded image


In certain such embodiments, LNAs include, but are not limited to, (A) α-L-Methyleneoxy (4′-CH2—O-2′) LNA, (B) β-D-Methyleneoxy (4′-CH2—O-2′) LNA, (C) Ethyleneoxy (4′-(CH2)2—O-2′) LNA, (D) Aminooxy (4′-CH2—O—N(R)-2′) LNA and (E) Oxyamino (4′-CH2—N(R)—O-2′) LNA, as depicted below:




embedded image


In certain embodiments, the dsRNA agent of the invention comprises at least two regions of at least two contiguous monomers of the above formula. In certain embodiments, the dsRNA agent of the invention comprises a gapped motif. In certain embodiments, the dsRNA agent of the invention comprises at least one region of from about 8 to about 14 contiguous β-D-2′-deoxyribofuranosyl nucleosides. In certain embodiments, the dsRNA agent of the invention comprises at least one region of from about 9 to about 12 contiguous β-D-2′-deoxyribofuranosyl nucleosides.


In certain embodiments, the dsRNA agent of the invention comprises at least one (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more) comprises at least one (S)-cEt monomer of the formula:




embedded image




    • wherein Bx is heterocyclic base moiety.





In certain embodiments, monomers include sugar mimetics. In certain such embodiments, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target. Representative examples of a sugar mimetics include, but are not limited to, cyclohexenyl or morpholino. Representative examples of a mimetic for a sugar-internucleoside linkage combination include, but are not limited to, peptide nucleic acids (PNA) and morpholino groups linked by uncharged achiral linkages. In some instances a mimetic is used in place of the nucleobase. Representative nucleobase mimetics are well known in the art and include, but are not limited to, tricyclic phenoxazine analogs and universal bases (Berger et al., Nuc Acid Res. 2000, 28:2911-14, incorporated herein by reference). Methods of synthesis of sugar, nucleoside and nucleobase mimetics are well known to those skilled in the art.


C. Intersugar Linkage Modifications

Described herein are linking groups that link monomers (including, but not limited to, modified and unmodified nucleosides and nucleotides) together, thereby forming an oligomeric compound, e.g., an oligonucleotide. Such linking groups are also referred to as intersugar linkage. The two main classes of linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus containing linkages include, but are not limited to, phosphodiesters (P═O), phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates (P═S). Representative non-phosphorus containing linking groups include, but are not limited to, methylenemethylimino (—CH2—N(CH3)—O—CH2-), thiodiester (—O—C(O)—S—), thionocarbamate (—O—C(O)(NH)—S—); siloxane (—O—Si(H)2—O—); and N,N′-dimethylhydrazine (—CH2—N(CH3)—N(CH3)—). Modified linkages, compared to natural phosphodiester linkages, can be used to alter, typically increase, nuclease resistance of the oligonucleotides. In certain embodiments, linkages having a chiral atom can be prepared as racemic mixtures, as separate enantiomers. Representative chiral linkages include, but are not limited to, alkylphosphonates and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known to those skilled in the art.


The phosphate group in the linking group can be modified by replacing one of the oxygens with a different substituent. One result of this modification can be increased resistance of the oligonucleotide to nucleolytic breakdown. Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. In some embodiments, one of the non-bridging phosphate oxygen atoms in the linkage can be replaced by any of the following: S, Se, BR3 (R is hydrogen, alkyl, aryl), C (i.e. an alkyl group, an aryl group, etc. . . . ), H, NR2 (R is hydrogen, optionally substituted alkyl, aryl), or OR (R is optionally substituted alkyl or aryl). The phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non-bridging oxygens with one of the above atoms or groups of atoms renders the phosphorous atom chiral; in other words a phosphorous atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorous atom can possess either the “R” configuration (herein Rp) or the “S” configuration (herein Sp).


Phosphorodithioates have both non-bridging oxygens replaced by sulfur. The phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligonucleotides diastereomers. Thus, while not wishing to be bound by theory, modifications to both non-bridging oxygens, which eliminate the chiral center, e.g. phosphorodithioate formation, can be desirable in that they cannot produce diastereomer mixtures. Thus, the non-bridging oxygens can be independently any one of O, S, Se, B, C, H, N, or OR (R is alkyl or aryl).


The phosphate linker can also be modified by replacement of bridging oxygen, (i.e. oxygen that links the phosphate to the sugar of the monomer), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at the either one of the linking oxygens or at both linking oxygens. When the bridging oxygen is the 3′-oxygen of a nucleoside, replacement with carbon is preferred. When the bridging oxygen is the 5′-oxygen of a nucleoside, replacement with nitrogen is preferred.


Modified phosphate linkages where at least one of the oxygen linked to the phosphate has been replaced or the phosphate group has been replaced by a non-phosphorous group, are also referred to as “iron-phosphodiester intersugar linkage” or “non-phosphodiester linker.”


In certain embodiments, the phosphate group can be replaced by non-phosphorus containing connectors, e.g. dephospho linkers. Dephospho linkers are also referred to as non-phosphodiester linkers herein. While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.


Examples of moieties which can replace the phosphate group include, but are not limited to, amides (for example amide-3 (3′-CH2—C(O)—N(H)-5′) and amide-4 (3′-CH2—N(H)—C(O)-5′)), hydroxylamino, siloxane (dialkylsiloxxane), carboxamide, carbonate, carboxymethyl, carbamate, carboxylate ester, thioether, ethylene oxide linker, sulfide, sulfonate, sulfonamide, sulfonate ester, thioformacetal (3′-S—CH2—O-5′), formacetal (3′-O—CH2—O-5), oxime, methyleneimino, methykenecarbonylamino, methylenemethylimino (MMI, 3′-CH2—N(CH3)—O-5′), methylenehydrazo, methylenedimethylhydrazo, methyleneoxymethylimino, ethers (C3′-O—C5′), thioethers (C3′-S—C5′), thioacetamido (C3′ N(H)—C(═O)—CH2—S—C5′, C3′-O—P(O)—O—SS—C5′, C3′-CH2—NH—NH—C5′, 3′-NHP(O)(OCH3)—O-5′ and 3′-NHP(O)(OCH3)—O-5′ and nonionic linkages containing mixed N, O, S and CH2 component parts. See for example, Carbohydrate Modifications in Antisense Research; Y. S. Sanghvi and P. D. Cook Eds. ACS Symposium Series 580; Chapters 3 and 4, (pp. 40-65). Preferred embodiments include methylenemethylimino (MMI), methylenecarbonylamino, amides, carbamate and ethylene oxide linker.


One skilled in the art is well aware that in certain instances replacement of a non-bridging oxygen can lead to enhanced cleavage of the intersugar linkage by the neighboring 2′-OH, thus in many instances, a modification of a non-bridging oxygen can necessitate modification of 2′-OH, e.g., a modification that does not participate in cleavage of the neighboring intersugar linkage, e.g., arabinose sugar, 2′-O-alkyl, 2′-F, LNA and ENA.


Preferred non-phosphodiester intersugar linkages include phosphorothioates, phosphorothioates with an at least 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 95% or more enantiomeric excess of Sp isomer, phosphorothioates with an at least 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 95% or more enantiomeric excess of Rp isomer, phosphorodithioates, phsophotriesters, aminoalkylphosphotrioesters, alkyl-phosphonaters (e.g., methyl-phosphonate), selenophosphates, phosphoramidates (e.g., N-alkylphosphoramidate), and boranophosphonates.


In some embodiments, the dsRNA agent of the invention comprises at least one (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more and upto including all) modified or nonphosphodiester linkages. In some embodiments, the dsRNA agent of the invention comprises at least one (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more and upto including all) phosphorothioate linkages.


The dsRNA agent of the inventions can also be constructed wherein the phosphate linker and the sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize polyanions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone. Examples include the morpholino, cyclobutyl, pyrrolidine, peptide nucleic acid (PNA), aminoethylglycyl PNA (aegPNA) and backnone-extended pyrrolidine PNA (bepPNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.


The dsRNA agent of the inventions described herein can contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), such as for sugar anomers, or as (D) or (L) such as for amino acids et al. Included in the dsRNA agent of the inventions provided herein are all such possible isomers, as well as their racemic and optically pure forms.


D. Terminal Modifications

In some embodiments, the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand. In one embodiment, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In some embodiments, the 5′-end of the antisense strand of the dsRNA agent does not contain a 5′-vinyl phosphonate (VP).


Ends of the iRNA agent of the invention can be modified. Such modifications can be at one end or both ends. For example, the 3′ and/or 5′ ends of an iRNA can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester). The functional molecular entities can be attached to the sugar through a phosphate group and/or a linker. The terminal atom of the linker can connect to or replace the linking atom of the phosphate group or the C-3′ or C-5′ O, N, S or C group of the sugar. Alternatively, the linker can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs).


When a linker/phosphate-functional molecular entity-linker/phosphate array is interposed between two strands of a double stranded oligomeric compound, this array can substitute for a hairpin loop in a hairpin-type oligomeric compound.


Terminal modifications useful for modulating activity include modification of the 5′ end of iRNAs with phosphate or phosphate analogs. In certain embodiments, the 5′end of an iRNA is phosphorylated or includes a phosphoryl analog. Exemplary 5′-phosphate modifications include those which are compatible with RISC mediated gene silencing. Modifications at the 5′-terminal end can also be useful in stimulating or inhibiting the immune system of a subject. In some embodiments, the 5′-end of the oligomeric compound comprises the modification




embedded image


wherein W, X and Y are each independently selected from the group consisting of 0, OR (R is hydrogen, alkyl, aryl), S, Se, BR3 (R is hydrogen, alkyl, aryl), BH3, C (i.e. an alkyl group, an aryl group, etc. . . . ), H, NR2 (R is hydrogen, alkyl, aryl), or OR (R is hydrogen, alkyl or aryl); A and Z are each independently for each occurrence absent, O, S, CH2, NR (R is hydrogen, alkyl, aryl), or optionally substituted alkylene, wherein backbone of the alkylene can comprise one or more of O, S, SS and NR (R is hydrogen, alkyl, aryl) internally and/or at the end; and n is 0-2. In some embodiments, n is 1 or 2. It is understood that A is replacing the oxygen linked to 5′ carbon of sugar. When n is 0, W and Y together with the P to which they are attached can form an optionally substituted 5-8 membered heterocyclic, wherein W an Y are each independently O, S, NR′ or alkylene. Preferably the heterocyclic is substituted with an aryl or heteroaryl. In some embodiments, one or both hydrogen on C5′ of the 5′-terminal nucleotides are replaced with a halogen, e.g., F.


Exemplary 5′-modifications include, but are not limited to, 5′-monophosphate ((HO)2(O)P—O-5′); 5′-diphosphate ((HO)2(O)P—O—P(HO)(O)—O-5′); 5′-triphosphate ((HO)2(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-monothiophosphate (phosphorothioate; (HO)2(S)P—O-5′); 5′-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P—O-5′), 5′-phosphorothiolate ((HO)2(O)P—S-5′); 5′-alpha-thiotriphosphate; 5′-beta-thiotriphosphate; 5′-gamma-thiotriphosphate; 5′-phosphoramidates ((HO)2(O)P—NH-5′, (HO)(NH2)(O)P—O-5′). Other 5′-modification include 5′-alkylphosphonates (R(OH)(O)P—O-5′, R=alkyl, e.g., methyl, ethyl, isopropyl, propyl, etc. . . . ), 5′-alkyletherphosphonates (R(OH)(O)P—O-5′, R=alkylether, e.g., methoxymethyl (CH2OMe), ethoxymethyl, etc. . . . ). Other exemplary 5′-modifications include where Z is optionally substituted alkyl at least once, e.g., ((HO)2(X)P—O[—(CH2)n—O—P(X)(OH)—O]b-5′, ((HO)2(X)P—O[—(CH2)n—P(X)(OH)—O]b-5′, ((HO)2(X)P—[—(CH2)n—O—P(X)(OH)—O]b-5′; dialkyl terminal phosphates and phosphate mimics: HO[—(CH2)n—O—P(X)(OH)—O]b-5′, H2N[—(CH2)n—O—P(X)(OH)—O]b-5′, H[—(CH2)n—O—P(X)(OH)—O]b-5′, Me2N[—(CH2), —O—P(X)(OH)—O]b-5′, HO[—(CH2)n—P(X)(OH)—O]b-5′, H2N[—(CH2)n—P(X)(OH)—O]b-5′, H[—(CH2), —P(X)(OH)—O]b-5′, Me2N[—(CH2)n—P(X)(OH)—O]b-5′, wherein a and b are each independently 1-10. Other embodiments, include replacement of oxygen and/or sulfur with BH3, BH3 and/or Se.


Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorescein or an Alexa dye, e.g., Alexa 488. Terminal modifications can also be useful for enhancing uptake, useful modifications for this include targeting ligands. Terminal modifications can also be useful for cross-linking an oligonucleotide to another moiety; modifications useful for this include mitomycin C, psoralen, and derivatives thereof.


E. Thermally Destabilizing Modifications

The compounds of the invention, such as iRNAs or dsRNA agents, can be optimized for RNA interference by increasing the propensity of the iRNA duplex to disassociate or melt (decreasing the free energy of duplex association) by introducing a thermally destabilizing modification in the sense strand at a site opposite to the seed region of the antisense strand (i.e., at positions 2-8 of the 5′-end of the antisense strand, or at positions 2-9 of the 5′-end of the antisense strand). This modification can increase the propensity of the duplex to disassociate or melt in the seed region of the antisense strand.


The thermally destabilizing modifications can include abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycerol nucleic acid (GNA).


Exemplified abasic modifications are:




embedded image


Exemplified sugar modifications are:




embedded image


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-O4′, or C1′-O4′) is absent and/or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′ or O4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar). The term “UNA” refers to unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomers with bonds between C1′-C4′ being removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar is removed (see Mikhailov et. al., Tetrahedron Letters, 26 (17): 2059 (1985); and Fluiter et al., Mol. Biosyst., 10: 1039 (2009), which are hereby incorporated by reference in their entirety). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch basepairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present invention. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the compounds of the invention, such as siRNA or iRNA agent, contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


Nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


In some embodiments, compounds of the invention can comprise 2′-5′ linkages (with 2′-H, 2′-OH and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In another embodiment, compounds of the invention can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugar modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In one embodiment the iRNA agent of the invention is conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.


In some embodiments, at least one strand of the iRNA agent of the invention disclosed herein is 5′ phosphorylated or includes a phosphoryl analog at the 5′ prime terminus. 5′-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5′-monophosphate ((HO)2(O)P—O-5′); 5′-diphosphate ((HO)2(O)P—O—P(HO)(O)—O-5′); 5′-triphosphate ((HO)2(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-guanosine cap (7 methylated or non-methylated) (7m-G-O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N—O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-monothiophosphate (phosphorothioate; (HO)2(S)P—O-5′); 5′-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P—O-5′), 5′-phosphorothiolate ((HO)2(O)P—S-5′); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5′-alpha-thiotriphosphate, 5′-gamma-thiotriphosphate, etc.), 5′-phosphoramidates ((HO)2(O)P—NH-5′, (HO)(NH2)(O)P—O-5′), 5′-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)—O-5′-, 5′-alkenylphosphonates (i.e. vinyl, substituted vinyl), (OH)2(O)P-5′-CH2—), 5′-alkyletherphosphonates (R=alkylether=nethoxymethyl (MeOCH2—), ethoxymethyl, etc., e.g. RP(OH)(O)—O-5′-).


IV. Modified RNAi Agents of the Invention Comprising Motifs

In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in U.S. Pat. Nos. 9,796,974 and 10,668,170, and U.S. Patent Publication Nos. 2014/288158, 2018/008724, 2019/038768, and 2020/353097, the entire contents of each of which are incorporated herein by reference. As shown therein and in PCT Publication No. WO 2013/074974 (the entire contents of which are incorporated by reference), one or more motifs of three identical modifications on three consecutive nucleotides may be introduced into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally modified with a (5)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand.


In one embodiment, the iRNA agent of the invention is a double ended bluntmer of 19 nt in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 7, 8, 9 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the iRNA agent of the invention is a double ended bluntmer of 20 nt in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 8, 9, 10 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the iRNA agent of the invention is a double ended bluntmer of 21 nt in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the iRNA agent of the invention comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end; the antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end, wherein one end of the iRNA is blunt, while the other end is comprises a 2 nt overhang. Preferably, the 2 nt overhang is at the 3′-end of the antisense. Optionally, the iRNA agent further comprises a ligand (e.g., GalNAc3).


In one embodiment, the iRNA agent of the invention comprises a sense and antisense strands, wherein: the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1) positions 1 to 23 of said first strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, comprises at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3′ terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3′ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when said double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.


In one embodiment, the iRNA agent of the invention comprises a sense and antisense strands, wherein said iRNA agent comprises a first strand having a length which is at least 25 and at most 29 nucleotides and a second strand having a length which is at most 30 nucleotides with at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at position 11, 12, 13 from the 5′ end; wherein said 3′ end of said first strand and said 5′ end of said second strand form a blunt end and said second strand is 1-4 nucleotides longer at its 3′ end than the first strand, wherein the duplex region which is at least 25 nucleotides in length, and said second strand is sufficiently complementary to a target mRNA along at least 19 nt of said second strand length to reduce target gene expression when said iRNA agent is introduced into a mammalian cell, and wherein dicer cleavage of said iRNA preferentially results in an siRNA comprising said 3′ end of said second strand, thereby reducing expression of the target gene in the mammal. Optionally, the iRNA agent further comprises a ligand (e.g., GalNAc3).


In one embodiment, the sense strand of the iRNA agent contains at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at the cleavage site in the sense strand. For instance, the sense strand can contain at least one motif of three 2′-F modifications on three consecutive nucleotides within 7-15 positions from the 5′end.


In one embodiment, the antisense strand of the iRNA agent can also contain at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at or near the cleavage site in the antisense strand. For instance, the antisense strand can contain at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides within 9-15 positions from the 5′end.


For iRNA agent having a duplex region of 17-23 nt in length, the cleavage site of the antisense strand is typically around the 10, 11 and 12 positions from the 5′-end. Thus the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11, 12 positions; 11, 12, 13 positions; 12, 13, 14 positions; or 13, 14, 15 positions of the antisense strand, the count starting from the 1st nucleotide from the 5′-end of the antisense strand, or, the count starting from the 1st paired nucleotide within the duplex region from the 5′-end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex region of the iRNA from the 5′-end.


In some embodiments, the iRNA agent comprises a sense strand and antisense strand each having 14 to 30 nucleotides, wherein the sense strand contains at least two motifs of three identical modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site within the strand and at least one of the motifs occurs at another portion of the strand that is separated from the motif at the cleavage site by at least one nucleotide. In one embodiment, the antisense strand also contains at least one motif of three identical modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site within the strand. The modification in the motif occurring at or near the cleavage site in the sense strand is different than the modification in the motif occurring at or near the cleavage site in the antisense strand.


In some embodiments, the iRNA agent comprises a sense strand and antisense strand each having 14 to 30 nucleotides, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site in the strand. In one embodiment, the antisense strand also contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.


In some embodiments, the iRNA agent comprises a sense strand and antisense strand each having 14 to 30 nucleotides, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end, and wherein the antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the iRNA agent of the invention comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In one embodiment, the iRNA agent of the invention comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In one embodiment, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


In another embodiment, the nucleotide at the 3′-end of the sense strand is deoxythimidine (dT). In another embodiment, the nucleotide at the 3′-end of the antisense strand is deoxythimidine (dT). In one embodiment, there is a short sequence of deoxythimidine nucleotides, for example, two dT nucleotides on the 3′-end of the sense or antisense strand.


In certain embodiments, the compositions and methods of the disclosure include a vinyl phosphonate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a 5′-vinyl phosphonate modified nucleotide of the disclosure has the structure:




embedded image




    • wherein X is O or S;

    • R is hydrogen, hydroxy, fluoro, or C1-20alkoxy (e.g., methoxy or n-hexadecyloxy);

    • R5′ is (H)—P(O)(OH)2 and the double bond between the C5′ carbon and R5′ is in the E or Z orientation (e.g., E orientation); and

    • B is a nucleobase or a modified nucleobase, optionally where B is adenine, guanine, cytosine, thymine, or uracil.





A vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure includes the preceding structure, where R5′ is (H)—OP(O)(OH)2 and the double bond between the C5′ carbon and R5′ is in the E or Z orientation (e.g., E orientation).


In one aspect, the invention relates to a double-stranded RNA (dsRNA) agent for inhibiting the expression of a target gene having reduced off-target effects as described in U.S. Pat. Nos. 10,233,448, 10,612,024, and 10,612,027, and U.S. Patent Publication Nos. 2017/275626, 2019/241891, 2019/241893, and 2021/017519, the entire contents of each of which are incorporated herein by reference. As exemplified therein, a motif comprising, e.g., a thermally destabilizing nucleotide, e.g., i) a nucleotide that forms a mismatch pair with the opposing nucleotide in the antisense strand, ii) a nucleotide having an abasic modification, and/or iii) a nucleotide having a sugar modification, and placed at a site opposite to the seed region (positions 2-8) may be introduced into the sense strand.


In one embodiment, the dsRNA agent of the invention does not contain any 2′-F modification.


In one embodiment, the sense strand and/or antisense strand of the dsRNA agent comprises one or more blocks of phosphorothioate or methylphosphonate internucleotide linkages. In one example, the sense strand comprises one block of two phosphorothioate or methylphosphonate internucleotide linkages. In one example, the antisense strand comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages. For example, the two blocks of phosphorothioate or methylphosphonate internucleotide linkages are separated by 16-18 phosphate internucleotide linkages.


In one embodiment, each of the sense and antisense strands of the dsRNA agent has 15-30 nucleotides. In one example, the sense strand has 19-22 nucleotides, and the antisense strand has 19-25 nucleotides. In another example, the sense strand has 21 nucleotides, and the antisense strand has 23 nucleotides.


In one embodiment, the nucleotide at position 1 of the 5′-end of the antisense strand in the duplex is selected from the group consisting of A, dA, dU, U, and dT. In one embodiment, at least one of the first, second, and third base pair from the 5′-end of the antisense strand is an AU base pair.


In one embodiment, the antisense strand of the dsRNA agent of the invention is 100% complementary to a target RNA to hybridize thereto and inhibits its expression through RNA interference. In another embodiment, the antisense strand of the dsRNA agent of the invention is at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, or at least 50% complementary to a target RNA.


In one aspect, the invention relates to a dsRNA agent as defined herein capable of inhibiting the expression of a target gene. The dsRNA agent comprises a sense strand and an antisense strand, each strand having 14 to 40 nucleotides. The sense strand contains at least one thermally destabilizing nucleotide, wherein at least one of said thermally destabilizing nucleotide occurs at or near the site that is opposite to the seed region of the antisense strand (i.e. at position 2-8 of the 5′-end of the antisense strand, or at positions 2-9 of the 5′-end of the antisense strand). Each of the embodiments and aspects described in this specification relating to the dsRNA represented by formula (I) can also apply to the dsRNA containing the thermally destabilizing nucleotide.


The thermally destabilizing nucleotide can occur, for example, between positions 14-17 of the 5′-end of the sense strand when the sense strand is 21 nucleotides in length. The antisense strand contains at least two modified nucleic acids that are smaller than a sterically demanding 2′-OMe modification. Preferably, the two modified nucleic acids that are smaller than a sterically demanding 2′-OMe are separated by 11 nucleotides in length. For example, the two modified nucleic acids are at positions 2 and 14 of the 5′end of the antisense strand.


In one embodiment, the dsRNA agent further comprises at least one ASGPR ligand. For example, the ASGPR ligand is one or more GalNAc derivatives attached through a bivalent or trivalent branched linker, such as:




embedded image


In one example, the ASGPR ligand is attached to the 3′ end of the sense strand.


For example, the dsRNA agent as defined herein can comprise i) a phosphorus-containing group at the 5′-end of the sense strand or antisense strand; ii) with two phosphorothioate internucleotide linkage modifications within position 1-5 of the sense strand (counting from the 5′ end of the sense strand), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end of the antisense strand); and iii) a ligand, such as a ASGPR ligand (e.g., one or more GalNAc derivatives) at 5′-end or 3′-end of the sense strand or antisense strand. For instance, the ligand may be at the 3′-end of the sense strand.


In a particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker; and
      • (iii) 2′-F modifications at positions 1, 3, 5, 7, 9 to 11, 13, 17, 19, and 21, and 2′-OMe modifications at positions 2, 4, 6, 8, 12, 14 to 16, 18, and 20 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 9, 11 to 13, 15, 17, 19, 21, and 23, and 2′F modifications at positions 2, 4, 6 to 8, 10, 14, 16, 18, 20, and 22 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
        • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-F modifications at positions 1, 3, 5, 7, 9 to 11, 13, 15, 17, 19, and 21, and 2′-OMe modifications at positions 2, 4, 6, 8, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11 to 13, 15, 17, 19, and 21 to 23, and 2′F modifications at positions 2, 4, 6, 8, 10, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, 10, and 12 to 21, 2′-F modifications at positions 7, and 9, and a desoxy-nucleotide (e.g. dT) at position 11 (counting from the 5′ end); and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 7, 9, 11, 13, 15, 17, and 19 to 23, and 2′-F modifications at positions 2, 4 to 6, 8, 10, 12, 14, 16, and 18 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, 10, 12, 14, and 16 to 21, and 2′-F modifications at positions 7, 9, 11, 13, and 15; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 5, 7, 9, 11, 13, 15, 17, 19, and 21 to 23, and 2′-F modifications at positions 2 to 4, 6, 8, 10, 12, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 9, and 12 to 21, and 2′-F modifications at positions 10, and 11; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5, 7, 9, 11 to 13, 15, 17, 19, and 21 to 23, and 2′-F modifications at positions 2, 4, 6, 8, 10, 14, 16, 18, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-F modifications at positions 1, 3, 5, 7, 9 to 11, and 13, and 2′-OMe modifications at positions 2, 4, 6, 8, 12, and 14 to 21; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3, 5 to 7, 9, 11 to 13, 15, 17 to 19, and 21 to 23, and 2′-F modifications at positions 2, 4, 8, 10, 14, 16, and 20 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1, 2, 4, 6, 8, 12, 14, 15, 17, and 19 to 21, and 2′-F modifications at positions 3, 5, 7, 9 to 11, 13, 16, and 18; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 25 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 4, 6, 7, 9, 11 to 13, 15, 17, and 19 to 23, 2′-F modifications at positions 2, 3, 5, 8, 10, 14, 16, and 18, and desoxy-nucleotides (e.g. dT) at positions 24 and 25 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a four nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21, and 2′-F modifications at positions 7, and 9 to 11; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end); and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 8, 10 to 13, 15, and 17 to 23, and 2′-F modifications at positions 2, 6, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 6, 8, and 12 to 21, and 2′-F modifications at positions 7, and 9 to 11; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 23 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 10 to 13, 15, and 17 to 23, and 2′-F modifications at positions 2, 6, 8, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In another particular embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 19 nucleotides;
      • (ii) optionally an ASGPR ligand attached to the 3′-end, wherein said ASGPR ligand comprises three GalNAc derivatives attached through a trivalent branched linker;
      • (iii) 2′-OMe modifications at positions 1 to 4, 6, and 10 to 19, and 2′-F modifications at positions 5, and 7 to 9; and
      • (iv) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3 (counting from the 5′ end);
      • and
    • (b) an antisense strand having:
      • (i) a length of 21 nucleotides;
      • (ii) 2′-OMe modifications at positions 1, 3 to 5, 7, 10 to 13, 15, and 17 to 21, and 2′-F modifications at positions 2, 6, 8, 9, 14, and 16 (counting from the 5′ end); and
      • (iii) phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 19 and 20, and between nucleotide positions 20 and 21 (counting from the 5′ end);
    • wherein the dsRNA agents have a two nucleotide overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand.


In one embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 18-23 nucleotides;
      • (ii) three consecutive 2′-F modifications at positions 7-15; and
    • (b) an antisense strand having:
      • (i) a length of 18-23 nucleotides;
      • (ii) at least 2′-F modifications anywhere on the strand; and
      • (iii) at least two phosphorothioate internucleotide linkages at the first five nucleotides (counting from the 5′ end);
    • wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and either have two nucleotides overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand; or blunt end both ends of the duplex.


In one embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 18-23 nucleotides;
      • (ii) less than four 2′-F modifications;
    • (b) an antisense strand having:
      • (i) a length of 18-23 nucleotides;
      • (ii) at less than twelve 2′-F modification; and
      • (iii) at least two phosphorothioate internucleotide linkages at the first five nucleotides (counting from the 5′ end);
    • wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and either have two nucleotides overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand; or blunt end both ends of the duplex.


In one embodiment, the dsRNA agents of the present invention comprise:

    • (a) a sense strand having:
      • (i) a length of 19-35 nucleotides;
      • (ii) less than four 2′-F modifications;
    • (b) an antisense strand having:
      • (i) a length of 19-35 nucleotides;
      • (ii) at less than twelve 2′-F modification; and
      • (iii) at least two phosphorothioate internucleotide linkages at the first five nucleotides (counting from the 5′ end);
    • wherein the duplex region is between 19 to 25 base pairs (preferably 19, 20, 21 or 22); and wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and either have two nucleotides overhang at the 3′-end of the antisense strand, and a blunt end at the 5′-end of the antisense strand; or blunt end both ends of the duplex.


In one embodiment, the dsRNA agents of the present invention comprise a sense strand and antisense strands having a length of 15-30 nucleotides; at least two phosphorothioate internucleotide linkages at the first five nucleotides on the antisense strand (counting from the 5′ end); wherein the duplex region is between 19 to 25 base pairs (preferably 19, 20, 21 or 22); wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and wherein the dsRNA agents have less than 20%, less than 15% and less than 10% non-natural nucleotide.


Examples of non-natural nucleotide includes acyclic nucleotides, LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-fluoro, 2′-O—N-methylacetamido (2′-O-NMA), a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE), 2′-O-aminopropyl (2′-O-AP), or 2′-ara-F, and others.


In one embodiment, the dsRNA agents of the present invention comprise a sense strand and antisense strands having a length of 15-30 nucleotides; at least two phosphorothioate internucleotide linkages at the first five nucleotides on the antisense strand (counting from the 5′ end); wherein the duplex region is between 19 to 25 base pairs (preferably 19, 20, 21 or 22); wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and wherein the dsRNA agents have greater than 80%, greater than 85% and greater than 90% natural nucleotide, such as 2′-OH, 2′-deoxy and 2′-OMe are natural nucleotides.


In one embodiment, the dsRNA agents of the present invention comprise a sense strand and antisense strands having a length of 15-30 nucleotides; at least two phosphorothioate internucleotide linkages at the first five nucleotides on the antisense strand (counting from the 5′ end); wherein the duplex region is between 19 to 25 base pairs (preferably 19, 20, 21 or 22); wherein the dsRNA agents have one or more lipophilic moieties conjugated to one or more positions on at least one strand; and wherein the dsRNA agents have 100% natural nucleotide, such as 2′-OH, 2′-deoxy and 2′-OMe are natural nucleotides.


Various publications described multimeric siRNA and can all be used with the iRNA of the invention. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887 and WO2011/031520, which are hereby incorporated by reference in their entirety.


In some embodiments, 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% or 30% of the iRNA agent of the invention is modified.


In some embodiments, each of the sense and antisense strands of the iRNA agent is independently modified with acyclic nucleotides, LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-fluoro, 2′-O—N-methylacetamido (2′-O-NMA), a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE), 2′-O-aminopropyl (2′-O-AP), or 2′-ara-F.


In some embodiments, each of the sense and antisense strands of the iRNA agent contains at least two different modifications.


In some embodiments, the dsRNA agent of the invention of the invention does not contain any 2′-F modification.


In some embodiments, the dsRNA agent of the invention contains one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve 2′-F modification(s). In one example, dsRNA agent of the invention contains nine or ten 2′-F modifications.


The iRNA agent of the invention may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand may contain both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In one embodiment, the iRNA comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region may contain two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. Preferably, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand and/or antisense strand of the iRNA agent comprises one or more blocks of phosphorothioate or methylphosphonate internucleotide linkages. In one example, the sense strand comprises one block of two phosphorothioate or methylphosphonate internucleotide linkages. In one example, the antisense strand comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages. For example, the two blocks of phosphorothioate or methylphosphonate internucleotide linkages are separated by 16-18 phosphate internucleotide linkages.


In some embodiments, the antisense strand of the iRNA agent of the invention is 100% complementary to a target RNA to hybridize thereto and inhibits its expression through RNA interference. In another embodiment, the antisense strand of the iRNA agent of the invention is at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, or at least 50% complementary to a target RNA.


In one aspect, the invention relates to a iRNA agent capable of inhibiting the expression of a target gene. The iRNA agent comprises a sense strand and an antisense strand, each strand having 14 to 40 nucleotides. The sense strand contains at least one thermally destabilizing nucleotide, wherein at at least one said thermally destabilizing nucleotide occurs at or near the site that is opposite to the seed region of the antisense strand (i.e. at position 2-8 of the 5′-end of the antisense strand, or at positions 2-9 of the 5′-end of the antisense strand). For example, the thermally destabilizing nucleotide occurs between positions 14-17 of the 5′-end of the sense strand when the sense strand is 21 nucleotides in length. The antisense strand contains at least two modified nucleic acids that are smaller than a sterically demanding 2′-OMe modification. Preferably, the two modified nucleic acids that is smaller than a sterically demanding 2′-OMe are separated by 11 nucleotides in length. For example, the two modified nucleic acids are at positions 2 and 14 of the 5′end of the antisense strand.


In some embodiments, the compound of the invention disclosed herein is a miRNA mimic. In one design, miRNA mimics are double stranded molecules (e.g., with a duplex region of between about 16 and about 31 nucleotides in length) and contain one or more sequences that have identity with the mature strand of a given miRNA. Double-stranded miRNA mimics have designs similar to as described above for double-stranded iRNAs. In some embodiments, a miRNA mimic comprises a duplex region of between 16 and 31 nucleotides and one or more of the following chemical modification patterns: the sense strand contains 2′-O-methyl modifications of nucleotides 1 and 2 (counting from the 5′ end of the sense oligonucleotide), and all of the Cs and Us; the antisense strand modifications can comprise 2′ F modification of all of the Cs and Us, phosphorylation of the 5′ end of the oligonucleotide, and stabilized internucleotide linkages associated with a 2 nucleotide 3′ overhang.


V. C22 Hydrocarbon Chains

As described In U.S. Provisional Application No. 63/255,984, filed on Oct. 15, 2021 (the entire contents of which are incorporated herein by reference), including a C22 hydrocarbon chain, e.g., saturated or unsaturated, on one or more internal position(s) of the dsRNA agent increases lipophilicity of the dsRNA agent and provides optimal hydrophobicity for the enhanced in vivo delivery of dsRNA to, e.g., muscle tissue and/or adipose tissue.


One way to characterize lipophilicity is by the octanol-water partition coefficient, log Kow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf. Comput. Sci. 41:1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its log Kow exceeds 0. Typically, the lipophilic moiety possesses a log Kow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the log Kow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the log Kow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a C22 hydrocarbon chain can increase or decrease the partition coefficient (e.g., log Kow) value of the C22 hydrocarbon chain.


Alternatively, the hydrophobicity of the dsRNA agent, conjugated to one or more C22 hydrocarbon chains, can be measured by its protein binding characteristics. For instance, the unbound fraction in the plasma protein binding assay of the dsRNA agent can be determined to positively correlate to the relative hydrophobicity of the dsRNA agent, which can positively correlate to the silencing activity of the dsRNA agent.


In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. The hydrophobicity of the dsRNA agent, measured by fraction of unbound dsRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


In certain embodiments, the one or more C22 hydrocarbon chains is an aliphatic, alicyclic, or polyalicyclic compound is an aliphatic, cyclic such as alicyclic, or polycyclic such as polyalicyclic compound. The hydrocarbon chain may comprise various substituents and/or one or more heteroatoms, such as an oxygen or nitrogen atom.


The one or more C22 hydrocarbon chains may be attached to the iRNA agent by any method known in the art, including via a functional grouping already present in the lipophilic moiety or introduced into the iRNA agent, such as a hydroxy group (e.g., —CO—CH2—OH). The functional groups already present in the C22 hydrocarbon chain or introduced into the dsRNA agent include, but are not limited to, hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


Conjugation of the dsRNA agent and the C22 hydrocarbon chain may occur, for example, through formation of an ether or a carboxylic or carbamoyl ester linkage between the hydroxy and an alkyl group R—, an alkanoyl group RCO— or a substituted carbamoyl group RNHCO—. The alkyl group R may be cyclic (e.g., cyclohexyl) or acyclic (e.g., straight-chained or branched; and saturated or unsaturated). Alkyl group R may be a butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl or octadecyl group, or the like.


In some embodiments, the C22 hydrocarbon chain is conjugated to the dsRNA agent via a linker a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


In one embodiment, the one or more C22 hydrocarbon chains is a C22 acid, e.g., the C22 acid is selected from the group consisting of docosanoic acid, 6-octyltetradecanoic acid, 10 hexylhexadecanoic acid, all-cis-7,10,13,16,19-docosapentaenoic acid, all-cis-4,7,10,13,16,19-docosahexaenoic acid, all-cis-13,16-docosadienoic acid, all-cis-7,10,13,16-docosatetraenoic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, and cis-13-docosenoic acid.




embedded image


In one embodiment, the one or more C22 hydrocarbon chains is a C22 alcohol, e.g. the C22 alcohol is selected from the group consisting of 1-docosanol, 6-octyltetradecan-1-ol, 10-hexylhexadecan-1-ol, cis-13-docosen-1-ol, docosan-9-ol, docosan-2-ol, docosan-10-ol, docosan-11-ol, and cis-4,7,10,13,16,19-docosahexanol.




embedded image


In one embodiment, the one or more C22 hydrocarbon chains is not cis-4,7,10,13,16,19-docosahexanoic acid. In one embodiment, the one or more C22 hydrocarbon chains is not cis-4,7,10,13,16,19-docosahexanol. In one embodiment, the one or more C22 hydrocarbon chains is not cis-4,7,10,13,16,19-docosahexanoic acid and is not cis-4,7,10,13,16,19-docosahexanol.


In one embodiment, the one or more C22 hydrocarbon chains is a C22 amide, e.g., the C22 amide is selected from the group consisting of (E)-Docos-4-enamide, (E)-Docos-5-enamide, (Z)-Docos-9-enamide, (E)-Docos-11-enamide, 12-Docosenamide, (Z)-Docos-13-enamide, (Z)—N-Hydroxy-13-docoseneamide, (E)-Docos-14-enamide, 6-cis-Docosenamide, 14-Docosenamide Docos-11-enamide, (4E,13E)-Docosa-4,13-dienamide, and (5E,13E)-Docosa-5,13-dienamide.


In certain embodiments, more than one C22 hydrocarbon chains can be incorporated into the double-strand iRNA agent, particularly when the C22 hydrocarbon chains has a low lipophilicity or hydrophobicity. In one embodiment, two or more C22 hydrocarbon chains are incorporated into the same strand of the double-strand iRNA agent. In one embodiment, each strand of the double-strand iRNA agent has one or more C22 hydrocarbon chains incorporated. In one embodiment, two or more C22 hydrocarbon chains are incorporated into the same position (i.e., the same nucleobase, same sugar moiety, or same internucleosidic linkage) of the double-stranded iRNA agent. This can be achieved by, e.g., conjugating the two or more saturated or unsaturated C22 hydrocarbon chains via a carrier, and/or conjugating the two or more C22 hydrocarbon chains via a branched linker, and/or conjugating the two or more C22 hydrocarbon chains via one or more linkers, with one or more linkers linking the C22 hydrocarbon chains consecutively.


The one or more C22 hydrocarbon chains may be conjugated to the iRNA agent via a direct attachment to the ribosugar of the iRNA agent. Alternatively, the one or more C22 hydrocarbon chains may be conjugated to the double-strand iRNA agent via a linker or a carrier.


In certain embodiments, the one or more C22 hydrocarbon chains may be conjugated to the iRNA agent via one or more linkers (tethers).


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


A. Linkers/Tethers

Linkers/Tethers are connected to the one or more C22 hydrocarbon chains at a “tethering attachment point (TAP).” Linkers/Tethers may include any C1-C100 carbon-containing moiety, (e.g. C1-C75, C1-C50, C1-C20, C1-C10; C1, C2, C3, C4, C5, C6, C7, C8, C9, or C10), and may have at least one nitrogen atom. In certain embodiments, the nitrogen atom forms part of a terminal amino or amido (NHC(O)—) group on the linker/tether, which may serve as a connection point for the lipophilic moiety. Non-limited examples of linkers/tethers (underlined) include TAP-(CH2)2NH—; TAP-C(O)(CH2)nNH—; TAP-NR″″(CH2)nNH—, TAP-C(O)—(CH2)n—C(O)—; TAP-C(O)—(CH2)n—C(O)O—; TAP-C(O)—O—; TAP-C(O)—(CH2)n—NH—C(O)—; TAP-C(O)—(CH2)n; TAP-C(O)—NH—; TAP-C(O)—; TAP-(CH2)n—C(O)—; TAP-(CH2)n—C(O)O—; TAP-(CH2)n, or TAP-(CH2)n—NH—C(O)—; in which n is 1-20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) and R″″ is C1-C6 alkyl. Preferably, n is 5, 6, or 11. In other embodiments, the nitrogen may form part of a terminal oxyamino group, e.g., —ONH2, or hydrazino group, —NHNH2. The linker/tether may optionally be substituted, e.g., with hydroxy, alkoxy, perhaloalkyl, and/or optionally inserted with one or more additional heteroatoms, e.g., N, O, or S. Preferred tethered ligands may include, e.g., TAP-(CH2)nNH(LIGAND); TAP-C(O)(CH2)nNH(LIGAND); TAP-NR″″(CH2)nNH(LIGAND); TAP-(CH2)nNH(LIGAND); TAP-C(O)(CH2)nNH(LIGAND); TAP-NR″″(CH2)nONH(LIGAND); TAP-(CH2)nNHNH2(LIGAND), TAP-C(O)(CH2)nNHNH2(LIGAND); TAP-NR″″(CH2)nNHNH2(LIGAND); TAP-C(O)—(CH2)n—C(O)(LIGAND); TAP-C(O)—(CH2)n—C(O)O(LIGAND); TAP-C(O)—O(LIGAND); TAP-C(O)—(CH2)n—NH—C(O)(LIGAND); TAP-C(O)—(CH2)n(LIGAND); TAP-C(O)—NH(LIGAND); TAP-C(O)(LIGAND); TAP-(CH2)n—C(O) (LIGAND); TAP-(CH2)n—C(O)O(LIGAND); TAP-(CH2)n(LIGAND); or TAP-(CH2)n—NH—C(O)(LIGAND). In some embodiments, amino terminated linkers/tethers (e.g., NH2, ONH2, NH2NH2) can form an imino bond (i.e., C═N) with the ligand. In some embodiments, amino terminated linkers/tethers (e.g., NH2, ONH2, NH2NH2) can acylated, e.g., with C(O)CF3.


In some embodiments, the linker/tether can terminate with a mercapto group (i.e., SH) or an olefin (e.g., CH═CH2). For example, the tether can be TAP-(CH2)n—SH, TAP-C(O)(CH2)nSH, TAP-(CH2)n—(CH═CH2), or TAP-C(O)(CH2)n(CH═CH2), in which n can be as described elsewhere. The tether may optionally be substituted, e.g., with hydroxy, alkoxy, perhaloalkyl, and/or optionally inserted with one or more additional heteroatoms, e.g., N, O, or S. The double bond can be cis or trans or E or Z.


In other embodiments, the linker/tether may include an electrophilic moiety, preferably at the terminal position of the linker/tether. Exemplary electrophilic moieties include, e.g., an aldehyde, alkyl halide, mesylate, tosylate, nosylate, or brosylate, or an activated carboxylic acid ester, e.g. an NHS ester, or a pentafluorophenyl ester. Preferred linkers/tethers (underlined) include TAP-(CH2)nCHO; TAP-C(O)(CH2)nCHO; or TAP-NR″″(CH2)nCHO, in which n is 1-6 and R″″ is C1-C6 alkyl; or TAP-(CH2)nC(O)ONHS; TAP-C(O)(CH2)nC(O)ONHS; or TAP-NR″″(CH2)nC(O)ONHS, in which n is 1-6 and R″″ is C1-C6 alkyl; TAP-(CH2)nC(O)OC6F5; TAP-C(O)(CH2)nC(O) OC6F5; or TAP-NR″″(CH2)nC(O) OC6F5, in which n is 1-11 and R″″ is C1-C6 alkyl; or —(CH2)nCH2LG; TAP-C(O)(CH2)nCH2LG; or TAP-NR″″(CH2)nCH2LG, in which n can be as described elsewhere and R″″ is C1-C6 alkyl (LG can be a leaving group, e.g., halide, mesylate, tosylate, nosylate, brosylate). Tethering can be carried out by coupling a nucleophilic group of a ligand, e.g., a thiol or amino group with an electrophilic group on the tether.


In other embodiments, it can be desirable for the monomer to include a phthalimido group (K) at the terminal position of the linker/tether




embedded image


In other embodiments, other protected amino groups can be at the terminal position of the linker/tether, e.g., alloc, monomethoxy trityl (MMT), trifluoroacetyl, Fmoc, or aryl sulfonyl (e.g., the aryl portion can be ortho-nitrophenyl or ortho, para-dinitrophenyl).


Any of the linkers/tethers described herein may further include one or more additional linking groups, e.g., —O—(CH2)n—, —(CH2)n—SS—, —(CH2)n—, or —(CH═CH)—.


B. Cleavable Linkers/Tethers

In some embodiments, at least one of the linkers/tethers can be a redox cleavable linker, an acid cleavable linker, an esterase cleavable linker, a phosphatase cleavable linker, or a peptidase cleavable linker.


In one embodiment, at least one of the linkers/tethers can be a reductively cleavable linker (e.g., a disulfide group).


In one embodiment, at least one of the linkers/tethers can be an acid cleavable linker (e.g., a hydrazone group, an ester group, an acetal group, or a ketal group).


In one embodiment, at least one of the linkers/tethers can be an esterase cleavable linker (e.g., an ester group).


In one embodiment, at least one of the linkers/tethers can be a phosphatase cleavable linker (e.g., a phosphate group).


In one embodiment, at least one of the linkers/tethers can be a peptidase cleavable linker (e.g., a peptide bond).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some tethers will have a linkage group that is cleaved at a preferred pH, thereby releasing the iRNA agent from a ligand (e.g., a targeting or cell-permeable ligand, such as cholesterol) inside the cell, or into the desired compartment of the cell.


A chemical junction (e.g., a linking group) that links a ligand to an iRNA agent can include a disulfide bond. When the iRNA agent/ligand complex is taken up into the cell by endocytosis, the acidic environment of the endosome will cause the disulfide bond to be cleaved, thereby releasing the iRNA agent from the ligand (Quintana et al., Pharm Res. 19:1310-1316, 2002; Patri et al., Curr. Opin. Curr. Biol. 6:466-471, 2002). The ligand can be a targeting ligand or a second therapeutic agent that may complement the therapeutic effects of the iRNA agent.


A tether can include a linking group that is cleavable by a particular enzyme. The type of linking group incorporated into a tether can depend on the cell to be targeted by the iRNA agent. For example, an iRNA agent that targets an mRNA in liver cells can be conjugated to a tether that includes an ester group. Liver cells are rich in esterases, and therefore the tether will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Cleavage of the tether releases the iRNA agent from a ligand that is attached to the distal end of the tether, thereby potentially enhancing silencing activity of the iRNA agent. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Tethers that contain peptide bonds can be conjugated to iRNA agents target to cell types rich in peptidases, such as liver cells and synoviocytes. For example, an iRNA agent targeted to synoviocytes, such as for the treatment of an inflammatory disease (e.g., rheumatoid arthritis), can be conjugated to a tether containing a peptide bond.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue, e.g., tissue the iRNA agent would be exposed to when administered to a subject. Thus one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It may be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


C. Redox Cleavable Linking Groups

One class of cleavable linking groups are redox cleavable linking groups that are cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTI), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In a preferred embodiment, candidate compounds are cleaved by at most 10% in the blood. In preferred embodiments, useful candidate compounds are degraded at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


D. Phosphate-Based Cleavable Linking Groups

Phosphate-based linking groups are cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O—, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


E. Acid Cleavable Linking Groups

Acid cleavable linking groups are linking groups that are cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, ketals, acetals, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


F. Ester-Based Linking Groups

Ester-based linking groups are cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


G. Peptide-Based Cleaving Groups

Peptide-based linking groups are cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide cleavable linking groups have the general formula —NHCHR1C(O)NHCHR2C(O)—, where R1 and R2 are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


H. Biocleavable Linkers/Tethers

The linkers can also includes biocleavable linkers that are nucleotide and non-nucleotide linkers or combinations thereof that connect two parts of a molecule, for example, one or both strands of two individual siRNA molecules to generate a bis(siRNA). In some embodiments, mere electrostatic or stacking interaction between two individual siRNAs can represent a linker. The non-nucleotide linkers include tethers or linkers derived from monosaccharides, disaccharides, oligosaccharides, and derivatives thereof, aliphatic, alicyclic, hetercyclic, and combinations thereof.


In some embodiments, at least one of the linkers (tethers) is a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, and mannose, and combinations thereof.


In one embodiment, the bio-cleavable carbohydrate linker may have 1 to 10 saccharide units, which have at least one anomeric linkage capable of connecting two siRNA units. When two or more saccharides are present, these units can be linked via 1-3, 1-4, or 1-6 sugar linkages, or via alkyl chains.


Exemplary bio-cleavable linkers include:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


More discussion about the biocleavable linkers may be found in PCT application No. PCT/US18/14213, entitled “Endosomal Cleavable Linkers,” filed on Jan. 18, 2018, the entire contents of which are incorporated herein by reference.


I. Carriers

In certain embodiments, the one or more C22 hydrocarbon chains is conjugated to the iRNA agent via a carrier that replaces one or more nucleotide(s).


The carrier can be a cyclic group or an acyclic group. In one embodiment, the cyclic group is selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl, and decalin. In one embodiment, the acyclic group is a moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the carrier replaces one or more nucleotide(s) in the internal position(s) of the dsRNA agent.


In other embodiments, the carrier replaces the nucleotides at the terminal end of the sense strand or antisense strand. In one embodiment, the carrier replaces the terminal nucleotide on the 3′ end of the sense strand, thereby functioning as an end cap protecting the 3′ end of the sense strand. In one embodiment, the carrier is a cyclic group having an amine, for instance, the carrier may be pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, or decalinyl.


A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). The carrier can be a cyclic or acyclic moiety and include two “backbone attachment points” (e.g., hydroxyl groups) and a ligand (e.g., the lipophilic moiety). The one or more C22 hydrocarbon chains can be directly attached to the carrier or indirectly attached to the carrier by an intervening linker/tether, as described above.




embedded image


The ligand-conjugated monomer subunit may be the 5′ or 3′ terminal subunit of the iRNA molecule, i.e., one of the two “W” groups may be a hydroxyl group, and the other “W” group may be a chain of two or more unmodified or modified ribonucleotides. Alternatively, the ligand-conjugated monomer subunit may occupy an internal position, and both “W” groups may be one or more unmodified or modified ribonucleotides. More than one ligand-conjugated monomer subunit may be present in an iRNA agent.


a. Sugar Replacement-Based Monomers. e.g., Ligand-Conjugated Monomers (Cyclic)


Cyclic sugar replacement-based monomers, e.g., sugar replacement-based ligand-conjugated monomers, are also referred to herein as RRMS monomer compounds. The carriers may have the general formula (LCM-2) provided below (in that structure preferred backbone attachment points can be chosen from R1 or R2; R3 or R4; or R9 and R10 if Y is CR9R10 (two positions are chosen to give two backbone attachment points, e.g., R1 and R4, or R4 and R9)). Preferred tethering attachment points include R7; R5 or R6 when X is CH2. The carriers are described below as an entity, which can be incorporated into a strand. Thus, it is understood that the structures also encompass the situations wherein one (in the case of a terminal position) or two (in the case of an internal position) of the attachment points, e.g., R1 or R2; R3 or R4; or R9 or R10 (when Y is CR9R10), is connected to the phosphate, or modified phosphate, e.g., sulfur containing, backbone. E.g., one of the above-named R groups can be —CH2—, wherein one bond is connected to the carrier and one to a backbone atom, e.g., a linking oxygen or a central phosphorus atom.




embedded image




    • wherein:

    • X is N(CO)R7, NR7 or CH2;

    • Y is NR8, O, S, CR9R10;

    • Z is CR11R12 or absent;

    • Each of R1, R2, R3, R4, R9, and R10 is, independently, H, OR1, or (CH2)6ORb, provided that at least two of R1, R2, R3, R4, R9, and R10 are ORa and/or (CH2)nORb;

    • Each of R5, R6, R11, and R12 is, independently, a ligand, H, C1-C6 alkyl optionally substituted with 1-3 R13, or C(O)NHR7; or R5 and R11 together are C3-C8 cycloalkyl optionally substituted with R14;

    • R7 can be a ligand, e.g., R7 can be R4, or R7 can be a ligand tethered indirectly to the carrier, e.g., through a tethering moiety, e.g., C1-C20 alkyl substituted with NRcRd; or C1-C20 alkyl substituted with NHC(O)Rd;

    • R8 is H or C1-C6 alkyl;

    • R13 is hydroxy, C1-C4 alkoxy, or halo;

    • R14 is NRcR7;

    • R15 is C1-C6 alkyl optionally substituted with cyano, or C2-C6 alkenyl;

    • R16 is C1-C10 alkyl;

    • R17 is a liquid or solid phase support reagent;

    • L is —C(O)(CH2)qC(O)—, or —C(O)(CH2)qS—;

    • Ra is a protecting group, e.g., CAr3; (e.g., a dimethoxytrityl group) or Si(X5′)(X5″)(X5′″) in which (X5′), (X5″), and (X5′″) are as described elsewhere.

    • Rb is P(O)(O)H, P(OR15)N(R16)2 or L-R17;

    • Rc is H or C1-C6 alkyl;

    • Rd is H or a ligand;

    • Each Ar is, independently, C6-C10 aryl optionally substituted with C1-C4 alkoxy;

    • n is 1-4; and q is 0-4.





Exemplary carriers include those in which, e.g., X is N(CO)R7 or NR7, Y is CR9R10, and Z is absent; or X is N(CO)R7 or NR7, Y is CR9R10, and Z is CR11R12; or X is N(CO)R7 or NR7, Y is NR8, and Z is CR11R12; or X is N(CO)R7 or NR7, Y is O, and Z is CR11R12; or X is CH2; Y is CR9R10; Z is CR11R12, and R5 and R11 together form C6 cycloalkyl (H, z=2), or the indane ring system, e.g., X is CH2; Y is CR9R10; Z is CR11R12, and R5 and R11 together form C5 cycloalkyl (H, z=1).


In certain embodiments, the carrier may be based on the pyrroline ring system or the 4-hydroxyproline ring system, e.g., X is N(CO)R7 or NR7, Y is CR9R10, and Z is absent (D).




embedded image


OFG1 is preferably attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group, connected to one of the carbons in the five-membered ring (—CH2OFG1 in D). OFG2 is preferably attached directly to one of the carbons in the five-membered ring (—OFG2 in D). For the pyrroline-based carriers, —CH2OFG1 may be attached to C-2 and OFG2 may be attached to C-3; or -CH2OFG1 may be attached to C-3 and OFG2 may be attached to C-4. In certain embodiments, CH2OFG1 and OFG2 may be geminally substituted to one of the above-referenced carbons. For the 3-hydroxyproline-based carriers, —CH2OFG1 may be attached to C-2 and OFG2 may be attached to C-4. The pyrroline- and 4-hydroxyproline-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH2OFG1 and OFG2 may be cis or trans with respect to one another in any of the pairings delineated above Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included (e.g., the centers bearing CH2OFG1 and OFG2 can both have the R configuration; or both have the S configuration; or one center can have the R configuration and the other center can have the S configuration and vice versa). The tethering attachment point is preferably nitrogen. Preferred examples of carrier D include the following:




embedded image


In certain embodiments, the carrier may be based on the piperdine ring system (E), e.g., X is N(CO)R7 or NR7, Y is CR9R10, and Z is CR11R12.




embedded image


OFG1 is preferably attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group (n=1) or ethylene group (n=2), connected to one of the carbons in the six-membered ring [—(CH2)nOFG1 in E]. OFG2 is preferably attached directly to one of the carbons in the six-membered ring (—OFG2 in E). —(CH2)nOFG1 and OFG2 may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, or C-4. Alternatively, —(CH2)nOFG1 and OFG2 may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., —(CH2)nOFG1 may be attached to C-2 and OFG2 may be attached to C-3; —(CH2)nOFG1 may be attached to C-3 and OFG2 may be attached to C-2; —(CH2)nOFG1 may be attached to C-3 and OFG2 may be attached to C-4; or —(CH2)nOFG1 may be attached to C-4 and OFG2 may be attached to C-3. The piperdine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, —(CH2)nOFG1 and OFG2 may be cis or trans with respect to one another in any of the pairings delineated above. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included (e.g., the centers bearing CH2OFG1 and OFG2 can both have the R configuration; or both have the S configuration; or one center can have the R configuration and the other center can have the S configuration and vice versa). The tethering attachment point is preferably nitrogen.


In certain embodiments, the carrier may be based on the piperazine ring system (F), e.g., X is N(CO)R7 or NR7, Y is NR8, and Z is CR11R12, or the morpholine ring system (G), e.g., X is N(CO)R7 or NR7, Y is O, and Z is CR11R12.




embedded image


OFG1 is preferably attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group, connected to one of the carbons in the six-membered ring (—CH2OFG1 in F or G). OFG2 is preferably attached directly to one of the carbons in the six-membered rings (—OFG2 in F or G). For both F and G, —CH2OFG1 may be attached to C-2 and OFG2 may be attached to C-3; or vice versa. In certain embodiments, CH2OFG1 and OFG2 may be geminally substituted to one of the above-referenced carbons. The piperazine- and morpholine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH OFG1 and OFG2 may be cis or trans with respect to one another in any of the pairings delineated above. Accordingly, all cis trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included (e.g., the centers bearing CH2OFG1 and OFG2 can both have the R configuration; or both have the S configuration; or one center can have the R configuration and the other center can have the S configuration and vice versa). R′″ can be, e.g., C1-C6 alkyl, preferably CH3. The tethering attachment point is preferably nitrogen in both F and G.


In certain embodiments, the carrier may be based on the decalin ring system, e.g., X is CH2; Y is CR9R10; Z is CR11R12, and R5 and R11 together form C6 cycloalkyl (H, z=2), or the indane ring system, e.g., X is CH2; Y is CR9R10; Z is CR11R12, and R5 and R11 together form C5 cycloalkyl (H, z=1).




embedded image


OFG1 is preferably attached to a primary carbon, e.g., an exocyclic methylene group (n=1) or ethylene group (n=2) connected to one of C-2, C-3, C-4, or C-5 [—(CH2)nOFG1 in H]. OFG2 is preferably attached directly to one of C-2, C-3, C-4, or C-5 (—OFG2 in H). —(CH2)nOFG1 and OFG2 may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, C-4, or C-5. Alternatively, —(CH2)nOFG1 and OFG2 may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., —(CH2)nOFG1 may be attached to C-2 and OFG2 may be attached to C-3; —(CH2)nOFG1 may be attached to C-3 and OFG2 may be attached to C-2; —(CH2)nOFG1 may be attached to C-3 and OFG2 may be attached to C-4; or —(CH2)nOFG1 may be attached to C-4 and OFG2 may be attached to C-3; —(CH2)nOFG1 may be attached to C-4 and OFG2 may be attached to C-5; or —(CH2)nOFG1 may be attached to C-5 and OFG2 may be attached to C-4. The decalin or indane-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, —(CH2)nOFG1 and OFG2 may be cis or trans with respect to one another in any of the pairings delineated above. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included (e.g., the centers bearing CH2OFG1 and OFG2 can both have the R configuration; or both have the S configuration; or one center can have the R configuration and the other center can have the S configuration and vice versa). In a preferred embodiment, the substituents at C-1 and C-6 are trans with respect to one another. The tethering attachment point is preferably C-6 or C-7.


Other carriers may include those based on 3-hydroxyproline (J).




embedded image


Thus, —(CH2)nOFG1 and OFG2 may be cis or trans with respect to one another. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included (e.g., the centers bearing CH2OFG1 and OFG2 can both have the R configuration; or both have the S configuration; or one center can have the R configuration and the other center can have the S configuration and vice versa). The tethering attachment point is preferably nitrogen.


Details about more representative cyclic, sugar replacement-based carriers can be found in U.S. Pat. Nos. 7,745,608 and 8,017,762, which are herein incorporated by reference in their entireties.


b. Sugar Replacement-Based Monomers (A cyclic)


Acyclic sugar replacement-based monomers, e.g., sugar replacement-based ligand-conjugated monomers, are also referred to herein as ribose replacement monomer subunit (RRMS) monomer compounds. Preferred acyclic carriers can have formula LCM-3 or LCM-4:




embedded image


In some embodiments, each of x, y, and z can be, independently of one another, 0, 1, 2, or 3. In formula LCM-3, when y and z are different, then the tertiary carbon can have either the R or S configuration. In preferred embodiments, x is zero and y and z are each 1 in formula LCM-3 (e.g., based on serinol), and y and z are each 1 in formula LCM-3. Each of formula LCM-3 or LCM-4 below can optionally be substituted, e.g., with hydroxy, alkoxy, perhaloalkyl.


Details about more representative acyclic, sugar replacement-based carriers can be found in U.S. Pat. Nos. 7,745,608 and 8,017,762, which are herein incorporated by reference in their entireties.


The one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand. Internal positions of a strand refers to the nucleotide on any position of the strand, except the terminal position from the 3′ end and 5′ end of the strand (e.g., excluding 2 positions: position 1 counting from the 3′ end and position 1 counting from the 5′ end).


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand, which include all positions except the terminal two positions from each end of the strand (e.g., excluding 4 positions: positions 1 and 2 counting from the 3′ end and positions 1 and 2 counting from the 5′ end). In one embodiment, the one or more Cu hydrocarbon chains is conjugated to one or more internal positions on at least one strand, which include all positions except the terminal three positions from each end of the strand (e.g., excluding 6 positions: positions 1, 2, and 3 counting from the 3′ end and positions 1, 2, and 3 counting from the 5′ end).


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand, except the cleavage site region of the sense strand, for instance, the one or more C22 hydrocarbon chains is not conjugated to positions 9-12 counting from the 5′-end of the sense strand, for example, the one or more C22 hydrocarbon chains is not conjugated to positions 9-11 counting from the 5′-end of the sense strand. Alternatively, the internal positions exclude positions 11-13 counting from the 3′-end of the sense strand.


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand, which exclude the cleavage site region of the antisense strand. For instance, the internal positions exclude positions 12-14 counting from the 5′-end of the antisense strand.


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand, which exclude positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more of the following internal positions: positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to one or more of the following internal positions: positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′end of each strand.


In one embodiment, the one or more C22 hydrocarbon chains is conjugated to position 6 on the sense strand, counting from the 5′end of each strand.


In some embodiments, the one or more C22 hydrocarbon chains is conjugated to a nucleobase, sugar moiety, or internucleosidic phosphate linkage of the dsRNA agent.


VI. Synthesis of RNAi Agents of the Invention

The nucleic acids featured in the disclosure can be synthesized or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, NY, USA, which is hereby incorporated herein by reference.


An siRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include; organic synthesis and RNA cleavage, e.g., in vitro cleavage.


A. Organic Synthesis

An siRNA can be made by separately synthesizing a single stranded RNA molecule, or each respective strand of a double-stranded RNA molecule, after which the component strands can then be annealed.


A large bioreactor, e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given siRNA. The OligoPilotII reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide. To make an RNA strand, ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the siRNA. Typically, the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection.


Organic synthesis can be used to produce a discrete siRNA species. The complementary of the species to a particular target gene can be precisely specified. For example, the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism. Further the location of the polymorphism can be precisely defined. In some embodiments, the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.


B. dsiRNA Cleavage


siRNAs can also be made by cleaving a larger siRNA. The cleavage can be mediated in vitro or in vivo. For example, to produce iRNAs by cleavage in vitro, the following method can be used:


1. In Vitro Transcription.

dsiRNA is produced by transcribing a nucleic acid (DNA) segment in both directions. For example, the HiScribe™ RNAi transcription kit (New England Biolabs) provides a vector and a method for producing a dsiRNA for a nucleic acid segment that is cloned into the vector at a position flanked on either side by a T7 promoter. Separate templates are generated for T7 transcription of the two complementary strands for the dsiRNA. The templates are transcribed in vitro by addition of T7 RNA polymerase and dsiRNA is produced. Similar methods using PCR and/or other RNA polymerases (e.g., T3 or SP6 polymerase) can also be dotoxins that may contaminate preparations of the recombinant enzymes. In one embodiment, RNA generated by this method is carefully purified to remove endotoxins that may contaminate preparations of the recombinant enzymes.


2. In Vitro Cleavage.

dsRNA is cleaved in vitro into siRNAs, for example, using a Dicer or comparable RNAse III-based activity. For example, the dsiRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g., a purified RNAse or RISC complex (RNA-induced silencing complex). See, e.g., Ketting et al. Genes Dev 2001 Oct. 15; 15(20):2654-9 and Hammond Science 2001 Aug. 10; 293(5532):1146-50.


dsiRNA cleavage generally produces a plurality of siRNA species, each being a particular 21 to 23 nt fragment of a source dsiRNA molecule. For example, siRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsiRNA molecule may be present.


Regardless of the method of synthesis, the siRNA preparation can be prepared in a solution (e.g., an aqueous and/or organic solution) that is appropriate for formulation. For example, the siRNA preparation can be precipitated and redissolved in pure double-distilled water, and lyophilized. The dried siRNA can then be resuspended in a solution appropriate for the intended formulation process.


C. Making dsRNA Agents Conjugated to One or More C22 Hydrocarbon Chains


In some embodiments, the one or more C22 hydrocarbon chains is conjugated to the dsRNA agent via a nucleobase, sugar moiety, or internucleosidic linkage.


Conjugation to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a C22 hydrocarbon chain. Conjugation to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a C22 hydrocarbon chain. When one or more Cu hydrocarbon chains is conjugated to a nucleobase, the preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing. In one embodiment, the one or more C22 hydrocarbon chains may be conjugated to a nucleobase via a linker containing an alkyl, alkenyl or amide linkage.


Conjugation to sugar moieties of nucleosides can occur at any carbon atom. Exemplary carbon atoms of a sugar moiety that the one or more C22 hydrocarbon chains can be attached to include the 2′, 3′, and 5′ carbon atoms. The one or more C22 hydrocarbon chains can also be attached to the 1′ position, such as in an abasic residue. In one embodiment, the one or more C22 hydrocarbon chains may be conjugated to a sugar moiety, via a 2′-0 modification, with or without a linker.


Internucleosidic linkages can also bear the one or more C22 hydrocarbon chains. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the one or more C22 hydrocarbon chains can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleosidic linkages (e.g., PNA), the one or more C22 hydrocarbon chains can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.


There are numerous methods for preparing conjugates of oligonuclotides. Generally, an oligonucleotide is attached to a conjugate moiety by contacting a reactive group (e.g., OH, SH, amine, carboxyl, aldehyde, and the like) on the oligonucleotide with a reactive group on the conjugate moiety. In some embodiments, one reactive group is electrophilic and the other is nucleophilic.


For example, an electrophilic group can be a carbonyl-containing functionality and a nucleophilic group can be an amine or thiol. Methods for conjugation of nucleic acids and related oligomeric compounds with and without linking groups are well described in the literature such as, for example, in Manoharan in Antisense Research and Applications, Crooke and LeBleu, eds., CRC Press, Boca Raton, Fla., 1993, Chapter 17, which is incorporated herein by reference in its entirety.


In one embodiment, a first (complementary) RNA strand and a second (sense) RNA strand can be synthesized separately, wherein one of the RNA strands comprises a pendant C22 hydrocarbon chain, and the first and second RNA strands can be mixed to form a dsRNA. The step of synthesizing the RNA strand preferably involves solid-phase synthesis, wherein individual nucleotides are joined end to end through the formation of internucleotide 3′-5′ phosphodiester bonds in consecutive synthesis cycles.


In one embodiment, the C22 hydrocarbon chain having a phosphoramidite group is coupled to the 3′-end or 5′-end of either the first (complementary) or second (sense) RNA strand in the last synthesis cycle. In the solid-phase synthesis of an RNA, the nucleotides are initially in the form of nucleoside phosphoramidites. In each synthesis cycle, a further nucleoside phosphoramidite is linked to the —OH group of the previously incorporated nucleotide. If the one or more C22 hydrocarbon chains has a phosphoramidite group, it can be coupled in a manner similar to a nucleoside phosphoramidite to the free OH end of the RNA synthesized previously in the solid-phase synthesis. The synthesis can take place in an automated and standardized manner using a conventional RNA synthesizer. Synthesis of the molecule having the phosphoramidite group may include phosphitylation of a free hydroxyl to generate the phosphoramidite group.


Synthesis procedures of the one or more C22 hydrocarbon chain-conjugated phosphoramidites are exemplified in Example 1.


In general, the oligonucleotides can be synthesized using protocols known in the art, for example, as described in Caruthers et al., Methods in Enzymology (1992) 211:3-19; WO 99/54459; Wincott et al., Nucl. Acids Res. (1995) 23:2677-2684; Wincott et al., Methods Mol. Bio., (1997) 74:59; Brennan et al., Biotechnol. Bioeng. (1998) 61:33-45; and U.S. Pat. No. 6,001,311; each of which is hereby incorporated by reference in its entirety. In general, the synthesis of oligonucleotides involves conventional nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a Expedite 8909 RNA synthesizer sold by Applied Biosystems, Inc. (Weiterstadt, Germany), using ribonucleoside phosphoramidites sold by ChemGenes Corporation (Ashland, Mass.). Alternatively, syntheses can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.), or by methods such as those described in Usman et al., J. Am. Chem. Soc. (1987) 109:7845; Scaringe, et al., Nucl. Acids Res. (1990) 18:5433; Wincott, et al., Nucl. Acids Res. (1990) 23:2677-2684; and Wincott, et al., Methods Mol. Bio. (1997) 74:59, each of which is hereby incorporated by reference in its entirety.


The nucleic acid molecules of the present invention may be synthesized separately and joined together post-synthetically, for example, by ligation (Moore et al., Science (1992) 256:9923; WO 93/23569; Shabarova et al., Nucl. Acids Res. (1991) 19:4247; Bellon et al., Nucleosides & Nucleotides (1997) 16:951; Bellon et al., Bioconjugate Chem. (1997) 8:204; or by hybridization following synthesis and/or deprotection. The nucleic acid molecules can be purified by gel electrophoresis using conventional methods or can be purified by high pressure liquid chromatography (HPLC; see Wincott et al., supra, the totality of which is hereby incorporated herein by reference) and re-suspended in water.


VII. Ligands

In certain embodiments, the dsRNA agent of the invention is further modified by covalent attachment of one or more conjugate groups. In general, conjugate groups modify one or more properties of the attached dsRNA agent of the invention including but not limited to pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and clearance. Conjugate groups are routinely used in the chemical arts and are linked directly or via an optional linking moiety or linking group to a parent compound such as an oligomeric compound. A preferred list of conjugate groups includes without limitation, intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, thioethers, polyethers, cholesterols, thiocholesterols, cholic acid moieties, folate, lipids, phospholipids, biotin, phenazine, phenanthridine, anthraquinone, adamantane, acridine, fluoresceins, rhodamines, coumarins and dyes.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a receptor which mediates delivery to a specific tissue, e.g., liver tissue. These targeting ligands can be conjugated in combination with the one or more C22 hydrocarbon chains to enable specific systemic delivery. In one embodiment, a targeting ligand, e.g., one or more GalNAc derivatives, is conjugated to a dsRNA agent of the invention in combination with the one or more C22 hydrocarbon chains. In another embodiment, a targeting ligand, e.g., one or more GalNAc derivatives, is not conjugated to a dsRNA agent of the invention in combination with the one or more C22 hydrocarbon chains.


Exemplary targeting ligands that targets the receptor mediated delivery to an adipose tissue are peptide ligands such as Angiopep-2, lipoprotein receptor related protein (LRP) ligand, bEnd.3 cell binding ligand; transferrin receptor (TfR) ligand (which can utilize iron transport system in brain and cargo transport into the brain parenchyma); manose receptor ligand (which targets olfactory ensheathing cells, glial cells), glucose transporter protein, and LDL receptor ligand.


Preferred conjugate groups amenable to the present invention include lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553); cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053); a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765); a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533); an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 111; Kabanov et al., FEBS Lett., 1990, 259, 327; Svinarchuk et al., Biochimie, 1993, 75, 49); a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium-1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651; Shea et al., Nucl. Acids Res., 1990, 18, 3777); a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969); adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651); a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229); or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923).


Generally, a wide variety of entities, e.g., ligands, can be coupled to the oligomeric compounds described herein. Ligands can include naturally occurring molecules, or recombinant or synthetic molecules. Exemplary ligands include, but are not limited to, polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG, e.g., PEG-2K, PEG-5K, PEG-101C, PEG-12K, PEG-15K, PEG-20K, PEG-40K), MPEG, [MPEG]2, polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, polyphosphazine, polyethylenimine, cationic groups, spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, mucin, glycosylated polyaminoacids, transferrin, bisphosphonate, polyglutamate, polyaspartate, aptamer, asialofetuin, hyaluronan, procollagen, immunoglobulins (e.g., antibodies), insulin, transferrin, albumin, sugar-albumin conjugates, intercalating agents (e.g., acridines), cross-linkers (e.g. psoralen, mitomycin C), porphyrins (e.g., TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g., EDTA), lipophilic molecules (e.g, steroids, bile acids, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, bomeol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine), peptides (e.g., an alpha helical peptide, amphipathic peptide, RGD peptide, cell permeation peptide, endosomolytic/fusogenic peptide), alkylating agents, phosphate, amino, mercapto, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., naproxen, aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, AP, antibodies, hormones and hormone receptors, lectins, carbohydrates, multivalent carbohydrates, vitamins (e.g., vitamin A, vitamin E, vitamin K, vitamin B, e.g., folic acid, B12, riboflavin, biotin and pyridoxal), vitamin cofactors, lipopolysaccharide, an activator of p38 MAP kinase, an activator of NF-κB, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, myoservin, tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, gamma interferon, natural or recombinant low density lipoprotein (LDL), natural or recombinant high-density lipoprotein (HDL), and a cell-permeation agent (e.g., a.helical cell-permeation agent).


Peptide and peptidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; α, β, or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The peptide or peptidomimetic ligand can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


Exemplary amphipathic peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, S. clava peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H2A peptides, Xenopus peptides, esculentinis-1, and caerins.


As used herein, the term “endosomolytic ligand” refers to molecules having endosomolytic properties. Endosomolytic ligands promote the lysis of and/or transport of the composition of the invention, or its components, from the cellular compartments such as the endosome, lysosome, endoplasmic reticulum (ER), Golgi apparatus, microtubule, peroxisome, or other vesicular bodies within the cell, to the cytoplasm of the cell. Some exemplary endosomolytic ligands include, but are not limited to, imidazoles, poly or oligoimidazoles, linear or branched polyethyleneimines (PEIs), linear and brached polyamines, e.g. spermine, cationic linear and branched polyamines, polycarboxylates, polycations, masked oligo or poly cations or anions, acetals, polyacetals, ketals/polyketals, orthoesters, linear or branched polymers with masked or unmasked cationic or anionic charges, dendrimers with masked or unmasked cationic or anionic charges, polyanionic peptides, polyanionic peptidomimetics, pH-sensitive peptides, natural and synthetic fusogenic lipids, natural and synthetic cationic lipids.


Exemplary endosomolytic/fusogenic peptides include, but are not limited to,










(SEQ ID NO: 91)



AALEALAEALEALAEALEALAEAAAAGGC (GALA);






(SEQ ID NO: 92)



AALAEALAEALAEALAEALAEALAAAAGGC (EALA);






(SEQ ID NO: 93)



ALEALAEALEALAEA;






(SEQ ID NO: 94)



GLFEAIEGFIENGWEGMIWDYG (INF-7);






(SEQ ID NO: 95)



GLFGAIAGFIENGWEGMIDGWYG (Inf HA-2);






(SEQ ID NO: 96)



GLFEAIEGFIENGWEGMIDGWYGCGLFEAIEGFIENGWEGMID GWYGC (diINF-7);






(SEQ ID NO: 97)



GLFEAIEGFIENGWEGMIDGGCGLFEAIEGFIENGWEGMIDGGC (diINF-3);






(SEQ ID NO: 98)



GLFGALAEALAEALAEHLAEALAEALEALAAGGSC (GLF);






(SEQ ID NO: 99)



GLFEAIEGFIENGWEGLAEALAEALEALAAGGSC (GALA-INF3);






(SEQ ID NO: 100)



GLF EAI EGFI ENGW EGnI DG K GLF EAI EGFI ENGW EGnI DG (INF-5, n is norleucine);






 (SEQ ID NO: 101)



LFEALLELLESLWELLLEA (JTS-1);






(SEQ ID NO: 102)



GLFKALLKLLKSLWKLLLKA (ppTG1);






(SEQ ID NO: 103)



GLFRALLRLLRSLWRLLLRA (ppTG20);






(SEQ ID NO: 104)



WEAKLAKALAKALAKHLAKALAKALKACEA (KALA);






(SEQ ID NO: 105)



GLFFEAIAEFIEGGWEGLIEGC (HA);






(SEQ ID NO: 106)



GIGAVLKVLTTGLPALISWIKRKRQQ (Melittin);






(SEQ ID NO: 107)



H5WYG;



and 





(SEQ ID NO: 108)



CHK6HC.







Without wishing to be bound by theory, fusogenic lipids fuse with and consequently destabilize a membrane. Fusogenic lipids usually have small head groups and unsaturated acyl chains. Exemplary fusogenic lipids include, but are not limited to, 1,2-dileoyl-sn-3-phosphoethanolamine (DOPE), phosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylcholine (POPC), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-ol (Di-Lin), N-methyl(2,2-di((9Z,12Z)-octadeca-9,12-dienyl)-1,3-dioxolan-4-yl)methanamine (DLin-k-DMA) and N-methyl-2-(2,2-di((9Z,12Z)-octadeca-9,12-dienyl)-1,3-dioxolan-4-yl)ethanamine (also refered to as XTC herein).


Synthetic polymers with endosomolytic activity amenable to the present invention are described in U.S. Pat. App. Pub. Nos. 2009/0048410; 2009/0023890; 2008/0287630; 2008/0287628; 2008/0281044; 2008/0281041; 2008/0269450; 2007/0105804; 20070036865; and 2004/0198687, contents of which are hereby incorporated by reference in their entirety.


Exemplary cell permeation peptides include, but are not limited to,










(SEQ ID NO: 109)



RQIKIWFQNRRMKWKK (penetratin);






(SEQ ID NO: 110)



GRKKRRQRRRPPQC (Tat fragment 48-60);






(SEQ ID NO: 111)



GALFLGWLGAAGSTMGAWSQPKKKRKV (signal sequence based peptide);






 (SEQ ID NO: 112)



LLIILRRRIRKQAHAHSK (PVEC);






(SEQ ID NO: 113)



GWTLNSAGYLLKINLKALAALAKKIL (transportan);






(SEQ ID NO: 114)



KLALKLALKALKAALKLA (amphiphilic model peptide);






(SEQ ID NO: 115)



RRRRRRRRR (Arg9);






(SEQ ID NO: 116)



KFFKFFKFFK (Bacterial cell wall permeating peptide);






(SEQ ID NO: 117)



LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37);






(SEQ ID NO: 118)



SWLSKTAKKLENSAKKRISEGIAIAIQGGPR (cecropin P1);






(SEQ ID NO: 119)



ACYCRIPACIAGERRYGTCIYQGRLWAFCC (α-defensin);






(SEQ ID NO: 120)



DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK (β-defensin);






(SEQ ID NO: 121)



RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFPGKR-NH2 (PR-39);






(SEQ ID NO: 122)



ILPWKWPWWPWRR-NH2 (indolicidin);






(SEQ ID NO: 123)



AAVALLPAVLLALLAP (RFGF);






 (SEQ ID NO: 124)



AALLPVLLAAP (RFGF analogue);



and 





(SEQ ID NO: 125)



RKCRIVVIRVCR (bactenecin).







Exemplary cationic groups include, but are not limited to, protonated amino groups, derived from e.g., O-AMINE (AMINE=NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); aminoalkoxy, e.g., O(CH2)nAMINE, (e.g., AMINE=NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); amino (e.g. NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); and NH(CH2CH2NH)nCH2CH2-AMINE (AMINE=NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino).


As used herein the term “targeting ligand” refers to any molecule that provides an enhanced affinity for a selected target, e.g., a cell, cell type, tissue, organ, region of the body, or a compartment, e.g., a cellular, tissue or organ compartment. Some exemplary targeting ligands include, but are not limited to, antibodies, antigens, folates, receptor ligands, carbohydrates, aptamers, integrin receptor ligands, chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatin, LDL and HDL ligands.


Carbohydrate based targeting ligands include, but are not limited to, D-galactose, multivalent galactose, N-acetyl-D-galactosamine (GalNAc), multivalent GalNAc, e.g. GalNAc2 and GalNAc3 (GalNAc and multivalent GalNAc are collectively referred to herein as GalNAc conjugates); D-mannose, multivalent mannose, multivalent lactose, N-acetyl-glucosamine, Glucose, multivalent Glucose, multivalent fucose, glycosylated polyaminoacids and lectins. The term multivalent indicates that more than one monosaccharide unit is present. Such monosaccharide subunits can be linked to each other through glycosidic linkages or linked to a scaffold molecule.


A number of folate and folate analogs amenable to the present invention as ligands are described in U.S. Pat. Nos. 2,816,110; 5,552,545; 6,335,434 and 7,128,893, contents of which are herein incorporated in their entireties by reference.


As used herein, the terms “PK modulating ligand” and “PK modulator” refers to molecules which can modulate the pharmacokinetics of the composition of the invention. Some exemplary PK modulator include, but are not limited to, lipophilic molecules, bile acids, sterols, phospholipid analogues, peptides, protein binding agents, vitamins, fatty acids, phenoxazine, aspirin, naproxen, ibuprofen, suprofen, ketoprofen, (5)-(+)-pranoprofen, carprofen, PEGS, biotin, and transthyretia-binding ligands (e.g., tetraiidothyroacetic acid, 2, 4, 6-triiodophenol and flufenamic acid). Oligomeric compounds that comprise a number of phosphorothioate intersugar linkages are also known to bind to serum protein, thus short oligomeric compounds, e.g. oligonucleotides of comprising from about 5 to 30 nucleotides (e.g., 5 to 25 nucleotides, preferably 5 to 20 nucleotides, e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides), and that comprise a plurality of phosphorothioate linkages in the backbone are also amenable to the present invention as ligands (e.g. as PK modulating ligands). The PK modulating oligonucleotide can comprise at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more phosphorothioate and/or phosphorodithioate linkages. In some embodiments, all internucleotide linkages in PK modulating oligonucleotide are phosphorothioate and/or phosphorodithioates linkages. In addition, aptamers that bind serum components (e.g. serum proteins) are also amenable to the present invention as PK modulating ligands. Binding to serum components (e.g. serum proteins) can be predicted from albumin binding assays, such as those described in Oravcova, et al., Journal of Chromatography B (1996), 677: 1-27.


When two or more ligands are present, the ligands can all have same properties, all have different properties or some ligands have the same properties while others have different properties. For example, a ligand can have targeting properties, have endosomolytic activity or have PK modulating properties. In a preferred embodiment, all the ligands have different properties.


The ligand or tethered ligand can be present on a monomer when said monomer is incorporated into a component of the dsRNA agent of the invention (e.g., a dsRNA agent of the invention or linker). In some embodiments, the ligand can be incorporated via coupling to a “precursor” monomer after said “precursor” monomer has been incorporated into a component of the dsRNA agent of the invention (e.g., a dsRNA agent of the invention or linker). For example, a monomer having, e.g., an amino-terminated tether (i.e., having no associated ligand), e.g., monomer-linker-NH2 can be incorporated into a component of the compounds of the invention (e.g., a dsRNA agent of the invention or linker). In a subsequent operation, i.e., after incorporation of the precursor monomer into a component of the compounds of the invention (e.g., a dsRNA agent of the invention or linker), a ligand having an electrophilic group, e.g., a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor monomer by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor monomer's tether.


In another example, a monomer having a chemical group suitable for taking part in Click Chemistry reaction can be incorporated e.g., an azide or alkyne terminated tether/linker. In a subsequent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having complementary chemical group, e.g. an alkyne or azide can be attached to the precursor monomer by coupling the alkyne and the azide together.


In some embodiments, ligand can be conjugated to nucleobases, sugar moieties, or internucleosidic linkages of the dsRNA agent of the invention. Conjugation to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a conjugate moiety. Conjugation to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a conjugate moiety. When a ligand is conjugated to a nucleobase, the preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing.


Conjugation to sugar moieties of nucleosides can occur at any carbon atom. Example carbon atoms of a sugar moiety that can be attached to a conjugate moiety include the 2′, 3′, and 5′ carbon atoms. The 1′ position can also be attached to a conjugate moiety, such as in an abasic residue. Internucleosidic linkages can also bear conjugate moieties. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the conjugate moiety can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleosidic linkages (e.g., PNA), the conjugate moiety can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.


There are numerous methods for preparing conjugates of oligonuclotides. Generally, an oligonucleotide is attached to a conjugate moiety by contacting a reactive group (e.g., OH, SH, amine, carboxyl, aldehyde, and the like) on the oligonucleotide with a reactive group on the conjugate moiety. In some embodiments, one reactive group is electrophilic and the other is nucleophilic.


For example, an electrophilic group can be a carbonyl-containing functionality and a nucleophilic group can be an amine or thiol. Methods for conjugation of nucleic acids and related oligomeric compounds with and without linking groups are well described in the literature such as, for example, in Manoharan in Antisense Research and Applications, Crooke and LeBleu, eds., CRC Press, Boca Raton, Fla., 1993, Chapter 17, which is incorporated herein by reference in its entirety.


The ligand can be attached to the dsRNA agent of the inventions via a linker or a carrier monomer, e.g., a ligand carrier. The carriers include (i) at least one “backbone attachment point,” preferably two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier monomer into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of an oligonucleotide. A “tethering attachment point” (TAP) in refers to an atom of the carrier monomer, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The selected moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the carrier monomer. Thus, the carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent atom.


Representative U.S. patents that teach the preparation of conjugates of nucleic acids include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,149,782; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928; 5,672,662; 5,688,941; 5,714,166; 6,153,737; 6,172,208; 6,300,319; 6,335,434; 6,335,437; 6,395,437; 6,444,806; 6,486,308; 6,525,031; 6,528,631; 6,559,279; contents of which are herein incorporated in their entireties by reference.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a liver tissue. In some embodiments, the targeting ligand is a carbohydrate-based ligand. In one embodiment, the targeting ligand is a GalNAc conjugate.


In certain embodiments, the dsRNA agent of the invention further comprises a ligand having a structure shown below:




embedded image




    • wherein:
      • LG is independently for each occurrence a ligand, e.g., carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, polysaccharide; and
      • Z′, Z″, Z′″ and Z″″ are each independently for each occurrence 0 or S.





In certain embodiments, the dsRNA agent of the invention comprises a ligand of Formula (II), (III), (IV) or (V):




embedded image




    • wherein:

    • q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;

    • Q and Q′ are independently for each occurrence is absent, —(P7-Q7-R7)p-T7- or -T7-Q7-T7′-B-T8′-Q8-T8;

    • p2A, p2B, p3A, p3B, p4A, p4B, p5A, p5B, p5C, p7, T2A, T2B, T3A, T3B, T4A, T4B, T5A, T5B, T5C, T7, T7′, T8 and T8′ are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;

    • B is —CH2—N(BL)—CH2—;

    • BL is -TB-QB-TB′-Rx;

    • Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C, Q7, Q8 and QB are independently for each occurrence absent, alkylene, substituted alkylene and wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═(R′), C≡C or C(O);

    • TB and TB′ are each independently for each occurrence absent, CO, NH, O, S, OC(O), OC(O)O, NHC(O), NHC(O)NH, NHC(O)O, CH2, CH2NH or CH2O;

    • Rx is a lipophile (e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, bomeol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine), a vitamin (e.g., folate, vitamin A, vitamin E, biotin, pyridoxal), a peptide, a carbohydrate (e.g., monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, polysaccharide), an endosomolytic component, a steroid (e.g., uvaol, hecigenin, diosgenin), a terpene (e.g., triterpene, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), or a cationic lipid;

    • R1, R2, R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C, R7 are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra) NH—, CO, CH═N—O,







embedded image




    •  or heterocyclyl;

    • L1, L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C are each independently for each occurrence a carbohydrate, e.g., monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide;

    • R′ and R″ are each independently H, C1-C6 alkyl, OH, SH, or N(RN)2;

    • RN is independently for each occurrence H, methyl, ethyl, propyl, isopropyl, butyl or benzyl;

    • Ra is H or amino acid side chain;

    • Z′, Z″, Z′″ and Z″″ are each independently for each occurrence 0 or S;

    • p represent independently for each occurrence 0-20.





As discussed above, because the ligand can be conjugated to the iRNA agent via a linker or carrier, and because the linker or carrier can contain a branched linker, the iRNA agent can then contain multiple ligands via the same or different backbone attachment points to the carrier, or via the branched linker(s). For instance, the branchpoint of the branched linker may be a bivalent, trivalent, tetravalent, pentavalent, or hexavalent atom, or a group presenting such multiple valencies. In certain embodiments, the branchpoint is —N, —N(Q)-C, —O—C, —S—C, —SS—C, —C(O)N(Q)-C, —OC(O)N(Q)-C, N(Q)C(O)—C, or N(Q)C(O)O—C; wherein Q is independently for each occurrence H or optionally substituted alkyl. In other embodiment, the branchpoint is glycerol or glycerol derivative.


Suitable ligands for use in the compositions of the invention are described in U.S. Pat. Nos. 8,106,022, 8,450,467, 8,882,895, 9,352,048, 9,370,581, 9,370,582, 9,867,882, 10,806,791, and 11,110,174, and U.S. Patent Publication Nos. 2009/239814, 200/9247608, 2012/136042, 2013/178512, 2014/179761, 2015/011615, 2015/119444, 2015/119445, 2016/051691, 2016/375137, 2018/326070, 2019/099493, 2019/184018, and 2020/297853, the entire contents of each of which are incorporated herein by reference.


In some embodiments, a suitable ligand is a ligand disclosed in WO 2019/055633, the entire contents of which are incorporated herein by reference. In one embodiment the ligand comprises the structure below:




embedded image


In certain embodiments, the dsRNA agent of the invention comprises a ligand of structure:




embedded image


In certain embodiments, the dsRNA agent of the invention is conjugated with a ligand of structure:




embedded image


In certain embodiments, the dsRNA agent of the invention comprises a ligand of structure:




embedded image


In certain embodiments, the dsRNA agent of the invention comprises a monomer of structure:




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


Synthesis of above described ligands and monomers is described, for example, in U.S. Pat. No. 8,106,022, content of which are incorporated herein by reference in their entirety.


VIII. Delivery of an RNAi Agent of the Disclosure

The delivery of a RNAi agent of the disclosure to a cell e.g., a cell within a subject, such as a human subject (e.g., a subject in need thereof, such as a subject having a metabolic disorder, can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with an RNAi agent of the disclosure either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising an RNAi agent, e.g., a dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors that encode and direct the expression of the RNAi agent. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with a RNAi agent of the disclosure (see e.g., Akhtar S. and Julian R L., (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider in order to deliver an RNAi agent include, for example, biological stability of the delivered agent, prevention of non-specific effects, and accumulation of the delivered agent in the target tissue. The non-specific effects of an RNAi agent can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the RNAi agent to be administered. Several studies have shown successful knockdown of gene products when an RNAi agent is administered locally. For example, pulmonary delivery, e.g., inhalation, of a dsRNA, e.g., SOD1, has been shown to effectively knockdown gene and protein expression in lung tissue and that there is excellent uptake of the dsRNA by the bronchioles and alveoli of the lung. Intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J. et al., (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J. et al. (2003) Mol. Vis. 9:210-216) were also both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J. et al. (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J. et al., (2006) Mol. Ther. 14:343-350; Li, S. et al., (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dom, G. et al., (2004) Nucleic Acids 32:e49; Tan, P H. et al. (2005) Gene Ther. 12:59-66; Makimura, H. et al. (2002) BMC Neurosci. 3:18; Shishkina, G T., et al. (2004) Neuroscience 129:521-528; Thakker, E R., et al. (2004) Proc. Natl. Acad. Sci. USA. 101:17270-17275; Akaneya, Y., et al. (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A. et al., (2006) Mol. Ther. 14:476-484; Zhang, X. et al., (2004) J. Biol. Chem. 279:10677-10684; Bitko, V. et al., (2005) Nat. Med. 11:50-55). For administering a RNAi agent systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo. Modification of the RNA or the pharmaceutical carrier can also permit targeting of the RNAi agent to the target tissue and avoid undesirable off-target effects (e.g., without wishing to be bound by theory, use of GNAs as described herein has been identified to destabilize the seed region of a dsRNA, resulting in enhanced preference of such dsRNAs for on-target effectiveness, relative to off-target effects, as such off-target effects are significantly weakened by such seed region destabilization). RNAi agents can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, a RNAi agent directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J. et al., (2004) Nature 432:173-178). Conjugation of an RNAi agent to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O. et al., (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the RNAi agent can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of molecule RNAi agent (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an RNAi agent by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an RNAi agent, or induced to form a vesicle or micelle (see e.g., Kim S H. et al., (2008) Journal of Controlled Release 129(2):107-116) that encases an RNAi agent. The formation of vesicles or micelles further prevents degradation of the RNAi agent when administered systemically. Methods for making and administering cationic-RNAi agent complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mot Biol 327:761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al. (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of RNAi agents include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S. et at, (2006) Nature 441:111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12:321-328; Pal, A. et al., (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E. et al., (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H. et al., (1999) Pharm. Res. 16:1799-1804). In some embodiments, a RNAi agent forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of RNAi agents and cyclodextrins can be found in U.S. Patent No. 7, 427, 605, which is herein incorporated by reference in its entirety.


Certain aspects of the instant disclosure relate to a method of reducing the expression of a target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC, in a cell, comprising contacting said cell with the double-stranded RNAi agent of the disclosure. In one embodiment, the cell is a liver cell. In one embodiment, the cell is an adipocyte.


In certain embodiments, the RNAi agent is taken up on one or more tissue or cell types present in organs, e.g., liver, adipose tissue.


Another aspect of the disclosure relates to a method of reducing the expression and/or activity of a target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC, in a subject, comprising administering to the subject the double-stranded RNAi agent of the disclosure.


Another aspect of the disclosure relates to a method of treating a subject having a metabolic disorder or at risk of having or at risk of developing a metabolic disorder, comprising administering to the subject a therapeutically effective amount of the double-stranded RNAi agent of the disclosure, thereby treating the subject.


In one embodiment, the double-stranded RNAi agent is administered subcutaneously.


In one embodiment, the double-stranded RNAi agent is administered intramuscularly.


In one embodiment, the double-stranded RNAi agent is administered by intravenously.


In one embodiment, the double-stranded RNAi agent is administered by pulmonary system administration, e.g., intranasal administration, or oral inhalative administration.


For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to modified siRNA compounds. It may be understood, however, that these formulations, compositions and methods can be practiced with other siRNA compounds, e.g., unmodified siRNA compounds, and such practice is within the disclosure. A composition that includes a RNAi agent can be delivered to a subject by a variety of routes. Exemplary mutes include pulmonary system, intravenous, subcutaneous, intraventricular, oral, topical, rectal, anal, vaginal, nasal, and ocular.


The RNAi agents of the disclosure can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of RNAi agent and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be intratracheal, intranasal, topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral, parenteral, or pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal, or intramuscular injection, or intrathecal or intraventricular administration.


The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the RNAi agent in powder or aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the RNAi agent and mechanically introducing the RNA.


Compositions for pulmonary system delivery may include aqueous solutions, e.g., for intranasal or oral inhalative administration, suitable carriers composed of, e.g., lipids (liposomes, niosomes, microemulsions, lipidic micelles, solid lipid nanoparticles) or polymers (polymer micelles, dendrimers, polymeric nanoparticles, nonogels, nanocapsules), adjuvant, e.g., for oral inhalative administration. Aqueous compositions may be sterile and may optionally contain buffers, diluents, absorption enhancers and other suitable additives. Such administration permits both systemic and local delivery of the double stranded RNAi agents of the invention.


Intranasal administration may include instilling or insufflating a double stranded RNAi agent into the nasal cavity with syringes or droppers by applying a few drops at a time or via atomization. Suitable dosage forms for intranasal administration include drops, powders, nebulized mists, and sprays. Nasal delivery devices include, but not limited to, vapor inhaler, nasal dropper, spray bottle, metered dose spray pump, gas driven spray atomizer, nebulizer, mechanical powder sprayer, breath actuated inhaler, and insufflator. Devices for delivery deeper into the respiratory system, e.g., into the lung, include nebulizer, pressured metered-dose inhaler, dry powder inhaler, and thermal vaporization aerosol device. Devices for delivery by inhalation are available from commercial suppliers. Devices can be fixed or variable dose, single or multidose, disposable or reusable depending on, for example, the disease or disorder to be prevented or treated, the volume of the agent to be delivered, the frequency of delivery of the agent, and other considerations in the art.


Oral inhalative administration may include use of device, e.g., a passive breath driven or active power driven single/-multiple dose dry powder inhaler (DPI), to deliver a double stranded RNAi agent to the pulmonary system. Suitable dosage forms for oral inhalative administration include powders and solutions. Suitable devices for oral inhalative administration include nebulizers, metered-dose inhalers, and dry powder inhalers. Dry powder inhalers are of the most popular devices used to deliver drugs, especially proteins to the lungs. Exemplary commercially available dry powder inhalers include Spinhaler (Fisons Pharmaceuticals, Rochester, NY) and Rotahaler (GSK, RTP, NC). Several types of nebulizers are available, namely jet nebulizers, ultrasonic nebulizers, vibrating mesh nebulizers. Jet nebulizers are driven by compressed air. Ultrasonic nebulizers use a piezoelectric transducer in order to create droplets from an open liquid reservoir. Vibrating mesh nebulizers use perforated membranes actuated by an annular piezoelement to vibrate in resonant bending mode. The holes in the membrane have a large cross-section size on the liquid supply side and a narrow cross-section size on the side from where the droplets emerge. Depending on the therapeutic application, the hole sizes and number of holes can be adjusted. Selection of a suitable device depends on parameters, such as nature of the drug and its formulation, the site of action, and pathophysiology of the lung. Aqueous suspensions and solutions are nebulized effectively. Aerosols based on mechanically generated vibration mesh technologies also have been used successfully to deliver proteins to lungs.


The amount of RNAi agent for pulmonary system administration may vary from one target gene to another target gene and the appropriate amount that has to be applied may have to be determined individually for each target gene. Typically, this amount ranges from 10 μg to 2 mg, or 50 μg to 1500 μg, or 100 μg to 1000 μg.


Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves, and the like may also be useful.


Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening or flavoring agents can be added. Compositions suitable for oral administration of the agents of the invention are further described in PCT Application No. PCT/US20/33156, the entire contents of which are incorporated herein by reference.


Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives.


Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes may be controlled to render the preparation isotonic.


In one embodiment, the administration of the siRNA compound, e.g., a double-stranded siRNA compound, is parenteral, e.g., intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary system, intranasal, urethral, or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.


A. Vector Encoded RNAi Agents of the Disclosure

RNAi agents targeting the target gene can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; WO 00/22113, WO 00/22114, and U.S. Pat. No. 6,054,299). Expression can be sustained (months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., (1995) Proc. Natl. Acad. Sci. USA 92:1292).


The individual strand or strands of a RNAi agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


RNAi agent expression vectors are generally DNA plasmids or viral vectors. Expression vectors compatible with eukaryotic cells, such as those compatible with vertebrate cells, can be used to produce recombinant constructs for the expression of a RNAi agent as described herein. Delivery of RNAi agent expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV 40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct can be incorporated into vectors capable of episomal replication, e.g. EPV and EBV vectors. Constructs for the recombinant expression of a RNAi agent will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the RNAi agent in target cells. Other aspects to consider for vectors and constructs are known in the art.


IX. Pharmaceutical Compositions

The present disclosure also includes pharmaceutical compositions and formulations which include the RNAi agents of the disclosure. In one embodiment, provided herein are pharmaceutical compositions containing an RNAi agent, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical compositions containing the RNAi agent are useful for treating a subject who would benefit from inhibiting or reducing the expression of a target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC, e.g., a subject having a metabolic disorder. Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV), intramuscular (IM), or for subcutaneous (subQ) delivery.


In some embodiments, the pharmaceutical compositions of the invention are pyrogen free or non-pyrogenic.


In one embodiment, the delivery vehicle can deliver an iRNA compound, e.g., a double-stranded iRNA compound, or ssiRNA compound, (e.g., a precursor thereof, e.g., a larger siRNA compound which can be processed into a ssiRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof) to a cell by a topical route of administration. The delivery vehicle can be microscopic vesicles. In one example the microscopic vesicles are liposomes. In some embodiments the liposomes are cationic liposomes. In another example the microscopic vesicles are micelles. In one aspect, the invention features a pharmaceutical composition including an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, (e.g., a precursor thereof, e.g., a larger siRNA compound which can be processed into a ssiRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof) in an injectable dosage form. In one embodiment, the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders. In some embodiments the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.


In one aspect, the invention features a pharmaceutical composition including an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, (e.g., a precursor thereof, e.g., a larger siRNA compound which can be processed into a ssiRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof) in oral dosage form. In one embodiment, the oral dosage form is selected from the group consisting of tablets, capsules and gel capsules. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In some embodiments the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate. In one embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein.


In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.


In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.


X. Methods for Inhibiting Target Gene Expression

Another aspect of the invention relates to a method of reducing the expression of a target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC, in a cell, comprising contacting the cell with a dsRNA agent of the invention. The methods include contacting the cell with a dsRNA of the disclosure and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcripts of a target gene, thereby inhibiting expression of the target gene in the cell.


Reduction in gene expression can be assessed by any methods known in the art. For example, a reduction in the expression of a target may be determined by determining the mRNA expression level of the target gene using methods routine to one of ordinary skill in the art, e.g., northern blotting, qRT-PCR; by determining the protein level of a target protein using methods routine to one of ordinary skill in the art, such as western blotting, immunological techniques.


In the methods of the disclosure the cell may be contacted in vitro or in vivo, i.e., the cell may be within a subject. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible.


The cell may be an extra-hepatic cell, such as a liver cell or an adipocyte.


A cell suitable for treatment using the methods of the disclosure may be any cell that expresses a target gene. A cell suitable for use in the methods of the disclosure may be a mammalian cell, e.g., a primate cell (such as a human cell or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), a non-primate cell (such as a rat cell, or a mouse cell. In one embodiment, the cell is a human cell, e.g., a human liver cell or a human kidney cell.


Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc ligand, or any other ligand that directs the RNAi agent to a site of interest. In certain embodiments, the RNAi agent does not include a targeting ligand.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition. In certain embodiments, a level of inhibition, e.g., for an RNAi agent of the instant disclosure, can be assessed in cell culture conditions, e.g., wherein cells in cell culture are transfected via Lipofectamine™-mediated transfection at a concentration in the vicinity of a cell of 10 nM or less, 1 nM or less, etc. Knockdown of a given RNAi agent can be determined via comparison of pre-treated levels in cell culture versus post-treated levels in cell culture, optionally also comparing against cells treated in parallel with a scrambled or other form of control RNAi agent. Knockdown in cell culture of, e.g., 50% or more, can thereby be identified as indicative of “inhibiting” or “reducing”, “downregulating” or “suppressing”, etc. having occurred. It is expressly contemplated that assessment of targeted mRNA or encoded protein levels (and therefore an extent of “inhibiting”, etc. caused by a RNAi agent of the disclosure) can also be assessed in in vivo systems for the RNAi agents of the instant disclosure, under properly controlled conditions as described in the art.


The phrase “inhibiting expression of a target gene” or “inhibiting expression of a target,” as used herein, includes inhibition of expression of any target gene (such as, e.g., a mouse target gene, a rat target gene, a monkey target gene, or a human target gene) as well as variants or mutants of a target gene that encode a target protein. Thus, the target gene may be a wild-type target gene, a mutant target gene, or a transgenic target gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of a target gene” includes any level of inhibition of a target gene, e.g., at least partial suppression of the expression of a target gene, such as an inhibition by at least 20%. In certain embodiments, inhibition is by at least 30%, at least 40%, at least 50%, at least about 60%, at least 70%, at least about 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%; or to below the level of detection of the assay method. In certain method, inhibition is measured at a 10 nM concentration of the siRNA using the luciferase assay provided in Example 1.


The expression of a target gene may be assessed based on the level of any variable associated with target gene expression, e.g., target mRNA level or target protein level.


Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


In some embodiments of the methods of the disclosure, expression of a target gene is inhibited by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, or 95%, or to below the level of detection of the assay. In certain embodiments, the methods include a clinically relevant inhibition of expression of a target gene, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of a target gene.


Inhibition of the expression of a target gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which a target gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with a RNAi agent of the disclosure, or by administering a RNAi agent of the disclosure to a subject in which the cells are or were present) such that the expression of a target gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with a RNAi agent or not treated with a RNAi agent targeted to the genome of interest). The degree of inhibition may be expressed in terms of:










(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)


·
100


%




In other embodiments, inhibition of the expression of a target gene may be assessed in terms of a reduction of a parameter that is functionally linked to a target gene expression, e.g., target protein expression. Target gene silencing may be determined in any cell expressing a target gene, either endogenous or heterologous from an expression construct, and by any assay known in the art.


Inhibition of the expression of a target protein may be manifested by a reduction in the level of the target protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of genome suppression, the inhibition of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.


A control cell or group of cells that may be used to assess the inhibition of the expression of a target gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the disclosure. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.


The level of target gene mRNA that is expressed by a cell or group of cells may be determined using any method known in the art for assessing RNA expression. In one embodiment, the level of expression of target gene in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the target gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasym™ RNA preparation kits (Qiagen®) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Circulating target mRNA may be detected using methods the described in WO2012/177906, the entire contents of which are hereby incorporated herein by reference.


In some embodiments, the level of expression of target gene is determined using a nucleic acid probe. The term “probe”, as used herein, refers to any molecule that is capable of selectively binding to a specific target nucleic acid or protein, or fragment thereof. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of RNA levels involves contacting the isolated RNA with a nucleic acid molecule (probe) that can hybridize to target RNA. In one embodiment, the RNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated RNA on an agarose gel and transferring the RNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the RNA is contacted with the probe(s), for example, in an Affymetrix® gene chip array. A skilled artisan can readily adapt known RNA detection methods for use in determining the level of target mRNA.


An alternative method for determining the level of expression of target in a sample involves the process of nucleic acid amplification or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the disclosure, the level of expression of target is determined by quantitative fluorogenic RT-PCR (i.e., the TagMan™ System), by a Dual-Glo® Luciferase assay, or by other art-recognized method for measurement of target expression or mRNA level.


The expression level of target mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of target expression level may also comprise using nucleic acid probes in solution.


In some embodiments, the level of RNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of this PCR method is described and exemplified in the Examples presented herein. Such methods can also be used for the detection of target nucleic acids.


The level of target protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can also be used for the detection of proteins indicative of the presence or replication of target proteins.


In some embodiments, the efficacy of the methods of the disclosure in the treatment of a target gene-related disease is assessed by a decrease in target mRNA level (e.g, by assessment of a blood target gene level, or otherwise).


In some embodiments, the efficacy of the methods of the disclosure in the treatment of a target gene-related disease is assessed by a decrease in target mRNA level (e.g, by assessment of a liver or kidney sample for target level, by biopsy, or otherwise).


In some embodiments of the methods of the disclosure, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of target may be assessed using measurements of the level or change in the level of target mRNA or target protein in a sample derived from a specific site within the subject, e.g., liver or kidney cells. In certain embodiments, the methods include a clinically relevant inhibition of expression of target, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of target gene.


As used herein, the terms detecting or determining a level of an analyte are understood to mean performing the steps to determine if a material, e.g., protein, RNA, is present. As used herein, methods of detecting or determining include detection or determination of an analyte level that is below the level of detection for the method used.


XI. Prophylactic and Treatment Methods of the Invention

The present invention also provides methods of using an iRNA of the invention or a composition containing an iRNA of the invention to inhibit expression of a metabolic disorder-associated target gene, thereby preventing or treating a metabolic disorder, e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight. In the methods of the invention the cell may be contacted with the siRNA in vitro or in vivo, i.e., the cell may be within a subject.


A cell suitable for treatment using the methods of the invention may be any cell that expresses a metabolic disorder-associated target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC, e.g., an adipocyte cell, or a liver cell. A cell suitable for use in the methods of the invention may be a mammalian cell, e.g., a primate cell (such as a human cell, including human cell in a chimeric non-human animal, or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), or a non-primate cell. In certain embodiments, the cell is a human cell, e.g., a human liver cell. In the methods of the invention, target gene expression is inhibited in the cell by at least 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95, or to a level below the level of detection of the assay.


The in vivo methods of the invention may include administering to a subject a composition containing an iRNA, where the iRNA includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the target gene of the mammal to which the RNAi agent is to be administered. The composition can be administered by any means known in the art including, but not limited to oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal, and intrathecal), intravenous, intramuscular, subcutaneous, transdermal, airway (aerosol), nasal, rectal, intraocular (e.g., periocular, conjunctival, subtenon, intracameral, intravitreal, intraocular, anterior or posterior juxtascleral, subretinal, subconjunctival, retrobulbar, or intracanalicular injection), intravenous, intramuscular, subcutaneous, transdermal, airway (aerosol), and topical (including buccal and sublingual) administration.


In certain embodiments, the compositions are administered by intravenous infusion or injection. In certain embodiments, the compositions are administered by subcutaneous injection. In certain embodiments, the compositions are administered by intramuscular injection.


The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.


In one aspect, the present invention also provides methods for inhibiting the expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a mammal. The methods include administering to the mammal a composition comprising a dsRNA that targets a target gene in a cell of the mammal and maintaining the mammal for a time sufficient to obtain degradation of the mRNA transcript of the target gene, thereby inhibiting expression of the target gene in the cell. Reduction in gene expression can be assessed by any methods known in the art and by methods, e.g. qRT-PCR, described herein, e.g., in Example 2. Reduction in protein production can be assessed by any methods known it the art, e.g. ELISA. In certain embodiments, a puncture liver biopsy sample serves as the tissue material for monitoring the reduction in the target gene or protein expression. In other embodiments, a blood sample serves as the subject sample for monitoring the reduction in the target protein expression.


The present invention further provides methods of treatment in a subject in need thereof, e.g., a subject diagnosed with a metabolic disorder, e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight.


The present invention further provides methods of prophylaxis in a subject in need thereof. The treatment methods of the invention include administering an iRNA of the invention to a subject, e.g., a subject that would benefit from a reduction of expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), in a prophylactically effective amount of a dsRNA targeting INHBE, ACVR1C, PLIN1, PDE3B, or INHBC or a pharmaceutical composition comprising a dsRNA targeting INHBE, ACVR1C, PLIN1, PDE3B, or INHBC.


In one aspect, the present invention provides methods of treating a subject having a disorder that would benefit from reduction in expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC), e.g., a metabolic disorder, e.g., diabetes.


Treatment of a subject that would benefit from a reduction and/or inhibition of INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene expression includes therapeutic treatment (e.g., a subject is having a metabolic disorder) and prophylactic treatment (e.g., the subject is not having a metabolic disorder or a subject may be at risk of developing a metabolic disorder).


Examples of metabolic disorders include but are not limited to, metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight.


In some embodiments, the metabolic disorder is metabolic syndrome.


In some embodiments, the RNAi agent is administered to a subject in an amount effective to inhibit expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell within the subject. The amount effective to inhibit target gene expression in a cell within a subject may be assessed using methods discussed above, including methods that involve assessment of the inhibition of target gene mRNA, target gene protein, or related variables, such as insulin resistance, BMI, WHRadj BMI, adipose tissue, e.g., image-based quantification of adipose tissue, e.g., MRI or DEXA for abdominal subcutaneous adipose and visceral adipose tissue quantification.


An iRNA of the invention may be administered as a “free iRNA.” A free iRNA is administered in the absence of a pharmaceutical composition. The naked iRNA may be in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In one embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the iRNA can be adjusted such that it is suitable for administering to a subject.


Alternatively, an iRNA of the invention may be administered as a pharmaceutical composition, such as a dsRNA liposomal formulation.


Subjects that would benefit from an inhibition of INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene expression are subjects susceptible to or diagnosed with a metabolic disorder, e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight. In an embodiment, the method includes administering a composition featured herein such that expression of the target gene is decreased, such as for about 1, 2, 3, 4, 5, 6, 1-6, 1-3, or 3-6 months per dose. In certain embodiments, the composition is administered once every 3-6 months.


In one embodiment, the iRNAs useful for the methods and compositions featured herein specifically target RNAs (primary or processed) of the target gene. Compositions and methods for inhibiting the expression of these genes using iRNAs can be prepared and performed as described herein.


Administration of the iRNA according to the methods of the invention may result prevention or treatment of a metabolic disorder, e.g., metabolic syndrome, a disorder of carbohydrates, e.g., type II diabetes, pre-diabetes, a lipid metabolism disorder, e.g., a hyperlipidemia, hypertension, lipodystrophy; a kidney disease; a cardiovascular disease, a disorder of body weight. Subjects can be administered a therapeutic amount of iRNA, such as about 0.01 mg/kg to about 200 mg/kg.


In one embodiment, the iRNA is administered subcutaneously, i.e., by subcutaneous injection. One or more injections may be used to deliver the desired dose of iRNA to a subject. The injections may be repeated over a period of time.


The administration may be repeated on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. A repeat-dose regimen may include administration of a therapeutic amount of iRNA on a regular basis, such as once per month to once a year. In certain embodiments, the iRNA is administered about once per month to about once every three months, or about once every three months to about once every six months.


The invention further provides methods and uses of an iRNA agent or a pharmaceutical composition thereof for treating a subject that would benefit from reduction and/or inhibition of INHBE, ACVR1C, PLIN1, PDE3B, or INHBC gene expression, e.g., a subject having a metabolic disorder, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders.


Accordingly, in some aspects of the invention, the methods which include administration of an iRNA agent of the invention, further include administering to the subject one or more additional therapeutic agents.


For example, in certain embodiments, an iRNA targeting INHBE, ACVR1C, PLIN1, PDE3B, or INHBC is administered in combination with, e.g., an agent useful in treating a metabolic disorder as described herein or otherwise known in the art. For example, additional agents and treatments suitable for treating a subject that would benefit from reduction in INHBE, ACVR1C, PLIN1, PDE3B, or INHBC expression, e.g., a subject having a metabolic disorder, may include agents currently used to treat symptoms of a metabolic disorder.


Examples of the additional therapeutic agents which can be used with an RNAi agent of the invention include, but are not limited to, insulin, a glucagon-like peptide 1 agonist (e.g., exenatide, liraglutide, dulaglutide, semaglutide, and pramlintide, a sulfonylurea (e.g., chlorpropamide, glipizide), a seglitinide (e.g., repaglinide, nateglinidie), biguanides (e.g., metformin), a thiazolidinedione, e.g, rosiglitazone, troglitazone, an alpha-glucosidase inhibitor (e.g., acarbose and meglitol), an SGLT2 inhibitor (e.g., dapagliflozin), a DPP-4 inhibitor (e.g., linagliptin), or an HMG-CoA reductase inhibitor, e.g., statins, such as atorvastatin (Lipitor), fluvastatin (Lescol), lovastatin (Mevacor), lovastatin extended-release (Altoprev), pitavastatin (Livalo), pravastatin (Pravachol), rosuvastatin (Crestor), and simvastatin (Zocor).


The method according to any one of claims 34 to 36, wherein the metabolic disorder is type 2 diabetes, and the therapeutic agent is chosen from metformin, insulin, glyburide, glipizide, glimepiride, repaglinide, nateglinide, thiazolidinediones, rosiglitazone, pioglitazone, sitagliptin, saxagliptin, linagliptin, exenatide, liraglutide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin, or any combination thereof.


In one embodiment, the metabolic disorder is obesity, and the therapeutic agent is chosen from orlistat, phentermine, topiramate, bupropion, naltrexone, and liraglutide, or any combination thereof.


In one embodiment, the metabolic disorder is elevated triglyceride, and the therapeutic agent is chosen from rosuvastatin, simvastatin, atorvastatin, fenofibrate, gemfibrozil, fenofibric acid, niacin, and an omega-3 fatty acid, or any combination thereof.


In one embodiment, the metabolic disorder is lipodystrophy, and the therapeutic agent is chosen from tesamorelin, metformin, poly-L-lactic acid, calcium hydroxyapatite, polymethylmethacrylate, bovine collagens, human collagens, silicone, and hyaluronic acid, or any combination thereof.


In one embodiment, the metabolic disorder is liver inflammation, and the therapeutic agent is a hepatitis therapeutic or a hepatitis vaccine.


In one embodiment, the metabolic disorder is fatty liver disease include, and the subject is administered bariatric surgery and/or dietary intervention.


In one embodiment, the metabolic disorder is hypercholesterolemia, and the therapeutic agent is chosen from: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin calcium, simvastatin, cholestyramine, colesevelam, and colestipol, alirocumab, evolocumab, niaspan, niacor, fenofibrate, gemfibrozil, and bempedoic, or any combination thereof.


In one embodiment, the metabolic disorder is an elevated liver enzyme), and the therapeutic agent is chosen from coffee, folic acid, potassium, vitamin B6, a statin, and fiber, or any combination thereof.


In one embodiment, the metabolic disorder is nonalcoholic steatohepatitis (NASH) and the therapeutic agent is obeticholic acid, Selonsertib, Elafibranor, Cenicriviroc, GR_MD_02, MGL_3196, IMM124E, arachidyl amido cholanoic acid, GS0976, Emricasan, Volixibat, NGM282, GS9674, Tropifexor, MN_001, LMB763, B1_1467335, MSDC_0602, PF_05221304, DF102, Saroglitazar, BMS986036, Lanifibranor, Semaglutide, Nitazoxanide, GRI_0621, EYP001, VK2809, Nalmefene, LIK066, MT 3995, Elobixibat, Namodenoson, Foralumab, SAR425899, Sotagliflozin, EDP_305, Isosabutate, Gemcabene, TERN 101, KBP_042, PF_06865571, DUR928, PF_06835919, NGM313, BMS_986171, Namacizumab, CER_209, ND_L02_s0201, RTU_1096, DRX_065, IONIS_DGAT2Rx, INT_767, NC_001, Seladepar, PXL770, TERN_201, NV556, AZD2693, SP_1373, VK0214, Hepastem, TGFTX4, RLBN1127, GKT_137831, RYI_018, CB4209-CB4211, and JH_0920.


In one embodiment, the therapeutic agent that treats or inhibits the metabolic disorder is a melanocortin 4 receptor (MC4R) agonist.


In one embodiment, the MC4R agonist comprises a protein, a peptide, a nucleic acid molecule, or a small molecule.


In one embodiment, the protein is a peptide analog of MC4R.


In one embodiment, the peptide is setmelanotide.


In one embodiment, the MC4R agonist is a peptide comprising the amino acid sequence His-Phe-Arg-Trp.


In one embodiment, the small molecule is 1,2,3R,4-tetrahydroisoquinoline-3-carboxylic acid.


In one embodiment, the MC4R agonist is ALB-127158(a).


In one embodiment, the cardiovascular disease is high blood pressure, and the therapeutic agent is chosen from chlorthalidone, chlorothiazide, hydrochlorothiazide, indapamide, metolazone, acebutolol, atenolol, betaxolol, bisoprolol fumarate, carteolol hydrochloride, metoprolol tartrate, metoprolol succinate, nadolol, benazepril hydrochloride, captopril, enalapril maleate, fosinopril sodium, lisinopril, moexipril, perindopril, quinapril hydrochloride, ramipril, trandolapril, candesartan, eprosartan mesylate, irbesartan, losartan potassium, telmisartan, valsartan, amlodipine besylate, bepridil, diltiazem hydrochloride, felodipine, isradipine, nicardipine, nifedipine, nisoldipine, verapamil hydrochloride, doxazosin mesylate, prazosin hydrochloride, terazosin hydrochloride, methyldopa, carvedilol labetalol hydrochloride, alpha methyldopa, clonidine hydrochloride, guanabenz acetate, guanfacine hydrochloride, guanadrel, guanethidine monosulfate, reserpine, hydralazine hydrochloride, and minoxidil, or any combination thereof.


In one embodiment, the cardiovascular disease is cardiomyopathy, and the therapeutic agent is an ACE inhibitor, an angiotensin II receptor blocker, a beta blocker, a calcium channel blocker, digoxin, an antiarrhythmic, an aldosterone blocker, a diuretic, an anticoagulant, a blood thinner, and a corticosteroid.


In one embodiment, the cardiovascular disease is heart failure, and the therapeutic agent is an ACE inhibitor, an angiotensin-2 receptor blocker, a beta blocker, a mineralocorticoid receptor antagonist, a diuretic, ivabradine, sacubitril valsartan, hydralazine with nitrate, and digoxin.


The iRNA agent and an additional therapeutic agent and/or treatment may be administered at the same time and/or in the same combination, e.g., parenterally, or the additional therapeutic agent can be administered as part of a separate composition or at separate times and/or by another method known in the art or described herein.


XII. Kits

In certain aspects, the instant disclosure provides kits that include a suitable container containing a pharmaceutical formulation of a siRNA compound, e.g., a double-stranded siRNA compound, or siRNA compound, (e.g., a precursor, e.g., a larger siRNA compound which can be processed into a siRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof).


Such kits include one or more dsRNA agent(s) and instructions for use, e.g., instructions for administering a prophylactically or therapeutically effective amount of a dsRNA agent(s). The dsRNA agent may be in a vial or a pre-filled syringe. The kits may optionally further comprise means for administering the dsRNA agent (e.g., an injection device, such as a pre-filled syringe), or means for measuring the inhibition of a metabolic disorder-associated target gene, e.g., INHBE, ACVR1C, PLIN1, PDE3B, or INHBC (e.g., means for measuring the inhibition of target gene mRNA, target gene protein, and/or target gebe activity). Such means for measuring the inhibition of target gene may comprise a means for obtaining a sample from a subject, such as, e.g., a plasma sample. The kits of the invention may optionally further comprise means for determining the therapeutically effective or prophylactically effective amount.


In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container, e.g., a vial or a pre-filled syringe. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or mom containers, e.g., one container for a siRNA compound preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.


This invention is further illustrated by the following examples which should not be construed as limiting. The entire contents of all references, patents and published patent applications cited throughout this application, as well as the informal Sequence Listing and Figures, are hereby incorporated herein by reference.


EXAMPLES
Example 1. Identification of Association of INHBE Loss-Of-Function with Waist-To-Hip Ratio in UK Biobank

Abdominal obesity is the most prevalent manifestation of metabolic syndrome (Després J. and Lemieux I. Nature 2006; 444:881-887) and is recognized as a contributor to cardiovascular disease and metabolic risk beyond body mass index (BMI) (Neeland U et al. Lancet Diabetes & Endocrinology 2019; 7(9):715-725). Waist-to-hip ratio adjusted for BMI (WHRadjBMI) reflects abdominal adiposity and correlates with direct imaging of abdominal fat. Mendelian randomization studies have shown a causal relationship between WHRadjBMI and risk of type 2 diabetes and coronary heart disease along with ischemic stroke, glycemic traits and circulating lipids (Emdin C A et al. JAMA 2017; 317(6):626-634; Dale C E et al. Circulation 2017; 135(24):2373-2388).


Rare genetic variants were tested for association with waist-to-hip ratio adjusted for BMI using exome sequencing data from the UK Biobank (UKBB). UKBB, a large long-term biobank study in the United Kingdom (UK) is investigating the respective contributions of genetic predisposition and environmental exposure (including nutrition, lifestyle, medications etc.) to the development of disease (see, e.g., www.ukbiobank.ac.uk). The study is following about 500,000 volunteers in the UK, enrolled at ages from 40 to 69. Initial enrollment took place over four years from 2006, and the volunteers will be followed for at least 30 years thereafter. A plethora of phenotypic data has been collected including anthropometric measurements such as waist and hip circumference. Recently, the exome sequencing data (or the portion of the genomes composed of exons) from about 450,000 participants in the study has been obtained.


These whole exome sequences were used to identify rare predicted loss-of-function (pLOF) variants (i.e., frameshift, stop gain, splice donor or splice acceptor variants) called as high confidence by LOFTEE. WHR adjBMI were calculated for participants using manual measurements for waist circumference, hip circumference, and body mass index (BMI) which were taken at their UKBB assessment. WHR was calculated as the ratio of these two measurements. Using these data, along with age at recruitment and sex, a linear model was built modeling WHR (WHR˜Age+Sex+BMI). WHR adjBMI was defined using the residuals from this model.


Gene-based collapsing tests (i.e., burden tests) were used to look for associations between rare (minor allele frequency ≤1%) pLOF variants and WHRadjBMI. Burden testing was performed in the unrelated White population (n=363,973) adjusting for age, sex and genetic ancestry via 12 principal components. INHBE pLOF associated with a 0.22 standard deviation decrease in WHRadjBMI (Table A). INHBE was tested for association with additional quantitative traits and we detected associations with birth weight, WHR (not adjusted for BMI), triglycerides and HDL cholesterol (Table A). INHBE pLOF also has a lower odds ratio for hypertension, coronary heart disease and T2D (Table B)


The most common INHBE pLOF variant in the UKBB exome-sequencing data was a splice acceptor variant (rs150777893) carried by 536 out of 620 pLOF carriers. Tested as a single variant, rs150777893 significantly associated with decreased WHRadj BMI (Table C).









TABLE A







Association of INHBE pLOF with WHRadj BMI and other traits














Effect
N carrier



Variant set
pvalue
(SD)
measured















WaistHipRatioAdjBMI
INHBE pLOF
4.76E−08
−0.22
618


EarlyLife_Birth_weight
INHBE pLOF
7.01E−07
0.26
345


WaistHipRatio
INHBE pLOF
3.45E−05
−0.13
619


Blood_Biochemistry_Triglycerides
INHBE pLOF
0.001
−0.13
594


Blood_Biochemistry_HDL_cholesterol
INHBE pLOF
0.01
0.10
550
















TABLE B







Association of INHBE pLOF with hypertension, heat disease and T2D













Odds ratio
n carrier
n


phenotype
pvalue
(95% CI)
cases
expected














I10_essential_primary_hypertension
0.10
0.86
186
202.31




(0.71, 1.03)


I25_chronic_ischaemic_heart_disease
0.21
0.83
56
61.31




(0.63, 1.11)


E11_non_insulin_dependent_diabetes
0.36
0.87
45
50.30




(0.64, 1.18)
















TABLE C







Association of splice acceptor variant rs150777893 with WHRadjBMI
























Effect



MAF
N white



chrom
pos
ref
alt
pvalue
(SD)
rsid
gene
consequence
white
carriers






















WHRAdjBMI
12
57456093
G
C
3.75E−08
−0.24
rs150777893
INHBE
splice
0.07%
539











acceptor











variant









Example 2. iRNA Synthesis
Source of Reagents

Where the source of a reagent is not specifically given herein, such reagent can be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.


siRNA Design


siRNAs targeting the inhibin subunit beta E gene (INHBE, human: NCBI refseqID NM_031479.5, NCBI Gene ID: 83729) were designed using custom R and Python scripts. The human NM 031479.5 mRNA has a length of 2460 bases.


Detailed lists of the unmodified INHBE sense and antisense strand nucleotide sequences are shown in Table 2.


Detailed lists of the modified INHBE sense and antisense strand nucleotide sequences are shown in Table 3.


siRNAs targeting the activin A receptor type 1C (ACVR1C) gene (ACVR1C, human: NCBI refseqID NM_145259.3, NCBI Gene ID: 130399) were designed using custom R and Python scripts. The human NM_145259.3 mRNA has a length of 8853 bases.


Detailed lists of the unmodified sense and antisense strand sequences of ACVR1C dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 4.


Detailed lists of the modified sense and antisense strand sequences of ACVR1C dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 5.


Detailed lists of the unmodified sense and antisense strand sequences of ACVR1C dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 6.


Detailed lists of the modified sense and antisense strand sequences of ACVR1C dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 7.


siRNAs targeting the perilipin-1 (PLIN1) gene (PLIN1, human: NCBI refseqID NM_002666.5, NCBI Gene ID: 5346) were designed using custom R and Python scripts. The human NM_002666.5 mRNA has a length of 2916 bases.


Detailed lists of the unmodified sense and antisense strand sequences of PLIN1 dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 8.


Detailed lists of the modified sense and antisense strand sequences of PLIN1 dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 9.


Detailed lists of the unmodified sense and antisense strand sequences of PLIN1 dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 10.


Detailed lists of the modified sense and antisense strand sequences of PLIN1 dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 11.


siRNAs targeting the phosphodiesterase 3B (PDE3B) gene (PDE3B, human: NCBI refseqID NM_000922.4, NCBI Gene ID: 5140) were designed using custom R and Python scripts. The human NM_000922.4 mRNA has a length of 5995 bases.


Detailed lists of the unmodified sense and antisense strand sequences of PDE3B dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 12.


Detailed lists of the modified sense and antisense strand sequences of PDE3B dsRNA agents comprising an unsaturated C22 hydrocarbon chain conjugated to position 6 on the sense strand, counting from the 5′-end of the sense strand are shown in Table 13.


Detailed lists of the unmodified sense and antisense strand sequences of PDE3B dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 14.


Detailed lists of the modified sense and antisense strand sequences of PDE3B dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 15.


siRNAs targeting the inhibin subunit beta C (INHBC) gene (INHBC, human: NCBI refseqID NM_005538.4, NCBI Gene ID: 3626) were designed using custom R and Python scripts. The human NM_005538.4, mRNA has a length of 3202 bases.


Detailed lists of the unmodified sense and antisense strand sequences of INHBC dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 16.


Detailed lists of the modified sense and antisense strand sequences of INHBC dsRNA agents comprising a GalNAc derivative targeting ligand are shown in Table 17.


It is to be understood that, throughout the application, a duplex name without a decimal is equivalent to a duplex name with a decimal which merely references the batch number of the duplex. For example, AD-959917 is equivalent to AD-959917.1.


siRNA Synthesis


siRNAs were designed, synthesized, and prepared using methods known in the art.


Briefly, siRNA sequences were synthesized on a 1 μmol scale using a Mermade 192 synthesizer (BioAutomation) with phosphoramidite chemistry on solid supports. The solid support was controlled pore glass (500-1000 Å) loaded with a custom GalNAc ligand (3′-GalNAc conjugates), universal solid support (AM Chemicals), or the first nucleotide of interest. Ancillary synthesis reagents and standard 2-cyanoethyl phosphoramidite monomers (2′-deoxy-2′-fluoro, 2′-O-methyl, RNA, DNA) were obtained from Thermo-Fisher (Milwaukee, WI), Hongene (China), or Chemgenes (Wilmington, MA, USA). Additional phosphoramidite monomers were procured from commercial suppliers, prepared in-house, or procured using custom synthesis from various CMOs. Phosphoramidites were prepared at a concentration of 100 mM in either acetonitrile or 9:1 acetonitrile:DMF and were coupled using 5-Ethylthio-1H-tetrazole (ETT, 0.25 M in acetonitrile) with a reaction time of 400 s. Phosphorothioate linkages were generated using a 100 mM solution of 3-((Dimethylamino-methylidene) amino)-3H-1,2,4-dithiazole-3-thione (DDTT, obtained from Chemgenes (Wilmington, MA, USA)) in anhydrous acetonitrile/pyridine (9:1 v/v). Oxidation time was 5 minutes. All sequences were synthesized with final removal of the DMT group (“DMT-Off”).


Upon completion of the solid phase synthesis, solid-supported oligoribonucleotides were treated with 300 μL of Methylamine (40% aqueous) at room temperature in 96 well plates for approximately 2 hours to afford cleavage from the solid support and subsequent removal of all additional base-labile protecting groups. For sequences containing any natural ribonucleotide linkages (2′-OH) protected with a tert-butyl dimethyl silyl (TBDMS) group, a second deprotection step was performed using TEA·3HF (triethylamine trihydrofluoride). To each oligonucleotide solution in aqueous methylamine was added 200 μL of dimethyl sulfoxide (DMSO) and 300 μL TEA·3HF and the solution was incubated for approximately 30 mins at 60° C. After incubation, the plate was allowed to come to room temperature and crude oligonucleotides were precipitated by the addition of 1 mL of 9:1 acetontrile:ethanol or 1:1 ethanol:isopropanol. The plates were then centrifuged at 4° C. for 45 mins and the supernatant carefully decanted with the aid of a multichannel pipette. The oligonucleotide pellet was resuspended in 20 mM NaOAc and subsequently desalted using a HiTrap size exclusion column (5 mL, GE Healthcare) on an Agilent LC system equipped with an autosampler, UV detector, conductivity meter, and fraction collector. Desalted samples were collected in 96 well plates and then analyzed by LC-MS and UV spectrometry to confirm identity and quantify the amount of material, respectively.


Duplexing of single strands was performed on a Tecan liquid handling robot. Sense and antisense single strands were combined in an equimolar ratio to a final concentration of 10 μM in 1×PBS in 96 well plates, the plate sealed, incubated at 100° C. for 10 minutes, and subsequently allowed to return slowly to room temperature over a period of 2-3 hours. The concentration and identity of each duplex was confirmed and then subsequently utilized for in vitro screening assays.


Example 3. In Vitro Screening Methods
Cell Culture and 96-Well Transfections

Hep3b cells (ATCC, Manassas, VA) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in Eagle's Minimum Essential Medium (Gibco) supplemented with 10% FBS (ATCC) before being released from the plate by trypsinization. Transfection was carried out by adding 7.5 μl of Opti-MEM plus 0.3 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat 13778-150) to 2.5 μl of each siRNA duplex to an individual well in a 384-well plate. The mixture was then incubated at room temperature for 15 minutes. Forty μl of complete growth media without antibiotic containing ˜1.5×104 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at 10 nM, and 1 nM final duplex concentration.


Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen™, Part #: 610-12)


Cells were lysed in 75 μl of Lysis/Binding Buffer containing 3 μL of beads per well and mixed for 10 minutes on an electrostatic shaker. The washing steps were automated on a Biotek EL406, using a magnetic plate support. Beads were washed (in 90 μL) once in Buffer A, once in Buffer B, and twice in Buffer E, with aspiration steps in between. Following a final aspiration, complete 10 μL RT mixture was added to each well, as described below.


cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, Cat #4368813)


A master mix of 1 μl 10× Buffer, 0.4 μl 25×dNTPs, 1 μl Random primers, 0.50 Reverse


Transcriptase, 0.5 μl RNase inhibitor and 6.6 μl of H2O per reaction were added per well. Plates were sealed, agitated for 10 minutes on an electrostatic shaker, and then incubated at 37 degrees C. for 2 hours. Following this, the plates were agitated at 80 degrees C. for 8 minutes.


Real Time PCR

Two microlitre (μl) of cDNA were added to a master mix containing 0.5 μl of human GAPDH


TaqMan Probe (4326317E), 0.5 μl human INHBE, 2 μl nuclease-free water and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche).


To calculate relative fold change, data were analyzed using the ΔΔCt method and normalized assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s are calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 or mock-transfected. The sense and antisense sequences of AD-1955 are: sense:











(SEQ ID NO: 126)



cuuAcGcuGAGuAcuucGAdTsdT 



and







antisense



(SEQ ID NO: 127)



UCGAAGuACUcAGCGuAAGdTsdT



and







antisense



UCGAAGUACUcAGCGuAAGdTsdT.






Table 18 shows the results of a single dose screen in Hep3b cells transfected with the indicated agents from Tables 2 and 3.









TABLE 1







Abbreviations of nucleotide monomers used in nucleic acid sequence representation. It


will be understood that these monomers, when present in an oligonucleotide, are mutually linked by


5′-3′-phosphodiester bonds; and it is understood that when the nucleotide contains a 2′-fluoro


modification, then the fluoro replaces the hydroxy at that position in the parent nucleotide (i.e., it is a


2′-deoxy-2′-fluoronucleotide).








Abbreviation
Nucleotide(s)





A
Adenosine-3′-phosphate


Ab
beta-L-adenosine-3′-phosphate


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-fluoroadenosine-3′-phosphate


Afs
2′-fluoroadenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


C
cytidine-3′-phosphate


Cb
beta-L-cytidine-3′-phosphate


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-fluorocytidine-3′-phosphate


Cfs
2′-fluorocytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


G
guanosine-3′-phosphate


Gb
beta-L-guanosine-3′-phosphate


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-fluoroguanosine-3′-phosphate


Gfs
2′-fluoroguanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


T
5′-methyluridine-3′-phosphate


Tf
2′-fluoro-5-methyluridine-3′-phosphate


Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate


Ts
5-methyluridine-3′-phosphorothioate


U
Uridine-3′-phosphate


Uf
2′-fluorouridine-3′-phosphate


Ufs
2′-fluorouridine-3′-phosphorothioate


Us
uridine-3′-phosphorothioate


N
any nucleotide, modified or unmodified


a
2′-O-methyladenosine-3′-phosphate


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate


ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate


u
2′-O-methyluridine-3′-phosphate


us
2′-O-methyluridine-3′-phosphorothioate


s
phosphorothioate linkage


L10
N-(cholesterylcarboxamidocaproyl)-4-hydroxyprolinol (Hyp-C6-Chol)


L96
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-hydroxyprolinol



(Hyp-(GalNAc-alkyl)3)








embedded image







Y34
2-hydroxymethyl-tetrahydrofurane-4-methoxy-3-phosphate (abasic 2′-OMe



furanose)


Y44
inverted abasic DNA (2-hydroxymethyl-tetrahydrofurane-5-phosphate)


(Agn)
Adenosine-glycol nucleic acid (GNA)


(Cgn)
Cytidine-glycol nucleic acid (GNA)


(Ggn)
Guanosine-glycol nucleic acid (GNA)


(Tgn)
Thymidine-glycol nucleic acid (GNA) S-Isomer


P
Phosphate


VP
Vinyl-phosphonate


dA
2′-deoxyadenosine-3′-phosphate


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate


dGs
2′-deoxyguanosine-3′-phosphorothioate


dT
2′-deoxythimidine-3′-phosphate


dTs
2′-deoxythimidine-3′-phosphorothioate


dU
2′-deoxyuridine


dUs
2′-deoxyuridine-3′-phosphorothioate


(C2p)
cytidine-2′-phosphate


(G2p)
guanosine-2′-phosphate


(U2p)
uridine-2′-phosphate


(A2p)
adenosine-2′ -phosphate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate


(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate


(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate





Ada


embedded image








(2R,3S,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-(docosyloxy)-2-



(hydroxymethyl)tetrahydrofuran-3-ol





Cda


embedded image








4-amino-1-((2R,3R,4R,5R)-3-(docosyloxy)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-



yl)pyrimidin-2(1H)-one





Gda


embedded image








2-amino-9-((2R,3S,4S,5R)-3-(docosyloxy)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1,9-



dihydro-6H-purin-6-one





Uda


embedded image








1-((2R,3R,4R,5R)-3-(docosyloxy)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-



yl)pyrimidine-2,4(1H,3H)-dione
















TABLE 2







Unmodified Sense and Antisense Strand Sequences of INHBE dsRNA Agents














SEQ
Range in

SEQ




ID
INHBE mRNA
Antisense Sequence 
ID


Duplex Name
Sense Sequence 5′ to 3′
NO:
NM_031479.5
5′ to 3′
NO:





AD-1656008
UAGCCAGACAUGAGCUGUGAU
128
1-23
AUCACAGCUCAUGUCUGGCUACU
262





AD-1656026
GAGGGUCAAGCACAGCUAUCU
129
19-41
AGAUAGCUGUGCUUGACCCUCAC
263





AD-1656043
AUCCAUCAGAUGAUCUACUUU
130
36-58
AAAGUAGAUCAUCUGAUGGAUAG
264





AD-1656054
GAUCUACUUUCAGCCUUCCUU
131
47-69
AAGGAAGGCUGAAAGUAGAUCAU
265





AD-1656074
GAGUCCCAGACAAUAGAAGAU
132
67-89
AUCUUCUAUUGUCUGGGACUCAG
266





AD-1656086
AUAGAAGACAGGUGGCUGUAU
133
 79-101
AUACAGCCACCUGUCUUCUAUUG
267





AD-1656097
GUGGCUGUACCCUUGGCCAAU
134
 90-112
AUUGGCCAAGGGUACAGCCACCU
268





AD-1656108
CUUGGCCAAGGGUAGGUGUGU
135
101-123
ACACACCUACCCUUGGCCAAGGG
269





AD-1656125
GUGGCAGUGGUGUCUGCUGUU
136
118-140
AACAGCAGACACCACUGCCACAC
270





AD-1656139
UGCUGUCACUGUGCCCUCAUU
137
132-154
AAUGAGGGCACAGUGACAGCAGA
271





AD-1656146
AGCAAUCAGACUCAACAGACU
138
160-182
AGUCUGUUGAGUCUGAUUGCUGG
272





AD-1656164
ACGGAGCAACUGCCAUCCGAU
139
178-200
AUCGGAUGGCAGUUGCUCCGUCU
273





AD-1656185
GCUCCUGAACCAGGGCCAUUU
140
199-221
AAAUGGCCCUGGUUCAGGAGCCU
274





AD-1656196
AGGGCCAUUCACCAGGAGCAU
141
210-232
AUGCUCCUGGUGAAUGGCCCUGG
275





AD-1656220
GCUCCCUGAUGUCCAGCUCUU
142
234-256
AAGAGCUGGACAUCAGGGAGCCG
276





AD-1656233
CAGCUCUGGCUGGUGCUGCUU
143
247-269
AAGCAGCACCAGCCAGAGCUGGA
277





AD-1656254
UGGGCACUGGUGCGAGCACAU
144
268-290
AUGUGCUCGCACCAGUGCCCACA
278





AD-1656260
AGGGUCUGUGUGUCCCUCCUU
145
294-316
AAGGAGGGACACACAGACCCUGU
279





AD-1656265
CAAGCAGAACGAGCUCUGGUU
146
337-359
AACCAGAGCUCGUUCUGCUUGGG
280





AD-1656280
CUGGUGCUGGAGCUAGCCAAU
147
352-374
AUUGGCUAGCUCCAGCACCAGAG
281





AD-1656292
CUAGCCAAGCAGCAAAUCCUU
148
364-386
AAGGAUUUGCUGCUUGGCUAGCU
282





AD-1656307
AUCCUGGAUGGGUUGCACCUU
149
379-401
AAGGUGCAACCCAUCCAGGAUUU
283





AD-1656319
UUGCACCUGACCAGUCGUCCU
150
391-413
AGGACGACUGGUCAGGUGCAACC
284





AD-1656333
UCGUCCCAGAAUAACUCAUCU
151
405-427
AGAUGAGUUAUUCUGGGACGACU
285





AD-1656360
CCCUCCGGAGACUACAGCCAU
152
452-474
AUGGCUGUAGUCUCCGGAGGGCU
286





AD-1656372
UACAGCCAGGGAGUGUGGCUU
153
464-486
AAGCCACACUCCCUGGCUGUAGU
287





AD-1656383
AGUGUGGCUCCAGGGAAUGGU
154
475-497
ACCAUUCCCUGGAGCCACACUCC
288





AD-1656392
CAUCAGCUUUGCUACUGUCAU
155
504-526
AUGACAGUAGCAAAGCUGAUGAC
289





AD-1656406
CUGUCACAGACUCCACUUCAU
68
518-540
AUGAAGUGGAGUCUGUGACAGUA
290





AD-1656417
UCCACUUCAGCCUACAGCUCU
156
529-551
AGAGCUGUAGGCUGAAGUGGAGU
291





AD-1656437
CCUGCUCACUUUUCACCUGUU
157
549-571
AACAGGUGAAAAGUGAGCAGGGA
292





AD-1656449
UCACCUGUCCACUCCUCGGUU
158
561-583
AACCGAGGAGUGGACAGGUGAAA
293





AD-1656468
UCCCACCACCUGUACCAUGCU
159
580-602
AGCAUGGUACAGGUGGUGGGACC
294





AD-1656480
UACCAUGCCCGCCUGUGGCUU
160
592-614
AAGCCACAGGCGGGCAUGGUACA
295





AD-1656492
CCCUUCCUGGCACUCUUUGCU
161
626-648
AGCAAAGAGUGCCAGGAAGGGUG
296





AD-1656504
CUCUUUGCUUGAGGAUCUUCU
162
638-660
AGAAGAUCCUCAAGCAAAGAGUG
297





AD-1656535
ACUCUCCUGGCUGAGCACCAU
163
694-716
AUGGUGCUCAGCCAGGAGAGUGC
298





AD-1656547
GAGCACCACAUCACCAACCUU
164
706-728
AAGGUUGGUGAUGUGGUGCUCAG
299





AD-1656559
ACCAACCUGGGCUGGCAUACU
165
718-740
AGUAUGCCAGCCCAGGUUGGUGA
300





AD-1656570
CUGGCAUACCUUAACUCUGCU
166
729-751
AGCAGAGUUAAGGUAUGCCAGCC
301





AD-1656587
UGCCCUCUAGUGGCUUGAGGU
167
746-768
ACCUCAAGCCACUAGAGGGCAGA
302





AD-1656591
AGAAGUCUGGUGUCCUGAAAU
168
770-792
AUUUCAGGACACCAGACUUCUCA
303





AD-1656602
GUCCUGAAACUGCAACUAGAU
169
781-803
AUCUAGUUGCAGUUUCAGGACAC
304





AD-1656622
ACAGCACAGUUACUGGACAAU
170
821-843
AUUGUCCAGUAACUGUGCUGUUG
305





AD-1656634
CUGGACAACCGAGGCGGCUCU
171
833-855
AGAGCCGCCUCGGUUGUCCAGUA
306





AD-1656647
GCGGCUCUUGGACACAGCAGU
172
846-868
ACUGCUGUGUCCAAGAGCCGCCU
307





AD-1656667
GACACCAGCAGCCCUUCCUAU
173
866-888
AUAGGAAGGGCUGCUGGUGUCCU
308





AD-1656679
CCUUCCUAGAGCUUAAGAUCU
174
878-900
AGAUCUUAAGCUCUAGGAAGGGC
309





AD-1656690
CUUAAGAUCCGAGCCAAUGAU
175
889-911
AUCAUUGGCUCGGAUCUUAAGCU
310





AD-1656701
AGCCAAUGAGCCUGGAGCAGU
176
900-922
ACUGCUCCAGGCUCAUUGGCUCG
311





AD-1656716
AGGCGAGACCAUUACGUAGAU
177
973-995
AUCUACGUAAUGGUCUCGCCUGC
312





AD-1656728
UACGUAGACUUCCAGGAACUU
178
 985-1007
AAGUUCCUGGAAGUCUACGUAAU
313





AD-1656740
CAGGAACUGGGAUGGCGGGAU
179
 997-1019
AUCCCGCCAUCCCAGUUCCUGGA
314





AD-1656754
GCGGGACUGGAUACUGCAGCU
180
1011-1033
AGCUGCAGUAUCCAGUCCCGCCA
315





AD-1656762
UACCAGCUGAAUUACUGCAGU
181
1039-1061
ACUGCAGUAAUUCAGCUGGUACC
316





AD-1656775
ACUGCAGUGGGCAGUGCCCUU
182
1052-1074
AAGGGCACUGCCCACUGCAGUAA
317





AD-1656792
CAGGCAUUGCUGCCUCUUUCU
183
1091-1113
AGAAAGAGGCAGCAAUGCCUGGG
318





AD-1656808
UUUCCAUUCUGCCGUCUUCAU
184
1107-1129
AUGAAGACGGCAGAAUGGAAAGA
319





AD-1656820
CGUCUUCAGCCUCCUCAAAGU
185
1119-1141
ACUUUGAGGAGGCUGAAGACGGC
320





AD-1656832
CCUCAAAGCCAACAAUCCUUU
186
1131-1153
AAAGGAUUGUUGGCUUUGAGGAG
321





AD-1656849
CUUGGCCUGCCAGUACCUCCU
187
1148-1170
AGGAGGUACUGGCAGGCCAAGGA
322





AD-1656862
UACCUCCUGUUGUGUCCCUAU
188
1161-1183
AUAGGGACACAACAGGAGGUACU
323





AD-1656873
GUGUCCCUACUGCCCGAAGGU
189
1172-1194
ACCUUCGGGCAGUAGGGACACAA
324





AD-1656876
CUCUCUCUCCUCUACCUGGAU
190
1195-1217
AUCCAGGUAGAGGAGAGAGAGGG
325





AD-1656888
UACCUGGAUCAUAAUGGCAAU
191
1207-1229
AUUGCCAUUAUGAUCCAGGUAGA
326





AD-1656900
AAUGGCAAUGUGGUCAAGACU
192
1219-1241
AGUCUUGACCACAUUGCCAUUAU
327





AD-1656915
AAGACGGAUGUGCCAGAUAUU
193
1234-1256
AAUAUCUGGCACAUCCGUCUUGA
328





AD-1656926
GCCAGAUAUGGUGGUGGAGGU
194
1245-1267
ACCUCCACCACCAUAUCUGGCAC
329





AD-1656942
GAGGCCUGUGGCUGCAGCUAU
195
1261-1283
AUAGCUGCAGCCACAGGCCUCCA
330





AD-1656954
UGCAGCUAGCAAGAGGACCUU
196
1273-1295
AAGGUCCUCUUGCUAGCUGCAGC
331





AD-1656958
CUUUGGAGUGAAGAGACCAAU
197
1297-1319
AUUGGUCUCUUCACUCCAAAGCC
332





AD-1656969
AGAGACCAAGAUGAAGUUUCU
198
1308-1330
AGAAACUUCAUCUUGGUCUCUUC
333





AD-1656996
CAGGGCAUCUGUGACUGGAGU
199
1335-1357
ACUCCAGUCACAGAUGCCCUGUG
334





AD-1657013
GAGGCAUCAGAUUCCUGAUCU
200
1352-1374
AGAUCAGGAAUCUGAUGCCUCCA
335





AD-1657022
ACCCAACAACCACCUGGCAAU
201
1381-1403
AUUGCCAGGUGGUUGUUGGGUUG
336





AD-1657037
GGCAAUAUGACUCACUUGACU
202
1396-1418
AGUCAAGUGAGUCAUAUUGCCAG
337





AD-1657045
GACCCAAAUGGGCACUUUCUU
203
1424-1446
AAGAAAGUGCCCAUUUGGGUCCC
338





AD-1657058
ACUUUCUUGUCUGAGACUCUU
204
1437-1459
AAGAGUCUCAGACAAGAAAGUGC
339





AD-1657069
UGAGACUCUGGCUUAUUCCAU
205
1448-1470
AUGGAAUAAGCCAGAGUCUCAGA
340





AD-1657085
UCCAGGUUGGCUGAUGUGUUU
206
1464-1486
AAACACAUCAGCCAACCUGGAAU
341





AD-1657099
UGUGUUGGGAGAUGGGUAAAU
207
1478-1500
AUUUACCCAUCUCCCAACACAUC
342





AD-1657113
GGUAAAGCGUUUCUUCUAAAU
208
1492-1514
AUUUAGAAGAAACGCUUUACCCA
343





AD-1657119
UACCCAGAAAGCAUGAUUUCU
209
1518-1540
AGAAAUCAUGCUUUCUGGGUAGA
344





AD-1657133
GAUUUCCUGCCCUAAGUCCUU
210
1532-1554
AAGGACUUAGGGCAGGAAAUCAU
345





AD-1657147
AGUCCUGUGAGAAGAUGUCAU
211
1546-1568
AUGACAUCUUCUCACAGGACUUA
346





AD-1657164
UCAGGGACUAGGGAGGGAGGU
212
1563-1585
ACCUCCCUCCCUAGUCCCUGACA
347





AD-1657185
AAUUACUUAGCCUCUCCCAAU
213
1600-1622
AUUGGGAGAGGCUAAGUAAUUUU
348





AD-1657202
CAAGAUGAGAAAGUCCUCAAU
214
1617-1639
AUUGAGGACUUUCUCAUCUUGGG
349





AD-1657211
GGAGGAAGCAGAUAGAUGGUU
215
1646-1668
AACCAUCUAUCUGCUUCCUCCUC
350





AD-1657234
GCAGGCUUGAAGCAGGGUAAU
216
1669-1691
AUUACCCUGCUUCAAGCCUGCUG
351





AD-1657245
GCAGGGUAAGCAGGCUGGCCU
217
1680-1702
AGGCCAGCCUGCUUACCCUGCUU
352





AD-1657261
GGCCCAGGGUAAGGGCUGUUU
218
1696-1718
AAACAGCCCUUACCCUGGGCCAG
353





AD-1657274
GGCUGUUGAGGUACCUUAAGU
219
1709-1731
ACUUAAGGUACCUCAACAGCCCU
354





AD-1657286
ACCUUAAGGGAAGGUCAAGAU
220
1721-1743
AUCUUGACCUUCCCUUAAGGUAC
355





AD-1657299
GUCAAGAGGGAGAUGGGCAAU
221
1734-1756
AUUGCCCAUCUCCCUCUUGACCU
356





AD-1657322
GCUGAGGGAGGAUGCUUAGGU
222
1757-1779
ACCUAAGCAUCCUCCCUCAGCGC
357





AD-1657324
AGAAACAGGAGUCAGGAAAAU
223
1785-1807
AUUUUCCUGACUCCUGUUUCUGG
358





AD-1657335
UCAGGAAAAUGAGGCACUAAU
224
1796-1818
AUUAGUGCCUCAUUUUCCUGACU
359





AD-1657347
GGCACUAAGCCUAAGAAGUUU
225
1808-1830
AAACUUCUUAGGCUUAGUGCCUC
360





AD-1657359
AAGAAGUUCCCUGGUUUUUCU
226
1820-1842
AGAAAAACCAGGGAACUUCUUAG
361





AD-1657374
CACUGGGAGACAAGCAUUUAU
227
1855-1877
AUAAAUGCUUGUCUCCCAGUGGG
362





AD-1657385
AAGCAUUUAUACUUUCUUUCU
228
1866-1888
AGAAAGAAAGUAUAAAUGCUUGU
363





AD-1657395
UUUUGAGAUCGAGUCUCGCUU
229
1899-1921
AAGCGAGACUCGAUCUCAAAAAA
364





AD-1657410
UCUCGCUCUGUCACCAGGCUU
230
1912-1934
AAGCCUGGUGACAGAGCGAGACU
365





AD-1657431
AGUGCAGUGACACGAUCUUGU
231
1934-1956
ACAAGAUCGUGUCACUGCACUCC
366





AD-1657446
GCUCACUGCAACCUCCGUCUU
232
1954-1976
AAGACGGAGGUUGCAGUGAGCCA
367





AD-1657457
CCUCCGUCUCCUGGGUUCAAU
233
1965-1987
AUUGAACCCAGGAGACGGAGGUU
368





AD-1657463
UUCUGCCUCAGCCUCCCGAGU
234
1992-2014
ACUCGGGAGGCUGAGGCAGAAGA
369





AD-1657475
UGGGUUCAAGUGAUUCUUCUU
235
1976-1998
AAGAAGAAUCACUUGAACCCAGG
370





AD-1657503
GAGCAGCUGGGAUUACAGGCU
236
2009-2031
AGCCUGUAAUCCCAGCUGCUCGG
371





AD-1657520
CGCCCACUAAUUUUUGUAUUU
237
2028-2050
AAAUACAAAAAUUAGUGGGCGCC
372





AD-1657529
UGUAUUCUUAGUAGAAACGAU
238
2042-2064
AUCGUUUCUACUAAGAAUACAAA
373





AD-1657540
UAGAAACGAGGUUUCAACAUU
239
2053-2075
AAUGUUGAAACCUCGUUUCUACU
374





AD-1657552
UUCAACAUGUUGGCCAGGAUU
240
2065-2087
AAUCCUGGCCAACAUGUUGAAAC
375





AD-1657564
CCAGGAUGGUCUCAAUCUCUU
241
2078-2100
AAGAGAUUGAGACCAUCCUGGCC
376





AD-1657575
UCAAUCUCUUGACCUCUUGAU
242
2089-2111
AUCAAGAGGUCAAGAGAUUGAGA
377





AD-1657586
ACCUCUUGAUCCACCCGACUU
243
2100-2122
AAGUCGGGUGGAUCAAGAGGUCA
378





AD-1657600
CCGACUUGGCCUCCCGAAGUU
244
2114-2136
AACUUCGGGAGGCCAAGUCGGGU
379





AD-1657615
GAAGUGAUGAGAUUAUAGGCU
245
2129-2151
AGCCUAUAAUCUCAUCACUUCGG
380





AD-1657641
CCUGGCUUAUACUUUCUUAAU
246
2162-2184
AUUAAGAAAGUAUAAGCCAGGCG
381





AD-1657653
GAGAAAGAAAAUCAACAAAUU
247
2189-2211
AAUUUGUUGAUUUUCUUUCUCCU
382





AD-1657674
UGAGUCAUAAAGAAGGGUUAU
248
2210-2232
AUAACCCUUCUUUAUGACUCACA
383





AD-1657687
AGGGUUAGGGUGAUGGUCCAU
249
2223-2245
AUGGACCAUCACCCUAACCCUUC
384





AD-1657704
CCAGAGCAACAGUUCUUCAAU
250
2240-2262
AUUGAAGAACUGUUGCUCUGGAC
385





AD-1657716
UUCUUCAAGUGUACUCUGUAU
251
2252-2274
AUACAGAGUACACUUGAAGAACU
386





AD-1657727
UACUCUGUAGGCUUCUGGGAU
252
2263-2285
AUCCCAGAAGCCUACAGAGUACA
387





AD-1657741
CUGGGAGGUCCCUUUUCAGGU
253
2277-2299
ACCUGAAAAGGGACCUCCCAGAA
388





AD-1657744
GUCCACAAAGUCAAAGCUAUU
254
2300-2322
AAUAGCUUUGACUUUGUGGACAC
389





AD-1657760
CUAACAUGUUAUUUGCCUUUU
255
2333-2355
AAAAGGCAAAUAACAUGUUAGUA
390





AD-1657776
CUUUUGAAUUCUCAUUAUCUU
256
2349-2371
AAGAUAAUGAGAAUUCAAAAGGC
391





AD-1657793
GUAUUGUGGAGUUUUCCAGAU
257
2376-2398
AUCUGGAAAACUCCACAAUACAA
392





AD-1657811
GAGGCCGUGUGACAUGUGAUU
258
2394-2416
AAUCACAUGUCACACGGCCUCUG
393





AD-1657822
ACAUGUGAUUACAUCAUCUUU
259
2405-2427
AAAGAUGAUGUAAUCACAUGUCA
394





AD-1657834
AUCAUCUUUCUGACAUCAUUU
260
2417-2439
AAAUGAUGUCAGAAAGAUGAUGU
395





AD-1657845
GACAUCAUUGUUAAUGGAAUU
261
2428-2450
AAUUCCAUUAACAAUGAUGUCAG
396
















TABLE 3







Modified Sense and Antisense Strand Sequences of INHBE dsRNA Agents















SEQ

SEQ

SEQ




ID

ID

ID


Duplex Name
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
mRNA target sequence
NO:





AD-1656008
usasgccaGfaCfAfUfgagcugugauL96
397
asUfscacAfgCfUfcaugUfcUfggcuascsu
532
AGTAGCCAGACATGAGCTGTGAG
667





AD-1656026
gsasggguCfaAfGfCfacagcuaucuL96
398
asGfsauaGfcUfGfugcuUfgAfcccucsasc
533
GTGAGGGTCAAGCACAGCTATCC
668





AD-1656043
asusccauCfaGfAfUfgaucuacuuuL96
399
asAfsaguAfgAfUfcaucUfgAfuggausasg
534
CTATCCATCAGATGATCTACTTT
669





AD-1656054
gsasucuaCfuUfUfCfagccuuccuuL96
400
asAfsggaAfgGfCfugaaAfgUfagaucsasu
535
ATGATCTACTTTCAGCCTTCCTG
670





AD-1656074
gsasguccCfaGfAfCfaauagaagauL96
401
asUfscuuCfuAfUfugucUfgGfgacucsasg
536
CTGAGTCCCAGACAATAGAAGAC
671





AD-1656086
asusagaaGfaCfAfGfguggcuguauL96
402
asUfsacaGfcCfAfccugUfcUfucuaususg
537
CAATAGAAGACAGGTGGCTGTAC
672





AD-1656097
gsusggcuGfuAfCfCfcuuggccaauL96
403
asUfsuggCfcAfAfggguAfcAfgccacscsu
538
AGGTGGCTGTACCCTTGGCCAAG
673





AD-1656108
csusuggcCfaAfGfGfguagguguguL96
404
asCfsacaCfcUfAfcccuUfgGfccaagsgsg
539
CCCTTGGCCAAGGGTAGGTGTGG
674





AD-1656125
gsusggcaGfuGfGfUfgucugcuguuL96
405
asAfscagCfaGfAfcaccAfcUfgccacsasc
540
GTGTGGCAGTGGTGTCTGCTGTC
675





AD-1656139
usgscuguCfaCfUfGfugcccucauuL96
406
asAfsugaGfgGfCfacagUfgAfcagcasgsa
541
TCTGCTGTCACTGTGCCCTCATT
676





AD-1656146
asgscaauCfaGfAfCfucaacagacuL96
407
asGfsucuGfuUfGfagucUfgAfuugcusgsg
542
CCAGCAATCAGACTCAACAGACG
677





AD-1656164
ascsggagCfaAfCfUfgccauccgauL96
408
asUfscggAfuGfGfcaguUfgCfuccguscsu
543
AGACGGAGCAACTGCCATCCGAG
678





AD-1656185
gscsuccuGfaAfCfCfagggccauuuL96
409
asAfsaugGfcCfCfugguUfcAfggagescsu
544
AGGCTCCTGAACCAGGGCCATTC
679





AD-1656196
asgsggccAfuUfCfAfccaggagcauL96
410
asUfsgcuCfcUfGfgugaAfuGfgcccusgsg
545
CCAGGGCCATTCACCAGGAGCAT
680





AD-1656220
gscsucccUfgAfUfGfuccagcucuuL96
411
asAfsgagCfuGfGfacauCfaGfggagcscsg
546
CGGCTCCCTGATGTCCAGCTCTG
681





AD-1656233
csasgcucUfgGfCfUfggugcugcuuL96
412
asAfsgcaGfcAfCfcagcCfaGfagcugsgsa
547
TCCAGCTCTGGCTGGTGCTGCTG
682





AD-1656254
usgsggcaCfuGfGfUfgcgagcacauL96
413
asUfsgugCfuCfGfcaccAfgUfgcccascsa
548
TGTGGGCACTGGTGCGAGCACAG
683





AD-1656260
asgsggucUfgUfGfUfgucccuccuuL96
414
asAfsggaGfgGfAfcacaCfaGfacccusgsu
549
ACAGGGTCTGTGTGTCCCTCCTG
684





AD-1656265
csasagcaGfaAfCfGfagcucugguuL96
415
asAfsccaGfaGfCfucguUfcUfgcuugsgsg
550
CCCAAGCAGAACGAGCTCTGGTG
685





AD-1656280
csusggugCfuGfGfAfgcuagccaauL96
416
asUfsuggCfuAfGfcuccAfgCfaccagsasg
551
CTCTGGTGCTGGAGCTAGCCAAG
686





AD-1656292
csusagccAfaGfCfAfgcaaauccuuL96
417
asAfsggaUfuUfGfcugcUfuGfgcuagscsu
552
AGCTAGCCAAGCAGCAAATCCTG
687





AD-1656307
asusccugGfaUfGfGfguugcaccuuL96
418
asAfsgguGfcAfAfcccaUfcCfaggaususu
553
AAATCCTGGATGGGTTGCACCTG
688





AD-1656319
ususgcacCfuGfAfCfcagucguccuL96
419
asGfsgacGfaCfUfggucAfgGfugcaascsc
554
GGTTGCACCTGACCAGTCGTCCC
689





AD-1656333
uscsguccCfaGfAfAfuaacucaucuL96
420
asGfsaugAfgUfUfauucUfgGfgacgascsu
555
AGTCGTCCCAGAATAACTCATCC
690





AD-1656360
cscscuccGfgAfGfAfcuacagccauL96
421
asUfsggcUfgUfAfgucuCfcGfgagggscsu
556
AGCCCTCCGGAGACTACAGCCAG
691





AD-1656372
usascagcCfaGfGfGfaguguggcuuL96
422
asAfsgccAfcAfCfucccUfgGfcuguasgsu
557
ACTACAGCCAGGGAGTGTGGCTC
692





AD-1656383
asgsugugGfcUfCfCfagggaaugguL96
423
asCfscauUfcCfCfuggaGfcCfacacuscsc
558
GGAGTGTGGCTCCAGGGAATGGG
693





AD-1656392
csasucagCfuUfUfGfcuacugucauL96
424
asUfsgacAfgUfAfgcaaAfgCfugaugsasc
559
GTCATCAGCTTTGCTACTGTCAC
694





AD-1656406
csusgucaCfaGfAfCfuccacuucauL96
425
asUfsgaaGfuGfGfagucUfgUfgacagsusa
560
TACTGTCACAGACTCCACTTCAG
695





AD-1656417
uscscacuUfcAfGfCfcuacagcucuL96
426
asGfsagcUfgUfAfggcuGfaAfguggasgsu
561
ACTCCACTTCAGCCTACAGCTCC
696





AD-1656437
cscsugcuCfaCfUfUfuucaccuguuL96
427
asAfscagGfuGfAfaaagUfgAfgcaggsgsa
562
TCCCTGCTCACTTTTCACCTGTC
697





AD-1656449
uscsaccuGfuCfCfAfcuccucgguuL96
428
asAfsccgAfgGfAfguggAfcAfggugasasa
563
TTTCACCTGTCCACTCCTCGGTC
698





AD-1656468
uscsccacCfaCfCfUfguaccaugcuL96
429
asGfscauGfgUfAfcaggUfgGfugggascsc
564
GGTCCCACCACCTGTACCATGCC
699





AD-1656480
usasccauGfcCfCfGfccuguggcuuL96
430
asAfsgccAfcAfGfgcggGfcAfugguascsa
565
TGTACCATGCCCGCCTGTGGCTG
700





AD-1656492
cscscuucCfuGfGfCfacucuuugcuL96
431
asGfscaaAfgAfGfugccAfgGfaagggsusg
566
CACCCTTCCTGGCACTCTTTGCT
701





AD-1656504
csuscuuuGfcUfUfGfaggaucuucuL96
432
asGfsaagAfuCfCfucaaGfcAfaagagsusg
567
CACTCTTTGCTTGAGGATCTTCC
702





AD-1656535
ascsucucCfuGfGfCfugagcaccauL96
433
asUfsgguGfcUfCfagccAfgGfagagusgsc
568
GCACTCTCCTGGCTGAGCACCAC
703





AD-1656547
gsasgcacCfaCfAfUfcaccaaccuuL96
434
asAfsgguUfgGfUfgaugUfgGfugcucsasg
569
CTGAGCACCACATCACCAACCTG
704





AD-1656559
ascscaacCfuGfGfGfcuggcauacuL96
435
asGfsuauGfcCfAfgcccAfgGfuuggusgsa
570
TCACCAACCTGGGCTGGCATACC
705





AD-1656570
csusggcaUfaCfCfUfuaacucugcuL96
436
asGfscagAfgUfUfaaggUfaUfgccagscsc
571
GGCTGGCATACCTTAACTCTGCC
706





AD-1656587
usgscccuCfuAfGfUfggcuugagguL96
437
asCfscucAfaGfCfcacuAfgAfgggcasgsa
572
TCTGCCCTCTAGTGGCTTGAGGG
707





AD-1656591
asgsaaguCfuGfGfUfguccugaaauL96
438
asUfsuucAfgGfAfcaccAfgAfcuucuscsa
573
TGAGAAGTCTGGTGTCCTGAAAC
708





AD-1656602
gsusccugAfaAfCfUfgcaacuagauL96
439
asUfscuaGfuUfGfcaguUfuCfaggacsasc
574
GTGTCCTGAAACTGCAACTAGAC
709





AD-1656622
ascsagcaCfaGfUfUfacuggacaauL96
440
asUfsuguCfcAfGfuaacUfgUfgcugususg
575
CAACAGCACAGTTACTGGACAAC
710





AD-1656634
csusggacAfaCfCfGfaggcggcucuL96
441
asGfsagcCfgCfCfucggUfuGfuccagsusa
576
TACTGGACAACCGAGGCGGCTCT
711





AD-1656647
gscsggcuCfuUfGfGfacacagcaguL96
442
asCfsugcUfgUfGfuccaAfgAfgccgcscsu
577
AGGCGGCTCTTGGACACAGCAGG
712





AD-1656667
gsascaccAfgCfAfGfcccuuccuauL96
443
asUfsaggAfaGfGfgcugCfuGfgugucscsu
578
AGGACACCAGCAGCCCTTCCTAG
713





AD-1656679
cscsuuccUfaGfAfGfcuuaagaucuL96
444
asGfsaucUfuAfAfgcucUfaGfgaaggsgsc
579
GCCCTTCCTAGAGCTTAAGATCC
714





AD-1656690
csusuaagAfuCfCfGfagccaaugauL96
445
asUfscauUfgGfCfucggAfuCfuuaagscsu
580
AGCTTAAGATCCGAGCCAATGAG
715





AD-1656701
asgsccaaUfgAfGfCfcuggagcaguL96
446
asCfsugcUfcCfAfggcuCfaUfuggcuscsg
581
CGAGCCAATGAGCCTGGAGCAGG
716





AD-1656716
asgsgcgaGfaCfCfAfuuacguagauL96
447
asUfscuaCfgUfAfauggUfcUfcgccusgsc
582
GCAGGCGAGACCATTACGTAGAC
717





AD-1656728
usascguaGfaCfUfUfccaggaacuuL96
448
asAfsguuCfcUfGfgaagUfcUfacguasasu
583
ATTACGTAGACTTCCAGGAACTG
718





AD-1656740
csasggaaCfuGfGfGfauggcgggauL96
449
asUfscccGfcCfAfucccAfgUfuccugsgsa
584
TCCAGGAACTGGGATGGCGGGAC
719





AD-1656754
gscsgggaCfuGfGfAfuacugcagcuL96
450
asGfscugCfaGfUfauccAfgUfcccgcscsa
585
TGGCGGGACTGGATACTGCAGCC
720





AD-1656762
usasccagCfuGfAfAfuuacugcaguL96
451
asCfsugcAfgUfAfauucAfgCfugguascsc
586
GGTACCAGCTGAATTACTGCAGT
721





AD-1656775
ascsugcaGfuGfGfGfcagugcccuuL96
452
asAfsgggCfaCfUfgcccAfcUfgcagusasa
587
TTACTGCAGTGGGCAGTGCCCTC
722





AD-1656792
csasggcaUfuGfCfUfgccucuuucuL96
453
asGfsaaaGfaGfGfcagcAfaUfgccugsgsg
588
CCCAGGCATTGCTGCCTCTTTCC
723





AD-1656808
ususuccaUfuCfUfGfccgucuucauL96
454
asUfsgaaGfaCfGfgcagAfaUfggaaasgsa
589
TCTTTCCATTCTGCCGTCTTCAG
724





AD-1656820
csgsucuuCfaGfCfCfuccucaaaguL96
455
asCfsuuuGfaGfGfaggcUfgAfagacgsgsc
590
GCCGTCTTCAGCCTCCTCAAAGC
725





AD-1656832
cscsucaaAfgCfCfAfacaauccuuuL96
456
asAfsaggAfuUfGfuuggCfuUfugaggsasg
591
CTCCTCAAAGCCAACAATCCTTG
726





AD-1656849
csusuggcCfuGfCfCfaguaccuccuL96
457
asGfsgagGfuAfCfuggcAfgGfccaagsgsa
592
TCCTTGGCCTGCCAGTACCTCCT
727





AD-1656862
usasccucCfuGfUfUfgugucccuauL96
458
asUfsaggGfaCfAfcaacAfgGfagguascsu
593
AGTACCTCCTGTTGTGTCCCTAC
728





AD-1656873
gsusguccCfuAfCfUfgcccgaagguL96
459
asCfscuuCfgGfGfcaguAfgGfgacacsasa
594
TTGTGTCCCTACTGCCCGAAGGC
729





AD-1656876
csuscucuCfuCfCfUfcuaccuggauL96
460
asUfsccaGfgUfAfgaggAfgAfgagagsgsg
595
CCCTCTCTCTCCTCTACCTGGAT
730





AD-1656888
usasccugGfaUfCfAfuaauggcaauL96
461
asUfsugcCfaUfUfaugaUfcCfagguasgsa
596
TCTACCTGGATCATAATGGCAAT
731





AD-1656900
asasuggcAfaUfGfUfggucaagacuL96
462
asGfsucuUfgAfCfcacaUfuGfccauusasu
597
ATAATGGCAATGTGGTCAAGACG
732





AD-1656915
asasgacgGfaUfGfUfgccagauauuL96
463
asAfsuauCfuGfGfcacaUfcCfgucuusgsa
598
TCAAGACGGATGTGCCAGATATG
733





AD-1656926
gscscagaUfaUfGfGfugguggagguL96
464
asCfscucCfaCfCfaccaUfaUfcuggcsasc
599
GTGCCAGATATGGTGGTGGAGGC
734





AD-1656942
gsasggccUfgUfGfGfcugcagcuauL96
465
asUfsagcUfgCfAfgccaCfaGfgccucscsa
600
TGGAGGCCTGTGGCTGCAGCTAG
735





AD-1656954
usgscagcUfaGfCfAfagaggaccuuL96
466
asAfsgguCfcUfCfuugcUfaGfcugcasgsc
601
GCTGCAGCTAGCAAGAGGACCTG
736





AD-1656958
csusuuggAfgUfGfAfagagaccaauL96
467
asUfsuggUfcUfCfuucaCfuCfcaaagscsc
602
GGCTTTGGAGTGAAGAGACCAAG
737





AD-1656969
asgsagacCfaAfGfAfugaaguuucuL96
468
asGfsaaaCfuUfCfaucuUfgGfucucususc
603
GAAGAGACCAAGATGAAGTTTCC
738





AD-1656996
csasgggcAfuCfUfGfugacuggaguL96
469
asCfsuccAfgUfCfacagAfuGfcccugsusg
604
CACAGGGCATCTGTGACTGGAGG
739





AD-1657013
gsasggcaUfcAfGfAfuuccugaucuL96
470
asGfsaucAfgGfAfaucuGfaUfgccucscsa
605
TGGAGGCATCAGATTCCTGATCC
740





AD-1657022
ascsccaaCfaAfCfCfaccuggcaauL96
471
asUfsugcCfaGfGfugguUfgUfugggususg
606
CAACCCAACAACCACCTGGCAAT
741





AD-1657037
gsgscaauAfuGfAfCfucacuugacuL96
472
asGfsucaAfgUfGfagucAfuAfuugccsasg
607
CTGGCAATATGACTCACTTGACC
742





AD-1657045
gsascccaAfaUfGfGfgcacuuucuuL96
473
asAfsgaaAfgUfGfcccaUfuUfgggucscsc
608
GGGACCCAAATGGGCACTTTCTT
743





AD-1657058
ascsuuucUfuGfUfCfugagacucuuL96
474
asAfsgagUfcUfCfagacAfaGfaaagusgsc
609
GCACTTTCTTGTCTGAGACTCTG
744





AD-1657069
usgsagacUfcUfGfGfcuuauuccauL96
475
asUfsggaAfuAfAfgccaGfaGfucucasgsa
610
TCTGAGACTCTGGCTTATTCCAG
745





AD-1657085
uscscaggUfuGfGfCfugauguguuuL96
476
asAfsacaCfaUfCfagccAfaCfcuggasasu
611
ATTCCAGGTTGGCTGATGTGTTG
746





AD-1657099
usgsuguuGfgGfAfGfauggguaaauL96
477
asUfsuuaCfcCfAfucucCfcAfacacasusc
612
GATGTGTTGGGAGATGGGTAAAG
747





AD-1657113
gsgsuaaaGfcGfUfUfucuucuaaauL96
478
asUfsuuaGfaAfGfaaacGfcUfuuaccscsa
613
TGGGTAAAGCGTTTCTTCTAAAG
748





AD-1657119
usascccaGfaAfAfGfcaugauuucuL96
479
asGfsaaaUfcAfUfgcuuUfcUfggguasgsa
614
TCTACCCAGAAAGCATGATTTCC
749





AD-1657133
gsasuuucCfuGfCfCfcuaaguccuuL96
480
asAfsggaCfuUfAfgggcAfgGfaaaucsasu
615
ATGATTTCCTGCCCTAAGTCCTG
750





AD-1657147
asgsuccuGfuGfAfGfaagaugucauL96
481
asUfsgacAfuCfUfucucAfcAfggacususa
616
TAAGTCCTGTGAGAAGATGTCAG
751





AD-1657164
uscsagggAfcUfAfGfggagggagguL96
482
asCfscucCfcUfCfccuaGfuCfccugascsa
617
TGTCAGGGACTAGGGAGGGAGGG
752





AD-1657185
asasuuacUfuAfGfCfcucucccaauL96
483
asUfsuggGfaGfAfggcuAfaGfuaauususu
618
AAAATTACTTAGCCTCTCCCAAG
753





AD-1657202
csasagauGfaGfAfAfaguccucaauL96
484
asUfsugaGfgAfCfuuucUfcAfucuugsgsg
619
CCCAAGATGAGAAAGTCCTCAAG
754





AD-1657211
gsgsaggaAfgCfAfGfauagaugguuL96
485
asAfsccaUfcUfAfucugCfuUfccuccsusc
620
GAGGAGGAAGCAGATAGATGGTC
755





AD-1657234
gscsaggcUfuGfAfAfgcaggguaauL96
486
asUfsuacCfcUfGfcuucAfaGfccugcsusg
621
CAGCAGGCTTGAAGCAGGGTAAG
756





AD-1657245
gscsagggUfaAfGfCfaggcuggccuL96
487
asGfsgccAfgCfCfugcuUfaCfccugesusu
622
AAGCAGGGTAAGCAGGCTGGCCC
757





AD-1657261
gsgscccaGfgGfUfAfagggcuguuuL96
488
asAfsacaGfcCfCfuuacCfcUfgggccsasg
623
CTGGCCCAGGGTAAGGGCTGTTG
758





AD-1657274
gsgscuguUfgAfGfGfuaccuuaaguL96
489
asCfsuuaAfgGfUfaccuCfaAfcagccscsu
624
AGGGCTGTTGAGGTACCTTAAGG
759





AD-1657286
ascscuuaAfgGfGfAfaggucaagauL96
490
asUfscuuGfaCfCfuuccCfuUfaaggusasc
625
GTACCTTAAGGGAAGGTCAAGAG
760





AD-1657299
gsuscaagAfgGfGfAfgaugggcaauL96
491
asUfsugcCfcAfUfcuccCfuCfuugacscsu
626
AGGTCAAGAGGGAGATGGGCAAG
761





AD-1657322
gscsugagGfgAfGfGfaugcuuagguL96
492
asCfscuaAfgCfAfuccuCfcCfucagesgsc
627
GCGCTGAGGGAGGATGCTTAGGG
762





AD-1657324
asgsaaacAfgGfAfGfucaggaaaauL96
493
asUfsuuuCfcUfGfacucCfuGfuuucusgsg
628
CCAGAAACAGGAGTCAGGAAAAT
763





AD-1657335
uscsaggaAfaAfUfGfaggcacuaauL96
494
asUfsuagUfgCfCfucauUfuUfccugascsu
629
AGTCAGGAAAATGAGGCACTAAG
764





AD-1657347
gsgscacuAfaGfCfCfuaagaaguuuL96
495
asAfsacuUfcUfUfaggcUfuAfgugccsusc
630
GAGGCACTAAGCCTAAGAAGTTC
765





AD-1657359
asasgaagUfuCfCfCfugguuuuucuL96
496
asGfsaaaAfaCfCfagggAfaCfuucuusasg
631
CTAAGAAGTTCCCTGGTTTTTCC
766





AD-1657374
csascuggGfaGfAfCfaagcauuuauL96
497
asUfsaaaUfgCfUfugucUfcCfcagugsgsg
632
CCCACTGGGAGACAAGCATTTAT
767





AD-1657385
asasgcauUfuAfUfAfcuuucuuucuL96
498
asGfsaaaGfaAfAfguauAfaAfugcuusgsu
633
ACAAGCATTTATACTTTCTTTCT
768





AD-1657395
ususuugaGfaUfCfGfagucucgcuuL96
499
asAfsgcgAfgAfCfucgaUfcUfcaaaasasa
634
TTTTTTGAGATCGAGTCTCGCTC
769





AD-1657410
uscsucgcUfcUfGfUfcaccaggcuuL96
500
asAfsgccUfgGfUfgacaGfaGfcgagascsu
635
AGTCTCGCTCTGTCACCAGGCTG
770





AD-1657431
asgsugcaGfuGfAfCfacgaucuuguL96
501
asCfsaagAfuCfGfugucAfcUfgcacuscsc
636
GGAGTGCAGTGACACGATCTTGG
771





AD-1657446
gscsucacUfgCfAfAfccuccgucuuL96
502
asAfsgacGfgAfGfguugCfaGfugagcscsa
637
TGGCTCACTGCAACCTCCGTCTC
772





AD-1657457
cscsuccgUfcUfCfCfuggguucaauL96
503
asUfsugaAfcCfCfaggaGfaCfggaggsusu
638
AACCTCCGTCTCCTGGGTTCAAG
773





AD-1657463
ususcugcCfuCfAfGfccucccgaguL96
504
asCfsucgGfgAfGfgcugAfgGfcagaasgsa
639
TCTTCTGCCTCAGCCTCCCGAGC
774





AD-1657475
usgsgguuCfaAfGfUfgauucuucuuL96
505
asAfsgaaGfaAfUfcacuUfgAfacccasgsg
640
CCTGGGTTCAAGTGATTCTTCTG
775





AD-1657503
gsasgcagCfuGfGfGfauuacaggcuL96
506
asGfsccuGfuAfAfucccAfgCfugcucsgsg
641
CCGAGCAGCTGGGATTACAGGCG
776





AD-1657520
csgscccaCfuAfAfUfuuuuguauuuL96
507
asAfsauaCfaAfAfaauuAfgUfgggcgscsc
642
GGCGCCCACTAATTTTTGTATTC
777





AD-1657529
usgsuauuCfuUfAfGfuagaaacgauL96
508
asUfscguUfuCfUfacuaAfgAfauacasasa
643
TTTGTATTCTTAGTAGAAACGAG
778





AD-1657540
usasgaaaCfgAfGfGfuuucaacauuL96
509
asAfsuguUfgAfAfaccuCfgUfuucuascsu
644
AGTAGAAACGAGGTTTCAACATG
779





AD-1657552
ususcaacAfuGfUfUfggccaggauuL96
510
asAfsuccUfgGfCfcaacAfuGfuugaasasc
645
GTTTCAACATGTTGGCCAGGATG
780





AD-1657564
cscsaggaUfgGfUfCfucaaucucuuL96
511
asAfsgagAfuUfGfagacCfaUfccuggscsc
646
GGCCAGGATGGTCTCAATCTCTT
781





AD-1657575
uscsaaucUfcUfUfGfaccucuugauL96
512
asUfscaaGfaGfGfucaaGfaGfauugasgsa
647
TCTCAATCTCTTGACCTCTTGAT
782





AD-1657586
ascscucuUfgAfUfCfcacccgacuuL96
513
asAfsgucGfgGfUfggauCfaAfgagguscsa
648
TGACCTCTTGATCCACCCGACTT
783





AD-1657600
cscsgacuUfgGfCfCfucccgaaguuL96
514
asAfscuuCfgGfGfaggcCfaAfgucggsgsu
649
ACCCGACTTGGCCTCCCGAAGTG
784





AD-1657615
gsasagugAfuGfAfGfauuauaggcuL96
515
asGfsccuAfuAfAfucucAfuCfacuucsgsg
650
CCGAAGTGATGAGATTATAGGCG
785





AD-1657641
cscsuggcUfuAfUfAfcuuucuuaauL96
516
asUfsuaaGfaAfAfguauAfaGfccaggscsg
651
CGCCTGGCTTATACTTTCTTAAT
786





AD-1657653
gsasgaaaGfaAfAfAfucaacaaauuL96
517
asAfsuuuGfuUfGfauuuUfcUfuucucscsu
652
AGGAGAAAGAAAATCAACAAATG
787





AD-1657674
usgsagucAfuAfAfAfgaaggguuauL96
518
asUfsaacCfcUfUfcuuuAfuGfacucascsa
653
TGTGAGTCATAAAGAAGGGTTAG
788





AD-1657687
asgsgguuAfgGfGfUfgaugguccauL96
519
asUfsggaCfcAfUfcaccCfuAfacccususc
654
GAAGGGTTAGGGTGATGGTCCAG
789





AD-1657704
cscsagagCfaAfCfAfguucuucaauL96
520
asUfsugaAfgAfAfcuguUfgCfucuggsasc
655
GTCCAGAGCAACAGTTCTTCAAG
790





AD-1657716
ususcuucAfaGfUfGfuacucuguauL96
521
asUfsacaGfaGfUfacacUfuGfaagaascsu
656
AGTTCTTCAAGTGTACTCTGTAG
791





AD-1657727
usascucuGfuAfGfGfcuucugggauL96
522
asUfscccAfgAfAfgccuAfcAfgaguascsa
657
TGTACTCTGTAGGCTTCTGGGAG
792





AD-1657741
csusgggaGfgUfCfCfcuuuucagguL96
523
asCfscugAfaAfAfgggaCfcUfcccagsasa
658
TTCTGGGAGGTCCCTTTTCAGGG
793





AD-1657744
gsusccacAfaAfGfUfcaaagcuauuL96
524
asAfsuagCfuUfUfgacuUfuGfuggacsasc
659
GTGTCCACAAAGTCAAAGCTATT
794





AD-1657760
csusaacaUfgUfUfAfuuugccuuuuL96
525
asAfsaagGfcAfAfauaaCfaUfguuagsusa
660
TACTAACATGTTATTTGCCTTTT
795





AD-1657776
csusuuugAfaUfUfCfucauuaucuuL96
526
asAfsgauAfaUfGfagaaUfuCfaaaagsgsc
661
GCCTTTTGAATTCTCATTATCTT
796





AD-1657793
gsusauugUfgGfAfGfuuuuccagauL96
527
asUfscugGfaAfAfacucCfaCfaauacsasa
662
TTGTATTGTGGAGTTTTCCAGAG
797





AD-1657811
gsasggccGfuGfUfGfacaugugauuL96
528
asAfsucaCfaUfGfucacAfcGfgccucsusg
663
CAGAGGCCGTGTGACATGTGATT
798





AD-1657822
ascsauguGfaUfUfAfcaucaucuuuL96
529
asAfsagaUfgAfUfguaaUfcAfcauguscsa
664
TGACATGTGATTACATCATCTTT
799





AD-1657834
asuscaucUfuUfCfUfgacaucauuuL96
530
asAfsaugAfuGfUfcagaAfaGfaugausgsu
665
ACATCATCTTTCTGACATCATTG
800





AD-1657845
gsascaucAfuUfGfUfuaauggaauuL96
531
asAfsuucCfaUfUfaacaAfuGfaugucsasg
666
CTGACATCATTGTTAATGGAATG
801
















TABLE 4







Unmodified Sense and Antisense Strand Sequences of ACVR1C dsRNA Agents


Comprising anUnsaturated C22 Hydrocarbon Chain Conjugated to Position 6


on the Sense Strand, Counting from the 5′-end of the Sense Strand















SEQ


SEQ





ID
Range in
Antisense 
ID
Range in


Duplex Name
Sense Sequence 5′ to 3′
NO:
NM_145259.3
Sequence 5′ to 3′
NO:
NM_145259.3
















AD-1735861
UUUUUUCAAACUCCAUUCCUA
802
3085-3105
UAGGAAUGGAGUUUGAAAAAAGA
1071
3083-3105





AD-1735862
ACUUUCAUCUGUCUUCAGAUA
803
8677-8697
UAUCUGAAGACAGAUGAAAGUUA
1072
8675-8697





AD-1735863
CCUCAUAACUUCUCCAGUAAA
804
6745-6765
UUUACUGGAGAAGUUAUGAGGUG
1073
6743-6765





AD-1735864
CUCACUAUCUUUCAACAUUAA
805
5871-5891
UUAAUGUUGAAAGAUAGUGAGGG
1074
5869-5891





AD-1735865
CUCGUUAAUGCUCUCAUCCAA
806
3562-3582
UUGGAUGAGAGCAUUAACGAGUA
1075
3560-3582





AD-1735866
GUUCUUCAUAAUCCACUACUA
807
2292-2312
UAGUAGUGGAUUAUGAAGAACAG
1076
2290-2312





AD-1735867
GUUGACUUCAUCCAAUCUCUA
808
1876-1896
UAGAGAUUGGAUGAAGUCAACUC
1077
1874-1896





AD-1735868
CUACACAAUGAACUUCUUAAA
809
6692-6712
UUUAAGAAGUUCAUUGUGUAGAA
1078
6690-6712





AD-1735869
CACAUCUAGAAUUCUUAAUUA
810
4835-4855
UAAUUAAGAAUUCUAGAUGUGAC
1079
4833-4855





AD-1735870
AAAUCUCUCAUAGCUUUCUUA
811
1725-1745
UAAGAAAGCUAUGAGAGAUUUCU
1080
1723-1745





AD-1735871
CCUACUAUUGUAGAAUUACUA
812
5093-5113
UAGUAAUUCUACAAUAGUAGGUG
1081
5091-5113





AD-1735872
AUCUUCUUUUAGUGCAUUAAA
813
6589-6609
UUUAAUGCACUAAAAGAAGAUGA
1082
6587-6609





AD-1735873
CUCAUGUACUCUUCUGAUUCA
814
7977-7997
UGAAUCAGAAGAGUACAUGAGCU
1083
7975-7997





AD-1735874
UUUCUCUUUGUACCUUGGAAA
815
6449-6469
UUUCCAAGGUACAAAGAGAAAGA
1084
6447-6469





AD-1735875
UGGCUUAUACAUCUUCAGAAA
816
7515-7535
UUUCUGAAGAUGUAUAAGCCAGA
1085
7513-7535





AD-1735876
CAAAACAAAACUACUCCUAUA
817
5120-5140
UAUAGGAGUAGUUUUGUUUUGUU
1086
5118-5140





AD-1735877
ACUAGCAGAACUCUUAUGAAA
818
6055-6075
UUUCAUAAGAGUUCUGCUAGUAA
1087
6053-6075





AD-1735878
CCAAGUCACUCUAUAAUUCCA
819
6635-6655
UGGAAUUAUAGAGUGACUUGGGA
1088
6633-6655





AD-1735879
UCCAUUUUUCUUGUCAUUAUA
820
4114-4134
UAUAAUGACAAGAAAAAUGGAGA
1089
4112-4134





AD-1735880
CAACACCUCAACUCAUCUUUA
821
1923-1943
UAAAGAUGAGUUGAGGUGUUGCU
1090
1921-1943





AD-1735881
ACUCUGAAAGAUCUGAUUUAA
822
716-736
UUAAAUCAGAUCUUUCAGAGUUU
1091
714-736





AD-1735882
CUAGUUCUUUUCCGCAAUGAA
823
7946-7966
UUCAUUGCGGAAAAGAACUAGAA
1092
7944-7966





AD-1735883
CUUUCACUCUGAAGAAAUCCA
824
4189-4209
UGGAUUUCUUCAGAGUGAAAGUU
1093
4187-4209





AD-1735884
UCUAACUUUUCUCUCUUUCUA
825
6525-6545
UAGAAAGAGAGAAAAGUUAGAUA
1094
6523-6545





AD-1735885
UCUCAACUUUGUGUCAAAGAA
826
1667-1687
UUCUUUGACACAAAGUUGAGAUA
1095
1665-1687





AD-1735886
CUUCAAUAAUCAUUCCUUUAA
827
5445-5465
UUAAAGGAAUGAUUAUUGAAGAC
1096
5443-5465





AD-1735887
UAACUGCUCUUCGUAUUAAGA
828
1638-1658
UCUUAAUACGAAGAGCAGUUAGG
1097
1636-1658





AD-1735888
UCUUCUGUCAUAGUUCCAACA
829
438-458
UGUUGGAACUAUGACAGAAGACU
1098
436-458





AD-1735889
AUCUCAGAACCAUAUCUGUUA
830
2584-2604
UAACAGAUAUGGUUCUGAGAUUU
1099
2582-2604





AD-1735890
UGAAUCUAUCUUCAUUUUACA
831
3483-3503
UGUAAAAUGAAGAUAGAUUCAGU
1100
3481-3503





AD-1735891
ACCACUAAACUUGUUCCUUUA
832
2326-2346
UAAAGGAACAAGUUUAGUGGUUC
1101
2324-2346





AD-1735892
AGUGUUCUUUACUCCUUACAA
833
4578-4598
UUGUAAGGAGUAAAGAACACUGA
1102
4576-4598





AD-1735893
CUUUACUCUUAACAGGAUUAA
834
4367-4387
UUAAUCCUGUUAAGAGUAAAGGA
1103
4365-4387





AD-1735894
UAUACCUAAGAACAUAUUACA
835
8153-8173
UGUAAUAUGUUCUUAGGUAUAAG
1104
8151-8173





AD-1735895
CUUCUACUGAGAUGAUCCAAA
836
3114-3134
UUUGGAUCAUCUCAGUAGAAGAA
1105
3112-3134





AD-1735896
CUGUAUUUUCUCAUAGAGUAA
837
3420-3440
UUACUCUAUGAGAAAAUACAGAA
1106
3418-3440





AD-1735897
ACUUUUCUCUUUCAGUUGUAA
838
7116-7136
UUACAACUGAAAGAGAAAAGUAU
1107
7114-7136





AD-1735898
AUUAAUUUCUAGUCUGUGAAA
839
8493-8513
UUUCACAGACUAGAAAUUAAUGA
1108
8491-8513





AD-1735899
CUCUGUAUAAGAGGUUUCACA
840
6726-6746
UGUGAAACCUCUUAUACAGAGAA
1109
6724-6746





AD-1735900
GACUUUCAAAGUACUAAUACA
841
8098-8118
UGUAUUAGUACUUUGAAAGUCAA
1110
8096-8118





AD-1735901
UUUGCCAUUAUACAAAGUUUA
842
5262-5282
UAAACUUUGUAUAAUGGCAAACA
1111
5260-5282





AD-1735902
GAACACUAUCGACAUACCUCA
843
1276-1296
UGAGGUAUGUCGAUAGUGUUCAG
1112
1274-1296





AD-1735903
UAGAAUGACAUUUACUAAUAA
844
7818-7838
UUAUUAGUAAAUGUCAUUCUACG
1113
7816-7838





AD-1735904
AAGCUACUUAGAAAUGUUUAA
845
5491-5511
UUAAACAUUUCUAAGUAGCUUGU
1114
5489-5511





AD-1735905
CCUUAGUACUCUCAGAGAUUA
846
5968-5988
UAAUCUCUGAGAGUACUAAGGGA
1115
5966-5988





AD-1735906
UGAAUGCACACUAACGUAAUA
847
6163-6183
UAUUACGUUAGUGUGCAUUCAAG
1116
6161-6183





AD-1735907
AAGCCUAAUGAUGAUAAUUAA
848
1695-1715
UUAAUUAUCAUCAUUAGGCUUUG
1117
1693-1715





AD-1735908
AAACUUUUUACUAUCCCAUAA
849
3341-3361
UUAUGGGAUAGUAAAAAGUUUCC
1118
3339-3361





AD-1735909
CUAGCUGAUACUCUUAAGUAA
850
8268-8288
UUACUUAAGAGUAUCAGCUAGCU
1119
8266-8288





AD-1735910
AGCAUGAAAAGAUAACUCUAA
851
1837-1857
UUAGAGUUAUCUUUUCAUGCUGC
1120
1835-1857





AD-1735911
UAAGCCAUUAUGCUAUUAGUA
852
7017-7037
UACUAAUAGCAUAAUGGCUUAGU
1121
7015-7037





AD-1735912
UCUAGCUUUUAGCUAACAUAA
853
6850-6870
UUAUGUUAGCUAAAAGCUAGAAU
1122
6848-6870





AD-1735913
GUGUGAUUCUUCAAACUUCAA
854
316-336
UUGAAGUUUGAAGAAUCACACAA
1123
314-336





AD-1735914
UCUCCAGACCUAACAGUUUUA
855
7247-7267
UAAAACUGUUAGGUCUGGAGAGA
1124
7245-7267





AD-1735915
CUUUUUUUCAUCUAGCCUUGA
856
5808-5828
UCAAGGCUAGAUGAAAAAAAGAA
1125
5806-5828





AD-1735916
CAAAAUAAUUCUUGACAUCUA
857
7552-7572
UAGAUGUCAAGAAUUAUUUUGAC
1126
7550-7572





AD-1735917
GCAUCACUUUCUGAAAAUAAA
858
4690-4710
UUUAUUUUCAGAAAGUGAUGCUG
1127
4688-4710





AD-1735918
UCUUUUGUGAAACAUACUAUA
859
5563-5583
UAUAGUAUGUUUCACAAAAGAUG
1128
5561-5583





AD-1735919
CUAUUUCUUCCAUAGGCUAAA
860
7841-7861
UUUAGCCUAUGGAAGAAAUAGAA
1129
7839-7861





AD-1735920
CUUCAAUGAAGUGUUAACAAA
861
2839-2859
UUUGUUAACACUUCAUUGAAGAG
1130
2837-2859





AD-1735921
UUUGCCUUCAUUCUACUUUCA
862
2952-2972
UGAAAGUAGAAUGAAGGCAAAAC
1131
2950-2972





AD-1735922
AGGUUUUUAAAUGUCCUAAAA
863
8035-8055
UUUUAGGACAUUUAAAAACCUGA
1132
8033-8055





AD-1735923
GAAUAUCUUUGAGUCCUUCAA
864
1360-1380
UUGAAGGACUCAAAGAUAUUCAC
1133
1358-1380





AD-1735924
GAACACUUCCAAAGAUUAAUA
865
2666-2686
UAUUAAUCUUUGGAAGUGUUCAG
1134
2664-2686





AD-1735925
CUAAAUUUUGUCUAACAAAUA
866
7791-7811
UAUUUGUUAGACAAAAUUUAGGC
1135
7789-7811





AD-1735926
GUAAACAACUUAAAAUUGCUA
867
5284-5304
UAGCAAUUUUAAGUUGUUUACUC
1136
5282-5304





AD-1735927
AAAAUAAUUUACUCACUCAGA
868
6233-6253
UCUGAGUGAGUAAAUUAUUUUAG
1137
6231-6253





AD-1735928
GACAUCUAUUCUGUUGGUCUA
869
1388-1408
UAGACCAACAGAAUAGAUGUCAG
1138
1386-1408





AD-1735929
UAACUGAGUAGUCUUAUAUUA
870
4267-4287
UAAUAUAAGACUACUCAGUUAGG
1139
4265-4287





AD-1735930
UCUGGAAUUUAGCCUUCUAAA
871
5936-5956
UUUAGAAGGCUAAAUUCCAGACG
1140
5934-5956





AD-1735931
ACAUGCCUUGAACUCUUGAAA
872
8207-8227
UUUCAAGAGUUCAAGGCAUGUUU
1141
8205-8227





AD-1735932
AUCAAGCACUUCUUGCACUUA
873
8782-8802
UAAGUGCAAGAAGUGCUUGAUUU
1142
8780-8802





AD-1735933
CUUGCUUUUCAUCUUUAUACA
874
4915-4935
UGUAUAAAGAUGAAAAGCAAGUG
1143
4913-4935





AD-1735934
UUUUCUCCCUAUGUAAUAUCA
875
2493-2513
UGAUAUUACAUAGGGAGAAAAGC
1144
2491-2513





AD-1735935
UGCUUUCUUCUAUGUCUAAAA
876
4802-4822
UUUUAGACAUAGAAGAAAGCAUA
1145
4800-4822





AD-1735936
ACCUGCUUAGCAAAUCGUCUA
877
5224-5244
UAGACGAUUUGCUAAGCAGGUUC
1146
5222-5244





AD-1735937
AUAUUCCUCUACCCUUUCACA
878
2895-2915
UGUGAAAGGGUAGAGGAAUAUCU
1147
2893-2915





AD-1735938
UCCCACUUUUCUUUGGGUUUA
879
6208-6228
UAAACCCAAAGAAAAGUGGGAUU
1148
6206-6228





AD-1735939
AGGCUUCUUGUAUAUACUUAA
880
4442-4462
UUAAGUAUAUACAAGAAGCCUGC
1149
4440-4462





AD-1735940
AAACUUGAUCUGUGUUUCAGA
881
8017-8037
UCUGAAACACAGAUCAAGUUUGA
1150
8015-8037





AD-1735941
UUUGCUUUAAUGCUAAAUUCA
882
6885-6905
UGAAUUUAGCAUUAAAGCAAAAG
1151
6883-6905





AD-1735942
AGACUAGCUGUUAUUUGUAUA
883
6830-6850
UAUACAAAUAACAGCUAGUCUUU
1152
6828-6850





AD-1735943
UUCCUACUUUCCCUUGAAUAA
884
2469-2489
UUAUUCAAGGGAAAGUAGGAAGC
1153
2467-2489





AD-1735944
CAGAACUGAAUGCUCAAGUCA
885
420-440
UGACUUGAGCAUUCAGUUCUGGA
1154
418-440





AD-1735945
UCUUGUUACUAAUUUCUCAUA
886
3945-3965
UAUGAGAAAUUAGUAACAAGAAC
1155
3943-3965





AD-1735946
CUCAGUGAUAGCCUUUAUACA
887
8586-8606
UGUAUAAAGGCUAUCACUGAGUU
1156
8584-8606





AD-1735947
UUUUAUGCUCCUAAAACAUCA
888
3065-3085
UGAUGUUUUAGGAGCAUAAAAGA
1157
3063-3085





AD-1735948
UUCUCCUUAGGUUAUGUUCAA
889
4551-4571
UUGAACAUAACCUAAGGAGAAUU
1158
4549-4571





AD-1735949
AUUGCUCAUCGAGACAUAAAA
890
1175-1195
UUUUAUGUCUCGAUGAGCAAUAG
1159
1173-1195





AD-1735950
CCUUUGUACAUACACACUUAA
891
2746-2766
UUAAGUGUGUAUGUACAAAGGAA
1160
2744-2766





AD-1735951
UUGAACCAAGAGCACAUGAAA
892
2025-2045
UUUCAUGUGCUCUUGGUUCAAGU
1161
2023-2045





AD-1735952
UCAGGGAUUUUAAAGUCUAAA
893
3668-3688
UUUAGACUUUAAAAUCCCUGAGG
1162
3666-3688





AD-1735953
UACUUGCUUAUAAAGUGAUAA
894
3153-3173
UUAUCACUUUAUAAGCAAGUACC
1163
3151-3173





AD-1735954
AUGCAUCUAAACCUACCUUGA
895
6145-6165
UCAAGGUAGGUUUAGAUGCAUGC
1164
6143-6165





AD-1735955
UUGGGAAAACACUAUUAUGAA
896
4629-4649
UUCAUAAUAGUGUUUUCCCAAGU
1165
4627-4649





AD-1735956
AAACUCCAAAGAGAAAUGAAA
897
8456-8476
UUUCAUUUCUCUUUGGAGUUUGA
1166
8454-8476





AD-1735957
AUGGGCAUUUUUCAAAACAUA
898
5758-5778
UAUGUUUUGAAAAAUGCCCAUAU
1167
5756-5778





AD-1735958
AUAAUGGAACUUGGACUCAAA
899
996-1016
UUUGAGUCCAAGUUCCAUUAUCU
1168
994-1016





AD-1735959
UGUGUAGAUGACGAAACCAAA
900
6008-6028
UUUGGUUUCGUCAUCUACACAAA
1169
6006-6028





AD-1735960
UUCUACCUCAAAGAUAAGACA
901
1790-1810
UGUCUUAUCUUUGAGGUAGAACA
1170
1788-1810





AD-1735961
AGAAGGCAUAUUGAGUUAUUA
902
2536-2556
UAAUAACUCAAUAUGCCUUCUAA
1171
2534-2556





AD-1735962
AUGGAGUUUUUCUGCUAUUUA
903
5629-5649
UAAAUAGCAGAAAAACUCCAUGU
1172
5627-5649





AD-1735963
UCAGUUUCUCAUUAGUUUGUA
904
6558-6578
UACAAACUAAUGAGAAACUGAGG
1173
6556-6578





AD-1735964
CUGCAUAUAUAAGAACGAAAA
905
3976-3996
UUUUCGUUCUUAUAUAUGCAGAA
1174
3974-3996





AD-1735965
UGAGCCAAAAUAUUAAAUUCA
906
7927-7947
UGAAUUUAAUAUUUUGGCUCAGA
1175
7925-7947





AD-1735966
AGAAUGAUAUUUCCUGUUUUA
907
4035-4055
UAAAACAGGAAAUAUCAUUCUUG
1176
4033-4055





AD-1735967
GUGCUCUAUAUAAAUCUUCCA
908
7385-7405
UGGAAGAUUUAUAUAGAGCACAA
1177
7383-7405





AD-1735968
UUUACAGAGAAGCAUCUUAUA
909
7468-7488
UAUAAGAUGCUUCUCUGUAAAAU
1178
7466-7488





AD-1735969
GUCUUGAGUUCUGCAUGACAA
910
3761-3781
UUGUCAUGCAGAACUCAAGACAU
1179
3759-3781





AD-1735970
CUUCAAAUCUAUAAUUUUACA
911
3017-3037
UGUAAAAUUAUAGAUUUGAAGGG
1180
3015-3037





AD-1735971
GAAGCAUAUAGAACUCUAUUA
912
8810-8830
UAAUAGAGUUCUAUAUGCUUCAC
1181
8808-8830





AD-1735972
GAGCUGCUUCUAAAUAACAAA
913
5678-5698
UUUGUUAUUUAGAAGCAGCUCUC
1182
5676-5698





AD-1735973
UGACUGUAUUUCCUGAUCAUA
914
7197-7217
UAUGAUCAGGAAAUACAGUCACA
1183
7195-7217





AD-1735974
GUUCUGAAGGAUAUACUUCUA
915
3402-3422
UAGAAGUAUAUCCUUCAGAACGC
1184
3400-3422





AD-1735975
GUGAAGCAUGAUUCAAUACUA
916
1256-1276
UAGUAUUGAAUCAUGCUUCACAG
1185
1254-1276





AD-1735976
AAUGCUGCUUCACAGAUUUUA
917
474-494
UAAAAUCUGUGAAGCAGCAUUCG
1186
472-494





AD-1735977
UGUGGGUUAUGUUAAUCUGAA
918
7283-7303
UUCAGAUUAACAUAACCCACAGU
1187
7281-7303





AD-1735978
GAGUACAGAAGAAUGCUCAUA
919
2926-2946
UAUGAGCAUUCUUCUGUACUCAC
1188
2924-2946





AD-1735979
CUGUAUUUCAUCCUAGAUUUA
920
7162-7182
UAAAUCUAGGAUGAAAUACAGCU
1189
7160-7182





AD-1735980
AAUCUGGUAAAUGCUGGAAAA
921
695-715
UUUUCCAGCAUUUACCAGAUUGC
1190
693-715





AD-1735981
UGCUCAGAUUACCUGAUCGUA
922
3293-3313
UACGAUCAGGUAAUCUGAGCAAU
1191
3291-3313





AD-1735982
GACAGCUAUGGAGUUUGCGUA
923
3531-3551
UACGCAAACUCCAUAGCUGUCAG
1192
3529-3551





AD-1735983
UAGAACAUGCUCACUUACAAA
924
4391-4411
UUUGUAAGUGAGCAUGUUCUAUA
1193
4389-4411





AD-1735984
AUUAUGCUUCAUUUCACUAUA
925
3450-3470
UAUAGUGAAAUGAAGCAUAAUCA
1194
3448-3470





AD-1735985
CAACAGCAAGUCAUAAAAGUA
926
8624-8644
UACUUUUAUGACUUGCUGUUGGU
1195
8622-8644





AD-1735986
UUGUCUGAAAAUGUCUUUAAA
927
2702-2722
UUUAAAGACAUUUUCAGACAAUG
1196
2700-2722





AD-1735987
UGUUGGUUCAAAGGACAAUUA
928
774-794
UAAUUGUCCUUUGAACCAACAGA
1197
772-794





AD-1735988
UCUAAACUUUAAUAUAUCGAA
929
2190-2210
UUCGAUAUAUUAAAGUUUAGAGC
1198
2188-2210





AD-1735989
AAGUGAAACAUGACUGUCGUA
930
4875-4895
UACGACAGUCAUGUUUCACUUAA
1199
4873-4895





AD-1735990
AUCGUCCAUACAGUUUUCAUA
931
7719-7739
UAUGAAAACUGUAUGGACGAUAU
1200
7717-7739





AD-1735991
CUUCAGGAAAUAGUAGGAAAA
932
809-829
UUUUCCUACUAUUUCCUGAAGCA
1201
807-829





AD-1735992
CACCCUUUCUGUAAGGACUGA
933
6426-6446
UCAGUCCUUACAGAAAGGGUGGG
1202
6424-6446





AD-1735993
AAAGAGAUACCUGACAUCCUA
934
2354-2374
UAGGAUGUCAGGUAUCUCUUUUG
1203
2352-2374





AD-1735994
AUGAGCAUUAAUGUUUUCUGA
935
2647-2667
UCAGAAAACAUUAAUGCUCAUUA
1204
2645-2667





AD-1735995
UGACAUUUUUUCUCAUAGAAA
936
2603-2623
UUUCUAUGAGAAAAAAUGUCAAC
1205
2601-2623





AD-1735996
CAGAGAUUAAAUGACUACUAA
937
6032-6052
UUAGUAGUCAUUUAAUCUCUGAU
1206
6030-6052





AD-1735997
GCUGUCAAAUGUUAUAUUGUA
938
4463-4483
UACAAUAUAACAUUUGACAGCAU
1207
4461-4483





AD-1735998
AAUAUAAUACUACAGCAAAAA
939
7041-7061
UUUUUGCUGUAGUAUUAUAUUCC
1208
7039-7061





AD-1735999
GGUGUCUAAAUAUAAUUUCAA
940
4153-4173
UUGAAAUUAUAUUUAGACACCCU
1209
4151-4173





AD-1736000
CUCUUUAUACAAAAUGAGAGA
941
7903-7923
UCUCUCAUUUUGUAUAAAGAGAA
1210
7901-7923





AD-1736001
GCAGUACCAAAUGAAUAAAAA
942
5410-5430
UUUUUAUUCAUUUGGUACUGCUA
1211
5408-5430





AD-1736002
UUGUUGGUACACAAGGUAAAA
943
1149-1169
UUUUACCUUGUGUACCAACAAUC
1212
1147-1169





AD-1736003
CUCUUAUUUAACUUAACCGUA
944
5917-5937
UACGGUUAAGUUAAAUAAGAGUU
1213
5915-5937





AD-1736004
UGCUUGAUGAUACAAUGAAUA
945
1338-1358
UAUUCAUUGUAUCAUCAAGCAUU
1214
1336-1358





AD-1736005
AACUGGGAAAGACAAUUUGAA
946
6920-6940
UUCAAAUUGUCUUUCCCAGUUAC
1215
6918-6940





AD-1736006
CUCCUUAUAUGACUAUUUGAA
947
1048-1068
UUCAAAUAGUCAUAUAAGGAGCC
1216
1046-1068





AD-1736007
AGUCAUGCUAACCAAUGGAAA
948
367-387
UUUCCAUUGGUUAGCAUGACUGA
1217
365-387





AD-1736008
CCUGAAGUCACACAGCUAAUA
949
2391-2411
UAUUAGCUGUGUGACUUCAGGAC
1218
2389-2411





AD-1736009
UUGCUGCUGACAACAAAGAUA
950
978-998
UAUCUUUGUUGUCAGCAGCAAUG
1219
976-998





AD-1736010
UACUGACUUUGCCUGUAAAGA
951
7757-7777
UCUUUACAGGCAAAGUCAGUAAU
1220
7755-7777





AD-1736011
AAUCCCUAUUUUAAAAUUCCA
952
7070-7090
UGGAAUUUUAAAAUAGGGAUUGU
1221
7068-7090





AD-1736012
GUGCCUUAGGAGAUUACCCUA
953
7330-7350
UAGGGUAAUCUCCUAAGGCACUC
1222
7328-7350





AD-1736013
GACAAUCUAAAUAUAUCAUCA
954
3857-3877
UGAUGAUAUAUUUAGAUUGUCUG
1223
3855-3877





AD-1736014
UGUGAUAAUGAACACCGUAAA
955
2438-2458
UUUACGGUGUUCAUUAUCACAAG
1224
2436-2458





AD-1736015
UCACCGUUGUAAAGACUUUUA
956
8242-8262
UAAAAGUCUUUACAACGGUGAUU
1225
8240-8262





AD-1736016
UUAGAGAAGCUUCCUGACAUA
957
6402-6422
UAUGUCAGGAAGCUUCUCUAAUC
1226
6400-6422





AD-1736017
AACAGUAAAGAAAUGCUACUA
958
3252-3272
UAGUAGCAUUUCUUUACUGUUAU
1227
3250-3272





AD-1736018
UAUGUUCUGACUUGAGAGUUA
959
4855-4875
UAACUCUCAAGUCAGAACAUAAA
1228
4853-4875





AD-1736019
UUAGAGCAUGCUAUCUUUAGA
960
2109-2129
UCUAAAGAUAGCAUGCUCUAAUU
1229
2107-2129





AD-1736020
UAGUCUUUGAUUGAAAUAAGA
961
5314-5334
UCUUAUUUCAAUCAAAGACUAUG
1230
5312-5334





AD-1736021
UUGGUAAACGAGAUUUAACAA
962
3038-3058
UUGUUAAAUCUCGUUUACCAAAG
1231
3036-3058





AD-1736022
GUCUGAAAAUUGCUUUCAUUA
963
3798-3818
UAAUGAAAGCAAUUUUCAGACCU
1232
3796-3818





AD-1736023
AUGAACUUGUUGCCUUGUAAA
964
4741-4761
UUUACAAGGCAACAAGUUCAUGC
1233
4739-4761





AD-1736024
GGGCAAUAAACUGUAUCAAAA
965
8379-8399
UUUUGAUACAGUUUAUUGCCCAA
1234
8377-8399





AD-1736025
ACAUGUUAGCAUAUAAUGUAA
966
3175-3195
UUACAUUAUAUGCUAACAUGUAC
1235
3173-3195





AD-1736026
UGUGAGAGUAUAGAAUUUCUA
967
6367-6387
UAGAAAUUCUAUACUCUCACAGU
1236
6365-6387





AD-1736027
AUCCUUCAUUUGGCACUAUAA
968
6764-6784
UUAUAGUGCCAAAUGAAGGAUUA
1237
6762-6784





AD-1736028
ACAUUUAGAAAGUAGCUUUAA
969
3824-3844
UUAAAGCUACUUUCUAAAUGUGU
1238
3822-3844





AD-1736029
AACUGUUCUAUAAAGCAAAGA
970
3364-3384
UCUUUGCUUUAUAGAACAGUUAA
1239
3362-3384





AD-1736030
CCUCCAGAGAUGAAAGAUCUA
971
894-914
UAGAUCUUUCAUCUCUGGAGGAG
1240
892-914





AD-1736031
UUGUUUAACUAUGACUCCUAA
972
4249-4269
UUAGGAGUCAUAGUUAAACAACA
1241
4247-4269





AD-1736032
CUGUUUGACAAUGCUUUGUUA
973
5585-5605
UAACAAAGCAUUGUCAAACAGAA
1242
5583-5605





AD-1736033
UGUCCUAAAAGAAAUUUUUCA
974
7227-7247
UGAAAAAUUUCUUUUAGGACAAC
1243
7225-7247





AD-1736034
ACAGAUUGAACAAAGAACUUA
975
7572-7592
UAAGUUCUUUGUUCAAUCUGUAG
1244
7570-7592





AD-1736035
GUUUAACCUGUCCAAACUUCA
976
6673-6693
UGAAGUUUGGACAGGUUAAACGA
1245
6671-6693





AD-1736036
CAAAAUGUUUAACUUUACCAA
977
8606-8626
UUGGUAAAGUUAAACAUUUUGGU
1246
8604-8626





AD-1736037
UCCCAUUGUGUAAUAUUUAUA
978
4494-4514
UAUAAAUAUUACACAAUGGGACU
1247
4492-4514





AD-1736038
GUUGGGUAAAUAUGCUUAUUA
979
4065-4085
UAAUAAGCAUAUUUACCCAACAU
1248
4063-4085





AD-1736039
CAGGGUUGUCUUUGAGUCUGA
980
5187-5207
UCAGACUCAAAGACAACCCUGAG
1249
5185-5207





AD-1736040
GCUAAAAUCCAACUGCAAUUA
981
7425-7445
UAAUUGCAGUUGGAUUUUAGCCC
1250
7423-7445





AD-1736041
CAGGACUGAAGUGUGUAUGUA
982
291-311
UACAUACACACUUCAGUCCUGGC
1251
289-311





AD-1736042
GAGUACCAAUUGCCUUAUUAA
983
1457-1477
UUAAUAAGGCAAUUGGUACUCCU
1252
1455-1477





AD-1736043
AAGUGCCUAUGUGAAGUGAUA
984
3886-3906
UAUCACUUCACAUAGGCACUUUU
1253
3884-3906





AD-1736044
UAACAAUAAUAGAACUGCCAA
985
7092-7112
UUGGCAGUUCUAUUAUUGUUAGG
1254
7090-7112





AD-1736045
GCUGUUCCAUACCAUUGCUUA
986
6978-6998
UAAGCAAUGGUAUGGAACAGCAG
1255
6976-6998





AD-1736046
UAGACUGGAGAAGAUUAUUCA
987
7997-8017
UGAAUAAUCUUCUCCAGUCUAGA
1256
7995-8017





AD-1736047
UUCCAACAGCAUCACCAAAUA
988
516-536
UAUUUGGUGAUGCUGUUGGAAGG
1257
514-536





AD-1736048
UAAUUGGUACAGAUUCUGUUA
989
4779-4799
UAACAGAAUCUGUACCAAUUACA
1258
4777-4799





AD-1736049
GAGAAACAUUAUUUGUUGUCA
990
4710-4730
UGACAACAAAUAAUGUUUCUCUU
1259
4708-4730





AD-1736050
CGCUCUCAAUUGCUAGUGGUA
991
1107-1127
UACCACUAGCAAUUGAGAGCGCC
1260
1105-1127





AD-1736051
CGGUAUCAGAAACAGCAAAUA
992
2873-2893
UAUUUGCUGUUUCUGAUACCGUC
1261
2871-2893





AD-1736052
CCCAGACAUAAUUUUAUAUUA
993
7449-7469
UAAUAUAAAAUUAUGUCUGGGAG
1262
7447-7469





AD-1736053
UAGUACAUUUUGAGGUAUUUA
994
4215-4235
UAAAUACCUCAAAAUGUACUAAC
1263
4213-4235





AD-1736054
AAAUGCUAUUGAUAACAGUAA
995
3211-3231
UUACUGUUAUCAAUAGCAUUUAC
1264
3209-3231





AD-1736055
UAGCUGAAUUUGGGACUAUGA
996
6490-6510
UCAUAGUCCCAAAUUCAGCUAUC
1265
6488-6510





AD-1736056
AUUGUGGUUUUCAAAGAUAUA
997
5535-5555
UAUAUCUUUGAAAACCACAAUGG
1266
5533-5555





AD-1736057
CCUGGUUGCAGUAUCUGAAAA
998
4985-5005
UUUUCAGAUACUGCAACCAGGUU
1267
4983-5005





AD-1736058
UAGAAUGGUUGUUGAGCUAAA
999
6297-6317
UUUAGCUCAACAACCAUUCUACA
1268
6295-6317





AD-1736059
CUGGCCAUCAUUAUUACUGUA
1000
560-580
UACAGUAAUAAUGAUGGCCAGCU
1269
558-580





AD-1736060
UUGACAGAUAAAAUACGAAGA
1001
3735-3755
UCUUCGUAUUUUAUCUGUCAAUU
1270
3733-3755





AD-1736061
UCACAAACACAUCAUUACAAA
1002
5473-5493
UUUGUAAUGAUGUGUUUGUGAAU
1271
5471-5493





AD-1736062
CCAUGAUUGUAUGAAAAUAGA
1003
4962-4982
UCUAUUUUCAUACAAUCAUGGAA
1272
4960-4982





AD-1736063
CACAGAGUAAUGAAUAUUUAA
1004
2978-2998
UUAAAUAUUCAUUACUCUGUGUC
1273
2976-2998





AD-1736064
AGCUGCUUAGUGGAAGAUGUA
1005
2222-2242
UACAUCUUCCACUAAGCAGCUCC
1274
2220-2242





AD-1736065
UAGCUCUGUGUGCUGAUACCA
1006
5606-5626
UGGUAUCAGCACACAGAGCUAGA
1275
5604-5626





AD-1736066
CAUUCGAGAGAAUAUGAGCUA
1007
7144-7164
UAGCUCAUAUUCUCUCGAAUGUA
1276
7142-7164





AD-1736067
AUGCAUUUUCUGAAAAUGUAA
1008
8734-8754
UUACAUUUUCAGAAAAUGCAUAC
1277
8732-8754





AD-1736068
GUUUCGACCAAGUAUCCCAAA
1009
1537-1557
UUUGGGAUACUUGGUCGAAACUU
1278
1535-1557





AD-1736069
UCUUGCUUGCCACAAUAUCGA
1010
3610-3630
UCGAUAUUGUGGCAAGCAAGAUA
1279
3608-3630





AD-1736070
GGGUACAAGAGGGAAUACAAA
1011
3629-3649
UUUGUAUUCCCUCUUGUACCCGA
1280
3627-3649





AD-1736071
GGUGAUCAAAUCCUGUGUCUA
1012
394-414
UAGACACAGGAUUUGAUCACCUG
1281
392-414





AD-1736072
CAGUGGGUUUCUAGGAUAGGA
1013
3779-3799
UCCUAUCCUAGAAACCCACUGUC
1282
3777-3799





AD-1736073
AACUAAGUAUUUUUAAGGACA
1014
7869-7889
UGUCCUUAAAAAUACUUAGUUAC
1283
7867-7889





AD-1736074
CAUAAUGUGAUUGUUAAAUUA
1015
6951-6971
UAAUUUAACAAUCACAUUAUGGG
1284
6949-6971





AD-1736075
GAGAAGAAUUAAGAAAACUCA
1016
2820-2840
UGAGUUUUCUUAAUUCUUCUCAA
1285
2818-2840





AD-1736076
GAAGAGAAAUUGAUUGUUUAA
1017
7635-7655
UUAAACAAUCAAUUUCUCUUCUC
1286
7633-7655





AD-1736077
AGUGUGAAACUUGUGCCAUAA
1018
1218-1238
UUAUGGCACAAGUUUCACACUUU
1287
1216-1238





AD-1736078
CUGAGACACUGAGAAAUGUCA
1019
2372-2392
UGACAUUUCUCAGUGUCUCAGGA
1288
2370-2392





AD-1736079
UGGCUUAUAUGUGUUUAAAGA
1020
7488-7508
UCUUUAAACACAUAUAAGCCAAU
1289
7486-7508





AD-1736080
UGCAUUUUGACAUUGCAAAAA
1021
8188-8208
UUUUUGCAAUGUCAAAAUGCAAU
1290
8186-8208





AD-1736081
UUAGGUUAGAAGUUCCAGAAA
1022
5053-5073
UUUCUGGAACUUCUAACCUAAUG
1291
5051-5073





AD-1736082
UGCGACAUGAAAACAUCCUUA
1023
951-971
UAAGGAUGUUUUCAUGUCGCAGC
1292
949-971





AD-1736083
GAGAGGAUUUUUUACCAUCUA
1024
4095-4115
UAGAUGGUAAAAAAUCCUCUCUU
1293
4093-4115





AD-1736084
GAAGGUGAAGAGAAUUUCAAA
1025
8438-8458
UUUGAAAUUCUCUUCACCUUCCA
1294
8436-8458





AD-1736085
UGGUAUCUGAAUAUCAUGAAA
1026
1023-1043
UUUCAUGAUAUUCAGAUACCAGC
1295
1021-1043





AD-1736086
UGUUGGUUUAAUUUUUCAACA
1027
7658-7678
UGUUGAAAAAUUAAACCAACAUG
1296
7656-7678





AD-1736087
UAGUUGUAAUUUAAAUGUGGA
1028
8419-8439
UCCACAUUUAAAUUACAACUACU
1297
8417-8439





AD-1736088
GUGAAUGUUUUUGCCAUUUUA
1029
1763-1783
UAAAAUGGCAAAAACAUUCACAU
1298
1761-1783





AD-1736089
CAGAGAUGAUUUUUCUUUUAA
1030
6800-6820
UUAAAAGAAAAAUCAUCUCUGCC
1299
6798-6820





AD-1736090
AGAAAAUUAGAUUCAGAUCUA
1031
8058-8078
UAGAUCUGAAUCUAAUUUUCUGU
1300
8056-8078





AD-1736091
ACUGGAAAAUUAAGAAAGUAA
1032
5390-5410
UUACUUUCUUAAUUUUCCAGUGG
1301
5388-5410





AD-1736092
UAAAGUGGGAAAGAUAAUAAA
1033
8762-8782
UUUAUUAUCUUUCCCACUUUACA
1302
8760-8782





AD-1736093
CUAGGCUAAGAAAGAGUUGUA
1034
6278-6298
UACAACUCUUUCUUAGCCUAGUU
1303
6276-6298





AD-1736094
GCUGAUAAAAUUAAUGGAUAA
1035
6335-6355
UUAUCCAUUAAUUUUAUCAGCAC
1304
6333-6355





AD-1736095
CCUGUAUUUCUUUAGUUGUCA
1036
6653-6673
UGACAACUAAAGAAAUACAGGAA
1305
6651-6673





AD-1736096
UUUGUUUUGCUUUUGACAAAA
1037
6996-7016
UUUUGUCAAAAGCAAAACAAAGC
1306
6994-7016





AD-1736097
UGGCUGUGAAAAUAUUCUCCA
1038
876-896
UGGAGAAUAUUUUCACAGCCACA
1307
874-896





AD-1736098
ACUAUUUUAGGCAUAGCACUA
1039
4897-4917
UAGUGCUAUGCCUAAAAUAGUGC
1308
4895-4917





AD-1736099
UUUCAGUACUGUAUAAAGUGA
1040
4651-4671
UCACUUUAUACAGUACUGAAAAU
1309
4649-4671





AD-1736100
GUGAUGCAAUCUAUGUUUCCA
1041
2129-2149
UGGAAACAUAGAUUGCAUCACCU
1310
2127-2149





AD-1736101
UGUUUGGCAGAUCUCAUCAAA
1042
6613-6633
UUUGAUGAGAUCUGCCAAACAUU
1311
6611-6633





AD-1736102
AAGGUUGUUUGUGACCAGAAA
1043
1517-1537
UUUCUGGUCACAAACAACCUUUC
1312
1515-1537





AD-1736103
GGAAGGAAAUAUUUUGAGAAA
1044
2794-2814
UUUCUCAAAAUAUUUCCUUCCUU
1313
2792-2814





AD-1736104
UUUUGGUAGCGUGACUCUUCA
1045
8132-8152
UGAAGAGUCACGCUACCAAAAGA
1314
8130-8152





AD-1736105
UGAACAGGAAAAGAUGUAAAA
1046
2045-2065
UUUUACAUCUUUUCCUGUUCAUU
1315
2043-2065





AD-1736106
GGGAACCAAGAGGUAUAUGGA
1047
1309-1329
UCCAUAUACCUCUUGGUUCCCAC
1316
1307-1329





AD-1736107
UGGCACUAGGUCCAAAUCUUA
1048
2419-2439
UAAGAUUUGGACCUAGUGCCAGU
1317
2417-2439





AD-1736108
CACACCUUCAUAUGGAGAUUA
1049
1131-1151
UAAUCUCCAUAUGAAGGUGUGCC
1318
1129-1151





AD-1736109
CUGGUUUACUGGGAAAUAGCA
1050
1406-1426
UGCUAUUUCCCAGUAAACCAGAC
1319
1404-1426





AD-1736110
GCCCAAAGGAAUGUAUAUAAA
1051
8316-8336
UUUAUAUACAUUCCUUUGGGCCU
1320
8314-8336





AD-1736111
UUAACUGCAAGAGUUUACUGA
1052
7265-7285
UCAGUAAACUCUUGCAGUUAAAA
1321
7263-7285





AD-1736112
GAACCACUCUCUGAGUGCAAA
1053
677-697
UUUGCACUCAGAGAGUGGUUCCU
1322
675-697





AD-1736113
UUAUCUUUUCAUCCUGGCAUA
1054
7607-7627
UAUGCCAGGAUGAAAAGAUAAAG
1323
7605-7627





AD-1736114
GUGAGUGUUGGUAUGCCAACA
1055
1605-1625
UGUUGGCAUACCAACACUCACGC
1324
1603-1625





AD-1736115
AGAAUGUAUUUGGCUAAAUAA
1056
5338-5358
UUAUUUAGCCAAAUACAUUCUCA
1325
5336-5358





AD-1736116
GAACCCUUUUAUUAAGAGGAA
1057
3317-3337
UUCCUCUUAAUAAAAGGGUUCCA
1326
3315-3337





AD-1736117
CUCCUGUCCAUAGCUGCGAUA
1058
590-610
UAUCGCAGCUAUGGACAGGAGGC
1327
588-610





AD-1736118
ACUGAGUUGAAAUAAGGAAGA
1059
3501-3521
UCUUCCUUAUUUCAACUCAGUAA
1328
3499-3521





AD-1736119
CUGCCAAACAGAAGGAGCAUA
1060
337-357
UAUGCUCCUUCUGUUUGGCAGGU
1329
335-357





AD-1736120
GGCAAAGUUGUGAAGCACUCA
1061
1563-1583
UGAGUGCUUCACAACUUUGCCAC
1330
1561-1583





AD-1736121
AUAGGAUGAUGAAGUUUAGAA
1062
4413-4433
UUCUAAACUUCAUCAUCCUAUUU
1331
4411-4433





AD-1736122
AUUCGUAUCUUAAAAUGGCAA
1063
5513-5533
UUGCCAUUUUAAGAUACGAAUAC
1332
5511-5533





AD-1736123
CACAGCUUGGGUAAUAGCGUA
1064
3384-3404
UACGCUAUUACCCAAGCUGUGCU
1333
3382-3404





AD-1736124
UUUGCAACAACAUAACACUGA
1065
492-512
UCAGUGUUAUGUUGUUGCAAAAA
1334
490-512





AD-1736125
UGCCACCAUGUGACUUAUUGA
1066
5153-5173
UCAAUAAGUCACAUGGUGGCAAA
1335
5151-5173





AD-1736126
UCGAUAGAGGAAAUGAGAAAA
1067
1499-1519
UUUUCUCAUUUCCUCUAUCGAGG
1336
1497-1519





AD-1736127
UUUUUAAGUUAGCAGGACUUA
1068
2152-2172
UAAGUCCUGCUAACUUAAAAAGG
1337
2150-2172





AD-1736128
UGUAAAUAAUUAUCUGCCUAA
1069
8696-8716
UUAGGCAGAUAAUUAUUUACAUC
1338
8694-8716





AD-1736129
UGGUUGUACGUGCCUCAAAUA
1070
4010-4030
UAUUUGAGGCACGUACAACCAUA
1339
4008-4030
















TABLE 5







Modified Sense and Antisense Strand Sequences of ACVRIC dsRNA Agents Comprising anUnsaturated C22 Hydrocarbon Chain


Conjugated to Position 6 on the Sense Strand, Counting from the 5′-end of the Sense Strand















SEQ

SEQ

SEQ


Duplex

ID

ID

ID


Name
Sense Strand Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
mRNA Target Sequence
NO:





AD-1735861
ususuuu(Uda)CfaAfAfCfuccauucc
1340
VPusAfsggaAfuGfGfaguuUfgAfaaaaasgsa
1609
UCUUUUUUCAAACUCCAUUCCUU
1878



susa










AD-1735862
ascsuuu(Cda)AfuCfUfGfucuucaga
1341
VPusAfsucuGfaAfGfacagAfuGfaaagususa
1610
UAACUUUCAUCUGUCUUCAGAUG
1879



susa










AD-1735863
cscsuca(Uda)AfaCfUfUfcuccaguas
1342
VPusUfsuacUfgGfAfgaagUfuAfugaggsusg
1611
CACCUCAUAACUUCUCCAGUAAU
1880



asa










AD-1735864
csuscac(Uda)AfuCfUfUfucaacauu
1343
VPusUfsaauGfuUfGfaaagAfuAfgugagsgsg
1612
CCCUCACUAUCUUUCAACAUUAU
1881



sasa










AD-1735865
csuscgu(Uda)AfaUfGfCfucucaucc
1344
VPusUfsggaUfgAfGfagcaUfuAfacgagsusa
1613
UACUCGUUAAUGCUCUCAUCCAC
1882



sasa










AD-1735866
gsusucu(Uda)CfaUfAfAfuccacuac
1345
VPusAfsguaGfuGfGfauuaUfgAfagaacsasg
1614
CUGUUCUUCAUAAUCCACUACUG
1883



susa










AD-1735867
gsusuga(Cda)UfuCfAfUfccaaucuc
1346
VPusAfsgagAfuUfGfgaugAfaGfucaacsusc
1615
GAGUUGACUUCAUCCAAUCUCUA
1884



susa










AD-1735868
csusaca(Cda)AfaUfGfAfacuucuua
1347
VPusUfsuaaGfaAfGfuucaUfuGfuguagsasa
1616
UUCUACACAAUGAACUUCUUAAC
1885



sasa










AD-1735869
csascau(Cda)UfaGfAfAfuucuuaau
1348
VPusAfsauuAfaGfAfauucUfaGfaugugsasc
1617
GUCACAUCUAGAAUUCUUAAUUU
1886



susa










AD-1735870
asasauc(Uda)CfuCfAfUfagcuuucu
1349
VPusAfsagaAfaGfCfuaugAfgAfgauuuscsu
1618
AGAAAUCUCUCAUAGCUUUCUUU
1887



susa










AD-1735871
cscsuac(Uda)AfuUfGfUfagaauuac
1350
VPusAfsguaAfuUfCfuacaAfuAfguaggsusg
1619
CACCUACUAUUGUAGAAUUACUA
1888



susa










AD-1735872
asuscuu(Cda)UfuUfUfAfgugcauua
1351
VPusUfsuaaUfgCfAfcuaaAfaGfaagausgsa
1620
UCAUCUUCUUUUAGUGCAUUAAA
1889



sasa










AD-1735873
csuscau(Gda)UfaCfUfCfuucugauu
1352
VPusGfsaauCfaGfAfagagUfaCfaugagscsu
1621
AGCUCAUGUACUCUUCUGAUUCU
1890



scsa










AD-1735874
ususucu(Cda)UfuUfGfUfaccuugga
1353
VPusUfsuccAfaGfGfuacaAfaGfagaaasgsa
1622
UCUUUCUCUUUGUACCUUGGAAU
1891



sasa










AD-1735875
usgsgcu(Uda)AfuAfCfAfucuucaga
1354
VPusUfsucuGfaAfGfauguAfuAfagccasgsa
1623
UCUGGCUUAUACAUCUUCAGAAA
1892



sasa










AD-1735876
csasaaa(Cda)AfaAfAfCfuacuccuas
1355
VPusAfsuagGfaGfUfaguuUfuGfuuuugsusu
1624
AACAAAACAAAACUACUCCUAUU
1893



usa










AD-1735877
ascsuag(Cda)AfgAfAfCfucuuauga
1356
VPusUfsucaUfaAfGfaguuCfuGfcuagusasa
1625
UUACUAGCAGAACUCUUAUGAAA
1894



sasa










AD-1735878
cscsaag(Uda)CfaCfUfCfuauaauucs
1357
VPusGfsgaaUfuAfUfagagUfgAfcuuggsgsa
1626
UCCCAAGUCACUCUAUAAUUCCU
1895



csa










AD-1735879
uscscau(Uda)UfuUfCfUfugucauua
1358
VPusAfsuaaUfgAfCfaagaAfaAfauggasgsa
1627
UCUCCAUUUUUCUUGUCAUUAUG
1896



susa










AD-1735880
csasaca(Cda)CfuCfAfAfcucaucuus
1359
VPusAfsaagAfuGfAfguugAfgGfuguugscsu
1628
AGCAACACCUCAACUCAUCUUUU
1897



usa










AD-1735881
ascsucu(Gda)AfaAfGfAfucugauuu
1360
VPusUfsaaaUfcAfGfaucuUfuCfagagususu
1629
AAACUCUGAAAGAUCUGAUUUAU
1898



sasa










AD-1735882
csusagu(Uda)CfuUfUfUfccgcaaug
1361
VPusUfscauUfgCfGfgaaaAfgAfacuagsasa
1630
UUCUAGUUCUUUUCCGCAAUGAC
1899



sasa










AD-1735883
csusuuc(Ada)CfuCfUfGfaagaaauc
1362
VPusGfsgauUfuCfUfucagAfgUfgaaagsusu
1631
AACUUUCACUCUGAAGAAAUCCG
1900



scsa










AD-1735884
uscsuaa(Cda)UfuUfUfCfucucuuuc
1363
VPusAfsgaaAfgAfGfagaaAfaGfuuagasusa
1632
UAUCUAACUUUUCUCUCUUUCUC
1901



susa










AD-1735885
uscsuca(Ada)CfuUfUfGfugucaaag
1364
VPusUfscuuUfgAfCfacaaAfgUfugagasusa
1633
UAUCUCAACUUUGUGUCAAAGAA
1902



sasa










AD-1735886
csusuca(Ada)UfaAfUfCfauuccuuu
1365
VPusUfsaaaGfgAfAfugauUfaUfugaagsasc
1634
GUCUUCAAUAAUCAUUCCUUUAA
1903



sasa










AD-1735887
usasacu(Gda)CfuCfUfUfcguauuaa
1366
VPusCfsuuaAfuAfCfgaagAfgCfaguuasgsg
1635
CCUAACUGCUCUUCGUAUUAAGA
1904



sgsa










AD-1735888
uscsuuc(Uda)GfuCfAfUfaguuccaa
1367
VPusGfsuugGfaAfCfuaugAfcAfgaagascsu
1636
AGUCUUCUGUCAUAGUUCCAACA
1905



scsa










AD-1735889
asuscuc(Ada)GfaAfCfCfauaucugu
1368
VPusAfsacaGfaUfAfugguUfcUfgagaususu
1637
AAAUCUCAGAACCAUAUCUGUUG
1906



susa










AD-1735890
usgsaau(Cda)UfaUfCfUfucauuuua
1369
VPusGfsuaaAfaUfGfaagaUfaGfauucasgsu
1638
ACUGAAUCUAUCUUCAUUUUACU
1907



scsa










AD-1735891
ascscac(Uda)AfaAfCfUfuguuccuu
1370
VPusAfsaagGfaAfCfaaguUfuAfguggususc
1639
GAACCACUAAACUUGUUCCUUUC
1908



susa










AD-1735892
asgsugu(Uda)CfuUfUfAfcuccuuac
1371
VPusUfsguaAfgGfAfguaaAfgAfacacusgsa
1640
UCAGUGUUCUUUACUCCUUACAG
1909



sasa










AD-1735893
csusuua(Cda)UfcUfUfAfacaggauu
1372
VPusUfsaauCfcUfGfuuaaGfaGfuaaagsgsa
1641
UCCUUUACUCUUAACAGGAUUAU
1910



sasa










AD-1735894
usasuac(Cda)UfaAfGfAfacauauua
1373
VPusGfsuaaUfaUfGfuucuUfaGfguauasasg
1642
CUUAUACCUAAGAACAUAUUACA
1911



scsa










AD-1735895
csusucu(Ada)CfuGfAfGfaugaucca
1374
VPusUfsuggAfuCfAfucucAfgUfagaagsasa
1643
UUCUUCUACUGAGAUGAUCCAAG
1912



sasa










AD-1735896
csusgua(Uda)UfuUfCfUfcauagagu
1375
VPusUfsacuCfuAfUfgagaAfaAfuacagsasa
1644
UUCUGUAUUUUCUCAUAGAGUAC
1913



sasa










AD-1735897
ascsuuu(Uda)CfuCfUfUfucaguugu
1376
VPusUfsacaAfcUfGfaaagAfgAfaaagusasu
1645
AUACUUUUCUCUUUCAGUUGUAG
1914



sasa










AD-1735898
asusuaa(Uda)UfuCfUfAfgucuguga
1377
VPusUfsucaCfaGfAfcuagAfaAfuuaausgsa
1646
UCAUUAAUUUCUAGUCUGUGAAA
1915



sasa










AD-1735899
csuscug(Uda)AfuAfAfGfagguuuca
1378
VPusGfsugaAfaCfCfucuuAfuAfcagagsasa
1647
UUCUCUGUAUAAGAGGUUUCACC
1916



scsa










AD-1735900
gsascuu(Uda)CfaAfAfGfuacuaaua
1379
VPusGfsuauUfaGfUfacuuUfgAfaagucsasa
1648
UUGACUUUCAAAGUACUAAUACU
1917



scsa










AD-1735901
ususugc(Cda)AfuUfAfUfacaaaguu
1380
VPusAfsaacUfuUfGfuauaAfuGfgcaaascsa
1649
UGUUUGCCAUUAUACAAAGUUUG
1918



susa










AD-1735902
gsasaca(Cda)UfaUfCfGfacauaccus
1381
VPusGfsaggUfaUfGfucgaUfaGfuguucsasg
1650
CUGAACACUAUCGACAUACCUCA
1919



csa










AD-1735903
usasgaa(Uda)GfaCfAfUfuuacuaau
1382
VPusUfsauuAfgUfAfaaugUfcAfuucuascsg
1651
CGUAGAAUGACAUUUACUAAUAU
1920



sasa










AD-1735904
asasgcu(Ada)CfuUfAfGfaaauguuu
1383
VPusUfsaaaCfaUfUfucuaAfgUfagcuusgsu
1652
ACAAGCUACUUAGAAAUGUUUAG
1921



sasa










AD-1735905
cscsuua(Gda)UfaCfUfCfucagagau
1384
VPusAfsaucUfcUfGfagagUfaCfuaaggsgsa
1653
UCCCUUAGUACUCUCAGAGAUUA
1922



susa










AD-1735906
usgsaau(Gda)CfaCfAfCfuaacguaas
1385
VPusAfsuuaCfgUfUfagugUfgCfauucasasg
1654
CUUGAAUGCACACUAACGUAAUG
923



usa










AD-1735907
asasgcc(Uda)AfaUfGfAfugauaauu
1386
VPusUfsaauUfaUfCfaucaUfuAfggcuususg
1655
CAAAGCCUAAUGAUGAUAAUUAU
924



sasa










AD-1735908
asasacu(Uda)UfuUfAfCfuaucccau
1387
VPusUfsaugGfgAfUfaguaAfaAfaguuuscsc
1656
GGAAACUUUUUACUAUCCCAUAU
1925



sasa










AD-1735909
csusagc(Uda)GfaUfAfCfucuuaagu
1388
VPusUfsacuUfaAfGfaguaUfcAfgcuagscsu
1657
AGCUAGCUGAUACUCUUAAGUAU
1926



sasa










AD-1735910
asgscau(Gda)AfaAfAfGfauaacucu
1389
VPusUfsagaGfuUfAfucuuUfuCfaugcusgsc
1658
GCAGCAUGAAAAGAUAACUCUAA
1927



sasa










AD-1735911
usasagc(Cda)AfuUfAfUfgcuauuag
1390
VPusAfscuaAfuAfGfcauaAfuGfgcuuasgsu
1659
ACUAAGCCAUUAUGCUAUUAGUU
1928



susa










AD-1735912
uscsuag(Cda)UfuUfUfAfgcuaacau
1391
VPusUfsaugUfuAfGfcuaaAfaGfcuagasasu
1660
AUUCUAGCUUUUAGCUAACAUAU
1929



sasa










AD-1735913
gsusgug(Ada)UfuCfUfUfcaaacuuc
1392
VPusUfsgaaGfuUfUfgaagAfaUfcacacsasa
1661
UUGUGUGAUUCUUCAAACUUCAC
1930



sasa










AD-1735914
uscsucc(Ada)GfaCfCfUfaacaguuu
1393
VPusAfsaaaCfuGfUfuaggUfcUfggagasgsa
1662
UCUCUCCAGACCUAACAGUUUUA
1931



susa










AD-1735915
csusuuu(Uda)UfuCfAfUfcuagccuu
1394
VPusCfsaagGfcUfAfgaugAfaAfaaaagsasa
1663
UUCUUUUUUUCAUCUAGCCUUGC
1932



sgsa










AD-1735916
csasaaa(Uda)AfaUfUfCfuugacaucs
1395
VPusAfsgauGfuCfAfagaaUfuAfuuuugsasc
1664
GUCAAAAUAAUUCUUGACAUCUA
1933



usa










AD-1735917
gscsauc(Ada)CfuUfUfCfugaaaaua
1396
VPusUfsuauUfuUfCfagaaAfgUfgaugcsusg
1665
CAGCAUCACUUUCUGAAAAUAAG
1934



sasa










AD-1735918
uscsuuu(Uda)GfuGfAfAfacauacua
1397
VPusAfsuagUfaUfGfuuucAfcAfaaagasusg
1666
CAUCUUUUGUGAAACAUACUAUU
1935



susa










AD-1735919
csusauu(Uda)CfuUfCfCfauaggcua
1398
VPusUfsuagCfcUfAfuggaAfgAfaauagsasa
1667
UUCUAUUUCUUCCAUAGGCUAAA
1936



sasa










AD-1735920
csusuca(Ada)UfgAfAfGfuguuaaca
1399
VPusUfsuguUfaAfCfacuuCfaUfugaagsasg
1668
CUCUUCAAUGAAGUGUUAACAAC
1937



sasa










AD-1735921
ususugc(Cda)UfuCfAfUfucuacuuu
1400
VPusGfsaaaGfuAfGfaaugAfaGfgcaaasasc
1669
GUUUUGCCUUCAUUCUACUUUCU
1938



scsa










AD-1735922
asgsguu(Uda)UfuAfAfAfuguccuaa
1401
VPusUfsuuaGfgAfCfauuuAfaAfaaccusgsa
1670
UCAGGUUUUUAAAUGUCCUAAAA
1939



sasa










AD-1735923
gsasaua(Uda)CfuUfUfGfaguccuuc
1402
VPusUfsgaaGfgAfCfucaaAfgAfuauucsasc
1671
GUGAAUAUCUUUGAGUCCUUCAA
1940



sasa










AD-1735924
gsasaca(Cda)UfuCfCfAfaagauuaas
1403
VPusAfsuuaAfuCfUfuuggAfaGfuguucsasg
1672
CUGAACACUUCCAAAGAUUAAUC
1941



usa










AD-1735925
csusaaa(Uda)UfuUfGfUfcuaacaaas
1404
VPusAfsuuuGfuUfAfgacaAfaAfuuuagsgsc
1673
GCCUAAAUUUUGUCUAACAAAUG
1942



usa










AD-1735926
gsusaaa(Cda)AfaCfUfUfaaaauugcs
1405
VPusAfsgcaAfuUfUfuaagUfuGfuuuacsusc
1674
GAGUAAACAACUUAAAAUUGCUU
1943



usa










AD-1735927
asasaau(Ada)AfuUfUfAfcucacuca
1406
VPusCfsugaGfuGfAfguaaAfuUfauuuusasg
1675
CUAAAAUAAUUUACUCACUCAGA
1944



sgsa










AD-1735928
gsascau(Cda)UfaUfUfCfuguugguc
1407
VPusAfsgacCfaAfCfagaaUfaGfaugucsasg
1676
CUGACAUCUAUUCUGUUGGUCUG
1945



susa










AD-1735929
usasacu(Gda)AfgUfAfGfucuuauau
1408
VPusAfsauaUfaAfGfacuaCfuCfaguuasgsg
1677
CCUAACUGAGUAGUCUUAUAUUU
1946



susa










AD-1735930
uscsugg(Ada)AfuUfUfAfgccuucua
1409
VPusUfsuagAfaGfGfcuaaAfuUfccagascsg
1678
CGUCUGGAAUUUAGCCUUCUAAU
1947



sasa










AD-1735931
ascsaug(Cda)CfuUfGfAfacucuuga
1410
VPusUfsucaAfgAfGfuucaAfgGfcaugususu
1679
AAACAUGCCUUGAACUCUUGAAC
1948



sasa










AD-1735932
asuscaa(Gda)CfaCfUfUfcuugcacus
1411
VPusAfsaguGfcAfAfgaagUfgCfuugaususu
1680
AAAUCAAGCACUUCUUGCACUUG
1949



usa










AD-1735933
csusugc(Uda)UfuUfCfAfucuuuaua
1412
VPusGfsuauAfaAfGfaugaAfaAfgcaagsusg
1681
CACUUGCUUUUCAUCUUUAUACU
1950



scsa










AD-1735934
ususuuc(Uda)CfcCfUfAfuguaauau
1413
VPusGfsauaUfuAfCfauagGfgAfgaaaasgsc
1682
GCUUUUCUCCCUAUGUAAUAUCU
1951



scsa










AD-1735935
usgscuu(Uda)CfuUfCfUfaugucuaa
1414
VPusUfsuuaGfaCfAfuagaAfgAfaagcasusa
1683
UAUGCUUUCUUCUAUGUCUAAAA
1952



sasa










AD-1735936
ascscug(Cda)UfuAfGfCfaaaucguc
1415
VPusAfsgacGfaUfUfugcuAfaGfcaggususc
1684
GAACCUGCUUAGCAAAUCGUCUG
1953



susa










AD-1735937
asusauu(Cda)CfuCfUfAfcccuuuca
1416
VPusGfsugaAfaGfGfguagAfgGfaauauscsu
1685
AGAUAUUCCUCUACCCUUUCACA
1954



scsa










AD-1735938
uscscca(Cda)UfuUfUfCfuuuggguu
1417
VPusAfsaacCfcAfAfagaaAfaGfugggasusu
1686
AAUCCCACUUUUCUUUGGGUUUC
1955



susa










AD-1735939
asgsgcu(Uda)CfuUfGfUfauauacuu
1418
VPusUfsaagUfaUfAfuacaAfgAfagccusgsc
1687
GCAGGCUUCUUGUAUAUACUUAU
1956



sasa










AD-1735940
asasacu(Uda)GfaUfCfUfguguuuca
1419
VPusCfsugaAfaCfAfcagaUfcAfaguuusgsa
1688
UCAAACUUGAUCUGUGUUUCAGG
1957



sgsa










AD-1735941
ususugc(Uda)UfuAfAfUfgcuaaauu
1420
VPusGfsaauUfuAfGfcauuAfaAfgcaaasasg
1689
CUUUUGCUUUAAUGCUAAAUUCC
1958



scsa










AD-1735942
asgsacu(Ada)GfcUfGfUfuauuugua
1421
VPusAfsuacAfaAfUfaacaGfcUfagucususu
1690
AAAGACUAGCUGUUAUUUGUAUU
1959



susa










AD-1735943
ususccu(Ada)CfuUfUfCfccuugaau
1422
VPusUfsauuCfaAfGfggaaAfgUfaggaasgsc
1691
GCUUCCUACUUUCCCUUGAAUAG
1960



sasa










AD-1735944
csasgaa(Cda)UfgAfAfUfgcucaagu
1423
VPusGfsacuUfgAfGfcauuCfaGfuucugsgsa
1692
UCCAGAACUGAAUGCUCAAGUCU
1961



scsa










AD-1735945
uscsuug(Uda)UfaCfUfAfauuucuca
1424
VPusAfsugaGfaAfAfuuagUfaAfcaagasasc
1693
GUUCUUGUUACUAAUUUCUCAUA
1962



susa










AD-1735946
csuscag(Uda)GfaUfAfGfccuuuaua
1425
VPusGfsuauAfaAfGfgcuaUfcAfcugagsusu
1694
AACUCAGUGAUAGCCUUUAUACC
1963



scsa










AD-1735947
ususuua(Uda)GfcUfCfCfuaaaacau
1426
VPusGfsaugUfuUfUfaggaGfcAfuaaaasgsa
1695
UCUUUUAUGCUCCUAAAACAUCU
1964



scsa










AD-1735948
ususcuc(Cda)UfuAfGfGfuuauguuc
1427
VPusUfsgaaCfaUfAfaccuAfaGfgagaasusu
1696
AAUUCUCCUUAGGUUAUGUUCAG
1965



sasa










AD-1735949
asusugc(Uda)CfaUfCfGfagacauaas
1428
VPusUfsuuaUfgUfCfucgaUfgAfgcaausasg
1697
CUAUUGCUCAUCGAGACAUAAAA
1966



asa










AD-1735950
cscsuuu(Gda)UfaCfAfUfacacacuu
1429
VPusUfsaagUfgUfGfuaugUfaCfaaaggsasa
1698
UUCCUUUGUACAUACACACUUAG
1967



sasa










AD-1735951
ususgaa(Cda)CfaAfGfAfgcacauga
1430
VPusUfsucaUfgUfGfcucuUfgGfuucaasgsu
1699
ACUUGAACCAAGAGCACAUGAAU
1968



sasa










AD-1735952
uscsagg(Gda)AfuUfUfUfaaagucua
1431
VPusUfsuagAfcUfUfuaaaAfuCfccugasgsg
1700
CCUCAGGGAUUUUAAAGUCUAAU
1969



sasa










AD-1735953
usascuu(Gda)CfuUfAfUfaaagugau
1432
VPusUfsaucAfcUfUfuauaAfgCfaaguascsc
1701
GGUACUUGCUUAUAAAGUGAUAG
1970



sasa










AD-1735954
asusgca(Uda)CfuAfAfAfccuaccuu
1433
VPusCfsaagGfuAfGfguuuAfgAfugcausgsc
1702
GCAUGCAUCUAAACCUACCUUGA
1971



sgsa










AD-1735955
ususggg(Ada)AfaAfCfAfcuauuaug
1434
VPusUfscauAfaUfAfguguUfuUfcccaasgsu
1703
ACUUGGGAAAACACUAUUAUGAA
1972



sasa










AD-1735956
asasacu(Cda)CfaAfAfGfagaaaugas
1435
VPusUfsucaUfuUfCfucuuUfgGfaguuusgsa
1704
UCAAACUCCAAAGAGAAAUGAAU
1973



asa










AD-1735957
asusggg(Cda)AfuUfUfUfucaaaaca
1436
VPusAfsuguUfuUfGfaaaaAfuGfcccausasu
1705
AUAUGGGCAUUUUUCAAAACAUU
1974



susa










AD-1735958
asusaau(Gda)GfaAfCfUfuggacuca
1437
VPusUfsugaGfuCfCfaaguUfcCfauuauscsu
1706
AGAUAAUGGAACUUGGACUCAAC
1975



sasa










AD-1735959
usgsugu(Ada)GfaUfGfAfcgaaacca
1438
VPusUfsuggUfuUfCfgucaUfcUfacacasasa
1707
UUUGUGUAGAUGACGAAACCAAG
1976



sasa










AD-1735960
ususcua(Cda)CfuCfAfAfagauaaga
1439
VPusGfsucuUfaUfCfuuugAfgGfuagaascsa
1708
UGUUCUACCUCAAAGAUAAGACA
1977



scsa










AD-1735961
asgsaag(Gda)CfaUfAfUfugaguuau
1440
VPusAfsauaAfcUfCfaauaUfgCfcuucusasa
1709
UUAGAAGGCAUAUUGAGUUAUUU
1978



susa










AD-1735962
asusgga(Gda)UfuUfUfUfcugcuauu
1441
VPusAfsaauAfgCfAfgaaaAfaCfuccausgsu
1710
ACAUGGAGUUUUUCUGCUAUUUU
1979



susa










AD-1735963
uscsagu(Uda)UfcUfCfAfuuaguuug
1442
VPusAfscaaAfcUfAfaugaGfaAfacugasgsg
1711
CCUCAGUUUCUCAUUAGUUUGUC
1980



susa










AD-1735964
csusgca(Uda)AfuAfUfAfagaacgaa
1443
VPusUfsuucGfuUfCfuuauAfuAfugcagsasa
1712
UUCUGCAUAUAUAAGAACGAAAU
1981



sasa










AD-1735965
usgsagc(Cda)AfaAfAfUfauuaaauu
1444
VPusGfsaauUfuAfAfuauuUfuGfgcucasgsa
1713
UCUGAGCCAAAAUAUUAAAUUCU
1982



scsa










AD-1735966
asgsaau(Gda)AfuAfUfUfuccuguuu
1445
VPusAfsaaaCfaGfGfaaauAfuCfauucususg
1714
CAAGAAUGAUAUUUCCUGUUUUA
1983



susa










AD-1735967
gsusgcu(Cda)UfaUfAfUfaaaucuuc
1446
VPusGfsgaaGfaUfUfuauaUfaGfagcacsasa
1715
UUGUGCUCUAUAUAAAUCUUCCC
1984



scsa










AD-1735968
ususuac(Ada)GfaGfAfAfgcaucuua
1447
VPusAfsuaaGfaUfGfcuucUfcUfguaaasasu
1716
AUUUUACAGAGAAGCAUCUUAUU
1985



susa










AD-1735969
gsuscuu(Gda)AfgUfUfCfugcaugac
1448
VPusUfsgucAfuGfCfagaaCfuCfaagacsasu
1717
AUGUCUUGAGUUCUGCAUGACAG
1986



sasa










AD-1735970
csusuca(Ada)AfuCfUfAfuaauuuua
1449
VPusGfsuaaAfaUfUfauagAfuUfugaagsgsg
1718
CCCUUCAAAUCUAUAAUUUUACU
1987



scsa










AD-1735971
gsasagc(Ada)UfaUfAfGfaacucuau
1450
VPusAfsauaGfaGfUfucuaUfaUfgcuucsasc
1719
GUGAAGCAUAUAGAACUCUAUUU
1988



susa










AD-1735972
gsasgcu(Gda)CfuUfCfUfaaauaacas
1451
VPusUfsuguUfaUfUfuagaAfgCfagcucsusc
1720
GAGAGCUGCUUCUAAAUAACAAA
1989



asa










AD-1735973
usgsacu(Gda)UfaUfUfUfccugauca
1452
VPusAfsugaUfcAfGfgaaaUfaCfagucascsa
1721
UGUGACUGUAUUUCCUGAUCAUU
1990



susa










AD-1735974
gsusucu(Gda)AfaGfGfAfuauacuuc
1453
VPusAfsgaaGfuAfUfauccUfuCfagaacsgsc
1722
GCGUUCUGAAGGAUAUACUUCUG
1991



susa










AD-1735975
gsusgaa(Gda)CfaUfGfAfuucaauac
1454
VPusAfsguaUfuGfAfaucaUfgCfuucacsasg
1723
CUGUGAAGCAUGAUUCAAUACUG
1992



susa










AD-1735976
asasugc(Uda)GfcUfUfCfacagauuu
1455
VPusAfsaaaUfcUfGfugaaGfcAfgcauuscsg
1724
CGAAUGCUGCUUCACAGAUUUUU
1993



susa










AD-1735977
usgsugg(Gda)UfuAfUfGfuuaaucu
1456
VPusUfscagAfuUfAfacauAfaCfccacasgsu
1725
ACUGUGGGUUAUGUUAAUCUGAA
1994



gsasa










AD-1735978
gsasgua(Cda)AfgAfAfGfaaugcuca
1457
VPusAfsugaGfcAfUfucuuCfuGfuacucsasc
1726
GUGAGUACAGAAGAAUGCUCAUG
1995



susa










AD-1735979
csusgua(Uda)UfuCfAfUfccuagauu
1458
VPusAfsaauCfuAfGfgaugAfaAfuacagscsu
1727
AGCUGUAUUUCAUCCUAGAUUUU
1996



susa










AD-1735980
asasucu(Gda)GfuAfAfAfugcuggaa
1459
VPusUfsuucCfaGfCfauuuAfcCfagauusgsc
1728
GCAAUCUGGUAAAUGCUGGAAAA
1997



sasa










AD-1735981
usgscuc(Ada)GfaUfUfAfccugaucg
1460
VPusAfscgaUfcAfGfguaaUfcUfgagcasasu
1729
AUUGCUCAGAUUACCUGAUCGUG
1998



susa










AD-1735982
gsascag(Cda)UfaUfGfGfaguuugcg
1461
VPusAfscgcAfaAfCfuccaUfaGfcugucsasg
1730
CUGACAGCUAUGGAGUUUGCGUG
1999



susa










AD-1735983
usasgaa(Cda)AfuGfCfUfcacuuacas
1462
VPusUfsuguAfaGfUfgagcAfuGfuucuasusa
1731
UAUAGAACAUGCUCACUUACAAA
2000



asa










AD-1735984
asusuau(Gda)CfuUfCfAfuuucacua
1463
VPusAfsuagUfgAfAfaugaAfgCfauaauscsa
1732
UGAUUAUGCUUCAUUUCACUAUG
2001



susa










AD-1735985
csasaca(Gda)CfaAfGfUfcauaaaags
1464
VPusAfscuuUfuAfUfgacuUfgCfuguugsgsu
1733
ACCAACAGCAAGUCAUAAAAGUA
2002



usa










AD-1735986
ususguc(Uda)GfaAfAfAfugucuuua
1465
VPusUfsuaaAfgAfCfauuuUfcAfgacaasusg
1734
CAUUGUCUGAAAAUGUCUUUAAG
2003



sasa










AD-1735987
usgsuug(Gda)UfuCfAfAfaggacaau
1466
VPusAfsauuGfuCfCfuuugAfaCfcaacasgsa
1735
UCUGUUGGUUCAAAGGACAAUUG
2004



susa










AD-1735988
uscsuaa(Ada)CfuUfUfAfauauaucg
1467
VPusUfscgaUfaUfAfuuaaAfgUfuuagasgsc
1736
GCUCUAAACUUUAAUAUAUCGAA
2005



sasa










AD-1735989
asasgug(Ada)AfaCfAfUfgacugucg
1468
VPusAfscgaCfaGfUfcaugUfuUfcacuusasa
1737
UUAAGUGAAACAUGACUGUCGUG
2006



susa










AD-1735990
asuscgu(Cda)CfaUfAfCfaguuuuca
1469
VPusAfsugaAfaAfCfuguaUfgGfacgausasu
1738
AUAUCGUCCAUACAGUUUUCAUU
2007



susa










AD-1735991
csusuca(Gda)GfaAfAfUfaguaggaa
1470
VPusUfsuucCfuAfCfuauuUfcCfugaagscsa
1739
UGCUUCAGGAAAUAGUAGGAAAA
2008



sasa










AD-1735992
csasccc(Uda)UfuCfUfGfuaaggacu
1471
VPusCfsaguCfcUfUfacagAfaAfgggugsgsg
1740
CCCACCCUUUCUGUAAGGACUGU
2009



sgsa










AD-1735993
asasaga(Gda)AfuAfCfCfugacauccs
1472
VPusAfsggaUfgUfCfagguAfuCfucuuususg
1741
CAAAAGAGAUACCUGACAUCCUG
2010



usa










AD-1735994
asusgag(Cda)AfuUfAfAfuguuuucu
1473
VPusCfsagaAfaAfCfauuaAfuGfcucaususa
1742
UAAUGAGCAUUAAUGUUUUCUGA
2011



sgsa










AD-1735995
usgsaca(Uda)UfuUfUfUfcucauaga
1474
VPusUfsucuAfuGfAfgaaaAfaAfugucasasc
1743
GUUGACAUUUUUUCUCAUAGAAA
2012



sasa










AD-1735996
csasgag(Ada)UfuAfAfAfugacuacu
1475
VPusUfsaguAfgUfCfauuuAfaUfcucugsasu
1744
AUCAGAGAUUAAAUGACUACUAG
2013



sasa










AD-1735997
gscsugu(Cda)AfaAfUfGfuuauauug
1476
VPusAfscaaUfaUfAfacauUfuGfacagcsasu
1745
AUGCUGUCAAAUGUUAUAUUGUU
2014



susa










AD-1735998
asasuau(Ada)AfuAfCfUfacagcaaas
1477
VPusUfsuuuGfcUfGfuaguAfuUfauauuscsc
1746
GGAAUAUAAUACUACAGCAAAAU
2015



asa










AD-1735999
gsgsugu(Cda)UfaAfAfUfauaauuuc
1478
VPusUfsgaaAfuUfAfuauuUfaGfacaccscsu
1747
AGGGUGUCUAAAUAUAAUUUCAU
2016



sasa










AD-1736000
csuscuu(Uda)AfuAfCfAfaaaugaga
1479
VPusCfsucuCfaUfUfuuguAfuAfaagagsasa
1748
UUCUCUUUAUACAAAAUGAGAGU
2017



sgsa










AD-1736001
gscsagu(Ada)CfcAfAfAfugaauaaa
1480
VPusUfsuuuAfuUfCfauuuGfgUfacugcsusa
1749
UAGCAGUACCAAAUGAAUAAAAG
2018



sasa










AD-1736002
ususguu(Gda)GfuAfCfAfcaagguaa
1481
VPusUfsuuaCfcUfUfguguAfcCfaacaasusc
1750
GAUUGUUGGUACACAAGGUAAAC
2019



sasa










AD-1736003
csuscuu(Ada)UfuUfAfAfcuuaaccg
1482
VPusAfscggUfuAfAfguuaAfaUfaagagsusu
1751
AACUCUUAUUUAACUUAACCGUC
2020



susa










AD-1736004
usgscuu(Gda)AfuGfAfUfacaaugaa
1483
VPusAfsuucAfuUfGfuaucAfuCfaagcasusu
1752
AAUGCUUGAUGAUACAAUGAAUG
2021



susa










AD-1736005
asascug(Gda)GfaAfAfGfacaauuug
1484
VPusUfscaaAfuUfGfucuuUfcCfcaguusasc
1753
GUAACUGGGAAAGACAAUUUGAA
2022



sasa










AD-1736006
csusccu(Uda)AfuAfUfGfacuauuug
1485
VPusUfscaaAfuAfGfucauAfuAfaggagscsc
1754
GGCUCCUUAUAUGACUAUUUGAA
2023



sasa










AD-1736007
asgsuca(Uda)GfcUfAfAfccaaugga
1486
VPusUfsuccAfuUfGfguuaGfcAfugacusgsa
1755
UCAGUCAUGCUAACCAAUGGAAA
2024



sasa










AD-1736008
cscsuga(Ada)GfuCfAfCfacagcuaas
1487
VPusAfsuuaGfcUfGfugugAfcUfucaggsasc
1756
GUCCUGAAGUCACACAGCUAAUG
2025



usa










AD-1736009
ususgcu(Gda)CfuGfAfCfaacaaaga
1488
VPusAfsucuUfuGfUfugucAfgCfagcaasusg
1757
CAUUGCUGCUGACAACAAAGAUA
2026



susa










AD-1736010
usascug(Ada)CfuUfUfGfccuguaaa
1489
VPusCfsuuuAfcAfGfgcaaAfgUfcaguasasu
1758
AUUACUGACUUUGCCUGUAAAGA
2027



sgsa










AD-1736011
asasucc(Cda)UfaUfUfUfuaaaauucs
1490
VPusGfsgaaUfuUfUfaaaaUfaGfggauusgsu
1759
ACAAUCCCUAUUUUAAAAUUCCC
2028



csa










AD-1736012
gsusgcc(Uda)UfaGfGfAfgauuaccc
1491
VPusAfsgggUfaAfUfcuccUfaAfggcacsusc
1760
GAGUGCCUUAGGAGAUUACCCUU
2029



susa










AD-1736013
gsascaa(Uda)CfuAfAfAfuauaucau
1492
VPusGfsaugAfuAfUfauuuAfgAfuugucsusg
1761
CAGACAAUCUAAAUAUAUCAUCA
2030



scsa










AD-1736014
usgsuga(Uda)AfaUfGfAfacaccgua
1493
VPusUfsuacGfgUfGfuucaUfuAfucacasasg
1762
CUUGUGAUAAUGAACACCGUAAG
2031



sasa










AD-1736015
uscsacc(Gda)UfuGfUfAfaagacuuu
1494
VPusAfsaaaGfuCfUfuuacAfaCfggugasusu
1763
AAUCACCGUUGUAAAGACUUUUU
2032



susa










AD-1736016
ususaga(Gda)AfaGfCfUfuccugaca
1495
VPusAfsuguCfaGfGfaagcUfuCfucuaasusc
1764
GAUUAGAGAAGCUUCCUGACAUC
2033



susa










AD-1736017
asascag(Uda)AfaAfGfAfaaugcuac
1496
VPusAfsguaGfcAfUfuucuUfuAfcuguusasu
1765
AUAACAGUAAAGAAAUGCUACUU
2034



susa










AD-1736018
usasugu(Uda)CfuGfAfCfuugagagu
1497
VPusAfsacuCfuCfAfagucAfgAfacauasasa
1766
UUUAUGUUCUGACUUGAGAGUUA
2035



susa










AD-1736019
ususaga(Gda)CfaUfGfCfuaucuuua
1498
VPusCfsuaaAfgAfUfagcaUfgCfucuaasusu
1767
AAUUAGAGCAUGCUAUCUUUAGG
2036



sgsa










AD-1736020
usasguc(Uda)UfuGfAfUfugaaauaa
1499
VPusCfsuuaUfuUfCfaaucAfaAfgacuasusg
1768
CAUAGUCUUUGAUUGAAAUAAGU
2037



sgsa










AD-1736021
ususggu(Ada)AfaCfGfAfgauuuaac
1500
VPusUfsguuAfaAfUfcucgUfuUfaccaasasg
1769
CUUUGGUAAACGAGAUUUAACAU
2038



sasa










AD-1736022
gsuscug(Ada)AfaAfUfUfgcuuucau
1501
VPusAfsaugAfaAfGfcaauUfuUfcagacscsu
1770
AGGUCUGAAAAUUGCUUUCAUUU
2039



susa










AD-1736023
asusgaa(Cda)UfuGfUfUfgccuugua
1502
VPusUfsuacAfaGfGfcaacAfaGfuucausgsc
1771
GCAUGAACUUGUUGCCUUGUAAA
2040



sasa










AD-1736024
gsgsgca(Ada)UfaAfAfCfuguaucaa
1503
VPusUfsuugAfuAfCfaguuUfaUfugcccsasa
1772
UUGGGCAAUAAACUGUAUCAAAA
2041



sasa










AD-1736025
ascsaug(Uda)UfaGfCfAfuauaaugu
1504
VPusUfsacaUfuAfUfaugcUfaAfcaugusasc
1773
GUACAUGUUAGCAUAUAAUGUAU
2042



sasa










AD-1736026
usgsuga(Gda)AfgUfAfUfagaauuuc
1505
VPusAfsgaaAfuUfCfuauaCfuCfucacasgsu
1774
ACUGUGAGAGUAUAGAAUUUCUU
2043



susa










AD-1736027
asusccu(Uda)CfaUfUfUfggcacuau
1506
VPusUfsauaGfuGfCfcaaaUfgAfaggaususa
1775
UAAUCCUUCAUUUGGCACUAUAG
2044



sasa










AD-1736028
ascsauu(Uda)AfgAfAfAfguagcuuu
1507
VPusUfsaaaGfcUfAfcuuuCfuAfaaugusgsu
1776
ACACAUUUAGAAAGUAGCUUUAU
2045



sasa










AD-1736029
asascug(Uda)UfcUfAfUfaaagcaaas
1508
VPusCfsuuuGfcUfUfuauaGfaAfcaguusasa
1777
UUAACUGUUCUAUAAAGCAAAGC
2046



gsa










AD-1736030
cscsucc(Ada)GfaGfAfUfgaaagauc
1509
VPusAfsgauCfuUfUfcaucUfcUfggaggsasg
1778
CUCCUCCAGAGAUGAAAGAUCUU
2047



susa










AD-1736031
ususguu(Uda)AfaCfUfAfugacuccu
1510
VPusUfsaggAfgUfCfauagUfuAfaacaascsa
1779
UGUUGUUUAACUAUGACUCCUAA
2048



sasa










AD-1736032
csusguu(Uda)GfaCfAfAfugcuuugu
1511
VPusAfsacaAfaGfCfauugUfcAfaacagsasa
1780
UUCUGUUUGACAAUGCUUUGUUC
2049



susa










AD-1736033
usgsucc(Uda)AfaAfAfGfaaauuuuu
1512
VPusGfsaaaAfaUfUfucuuUfuAfggacasasc
1781
GUUGUCCUAAAAGAAAUUUUUCU
2050



scsa










AD-1736034
ascsaga(Uda)UfgAfAfCfaaagaacus
1513
VPusAfsaguUfcUfUfuguuCfaAfucugusasg
1782
CUACAGAUUGAACAAAGAACUUA
2051



usa










AD-1736035
gsusuua(Ada)CfcUfGfUfccaaacuu
1514
VPusGfsaagUfuUfGfgacaGfgUfuaaacsgsa
1783
UCGUUUAACCUGUCCAAACUUCU
2052



scsa










AD-1736036
csasaaa(Uda)GfuUfUfAfacuuuacc
1515
VPusUfsgguAfaAfGfuuaaAfcAfuuuugsgsu
1784
ACCAAAAUGUUUAACUUUACCAA
2053



sasa










AD-1736037
uscscca(Uda)UfgUfGfUfaauauuua
1516
VPusAfsuaaAfuAfUfuacaCfaAfugggascsu
1785
AGUCCCAUUGUGUAAUAUUUAUU
2054



susa










AD-1736038
gsusugg(Gda)UfaAfAfUfaugcuuau
1517
VPusAfsauaAfgCfAfuauuUfaCfccaacsasu
1786
AUGUUGGGUAAAUAUGCUUAUUG
2055



susa










AD-1736039
csasggg(Uda)UfgUfCfUfuugagucu
1518
VPusCfsagaCfuCfAfaagaCfaAfcccugsasg
1787
CUCAGGGUUGUCUUUGAGUCUGC
2056



sgsa










AD-1736040
gscsuaa(Ada)AfuCfCfAfacugcaau
1519
VPusAfsauuGfcAfGfuuggAfuUfuuagcscsc
1788
GGGCUAAAAUCCAACUGCAAUUG
2057



susa










AD-1736041
csasgga(Cda)UfgAfAfGfuguguaug
1520
VPusAfscauAfcAfCfacuuCfaGfuccugsgsc
1789
GCCAGGACUGAAGUGUGUAUGUC
2058



susa










AD-1736042
gsasgua(Cda)CfaAfUfUfgccuuauu
1521
VPusUfsaauAfaGfGfcaauUfgGfuacucscsu
1790
AGGAGUACCAAUUGCCUUAUUAU
2059



sasa










AD-1736043
asasgug(Cda)CfuAfUfGfugaaguga
1522
VPusAfsucaCfuUfCfacauAfgGfcacuususu
1791
AAAAGUGCCUAUGUGAAGUGAUU
2060



susa










AD-1736044
usasaca(Ada)UfaAfUfAfgaacugcc
1523
VPusUfsggcAfgUfUfcuauUfaUfuguuasgsg
1792
CCUAACAAUAAUAGAACUGCCAG
2061



sasa










AD-1736045
gscsugu(Uda)CfcAfUfAfccauugcu
1524
VPusAfsagcAfaUfGfguauGfgAfacagcsasg
1793
CUGCUGUUCCAUACCAUUGCUUU
2062



susa










AD-1736046
usasgac(Uda)GfgAfGfAfagauuauu
1525
VPusGfsaauAfaUfCfuucuCfcAfgucuasgsa
1794
UCUAGACUGGAGAAGAUUAUUCA
2063



scsa










AD-1736047
ususcca(Ada)CfaGfCfAfucaccaaas
1526
VPusAfsuuuGfgUfGfaugcUfgUfuggaasgsg
1795
CCUUCCAACAGCAUCACCAAAUG
2064



usa










AD-1736048
usasauu(Gda)GfuAfCfAfgauucugu
1527
VPusAfsacaGfaAfUfcuguAfcCfaauuascsa
1796
UGUAAUUGGUACAGAUUCUGUUG
2065



susa










AD-1736049
gsasgaa(Ada)CfaUfUfAfuuuguugu
1528
VPusGfsacaAfcAfAfauaaUfgUfuucucsusu
1797
AAGAGAAACAUUAUUUGUUGUCA
2066



scsa










AD-1736050
csgscuc(Uda)CfaAfUfUfgcuagugg
1529
VPusAfsccaCfuAfGfcaauUfgAfgagcgscsc
1798
GGCGCUCUCAAUUGCUAGUGGUC
2067



susa










AD-1736051
csgsgua(Uda)CfaGfAfAfacagcaaas
1530
VPusAfsuuuGfcUfGfuuucUfgAfuaccgsusc
1799
GACGGUAUCAGAAACAGCAAAUA
2068



usa










AD-1736052
cscscag(Ada)CfaUfAfAfuuuuauau
1531
VPusAfsauaUfaAfAfauuaUfgUfcugggsasg
1800
CUCCCAGACAUAAUUUUAUAUUU
2069



susa










AD-1736053
usasgua(Cda)AfuUfUfUfgagguauu
1532
VPusAfsaauAfcCfUfcaaaAfuGfuacuasasc
1801
GUUAGUACAUUUUGAGGUAUUUU
2070



susa










AD-1736054
asasaug(Cda)UfaUfUfGfauaacagu
1533
VPusUfsacuGfuUfAfucaaUfaGfcauuusasc
1802
GUAAAUGCUAUUGAUAACAGUAA
2071



sasa










AD-1736055
usasgcu(Gda)AfaUfUfUfgggacuau
1534
VPusCfsauaGfuCfCfcaaaUfuCfagcuasusc
1803
GAUAGCUGAAUUUGGGACUAUGU
2072



sgsa










AD-1736056
asusugu(Gda)GfuUfUfUfcaaagaua
1535
VPusAfsuauCfuUfUfgaaaAfcCfacaausgsg
1804
CCAUUGUGGUUUUCAAAGAUAUU
2073



susa










AD-1736057
cscsugg(Uda)UfgCfAfGfuaucugaa
1536
VPusUfsuucAfgAfUfacugCfaAfccaggsusu
1805
AACCUGGUUGCAGUAUCUGAAAA
2074



sasa










AD-1736058
usasgaa(Uda)GfgUfUfGfuugagcua
1537
VPusUfsuagCfuCfAfacaaCfcAfuucuascsa
1806
UGUAGAAUGGUUGUUGAGCUAAG
2075



sasa










AD-1736059
csusggc(Cda)AfuCfAfUfuauuacug
1538
VPusAfscagUfaAfUfaaugAfuGfgccagscsu
1807
AGCUGGCCAUCAUUAUUACUGUG
2076



susa










AD-1736060
ususgac(Ada)GfaUfAfAfaauacgaa
1539
VPusCfsuucGfuAfUfuuuaUfcUfgucaasusu
1808
AAUUGACAGAUAAAAUACGAAGU
2077



sgsa










AD-1736061
uscsaca(Ada)AfcAfCfAfucauuacas
1540
VPusUfsuguAfaUfGfauguGfuUfugugasasu
1809
AUUCACAAACACAUCAUUACAAG
2078



asa










AD-1736062
cscsaug(Ada)UfuGfUfAfugaaaaua
1541
VPusCfsuauUfuUfCfauacAfaUfcauggsasa
1810
UUCCAUGAUUGUAUGAAAAUAGU
2079



sgsa










AD-1736063
csascag(Ada)GfuAfAfUfgaauauuu
1542
VPusUfsaaaUfaUfUfcauuAfcUfcugugsusc
1811
GACACAGAGUAAUGAAUAUUUAA
2080



sasa










AD-1736064
asgscug(Cda)UfuAfGfUfggaagaug
1543
VPusAfscauCfuUfCfcacuAfaGfcagcuscsc
1812
GGAGCUGCUUAGUGGAAGAUGUA
2081



susa










AD-1736065
usasgcu(Cda)UfgUfGfUfgcugauac
1544
VPusGfsguaUfcAfGfcacaCfaGfagcuasgsa
1813
UCUAGCUCUGUGUGCUGAUACCU
2082



scsa










AD-1736066
csasuuc(Gda)AfgAfGfAfauaugagc
1545
VPusAfsgcuCfaUfAfuucuCfuCfgaaugsusa
1814
UACAUUCGAGAGAAUAUGAGCUG
2083



susa










AD-1736067
asusgca(Uda)UfuUfCfUfgaaaaugu
1546
VPusUfsacaUfuUfUfcagaAfaAfugcausasc
1815
GUAUGCAUUUUCUGAAAAUGUAU
2084



sasa










AD-1736068
gsusuuc(Gda)AfcCfAfAfguauccca
1547
VPusUfsuggGfaUfAfcuugGfuCfgaaacsusu
1816
AAGUUUCGACCAAGUAUCCCAAA
2085



sasa










AD-1736069
uscsuug(Cda)UfuGfCfCfacaauauc
1548
VPusCfsgauAfuUfGfuggcAfaGfcaagasusa
1817
UAUCUUGCUUGCCACAAUAUCGG
2086



sgsa










AD-1736070
gsgsgua(Cda)AfaGfAfGfggaauaca
1549
VPusUfsuguAfuUfCfccucUfuGfuacccsgsa
1818
UCGGGUACAAGAGGGAAUACAAA
2087



sasa










AD-1736071
gsgsuga(Uda)CfaAfAfUfccuguguc
1550
VPusAfsgacAfcAfGfgauuUfgAfucaccsusg
1819
CAGGUGAUCAAAUCCUGUGUCUC
2088



susa










AD-1736072
csasgug(Gda)GfuUfUfCfuaggauag
1551
VPusCfscuaUfcCfUfagaaAfcCfcacugsusc
1820
GACAGUGGGUUUCUAGGAUAGGU
2089



sgsa










AD-1736073
asascua(Ada)GfuAfUfUfuuuaagga
1552
VPusGfsuccUfuAfAfaaauAfcUfuaguusasc
1821
GUAACUAAGUAUUUUUAAGGACA
2090



scsa










AD-1736074
csasuaa(Uda)GfuGfAfUfuguuaaau
1553
VPusAfsauuUfaAfCfaaucAfcAfuuaugsgsg
1822
CCCAUAAUGUGAUUGUUAAAUUU
2091



susa










AD-1736075
gsasgaa(Gda)AfaUfUfAfagaaaacu
1554
VPusGfsaguUfuUfCfuuaaUfuCfuucucsasa
1823
UUGAGAAGAAUUAAGAAAACUCU
2092



scsa










AD-1736076
gsasaga(Gda)AfaAfUfUfgauuguuu
1555
VPusUfsaaaCfaAfUfcaauUfuCfucuucsusc
1824
GAGAAGAGAAAUUGAUUGUUUAU
2093



sasa










AD-1736077
asgsugu(Gda)AfaAfCfUfugugccau
1556
VPusUfsaugGfcAfCfaaguUfuCfacacususu
1825
AAAGUGUGAAACUUGUGCCAUAG
2094



sasa










AD-1736078
csusgag(Ada)CfaCfUfGfagaaaugu
1557
VPusGfsacaUfuUfCfucagUfgUfcucagsgsa
1826
UCCUGAGACACUGAGAAAUGUCC
2095



scsa










AD-1736079
usgsgcu(Uda)AfuAfUfGfuguuuaaa
1558
VPusCfsuuuAfaAfCfacauAfuAfagccasasu
1827
AUUGGCUUAUAUGUGUUUAAAGA
2096



sgsa










AD-1736080
usgscau(Uda)UfuGfAfCfauugcaaa
1559
VPusUfsuuuGfcAfAfugucAfaAfaugcasasu
1828
AUUGCAUUUUGACAUUGCAAAAC
2097



sasa










AD-1736081
ususagg(Uda)UfaGfAfAfguuccaga
1560
VPusUfsucuGfgAfAfcuucUfaAfccuaasusg
1829
CAUUAGGUUAGAAGUUCCAGAAU
2098



sasa










AD-1736082
usgscga(Cda)AfuGfAfAfaacauccu
1561
VPusAfsaggAfuGfUfuuucAfuGfucgcasgsc
1830
GCUGCGACAUGAAAACAUCCUUG
2099



susa










AD-1736083
gsasgag(Gda)AfuUfUfUfuuaccauc
1562
VPusAfsgauGfgUfAfaaaaAfuCfcucucsusu
1831
AAGAGAGGAUUUUUUACCAUCUC
2100



susa










AD-1736084
gsasagg(Uda)GfaAfGfAfgaauuuca
1563
VPusUfsugaAfaUfUfcucuUfcAfccuucscsa
1832
UGGAAGGUGAAGAGAAUUUCAAA
2101



sasa










AD-1736085
usgsgua(Uda)CfuGfAfAfuaucauga
1564
VPusUfsucaUfgAfUfauucAfgAfuaccasgsc
1833
GCUGGUAUCUGAAUAUCAUGAAC
2102



sasa










AD-1736086
usgsuug(Gda)UfuUfAfAfuuuuuca
1565
VPusGfsuugAfaAfAfauuaAfaCfcaacasusg
1834
CAUGUUGGUUUAAUUUUUCAACC
2103



ascsa










AD-1736087
usasguu(Gda)UfaAfUfUfuaaaugug
1566
VPusCfscacAfuUfUfaaauUfaCfaacuascsu
1835
AGUAGUUGUAAUUUAAAUGUGGA
2104



sgsa










AD-1736088
gsusgaa(Uda)GfuUfUfUfugccauuu
1567
VPusAfsaaaUfgGfCfaaaaAfcAfuucacsasu
1836
AUGUGAAUGUUUUUGCCAUUUUU
2105



susa










AD-1736089
csasgag(Ada)UfgAfUfUfuuucuuuu
1568
VPusUfsaaaAfgAfAfaaauCfaUfcucugscsc
1837
GGCAGAGAUGAUUUUUCUUUUAA
2106



sasa










AD-1736090
asgsaaa(Ada)UfuAfGfAfuucagauc
1569
VPusAfsgauCfuGfAfaucuAfaUfuuucusgsu
1838
ACAGAAAAUUAGAUUCAGAUCUC
2107



susa










AD-1736091
ascsugg(Ada)AfaAfUfUfaagaaagu
1570
VPusUfsacuUfuCfUfuaauUfuUfccagusgsg
1839
CCACUGGAAAAUUAAGAAAGUAG
2108



sasa










AD-1736092
usasaag(Uda)GfgGfAfAfagauaaua
1571
VPusUfsuauUfaUfCfuuucCfcAfcuuuascsa
1840
UGUAAAGUGGGAAAGAUAAUAAA
2109



sasa










AD-1736093
csusagg(Cda)UfaAfGfAfaagaguug
1572
VPusAfscaaCfuCfUfuucuUfaGfccuagsusu
1841
AACUAGGCUAAGAAAGAGUUGUA
2110



susa










AD-1736094
gscsuga(Uda)AfaAfAfUfuaauggau
1573
VPusUfsaucCfaUfUfaauuUfuAfucagcsasc
1842
GUGCUGAUAAAAUUAAUGGAUAA
2111



sasa










AD-1736095
cscsugu(Ada)UfuUfCfUfuuaguugu
1574
VPusGfsacaAfcUfAfaagaAfaUfacaggsasa
1843
UUCCUGUAUUUCUUUAGUUGUCG
2112



scsa










AD-1736096
ususugu(Uda)UfuGfCfUfuuugacaa
1575
VPusUfsuugUfcAfAfaagcAfaAfacaaasgsc
1844
GCUUUGUUUUGCUUUUGACAAAC
2113



sasa










AD-1736097
usgsgcu(Gda)UfgAfAfAfauauucuc
1576
VPusGfsgagAfaUfAfuuuuCfaCfagccascsa
1845
UGUGGCUGUGAAAAUAUUCUCCU
2114



scsa










AD-1736098
ascsuau(Uda)UfuAfGfGfcauagcac
1577
VPusAfsgugCfuAfUfgccuAfaAfauagusgsc
1846
GCACUAUUUUAGGCAUAGCACUU
2115



susa










AD-1736099
ususuca(Gda)UfaCfUfGfuauaaagu
1578
VPusCfsacuUfuAfUfacagUfaCfugaaasasu
1847
AUUUUCAGUACUGUAUAAAGUGG
2116



sgsa










AD-1736100
gsusgau(Gda)CfaAfUfCfuauguuuc
1579
VPusGfsgaaAfcAfUfagauUfgCfaucacscsu
1848
AGGUGAUGCAAUCUAUGUUUCCC
2117



scsa










AD-1736101
usgsuuu(Gda)GfcAfGfAfucucauca
1580
VPusUfsugaUfgAfGfaucuGfcCfaaacasusu
1849
AAUGUUUGGCAGAUCUCAUCAAU
2118



sasa










AD-1736102
asasggu(Uda)GfuUfUfGfugaccaga
1581
VPusUfsucuGfgUfCfacaaAfcAfaccuususc
1850
GAAAGGUUGUUUGUGACCAGAAG
2119



sasa










AD-1736103
gsgsaag(Gda)AfaAfUfAfuuuugaga
1582
VPusUfsucuCfaAfAfauauUfuCfcuuccsusu
1851
AAGGAAGGAAAUAUUUUGAGAAU
2120



sasa










AD-1736104
ususuug(Gda)UfaGfCfGfugacucuu
1583
VPusGfsaagAfgUfCfacgcUfaCfcaaaasgsa
1852
UCUUUUGGUAGCGUGACUCUUCU
2121



scsa










AD-1736105
usgsaac(Ada)GfgAfAfAfagauguaa
1584
VPusUfsuuaCfaUfCfuuuuCfcUfguucasusu
1853
AAUGAACAGGAAAAGAUGUAAAA
2122



sasa










AD-1736106
gsgsgaa(Cda)CfaAfGfAfgguauaug
1585
VPusCfscauAfuAfCfcucuUfgGfuucccsasc
1854
GUGGGAACCAAGAGGUAUAUGGC
2123



sgsa










AD-1736107
usgsgca(Cda)UfaGfGfUfccaaaucu
1586
VPusAfsagaUfuUfGfgaccUfaGfugccasgsu
1855
ACUGGCACUAGGUCCAAAUCUUG
2124



susa










AD-1736108
csascac(Cda)UfuCfAfUfauggagau
1587
VPusAfsaucUfcCfAfuaugAfaGfgugugscsc
1856
GGCACACCUUCAUAUGGAGAUUG
2125



susa










AD-1736109
csusggu(Uda)UfaCfUfGfggaaauag
1588
VPusGfscuaUfuUfCfccagUfaAfaccagsasc
1857
GUCUGGUUUACUGGGAAAUAGCC
2126



scsa










AD-1736110
gscscca(Ada)AfgGfAfAfuguauaua
1589
VPusUfsuauAfuAfCfauucCfuUfugggcscsu
1858
AGGCCCAAAGGAAUGUAUAUAAG
2127



sasa










AD-1736111
ususaac(Uda)GfcAfAfGfaguuuacu
1590
VPusCfsaguAfaAfCfucuuGfcAfguuaasasa
1859
UUUUAACUGCAAGAGUUUACUGU
2128



sgsa










AD-1736112
gsasacc(Ada)CfuCfUfCfugagugca
1591
VPusUfsugcAfcUfCfagagAfgUfgguucscsu
1860
AGGAACCACUCUCUGAGUGCAAU
2129



sasa










AD-1736113
ususauc(Uda)UfuUfCfAfuccuggca
1592
VPusAfsugcCfaGfGfaugaAfaAfgauaasasg
1861
CUUUAUCUUUUCAUCCUGGCAUU
2130



susa










AD-1736114
gsusgag(Uda)GfuUfGfGfuaugccaa
1593
VPusGfsuugGfcAfUfaccaAfcAfcucacsgsc
1862
GCGUGAGUGUUGGUAUGCCAACG
2131



scsa










AD-1736115
asgsaau(Gda)UfaUfUfUfggcuaaau
1594
VPusUfsauuUfaGfCfcaaaUfaCfauucuscsa
1863
UGAGAAUGUAUUUGGCUAAAUAA
2132



sasa










AD-1736116
gsasacc(Cda)UfuUfUfAfuuaagagg
1595
VPusUfsccuCfuUfAfauaaAfaGfgguucscsa
1864
UGGAACCCUUUUAUUAAGAGGAG
2133



sasa










AD-1736117
csusccu(Gda)UfcCfAfUfagcugcga
1596
VPusAfsucgCfaGfCfuaugGfaCfaggagsgsc
1865
GCCUCCUGUCCAUAGCUGCGAUG
2134



susa










AD-1736118
ascsuga(Gda)UfuGfAfAfauaaggaa
1597
VPusCfsuucCfuUfAfuuucAfaCfucagusasa
1866
UUACUGAGUUGAAAUAAGGAAGG
2135



sgsa










AD-1736119
csusgcc(Ada)AfaCfAfGfaaggagca
1598
VPusAfsugcUfcCfUfucugUfuUfggcagsgsu
1867
ACCUGCCAAACAGAAGGAGCAUG
2136



susa










AD-1736120
gsgscaa(Ada)GfuUfGfUfgaagcacu
1599
VPusGfsaguGfcUfUfcacaAfcUfuugccsasc
1868
GUGGCAAAGUUGUGAAGCACUCC
2137



scsa










AD-1736121
asusagg(Ada)UfgAfUfGfaaguuuag
1600
VPusUfscuaAfaCfUfucauCfaUfccuaususu
1869
AAAUAGGAUGAUGAAGUUUAGAG
2138



sasa










AD-1736122
asusucg(Uda)AfuCfUfUfaaaauggc
1601
VPusUfsgccAfuUfUfuaagAfuAfcgaausasc
1870
GUAUUCGUAUCUUAAAAUGGCAC
2139



sasa










AD-1736123
csascag(Cda)UfuGfGfGfuaauagcg
1602
VPusAfscgcUfaUfUfacccAfaGfcugugscsu
1871
AGCACAGCUUGGGUAAUAGCGUU
2140



susa










AD-1736124
ususugc(Ada)AfcAfAfCfauaacacu
1603
VPusCfsaguGfuUfAfuguuGfuUfgcaaasasa
1872
UUUUUGCAACAACAUAACACUGC
2141



sgsa










AD-1736125
usgscca(Cda)CfaUfGfUfgacuuauu
1604
VPusCfsaauAfaGfUfcacaUfgGfuggcasasa
1873
UUUGCCACCAUGUGACUUAUUGG
2142



sgsa










AD-1736126
uscsgau(Ada)GfaGfGfAfaaugagaa
1605
VPusUfsuucUfcAfUfuuccUfcUfaucgasgsg
1874
CCUCGAUAGAGGAAAUGAGAAAG
2143



sasa










AD-1736127
ususuuu(Ada)AfgUfUfAfgcaggacu
1606
VPusAfsaguCfcUfGfcuaaCfuUfaaaaasgsg
1875
CCUUUUUAAGUUAGCAGGACUUU
2144



susa










AD-1736128
usgsuaa(Ada)UfaAfUfUfaucugccu
1607
VPusUfsaggCfaGfAfuaauUfaUfuuacasusc
1876
GAUGUAAAUAAUUAUCUGCCUAA
2145



sasa










AD-1736129
usgsguu(Gda)UfaCfGfUfgccucaaa
1608
VPusAfsuuuGfaGfGfcacgUfaCfaaccasusa
1877
UAUGGUUGUACGUGCCUCAAAUA
2146



susa
















TABLE 6







Unmodified Sense and Antisense Strand Sequences of ACVR1C dsRNA Agents Comprising a GalNAc


Derivative Targeting Ligand















SEQ
Range in

SEQ
Range in


Duplex
Sense Sequence
ID
NM_
Antisense Sequence
ID
NM_


Name
5′ to 3′
NO:
145259.3
5′ to 3′
NO:
145259.3
















AD-1736131
UUUUUUCAAACUCCAUUCCUA
802
3085-3105
UAGGAAUGGAGUUUGAAAAAAGA
1071
3083-3105





AD-1736132
ACUUUCAUCUGUCUUCAGAUA
803
8677-8697
UAUCUGAAGACAGAUGAAAGUUA
1072
8675-8697





AD-1736133
CCUCAUAACUUCUCCAGUAAA
804
6745-6765
UUUACUGGAGAAGUUAUGAGGUG
1073
6743-6765





AD-1736134
CUCACUAUCUUUCAACAUUAA
805
5871-5891
UUAAUGUUGAAAGAUAGUGAGGG
1074
5869-5891





AD-1736135
CUCGUUAAUGCUCUCAUCCAA
806
3562-3582
UUGGAUGAGAGCAUUAACGAGUA
1075
3560-3582





AD-1736136
GUUCUUCAUAAUCCACUACUA
807
2292-2312
UAGUAGUGGAUUAUGAAGAACAG
1076
2290-2312





AD-1736137
GUUGACUUCAUCCAAUCUCUA
808
1876-1896
UAGAGAUUGGAUGAAGUCAACUC
1077
1874-1896





AD-1736138
CUACACAAUGAACUUCUUAAA
809
6692-6712
UUUAAGAAGUUCAUUGUGUAGAA
1078
6690-6712





AD-1736139
CACAUCUAGAAUUCUUAAUUA
810
4835-4855
UAAUUAAGAAUUCUAGAUGUGAC
1079
4833-4855





AD-1736140
AAAUCUCUCAUAGCUUUCUUA
811
1725-1745
UAAGAAAGCUAUGAGAGAUUUCU
1080
1723-1745





AD-1736141
CCUACUAUUGUAGAAUUACUA
812
5093-5113
UAGUAAUUCUACAAUAGUAGGUG
1081
5091-5113





AD-1736142
AUCUUCUUUUAGUGCAUUAAA
813
6589-6609
UUUAAUGCACUAAAAGAAGAUGA
1082
6587-6609





AD-1736143
CUCAUGUACUCUUCUGAUUCA
814
7977-7997
UGAAUCAGAAGAGUACAUGAGCU
1083
7975-7997





AD-1736144
UUUCUCUUUGUACCUUGGAAA
815
6449-6469
UUUCCAAGGUACAAAGAGAAAGA
1084
6447-6469





AD-1736145
UGGCUUAUACAUCUUCAGAAA
816
7515-7535
UUUCUGAAGAUGUAUAAGCCAGA
1085
7513-7535





AD-1736146
CAAAACAAAACUACUCCUAUA
817
5120-5140
UAUAGGAGUAGUUUUGUUUUGUU
1086
5118-5140





AD-1736147
ACUAGCAGAACUCUUAUGAAA
818
6055-6075
UUUCAUAAGAGUUCUGCUAGUAA
1087
6053-6075





AD-1736148
CCAAGUCACUCUAUAAUUCCA
819
6635-6655
UGGAAUUAUAGAGUGACUUGGGA
1088
6633-6655





AD-1736149
UCCAUUUUUCUUGUCAUUAUA
820
4114-4134
UAUAAUGACAAGAAAAAUGGAGA
1089
4112-4134





AD-1736150
CAACACCUCAACUCAUCUUUA
821
1923-1943
UAAAGAUGAGUUGAGGUGUUGCU
1090
1921-1943





AD-1736151
ACUCUGAAAGAUCUGAUUUAA
822
 716-736
UUAAAUCAGAUCUUUCAGAGUUU
1091
 714-736





AD-1736152
CUAGUUCUUUUCCGCAAUGAA
823
7946-7966
UUCAUUGCGGAAAAGAACUAGAA
1092
7944-7966





AD-1736153
CUUUCACUCUGAAGAAAUCCA
824
4189-4209
UGGAUUUCUUCAGAGUGAAAGUU
1093
4187-4209





AD-1736154
UCUAACUUUUCUCUCUUUCUA
825
6525-6545
UAGAAAGAGAGAAAAGUUAGAUA
1094
6523-6545





AD-1736155
UCUCAACUUUGUGUCAAAGAA
826
1667-1687
UUCUUUGACACAAAGUUGAGAUA
1095
1665-1687





AD-1736156
CUUCAAUAAUCAUUCCUUUAA
827
5445-5465
UUAAAGGAAUGAUUAUUGAAGAC
1096
5443-5465





AD-1736157
UAACUGCUCUUCGUAUUAAGA
828
1638-1658
UCUUAAUACGAAGAGCAGUUAGG
1097
1636-1658





AD-1736158
UCUUCUGUCAUAGUUCCAACA
829
 438-458
UGUUGGAACUAUGACAGAAGACU
1098
 436-458





AD-1736159
AUCUCAGAACCAUAUCUGUUA
830
2584-2604
UAACAGAUAUGGUUCUGAGAUUU
1099
2582-2604





AD-1736160
UGAAUCUAUCUUCAUUUUACA
831
3483-3503
UGUAAAAUGAAGAUAGAUUCAGU
1100
3481-3503





AD-1736161
ACCACUAAACUUGUUCCUUUA
832
2326-2346
UAAAGGAACAAGUUUAGUGGUUC
1101
2324-2346





AD-1736162
AGUGUUCUUUACUCCUUACAA
833
4578-4598
UUGUAAGGAGUAAAGAACACUGA
1102
4576-4598





AD-1736163
CUUUACUCUUAACAGGAUUAA
834
4367-4387
UUAAUCCUGUUAAGAGUAAAGGA
1103
4365-4387





AD-1736164
UAUACCUAAGAACAUAUUACA
835
8153-8173
UGUAAUAUGUUCUUAGGUAUAAG
1104
8151-8173





AD-1736165
CUUCUACUGAGAUGAUCCAAA
836
3114-3134
UUUGGAUCAUCUCAGUAGAAGAA
1105
3112-3134





AD-1736166
CUGUAUUUUCUCAUAGAGUAA
837
3420-3440
UUACUCUAUGAGAAAAUACAGAA
1106
3418-3440





AD-1736167
ACUUUUCUCUUUCAGUUGUAA
838
7116-7136
UUACAACUGAAAGAGAAAAGUAU
1107
7114-7136





AD-1736168
AUUAAUUUCUAGUCUGUGAAA
839
8493-8513
UUUCACAGACUAGAAAUUAAUGA
1108
8491-8513





AD-1736169
CUCUGUAUAAGAGGUUUCACA
840
6726-6746
UGUGAAACCUCUUAUACAGAGAA
1109
6724-6746





AD-1736170
GACUUUCAAAGUACUAAUACA
841
8098-8118
UGUAUUAGUACUUUGAAAGUCAA
1110
8096-8118





AD-1736171
UUUGCCAUUAUACAAAGUUUA
842
5262-5282
UAAACUUUGUAUAAUGGCAAACA
1111
5260-5282





AD-1736172
GAACACUAUCGACAUACCUCA
843
1276-1296
UGAGGUAUGUCGAUAGUGUUCAG
1112
1274-1296





AD-1736173
UAGAAUGACAUUUACUAAUAA
844
7818-7838
UUAUUAGUAAAUGUCAUUCUACG
1113
7816-7838





AD-1736174
AAGCUACUUAGAAAUGUUUAA
845
5491-5511
UUAAACAUUUCUAAGUAGCUUGU
1114
5489-5511





AD-1736175
CCUUAGUACUCUCAGAGAUUA
846
5968-5988
UAAUCUCUGAGAGUACUAAGGGA
1115
5966-5988





AD-1736176
UGAAUGCACACUAACGUAAUA
847
6163-6183
UAUUACGUUAGUGUGCAUUCAAG
1116
6161-6183





AD-1736177
AAGCCUAAUGAUGAUAAUUAA
848
1695-1715
UUAAUUAUCAUCAUUAGGCUUUG
1117
1693-1715





AD-1736178
AAACUUUUUACUAUCCCAUAA
849
3341-3361
UUAUGGGAUAGUAAAAAGUUUCC
1118
3339-3361





AD-1736179
CUAGCUGAUACUCUUAAGUAA
850
8268-8288
UUACUUAAGAGUAUCAGCUAGCU
1119
8266-8288





AD-1736180
AGCAUGAAAAGAUAACUCUAA
851
1837-1857
UUAGAGUUAUCUUUUCAUGCUGC
1120
1835-1857





AD-1736181
UAAGCCAUUAUGCUAUUAGUA
852
7017-7037
UACUAAUAGCAUAAUGGCUUAGU
1121
7015-7037





AD-1736182
UCUAGCUUUUAGCUAACAUAA
853
6850-6870
UUAUGUUAGCUAAAAGCUAGAAU
1122
6848-6870





AD-1736183
GUGUGAUUCUUCAAACUUCAA
854
 316-336
UUGAAGUUUGAAGAAUCACACAA
1123
 314-336





AD-1736184
UCUCCAGACCUAACAGUUUUA
855
7247-7267
UAAAACUGUUAGGUCUGGAGAGA
1124
7245-7267





AD-1736185
CUUUUUUUCAUCUAGCCUUGA
856
5808-5828
UCAAGGCUAGAUGAAAAAAAGAA
1125
5806-5828





AD-1736186
CAAAAUAAUUCUUGACAUCUA
857
7552-7572
UAGAUGUCAAGAAUUAUUUUGAC
1126
7550-7572





AD-1736187
GCAUCACUUUCUGAAAAUAAA
858
4690-4710
UUUAUUUUCAGAAAGUGAUGCUG
1127
4688-4710





AD-1736188
UCUUUUGUGAAACAUACUAUA
859
5563-5583
UAUAGUAUGUUUCACAAAAGAUG
1128
5561-5583





AD-1736189
CUAUUUCUUCCAUAGGCUAAA
860
7841-7861
UUUAGCCUAUGGAAGAAAUAGAA
1129
7839-7861





AD-1736190
CUUCAAUGAAGUGUUAACAAA
861
2839-2859
UUUGUUAACACUUCAUUGAAGAG
1130
2837-2859





AD-1736191
UUUGCCUUCAUUCUACUUUCA
862
2952-2972
UGAAAGUAGAAUGAAGGCAAAAC
1131
2950-2972





AD-1736192
AGGUUUUUAAAUGUCCUAAAA
863
8035-8055
UUUUAGGACAUUUAAAAACCUGA
1132
8033-8055





AD-1736193
GAAUAUCUUUGAGUCCUUCAA
864
1360-1380
UUGAAGGACUCAAAGAUAUUCAC
1133
1358-1380





AD-1736194
GAACACUUCCAAAGAUUAAUA
865
2666-2686
UAUUAAUCUUUGGAAGUGUUCAG
1134
2664-2686





AD-1736195
CUAAAUUUUGUCUAACAAAUA
866
7791-7811
UAUUUGUUAGACAAAAUUUAGGC
1135
7789-7811





AD-1736196
GUAAACAACUUAAAAUUGCUA
867
5284-5304
UAGCAAUUUUAAGUUGUUUACUC
1136
5282-5304





AD-1736197
AAAAUAAUUUACUCACUCAGA
868
6233-6253
UCUGAGUGAGUAAAUUAUUUUAG
1137
6231-6253





AD-1736198
GACAUCUAUUCUGUUGGUCUA
869
1388-1408
UAGACCAACAGAAUAGAUGUCAG
1138
1386-1408





AD-1736199
UAACUGAGUAGUCUUAUAUUA
870
4267-4287
UAAUAUAAGACUACUCAGUUAGG
1139
4265-4287





AD-1736200
UCUGGAAUUUAGCCUUCUAAA
871
5936-5956
UUUAGAAGGCUAAAUUCCAGACG
1140
5934-5956





AD-1736201
ACAUGCCUUGAACUCUUGAAA
872
8207-8227
UUUCAAGAGUUCAAGGCAUGUUU
1141
8205-8227





AD-1736202
AUCAAGCACUUCUUGCACUUA
873
8782-8802
UAAGUGCAAGAAGUGCUUGAUUU
1142
8780-8802





AD-1736203
CUUGCUUUUCAUCUUUAUACA
874
4915-4935
UGUAUAAAGAUGAAAAGCAAGUG
1143
4913-4935





AD-1736204
UUUUCUCCCUAUGUAAUAUCA
875
2493-2513
UGAUAUUACAUAGGGAGAAAAGC
1144
2491-2513





AD-1736205
UGCUUUCUUCUAUGUCUAAAA
876
4802-4822
UUUUAGACAUAGAAGAAAGCAUA
1145
4800-4822





AD-1736206
ACCUGCUUAGCAAAUCGUCUA
877
5224-5244
UAGACGAUUUGCUAAGCAGGUUC
1146
5222-5244





AD-1736207
AUAUUCCUCUACCCUUUCACA
878
2895-2915
UGUGAAAGGGUAGAGGAAUAUCU
1147
2893-2915





AD-1736208
UCCCACUUUUCUUUGGGUUUA
879
6208-6228
UAAACCCAAAGAAAAGUGGGAUU
1148
6206-6228





AD-1736209
AGGCUUCUUGUAUAUACUUAA
880
4442-4462
UUAAGUAUAUACAAGAAGCCUGC
1149
4440-4462





AD-1736210
AAACUUGAUCUGUGUUUCAGA
881
8017-8037
UCUGAAACACAGAUCAAGUUUGA
1150
8015-8037





AD-1736211
UUUGCUUUAAUGCUAAAUUCA
882
6885-6905
UGAAUUUAGCAUUAAAGCAAAAG
1151
6883-6905





AD-1736212
AGACUAGCUGUUAUUUGUAUA
883
6830-6850
UAUACAAAUAACAGCUAGUCUUU
1152
6828-6850





AD-1736213
UUCCUACUUUCCCUUGAAUAA
884
2469-2489
UUAUUCAAGGGAAAGUAGGAAGC
1153
2467-2489





AD-1736214
CAGAACUGAAUGCUCAAGUCA
885
 420-440
UGACUUGAGCAUUCAGUUCUGGA
1154
 418-440





AD-1736215
UCUUGUUACUAAUUUCUCAUA
886
3945-3965
UAUGAGAAAUUAGUAACAAGAAC
1155
3943-3965





AD-1736216
CUCAGUGAUAGCCUUUAUACA
887
8586-8606
UGUAUAAAGGCUAUCACUGAGUU
1156
8584-8606





AD-1736217
UUUUAUGCUCCUAAAACAUCA
888
3065-3085
UGAUGUUUUAGGAGCAUAAAAGA
1157
3063-3085





AD-1736218
UUCUCCUUAGGUUAUGUUCAA
889
4551-4571
UUGAACAUAACCUAAGGAGAAUU
1158
4549-4571





AD-1736219
AUUGCUCAUCGAGACAUAAAA
890
1175-1195
UUUUAUGUCUCGAUGAGCAAUAG
1159
1173-1195





AD-1736220
CCUUUGUACAUACACACUUAA
891
2746-2766
UUAAGUGUGUAUGUACAAAGGAA
1160
2744-2766





AD-1736221
UUGAACCAAGAGCACAUGAAA
892
2025-2045
UUUCAUGUGCUCUUGGUUCAAGU
1161
2023-2045





AD-1736222
UCAGGGAUUUUAAAGUCUAAA
893
3668-3688
UUUAGACUUUAAAAUCCCUGAGG
1162
3666-3688





AD-1736223
UACUUGCUUAUAAAGUGAUAA
894
3153-3173
UUAUCACUUUAUAAGCAAGUACC
1163
3151-3173





AD-1736224
AUGCAUCUAAACCUACCUUGA
895
6145-6165
UCAAGGUAGGUUUAGAUGCAUGC
1164
6143-6165





AD-1736225
UUGGGAAAACACUAUUAUGAA
896
4629-4649
UUCAUAAUAGUGUUUUCCCAAGU
1165
4627-4649





AD-1736226
AAACUCCAAAGAGAAAUGAAA
897
8456-8476
UUUCAUUUCUCUUUGGAGUUUGA
1166
8454-8476





AD-1736227
AUGGGCAUUUUUCAAAACAUA
898
5758-5778
UAUGUUUUGAAAAAUGCCCAUAU
1167
5756-5778





AD-1736228
AUAAUGGAACUUGGACUCAAA
899
 996-1016
UUUGAGUCCAAGUUCCAUUAUCU
1168
 994-1016





AD-1736229
UGUGUAGAUGACGAAACCAAA
900
6008-6028
UUUGGUUUCGUCAUCUACACAAA
1169
6006-6028





AD-1736230
UUCUACCUCAAAGAUAAGACA
901
1790-1810
UGUCUUAUCUUUGAGGUAGAACA
1170
1788-1810





AD-1736231
AGAAGGCAUAUUGAGUUAUUA
902
2536-2556
UAAUAACUCAAUAUGCCUUCUAA
1171
2534-2556





AD-1736232
AUGGAGUUUUUCUGCUAUUUA
903
5629-5649
UAAAUAGCAGAAAAACUCCAUGU
1172
5627-5649





AD-1736233
UCAGUUUCUCAUUAGUUUGUA
904
6558-6578
UACAAACUAAUGAGAAACUGAGG
1173
6556-6578





AD-1736234
CUGCAUAUAUAAGAACGAAAA
905
3976-3996
UUUUCGUUCUUAUAUAUGCAGAA
1174
3974-3996





AD-1736235
UGAGCCAAAAUAUUAAAUUCA
906
7927-7947
UGAAUUUAAUAUUUUGGCUCAGA
1175
7925-7947





AD-1736236
AGAAUGAUAUUUCCUGUUUUA
907
4035-4055
UAAAACAGGAAAUAUCAUUCUUG
1176
4033-4055





AD-1736237
GUGCUCUAUAUAAAUCUUCCA
908
7385-7405
UGGAAGAUUUAUAUAGAGCACAA
1177
7383-7405





AD-1736238
UUUACAGAGAAGCAUCUUAUA
909
7468-7488
UAUAAGAUGCUUCUCUGUAAAAU
1178
7466-7488





AD-1736239
GUCUUGAGUUCUGCAUGACAA
910
3761-3781
UUGUCAUGCAGAACUCAAGACAU
1179
3759-3781





AD-1736240
CUUCAAAUCUAUAAUUUUACA
911
3017-3037
UGUAAAAUUAUAGAUUUGAAGGG
1180
3015-3037





AD-1736241
GAAGCAUAUAGAACUCUAUUA
912
8810-8830
UAAUAGAGUUCUAUAUGCUUCAC
1181
8808-8830





AD-1736242
GAGCUGCUUCUAAAUAACAAA
913
5678-5698
UUUGUUAUUUAGAAGCAGCUCUC
1182
5676-5698





AD-1736243
UGACUGUAUUUCCUGAUCAUA
914
7197-7217
UAUGAUCAGGAAAUACAGUCACA
1183
7195-7217





AD-1736244
GUUCUGAAGGAUAUACUUCUA
915
3402-3422
UAGAAGUAUAUCCUUCAGAACGC
1184
3400-3422





AD-1736245
GUGAAGCAUGAUUCAAUACUA
916
1256-1276
UAGUAUUGAAUCAUGCUUCACAG
1185
1254-1276





AD-1736246
AAUGCUGCUUCACAGAUUUUA
917
 474-494
UAAAAUCUGUGAAGCAGCAUUCG
1186
 472-494





AD-1736247
UGUGGGUUAUGUUAAUCUGAA
918
7283-7303
UUCAGAUUAACAUAACCCACAGU
1187
7281-7303





AD-1736248
GAGUACAGAAGAAUGCUCAUA
919
2926-2946
UAUGAGCAUUCUUCUGUACUCAC
1188
2924-2946





AD-1736249
CUGUAUUUCAUCCUAGAUUUA
920
7162-7182
UAAAUCUAGGAUGAAAUACAGCU
1189
7160-7182





AD-1736250
AAUCUGGUAAAUGCUGGAAAA
921
 695-715
UUUUCCAGCAUUUACCAGAUUGC
1190
 693-715





AD-1736251
UGCUCAGAUUACCUGAUCGUA
922
3293-3313
UACGAUCAGGUAAUCUGAGCAAU
1191
3291-3313





AD-1736252
GACAGCUAUGGAGUUUGCGUA
923
3531-3551
UACGCAAACUCCAUAGCUGUCAG
1192
3529-3551





AD-1736253
UAGAACAUGCUCACUUACAAA
924
4391-4411
UUUGUAAGUGAGCAUGUUCUAUA
1193
4389-4411





AD-1736254
AUUAUGCUUCAUUUCACUAUA
925
3450-3470
UAUAGUGAAAUGAAGCAUAAUCA
1194
3448-3470





AD-1736255
CAACAGCAAGUCAUAAAAGUA
926
8624-8644
UACUUUUAUGACUUGCUGUUGGU
1195
8622-8644





AD-1736256
UUGUCUGAAAAUGUCUUUAAA
927
2702-2722
UUUAAAGACAUUUUCAGACAAUG
1196
2700-2722





AD-1736257
UGUUGGUUCAAAGGACAAUUA
928
 774-794
UAAUUGUCCUUUGAACCAACAGA
1197
 772-794





AD-1736258
UCUAAACUUUAAUAUAUCGAA
929
2190-2210
UUCGAUAUAUUAAAGUUUAGAGC
1198
2188-2210





AD-1736259
AAGUGAAACAUGACUGUCGUA
930
4875-4895
UACGACAGUCAUGUUUCACUUAA
1199
4873-4895





AD-1736260
AUCGUCCAUACAGUUUUCAUA
931
7719-7739
UAUGAAAACUGUAUGGACGAUAU
1200
7717-7739





AD-1736261
CUUCAGGAAAUAGUAGGAAAA
932
 809-829
UUUUCCUACUAUUUCCUGAAGCA
1201
 807-829





AD-1736262
CACCCUUUCUGUAAGGACUGA
933
6426-6446
UCAGUCCUUACAGAAAGGGUGGG
1202
6424-6446





AD-1736263
AAAGAGAUACCUGACAUCCUA
934
2354-2374
UAGGAUGUCAGGUAUCUCUUUUG
1203
2352-2374





AD-1736264
AUGAGCAUUAAUGUUUUCUGA
935
2647-2667
UCAGAAAACAUUAAUGCUCAUUA
1204
2645-2667





AD-1736265
UGACAUUUUUUCUCAUAGAAA
936
2603-2623
UUUCUAUGAGAAAAAAUGUCAAC
1205
2601-2623





AD-1736266
CAGAGAUUAAAUGACUACUAA
937
6032-6052
UUAGUAGUCAUUUAAUCUCUGAU
1206
6030-6052





AD-1736267
GCUGUCAAAUGUUAUAUUGUA
938
4463-4483
UACAAUAUAACAUUUGACAGCAU
1207
4461-4483





AD-1736268
AAUAUAAUACUACAGCAAAAA
939
7041-7061
UUUUUGCUGUAGUAUUAUAUUCC
1208
7039-7061





AD-1736269
GGUGUCUAAAUAUAAUUUCAA
940
4153-4173
UUGAAAUUAUAUUUAGACACCCU
1209
4151-4173





AD-1736270
CUCUUUAUACAAAAUGAGAGA
941
7903-7923
UCUCUCAUUUUGUAUAAAGAGAA
1210
7901-7923





AD-1736271
GCAGUACCAAAUGAAUAAAAA
942
5410-5430
UUUUUAUUCAUUUGGUACUGCUA
1211
5408-5430





AD-1736272
UUGUUGGUACACAAGGUAAAA
943
1149-1169
UUUUACCUUGUGUACCAACAAUC
1212
1147-1169





AD-1736273
CUCUUAUUUAACUUAACCGUA
944
5917-5937
UACGGUUAAGUUAAAUAAGAGUU
1213
5915-5937





AD-1736274
UGCUUGAUGAUACAAUGAAUA
945
1338-1358
UAUUCAUUGUAUCAUCAAGCAUU
1214
1336-1358





AD-1736275
AACUGGGAAAGACAAUUUGAA
946
6920-6940
UUCAAAUUGUCUUUCCCAGUUAC
1215
6918-6940





AD-1736276
CUCCUUAUAUGACUAUUUGAA
947
1048-1068
UUCAAAUAGUCAUAUAAGGAGCC
1216
1046-1068





AD-1736277
AGUCAUGCUAACCAAUGGAAA
948
 367-387
UUUCCAUUGGUUAGCAUGACUGA
1217
 365-387





AD-1736278
CCUGAAGUCACACAGCUAAUA
949
2391-2411
UAUUAGCUGUGUGACUUCAGGAC
1218
2389-2411





AD-1736279
UUGCUGCUGACAACAAAGAUA
950
 978-998
UAUCUUUGUUGUCAGCAGCAAUG
1219
 976-998





AD-1736280
UACUGACUUUGCCUGUAAAGA
951
7757-7777
UCUUUACAGGCAAAGUCAGUAAU
1220
7755-7777





AD-1736281
AAUCCCUAUUUUAAAAUUCCA
952
7070-7090
UGGAAUUUUAAAAUAGGGAUUGU
1221
7068-7090





AD-1736282
GUGCCUUAGGAGAUUACCCUA
953
7330-7350
UAGGGUAAUCUCCUAAGGCACUC
1222
7328-7350





AD-1736283
GACAAUCUAAAUAUAUCAUCA
954
3857-3877
UGAUGAUAUAUUUAGAUUGUCUG
1223
3855-3877





AD-1736284
UGUGAUAAUGAACACCGUAAA
955
2438-2458
UUUACGGUGUUCAUUAUCACAAG
1224
2436-2458





AD-1736285
UCACCGUUGUAAAGACUUUUA
956
8242-8262
UAAAAGUCUUUACAACGGUGAUU
1225
8240-8262





AD-1736286
UUAGAGAAGCUUCCUGACAUA
957
6402-6422
UAUGUCAGGAAGCUUCUCUAAUC
1226
6400-6422





AD-1736287
AACAGUAAAGAAAUGCUACUA
958
3252-3272
UAGUAGCAUUUCUUUACUGUUAU
1227
3250-3272





AD-1736288
UAUGUUCUGACUUGAGAGUUA
959
4855-4875
UAACUCUCAAGUCAGAACAUAAA
1228
4853-4875





AD-1736289
UUAGAGCAUGCUAUCUUUAGA
960
2109-2129
UCUAAAGAUAGCAUGCUCUAAUU
1229
2107-2129





AD-1736290
UAGUCUUUGAUUGAAAUAAGA
961
5314-5334
UCUUAUUUCAAUCAAAGACUAUG
1230
5312-5334





AD-1736291
UUGGUAAACGAGAUUUAACAA
962
3038-3058
UUGUUAAAUCUCGUUUACCAAAG
1231
3036-3058





AD-1736292
GUCUGAAAAUUGCUUUCAUUA
963
3798-3818
UAAUGAAAGCAAUUUUCAGACCU
1232
3796-3818





AD-1736293
AUGAACUUGUUGCCUUGUAAA
964
4741-4761
UUUACAAGGCAACAAGUUCAUGC
1233
4739-4761





AD-1736294
GGGCAAUAAACUGUAUCAAAA
965
8379-8399
UUUUGAUACAGUUUAUUGCCCAA
1234
8377-8399





AD-1736295
ACAUGUUAGCAUAUAAUGUAA
966
3175-3195
UUACAUUAUAUGCUAACAUGUAC
1235
3173-3195





AD-1736296
UGUGAGAGUAUAGAAUUUCUA
967
6367-6387
UAGAAAUUCUAUACUCUCACAGU
1236
6365-6387





AD-1736297
AUCCUUCAUUUGGCACUAUAA
968
6764-6784
UUAUAGUGCCAAAUGAAGGAUUA
1237
6762-6784





AD-1736298
ACAUUUAGAAAGUAGCUUUAA
969
3824-3844
UUAAAGCUACUUUCUAAAUGUGU
1238
3822-3844





AD-1736299
AACUGUUCUAUAAAGCAAAGA
970
3364-3384
UCUUUGCUUUAUAGAACAGUUAA
1239
3362-3384





AD-1736300
CCUCCAGAGAUGAAAGAUCUA
971
 894-914
UAGAUCUUUCAUCUCUGGAGGAG
1240
 892-914





AD-1736301
UUGUUUAACUAUGACUCCUAA
972
4249-4269
UUAGGAGUCAUAGUUAAACAACA
1241
4247-4269





AD-1736302
CUGUUUGACAAUGCUUUGUUA
973
5585-5605
UAACAAAGCAUUGUCAAACAGAA
1242
5583-5605





AD-1736303
UGUCCUAAAAGAAAUUUUUCA
974
7227-7247
UGAAAAAUUUCUUUUAGGACAAC
1243
7225-7247





AD-1736304
ACAGAUUGAACAAAGAACUUA
975
7572-7592
UAAGUUCUUUGUUCAAUCUGUAG
1244
7570-7592





AD-1736305
GUUUAACCUGUCCAAACUUCA
976
6673-6693
UGAAGUUUGGACAGGUUAAACGA
1245
6671-6693





AD-1736306
CAAAAUGUUUAACUUUACCAA
977
8606-8626
UUGGUAAAGUUAAACAUUUUGGU
1246
8604-8626





AD-1736307
UCCCAUUGUGUAAUAUUUAUA
978
4494-4514
UAUAAAUAUUACACAAUGGGACU
1247
4492-4514





AD-1736308
GUUGGGUAAAUAUGCUUAUUA
979
4065-4085
UAAUAAGCAUAUUUACCCAACAU
1248
4063-4085





AD-1736309
CAGGGUUGUCUUUGAGUCUGA
980
5187-5207
UCAGACUCAAAGACAACCCUGAG
1249
5185-5207





AD-1736310
GCUAAAAUCCAACUGCAAUUA
981
7425-7445
UAAUUGCAGUUGGAUUUUAGCCC
1250
7423-7445





AD-1736311
CAGGACUGAAGUGUGUAUGUA
982
 291-311
UACAUACACACUUCAGUCCUGGC
1251
 289-311





AD-1736312
GAGUACCAAUUGCCUUAUUAA
983
1457-1477
UUAAUAAGGCAAUUGGUACUCCU
1252
1455-1477





AD-1736313
AAGUGCCUAUGUGAAGUGAUA
984
3886-3906
UAUCACUUCACAUAGGCACUUUU
1253
3884-3906





AD-1736314
UAACAAUAAUAGAACUGCCAA
985
7092-7112
UUGGCAGUUCUAUUAUUGUUAGG
1254
7090-7112





AD-1736315
GCUGUUCCAUACCAUUGCUUA
986
6978-6998
UAAGCAAUGGUAUGGAACAGCAG
1255
6976-6998





AD-1736316
UAGACUGGAGAAGAUUAUUCA
987
7997-8017
UGAAUAAUCUUCUCCAGUCUAGA
1256
7995-8017





AD-1736317
UUCCAACAGCAUCACCAAAUA
988
 516-536
UAUUUGGUGAUGCUGUUGGAAGG
1257
 514-536





AD-1736318
UAAUUGGUACAGAUUCUGUUA
989
4779-4799
UAACAGAAUCUGUACCAAUUACA
1258
4777-4799





AD-1736319
GAGAAACAUUAUUUGUUGUCA
990
4710-4730
UGACAACAAAUAAUGUUUCUCUU
1259
4708-4730





AD-1736320
CGCUCUCAAUUGCUAGUGGUA
991
1107-1127
UACCACUAGCAAUUGAGAGCGCC
1260
1105-1127





AD-1736321
CGGUAUCAGAAACAGCAAAUA
992
2873-2893
UAUUUGCUGUUUCUGAUACCGUC
1261
2871-2893





AD-1736322
CCCAGACAUAAUUUUAUAUUA
993
7449-7469
UAAUAUAAAAUUAUGUCUGGGAG
1262
7447-7469





AD-1736323
UAGUACAUUUUGAGGUAUUUA
994
4215-4235
UAAAUACCUCAAAAUGUACUAAC
1263
4213-4235





AD-1736324
AAAUGCUAUUGAUAACAGUAA
995
3211-3231
UUACUGUUAUCAAUAGCAUUUAC
1264
3209-3231





AD-1736325
UAGCUGAAUUUGGGACUAUGA
996
6490-6510
UCAUAGUCCCAAAUUCAGCUAUC
1265
6488-6510





AD-1736326
AUUGUGGUUUUCAAAGAUAUA
997
5535-5555
UAUAUCUUUGAAAACCACAAUGG
1266
5533-5555





AD-1736327
CCUGGUUGCAGUAUCUGAAAA
998
4985-5005
UUUUCAGAUACUGCAACCAGGUU
1267
4983-5005





AD-1736328
UAGAAUGGUUGUUGAGCUAAA
999
6297-6317
UUUAGCUCAACAACCAUUCUACA
1268
6295-6317





AD-1736329
CUGGCCAUCAUUAUUACUGUA
1000
 560-580
UACAGUAAUAAUGAUGGCCAGCU
1269
 558-580





AD-1736330
UUGACAGAUAAAAUACGAAGA
1001
3735-3755
UCUUCGUAUUUUAUCUGUCAAUU
1270
3733-3755





AD-1736331
UCACAAACACAUCAUUACAAA
1002
5473-5493
UUUGUAAUGAUGUGUUUGUGAAU
1271
5471-5493





AD-1736332
CCAUGAUUGUAUGAAAAUAGA
1003
4962-4982
UCUAUUUUCAUACAAUCAUGGAA
1272
4960-4982





AD-1736333
CACAGAGUAAUGAAUAUUUAA
1004
2978-2998
UUAAAUAUUCAUUACUCUGUGUC
1273
2976-2998





AD-1736334
AGCUGCUUAGUGGAAGAUGUA
1005
2222-2242
UACAUCUUCCACUAAGCAGCUCC
1274
2220-2242





AD-1736335
UAGCUCUGUGUGCUGAUACCA
1006
5606-5626
UGGUAUCAGCACACAGAGCUAGA
1275
5604-5626





AD-1736336
CAUUCGAGAGAAUAUGAGCUA
1007
7144-7164
UAGCUCAUAUUCUCUCGAAUGUA
1276
7142-7164





AD-1736337
AUGCAUUUUCUGAAAAUGUAA
1008
8734-8754
UUACAUUUUCAGAAAAUGCAUAC
1277
8732-8754





AD-1736338
GUUUCGACCAAGUAUCCCAAA
1009
1537-1557
UUUGGGAUACUUGGUCGAAACUU
1278
1535-1557





AD-1736339
UCUUGCUUGCCACAAUAUCGA
1010
3610-3630
UCGAUAUUGUGGCAAGCAAGAUA
1279
3608-3630





AD-1736340
GGGUACAAGAGGGAAUACAAA
1011
3629-3649
UUUGUAUUCCCUCUUGUACCCGA
1280
3627-3649





AD-1736341
GGUGAUCAAAUCCUGUGUCUA
1012
 394-414
UAGACACAGGAUUUGAUCACCUG
1281
 392-414





AD-1736342
CAGUGGGUUUCUAGGAUAGGA
1013
3779-3799
UCCUAUCCUAGAAACCCACUGUC
1282
3777-3799





AD-1736343
AACUAAGUAUUUUUAAGGACA
1014
7869-7889
UGUCCUUAAAAAUACUUAGUUAC
1283
7867-7889





AD-1736344
CAUAAUGUGAUUGUUAAAUUA
1015
6951-6971
UAAUUUAACAAUCACAUUAUGGG
1284
6949-6971





AD-1736345
GAGAAGAAUUAAGAAAACUCA
1016
2820-2840
UGAGUUUUCUUAAUUCUUCUCAA
1285
2818-2840





AD-1736346
GAAGAGAAAUUGAUUGUUUAA
1017
7635-7655
UUAAACAAUCAAUUUCUCUUCUC
1286
7633-7655





AD-1736347
AGUGUGAAACUUGUGCCAUAA
1018
1218-1238
UUAUGGCACAAGUUUCACACUUU
1287
1216-1238





AD-1736348
CUGAGACACUGAGAAAUGUCA
1019
2372-2392
UGACAUUUCUCAGUGUCUCAGGA
1288
2370-2392





AD-1736349
UGGCUUAUAUGUGUUUAAAGA
1020
7488-7508
UCUUUAAACACAUAUAAGCCAAU
1289
7486-7508





AD-1736350
UGCAUUUUGACAUUGCAAAAA
1021
8188-8208
UUUUUGCAAUGUCAAAAUGCAAU
1290
8186-8208





AD-1736351
UUAGGUUAGAAGUUCCAGAAA
1022
5053-5073
UUUCUGGAACUUCUAACCUAAUG
1291
5051-5073





AD-1736352
UGCGACAUGAAAACAUCCUUA
1023
 951-971
UAAGGAUGUUUUCAUGUCGCAGC
1292
 949-971





AD-1736353
GAGAGGAUUUUUUACCAUCUA
1024
4095-4115
UAGAUGGUAAAAAAUCCUCUCUU
1293
4093-4115





AD-1736354
GAAGGUGAAGAGAAUUUCAAA
1025
8438-8458
UUUGAAAUUCUCUUCACCUUCCA
1294
8436-8458





AD-1736355
UGGUAUCUGAAUAUCAUGAAA
1026
1023-1043
UUUCAUGAUAUUCAGAUACCAGC
1295
1021-1043





AD-1736356
UGUUGGUUUAAUUUUUCAACA
1027
7658-7678
UGUUGAAAAAUUAAACCAACAUG
1296
7656-7678





AD-1736357
UAGUUGUAAUUUAAAUGUGGA
1028
8419-8439
UCCACAUUUAAAUUACAACUACU
1297
8417-8439





AD-1736358
GUGAAUGUUUUUGCCAUUUUA
1029
1763-1783
UAAAAUGGCAAAAACAUUCACAU
1298
1761-1783





AD-1736359
CAGAGAUGAUUUUUCUUUUAA
1030
6800-6820
UUAAAAGAAAAAUCAUCUCUGCC
1299
6798-6820





AD-1736360
AGAAAAUUAGAUUCAGAUCUA
1031
8058-8078
UAGAUCUGAAUCUAAUUUUCUGU
1300
8056-8078





AD-1736361
ACUGGAAAAUUAAGAAAGUAA
1032
5390-5410
UUACUUUCUUAAUUUUCCAGUGG
1301
5388-5410





AD-1736362
UAAAGUGGGAAAGAUAAUAAA
1033
8762-8782
UUUAUUAUCUUUCCCACUUUACA
1302
8760-8782





AD-1736363
CUAGGCUAAGAAAGAGUUGUA
1034
6278-6298
UACAACUCUUUCUUAGCCUAGUU
1303
6276-6298





AD-1736364
GCUGAUAAAAUUAAUGGAUAA
1035
6335-6355
UUAUCCAUUAAUUUUAUCAGCAC
1304
6333-6355





AD-1736365
CCUGUAUUUCUUUAGUUGUCA
1036
6653-6673
UGACAACUAAAGAAAUACAGGAA
1305
6651-6673





AD-1736366
UUUGUUUUGCUUUUGACAAAA
1037
6996-7016
UUUUGUCAAAAGCAAAACAAAGC
1306
6994-7016





AD-1736367
UGGCUGUGAAAAUAUUCUCCA
1038
 876-896
UGGAGAAUAUUUUCACAGCCACA
1307
 874-896





AD-1736368
ACUAUUUUAGGCAUAGCACUA
1039
4897-4917
UAGUGCUAUGCCUAAAAUAGUGC
1308
4895-4917





AD-1736369
UUUCAGUACUGUAUAAAGUGA
1040
4651-4671
UCACUUUAUACAGUACUGAAAAU
1309
4649-4671





AD-1736370
GUGAUGCAAUCUAUGUUUCCA
1041
2129-2149
UGGAAACAUAGAUUGCAUCACCU
1310
2127-2149





AD-1736371
UGUUUGGCAGAUCUCAUCAAA
1042
6613-6633
UUUGAUGAGAUCUGCCAAACAUU
1311
6611-6633





AD-1736372
AAGGUUGUUUGUGACCAGAAA
1043
1517-1537
UUUCUGGUCACAAACAACCUUUC
1312
1515-1537





AD-1736373
GGAAGGAAAUAUUUUGAGAAA
1044
2794-2814
UUUCUCAAAAUAUUUCCUUCCUU
1313
2792-2814





AD-1736374
UUUUGGUAGCGUGACUCUUCA
1045
8132-8152
UGAAGAGUCACGCUACCAAAAGA
1314
8130-8152





AD-1736375
UGAACAGGAAAAGAUGUAAAA
1046
2045-2065
UUUUACAUCUUUUCCUGUUCAUU
1315
2043-2065





AD-1736376
GGGAACCAAGAGGUAUAUGGA
1047
1309-1329
UCCAUAUACCUCUUGGUUCCCAC
1316
1307-1329





AD-1736377
UGGCACUAGGUCCAAAUCUUA
1048
2419-2439
UAAGAUUUGGACCUAGUGCCAGU
1317
2417-2439





AD-1736378
CACACCUUCAUAUGGAGAUUA
1049
1131-1151
UAAUCUCCAUAUGAAGGUGUGCC
1318
1129-1151





AD-1736379
CUGGUUUACUGGGAAAUAGCA
1050
1406-1426
UGCUAUUUCCCAGUAAACCAGAC
1319
1404-1426





AD-1736380
GCCCAAAGGAAUGUAUAUAAA
1051
8316-8336
UUUAUAUACAUUCCUUUGGGCCU
1320
8314-8336





AD-1736381
UUAACUGCAAGAGUUUACUGA
1052
7265-7285
UCAGUAAACUCUUGCAGUUAAAA
1321
7263-7285





AD-1736382
GAACCACUCUCUGAGUGCAAA
1053
 677-697
UUUGCACUCAGAGAGUGGUUCCU
1322
 675-697





AD-1736383
UUAUCUUUUCAUCCUGGCAUA
1054
7607-7627
UAUGCCAGGAUGAAAAGAUAAAG
1323
7605-7627





AD-1736384
GUGAGUGUUGGUAUGCCAACA
1055
1605-1625
UGUUGGCAUACCAACACUCACGC
1324
1603-1625





AD-1736385
AGAAUGUAUUUGGCUAAAUAA
1056
5338-5358
UUAUUUAGCCAAAUACAUUCUCA
1325
5336-5358





AD-1736386
GAACCCUUUUAUUAAGAGGAA
1057
3317-3337
UUCCUCUUAAUAAAAGGGUUCCA
1326
3315-3337





AD-1736387
CUCCUGUCCAUAGCUGCGAUA
1058
 590-610
UAUCGCAGCUAUGGACAGGAGGC
1327
 588-610





AD-1736388
ACUGAGUUGAAAUAAGGAAGA
1059
3501-3521
UCUUCCUUAUUUCAACUCAGUAA
1328
3499-3521





AD-1736389
CUGCCAAACAGAAGGAGCAUA
1060
 337-357
UAUGCUCCUUCUGUUUGGCAGGU
1329
 335-357





AD-1736390
GGCAAAGUUGUGAAGCACUCA
1061
1563-1583
UGAGUGCUUCACAACUUUGCCAC
1330
1561-1583





AD-1736391
AUAGGAUGAUGAAGUUUAGAA
1062
4413-4433
UUCUAAACUUCAUCAUCCUAUUU
1331
4411-4433





AD-1736392
AUUCGUAUCUUAAAAUGGCAA
1063
5513-5533
UUGCCAUUUUAAGAUACGAAUAC
1332
5511-5533





AD-1736393
CACAGCUUGGGUAAUAGCGUA
1064
3384-3404
UACGCUAUUACCCAAGCUGUGCU
1333
3382-3404





AD-1736394
UUUGCAACAACAUAACACUGA
1065
 492-512
UCAGUGUUAUGUUGUUGCAAAAA
1334
 490-512





AD-1736395
UGCCACCAUGUGACUUAUUGA
1066
5153-5173
UCAAUAAGUCACAUGGUGGCAAA
1335
5151-5173





AD-1736396
UCGAUAGAGGAAAUGAGAAAA
1067
1499-1519
UUUUCUCAUUUCCUCUAUCGAGG
1336
1497-1519





AD-1736397
UUUUUAAGUUAGCAGGACUUA
1068
2152-2172
UAAGUCCUGCUAACUUAAAAAGG
1337
2150-2172





AD-1736398
UGUAAAUAAUUAUCUGCCUAA
1069
8696-8716
UUAGGCAGAUAAUUAUUUACAUC
1338
8694-8716





AD-1736399
UGGUUGUACGUGCCUCAAAUA
1070
4010-4030
UAUUUGAGGCACGUACAACCAUA
1339
4008-4030





AD-1736400
CCACACUGACUAGAGCCAACA
2147
  70-90
UGUUGGCUCUAGUCAGUGUGGGC
2148
  68-90
















TABLE 7







Modified Sense and Antisense Strand Sequences of ACVRIC dsRNA


Agents Comprising a GalNAc Derivative Targeting Ligand















SEQ

SEQ

SEQ


Duplex
Antisense Sequence
ID
Antisense Sequence
ID
mRNA Target Sequence
ID


Name
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:





AD-
ususuuuuCfaAfAfCfuccauuc
2149
VPusAfsggaAfuGfGfaguuUfgAfaaa
1609
UCUUUUUUCAAACUCCAUUC
1878


1736131
csusa

aasgsa

CUU






AD-
ascsuuucAfuCfUfGfucuucag
2150
VPusAfsucuGfaAfGfacagAfuGfaaa
1610
UAACUUUCAUCUGUCUUCAG
1879


1736132
asusa

gususa

AUG






AD-
cscsucauAfaCfUfUfcuccagu
2151
VPusUfsuacUfgGfAfgaagUfuAfuga
1611
CACCUCAUAACUUCUCCAGU
1880


1736133
asasa

ggsusg

AAU






AD-
csuscacuAfuCfUfUfucaacau
2152
VPusUfsaauGfuUfGfaaagAfuAfgug
1612
CCCUCACUAUCUUUCAACAU
1881


1736134
usasa

agsgsg

UAU






AD-
csuscguuAfaUfGfCfucucauc
2153
VPusUfsggaUfgAfGfagcaUfuAfacg
1613
UACUCGUUAAUGCUCUCAUC
1882


1736135
csasa

agsusa

CAC






AD-
gsusucuuCfaUfAfAfuccacua
2154
VPusAfsguaGfuGfGfauuaUfgAfaga
1614
CUGUUCUUCAUAAUCCACUA
1883


1736136
csusa

acsasg

CUG






AD-
gsusugacUfuCfAfUfccaaucu
2155
VPusAfsgagAfuUfGfgaugAfaGfuca
1615
GAGUUGACUUCAUCCAAUCU
1884


1736137
csusa

acsusc

CUA






AD-
csusacacAfaUfGfAfacuucuu
2156
VPusUfsuaaGfaAfGfuucaUfuGfugu
1616
UUCUACACAAUGAACUUCUU
1885


1736138
asasa

agsasa

AAC






AD-
csascaucUfaGfAfAfuucuuaa
2157
VPusAfsauuAfaGfAfauucUfaGfaug
1617
GUCACAUCUAGAAUUCUUAA
1886


1736139
ususa

ugsasc

UUU






AD-
asasaucuCfuCfAfUfagcuuuc
2158
VPusAfsagaAfaGfCfuaugAfgAfgau
1618
AGAAAUCUCUCAUAGCUUUC
1887


1736140
ususa

uuscsu

UUU






AD-
cscsuacuAfuUfGfUfagaauua
2159
VPusAfsguaAfuUfCfuacaAfuAfgua
1619
CACCUACUAUUGUAGAAUUA
1888


1736141
csusa

ggsusg

CUA






AD-
asuscuucUfuUfUfAfgugcauu
2160
VPusUfsuaaUfgCfAfcuaaAfaGfaag
1620
UCAUCUUCUUUUAGUGCAUU
1889


1736142
asasa

ausgsa

AAA






AD-
csuscaugUfaCfUfCfuucugau
2161
VPusGfsaauCfaGfAfagagUfaCfaug
1621
AGCUCAUGUACUCUUCUGAU
1890


1736143
uscsa

agscsu

UCU






AD-
ususucucUfuUfGfUfaccuugg
2162
VPusUfsuccAfaGfGfuacaAfaGfaga
1622
UCUUUCUCUUUGUACCUUGG
1891


1736144
asasa

aasgsa

AAU






AD-
usgsgcuuAfuAfCfAfucuucag
2163
VPusUfsucuGfaAfGfauguAfuAfagc
1623
UCUGGCUUAUACAUCUUCAG
1892


1736145
asasa

casgsa

AAA






AD-
csasaaacAfaAfAfCfuacuccu
2164
VPusAfsuagGfaGfUfaguuUfuGfuuu
1624
AACAAAACAAAACUACUCCU
1893


1736146
asusa

ugsusu

AUU






AD-
ascsuagcAfgAfAfCfucuuaug
2165
VPusUfsucaUfaAfGfaguuCfuGfcua
1625
UUACUAGCAGAACUCUUAUG
1894


1736147
asasa

gusasa

AAA






AD-
cscsaaguCfaCfUfCfuauaauu
2166
VPusGfsgaaUfuAfUfagagUfgAfcuu
1626
UCCCAAGUCACUCUAUAAUU
1895


1736148
cscsa

ggsgsa

CCU






AD-
uscscauuUfuUfCfUfugucauu
2167
VPusAfsuaaUfgAfCfaagaAfaAfaug
1627
UCUCCAUUUUUCUUGUCAUU
1896


1736149
asusa

gasgsa

AUG






AD-
csasacacCfuCfAfAfcucaucu
2168
VPusAfsaagAfuGfAfguugAfgGfugu
1628
AGCAACACCUCAACUCAUCU
1897


1736150
ususa

ugscsu

UUU






AD-
ascsucugAfaAfGfAfucugauu
2169
VPusUfsaaaUfcAfGfaucuUfuCfaga
1629
AAACUCUGAAAGAUCUGAUU
1898


1736151
usasa

gususu

UAU






AD-
csusaguuCfuUfUfUfccgcaau
2170
VPusUfscauUfgCfGfgaaaAfgAfacu
1630
UUCUAGUUCUUUUCCGCAAU
1899


1736152
gsasa

agsasa

GAC






AD-
csusuucaCfuCfUfGfaagaaau
2171
VPusGfsgauUfuCfUfucagAfgUfgaa
1631
AACUUUCACUCUGAAGAAAU
1900


1736153
cscsa

agsusu

CCG






AD-
uscsuaacUfuUfUfCfucucuuu
2172
VPusAfsgaaAfgAfGfagaaAfaGfuua
1632
UAUCUAACUUUUCUCUCUUU
1901


1736154
csusa

gasusa

CUC






AD-
uscsucaaCfuUfUfGfugucaaa
2173
VPusUfscuuUfgAfCfacaaAfgUfuga
1633
UAUCUCAACUUUGUGUCAAA
1902


1736155
gsasa

gasusa

GAA






AD-
csusucaaUfaAfUfCfauuccuu
2174
VPusUfsaaaGfgAfAfugauUfaUfuga
1634
GUCUUCAAUAAUCAUUCCUU
1903


1736156
usasa

agsasc

UAA






AD-
usasacugCfuCfUfUfcguauua
2175
VPusCfsuuaAfuAfCfgaagAfgCfagu
1635
CCUAACUGCUCUUCGUAUUA
1904


1736157
asgsa

uasgsg

AGA






AD-
uscsuucuGfuCfAfUfaguucca
2176
VPusGfsuugGfaAfCfuaugAfcAfgaa
1636
AGUCUUCUGUCAUAGUUCCA
1905


1736158
ascsa

gascsu

ACA






AD-
asuscucaGfaAfCfCfauaucug
2177
VPusAfsacaGfaUfAfugguUfcUfgag
1637
AAAUCUCAGAACCAUAUCUG
1906


1736159
ususa

aususu

UUG






AD-
usgsaaucUfaUfCfUfucauuuu
2178
VPusGfsuaaAfaUfGfaagaUfaGfauu
1638
ACUGAAUCUAUCUUCAUUUU
1907


1736160
ascsa

casgsu

ACU






AD-
ascscacuAfaAfCfUfuguuccu
2179
VPusAfsaagGfaAfCfaaguUfuAfgug
1639
GAACCACUAAACUUGUUCCU
1908


1736161
ususa

gususc

UUC






AD-
asgsuguuCfuUfUfAfcuccuua
2180
VPusUfsguaAfgGfAfguaaAfgAfaca
1640
UCAGUGUUCUUUACUCCUUA
1909


1736162
csasa

cusgsa

CAG






AD-
csusuuacUfcUfUfAfacaggau
2181
VPusUfsaauCfcUfGfuuaaGfaGfuaa
1641
UCCUUUACUCUUAACAGGAU
1910


1736163
usasa

agsgsa

UAU






AD-
usasuaccUfaAfGfAfacauauu
2182
VPusGfsuaaUfaUfGfuucuUfaGfgua
1642
CUUAUACCUAAGAACAUAUU
1911


1736164
ascsa

uasasg

ACA






AD-
csusucuaCfuGfAfGfaugaucc
2183
VPusUfsuggAfuCfAfucucAfgUfaga
1643
UUCUUCUACUGAGAUGAUCC
1912


1736165
asasa

agsasa

AAG






AD-
csusguauUfuUfCfUfcauagag
2184
VPusUfsacuCfuAfUfgagaAfaAfuac
1644
UUCUGUAUUUUCUCAUAGAG
1913


1736166
usasa

agsasa

UAC






AD-
ascsuuuuCfuCfUfUfucaguug
2185
VPusUfsacaAfcUfGfaaagAfgAfaaa
1645
AUACUUUUCUCUUUCAGUUG
1914


1736167
usasa

gusasu

UAG






AD-
asusuaauUfuCfUfAfgucugug
2186
VPusUfsucaCfaGfAfcuagAfaAfuua
1646
UCAUUAAUUUCUAGUCUGUG
1915


1736168
asasa

ausgsa

AAA






AD-
csuscuguAfuAfAfGfagguuuc
2187
VPusGfsugaAfaCfCfucuuAfuAfcag
1647
UUCUCUGUAUAAGAGGUUUC
1916


1736169
ascsa

agsasa

ACC






AD-
gsascuuuCfaAfAfGfuacuaau
2188
VPusGfsuauUfaGfUfacuuUfgAfaag
1648
UUGACUUUCAAAGUACUAAU
1917


1736170
ascsa

ucsasa

ACU






AD-
ususugccAfuUfAfUfacaaagu
2189
VPusAfsaacUfuUfGfuauaAfuGfgca
1649
UGUUUGCCAUUAUACAAAGU
1918


1736171
ususa

aascsa

UUG






AD-
gsasacacUfaUfCfGfacauacc
2190
VPusGfsaggUfaUfGfucgaUfaGfugu
1650
CUGAACACUAUCGACAUACC
1919


1736172
uscsa

ucsasg

UCA






AD-
usasgaauGfaCfAfUfuuacuaa
2191
VPusUfsauuAfgUfAfaaugUfcAfuuc
1651
CGUAGAAUGACAUUUACUAA
1920


1736173
usasa

uascsg

UAU






AD-
asasgcuaCfuUfAfGfaaauguu
2192
VPusUfsaaaCfaUfUfucuaAfgUfagc
1652
ACAAGCUACUUAGAAAUGUU
1921


1736174
usasa

uusgsu

UAG






AD-
cscsuuagUfaCfUfCfucagaga
2193
VPusAfsaucUfcUfGfagagUfaCfuaa
1653
UCCCUUAGUACUCUCAGAGA
1922


1736175
ususa

ggsgsa

UUA






AD-
usgsaaugCfaCfAfCfuaacgua
2194
VPusAfsuuaCfgUfUfagugUfgCfauu
1654
CUUGAAUGCACACUAACGUA
1923


1736176
asusa

casasg

AUG






AD-
asasgccuAfaUfGfAfugauaau
2195
VPusUfsaauUfaUfCfaucaUfuAfggc
1655
CAAAGCCUAAUGAUGAUAAU
1924


1736177
usasa

uususg

UAU






AD-
asasacuuUfuUfAfCfuauccca
2196
VPusUfsaugGfgAfUfaguaAfaAfagu
1656
GGAAACUUUUUACUAUCCCA
1925


1736178
usasa

uuscsc

UAU






AD-
csusagcuGfaUfAfCfucuuaag
2197
VPusUfsacuUfaAfGfaguaUfcAfgcu
1657
AGCUAGCUGAUACUCUUAAG
1926


1736179
usasa

agscsu

UAU






AD-
asgscaugAfaAfAfGfauaacuc
2198
VPusUfsagaGfuUfAfucuuUfuCfaug
1658
GCAGCAUGAAAAGAUAACUC
1927


1736180
usasa

cusgsc

UAA






AD-
usasagccAfuUfAfUfgcuauua
2199
VPusAfscuaAfuAfGfcauaAfuGfgcu
1659
ACUAAGCCAUUAUGCUAUUA
1928


1736181
gsusa

uasgsu

GUU






AD-
uscsuagcUfuUfUfAfgcuaaca
2200
VPusUfsaugUfuAfGfcuaaAfaGfcua
1660
AUUCUAGCUUUUAGCUAACA
1929


1736182
usasa

gasasu

UAU






AD-
gsusgugaUfuCfUfUfcaaacuu
2201
VPusUfsgaaGfuUfUfgaagAfaUfcac
1661
UUGUGUGAUUCUUCAAACUU
1930


1736183
csasa

acsasa

CAC






AD-
uscsuccaGfaCfCfUfaacaguu
2202
VPusAfsaaaCfuGfUfuaggUfcUfgga
1662
UCUCUCCAGACCUAACAGUU
1931


1736184
ususa

gasgsa

UUA






AD-
csusuuuuUfuCfAfUfcuagccu
2203
VPusCfsaagGfcUfAfgaugAfaAfaaa
1663
UUCUUUUUUUCAUCUAGCCU
1932


1736185
usgsa

agsasa

UGC






AD-
csasaaauAfaUfUfCfuugacau
2204
VPusAfsgauGfuCfAfagaaUfuAfuuu
1664
GUCAAAAUAAUUCUUGACAU
1933


1736186
csusa

ugsasc

CUA






AD-
gscsaucaCfuUfUfCfugaaaau
2205
VPusUfsuauUfuUfCfagaaAfgUfgau
1665
CAGCAUCACUUUCUGAAAAU
1934


1736187
asasa

gcsusg

AAG






AD-
uscsuuuuGfuGfAfAfacauacu
2206
VPusAfsuagUfaUfGfuuucAfcAfaaa
1666
CAUCUUUUGUGAAACAUACU
1935


1736188
asusa

gasusg

AUU






AD-
csusauuuCfuUfCfCfauaggcu
2207
VPusUfsuagCfcUfAfuggaAfgAfaau
1667
UUCUAUUUCUUCCAUAGGCU
1936


1736189
asasa

agsasa

AAA






AD-
csusucaaUfgAfAfGfuguuaac
2208
VPusUfsuguUfaAfCfacuuCfaUfuga
1668
CUCUUCAAUGAAGUGUUAAC
1937


1736190
asasa

agsasg

AAC






AD-
ususugccUfuCfAfUfucuacuu
2209
VPusGfsaaaGfuAfGfaaugAfaGfgca
1669
GUUUUGCCUUCAUUCUACUU
1938


1736191
uscsa

aasasc

UCU






AD-
asgsguuuUfuAfAfAfuguccua
2210
VPusUfsuuaGfgAfCfauuuAfaAfaac
1670
UCAGGUUUUUAAAUGUCCUA
1939


1736192
asasa

cusgsa

AAA






AD-
gsasauauCfuUfUfGfaguccuu
2211
VPusUfsgaaGfgAfCfucaaAfgAfuau
1671
GUGAAUAUCUUUGAGUCCUU
1940


1736193
csasa

ucsasc

CAA






AD-
gsasacacUfuCfCfAfaagauua
2212
VPusAfsuuaAfuCfUfuuggAfaGfugu
1672
CUGAACACUUCCAAAGAUUA
1941


1736194
asusa

ucsasg

AUC






AD-
csusaaauUfuUfGfUfcuaacaa
2213
VPusAfsuuuGfuUfAfgacaAfaAfuuu
1673
GCCUAAAUUUUGUCUAACAA
1942


1736195
asusa

agsgsc

AUG






AD-
gsusaaacAfaCfUfUfaaaauug
2214
VPusAfsgcaAfuUfUfuaagUfuGfuuu
1674
GAGUAAACAACUUAAAAUUG
1943


1736196
csusa

acsusc

CUU






AD-
asasaauaAfuUfUfAfcucacuc
2215
VPusCfsugaGfuGfAfguaaAfuUfauu
1675
CUAAAAUAAUUUACUCACUC
1944


1736197
asgsa

uusasg

AGA






AD-
gsascaucUfaUfUfCfuguuggu
2216
VPusAfsgacCfaAfCfagaaUfaGfaug
1676
CUGACAUCUAUUCUGUUGGU
1945


1736198
csusa

ucsasg

CUG






AD-
usasacugAfgUfAfGfucuuaua
2217
VPusAfsauaUfaAfGfacuaCfuCfagu
1677
CCUAACUGAGUAGUCUUAUA
1946


1736199
ususa

uasgsg

UUU






AD-
uscsuggaAfuUfUfAfgccuucu
2218
VPusUfsuagAfaGfGfcuaaAfuUfcca
1678
CGUCUGGAAUUUAGCCUUCU
1947


1736200
asasa

gascsg

AAU






AD-
ascsaugcCfuUfGfAfacucuug
2219
VPusUfsucaAfgAfGfuucaAfgGfcau
1679
AAACAUGCCUUGAACUCUUG
1948


1736201
asasa

gususu

AAC






AD-
asuscaagCfaCfUfUfcuugcac
2220
VPusAfsaguGfcAfAfgaagUfgCfuug
1680
AAAUCAAGCACUUCUUGCAC
1949


1736202
ususa

aususu

UUG






AD-
csusugcuUfuUfCfAfucuuuau
2221
VPusGfsuauAfaAfGfaugaAfaAfgca
1681
CACUUGCUUUUCAUCUUUAU
1950


1736203
ascsa

agsusg

ACU






AD-
ususuucuCfcCfUfAfuguaaua
2222
VPusGfsauaUfuAfCfauagGfgAfgaa
1682
GCUUUUCUCCCUAUGUAAUA
1951


1736204
uscsa

aasgsc

UCU






AD-
usgscuuuCfuUfCfUfaugucua
2223
VPusUfsuuaGfaCfAfuagaAfgAfaag
1683
UAUGCUUUCUUCUAUGUCUA
1952


1736205
asasa

casusa

AAA






AD-
ascscugcUfuAfGfCfaaaucgu
2224
VPusAfsgacGfaUfUfugcuAfaGfcag
1684
GAACCUGCUUAGCAAAUCGU
1953


1736206
csusa

gususc

CUG






AD-
asusauucCfuCfUfAfcccuuuc
2225
VPusGfsugaAfaGfGfguagAfgGfaau
1685
AGAUAUUCCUCUACCCUUUC
1954


1736207
ascsa

auscsu

ACA






AD-
uscsccacUfuUfUfCfuuugggu
2226
VPusAfsaacCfcAfAfagaaAfaGfugg
1686
AAUCCCACUUUUCUUUGGGU
1955


1736208
ususa

gasusu

UUC






AD-
asgsgcuuCfuUfGfUfauauacu
2227
VPusUfsaagUfaUfAfuacaAfgAfagc
1687
GCAGGCUUCUUGUAUAUACU
1956


1736209
usasa

cusgsc

UAU






AD-
asasacuuGfaUfCfUfguguuuc
2228
VPusCfsugaAfaCfAfcagaUfcAfagu
1688
UCAAACUUGAUCUGUGUUUC
1957


1736210
asgsa

uusgsa

AGG






AD-
ususugcuUfuAfAfUfgcuaaau
2229
VPusGfsaauUfuAfGfcauuAfaAfgca
1689
CUUUUGCUUUAAUGCUAAAU
1958


1736211
uscsa

aasasg

UCC






AD-
asgsacuaGfcUfGfUfuauuugu
2230
VPusAfsuacAfaAfUfaacaGfcUfagu
1690
AAAGACUAGCUGUUAUUUGU
1959


1736212
asusa

cususu

AUU






AD-
ususccuaCfuUfUfCfccuugaa
2231
VPusUfsauuCfaAfGfggaaAfgUfagg
1691
GCUUCCUACUUUCCCUUGAA
1960


1736213
usasa

aasgsc

UAG






AD-
csasgaacUfgAfAfUfgcucaag
2232
VPusGfsacuUfgAfGfcauuCfaGfuuc
1692
UCCAGAACUGAAUGCUCAAG
1961


1736214
uscsa

ugsgsa

UCU






AD-
uscsuuguUfaCfUfAfauuucuc
2233
VPusAfsugaGfaAfAfuuagUfaAfcaa
1693
GUUCUUGUUACUAAUUUCUC
1962


1736215
asusa

gasasc

AUA






AD-
csuscaguGfaUfAfGfccuuuau
2234
VPusGfsuauAfaAfGfgcuaUfcAfcug
1694
AACUCAGUGAUAGCCUUUAU
1963


1736216
ascsa

agsusu

ACC






AD-
ususuuauGfcUfCfCfuaaaaca
2235
VPusGfsaugUfuUfUfaggaGfcAfuaa
1695
UCUUUUAUGCUCCUAAAACA
1964


1736217
uscsa

aasgsa

UCU






AD-
ususcuccUfuAfGfGfuuauguu
2236
VPusUfsgaaCfaUfAfaccuAfaGfgag
1696
AAUUCUCCUUAGGUUAUGUU
1965


1736218
csasa

aasusu

CAG






AD-
asusugcuCfaUfCfGfagacaua
2237
VPusUfsuuaUfgUfCfucgaUfgAfgca
1697
CUAUUGCUCAUCGAGACAUA
1966


1736219
asasa

ausasg

AAA






AD-
cscsuuugUfaCfAfUfacacacu
2238
VPusUfsaagUfgUfGfuaugUfaCfaaa
1698
UUCCUUUGUACAUACACACU
1967


1736220
usasa

ggsasa

UAG






AD-
ususgaacCfaAfGfAfgcacaug
2239
VPusUfsucaUfgUfGfcucuUfgGfuuc
1699
ACUUGAACCAAGAGCACAUG
1968


1736221
asasa

aasgsu

AAU






AD-
uscsagggAfuUfUfUfaaagucu
2240
VPusUfsuagAfcUfUfuaaaAfuCfccu
1700
CCUCAGGGAUUUUAAAGUCU
1969


1736222
asasa

gasgsg

AAU






AD-
usascuugCfuUfAfUfaaaguga
2241
VPusUfsaucAfcUfUfuauaAfgCfaag
1701
GGUACUUGCUUAUAAAGUGA
1970


1736223
usasa

uascsc

UAG






AD-
asusgcauCfuAfAfAfccuaccu
2242
VPusCfsaagGfuAfGfguuuAfgAfugc
1702
GCAUGCAUCUAAACCUACCU
1971


1736224
usgsa

ausgsc

UGA






AD-
ususgggaAfaAfCfAfcuauuau
2243
VPusUfscauAfaUfAfguguUfuUfccc
1703
ACUUGGGAAAACACUAUUAU
1972


1736225
gsasa

aasgsu

GAA






AD-
asasacucCfaAfAfGfagaaaug
2244
VPusUfsucaUfuUfCfucuuUfgGfagu
1704
UCAAACUCCAAAGAGAAAUG
1973


1736226
asasa

uusgsa

AAU






AD-
asusgggcAfuUfUfUfucaaaac
2245
VPusAfsuguUfuUfGfaaaaAfuGfccc
1705
AUAUGGGCAUUUUUCAAAAC
1974


1736227
asusa

ausasu

AUU






AD-
asusaaugGfaAfCfUfuggacuc
2246
VPusUfsugaGfuCfCfaaguUfcCfauu
1706
AGAUAAUGGAACUUGGACUC
1975


1736228
asasa

auscsu

AAC






AD-
usgsuguaGfaUfGfAfcgaaacc
2247
VPusUfsuggUfuUfCfgucaUfcUfaca
1707
UUUGUGUAGAUGACGAAACC
1976


1736229
asasa

casasa

AAG






AD-
ususcuacCfuCfAfAfagauaag
2248
VPusGfsucuUfaUfCfuuugAfgGfuag
1708
UGUUCUACCUCAAAGAUAAG
1977


1736230
ascsa

aascsa

ACA






AD-
asgsaaggCfaUfAfUfugaguua
2249
VPusAfsauaAfcUfCfaauaUfgCfcuu
1709
UUAGAAGGCAUAUUGAGUUA
1978


1736231
ususa

cusasa

UUU






AD-
asusggagUfuUfUfUfcugcuau
2250
VPusAfsaauAfgCfAfgaaaAfaCfucc
1710
ACAUGGAGUUUUUCUGCUAU
1979


1736232
ususa

ausgsu

UUU






AD-
uscsaguuUfcUfCfAfuuaguuu
2251
VPusAfscaaAfcUfAfaugaGfaAfacu
1711
CCUCAGUUUCUCAUUAGUUU
1980


1736233
gsusa

gasgsg

GUC






AD-
csusgcauAfuAfUfAfagaacga
2252
VPusUfsuucGfuUfCfuuauAfuAfugc
1712
UUCUGCAUAUAUAAGAACGA
1981


1736234
asasa

agsasa

AAU






AD-
usgsagccAfaAfAfUfauuaaau
2253
VPusGfsaauUfuAfAfuauuUfuGfgcu
1713
UCUGAGCCAAAAUAUUAAAU
1982


1736235
uscsa

casgsa

UCU






AD-
asgsaaugAfuAfUfUfuccuguu
2254
VPusAfsaaaCfaGfGfaaauAfuCfauu
1714
CAAGAAUGAUAUUUCCUGUU
1983


1736236
ususa

cususg

UUA






AD-
gsusgcucUfaUfAfUfaaaucuu
2255
VPusGfsgaaGfaUfUfuauaUfaGfagc
1715
UUGUGCUCUAUAUAAAUCUU
1984


1736237
cscsa

acsasa

CCC






AD-
ususuacaGfaGfAfAfgcaucuu
2256
VPusAfsuaaGfaUfGfcuucUfcUfgua
1716
AUUUUACAGAGAAGCAUCUU
1985


1736238
asusa

aasasu

AUU






AD-
gsuscuugAfgUfUfCfugcauga
2257
VPusUfsgucAfuGfCfagaaCfuCfaag
1717
AUGUCUUGAGUUCUGCAUGA
1986


1736239
csasa

acsasu

CAG






AD-
csusucaaAfuCfUfAfuaauuuu
2258
VPusGfsuaaAfaUfUfauagAfuUfuga
1718
CCCUUCAAAUCUAUAAUUUU
1987


1736240
ascsa

agsgsg

ACU






AD-
gsasagcaUfaUfAfGfaacucua
2259
VPusAfsauaGfaGfUfucuaUfaUfgcu
1719
GUGAAGCAUAUAGAACUCUA
1988


1736241
ususa

ucsasc

UUU






AD-
gsasgcugCfuUfCfUfaaauaac
2260
VPusUfsuguUfaUfUfuagaAfgCfagc
1720
GAGAGCUGCUUCUAAAUAAC
1989


1736242
asasa

ucsusc

AAA






AD-
usgsacugUfaUfUfUfccugauc
2261
VPusAfsugaUfcAfGfgaaaUfaCfagu
1721
UGUGACUGUAUUUCCUGAUC
1990


1736243
asusa

cascsa

AUU






AD-
gsusucugAfaGfGfAfuauacuu
2262
VPusAfsgaaGfuAfUfauccUfuCfaga
1722
GCGUUCUGAAGGAUAUACUU
1991


1736244
csusa

acsgsc

CUG






AD-
gsusgaagCfaUfGfAfuucaaua
2263
VPusAfsguaUfuGfAfaucaUfgCfuuc
1723
CUGUGAAGCAUGAUUCAAUA
1992


1736245
csusa

acsasg

CUG






AD-
asasugcuGfcUfUfCfacagauu
2264
VPusAfsaaaUfcUfGfugaaGfcAfgca
1724
CGAAUGCUGCUUCACAGAUU
1993


1736246
ususa

uuscsg

UUU






AD-
usgsugggUfuAfUfGfuuaaucu
2265
VPusUfscagAfuUfAfacauAfaCfcca
1725
ACUGUGGGUUAUGUUAAUCU
1994


1736247
gsasa

casgsu

GAA






AD-
gsasguacAfgAfAfGfaaugcuc
2266
VPusAfsugaGfcAfUfucuuCfuGfuac
1726
GUGAGUACAGAAGAAUGCUC
1995


1736248
asusa

ucsasc

AUG






AD-
csusguauUfuCfAfUfccuagau
2267
VPusAfsaauCfuAfGfgaugAfaAfuac
1727
AGCUGUAUUUCAUCCUAGAU
1996


1736249
ususa

agscsu

UUU






AD-
asasucugGfuAfAfAfugcugga
2268
VPusUfsuucCfaGfCfauuuAfcCfaga
1728
GCAAUCUGGUAAAUGCUGGA
1997


1736250
asasa

uusgsc

AAA






AD-
usgscucaGfaUfUfAfccugauc
2269
VPusAfscgaUfcAfGfguaaUfcUfgag
1729
AUUGCUCAGAUUACCUGAUC
1998


1736251
gsusa

casasu

GUG






AD-
gsascagcUfaUfGfGfaguuugc
2270
VPusAfscgcAfaAfCfuccaUfaGfcug
1730
CUGACAGCUAUGGAGUUUGC
1999


1736252
gsusa

ucsasg

GUG






AD-
usasgaacAfuGfCfUfcacuuac
2271
VPusUfsuguAfaGfUfgagcAfuGfuuc
1731
UAUAGAACAUGCUCACUUAC
2000


1736253
asasa

uasusa

AAA






AD-
asusuaugCfuUfCfAfuuucacu
2272
VPusAfsuagUfgAfAfaugaAfgCfaua
1732
UGAUUAUGCUUCAUUUCACU
2001


1736254
asusa

auscsa

AUG






AD-
csasacagCfaAfGfUfcauaaaa
2273
VPusAfscuuUfuAfUfgacuUfgCfugu
1733
ACCAACAGCAAGUCAUAAAA
2002


1736255
gsusa

ugsgsu

GUA






AD-
ususgucuGfaAfAfAfugucuuu
2274
VPusUfsuaaAfgAfCfauuuUfcAfgac
1734
CAUUGUCUGAAAAUGUCUUU
2003


1736256
asasa

aasusg

AAG






AD-
usgsuuggUfuCfAfAfaggacaa
2275
VPusAfsauuGfuCfCfuuugAfaCfcaa
1735
UCUGUUGGUUCAAAGGACAA
2004


1736257
ususa

casgsa

UUG






AD-
uscsuaaaCfuUfUfAfauauauc
2276
VPusUfscgaUfaUfAfuuaaAfgUfuua
1736
GCUCUAAACUUUAAUAUAUC
2005


1736258
gsasa

gasgsc

GAA






AD-
asasgugaAfaCfAfUfgacuguc
2277
VPusAfscgaCfaGfUfcaugUfuUfcac
1737
UUAAGUGAAACAUGACUGUC
2006


1736259
gsusa

uusasa

GUG






AD-
asuscgucCfaUfAfCfaguuuuc
2278
VPusAfsugaAfaAfCfuguaUfgGfacg
1738
AUAUCGUCCAUACAGUUUUC
2007


1736260
asusa

ausasu

AUU






AD-
csusucagGfaAfAfUfaguagga
2279
VPusUfsuucCfuAfCfuauuUfcCfuga
1739
UGCUUCAGGAAAUAGUAGGA
2008


1736261
asasa

agscsa

AAA






AD-
csascccuUfuCfUfGfuaaggac
2280
VPusCfsaguCfcUfUfacagAfaAfggg
1740
CCCACCCUUUCUGUAAGGAC
2009


1736262
usgsa

ugsgsg

UGU






AD-
asasagagAfuAfCfCfugacauc
2281
VPusAfsggaUfgUfCfagguAfuCfucu
1741
CAAAAGAGAUACCUGACAUC
2010


1736263
csusa

uususg

CUG






AD-
asusgagcAfuUfAfAfuguuuuc
2282
VPusCfsagaAfaAfCfauuaAfuGfcuc
1742
UAAUGAGCAUUAAUGUUUUC
2011


1736264
usgsa

aususa

UGA






AD-
usgsacauUfuUfUfUfcucauag
2283
VPusUfsucuAfuGfAfgaaaAfaAfugu
1743
GUUGACAUUUUUUCUCAUAG
2012


1736265
asasa

casasc

AAA






AD-
csasgagaUfuAfAfAfugacuac
2284
VPusUfsaguAfgUfCfauuuAfaUfcuc
1744
AUCAGAGAUUAAAUGACUAC
2013


1736266
usasa

ugsasu

UAG






AD-
gscsugucAfaAfUfGfuuauauu
2285
VPusAfscaaUfaUfAfacauUfuGfaca
1745
AUGCUGUCAAAUGUUAUAUU
2014


1736267
gsusa

gcsasu

GUU






AD-
asasuauaAfuAfCfUfacagcaa
2286
VPusUfsuuuGfcUfGfuaguAfuUfaua
1746
GGAAUAUAAUACUACAGCAA
2015


1736268
asasa

uuscsc

AAU






AD-
gsgsugucUfaAfAfUfauaauuu
2287
VPusUfsgaaAfuUfAfuauuUfaGfaca
1747
AGGGUGUCUAAAUAUAAUUU
2016


1736269
csasa

ccscsu

CAU






AD-
csuscuuuAfuAfCfAfaaaugag
2288
VPusCfsucuCfaUfUfuuguAfuAfaag
1748
UUCUCUUUAUACAAAAUGAG
2017


1736270
asgsa

agsasa

AGU






AD-
gscsaguaCfcAfAfAfugaauaa
2289
VPusUfsuuuAfuUfCfauuuGfgUfacu
1749
UAGCAGUACCAAAUGAAUAA
2018


1736271
asasa

gcsusa

AAG






AD-
ususguugGfuAfCfAfcaaggua
2290
VPusUfsuuaCfcUfUfguguAfcCfaac
1750
GAUUGUUGGUACACAAGGUA
2019


1736272
asasa

aasusc

AAC






AD-
csuscuuaUfuUfAfAfcuuaacc
2291
VPusAfscggUfuAfAfguuaAfaUfaag
1751
AACUCUUAUUUAACUUAACC
2020


1736273
gsusa

agsusu

GUC






AD-
usgscuugAfuGfAfUfacaauga
2292
VPusAfsuucAfuUfGfuaucAfuCfaag
1752
AAUGCUUGAUGAUACAAUGA
2021


1736274
asusa

casusu

AUG






AD-
asascuggGfaAfAfGfacaauuu
2293
VPusUfscaaAfuUfGfucuuUfcCfcag
1753
GUAACUGGGAAAGACAAUUU
2022


1736275
gsasa

uusasc

GAA






AD-
csusccuuAfuAfUfGfacuauuu
2294
VPusUfscaaAfuAfGfucauAfuAfagg
1754
GGCUCCUUAUAUGACUAUUU
2023


1736276
gsasa

agscsc

GAA






AD-
asgsucauGfcUfAfAfccaaugg
2295
VPusUfsuccAfuUfGfguuaGfcAfuga
1755
UCAGUCAUGCUAACCAAUGG
2024


1736277
asasa

cusgsa

AAA






AD-
cscsugaaGfuCfAfCfacagcua
2296
VPusAfsuuaGfcUfGfugugAfcUfuca
1756
GUCCUGAAGUCACACAGCUA
2025


1736278
asusa

ggsasc

AUG






AD-
ususgcugCfuGfAfCfaacaaag
2297
VPusAfsucuUfuGfUfugucAfgCfagc
1757
CAUUGCUGCUGACAACAAAG
2026


1736279
asusa

aasusg

AUA






AD-
usascugaCfuUfUfGfccuguaa
2298
VPusCfsuuuAfcAfGfgcaaAfgUfcag
1758
AUUACUGACUUUGCCUGUAA
2027


1736280
asgsa

uasasu

AGA






AD-
asasucccUfaUfUfUfuaaaauu
2299
VPusGfsgaaUfuUfUfaaaaUfaGfgga
1759
ACAAUCCCUAUUUUAAAAUU
2028


1736281
cscsa

uusgsu

CCC






AD-
gsusgccuUfaGfGfAfgauuacc
2300
VPusAfsgggUfaAfUfcuccUfaAfggc
1760
GAGUGCCUUAGGAGAUUACC
2029


1736282
csusa

acsusc

CUU






AD-
gsascaauCfuAfAfAfuauauca
2301
VPusGfsaugAfuAfUfauuuAfgAfuug
1761
CAGACAAUCUAAAUAUAUCA
2030


1736283
uscsa

ucsusg

UCA






AD-
usgsugauAfaUfGfAfacaccgu
2302
VPusUfsuacGfgUfGfuucaUfuAfuca
1762
CUUGUGAUAAUGAACACCGU
2031


1736284
asasa

casasg

AAG






AD-
uscsaccgUfuGfUfAfaagacuu
2303
VPusAfsaaaGfuCfUfuuacAfaCfggu
1763
AAUCACCGUUGUAAAGACUU
2032


1736285
ususa

gasusu

UUU






AD-
ususagagAfaGfCfUfuccugac
2304
VPusAfsuguCfaGfGfaagcUfuCfucu
1764
GAUUAGAGAAGCUUCCUGAC
2033


1736286
asusa

aasusc

AUC






AD-
asascaguAfaAfGfAfaaugcua
2305
VPusAfsguaGfcAfUfuucuUfuAfcug
1765
AUAACAGUAAAGAAAUGCUA
2034


1736287
csusa

uusasu

CUU






AD-
usasuguuCfuGfAfCfuugagag
2306
VPusAfsacuCfuCfAfagucAfgAfaca
1766
UUUAUGUUCUGACUUGAGAG
2035


1736288
ususa

uasasa

UUA






AD-
ususagagCfaUfGfCfuaucuuu
2307
VPusCfsuaaAfgAfUfagcaUfgCfucu
1767
AAUUAGAGCAUGCUAUCUUU
2036


1736289
asgsa

aasusu

AGG






AD-
usasgucuUfuGfAfUfugaaaua
2308
VPusCfsuuaUfuUfCfaaucAfaAfgac
1768
CAUAGUCUUUGAUUGAAAUA
2037


1736290
asgsa

uasusg

AGU






AD-
ususgguaAfaCfGfAfgauuuaa
2309
VPusUfsguuAfaAfUfcucgUfuUfacc
1769
CUUUGGUAAACGAGAUUUAA
2038


1736291
csasa

aasasg

CAU






AD-
gsuscugaAfaAfUfUfgcuuuca
2310
VPusAfsaugAfaAfGfcaauUfuUfcag
1770
AGGUCUGAAAAUUGCUUUCA
2039


1736292
ususa

acscsu

UUU






AD-
asusgaacUfuGfUfUfgccuugu
2311
VPusUfsuacAfaGfGfcaacAfaGfuuc
1771
GCAUGAACUUGUUGCCUUGU
2040


1736293
asasa

ausgsc

AAA






AD-
gsgsgcaaUfaAfAfCfuguauca
2312
VPusUfsuugAfuAfCfaguuUfaUfugc
1772
UUGGGCAAUAAACUGUAUCA
2041


1736294
asasa

ccsasa

AAA






AD-
ascsauguUfaGfCfAfuauaaug
2313
VPusUfsacaUfuAfUfaugcUfaAfcau
1773
GUACAUGUUAGCAUAUAAUG
2042


1736295
usasa

gusasc

UAU






AD-
usgsugagAfgUfAfUfagaauuu
2314
VPusAfsgaaAfuUfCfuauaCfuCfuca
1774
ACUGUGAGAGUAUAGAAUUU
2043


1736296
csusa

casgsu

CUU






AD-
asusccuuCfaUfUfUfggcacua
2315
VPusUfsauaGfuGfCfcaaaUfgAfagg
1775
UAAUCCUUCAUUUGGCACUA
2044


1736297
usasa

aususa

UAG






AD-
ascsauuuAfgAfAfAfguagcuu
2316
VPusUfsaaaGfcUfAfcuuuCfuAfaau
1776
ACACAUUUAGAAAGUAGCUU
2045


1736298
usasa

gusgsu

UAU






AD-
asascuguUfcUfAfUfaaagcaa
2317
VPusCfsuuuGfcUfUfuauaGfaAfcag
1777
UUAACUGUUCUAUAAAGCAA
2046


1736299
asgsa

uusasa

AGC






AD-
cscsuccaGfaGfAfUfgaaagau
2318
VPusAfsgauCfuUfUfcaucUfcUfgga
1778
CUCCUCCAGAGAUGAAAGAU
2047


1736300
csusa

ggsasg

CUU






AD-
ususguuuAfaCfUfAfugacucc
2319
VPusUfsaggAfgUfCfauagUfuAfaac
1779
UGUUGUUUAACUAUGACUCC
2048


1736301
usasa

aascsa

UAA






AD-
csusguuuGfaCfAfAfugcuuug
2320
VPusAfsacaAfaGfCfauugUfcAfaac
1780
UUCUGUUUGACAAUGCUUUG
2049


1736302
ususa

agsasa

UUC






AD-
usgsuccuAfaAfAfGfaaauuuu
2321
VPusGfsaaaAfaUfUfucuuUfuAfgga
1781
GUUGUCCUAAAAGAAAUUUU
2050


1736303
uscsa

casasc

UCU






AD-
ascsagauUfgAfAfCfaaagaac
2322
VPusAfsaguUfcUfUfuguuCfaAfucu
1782
CUACAGAUUGAACAAAGAAC
2051


1736304
ususa

gusasg

UUA






AD-
gsusuuaaCfcUfGfUfccaaacu
2323
VPusGfsaagUfuUfGfgacaGfgUfuaa
1783
UCGUUUAACCUGUCCAAACU
2052


1736305
uscsa

acsgsa

UCU






AD-
csasaaauGfuUfUfAfacuuuac
2324
VPusUfsgguAfaAfGfuuaaAfcAfuuu
1784
ACCAAAAUGUUUAACUUUAC
2053


1736306
csasa

ugsgsu

CAA






AD-
uscsccauUfgUfGfUfaauauuu
2325
VPusAfsuaaAfuAfUfuacaCfaAfugg
1785
AGUCCCAUUGUGUAAUAUUU
2054


1736307
asusa

gascsu

AUU






AD-
gsusugggUfaAfAfUfaugcuua
2326
VPusAfsauaAfgCfAfuauuUfaCfcca
1786
AUGUUGGGUAAAUAUGCUUA
2055


1736308
ususa

acsasu

UUG






AD-
csasggguUfgUfCfUfuugaguc
2327
VPusCfsagaCfuCfAfaagaCfaAfccc
1787
CUCAGGGUUGUCUUUGAGUC
2056


1736309
usgsa

ugsasg

UGC






AD-
gscsuaaaAfuCfCfAfacugcaa
2328
VPusAfsauuGfcAfGfuuggAfuUfuua
1788
GGGCUAAAAUCCAACUGCAA
2057


1736310
ususa

gcscsc

UUG






AD-
csasggacUfgAfAfGfuguguau
2329
VPusAfscauAfcAfCfacuuCfaGfucc
1789
GCCAGGACUGAAGUGUGUAU
2058


1736311
gsusa

ugsgsc

GUC






AD-
gsasguacCfaAfUfUfgccuuau
2330
VPusUfsaauAfaGfGfcaauUfgGfuac
1790
AGGAGUACCAAUUGCCUUAU
2059


1736312
usasa

ucscsu

UAU






AD-
asasgugcCfuAfUfGfugaagug
2331
VPusAfsucaCfuUfCfacauAfgGfcac
1791
AAAAGUGCCUAUGUGAAGUG
2060


1736313
asusa

uususu

AUU






AD-
usasacaaUfaAfUfAfgaacugc
2332
VPusUfsggcAfgUfUfcuauUfaUfugu
1792
CCUAACAAUAAUAGAACUGC
2061


1736314
csasa

uasgsg

CAG






AD-
gscsuguuCfcAfUfAfccauugc
2333
VPusAfsagcAfaUfGfguauGfgAfaca
1793
CUGCUGUUCCAUACCAUUGC
2062


1736315
ususa

gcsasg

UUU






AD-
usasgacuGfgAfGfAfagauuau
2334
VPusGfsaauAfaUfCfuucuCfcAfguc
1794
UCUAGACUGGAGAAGAUUAU
2063


1736316
uscsa

uasgsa

UCA






AD-
ususccaaCfaGfCfAfucaccaa
2335
VPusAfsuuuGfgUfGfaugcUfgUfugg
1795
CCUUCCAACAGCAUCACCAA
2064


1736317
asusa

aasgsg

AUG






AD-
usasauugGfuAfCfAfgauucug
2336
VPusAfsacaGfaAfUfcuguAfcCfaau
1796
UGUAAUUGGUACAGAUUCUG
2065


1736318
ususa

uascsa

UUG






AD-
gsasgaaaCfaUfUfAfuuuguug
2337
VPusGfsacaAfcAfAfauaaUfgUfuuc
1797
AAGAGAAACAUUAUUUGUUG
2066


1736319
uscsa

ucsusu

UCA






AD-
csgscucuCfaAfUfUfgcuagug
2338
VPusAfsccaCfuAfGfcaauUfgAfgag
1798
GGCGCUCUCAAUUGCUAGUG
2067


1736320
gsusa

cgscsc

GUC






AD-
csgsguauCfaGfAfAfacagcaa
2339
VPusAfsuuuGfcUfGfuuucUfgAfuac
1799
GACGGUAUCAGAAACAGCAA
2068


1736321
asusa

cgsusc

AUA






AD-
cscscagaCfaUfAfAfuuuuaua
2340
VPusAfsauaUfaAfAfauuaUfgUfcug
1800
CUCCCAGACAUAAUUUUAUA
2069


1736322
ususa

ggsasg

UUU






AD-
usasguacAfuUfUfUfgagguau
2341
VPusAfsaauAfcCfUfcaaaAfuGfuac
1801
GUUAGUACAUUUUGAGGUAU
2070


1736323
ususa

uasasc

UUU






AD-
asasaugcUfaUfUfGfauaacag
2342
VPusUfsacuGfuUfAfucaaUfaGfcau
1802
GUAAAUGCUAUUGAUAACAG
2071


1736324
usasa

uusasc

UAA






AD-
usasgcugAfaUfUfUfgggacua
2343
VPusCfsauaGfuCfCfcaaaUfuCfagc
1803
GAUAGCUGAAUUUGGGACUA
2072


1736325
usgsa

uasusc

UGU






AD-
asusugugGfuUfUfUfcaaagau
2344
VPusAfsuauCfuUfUfgaaaAfcCfaca
1804
CCAUUGUGGUUUUCAAAGAU
2073


1736326
asusa

ausgsg

AUU






AD-
cscsugguUfgCfAfGfuaucuga
2345
VPusUfsuucAfgAfUfacugCfaAfcca
1805
AACCUGGUUGCAGUAUCUGA
2074


1736327
asasa

ggsusu

AAA






AD-
usasgaauGfgUfUfGfuugagcu
2346
VPusUfsuagCfuCfAfacaaCfcAfuuc
1806
UGUAGAAUGGUUGUUGAGCU
2075


1736328
asasa

uascsa

AAG






AD-
csusggccAfuCfAfUfuauuacu
2347
VPusAfscagUfaAfUfaaugAfuGfgcc
1807
AGCUGGCCAUCAUUAUUACU
2076


1736329
gsusa

agscsu

GUG






AD-
ususgacaGfaUfAfAfaauacga
2348
VPusCfsuucGfuAfUfuuuaUfcUfguc
1808
AAUUGACAGAUAAAAUACGA
2077


1736330
asgsa

aasusu

AGU






AD-
uscsacaaAfcAfCfAfucauuac
2349
VPusUfsuguAfaUfGfauguGfuUfugu
1809
AUUCACAAACACAUCAUUAC
2078


1736331
asasa

gasasu

AAG






AD-
cscsaugaUfuGfUfAfugaaaau
2350
VPusCfsuauUfuUfCfauacAfaUfcau
1810
UUCCAUGAUUGUAUGAAAAU
2079


1736332
asgsa

ggsasa

AGU






AD-
csascagaGfuAfAfUfgaauauu
2351
VPusUfsaaaUfaUfUfcauuAfcUfcug
1811
GACACAGAGUAAUGAAUAUU
2080


1736333
usasa

ugsusc

UAA






AD-
asgscugcUfuAfGfUfggaagau
2352
VPusAfscauCfuUfCfcacuAfaGfcag
1812
GGAGCUGCUUAGUGGAAGAU
2081


1736334
gsusa

cuscsc

GUA






AD-
usasgcucUfgUfGfUfgcugaua
2353
VPusGfsguaUfcAfGfcacaCfaGfagc
1813
UCUAGCUCUGUGUGCUGAUA
2082


1736335
cscsa

uasgsa

CCU






AD-
csasuucgAfgAfGfAfauaugag
2354
VPusAfsgcuCfaUfAfuucuCfuCfgaa
1814
UACAUUCGAGAGAAUAUGAG
2083


1736336
csusa

ugsusa

CUG






AD-
asusgcauUfuUfCfUfgaaaaug
2355
VPusUfsacaUfuUfUfcagaAfaAfugc
1815
GUAUGCAUUUUCUGAAAAUG
2084


1736337
usasa

ausasc

UAU






AD-
gsusuucgAfcCfAfAfguauccc
2356
VPusUfsuggGfaUfAfcuugGfuCfgaa
1816
AAGUUUCGACCAAGUAUCCC
2085


1736338
asasa

acsusu

AAA






AD-
uscsuugcUfuGfCfCfacaauau
2357
VPusCfsgauAfuUfGfuggcAfaGfcaa
1817
UAUCUUGCUUGCCACAAUAU
2086


1736339
csgsa

gasusa

CGG






AD-
gsgsguacAfaGfAfGfggaauac
2358
VPusUfsuguAfuUfCfccucUfuGfuac
1818
UCGGGUACAAGAGGGAAUAC
2087


1736340
asasa

ccsgsa

AAA






AD-
gsgsugauCfaAfAfUfccugugu
2359
VPusAfsgacAfcAfGfgauuUfgAfuca
1819
CAGGUGAUCAAAUCCUGUGU
2088


1736341
csusa

ccsusg

CUC






AD-
csasguggGfuUfUfCfuaggaua
2360
VPusCfscuaUfcCfUfagaaAfcCfcac
1820
GACAGUGGGUUUCUAGGAUA
2089


1736342
gsgsa

ugsusc

GGU






AD-
asascuaaGfuAfUfUfuuuaagg
2361
VPusGfsuccUfuAfAfaaauAfcUfuag
1821
GUAACUAAGUAUUUUUAAGG
2090


1736343
ascsa

uusasc

ACA






AD-
csasuaauGfuGfAfUfuguuaaa
2362
VPusAfsauuUfaAfCfaaucAfcAfuua
1822
CCCAUAAUGUGAUUGUUAAA
2091


1736344
ususa

ugsgsg

UUU






AD-
gsasgaagAfaUfUfAfagaaaac
2363
VPusGfsaguUfuUfCfuuaaUfuCfuuc
1823
UUGAGAAGAAUUAAGAAAAC
2092


1736345
uscsa

ucsasa

UCU






AD-
gsasagagAfaAfUfUfgauuguu
2364
VPusUfsaaaCfaAfUfcaauUfuCfucu
1824
GAGAAGAGAAAUUGAUUGUU
2093


1736346
usasa

ucsusc

UAU






AD-
asgsugugAfaAfCfUfugugcca
2365
VPusUfsaugGfcAfCfaaguUfuCfaca
1825
AAAGUGUGAAACUUGUGCCA
2094


1736347
usasa

cususu

UAG






AD-
csusgagaCfaCfUfGfagaaaug
2366
VPusGfsacaUfuUfCfucagUfgUfcuc
1826
UCCUGAGACACUGAGAAAUG
2095


1736348
uscsa

agsgsa

UCC






AD-
usgsgcuuAfuAfUfGfuguuuaa
2367
VPusCfsuuuAfaAfCfacauAfuAfagc
1827
AUUGGCUUAUAUGUGUUUAA
2096


1736349
asgsa

casasu

AGA






AD-
usgscauuUfuGfAfCfauugcaa
2368
VPusUfsuuuGfcAfAfugucAfaAfaug
1828
AUUGCAUUUUGACAUUGCAA
2097


1736350
asasa

casasu

AAC






AD-
ususagguUfaGfAfAfguuccag
2369
VPusUfsucuGfgAfAfcuucUfaAfccu
1829
CAUUAGGUUAGAAGUUCCAG
2098


1736351
asasa

aasusg

AAU






AD-
usgscgacAfuGfAfAfaacaucc
2370
VPusAfsaggAfuGfUfuuucAfuGfucg
1830
GCUGCGACAUGAAAACAUCC
2099


1736352
ususa

casgsc

UUG






AD-
gsasgaggAfuUfUfUfuuaccau
2371
VPusAfsgauGfgUfAfaaaaAfuCfcuc
1831
AAGAGAGGAUUUUUUACCAU
2100


1736353
csusa

ucsusu

CUC






AD-
gsasagguGfaAfGfAfgaauuuc
2372
VPusUfsugaAfaUfUfcucuUfcAfccu
1832
UGGAAGGUGAAGAGAAUUUC
2101


1736354
asasa

ucscsa

AAA






AD-
usgsguauCfuGfAfAfuaucaug
2373
VPusUfsucaUfgAfUfauucAfgAfuac
1833
GCUGGUAUCUGAAUAUCAUG
2102


1736355
asasa

casgsc

AAC






AD-
usgsuuggUfuUfAfAfuuuuuca
2374
VPusGfsuugAfaAfAfauuaAfaCfcaa
1834
CAUGUUGGUUUAAUUUUUCA
2103


1736356
ascsa

casusg

ACC






AD-
usasguugUfaAfUfUfuaaaugu
2375
VPusCfscacAfuUfUfaaauUfaCfaac
1835
AGUAGUUGUAAUUUAAAUGU
2104


1736357
gsgsa

uascsu

GGA






AD-
gsusgaauGfuUfUfUfugccauu
2376
VPusAfsaaaUfgGfCfaaaaAfcAfuuc
1836
AUGUGAAUGUUUUUGCCAUU
2105


1736358
ususa

acsasu

UUU






AD-
csasgagaUfgAfUfUfuuucuuu
2377
VPusUfsaaaAfgAfAfaaauCfaUfcuc
1837
GGCAGAGAUGAUUUUUCUUU
2106


1736359
usasa

ugscsc

UAA






AD-
asgsaaaaUfuAfGfAfuucagau
2378
VPusAfsgauCfuGfAfaucuAfaUfuuu
1838
ACAGAAAAUUAGAUUCAGAU
2107


1736360
csusa

cusgsu

CUC






AD-
ascsuggaAfaAfUfUfaagaaag
2379
VPusUfsacuUfuCfUfuaauUfuUfcca
1839
CCACUGGAAAAUUAAGAAAG
2108


1736361
usasa

gusgsg

UAG






AD-
usasaaguGfgGfAfAfagauaau
2380
VPusUfsuauUfaUfCfuuucCfcAfcuu
1840
UGUAAAGUGGGAAAGAUAAU
2109


1736362
asasa

uascsa

AAA






AD-
csusaggcUfaAfGfAfaagaguu
2381
VPusAfscaaCfuCfUfuucuUfaGfccu
1841
AACUAGGCUAAGAAAGAGUU
2110


1736363
gsusa

agsusu

GUA






AD-
gscsugauAfaAfAfUfuaaugga
2382
VPusUfsaucCfaUfUfaauuUfuAfuca
1842
GUGCUGAUAAAAUUAAUGGA
2111


1736364
usasa

gcsasc

UAA






AD-
cscsuguaUfuUfCfUfuuaguug
2383
VPusGfsacaAfcUfAfaagaAfaUfaca
1843
UUCCUGUAUUUCUUUAGUUG
2112


1736365
uscsa

ggsasa

UCG






AD-
ususuguuUfuGfCfUfuuugaca
2384
VPusUfsuugUfcAfAfaagcAfaAfaca
1844
GCUUUGUUUUGCUUUUGACA
2113


1736366
asasa

aasgsc

AAC






AD-
usgsgcugUfgAfAfAfauauucu
2385
VPusGfsgagAfaUfAfuuuuCfaCfagc
1845
UGUGGCUGUGAAAAUAUUCU
2114


1736367
cscsa

cascsa

CCU






AD-
ascsuauuUfuAfGfGfcauagca
2386
VPusAfsgugCfuAfUfgccuAfaAfaua
1846
GCACUAUUUUAGGCAUAGCA
2115


1736368
csusa

gusgsc

CUU






AD-
ususucagUfaCfUfGfuauaaag
2387
VPusCfsacuUfuAfUfacagUfaCfuga
1847
AUUUUCAGUACUGUAUAAAG
2116


1736369
usgsa

aasasu

UGG






AD-
gsusgaugCfaAfUfCfuauguuu
2388
VPusGfsgaaAfcAfUfagauUfgCfauc
1848
AGGUGAUGCAAUCUAUGUUU
2117


1736370
cscsa

acscsu

CCC






AD-
usgsuuugGfcAfGfAfucucauc
2389
VPusUfsugaUfgAfGfaucuGfcCfaaa
1849
AAUGUUUGGCAGAUCUCAUC
2118


1736371
asasa

casusu

AAU






AD-
asasgguuGfuUfUfGfugaccag
2390
VPusUfsucuGfgUfCfacaaAfcAfacc
1850
GAAAGGUUGUUUGUGACCAG
2119


1736372
asasa

uususc

AAG






AD-
gsgsaaggAfaAfUfAfuuuugag
2391
VPusUfsucuCfaAfAfauauUfuCfcuu
1851
AAGGAAGGAAAUAUUUUGAG
2120


1736373
asasa

ccsusu

AAU






AD-
ususuuggUfaGfCfGfugacucu
2392
VPusGfsaagAfgUfCfacgcUfaCfcaa
1852
UCUUUUGGUAGCGUGACUCU
2121


1736374
uscsa

aasgsa

UCU






AD-
usgsaacaGfgAfAfAfagaugua
2393
VPusUfsuuaCfaUfCfuuuuCfcUfguu
1853
AAUGAACAGGAAAAGAUGUA
2122


1736375
asasa

casusu

AAA






AD-
gsgsgaacCfaAfGfAfgguauau
2394
VPusCfscauAfuAfCfcucuUfgGfuuc
1854
GUGGGAACCAAGAGGUAUAU
2123


1736376
gsgsa

ccsasc

GGC






AD-
usgsgcacUfaGfGfUfccaaauc
2395
VPusAfsagaUfuUfGfgaccUfaGfugc
1855
ACUGGCACUAGGUCCAAAUC
2124


1736377
ususa

casgsu

UUG






AD-
csascaccUfuCfAfUfauggaga
2396
VPusAfsaucUfcCfAfuaugAfaGfgug
1856
GGCACACCUUCAUAUGGAGA
2125


1736378
ususa

ugscsc

UUG






AD-
csusgguuUfaCfUfGfggaaaua
2397
VPusGfscuaUfuUfCfccagUfaAfacc
1857
GUCUGGUUUACUGGGAAAUA
2126


1736379
gscsa

agsasc

GCC






AD-
gscsccaaAfgGfAfAfuguauau
2398
VPusUfsuauAfuAfCfauucCfuUfugg
1858
AGGCCCAAAGGAAUGUAUAU
2127


1736380
asasa

gcscsu

AAG






AD-
ususaacuGfcAfAfGfaguuuac
2399
VPusCfsaguAfaAfCfucuuGfcAfguu
1859
UUUUAACUGCAAGAGUUUAC
2128


1736381
usgsa

aasasa

UGU






AD-
gsasaccaCfuCfUfCfugagugc
2400
VPusUfsugcAfcUfCfagagAfgUfggu
1860
AGGAACCACUCUCUGAGUGC
2129


1736382
asasa

ucscsu

AAU






AD-
ususaucuUfuUfCfAfuccuggc
2401
VPusAfsugcCfaGfGfaugaAfaAfgau
1861
CUUUAUCUUUUCAUCCUGGC
2130


1736383
asusa

aasasg

AUU






AD-
gsusgaguGfuUfGfGfuaugcca
2402
VPusGfsuugGfcAfUfaccaAfcAfcuc
1862
GCGUGAGUGUUGGUAUGCCA
2131


1736384
ascsa

acsgsc

ACG






AD-
asgsaaugUfaUfUfUfggcuaaa
2403
VPusUfsauuUfaGfCfcaaaUfaCfauu
1863
UGAGAAUGUAUUUGGCUAAA
2132


1736385
usasa

cuscsa

UAA






AD-
gsasacccUfuUfUfAfuuaagag
2404
VPusUfsccuCfuUfAfauaaAfaGfggu
1864
UGGAACCCUUUUAUUAAGAG
2133


1736386
gsasa

ucscsa

GAG






AD-
csusccugUfcCfAfUfagcugcg
2405
VPusAfsucgCfaGfCfuaugGfaCfagg
1865
GCCUCCUGUCCAUAGCUGCG
2134


1736387
asusa

agsgsc

AUG






AD-
ascsugagUfuGfAfAfauaagga
2406
VPusCfsuucCfuUfAfuuucAfaCfuca
1866
UUACUGAGUUGAAAUAAGGA
2135


1736388
asgsa

gusasa

AGG






AD-
csusgccaAfaCfAfGfaaggagc
2407
VPusAfsugcUfcCfUfucugUfuUfggc
1867
ACCUGCCAAACAGAAGGAGC
2136


1736389
asusa

agsgsu

AUG






AD-
gsgscaaaGfuUfGfUfgaagcac
2408
VPusGfsaguGfcUfUfcacaAfcUfuug
1868
GUGGCAAAGUUGUGAAGCAC
2137


1736390
uscsa

ccsasc

UCC






AD-
asusaggaUfgAfUfGfaaguuua
2409
VPusUfscuaAfaCfUfucauCfaUfccu
1869
AAAUAGGAUGAUGAAGUUUA
2138


1736391
gsasa

aususu

GAG






AD-
asusucguAfuCfUfUfaaaaugg
2410
VPusUfsgccAfuUfUfuaagAfuAfcga
1870
GUAUUCGUAUCUUAAAAUGG
2139


1736392
csasa

ausasc

CAC






AD-
csascagcUfuGfGfGfuaauagc
2411
VPusAfscgcUfaUfUfacccAfaGfcug
1871
AGCACAGCUUGGGUAAUAGC
2140


1736393
gsusa

ugscsu

GUU






AD-
ususugcaAfcAfAfCfauaacac
2412
VPusCfsaguGfuUfAfuguuGfuUfgca
1872
UUUUUGCAACAACAUAACAC
2141


1736394
usgsa

aasasa

UGC






AD-
usgsccacCfaUfGfUfgacuuau
2413
VPusCfsaauAfaGfUfcacaUfgGfugg
1873
UUUGCCACCAUGUGACUUAU
2142


1736395
usgsa

casasa

UGG






AD-
uscsgauaGfaGfGfAfaaugaga
2414
VPusUfsuucUfcAfUfuuccUfcUfauc
1874
CCUCGAUAGAGGAAAUGAGA
2143


1736396
asasa

gasgsg

AAG






AD-
ususuuuaAfgUfUfAfgcaggac
2415
VPusAfsaguCfcUfGfcuaaCfuUfaaa
1875
CCUUUUUAAGUUAGCAGGAC
2144


1736397
ususa

aasgsg

UUU






AD-
usgsuaaaUfaAfUfUfaucugcc
2416
VPusUfsaggCfaGfAfuaauUfaUfuua
1876
GAUGUAAAUAAUUAUCUGCC
2145


1736398
usasa

casusc

UAA






AD-
usgsguugUfaCfGfUfgccucaa
2417
VPusAfsuuuGfaGfGfcacgUfaCfaac
1877
UAUGGUUGUACGUGCCUCAA
2146


1736399
asusa

casusa

AUA






AD-
cscsacacUfgAfCfUfagagcca
2418
VPusGfsuugGfcUfCfuaguCfaGfugu
2419
GCCCACACUGACUAGAGCCA
2420


1736400
ascsa

ggsgsc

ACC
















TABLE 8







Unmodified Sense and Antisense Strand Sequences of PLIN1 dsRNA


Agents Comprising anUnsaturated C22 Hydrocarbon Chain Conjugated


to Position 6 on the Sense Strand, Counting from the 5′-end of


the Sense Strand















SEQ


SEQ



Duplex
Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Name
5′ to 3′
NO:
NM_002666.5
5′ to 3′
NO:
NM_002666.5





AD-
CAUCUCUUUAACCAAACUUGA
2421
1995-2015
UCAAGUUUGGUUAAAGAGAUGAA
2556
1993-2015


1735051











AD-
CUCUAACAAAUAAACAGAACA
2422
1740-1760
UGUUCUGUUUAUUUGUUAGAGAA
2557
1738-1760


1735052











AD-
UGCAUAGUCACUCUUUUGAUA
2423
2390-2410
UAUCAAAAGAGUGACUAUGCAGG
2558
2388-2410


1735053











AD-
AACUUGAUUUUUCAUCUCUUA
2424
1983-2003
UAAGAGAUGAAAAAUCAAGUUAG
2559
1981-2003


1735054











AD-
GACACAUUCUUAGCACUGAAA
2425
2128-2148
UUUCAGUGCUAAGAAUGUGUCAA
2560
2126-2148


1735055











AD-
ACGCCUUAUUUGAUUUAACUA
2426
2807-2827
UAGUUAAAUCAAAUAAGGCGUAU
2561
2805-2827


1735056











AD-
UAGUCUUCGAAAUGUUAAUAA
2427
2474-2494
UUAUUAACAUUUCGAAGACUAGG
2562
2472-2494


1735057











AD-
GAUGGACUUUUAAGUUGUUUA
2428
2838-2858
UAAACAACUUAAAAGUCCAUCAU
2563
2836-2858


1735058











AD-
UGCUUUUUUCACUUAAUAAUA
2429
2702-2722
UAUUAUUAAGUGAAAAAAGCAGG
2564
2700-2722


1735059











AD-
ACAUAAUAACUACUGCAUAAA
2430
2780-2800
UUUAUGCAGUAGUUAUUAUGUGG
2565
2778-2800


1735060











AD-
UACUAGUGUCACUUUCUGAGA
2431
2271-2291
UCUCAGAAAGUGACACUAGUAUU
2566
2269-2291


1735061











AD-
CAAUCAGAUGCAAAAGCUCUA
2432
2234-2254
UAGAGCUUUUGCAUCUGAUUGUU
2567
2232-2254


1735062











AD-
UAAGAGUAAUUGCCUAACUUA
2433
1968-1988
UAAGUUAGGCAAUUACUCUUAUA
2568
1966-1988


1735063











AD-
GGCUUGUUUAUGAACAUUAAA
2434
 82-102
UUUAAUGUUCAUAAACAAGCCAU
2569
 80-102


1735064











AD-
UUUUUGCUACUGCAAACGAUA
2435
2871-2891
UAUCGUUUGCAGUAGCAAAAAAG
2570
2869-2891


1735065











AD-
AACGAUGCUAUAAUAAAUGUA
2436
2885-2905
UACAUUUAUUAUAGCAUCGUUUG
2571
2883-2905


1735066











AD-
UGGUUGUUACUAUAAGAGUAA
2437
1956-1976
UUACUCUUAUAGUAACAACCAAG
2572
1954-1976


1735067











AD-
CUGAUGAACAUCCUCUGAUGA
2438
2181-2201
UCAUCAGAGGAUGUUCAUCAGAG
2573
2179-2201


1735068











AD-
CUGCGGAUAAAUAUUUGCCAA
2439
2059-2079
UUGGCAAAUAUUUAUCCGCAGAG
2574
2057-2079


1735069











AD-
CCAAAAUUCAGAUUCUGCCUA
2440
2039-2059
UAGGCAGAAUCUGAAUUUUGGAA
2575
2037-2059


1735070











AD-
AAGGAUGUGUGUCUUUCUCCA
2441
2547-2567
UGGAGAAAGACACACAUCCUUUU
2576
2545-2567


1735071











AD-
UGCGAAUGCUUCCAGAAGACA
2442
231-251
UGUCUUCUGGAAGCAUUCGCAGG
2577
229-251


1735072











AD-
CGAAUGAGUAACUCCUGUCAA
2443
2079-2099
UUGACAGGAGUUACUCAUUCGUG
2578
2077-2099


1735073











AD-
UGGGUGUUUAUUUAAAAUACA
2444
2254-2274
UGUAUUUUAAAUAAACACCCAAG
2579
2252-2274


1735074











AD-
CAAAAGAUAUUUGACCGUUUA
2445
2019-2039
UAAACGGUCAAAUAUCUUUUGGC
2580
2017-2039


1735075











AD-
AUACAGCUUGGAGAGAUUUUA
2446
2720-2740
UAAAAUCUCUCCAAGCUGUAUUA
2581
2718-2740


1735076











AD-
AAAUGCAUUCAUACAAUUACA
2447
2509-2529
UGUAAUUGUAUGAAUGCAUUUUC
2582
2507-2529


1735077











AD-
UCCCACUCGCUCUUUUUGAUA
2448
2756-2776
UAUCAAAAAGAGCGAGUGGGAUU
2583
2754-2776


1735078











AD-
GCUUGUGUUUACACAAGCUGA
2449
2664-2684
UCAGCUUGUGUAAACACAAGCGG
2584
2662-2684


1735079











AD-
CCUGCCUUACAUGGCUUGUUA
2450
70-90
UAACAAGCCAUGUAAGGCAGGUG
2585
68-90


1735080











AD-
GAGAUUUUUGUAUCACAUUAA
2451
2732-2752
UUAAUGUGAUACAAAAAUCUCUC
2586
2730-2752


1735081











AD-
AGCACUUCAGACAAGGUCCUA
2452
540-560
UAGGACCUUGUCUGAAGUGCUCG
2587
538-560


1735082











AD-
UCACUCUCAGAGCCAGUUUUA
2453
1895-1915
UAAAACUGGCUCUGAGAGUGAAG
2588
1893-1915


1735083











AD-
ACUGAACUCCUCUGUGAUCUA
2454
2142-2162
UAGAUCACAGAGGAGUUCAGUGC
2589
2140-2162


1735084











AD-
UAGUUCCCUAAUGAUGGACUA
2455
2826-2846
UAGUCCAUCAUUAGGGAACUAGU
2590
2824-2846


1735085











AD-
GGCGUUACUGACAACGUGGUA
2456
1296-1316
UACCACGUUGUCAGUAACGCCCU
2591
1294-1316


1735086











AD-
UGAUCUAGGAUGAUCUGUUCA
2457
2156-2176
UGAACAGAUCAUCCUAGAUCACA
2592
2154-2176


1735087











AD-
GUGAUGAUAUAUAGACUUUAA
2458
2427-2447
UUAAAGUCUAUAUAUCAUCACCA
2593
2425-2447


1735088











AD-
GGCUACUUUGAAGGGAACAAA
2459
2217-2237
UUUGUUCCCUUCAAAGUAGCCUG
2594
2215-2237


1735089











AD-
CUGCUCUGAUUCUAUGGCUUA
2460
1937-1957
UAAGCCAUAGAAUCAGAGCAGGC
2595
1935-1957


1735090











AD-
AGAUUGCUUCUGAGCUGAAGA
2461
463-483
UCUUCAGCUCAGAAGCAAUCUUU
2596
461-483


1735091











AD-
GCCAUCUCUUGUGUAUGCAGA
2462
2607-2627
UCUGCAUACACAAGAGAUGGCAC
2597
2605-2627


1735092











AD-
AGCCACAUUUCCAUUUGCAUA
2463
2354-2374
UAUGCAAAUGGAAAUGUGGCUGU
2598
2352-2374


1735093











AD-
UCCAGACAGAAGGUUUUGACA
2464
2111-2131
UGUCAAAACCUUCUGUCUGGACC
2599
2109-2131


1735094











AD-
CUCUCGAUACACCGUGCAGAA
2465
818-838
UUCUGCACGGUGUAUCGAGAGAG
2600
816-838


1735095











AD-
GGCGCACUUUUUAUUUUUAUA
2466
1838-1858
UAUAAAAAUAAAAAGUGCGCCUU
2601
1836-1858


1735096











AD-
GAGCGUUGCCACUUUCAAAGA
2467
1775-1795
UCUUUGAAAGUGGCAACGCUCGC
2602
1773-1795


1735097











AD-
UUGCAUCAUUACUGCCUUCAA
2468
2368-2388
UUGAAGGCAGUAAUGAUGCAAAU
2603
2366-2388


1735098











AD-
GCGCAAGAAGAGCUGAGUCGA
2469
1685-1705
UCGACUCAGCUCUUCUUGCGCAG
2604
1683-1705


1735099











AD-
UGCGGAAUUUGCUGCCAACAA
2470
611-631
UUGUUGGCAGCAAAUUCCGCAGU
2605
609-631


1735100











AD-
GUGUGCAAUGCCUAUGAGAAA
2471
291-311
UUUCUCAUAGGCAUUGCACACAG
2606
289-311


1735101











AD-
GAAUUCAAAUAUUGCAAAAGA
2472
2530-2550
UCUUUUGCAAUAUUUGAAUUCUG
2607
2528-2550


1735102











AD-
CCUGUGUGCUUUGUAGAGCCA
2473
2320-2340
UGGCUCUACAAAGCACACAGGCC
2608
2318-2340


1735103











AD-
UCCAGACAAGGAAGAGUCAGA
2474
710-730
UCUGACUCUUCCUUGUCUGGAGG
2609
708-730


1735104











AD-
UGCCAGAAACAGCAUCAGCGA
2475
509-529
UCGCUGAUGCUGUUUCUGGCACU
2610
507-529


1735105











AD-
GCAUAAUAUGGAUACGCCUUA
2476
2794-2814
UAAGGCGUAUCCAUAUUAUGCAG
2611
2792-2814


1735106











AD-
AGCCUCAUCCUGAUGAUGCUA
2477
1813-1833
UAGCAUCAUCAGGAUGAGGCUGA
2612
1811-1833


1735107











AD-
AAGCCUCUUGAGCAGGGUUGA
2478
779-799
UCAACCCUGCUCAAGAGGCUUGG
2613
777-799


1735108











AD-
UAAAGGGAAGAAGUUGAAGCA
2479
 99-119
UGCUUCAACUUCUUCCCUUUAAU
2614
 97-119


1735109











AD-
GGCAGCAUUGAGAAGGUGGUA
2480
675-695
UACCACCUUCUCAAUGCUGCCCA
2615
673-695


1735110











AD-
GUCAGCGACAGCUUCUUCCGA
2481
1617-1637
UCGGAAGAAGCUGUCGCUGACCC
2616
1615-1637


1735111











AD-
CUGCUGUCUCCUCAACCAAGA
2482
1243-1263
UCUUGGUUGAGGAGACAGCAGGG
2617
1241-1263


1735112











AD-
AGGAGGAAGAAUUGGAGACUA
2483
1054-1074
UAGUCUCCAAUUCUUCCUCCUCC
2618
1052-1074


1735113











AD-
CCUGUCACCACUCUGAAGGUA
2484
2092-2112
UACCUUCAGAGUGGUGACAGGAG
2619
2090-2112


1735114











AD-
AGACUUUAUGUAUAGCCACAA
2485
2439-2459
UUGUGGCUAUACAUAAAGUCUAU
2620
2437-2459


1735115











AD-
GUUACGCAUGCCUGCUUUUUA
2486
2690-2710
UAAAAAGCAGGCAUGCGUAACAC
2621
2688-2710


1735116











AD-
CCAGUUCACAGCUGCCAAUGA
2487
377-397
UCAUUGGCAGCUGUGAACUGGGU
2622
375-397


1735117











AD-
CAGGCACGUGUGUAUGCACUA
2488
2640-2660
UAGUGCAUACACACGUGCCUGCA
2623
2638-2660


1735118











AD-
AUGGCAGUCAACAAAGGCCUA
2489
132-152
UAGGCCUUUGUUGACUGCCAUCC
2624
130-152


1735119











AD-
CAAACUUGUGGCCAAAAGAUA
2490
2007-2027
UAUCUUUUGGCCACAAGUUUGGU
2625
2005-2027


1735120











AD-
UCUGACCAACACCCUCUCUCA
2491
803-823
UGAGAGAGGGUGUUGGUCAGAGC
2626
801-823


1735121











AD-
UCACAUUAUAAAUCCCACUCA
2492
2744-2764
UGAGUGGGAUUUAUAAUGUGAUA
2627
2742-2764


1735122











AD-
GAGGAGAACAAGUUCAGUGAA
2493
1074-1094
UUCACUGAACUUGUUCUCCUCAG
2628
1072-1094


1735123











AD-
GAGCAGGAGAAUGUGCUGCAA
2494
177-197
UUGCAGCACAUUCUCCUGCUCAG
2629
175-197


1735124











AD-
GAAGACCUACACCAGCACUAA
2495
245-265
UUAGUGCUGGUGUAGGUCUUCUG
2630
243-265


1735125











AD-
AGGCCUCACCUUGCUGGAUGA
2496
146-166
UCAUCCAGCAAGGUGAGGCCUUU
2631
144-166


1735126











AD-
AGCCAGCUGCUUGCUCACAGA
2497
2336-2356
UCUGUGAGCAAGCAGCUGGCUCU
2632
2334-2356


1735127











AD-
GGGCUCUGUGAGACUGAGGUA
2498
13-33
UACCUCAGUCUCACAGAGCCCAG
2633
Nov-33 


1735128











AD-
CGAGAGCGAAUUCCGGGACAA
2499
1367-1387
UUGUCCCGGAAUUCGCUCUCGGG
2634
1365-1387


1735129











AD-
GUGGCACAUACCCUGCAGAAA
2500
1134-1154
UUUCUGCAGGGUAUGUGCCACAC
2635
1132-1154


1735130











AD-
GUGGACACAGUGGUGCAUUAA
2501
1314-1334
UUAAUGCACCACUGUGUCCACCA
2636
1312-1334


1735131











AD-
AAGCCCAGAAGUCUCCCAAGA
2502
751-771
UCUUGGGAGACUUCUGGGCUUGC
2637
749-771


1735132











AD-
GGCCAUGUCCCUAUCAGAUGA
2503
1268-1288
UCAUCUGAUAGGGACAUGGCCCU
2638
1266-1288


1735133











AD-
GCCGGCGGGUUUCUCUAACAA
2504
1728-1748
UUGUUAGAGAAACCCGCCGGCCC
2639
1726-1748


1735134











AD-
CUGAAGGACACCAUCUCCACA
2505
477-497
UGUGGAGAUGGUGUCCUUCAGCU
2640
475-497


1735135











AD-
GACCACCAUCUCGGCUGUGAA
2506
1163-1183
UUCACAGCCGAGAUGGUGGUCUG
2641
1161-1183


1735136











AD-
CCAGUUUUUAAGGGACACCAA
2507
1907-1927
UUGGUGUCCCUUAAAAACUGGCU
2642
1905-1927


1735137











AD-
GGCCAGAGACACUGCGGAAUA
2508
599-619
UAUUCCGCAGUGUCUCUGGCCAC
2643
597-619


1735138











AD-
CGUUCCCAUCGCGAGCACUUA
2509
527-547
UAAGUGCUCGCGAUGGGAACGCU
2644
525-547


1735139











AD-
CCGGGACAUCGACAACCCACA
2510
1379-1399
UGUGGGUUGUCGAUGUCCCGGAA
2645
1377-1399


1735140











AD-
UCUGAUGAUCUAGGCUCCCAA
2511
2194-2214
UUGGGAGCCUAGAUCAUCAGAGG
2646
2192-2214


1735141











AD-
CUGCAGAAGACCCUCCAGACA
2512
1146-1166
UGUCUGGAGGGUCUUCUGCAGGG
2647
1144-1166


1735142











AD-
CGCCAGUAGCUUGGCUGCCUA
2513
323-343
UAGGCAGCCAAGCUACUGGCGCU
2648
321-343


1735143











AD-
CGCUUCACAGGCUGAGUCCAA
2514
2298-2318
UUGGACUCAGCCUGUGAAGCGGC
2649
2296-2318


1735144











AD-
UUUUUUUAGCAUCCUUUUGGA
2515
1871-1891
UCCAAAAGGAUGCUAAAAAAAAA
2650
1869-1891


1735145











AD-
GAAGCCAAAGCGCAGGGUCAA
2516
1601-1621
UUGACCCUGCGCUUUGGCUUCUC
2651
1599-1621


1735146











AD-
GAGGAGGAUCAUGAGGACCAA
2517
1005-1025
UUGGUCCUCAUGAUCCUCCUCCU
2652
1003-1025


1735147











AD-
GCACGCAUUACAGCCAGCUGA
2518
1666-1686
UCAGCUGGCUGUAAUGCGUGCGG
2653
1664-1686


1735148











AD-
CUUCAUUGAAAACCACCACGA
2519
2585-2605
UCGUGGUGGUUUUCAAUGAAGGG
2654
2583-2605


1735149











AD-
UUUUUGAUGGCCACAUAAUAA
2520
2768-2788
UUAUUAUGUGGCCAUCAAAAAGA
2655
2766-2788


1735150











AD-
CCACCUGGAGGAAAAGAUCCA
2521
419-439
UGGAUCUUUUCCUCCAGGUGGUC
2656
417-439


1735151











AD-
CAAGGCCAAGCCAAGCCUCUA
2522
767-787
UAGAGGCUUGGCUUGGCCUUGGG
2657
765-787


1735152











AD-
GAGGACCAGACAGACACGGAA
2523
1017-1037
UUCCGUGUCUGUCUGGUCCUCAU
2658
1015-1037


1735153











AD-
GAUGCCCUGAAGGGCGUUACA
2524
1284-1304
UGUAACGCCCUUCAGGGCAUCUG
2659
1282-1304


1735154











AD-
CCAACACUCGAGCUGGCCGAA
2525
625-645
UUCGGCCAGCUCGAGUGUUGGCA
2660
623-645


1735155











AD-
CAGGGCUAUGCACCUGCAGGA
2526
2624-2644
UCCUGCAGGUGCAUAGCCCUGCA
2661
2622-2644


1735156











AD-
AAGGUGGUGGAGUACCUCCUA
2527
687-707
UAGGAGGUACUCCACCACCUUCU
2662
685-707


1735157











AD-
UUGAAGCUUGAGGAGCGAGGA
2528
112-132
UCCUCGCUCCUCAAGCUUCAACU
2663
110-132


1735158











AD-
CGUGGCCAUGUGGAUCCCAGA
2529
869-889
UCUGGGAUCCACAUGGCCACGGU
2664
867-889


1735159











AD-
CAGCACUAAGGAAGCCCACCA
2530
257-277
UGGUGGGCUUCCUUAGUGCUGGU
2665
255-277


1735160











AD-
GUCGCUGAUGGAGCCCGAGAA
2531
1352-1372
UUCUCGGGCUCCAUCAGCGACAG
2666
1350-1372


1735161











AD-
UUCUUCCGGCCCAGCGUCAUA
2532
1629-1649
UAUGACGCUGGGCCGGAAGAAGC
2667
1627-1649


1735162











AD-
CUGCUCCUGGACACCAGCAAA
2533
733-753
UUUGCUGGUGUCCAGGAGCAGGG
2668
731-753


1735163











AD-
UUUCUGAGUACCCGCCGCUUA
2534
2283-2303
UAAGCGGCGGGUACUCAGAAAGU
2669
2281-2303


1735164











AD-
CGCAGGCUGUCCACCCAGUUA
2535
363-383
UAACUGGGUGGACAGCCUGCGGA
2670
361-383


1735165











AD-
GGCUGUGACAUGGGCACCUGA
2536
1175-1195
UCAGGUGCCCAUGUCACAGCCGA
2671
1173-1195


1735166











AD-
UCAGUGAGGUAGCAGCCCUGA
2537
1087-1107
UCAGGGCUGCUACCUCACUGAAC
2672
1085-1107


1735167











AD-
AGCGUCAUGGAGCCCAUCCUA
2538
1641-1661
UAGGAUGGGCUCCAUGACGCUGG
2673
1639-1661


1735168











AD-
CUGGAUGGAGACCUCCCUGAA
2539
159-179
UUCAGGGAGGUCUCCAUCCAGCA
2674
157-179


1735169











AD-
UCAGCCGGAGUGAGUGUUGGA
2540
38-58
UCCAACACUCACUCCGGCUGACC
2675
36-58


1735170











AD-
CUGGCCGACUGGCUUCUGGAA
2541
637-657
UUCCAGAAGCCAGUCGGCCAGCU
2676
635-657


1735171











AD-
GGUGCUGCACCUCACACCAGA
2542
1220-1240
UCUGGUGUGAGGUGCAGCACCCU
2677
1218-1240


1735172











AD-
GGCUGCCUGGAGCAUGGAGCA
2543
335-355
UGCUCCAUGCUCCAGGCAGCCAA
2678
333-355


1735173











AD-
CCUGCAGCUGUGCUGGGCAUA
2544
1191-1211
UAUGCCCAGCACAGCUGCAGGUG
2679
1189-1211


1735174











AD-
AGUGGCCAUGCAGGCGGUGUA
2545
929-949
UACACCGCCUGCAUGGCCACUGA
2680
927-949


1735175











AD-
GACUUGGCCUUGGGCAGCAUA
2546
663-683
UAUGCUGCCCAAGGCCAAGUCGG
2681
661-683


1735176











AD-
GAGCGAAGUGCGGGUACCCUA
2547
959-979
UAGGGUACCCGCACUUCGCUCCU
2682
957-979


1735177











AD-
CUGGUGGCCUCUGUGUGCAAA
2548
279-299
UUUGCACACAGAGGCCACCAGGG
2683
277-299


1735178











AD-
AACCCACCAGCCGAGGUCGAA
2549
1392-1412
UUCGACCUCGGCUGGUGGGUUGU
2684
1390-1412


1735179











AD-
UGAUGCUGCCAAGGCGCACUA
2550
1826-1846
UAGUGCGCCUUGGCAGCAUCAUC
2685
1824-1846


1735180











AD-
CCAAUGAGCUGGCCUGCCGAA
2551
391-411
UUCGGCAGGCCAGCUCAUUGGCA
2686
389-411


1735181











AD-
GUGCUGCAGCGGGUCCUGCAA
2552
189-209
UUGCAGGACCCGCUGCAGCACAU
2687
187-209


1735182











AD-
GGGCGUGCAGAGCGCCAGUAA
2553
311-331
UUACUGGCGCUCUGCACGCCCUU
2688
309-331


1735183











AD-
GGUGAGUGGCACCUGCGAAUA
2554
218-238
UAUUCGCAGGUGCCACUCACCAC
2689
216-238


1735184











AD-
ACGGAGGGAGAGGACACGGAA
2555
1032-1052
UUCCGUGUCCUCUCCCUCCGUGU
2690
1030-1052


1735185
















TABLE 9







Modified Sense and Antisense Strand Sequences of PLIN1 dsRNA Agents Comprising an Unsaturated C22 Hydrocarbon Chain


Conjugated to Position 6 on the Sense Strand, Counting from the 5′-end of the Sense Strand















SEQ

SEQ

SEQ


Duplex

ID

ID

ID


Name
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
mRNA Target Sequence 5′ to 3′
NO:





AD-
csasucu(Cda)UfuUfAfAfccaaacuusg
2691
VPusCfsaagUfuUfGfguuaAfaGfagaugsas
2826
UUCAUCUCUUUAACCAAACU
2961


1735051
sa

a

UGU






AD-
csuscua(Ada)CfaAfAfUfaaacagaasc
2692
VPusGfsuucUfgUfUfuauuUfgUfuagagsas
2827
UUCUCUAACAAAUAAACAGA
2962


1735052
sa

a

ACC






AD-
usgscau(Ada)GfuCfAfCfucuuuugas
2693
VPusAfsucaAfaAfGfagugAfcUfaugcasgs
2828
CCUGCAUAGUCACUCUUUUG
2963


1735053
usa

g

AUG






AD-
asascuu(Gda)AfuUfUfUfucaucucus
2694
VPusAfsagaGfaUfGfaaaaAfuCfaaguusasg
2829
CUAACUUGAUUUUUCAUCUC
2964


1735054
usa



UUU






AD-
gsascac(Ada)UfuCfUfUfagcacugasa
2695
VPusUfsucaGfuGfCfuaagAfaUfgugucsas
2830
UUGACACAUUCUUAGCACUG
2965


1735055
sa

a

AAC






AD-
ascsgcc(Uda)UfaUfUfUfgauuuaacsu
2696
VPusAfsguuAfaAfUfcaaaUfaAfggcgusas
2831
AUACGCCUUAUUUGAUUUAA
2966


1735056
sa

u

CUA






AD-
usasguc(Uda)UfcGfAfAfauguuaaus
2697
VPusUfsauuAfaCfAfuuucGfaAfgacuasgs
2832
CCUAGUCUUCGAAAUGUUAA
2967


1735057
asa

g

UAU






AD-
gsasugg(Ada)CfuUfUfUfaaguuguus
2698
VPusAfsaacAfaCfUfuaaaAfgUfccaucsasu
2833
AUGAUGGACUUUUAAGUUGU
2968


1735058
usa



UUC






AD-
usgscuu(Uda)UfuUfCfAfcuuaauaas
2699
VPusAfsuuaUfuAfAfgugaAfaAfaagcasgs
2834
CCUGCUUUUUUCACUUAAUA
2969


1735059
usa

g

AUA






AD-
ascsaua(Ada)UfaAfCfUfacugcauasa
2700
VPusUfsuauGfcAfGfuaguUfaUfuaugusgs
2835
CCACAUAAUAACUACUGCAU
2970


1735060
sa

g

AAU






AD-
usascua(Gda)UfgUfCfAfcuuucugas
2701
VPusCfsucaGfaAfAfgugaCfaCfuaguasusu
2836
AAUACUAGUGUCACUUUCUG
2971


1735061
gsa



AGU






AD-
csasauc(Ada)GfaUfGfCfaaaagcucsu
2702
VPusAfsgagCfuUfUfugcaUfcUfgauugsus
2837
AACAAUCAGAUGCAAAAGCU
2972


1735062
sa

u

CUU






AD-
usasaga(Gda)UfaAfUfUfgccuaacusu
2703
VPusAfsaguUfaGfGfcaauUfaCfucuuasusa
2838
UAUAAGAGUAAUUGCCUAAC
2973


1735063
sa



UUG






AD-
gsgscuu(Gda)UfuUfAfUfgaacauuas
2704
VPusUfsuaaUfgUfUfcauaAfaCfaagccsasu
2839
AUGGCUUGUUUAUGAACAUU
2974


1735064
asa



AAA






AD-
ususuuu(Gda)CfuAfCfUfgcaaacgas
2705
VPusAfsucgUfuUfGfcaguAfgCfaaaaasasg
2840
CUUUUUUGCUACUGCAAACG
2975


1735065
usa



AUG






AD-
asascga(Uda)GfcUfAfUfaauaaaugsu
2706
VPusAfscauUfuAfUfuauaGfcAfucguusus
2841
CAAACGAUGCUAUAAUAAAU
2976


1735066
sa

g

GUC






AD-
usgsguu(Gda)UfuAfCfUfauaagagus
2707
VPusUfsacuCfuUfAfuaguAfaCfaaccasasg
2842
CUUGGUUGUUACUAUAAGAG
2977


1735067
asa



UAA






AD-
csusgau(Gda)AfaCfAfUfccucugaus
2708
VPusCfsaucAfgAfGfgaugUfuCfaucagsas
2843
CUCUGAUGAACAUCCUCUGA
2978


1735068
gsa

g

UGA






AD-
csusgcg(Gda)AfuAfAfAfuauuugccs
2709
VPusUfsggcAfaAfUfauuuAfuCfcgcagsas
2844
CUCUGCGGAUAAAUAUUUGC
2979


1735069
asa

g

CAC






AD-
cscsaaa(Ada)UfuCfAfGfauucugccsu
2710
VPusAfsggcAfgAfAfucugAfaUfuuuggsas
2845
UUCCAAAAUUCAGAUUCUGC
2980


1735070
sa

a

CUC






AD-
asasgga(Uda)GfuGfUfGfucuuucucs
2711
VPusGfsgagAfaAfGfacacAfcAfuccuusus
2846
AAAAGGAUGUGUGUCUUUCU
2981


1735071
csa

u

CCC






AD-
usgscga(Ada)UfgCfUfUfccagaagasc
2712
VPusGfsucuUfcUfGfgaagCfaUfucgcasgs
2847
CCUGCGAAUGCUUCCAGAAG
2982


1735072
sa

g

ACC






AD-
csgsaau(Gda)AfgUfAfAfcuccugucs
2713
VPusUfsgacAfgGfAfguuaCfuCfauucgsus
2848
CACGAAUGAGUAACUCCUGU
2983


1735073
asa

g

CAC






AD-
usgsggu(Gda)UfuUfAfUfuuaaaauas
2714
VPusGfsuauUfuUfAfaauaAfaCfacccasasg
2849
CUUGGGUGUUUAUUUAAAAU
2984


1735074
csa



ACU






AD-
csasaaa(Gda)AfuAfUfUfugaccguus
2715
VPusAfsaacGfgUfCfaaauAfuCfuuuugsgs
2850
GCCAAAAGAUAUUUGACCGU
2985


1735075
usa

c

UUC






AD-
asusaca(Gda)CfuUfGfGfagagauuus
2716
VPusAfsaaaUfcUfCfuccaAfgCfuguaususa
2851
UAAUACAGCUUGGAGAGAUU
2986


1735076
usa



UUU






AD-
asasaug(Cda)AfuUfCfAfuacaauuasc
2717
VPusGfsuaaUfuGfUfaugaAfuGfcauuusus
2852
GAAAAUGCAUUCAUACAAUU
2987


1735077
sa

c

ACA






AD-
uscscca(Cda)UfcGfCfUfcuuuuugasu
2718
VPusAfsucaAfaAfAfgagcGfaGfugggasus
2853
AAUCCCACUCGCUCUUUUUGA
2988


1735078
sa

u

UG






AD-
gscsuug(Uda)GfuUfUfAfcacaagcus
2719
VPusCfsagcUfuGfUfguaaAfcAfcaagcsgsg
2854
CCGCUUGUGUUUACACAAGC
2989


1735079
gsa



UGU






AD-
cscsugc(Cda)UfuAfCfAfuggcuugus
2720
VPusAfsacaAfgCfCfauguAfaGfgcaggsus
2855
CACCUGCCUUACAUGGCUUGU
2990


1735080
usa

g

UU






AD-
gsasgau(Uda)UfuUfGfUfaucacauus
2721
VPusUfsaauGfuGfAfuacaAfaAfaucucsusc
2856
GAGAGAUUUUUGUAUCACAU
2991


1735081
asa



UAU






AD-
asgscac(Uda)UfcAfGfAfcaagguccsu
2722
VPusAfsggaCfcUfUfgucuGfaAfgugcuscs
2857
CGAGCACUUCAGACAAGGUCC
2992


1735082
sa

g

UG






AD-
uscsacu(Cda)UfcAfGfAfgccaguuus
2723
VPusAfsaaaCfuGfGfcucuGfaGfagugasasg
2858
CUUCACUCUCAGAGCCAGUUU
2993


1735083
usa



UU






AD-
ascsuga(Ada)CfuCfCfUfcugugaucsu
2724
VPusAfsgauCfaCfAfgaggAfgUfucagusgs
2859
GCACUGAACUCCUCUGUGAUC
2994


1735084
sa

c

UA






AD-
usasguu(Cda)CfcUfAfAfugauggacs
2725
VPusAfsgucCfaUfCfauuaGfgGfaacuasgsu
2860
ACUAGUUCCCUAAUGAUGGA
2995


1735085
usa



CUU






AD-
gsgscgu(Uda)AfcUfGfAfcaacguggs
2726
VPusAfsccaCfgUfUfgucaGfuAfacgccscsu
2861
AGGGCGUUACUGACAACGUG
2996


1735086
usa



GUG






AD-
usgsauc(Uda)AfgGfAfUfgaucuguus
2727
VPusGfsaacAfgAfUfcaucCfuAfgaucascsa
2862
UGUGAUCUAGGAUGAUCUGU
2997


1735087
csa



UCC






AD-
gsusgau(Gda)AfuAfUfAfuagacuuus
2728
VPusUfsaaaGfuCfUfauauAfuCfaucacscsa
2863
UGGUGAUGAUAUAUAGACUU
2998


1735088
asa



UAU






AD-
gsgscua(Cda)UfuUfGfAfagggaacasa
2729
VPusUfsuguUfcCfCfuucaAfaGfuagccsus
2864
CAGGCUACUUUGAAGGGAAC
2999


1735089
sa

g

AAU






AD-
csusgcu(Cda)UfgAfUfUfcuauggcus
2730
VPusAfsagcCfaUfAfgaauCfaGfagcagsgsc
2865
GCCUGCUCUGAUUCUAUGGC
3000


1735090
usa



UUG






AD-
asgsauu(Gda)CfuUfCfUfgagcugaas
2731
VPusCfsuucAfgCfUfcagaAfgCfaaucususu
2866
AAAGAUUGCUUCUGAGCUGA
3001


1735091
gsa



AGG






AD-
gscscau(Cda)UfcUfUfGfuguaugcas
2732
VPusCfsugcAfuAfCfacaaGfaGfauggcsasc
2867
GUGCCAUCUCUUGUGUAUGC
3002


1735092
gsa



AGG






AD-
asgscca(Cda)AfuUfUfCfcauuugcasu
2733
VPusAfsugcAfaAfUfggaaAfuGfuggcusgs
2868
ACAGCCACAUUUCCAUUUGCA
3003


1735093
sa

u

UC






AD-
uscscag(Ada)CfaGfAfAfgguuuugas
2734
VPusGfsucaAfaAfCfcuucUfgUfcuggascsc
2869
GGUCCAGACAGAAGGUUUUG
3004


1735094
csa



ACA






AD-
csuscuc(Gda)AfuAfCfAfccgugcagsa
2735
VPusUfscugCfaCfGfguguAfuCfgagagsas
2870
CUCUCUCGAUACACCGUGCAG
3005


1735095
sa

g

AC






AD-
gsgscgc(Ada)CfuUfUfUfuauuuuuas
2736
VPusAfsuaaAfaAfUfaaaaAfgUfgcgccsusu
2871
AAGGCGCACUUUUUAUUUUU
3006


1735096
usa



AUU






AD-
gsasgcg(Uda)UfgCfCfAfcuuucaaasg
2737
VPusCfsuuuGfaAfAfguggCfaAfcgcucsgs
2872
GCGAGCGUUGCCACUUUCAA
3007


1735097
sa

c

AGU






AD-
ususgca(Uda)CfaUfUfAfcugccuucsa
2738
VPusUfsgaaGfgCfAfguaaUfgAfugcaasas
2873
AUUUGCAUCAUUACUGCCUU
3008


1735098
sa

u

CAC






AD-
gscsgca(Ada)GfaAfGfAfgcugagucs
2739
VPusCfsgacUfcAfGfcucuUfcUfugcgcsasg
2874
CUGCGCAAGAAGAGCUGAGU
3009


1735099
gsa



CGC






AD-
usgscgg(Ada)AfuUfUfGfcugccaacs
2740
VPusUfsguuGfgCfAfgcaaAfuUfccgcasgs
2875
ACUGCGGAAUUUGCUGCCAA
3010


1735100
asa

u

CAC






AD-
gsusgug(Cda)AfaUfGfCfcuaugagas
2741
VPusUfsucuCfaUfAfggcaUfuGfcacacsasg
2876
CUGUGUGCAAUGCCUAUGAG
3011


1735101
asa



AAG






AD-
gsasauu(Cda)AfaAfUfAfuugcaaaasg
2742
VPusCfsuuuUfgCfAfauauUfuGfaauucsus
2877
CAGAAUUCAAAUAUUGCAAA
3012


1735102
sa

g

AGG






AD-
cscsugu(Gda)UfgCfUfUfuguagagcs
2743
VPusGfsgcuCfuAfCfaaagCfaCfacaggscsc
2878
GGCCUGUGUGCUUUGUAGAG
3013


1735103
csa



CCA






AD-
uscscag(Ada)CfaAfGfGfaagagucasg
2744
VPusCfsugaCfuCfUfuccuUfgUfcuggasgs
2879
CCUCCAGACAAGGAAGAGUC
3014


1735104
sa

g

AGC






AD-
usgscca(Gda)AfaAfCfAfgcaucagcsg
2745
VPusCfsgcuGfaUfGfcuguUfuCfuggcascs
2880
AGUGCCAGAAACAGCAUCAG
3015


1735105
sa

u

CGU






AD-
gscsaua(Ada)UfaUfGfGfauacgccusu
2746
VPusAfsaggCfgUfAfuccaUfaUfuaugcsas
2881
CUGCAUAAUAUGGAUACGCC
3016


1735106
sa

g

UUA






AD-
asgsccu(Cda)AfuCfCfUfgaugaugcsu
2747
VPusAfsgcaUfcAfUfcaggAfuGfaggcusgs
2882
UCAGCCUCAUCCUGAUGAUGC
3017


1735107
sa

a

UG






AD-
asasgcc(Uda)CfuUfGfAfgcaggguus
2748
VPusCfsaacCfcUfGfcucaAfgAfggcuusgsg
2883
CCAAGCCUCUUGAGCAGGGU
3018


1735108
gsa



UGG






AD-
usasaag(Gda)GfaAfGfAfaguugaags
2749
VPusGfscuuCfaAfCfuucuUfcCfcuuuasasu
2884
AUUAAAGGGAAGAAGUUGAA
3019


1735109
csa



GCU






AD-
gsgscag(Cda)AfuUfGfAfgaagguggs
2750
VPusAfsccaCfcUfUfcucaAfuGfcugccscsa
2885
UGGGCAGCAUUGAGAAGGUG
3020


1735110
usa



GUG






AD-
gsuscag(Cda)GfaCfAfGfcuucuuccsg
2751
VPusCfsggaAfgAfAfgcugUfcGfcugacscs
2886
GGGUCAGCGACAGCUUCUUCC
3021


1735111
sa

c

GG






AD-
csusgcu(Gda)UfcUfCfCfucaaccaasg
2752
VPusCfsuugGfuUfGfaggaGfaCfagcagsgs
2887
CCCUGCUGUCUCCUCAACCAA
3022


1735112
sa

g

GG






AD-
asgsgag(Gda)AfaGfAfAfuuggagacs
2753
VPusAfsgucUfcCfAfauucUfuCfcuccuscsc
2888
GGAGGAGGAAGAAUUGGAGA
3023


1735113
usa



CUG






AD-
cscsugu(Cda)AfcCfAfCfucugaaggsu
2754
VPusAfsccuUfcAfGfagugGfuGfacaggsas
2889
CUCCUGUCACCACUCUGAAGG
3024


1735114
sa

g

UC






AD-
asgsacu(Uda)UfaUfGfUfauagccacsa
2755
VPusUfsgugGfcUfAfuacaUfaAfagucusas
2890
AUAGACUUUAUGUAUAGCCA
3025


1735115
sa

u

CAG






AD-
gsusuac(Gda)CfaUfGfCfcugcuuuus
2756
VPusAfsaaaAfgCfAfggcaUfgCfguaacsasc
2891
GUGUUACGCAUGCCUGCUUU
3026


1735116
usa



UUU






AD-
cscsagu(Uda)CfaCfAfGfcugccaausg
2757
VPusCfsauuGfgCfAfgcugUfgAfacuggsgs
2892
ACCCAGUUCACAGCUGCCAAU
3027


1735117
sa

u

GA






AD-
csasggc(Ada)CfgUfGfUfguaugcacs
2758
VPusAfsgugCfaUfAfcacaCfgUfgccugscsa
2893
UGCAGGCACGUGUGUAUGCA
3028


1735118
usa



CUC






AD-
asusggc(Ada)GfuCfAfAfcaaaggccsu
2759
VPusAfsggcCfuUfUfguugAfcUfgccauscs
2894
GGAUGGCAGUCAACAAAGGC
3029


1735119
sa

c

CUC






AD-
csasaac(Uda)UfgUfGfGfccaaaagasu
2760
VPusAfsucuUfuUfGfgccaCfaAfguuugsgs
2895
ACCAAACUUGUGGCCAAAAG
3030


1735120
sa

u

AUA






AD-
uscsuga(Cda)CfaAfCfAfcccucucusc
2761
VPusGfsagaGfaGfGfguguUfgGfucagasgs
2896
GCUCUGACCAACACCCUCUCU
3031


1735121
sa

c

CG






AD-
uscsaca(Uda)UfaUfAfAfaucccacusc
2762
VPusGfsaguGfgGfAfuuuaUfaAfugugasus
2897
UAUCACAUUAUAAAUCCCAC
3032


1735122
sa

a

UCG






AD-
gsasgga(Gda)AfaCfAfAfguucagugs
2763
VPusUfscacUfgAfAfcuugUfuCfuccucsas
2898
CUGAGGAGAACAAGUUCAGU
3033


1735123
asa

g

GAG






AD-
gsasgca(Gda)GfaGfAfAfugugcugcs
2764
VPusUfsgcaGfcAfCfauucUfcCfugcucsasg
2899
CUGAGCAGGAGAAUGUGCUG
3034


1735124
asa



CAG






AD-
gsasaga(Cda)CfuAfCfAfccagcacusa
2765
VPusUfsaguGfcUfGfguguAfgGfucuucsus
2900
CAGAAGACCUACACCAGCACU
3035


1735125
sa

g

AA






AD-
asgsgcc(Uda)CfaCfCfUfugcuggausg
2766
VPusCfsaucCfaGfCfaaggUfgAfggccususu
2901
AAAGGCCUCACCUUGCUGGA
3036


1735126
sa



UGG






AD-
asgscca(Gda)CfuGfCfUfugcucacasg
2767
VPusCfsuguGfaGfCfaagcAfgCfuggcuscs
2902
AGAGCCAGCUGCUUGCUCACA
3037


1735127
sa

u

GC






AD-
gsgsgcu(Cda)UfgUfGfAfgacugaggs
2768
VPusAfsccuCfaGfUfcucaCfaGfagcccsasg
2903
CUGGGCUCUGUGAGACUGAG
3038


1735128
usa



GUG






AD-
csgsaga(Gda)CfgAfAfUfuccgggacsa
2769
VPusUfsgucCfcGfGfaauuCfgCfucucgsgs
2904
CCCGAGAGCGAAUUCCGGGAC
3039


1735129
sa

g

AU






AD-
gsusggc(Ada)CfaUfAfCfccugcagasa
2770
VPusUfsucuGfcAfGfgguaUfgUfgccacsas
2905
GUGUGGCACAUACCCUGCAG
3040


1735130
sa

c

AAG






AD-
gsusgga(Cda)AfcAfGfUfggugcauus
2771
VPusUfsaauGfcAfCfcacuGfuGfuccacscsa
2906
UGGUGGACACAGUGGUGCAU
3041


1735131
asa



UAC






AD-
asasgcc(Cda)AfgAfAfGfucucccaasg
2772
VPusCfsuugGfgAfGfacuuCfuGfggcuusgs
2907
GCAAGCCCAGAAGUCUCCCAA
3042


1735132
sa

c

GG






AD-
gsgscca(Uda)GfuCfCfCfuaucagausg
2773
VPusCfsaucUfgAfUfagggAfcAfuggccscs
2908
AGGGCCAUGUCCCUAUCAGA
3043


1735133
sa

u

UGC






AD-
gscscgg(Cda)GfgGfUfUfucucuaacsa
2774
VPusUfsguuAfgAfGfaaacCfcGfccggcscsc
2909
GGGCCGGCGGGUUUCUCUAA
3044


1735134
sa



CAA






AD-
csusgaa(Gda)GfaCfAfCfcaucuccasc
2775
VPusGfsuggAfgAfUfggugUfcCfuucagscs
2910
AGCUGAAGGACACCAUCUCCA
3045


1735135
sa

u

CC






AD-
gsascca(Cda)CfaUfCfUfcggcugugsa
2776
VPusUfscacAfgCfCfgagaUfgGfuggucsus
2911
CAGACCACCAUCUCGGCUGUG
3046


1735136
sa

g

AC






AD-
cscsagu(Uda)UfuUfAfAfgggacaccsa
2777
VPusUfsgguGfuCfCfcuuaAfaAfacuggscs
2912
AGCCAGUUUUUAAGGGACAC
3047


1735137
sa

u

CAG






AD-
gsgscca(Gda)AfgAfCfAfcugcggaas
2778
VPusAfsuucCfgCfAfguguCfuCfuggccsas
2913
GUGGCCAGAGACACUGCGGA
3048


1735138
usa

c

AUU






AD-
csgsuuc(Cda)CfaUfCfGfcgagcacusu
2779
VPusAfsaguGfcUfCfgcgaUfgGfgaacgscs
2914
AGCGUUCCCAUCGCGAGCACU
3049


1735139
sa

u

UC






AD-
cscsggg(Ada)CfaUfCfGfacaacccasc
2780
VPusGfsuggGfuUfGfucgaUfgUfcccggsas
2915
UUCCGGGACAUCGACAACCCA
3050


1735140
sa

a

CC






AD-
uscsuga(Uda)GfaUfCfUfaggcucccsa
2781
VPusUfsgggAfgCfCfuagaUfcAfucagasgs
2916
CCUCUGAUGAUCUAGGCUCCC
3051


1735141
sa

g

AG






AD-
csusgca(Gda)AfaGfAfCfccuccagasc
2782
VPusGfsucuGfgAfGfggucUfuCfugcagsgs
2917
CCCUGCAGAAGACCCUCCAGA
3052


1735142
sa

g

CC






AD-
csgscca(Gda)UfaGfCfUfuggcugccsu
2783
VPusAfsggcAfgCfCfaagcUfaCfuggcgscsu
2918
AGCGCCAGUAGCUUGGCUGCC
3053


1735143
sa



UG






AD-
csgscuu(Cda)AfcAfGfGfcugaguccsa
2784
VPusUfsggaCfuCfAfgccuGfuGfaagcgsgs
2919
GCCGCUUCACAGGCUGAGUCC
3054


1735144
sa

c

AG






AD-
ususuuu(Uda)UfaGfCfAfuccuuuugs
2785
VPusCfscaaAfaGfGfaugcUfaAfaaaaasasa
2920
UUUUUUUUUAGCAUCCUUUU
3055


1735145
gsa



GGG






AD-
gsasagc(Cda)AfaAfGfCfgcagggucsa
2786
VPusUfsgacCfcUfGfcgcuUfuGfgcuucsus
2921
GAGAAGCCAAAGCGCAGGGU
3056


1735146
sa

c

CAG






AD-
gsasgga(Gda)GfaUfCfAfugaggaccsa
2787
VPusUfsgguCfcUfCfaugaUfcCfuccucscsu
2922
AGGAGGAGGAUCAUGAGGAC
3057


1735147
sa



CAG






AD-
gscsacg(Cda)AfuUfAfCfagccagcusg
2788
VPusCfsagcUfgGfCfuguaAfuGfcgugcsgs
2923
CCGCACGCAUUACAGCCAGCU
3058


1735148
sa

g

GC






AD-
csusuca(Uda)UfgAfAfAfaccaccacsg
2789
VPusCfsgugGfuGfGfuuuuCfaAfugaagsgs
2924
CCCUUCAUUGAAAACCACCAC
3059


1735149
sa

g

GG






AD-
ususuuu(Gda)AfuGfGfCfcacauaaus
2790
VPusUfsauuAfuGfUfggccAfuCfaaaaasgsa
2925
UCUUUUUGAUGGCCACAUAA
3060


1735150
asa



UAA






AD-
cscsacc(Uda)GfgAfGfGfaaaagaucsc
2791
VPusGfsgauCfuUfUfuccuCfcAfgguggsus
2926
GACCACCUGGAGGAAAAGAU
3061


1735151
sa

c

CCC






AD-
csasagg(Cda)CfaAfGfCfcaagccucsu
2792
VPusAfsgagGfcUfUfggcuUfgGfccuugsgs
2927
CCCAAGGCCAAGCCAAGCCUC
3062


1735152
sa

g

UU






AD-
gsasgga(Cda)CfaGfAfCfagacacggsa
2793
VPusUfsccgUfgUfCfugucUfgGfuccucsas
2928
AUGAGGACCAGACAGACACG
3063


1735153
sa

u

GAG






AD-
gsasugc(Cda)CfuGfAfAfgggcguuas
2794
VPusGfsuaaCfgCfCfcuucAfgGfgcaucsusg
2929
CAGAUGCCCUGAAGGGCGUU
3064


1735154
csa



ACU






AD-
cscsaac(Ada)CfuCfGfAfgcuggccgsa
2795
VPusUfscggCfcAfGfcucgAfgUfguuggscs
2930
UGCCAACACUCGAGCUGGCCG
3065


1735155
sa

a

AC






AD-
csasggg(Cda)UfaUfGfCfaccugcagsg
2796
VPusCfscugCfaGfGfugcaUfaGfcccugscsa
2931
UGCAGGGCUAUGCACCUGCA
3066


1735156
sa



GGC






AD-
asasggu(Gda)GfuGfGfAfguaccuccs
2797
VPusAfsggaGfgUfAfcuccAfcCfaccuuscsu
2932
AGAAGGUGGUGGAGUACCUC
3067


1735157
usa



CUC






AD-
ususgaa(Gda)CfuUfGfAfggagcgags
2798
VPusCfscucGfcUfCfcucaAfgCfuucaascsu
2933
AGUUGAAGCUUGAGGAGCGA
3068


1735158
gsa



GGA






AD-
csgsugg(Cda)CfaUfGfUfggaucccasg
2799
VPusCfsuggGfaUfCfcacaUfgGfccacgsgsu
2934
ACCGUGGCCAUGUGGAUCCCA
3069


1735159
sa



GG






AD-
csasgca(Cda)UfaAfGfGfaagcccacsc
2800
VPusGfsgugGfgCfUfuccuUfaGfugcugsgs
2935
ACCAGCACUAAGGAAGCCCAC
3070


1735160
sa

u

CC






AD-
gsuscgc(Uda)GfaUfGfGfagcccgagsa
2801
VPusUfscucGfgGfCfuccaUfcAfgcgacsasg
2936
CUGUCGCUGAUGGAGCCCGA
3071


1735161
sa



GAG






AD-
ususcuu(Cda)CfgGfCfCfcagcgucasu
2802
VPusAfsugaCfgCfUfgggcCfgGfaagaasgsc
2937
GCUUCUUCCGGCCCAGCGUCA
3072


1735162
sa



UG






AD-
csusgcu(Cda)CfuGfGfAfcaccagcasa
2803
VPusUfsugcUfgGfUfguccAfgGfagcagsgs
2938
CCCUGCUCCUGGACACCAGCA
3073


1735163
sa

g

AG






AD-
ususucu(Gda)AfgUfAfCfccgccgcus
2804
VPusAfsagcGfgCfGfgguaCfuCfagaaasgsu
2939
ACUUUCUGAGUACCCGCCGCU
3074


1735164
usa



UC






AD-
csgscag(Gda)CfuGfUfCfcacccagusu
2805
VPusAfsacuGfgGfUfggacAfgCfcugcgsgs
2940
UCCGCAGGCUGUCCACCCAGU
3075


1735165
sa

a

UC






AD-
gsgscug(Uda)GfaCfAfUfgggcaccus
2806
VPusCfsaggUfgCfCfcaugUfcAfcagccsgsa
2941
UCGGCUGUGACAUGGGCACC
3076


1735166
gsa



UGC






AD-
uscsagu(Gda)AfgGfUfAfgcagcccus
2807
VPusCfsaggGfcUfGfcuacCfuCfacugasasc
2942
GUUCAGUGAGGUAGCAGCCC
3077


1735167
gsa



UGC






AD-
asgscgu(Cda)AfuGfGfAfgcccauccsu
2808
VPusAfsggaUfgGfGfcuccAfuGfacgcusgs
2943
CCAGCGUCAUGGAGCCCAUCC
3078


1735168
sa

g

UG






AD-
csusgga(Uda)GfgAfGfAfccucccugs
2809
VPusUfscagGfgAfGfgucuCfcAfuccagscsa
2944
UGCUGGAUGGAGACCUCCCU
3079


1735169
asa



GAG






AD-
uscsagc(Cda)GfgAfGfUfgaguguugs
2810
VPusCfscaaCfaCfUfcacuCfcGfgcugascsc
2945
GGUCAGCCGGAGUGAGUGUU
3080


1735170
gsa



GGG






AD-
csusggc(Cda)GfaCfUfGfgcuucuggs
2811
VPusUfsccaGfaAfGfccagUfcGfgccagscsu
2946
AGCUGGCCGACUGGCUUCUG
3081


1735171
asa



GAG






AD-
gsgsugc(Uda)GfcAfCfCfucacaccasg
2812
VPusCfsuggUfgUfGfagguGfcAfgcaccscs
2947
AGGGUGCUGCACCUCACACCA
3082


1735172
sa

u

GC






AD-
gsgscug(Cda)CfuGfGfAfgcauggags
2813
VPusGfscucCfaUfGfcuccAfgGfcagccsasa
2948
UUGGCUGCCUGGAGCAUGGA
3083


1735173
csa



GCC






AD-
cscsugc(Ada)GfcUfGfUfgcugggcas
2814
VPusAfsugcCfcAfGfcacaGfcUfgcaggsusg
2949
CACCUGCAGCUGUGCUGGGCA
3084


1735174
usa



UG






AD-
asgsugg(Cda)CfaUfGfCfaggcggugs
2815
VPusAfscacCfgCfCfugcaUfgGfccacusgsa
2950
UCAGUGGCCAUGCAGGCGGU
3085


1735175
usa



GUC






AD-
gsascuu(Gda)GfcCfUfUfgggcagcas
2816
VPusAfsugcUfgCfCfcaagGfcCfaagucsgsg
2951
CCGACUUGGCCUUGGGCAGCA
3086


1735176
usa



UU






AD-
gsasgcg(Ada)AfgUfGfCfggguacccs
2817
VPusAfsgggUfaCfCfcgcaCfuUfcgcucscsu
2952
AGGAGCGAAGUGCGGGUACC
3087


1735177
usa



CUG






AD-
csusggu(Gda)GfcCfUfCfugugugcas
2818
VPusUfsugcAfcAfCfagagGfcCfaccagsgsg
2953
CCCUGGUGGCCUCUGUGUGCA
3088


1735178
asa



AU






AD-
asasccc(Ada)CfcAfGfCfcgaggucgsa
2819
VPusUfscgaCfcUfCfggcuGfgUfggguusgs
2954
ACAACCCACCAGCCGAGGUCG
3089


1735179
sa

u

AG






AD-
usgsaug(Cda)UfgCfCfAfaggcgcacsu
2820
VPusAfsgugCfgCfCfuuggCfaGfcaucasusc
2955
GAUGAUGCUGCCAAGGCGCA
3090


1735180
sa



CUU






AD-
cscsaau(Gda)AfgCfUfGfgccugccgsa
2821
VPusUfscggCfaGfGfccagCfuCfauuggscsa
2956
UGCCAAUGAGCUGGCCUGCCG
3091


1735181
sa



AG






AD-
gsusgcu(Gda)CfaGfCfGfgguccugcs
2822
VPusUfsgcaGfgAfCfccgcUfgCfagcacsasu
2957
AUGUGCUGCAGCGGGUCCUG
3092


1735182
asa



CAG






AD-
gsgsgcg(Uda)GfcAfGfAfgcgccagus
2823
VPusUfsacuGfgCfGfcucuGfcAfcgcccsusu
2958
AAGGGCGUGCAGAGCGCCAG
3093


1735183
asa



UAG






AD-
gsgsuga(Gda)UfgGfCfAfccugcgaas
2824
VPusAfsuucGfcAfGfgugcCfaCfucaccsasc
2959
GUGGUGAGUGGCACCUGCGA
3094


1735184
usa



AUG






AD-
ascsgga(Gda)GfgAfGfAfggacacggs
2825
VPusUfsccgUfgUfCfcucuCfcCfuccgusgsu
2960
ACACGGAGGGAGAGGACACG
3095


1735185
asa



GAG
















TABLE 10







Unmodified Sense and Antisense Strand Sequences of PLIN1 dsRNA Agents Comprising a GalNAc


Derivative Targeting Ligand















SEQ
Range in

SEQ
Range in


Duplex
Sense Sequence
ID
NM_
Antisense Sequence
ID
NM_


Name
5′ to 3′
NO:
002666.5
5′ to 3′
NO:
002666.5





AD-1735186
CAUCUCUUUAACCAAACUUGA
2421
1995-2015
UCAAGUUUGGUUAAAGAGAUGA
2556
1993-2015






A







AD-1735187
CUCUAACAAAUAAACAGAACA
2422
1740-1760
UGUUCUGUUUAUUUGUUAGAGA
2557
1738-1760






A







AD-1735188
UGCAUAGUCACUCUUUUGAUA
2423
2390-2410
UAUCAAAAGAGUGACUAUGCAG
2558
2388-2410






G







AD-1735189
AACUUGAUUUUUCAUCUCUUA
2424
1983-2003
UAAGAGAUGAAAAAUCAAGUUA
2559
1981-2003






G







AD-1735190
GACACAUUCUUAGCACUGAAA
2425
2128-2148
UUUCAGUGCUAAGAAUGUGUCA
2560
2126-2148






A







AD-1735191
ACGCCUUAUUUGAUUUAACUA
2426
2807-2827
UAGUUAAAUCAAAUAAGGCGUA
2561
2805-2827






U







AD-1735192
UAGUCUUCGAAAUGUUAAUAA
2427
2474-2494
UUAUUAACAUUUCGAAGACUAG
2562
2472-2494






G







AD-1735193
GAUGGACUUUUAAGUUGUUUA
2428
2838-2858
UAAACAACUUAAAAGUCCAUCA
2563
2836-2858






U







AD-1735194
UGCUUUUUUCACUUAAUAAUA
2429
2702-2722
UAUUAUUAAGUGAAAAAAGCAG
2564
2700-2722






G







AD-1735195
ACAUAAUAACUACUGCAUAAA
2430
2780-2800
UUUAUGCAGUAGUUAUUAUGUG
2565
2778-2800






G







AD-1735196
UACUAGUGUCACUUUCUGAGA
2431
2271-2291
UCUCAGAAAGUGACACUAGUAU
2566
2269-2291






U







AD-1735197
CAAUCAGAUGCAAAAGCUCUA
2432
2234-2254
UAGAGCUUUUGCAUCUGAUUGU
2567
2232-2254






U







AD-1735198
UAAGAGUAAUUGCCUAACUUA
2433
1968-1988
UAAGUUAGGCAAUUACUCUUAU
2568
1966-1988






A







AD-1735199
GGCUUGUUUAUGAACAUUAAA
2434
  82-102
UUUAAUGUUCAUAAACAAGCCA
2569
  80-102






U







AD-1735200
UUUUUGCUACUGCAAACGAUA
2435
2871-2891
UAUCGUUUGCAGUAGCAAAAAA
2570
2869-2891






G







AD-1735201
AACGAUGCUAUAAUAAAUGUA
2436
2885-2905
UACAUUUAUUAUAGCAUCGUUU
2571
2883-2905






G







AD-1735202
UGGUUGUUACUAUAAGAGUAA
2437
1956-1976
UUACUCUUAUAGUAACAACCAA
2572
1954-1976






G







AD-1735203
CUGAUGAACAUCCUCUGAUGA
2438
2181-2201
UCAUCAGAGGAUGUUCAUCAGA
2573
2179-2201






G







AD-1735204
CUGCGGAUAAAUAUUUGCCAA
2439
2059-2079
UUGGCAAAUAUUUAUCCGCAGA
2574
2057-2079






G







AD-1735205
CCAAAAUUCAGAUUCUGCCUA
2440
2039-2059
UAGGCAGAAUCUGAAUUUUGGA
2575
2037-2059






A







AD-1735206
AAGGAUGUGUGUCUUUCUCCA
2441
2547-2567
UGGAGAAAGACACACAUCCUUU
2576
2545-2567






U







AD-1735207
UGCGAAUGCUUCCAGAAGACA
2442
 231-251
UGUCUUCUGGAAGCAUUCGCAG
2577
 229-251






G







AD-1735208
CGAAUGAGUAACUCCUGUCAA
2443
2079-2099
UUGACAGGAGUUACUCAUUCGU
2578
2077-2099






G







AD-1735209
UGGGUGUUUAUUUAAAAUACA
2444
2254-2274
UGUAUUUUAAAUAAACACCCAA
2579
2252-2274






G







AD-1735210
CAAAAGAUAUUUGACCGUUUA
2445
2019-2039
UAAACGGUCAAAUAUCUUUUGG
2580
2017-2039






C







AD-1735211
AUACAGCUUGGAGAGAUUUUA
2446
2720-2740
UAAAAUCUCUCCAAGCUGUAUU
2581
2718-2740






A







AD-1735212
AAAUGCAUUCAUACAAUUACA
2447
2509-2529
UGUAAUUGUAUGAAUGCAUUUU
2582
2507-2529






C







AD-1735213
UCCCACUCGCUCUUUUUGAUA
2448
2756-2776
UAUCAAAAAGAGCGAGUGGGAU
2583
2754-2776






U







AD-1735214
GCUUGUGUUUACACAAGCUGA
2449
2664-2684
UCAGCUUGUGUAAACACAAGCG
2584
2662-2684






G







AD-1735215
CCUGCCUUACAUGGCUUGUUA
2450
  70-90
UAACAAGCCAUGUAAGGCAGGU
2585
  68-90






G







AD-1735216
GAGAUUUUUGUAUCACAUUAA
2451
2732-2752
UUAAUGUGAUACAAAAAUCUCU
2586
2730-2752






C







AD-1735217
AGCACUUCAGACAAGGUCCUA
2452
 540-560
UAGGACCUUGUCUGAAGUGCUC
2587
 538-560






G







AD-1735218
UCACUCUCAGAGCCAGUUUUA
2453
1895-1915
UAAAACUGGCUCUGAGAGUGAA
2588
1893-1915






G







AD-1735219
ACUGAACUCCUCUGUGAUCUA
2454
2142-2162
UAGAUCACAGAGGAGUUCAGUG
2589
2140-2162






C







AD-1735220
UAGUUCCCUAAUGAUGGACUA
2455
2826-2846
UAGUCCAUCAUUAGGGAACUAG
2590
2824-2846






U







AD-1735221
GGCGUUACUGACAACGUGGUA
2456
1296-1316
UACCACGUUGUCAGUAACGCCC
2591
1294-1316






U







AD-1735222
UGAUCUAGGAUGAUCUGUUCA
2457
2156-2176
UGAACAGAUCAUCCUAGAUCAC
2592
2154-2176






A







AD-1735223
GUGAUGAUAUAUAGACUUUAA
2458
2427-2447
UUAAAGUCUAUAUAUCAUCACC
2593
2425-2447






A







AD-1735224
GGCUACUUUGAAGGGAACAAA
2459
2217-2237
UUUGUUCCCUUCAAAGUAGCCU
2594
2215-2237






G







AD-1735225
CUGCUCUGAUUCUAUGGCUUA
2460
1937-1957
UAAGCCAUAGAAUCAGAGCAGG
2595
1935-1957






C







AD-1735226
AGAUUGCUUCUGAGCUGAAGA
2461
 463-483
UCUUCAGCUCAGAAGCAAUCUU
2596
 461-483






U







AD-1735227
GCCAUCUCUUGUGUAUGCAGA
2462
2607-2627
UCUGCAUACACAAGAGAUGGCA
2597
2605-2627






C







AD-1735228
AGCCACAUUUCCAUUUGCAUA
2463
2354-2374
UAUGCAAAUGGAAAUGUGGCUG
2598
2352-2374






U







AD-1735229
UCCAGACAGAAGGUUUUGACA
2464
2111-2131
UGUCAAAACCUUCUGUCUGGAC
2599
2109-2131






C







AD-1735230
CUCUCGAUACACCGUGCAGAA
2465
 818-838
UUCUGCACGGUGUAUCGAGAGA
2600
 816-838






G







AD-1735231
GGCGCACUUUUUAUUUUUAUA
2466
1838-1858
UAUAAAAAUAAAAAGUGCGCCU
2601
1836-1858






U







AD-1735232
GAGCGUUGCCACUUUCAAAGA
2467
1775-1795
UCUUUGAAAGUGGCAACGCUCG
2602
1773-1795






C







AD-1735233
UUGCAUCAUUACUGCCUUCAA
2468
2368-2388
UUGAAGGCAGUAAUGAUGCAAA
2603
2366-2388






U







AD-1735234
GCGCAAGAAGAGCUGAGUCGA
2469
1685-1705
UCGACUCAGCUCUUCUUGCGCA
2604
1683-1705






G







AD-1735235
UGCGGAAUUUGCUGCCAACAA
2470
 611-631
UUGUUGGCAGCAAAUUCCGCAG
2605
 609-631






U







AD-1735236
GUGUGCAAUGCCUAUGAGAAA
2471
 291-311
UUUCUCAUAGGCAUUGCACACA
2606
 289-311






G







AD-1735237
GAAUUCAAAUAUUGCAAAAGA
2472
2530-2550
UCUUUUGCAAUAUUUGAAUUCU
2607
2528-2550






G







AD-1735238
CCUGUGUGCUUUGUAGAGCCA
2473
2320-2340
UGGCUCUACAAAGCACACAGGC
2608
2318-2340






C







AD-1735239
UCCAGACAAGGAAGAGUCAGA
2474
 710-730
UCUGACUCUUCCUUGUCUGGAG
2609
 708-730






G







AD-1735240
UGCCAGAAACAGCAUCAGCGA
2475
 509-529
UCGCUGAUGCUGUUUCUGGCAC
2610
 507-529






U







AD-1735241
GCAUAAUAUGGAUACGCCUUA
2476
2794-2814
UAAGGCGUAUCCAUAUUAUGCA
2611
2792-2814






G







AD-1735242
AGCCUCAUCCUGAUGAUGCUA
2477
1813-1833
UAGCAUCAUCAGGAUGAGGCUG
2612
1811-1833






A







AD-1735243
AAGCCUCUUGAGCAGGGUUGA
2478
 779-799
UCAACCCUGCUCAAGAGGCUUG
2613
 777-799






G







AD-1735244
UAAAGGGAAGAAGUUGAAGCA
2479
  99-119
UGCUUCAACUUCUUCCCUUUAA
2614
  97-119






U







AD-1735245
GGCAGCAUUGAGAAGGUGGUA
2480
 675-695
UACCACCUUCUCAAUGCUGCCC
2615
 673-695






A







AD-1735246
GUCAGCGACAGCUUCUUCCGA
2481
1617-1637
UCGGAAGAAGCUGUCGCUGACC
2616
1615-1637






C







AD-1735247
CUGCUGUCUCCUCAACCAAGA
2482
1243-1263
UCUUGGUUGAGGAGACAGCAGG
2617
1241-1263






G







AD-1735248
AGGAGGAAGAAUUGGAGACUA
2483
1054-1074
UAGUCUCCAAUUCUUCCUCCUC
2618
1052-1074






C







AD-1735249
CCUGUCACCACUCUGAAGGUA
2484
2092-2112
UACCUUCAGAGUGGUGACAGGA
2619
2090-2112






G







AD-1735250
AGACUUUAUGUAUAGCCACAA
2485
2439-2459
UUGUGGCUAUACAUAAAGUCUA
2620
2437-2459






U







AD-1735251
GUUACGCAUGCCUGCUUUUUA
2486
2690-2710
UAAAAAGCAGGCAUGCGUAACA
2621
2688-2710






C







AD-1735252
CCAGUUCACAGCUGCCAAUGA
2487
 377-397
UCAUUGGCAGCUGUGAACUGGG
2622
 375-397






U







AD-1735253
CAGGCACGUGUGUAUGCACUA
2488
2640-2660
UAGUGCAUACACACGUGCCUGC
2623
2638-2660






A







AD-1735254
AUGGCAGUCAACAAAGGCCUA
2489
 132-152
UAGGCCUUUGUUGACUGCCAUC
2624
 130-152






C







AD-1735255
CAAACUUGUGGCCAAAAGAUA
2490
2007-2027
UAUCUUUUGGCCACAAGUUUGG
2625
2005-2027






U







AD-1735256
UCUGACCAACACCCUCUCUCA
2491
 803-823
UGAGAGAGGGUGUUGGUCAGAG
2626
 801-823






C







AD-1735257
UCACAUUAUAAAUCCCACUCA
2492
2744-2764
UGAGUGGGAUUUAUAAUGUGAU
2627
2742-2764






A







AD-1735258
GAGGAGAACAAGUUCAGUGAA
2493
1074-1094
UUCACUGAACUUGUUCUCCUCA
2628
1072-1094






G







AD-1735259
GAGCAGGAGAAUGUGCUGCAA
2494
 177-197
UUGCAGCACAUUCUCCUGCUCA
2629
 175-197






G







AD-1735260
GAAGACCUACACCAGCACUAA
2495
 245-265
UUAGUGCUGGUGUAGGUCUUCU
2630
 243-265






G







AD-1735261
AGGCCUCACCUUGCUGGAUGA
2496
 146-166
UCAUCCAGCAAGGUGAGGCCUU
2631
 144-166






U







AD-1735262
AGCCAGCUGCUUGCUCACAGA
2497
2336-2356
UCUGUGAGCAAGCAGCUGGCUC
2632
2334-2356






U







AD-1735263
GGGCUCUGUGAGACUGAGGUA
2498
  13-33
UACCUCAGUCUCACAGAGCCCA
2633
  11-33






G







AD-1735264
CGAGAGCGAAUUCCGGGACAA
2499
1367-1387
UUGUCCCGGAAUUCGCUCUCGG
2634
1365-1387






G







AD-1735265
GUGGCACAUACCCUGCAGAAA
2500
1134-1154
UUUCUGCAGGGUAUGUGCCACA
2635
1132-1154






C







AD-1735266
GUGGACACAGUGGUGCAUUAA
2501
1314-1334
UUAAUGCACCACUGUGUCCACC
2636
1312-1334






A







AD-1735267
AAGCCCAGAAGUCUCCCAAGA
2502
 751-771
UCUUGGGAGACUUCUGGGCUUG
2637
 749-771






C







AD-1735268
GGCCAUGUCCCUAUCAGAUGA
2503
1268-1288
UCAUCUGAUAGGGACAUGGCCC
2638
1266-1288






U







AD-1735269
GCCGGCGGGUUUCUCUAACAA
2504
1728-1748
UUGUUAGAGAAACCCGCCGGCC
2639
1726-1748






C







AD-1735270
CUGAAGGACACCAUCUCCACA
2505
 477-497
UGUGGAGAUGGUGUCCUUCAGC
2640
 475-497






U







AD-1735271
GACCACCAUCUCGGCUGUGAA
2506
1163-1183
UUCACAGCCGAGAUGGUGGUCU
2641
1161-1183






G







AD-1735272
CCAGUUUUUAAGGGACACCAA
2507
1907-1927
UUGGUGUCCCUUAAAAACUGGC
2642
1905-1927






U







AD-1735273
GGCCAGAGACACUGCGGAAUA
2508
 599-619
UAUUCCGCAGUGUCUCUGGCCA
2643
 597-619






C







AD-1735274
CGUUCCCAUCGCGAGCACUUA
2509
 527-547
UAAGUGCUCGCGAUGGGAACGC
2644
 525-547






U







AD-1735275
CCGGGACAUCGACAACCCACA
2510
1379-1399
UGUGGGUUGUCGAUGUCCCGGA
2645
1377-1399






A







AD-1735276
UCUGAUGAUCUAGGCUCCCAA
2511
2194-2214
UUGGGAGCCUAGAUCAUCAGAG
2646
2192-2214






G







AD-1735277
CUGCAGAAGACCCUCCAGACA
2512
1146-1166
UGUCUGGAGGGUCUUCUGCAGG
2647
1144-1166






G







AD-1735278
CGCCAGUAGCUUGGCUGCCUA
2513
 323-343
UAGGCAGCCAAGCUACUGGCGC
2648
 321-343






U







AD-1735279
CGCUUCACAGGCUGAGUCCAA
2514
2298-2318
UUGGACUCAGCCUGUGAAGCGG
2649
2296-2318






C







AD-1735280
UUUUUUUAGCAUCCUUUUGGA
2515
1871-1891
UCCAAAAGGAUGCUAAAAAAAA
2650
1869-1891






A







AD-1735281
GAAGCCAAAGCGCAGGGUCAA
2516
1601-1621
UUGACCCUGCGCUUUGGCUUCU
2651
1599-1621






C







AD-1735282
GAGGAGGAUCAUGAGGACCAA
2517
1005-1025
UUGGUCCUCAUGAUCCUCCUCC
2652
1003-1025






U







AD-1735283
GCACGCAUUACAGCCAGCUGA
2518
1666-1686
UCAGCUGGCUGUAAUGCGUGCG
2653
1664-1686






G







AD-1735284
CUUCAUUGAAAACCACCACGA
2519
2585-2605
UCGUGGUGGUUUUCAAUGAAGG
2654
2583-2605






G







AD-1735285
UUUUUGAUGGCCACAUAAUAA
2520
2768-2788
UUAUUAUGUGGCCAUCAAAAAG
2655
2766-2788






A







AD-1735286
CCACCUGGAGGAAAAGAUCCA
2521
 419-439
UGGAUCUUUUCCUCCAGGUGGU
2656
 417-439






C







AD-1735287
CAAGGCCAAGCCAAGCCUCUA
2522
 767-787
UAGAGGCUUGGCUUGGCCUUGG
2657
 765-787






G







AD-1735288
GAGGACCAGACAGACACGGAA
2523
1017-1037
UUCCGUGUCUGUCUGGUCCUCA
2658
1015-1037






U







AD-1735289
GAUGCCCUGAAGGGCGUUACA
2524
1284-1304
UGUAACGCCCUUCAGGGCAUCU
2659
1282-1304






G







AD-1735290
CCAACACUCGAGCUGGCCGAA
2525
 625-645
UUCGGCCAGCUCGAGUGUUGGC
2660
 623-645






A







AD-1735291
CAGGGCUAUGCACCUGCAGGA
2526
2624-2644
UCCUGCAGGUGCAUAGCCCUGC
2661
2622-2644






A







AD-1735292
AAGGUGGUGGAGUACCUCCUA
2527
 687-707
UAGGAGGUACUCCACCACCUUC
2662
 685-707






U







AD-1735293
UUGAAGCUUGAGGAGCGAGGA
2528
 112-132
UCCUCGCUCCUCAAGCUUCAAC
2663
 110-132






U







AD-1735294
CGUGGCCAUGUGGAUCCCAGA
2529
 869-889
UCUGGGAUCCACAUGGCCACGG
2664
 867-889






U







AD-1735295
CAGCACUAAGGAAGCCCACCA
2530
 257-277
UGGUGGGCUUCCUUAGUGCUGG
2665
 255-277






U







AD-1735296
GUCGCUGAUGGAGCCCGAGAA
2531
1352-1372
UUCUCGGGCUCCAUCAGCGACA
2666
1350-1372






G







AD-1735297
UUCUUCCGGCCCAGCGUCAUA
2532
1629-1649
UAUGACGCUGGGCCGGAAGAAG
2667
1627-1649






C







AD-1735298
CUGCUCCUGGACACCAGCAAA
2533
 733-753
UUUGCUGGUGUCCAGGAGCAGG
2668
 731-753






G







AD-1735299
UUUCUGAGUACCCGCCGCUUA
2534
2283-2303
UAAGCGGCGGGUACUCAGAAAG
2669
2281-2303






U







AD-1735300
CGCAGGCUGUCCACCCAGUUA
2535
 363-383
UAACUGGGUGGACAGCCUGCGG
2670
 361-383






A







AD-1735301
GGCUGUGACAUGGGCACCUGA
2536
1175-1195
UCAGGUGCCCAUGUCACAGCCG
2671
1173-1195






A







AD-1735302
UCAGUGAGGUAGCAGCCCUGA
2537
1087-1107
UCAGGGCUGCUACCUCACUGAA
2672
1085-1107






C







AD-1735303
AGCGUCAUGGAGCCCAUCCUA
2538
1641-1661
UAGGAUGGGCUCCAUGACGCUG
2673
1639-1661






G







AD-1735304
CUGGAUGGAGACCUCCCUGAA
2539
 159-179
UUCAGGGAGGUCUCCAUCCAGC
2674
 157-179






A







AD-1735305
UCAGCCGGAGUGAGUGUUGGA
2540
  38-58
UCCAACACUCACUCCGGCUGACC
2675
  36-58





AD-1735306
CUGGCCGACUGGCUUCUGGAA
2541
 637-657
UUCCAGAAGCCAGUCGGCCAGC
2676
 635-657






U







AD-1735307
GGUGCUGCACCUCACACCAGA
2542
1220-1240
UCUGGUGUGAGGUGCAGCACCC
2677
1218-1240






U







AD-1735308
GGCUGCCUGGAGCAUGGAGCA
2543
 335-355
UGCUCCAUGCUCCAGGCAGCCA
2678
 333-355






A







AD-1735309
CCUGCAGCUGUGCUGGGCAUA
2544
1191-1211
UAUGCCCAGCACAGCUGCAGGU
2679
1189-1211






G







AD-1735310
AGUGGCCAUGCAGGCGGUGUA
2545
 929-949
UACACCGCCUGCAUGGCCACUG
2680
 927-949






A







AD-1735311
GACUUGGCCUUGGGCAGCAUA
2546
 663-683
UAUGCUGCCCAAGGCCAAGUCG
2681
 661-683






G







AD-1735312
GAGCGAAGUGCGGGUACCCUA
2547
 959-979
UAGGGUACCCGCACUUCGCUCC
2682
 957-979






U







AD-1735313
CUGGUGGCCUCUGUGUGCAAA
2548
 279-299
UUUGCACACAGAGGCCACCAGG
2683
 277-299






G







AD-1735314
AACCCACCAGCCGAGGUCGAA
2549
1392-1412
UUCGACCUCGGCUGGUGGGUUG
2684
1390-1412






U







AD-1735315
UGAUGCUGCCAAGGCGCACUA
2550
1826-1846
UAGUGCGCCUUGGCAGCAUCAU
2685
1824-1846






C







AD-1735316
CCAAUGAGCUGGCCUGCCGAA
2551
 391-411
UUCGGCAGGCCAGCUCAUUGGC
2686
 389-411






A







AD-1735317
GUGCUGCAGCGGGUCCUGCAA
2552
 189-209
UUGCAGGACCCGCUGCAGCACA
2687
 187-209






U







AD-1735318
GGGCGUGCAGAGCGCCAGUAA
2553
 311-331
UUACUGGCGCUCUGCACGCCCU
2688
 309-331






U







AD-1735319
GGUGAGUGGCACCUGCGAAUA
2554
 218-238
UAUUCGCAGGUGCCACUCACCA
2689
 216-238






C







AD-1735320
ACGGAGGGAGAGGACACGGAA
2555
1032-1052
UUCCGUGUCCUCUCCCUCCGUG
2690
1030-1052






U
















TABLE 11







Modified Sense and Antisense Strand Sequences of PLIN1 dsRNA Agents Comprising a GalNAc Derivative Targeting Ligand















SEQ

SEQ




Duplex

ID

ID

SEQ ID


Name
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
mRNA Target Sequence 5′ to 3
NO:





AD-
csasucucUfuUfAfAfccaaacuu
3096
VPusCfsaagUfuUfGfguuaAfaGfagau
2826
UUCAUCUCUUUAACCAAACU
2961


1735186
sgsa

gsasa

UGU






AD-
csuscuaaCfaAfAfUfaaacagaas
3097
VPusGfsuucUfgUfUfuauuUfgUfuaga
2827
UUCUCUAACAAAUAAACAGA
2962


1735187
csa

gsasa

ACC






AD-
usgscauaGfuCfAfCfucuuuuga
3098
VPusAfsucaAfaAfGfagugAfcUfaugc
2828
CCUGCAUAGUCACUCUUUUG
2963


1735188
susa

asgsg

AUG






AD-
asascuugAfuUfUfUfucaucucu
3099
VPusAfsagaGfaUfGfaaaaAfuCfaagu
2829
CUAACUUGAUUUUUCAUCUC
2964


1735189
susa

usasg

UUU






AD-
gsascacaUfuCfUfUfagcacuga
3100
VPusUfsucaGfuGfCfuaagAfaUfgugu
2830
UUGACACAUUCUUAGCACUG
2965


1735190
sasa

csasa

AAC






AD-
ascsgccuUfaUfUfUfgauuuaac
3101
VPusAfsguuAfaAfUfcaaaUfaAfggcg
2831
AUACGCCUUAUUUGAUUUAA
2966


1735191
susa

usasu

CUA






AD-
usasgucuUfcGfAfAfauguuaau
3102
VPusUfsauuAfaCfAfuuucGfaAfgacu
2832
CCUAGUCUUCGAAAUGUUAA
2967


1735192
sasa

asgsg

UAU






AD-
gsasuggaCfuUfUfUfaaguuguu
3103
VPusAfsaacAfaCfUfuaaaAfgUfccau
2833
AUGAUGGACUUUUAAGUUGU
2968


1735193
susa

csasu

UUC






AD-
usgscuuuUfuUfCfAfcuuaauaa
3104
VPusAfsuuaUfuAfAfgugaAfaAfaagc
2834
CCUGCUUUUUUCACUUAAUA
2969


1735194
susa

asgsg

AUA






AD-
ascsauaaUfaAfCfUfacugcauas
3105
VPusUfsuauGfcAfGfuaguUfaUfuaug
2835
CCACAUAAUAACUACUGCAU
2970


1735195
asa

usgsg

AAU






AD-
usascuagUfgUfCfAfcuuucuga
3106
VPusCfsucaGfaAfAfgugaCfaCfuagu
2836
AAUACUAGUGUCACUUUCUG
2971


1735196
sgsa

asusu

AGU






AD-
csasaucaGfaUfGfCfaaaagcucs
3107
VPusAfsgagCfuUfUfugcaUfcUfgauu
2837
AACAAUCAGAUGCAAAAGCU
2972


1735197
usa

gsusu

CUU






AD-
usasagagUfaAfUfUfgccuaacu
3108
VPusAfsaguUfaGfGfcaauUfaCfucuu
2838
UAUAAGAGUAAUUGCCUAAC
2973


1735198
susa

asusa

UUG






AD-
gsgscuugUfuUfAfUfgaacauua
3109
VPusUfsuaaUfgUfUfcauaAfaCfaagc
2839
AUGGCUUGUUUAUGAACAUU
2974


1735199
sasa

csasu

AAA






AD-
ususuuugCfuAfCfUfgcaaacga
3110
VPusAfsucgUfuUfGfcaguAfgCfaaaa
2840
CUUUUUUGCUACUGCAAACG
2975


1735200
susa

asasg

AUG






AD-
asascgauGfcUfAfUfaauaaaug
3111
VPusAfscauUfuAfUfuauaGfcAfucgu
2841
CAAACGAUGCUAUAAUAAAU
2976


1735201
susa

ususg

GUC






AD-
usgsguugUfuAfCfUfauaagagu
3112
VPusUfsacuCfuUfAfuaguAfaCfaacc
2842
CUUGGUUGUUACUAUAAGAG
2977


1735202
sasa

asasg

UAA






AD-
csusgaugAfaCfAfUfccucugau
3113
VPusCfsaucAfgAfGfgaugUfuCfauca
2843
CUCUGAUGAACAUCCUCUGA
2978


1735203
sgsa

gsasg

UGA






AD-
csusgcggAfuAfAfAfuauuugcc
3114
VPusUfsggcAfaAfUfauuuAfuCfcgca
2844
CUCUGCGGAUAAAUAUUUGC
2979


1735204
sasa

gsasg

CAC






AD-
cscsaaaaUfuCfAfGfauucugcc
3115
VPusAfsggcAfgAfAfucugAfaUfuuu
2845
UUCCAAAAUUCAGAUUCUGC
2980


1735205
susa

ggsasa

CUC






AD-
asasggauGfuGfUfGfucuuucuc
3116
VPusGfsgagAfaAfGfacacAfcAfuccu
2846
AAAAGGAUGUGUGUCUUUCU
2981


1735206
scsa

ususu

CCC






AD-
usgscgaaUfgCfUfUfccagaaga
3117
VPusGfsucuUfcUfGfgaagCfaUfucgc
2847
CCUGCGAAUGCUUCCAGAAG
2982


1735207
scsa

asgsg

ACC






AD-
csgsaaugAfgUfAfAfcuccuguc
3118
VPusUfsgacAfgGfAfguuaCfuCfauuc
2848
CACGAAUGAGUAACUCCUGU
2983


1735208
sasa

gsusg

CAC






AD-
usgsggugUfuUfAfUfuuaaaaua
3119
VPusGfsuauUfuUfAfaauaAfaCfaccc
2849
CUUGGGUGUUUAUUUAAAAU
2984


1735209
scsa

asasg

ACU






AD-
csasaaagAfuAfUfUfugaccguu
3120
VPusAfsaacGfgUfCfaaauAfuCfuuuu
2850
GCCAAAAGAUAUUUGACCGU
2985


1735210
susa

gsgsc

UUC






AD-
asusacagCfuUfGfGfagagauuu
3121
VPusAfsaaaUfcUfCfuccaAfgCfugua
2851
UAAUACAGCUUGGAGAGAUU
2986


1735211
susa

ususa

UUU






AD-
asasaugcAfuUfCfAfuacaauua
3122
VPusGfsuaaUfuGfUfaugaAfuGfcauu
2852
GAAAAUGCAUUCAUACAAUU
2987


1735212
scsa

ususc

ACA






AD-
uscsccacUfcGfCfUfcuuuuuga
3123
VPusAfsucaAfaAfAfgagcGfaGfuggg
2853
AAUCCCACUCGCUCUUUUUG
2988


1735213
susa

asusu

AUG






AD-
gscsuuguGfuUfUfAfcacaagcu
3124
VPusCfsagcUfuGfUfguaaAfcAfcaag
2854
CCGCUUGUGUUUACACAAGC
2989


1735214
sgsa

csgsg

UGU






AD-
cscsugccUfuAfCfAfuggcuugu
3125
VPusAfsacaAfgCfCfauguAfaGfgcag
2855
CACCUGCCUUACAUGGCUUG
2990


1735215
susa

gsusg

UUU






AD-
gsasgauuUfuUfGfUfaucacauu
3126
VPusUfsaauGfuGfAfuacaAfaAfaucu
2856
GAGAGAUUUUUGUAUCACAU
2991


1735216
sasa

csusc

UAU






AD-
asgscacuUfcAfGfAfcaaggucc
3127
VPusAfsggaCfcUfUfgucuGfaAfgugc
2857
CGAGCACUUCAGACAAGGUC
2992


1735217
susa

uscsg

CUG






AD-
uscsacucUfcAfGfAfgccaguuu
3128
VPusAfsaaaCfuGfGfcucuGfaGfagug
2858
CUUCACUCUCAGAGCCAGUU
2993


1735218
susa

asasg

UUU






AD-
ascsugaaCfuCfCfUfcugugauc
3129
VPusAfsgauCfaCfAfgaggAfgUfucag
2859
GCACUGAACUCCUCUGUGAU
2994


1735219
susa

usgsc

CUA






AD-
usasguucCfcUfAfAfugauggac
3130
VPusAfsgucCfaUfCfauuaGfgGfaacu
2860
ACUAGUUCCCUAAUGAUGGA
2995


1735220
susa

asgsu

CUU






AD-
gsgscguuAfcUfGfAfcaacgugg
3131
VPusAfsccaCfgUfUfgucaGfuAfacgc
2861
AGGGCGUUACUGACAACGUG
2996


1735221
susa

cscsu

GUG






AD-
usgsaucuAfgGfAfUfgaucugu
3132
VPusGfsaacAfgAfUfcaucCfuAfgauc
2862
UGUGAUCUAGGAUGAUCUGU
2997


1735222
uscsa

ascsa

UCC






AD-
gsusgaugAfuAfUfAfuagacuu
3133
VPusUfsaaaGfuCfUfauauAfuCfauca
2863
UGGUGAUGAUAUAUAGACUU
2998


1735223
usasa

cscsa

UAU






AD-
gsgscuacUfuUfGfAfagggaaca
3134
VPusUfsuguUfcCfCfuucaAfaGfuagc
2864
CAGGCUACUUUGAAGGGAAC
2999


1735224
sasa

csusg

AAU






AD-
csusgcucUfgAfUfUfcuauggcu
3135
VPusAfsagcCfaUfAfgaauCfaGfagca
2865
GCCUGCUCUGAUUCUAUGGC
3000


1735225
susa

gsgsc

UUG






AD-
asgsauugCfuUfCfUfgagcugaa
3136
VPusCfsuucAfgCfUfcagaAfgCfaauc
2866
AAAGAUUGCUUCUGAGCUGA
3001


1735226
sgsa

ususu

AGG






AD-
gscscaucUfcUfUfGfuguaugca
3137
VPusCfsugcAfuAfCfacaaGfaGfaugg
2867
GUGCCAUCUCUUGUGUAUGC
3002


1735227
sgsa

csasc

AGG






AD-
asgsccacAfuUfUfCfcauuugca
3138
VPusAfsugcAfaAfUfggaaAfuGfuggc
2868
ACAGCCACAUUUCCAUUUGC
3003


1735228
susa

usgsu

AUC






AD-
uscscagaCfaGfAfAfgguuuuga
3139
VPusGfsucaAfaAfCfcuucUfgUfcugg
2869
GGUCCAGACAGAAGGUUUUG
3004


1735229
scsa

ascsc

ACA






AD-
csuscucgAfuAfCfAfccgugcag
3140
VPusUfscugCfaCfGfguguAfuCfgaga
2870
CUCUCUCGAUACACCGUGCA
3005


1735230
sasa

gsasg

GAC






AD-
gsgscgcaCfuUfUfUfuauuuuua
3141
VPusAfsuaaAfaAfUfaaaaAfgUfgcgc
2871
AAGGCGCACUUUUUAUUUUU
3006


1735231
susa

csusu

AUU






AD-
gsasgcguUfgCfCfAfcuuucaaa
3142
VPusCfsuuuGfaAfAfguggCfaAfcgcu
2872
GCGAGCGUUGCCACUUUCAA
3007


1735232
sgsa

csgsc

AGU






AD-
ususgcauCfaUfUfAfcugccuuc
3143
VPusUfsgaaGfgCfAfguaaUfgAfugca
2873
AUUUGCAUCAUUACUGCCUU
3008


1735233
sasa

asasu

CAC






AD-
gscsgcaaGfaAfGfAfgcugaguc
3144
VPusCfsgacUfcAfGfcucuUfcUfugcg
2874
CUGCGCAAGAAGAGCUGAGU
3009


1735234
sgsa

csasg

CGC






AD-
usgscggaAfuUfUfGfcugccaac
3145
VPusUfsguuGfgCfAfgcaaAfuUfccgc
2875
ACUGCGGAAUUUGCUGCCAA
3010


1735235
sasa

asgsu

CAC






AD-
gsusgugcAfaUfGfCfcuaugaga
3146
VPusUfsucuCfaUfAfggcaUfuGfcaca
2876
CUGUGUGCAAUGCCUAUGAG
3011


1735236
sasa

csasg

AAG






AD-
gsasauucAfaAfUfAfuugcaaaa
3147
VPusCfsuuuUfgCfAfauauUfuGfaauu
2877
CAGAAUUCAAAUAUUGCAAA
3012


1735237
sgsa

csusg

AGG






AD-
cscsugugUfgCfUfUfuguagagc
3148
VPusGfsgcuCfuAfCfaaagCfaCfacag
2878
GGCCUGUGUGCUUUGUAGAG
3013


1735238
scsa

gscsc

CCA






AD-
uscscagaCfaAfGfGfaagaguca
3149
VPusCfsugaCfuCfUfuccuUfgUfcugg
2879
CCUCCAGACAAGGAAGAGUC
3014


1735239
sgsa

asgsg

AGC






AD-
usgsccagAfaAfCfAfgcaucagc
3150
VPusCfsgcuGfaUfGfcuguUfuCfuggc
2880
AGUGCCAGAAACAGCAUCAG
3015


1735240
sgsa

ascsu

CGU






AD-
gscsauaaUfaUfGfGfauacgccu
3151
VPusAfsaggCfgUfAfuccaUfaUfuaug
2881
CUGCAUAAUAUGGAUACGCC
3016


1735241
susa

csasg

UUA






AD-
asgsccucAfuCfCfUfgaugaugc
3152
VPusAfsgcaUfcAfUfcaggAfuGfaggc
2882
UCAGCCUCAUCCUGAUGAUG
3017


1735242
susa

usgsa

CUG






AD-
asasgccuCfuUfGfAfgcaggguu
3153
VPusCfsaacCfcUfGfcucaAfgAfggcu
2883
CCAAGCCUCUUGAGCAGGGU
3018


1735243
sgsa

usgsg

UGG






AD-
usasaaggGfaAfGfAfaguugaag
3154
VPusGfscuuCfaAfCfuucuUfcCfcuuu
2884
AUUAAAGGGAAGAAGUUGAA
3019


1735244
scsa

asasu

GCU






AD-
gsgscagcAfuUfGfAfgaaggugg
3155
VPusAfsccaCfcUfUfcucaAfuGfcugc
2885
UGGGCAGCAUUGAGAAGGUG
3020


1735245
susa

cscsa

GUG






AD-
gsuscagcGfaCfAfGfcuucuucc
3156
VPusCfsggaAfgAfAfgcugUfcGfcuga
2886
GGGUCAGCGACAGCUUCUUC
3021


1735246
sgsa

cscsc

CGG






AD-
csusgcugUfcUfCfCfucaaccaas
3157
VPusCfsuugGfuUfGfaggaGfaCfagca
2887
CCCUGCUGUCUCCUCAACCAA
3022


1735247
gsa

gsgsg

GG






AD-
asgsgaggAfaGfAfAfuuggagac
3158
VPusAfsgucUfcCfAfauucUfuCfcucc
2888
GGAGGAGGAAGAAUUGGAGA
3023


1735248
susa

uscsc

CUG






AD-
cscsugucAfcCfAfCfucugaagg
3159
VPusAfsccuUfcAfGfagugGfuGfacag
2889
CUCCUGUCACCACUCUGAAG
3024


1735249
susa

gsasg

GUC






AD-
asgsacuuUfaUfGfUfauagccac
3160
VPusUfsgugGfcUfAfuacaUfaAfaguc
2890
AUAGACUUUAUGUAUAGCCA
3025


1735250
sasa

usasu

CAG






AD-
gsusuacgCfaUfGfCfcugcuuuu
3161
VPusAfsaaaAfgCfAfggcaUfgCfguaa
2891
GUGUUACGCAUGCCUGCUUU
3026


1735251
susa

csasc

UUU






AD-
cscsaguuCfaCfAfGfcugccaau
3162
VPusCfsauuGfgCfAfgcugUfgAfacug
2892
ACCCAGUUCACAGCUGCCAA
3027


1735252
sgsa

gsgsu

UGA






AD-
csasggcaCfgUfGfUfguaugcac
3163
VPusAfsgugCfaUfAfcacaCfgUfgccu
2893
UGCAGGCACGUGUGUAUGCA
3028


1735253
susa

gscsa

CUC






AD-
asusggcaGfuCfAfAfcaaaggcc
3164
VPusAfsggcCfuUfUfguugAfcUfgcca
2894
GGAUGGCAGUCAACAAAGGC
3029


1735254
susa

uscsc

CUC






AD-
csasaacuUfgUfGfGfccaaaagas
3165
VPusAfsucuUfuUfGfgccaCfaAfguuu
2895
ACCAAACUUGUGGCCAAAAG
3030


1735255
usa

gsgsu

AUA






AD-
uscsugacCfaAfCfAfcccucucu
3166
VPusGfsagaGfaGfGfguguUfgGfucag
2896
GCUCUGACCAACACCCUCUCU
3031


1735256
scsa

asgsc

CG






AD-
uscsacauUfaUfAfAfaucccacu
3167
VPusGfsaguGfgGfAfuuuaUfaAfugu
2897
UAUCACAUUAUAAAUCCCAC
3032


1735257
scsa

gasusa

UCG






AD-
gsasggagAfaCfAfAfguucagug
3168
VPusUfscacUfgAfAfcuugUfuCfuccu
2898
CUGAGGAGAACAAGUUCAGU
3033


1735258
sasa

csasg

GAG






AD-
gsasgcagGfaGfAfAfugugcugc
3169
VPusUfsgcaGfcAfCfauucUfcCfugcu
2899
CUGAGCAGGAGAAUGUGCUG
3034


1735259
sasa

csasg

CAG






AD-
gsasagacCfuAfCfAfccagcacus
3170
VPusUfsaguGfcUfGfguguAfgGfucu
2900
CAGAAGACCUACACCAGCAC
3035


1735260
asa

ucsusg

UAA






AD-
asgsgccuCfaCfCfUfugcuggau
3171
VPusCfsaucCfaGfCfaaggUfgAfggcc
2901
AAAGGCCUCACCUUGCUGGA
3036


1735261
sgsa

ususu

UGG






AD-
asgsccagCfuGfCfUfugcucaca
3172
VPusCfsuguGfaGfCfaagcAfgCfuggc
2902
AGAGCCAGCUGCUUGCUCAC
3037


1735262
sgsa

uscsu

AGC






AD-
gsgsgcucUfgUfGfAfgacugagg
3173
VPusAfsccuCfaGfUfcucaCfaGfagccc
2903
CUGGGCUCUGUGAGACUGAG
3038


1735263
susa

sasg

GUG






AD-
csgsagagCfgAfAfUfuccgggac
3174
VPusUfsgucCfcGfGfaauuCfgCfucuc
2904
CCCGAGAGCGAAUUCCGGGA
3039


1735264
sasa

gsgsg

CAU






AD-
gsusggcaCfaUfAfCfccugcaga
3175
VPusUfsucuGfcAfGfgguaUfgUfgcca
2905
GUGUGGCACAUACCCUGCAG
3040


1735265
sasa

csasc

AAG






AD-
gsusggacAfcAfGfUfggugcauu
3176
VPusUfsaauGfcAfCfcacuGfuGfucca
2906
UGGUGGACACAGUGGUGCAU
3041


1735266
sasa

cscsa

UAC






AD-
asasgcccAfgAfAfGfucucccaa
3177
VPusCfsuugGfgAfGfacuuCfuGfggcu
2907
GCAAGCCCAGAAGUCUCCCA
3042


1735267
sgsa

usgsc

AGG






AD-
gsgsccauGfuCfCfCfuaucagau
3178
VPusCfsaucUfgAfUfagggAfcAfuggc
2908
AGGGCCAUGUCCCUAUCAGA
3043


1735268
sgsa

cscsu

UGC






AD-
gscscggcGfgGfUfUfucucuaac
3179
VPusUfsguuAfgAfGfaaacCfcGfccgg
2909
GGGCCGGCGGGUUUCUCUAA
3044


1735269
sasa

cscsc

CAA






AD-
csusgaagGfaCfAfCfcaucuccas
3180
VPusGfsuggAfgAfUfggugUfcCfuuca
2910
AGCUGAAGGACACCAUCUCC
3045


1735270
csa

gscsu

ACC






AD-
gsasccacCfaUfCfUfcggcugug
3181
VPusUfscacAfgCfCfgagaUfgGfuggu
2911
CAGACCACCAUCUCGGCUGU
3046


1735271
sasa

csusg

GAC






AD-
cscsaguuUfuUfAfAfgggacacc
3182
VPusUfsgguGfuCfCfcuuaAfaAfacug
2912
AGCCAGUUUUUAAGGGACAC
3047


1735272
sasa

gscsu

CAG






AD-
gsgsccagAfgAfCfAfcugcggaa
3183
VPusAfsuucCfgCfAfguguCfuCfuggc
2913
GUGGCCAGAGACACUGCGGA
3048


1735273
susa

csasc

AUU






AD-
csgsuuccCfaUfCfGfcgagcacu
3184
VPusAfsaguGfcUfCfgcgaUfgGfgaac
2914
AGCGUUCCCAUCGCGAGCAC
3049


1735274
susa

gscsu

UUC






AD-
cscsgggaCfaUfCfGfacaacccas
3185
VPusGfsuggGfuUfGfucgaUfgUfcccg
2915
UUCCGGGACAUCGACAACCC
3050


1735275
csa

gsasa

ACC






AD-
uscsugauGfaUfCfUfaggcuccc
3186
VPusUfsgggAfgCfCfuagaUfcAfucag
2916
CCUCUGAUGAUCUAGGCUCC
3051


1735276
sasa

asgsg

CAG






AD-
csusgcagAfaGfAfCfccuccaga
3187
VPusGfsucuGfgAfGfggucUfuCfugca
2917
CCCUGCAGAAGACCCUCCAGA
3052


1735277
scsa

gsgsg

CC






AD-
csgsccagUfaGfCfUfuggcugcc
3188
VPusAfsggcAfgCfCfaagcUfaCfuggc
2918
AGCGCCAGUAGCUUGGCUGC
3053


1735278
susa

gscsu

CUG






AD-
csgscuucAfcAfGfGfcugagucc
3189
VPusUfsggaCfuCfAfgccuGfuGfaagc
2919
GCCGCUUCACAGGCUGAGUC
3054


1735279
sasa

gsgsc

CAG






AD-
ususuuuuUfaGfCfAfuccuuuu
3190
VPusCfscaaAfaGfGfaugcUfaAfaaaaa
2920
UUUUUUUUUAGCAUCCUUUU
3055


1735280
gsgsa

sasa

GGG






AD-
gsasagccAfaAfGfCfgcaggguc
3191
VPusUfsgacCfcUfGfcgcuUfuGfgcuu
2921
GAGAAGCCAAAGCGCAGGGU
3056


1735281
sasa

csusc

CAG






AD-
gsasggagGfaUfCfAfugaggacc
3192
VPusUfsgguCfcUfCfaugaUfcCfuccu
2922
AGGAGGAGGAUCAUGAGGAC
3057


1735282
sasa

cscsu

CAG






AD-
gscsacgcAfuUfAfCfagccagcu
3193
VPusCfsagcUfgGfCfuguaAfuGfcgug
2923
CCGCACGCAUUACAGCCAGCU
3058


1735283
sgsa

csgsg

GC






AD-
csusucauUfgAfAfAfaccaccac
3194
VPusCfsgugGfuGfGfuuuuCfaAfugaa
2924
CCCUUCAUUGAAAACCACCAC
3059


1735284
sgsa

gsgsg

GG






AD-
ususuuugAfuGfGfCfcacauaau
3195
VPusUfsauuAfuGfUfggccAfuCfaaaa
2925
UCUUUUUGAUGGCCACAUAA
3060


1735285
sasa

asgsa

UAA






AD-
cscsaccuGfgAfGfGfaaaagauc
3196
VPusGfsgauCfuUfUfuccuCfcAfggug
2926
GACCACCUGGAGGAAAAGAU
3061


1735286
scsa

gsusc

CCC






AD-
csasaggcCfaAfGfCfcaagccucs
3197
VPusAfsgagGfcUfUfggcuUfgGfccuu
2927
CCCAAGGCCAAGCCAAGCCUC
3062


1735287
usa

gsgsg

UU






AD-
gsasggacCfaGfAfCfagacacgg
3198
VPusUfsccgUfgUfCfugucUfgGfuccu
2928
AUGAGGACCAGACAGACACG
3063


1735288
sasa

csasu

GAG






AD-
gsasugccCfuGfAfAfgggcguua
3199
VPusGfsuaaCfgCfCfcuucAfgGfgcau
2929
CAGAUGCCCUGAAGGGCGUU
3064


1735289
scsa

csusg

ACU






AD-
cscsaacaCfuCfGfAfgcuggccg
3200
VPusUfscggCfcAfGfcucgAfgUfguug
2930
UGCCAACACUCGAGCUGGCC
3065


1735290
sasa

gscsa

GAC






AD-
csasgggcUfaUfGfCfaccugcag
3201
VPusCfscugCfaGfGfugcaUfaGfcccu
2931
UGCAGGGCUAUGCACCUGCA
3066


1735291
sgsa

gscsa

GGC






AD-
asasggugGfuGfGfAfguaccucc
3202
VPusAfsggaGfgUfAfcuccAfcCfaccu
2932
AGAAGGUGGUGGAGUACCUC
3067


1735292
susa

uscsu

CUC






AD-
ususgaagCfuUfGfAfggagcgag
3203
VPusCfscucGfcUfCfcucaAfgCfuuca
2933
AGUUGAAGCUUGAGGAGCGA
3068


1735293
sgsa

ascsu

GGA






AD-
csgsuggcCfaUfGfUfggauccca
3204
VPusCfsuggGfaUfCfcacaUfgGfccac
2934
ACCGUGGCCAUGUGGAUCCC
3069


1735294
sgsa

gsgsu

AGG






AD-
csasgcacUfaAfGfGfaagcccacs
3205
VPusGfsgugGfgCfUfuccuUfaGfugcu
2935
ACCAGCACUAAGGAAGCCCA
3070


1735295
csa

gsgsu

CCC






AD-
gsuscgcuGfaUfGfGfagcccgag
3206
VPusUfscucGfgGfCfuccaUfcAfgcga
2936
CUGUCGCUGAUGGAGCCCGA
3071


1735296
sasa

csasg

GAG






AD-
ususcuucCfgGfCfCfcagcguca
3207
VPusAfsugaCfgCfUfgggcCfgGfaaga
2937
GCUUCUUCCGGCCCAGCGUCA
3072


1735297
susa

asgsc

UG






AD-
csusgcucCfuGfGfAfcaccagca
3208
VPusUfsugcUfgGfUfguccAfgGfagca
2938
CCCUGCUCCUGGACACCAGCA
3073


1735298
sasa

gsgsg

AG






AD-
ususucugAfgUfAfCfccgccgcu
3209
VPusAfsagcGfgCfGfgguaCfuCfagaa
2939
ACUUUCUGAGUACCCGCCGC
3074


1735299
susa

asgsu

UUC






AD-
csgscaggCfuGfUfCfcacccagu
3210
VPusAfsacuGfgGfUfggacAfgCfcugc
2940
UCCGCAGGCUGUCCACCCAGU
3075


1735300
susa

gsgsa

UC






AD-
gsgscuguGfaCfAfUfgggcaccu
3211
VPusCfsaggUfgCfCfcaugUfcAfcagc
2941
UCGGCUGUGACAUGGGCACC
3076


1735301
sgsa

csgsa

UGC






AD-
uscsagugAfgGfUfAfgcagcccu
3212
VPusCfsaggGfcUfGfcuacCfuCfacug
2942
GUUCAGUGAGGUAGCAGCCC
3077


1735302
sgsa

asasc

UGC






AD-
asgscgucAfuGfGfAfgcccaucc
3213
VPusAfsggaUfgGfGfcuccAfuGfacgc
2943
CCAGCGUCAUGGAGCCCAUCC
3078


1735303
susa

usgsg

UG






AD-
csusggauGfgAfGfAfccucccug
3214
VPusUfscagGfgAfGfgucuCfcAfucca
2944
UGCUGGAUGGAGACCUCCCU
3079


1735304
sasa

gscsa

GAG






AD-
uscsagccGfgAfGfUfgaguguug
3215
VPusCfscaaCfaCfUfcacuCfcGfgcuga
2945
GGUCAGCCGGAGUGAGUGUU
3080


1735305
sgsa

scsc

GGG






AD-
csusggccGfaCfUfGfgcuucugg
3216
VPusUfsccaGfaAfGfccagUfcGfgcca
2946
AGCUGGCCGACUGGCUUCUG
3081


1735306
sasa

gscsu

GAG






AD-
gsgsugcuGfcAfCfCfucacacca
3217
VPusCfsuggUfgUfGfagguGfcAfgcac
2947
AGGGUGCUGCACCUCACACC
3082


1735307
sgsa

cscsu

AGC






AD-
gsgscugcCfuGfGfAfgcauggag
3218
VPusGfscucCfaUfGfcuccAfgGfcagc
2948
UUGGCUGCCUGGAGCAUGGA
3083


1735308
scsa

csasa

GCC






AD-
cscsugcaGfcUfGfUfgcugggca
3219
VPusAfsugcCfcAfGfcacaGfcUfgcag
2949
CACCUGCAGCUGUGCUGGGC
3084


1735309
susa

gsusg

AUG






AD-
asgsuggcCfaUfGfCfaggcggug
3220
VPusAfscacCfgCfCfugcaUfgGfccac
2950
UCAGUGGCCAUGCAGGCGGU
3085


1735310
susa

usgsa

GUC






AD-
gsascuugGfcCfUfUfgggcagca
3221
VPusAfsugcUfgCfCfcaagGfcCfaagu
2951
CCGACUUGGCCUUGGGCAGC
3086


1735311
susa

csgsg

AUU






AD-
gsasgcgaAfgUfGfCfggguaccc
3222
VPusAfsgggUfaCfCfcgcaCfuUfcgcu
2952
AGGAGCGAAGUGCGGGUACC
3087


1735312
susa

cscsu

CUG






AD-
csusggugGfcCfUfCfugugugca
3223
VPusUfsugcAfcAfCfagagGfcCfacca
2953
CCCUGGUGGCCUCUGUGUGC
3088


1735313
sasa

gsgsg

AAU






AD-
asascccaCfcAfGfCfcgaggucgs
3224
VPusUfscgaCfcUfCfggcuGfgUfgggu
2954
ACAACCCACCAGCCGAGGUCG
3089


1735314
asa

usgsu

AG






AD-
usgsaugcUfgCfCfAfaggcgcac
3225
VPusAfsgugCfgCfCfuuggCfaGfcauc
2955
GAUGAUGCUGCCAAGGCGCA
3090


1735315
susa

asusc

CUU






AD-
cscsaaugAfgCfUfGfgccugccg
3226
VPusUfscggCfaGfGfccagCfuCfauug
2956
UGCCAAUGAGCUGGCCUGCC
3091


1735316
sasa

gscsa

GAG






AD-
gsusgcugCfaGfCfGfgguccugc
3227
VPusUfsgcaGfgAfCfccgcUfgCfagca
2957
AUGUGCUGCAGCGGGUCCUG
3092


1735317
sasa

csasu

CAG






AD-
gsgsgcguGfcAfGfAfgcgccagu
3228
VPusUfsacuGfgCfGfcucuGfcAfcgcc
2958
AAGGGCGUGCAGAGCGCCAG
3093


1735318
sasa

csusu

UAG






AD-
gsgsugagUfgGfCfAfccugcgaa
3229
VPusAfsuucGfcAfGfgugcCfaCfucac
2959
GUGGUGAGUGGCACCUGCGA
3094


1735319
susa

csasc

AUG






AD-
ascsggagGfgAfGfAfggacacgg
3230
VPusUfsccgUfgUfCfcucuCfcCfuccg
2960
ACACGGAGGGAGAGGACACG
3095


1735320
sasa

usgsu

GAG
















TABLE 12







Unmodified Sense and Antisense Strand Sequences of PDE3B dsRNA Agents Comprising an Unsaturated


C22 Hydrocarbon Chain Conjugated to Position 6 on the Sense Strand, Counting from the 5′-end of


the Sense Strand















SEQ
Range in

SEQ
Range in


Duplex
Sense Sequence
ID
NM_
Antisense Sequence
ID
NM_


Name
5′ to 3′
NO:
000922.4
5′ to 3′
NO:
000922.4





AD-1735321
UUCCUUCUUCAUCUUGAUCAA
3231
2880-2900
UUGAUCAAGAUGAAGAAGGAAG
3500
2878-2900






U







AD-1735322
CACUCUAAAACUGAUGUUCA
3232
4621-4641
UUGAACAUCAGUUUUAGAGUGA
3501
4619-4641



A


A







AD-1735323
UCUUCUGUAUCACUGACUCAA
3233
1752-1772
UUGAGUCAGUGAUACAGAAGAU
3502
1750-1772






G







AD-1735324
CAGAUCUUCUGACUGAUCCAA
3234
1363-1383
UUGGAUCAGUCAGAAGAUCUGA
3503
1361-1383






C







AD-1735325
UGACACAUUUUUCUCCAUAA
3235
5958-5978
UUUAUGGAGAAAAAUGUGUCAG
3504
5956-5978



A


U







AD-1735326
GGAAACUCAUUUUUACAUAA
3236
5617-5637
UUUAUGUAAAAAUGAGUUUCCA
3505
5615-5637



A


G







AD-1735327
AUCAGCAACUUAGAAAUUCU
3237
1966-1986
UAGAAUUUCUAAGUUGCUGAUA
3506
1964-1986



A


A







AD-1735328
CUUAUAUUUCUCUAGAGUAC
3238
5351-5371
UGUACUCUAGAGAAAUAUAAGG
3507
5349-5371



A


A







AD-1735329
AACUCCAAGAAUCUUUUAUC
3239
3229-3249
UGAUAAAAGAUUCUUGGAGUUU
3508
3227-3249



A


U







AD-1735330
CUUCAAACAUUCCUGCAUUAA
3240
2680-2700
UUAAUGCAGGAAUGUUUGAAGA
3509
2678-2700






C







AD-1735331
UCGUUCUUCUCCUCAACUAGA
3241
3206-3226
UCUAGUUGAGGAGAAGAACGAU
3510
3204-3226






C







AD-1735332
AAAGAUUAAUCCUCUCACACA
3242
1460-1480
UGUGUGAGAGGAUUAAUCUUUG
3511
1458-1480






G







AD-1735333
ACUAACCUCAUCAAAGAUACA
3243
4501-4521
UGUAUCUUUGAUGAGGUUAGUU
3512
4499-4521






U







AD-1735334
CACCACUUAUUACUAAUAAA
3244
5283-5303
UUUUAUUAGUAAUAAGUGGUGG
3513
5281-5303



A


G







AD-1735335
UGGUACUAGAAAUAUUCUUU
3245
5915-5935
UAAAGAAUAUUUCUAGUACCAG
3514
5913-5935



A


C







AD-1735336
GCUGUCAUUUGUUCACUCUA
3246
4608-4628
UUAGAGUGAACAAAUGACAGCU
3515
4606-4628



A


A







AD-1735337
ACUCAACAAUUUAUGAACUA
3247
2421-2441
UUAGUUCAUAAAUUGUUGAGUG
3516
2419-2441



A


G







AD-1735338
AGUAUGACUCAUUAAUAGAA
3248
2269-2289
UUUCUAUUAAUGAGUCAUACUC
3517
2267-2289



A


U







AD-1735339
CUGCUGAUUUUCUUAAUAAG
3249
1891-1911
UCUUAUUAAGAAAAUCAGCAGU
3518
1889-1911



A


A







AD-1735340
UAUCUUUAGAUCCACAUCUU
3250
4587-4607
UAAGAUGUGGAUCUAAAGAUAA
3519
4585-4607



A


C







AD-1735341
CGAGACAUUCCUUAUCACAAA
3251
2466-2486
UUUGUGAUAAGGAAUGUCUCGA
3520
2464-2486






U







AD-1735342
UACUGAAUCAGAUUAAUUUC
3252
5850-5870
UGAAAUUAAUCUGAUUCAGUAA
3521
5848-5870



A


C







AD-1735343
CUUACUUAAAUCCUUCACUGA
3253
3855-3875
UCAGUGAAGGAUUUAAGUAAGG
3522
3853-3875






G







AD-1735344
UCGAAAGAAUCAUUCAAACU
3254
2100-2120
UAGUUUGAAUGAUUCUUUCGAG
3523
2098-2120



A


A







AD-1735345
AAAUGACCUAUCACUACUUA
3255
4682-4702
UUAAGUAGUGAUAGGUCAUUUC
3524
4680-4702



A


U







AD-1735346
CAAGUCAUUUCCUCUCUACGA
3256
1395-1415
UCGUAGAGAGGAAAUGACUUGU
3525
1393-1415






G







AD-1735347
AUGCAGUUUCUUACUUAUCU
3257
5079-5099
UAGAUAAGUAAGAAACUGCAUG
3526
5077-5099



A


C







AD-1735348
UCAAUGCAAUACACUGUUCA
3258
4124-4144
UUGAACAGUGUAUUGCAUUGAG
3527
4122-4144



A


C







AD-1735349
UCUAUGUACCUACUGACACAA
3259
5945-5965
UUGUGUCAGUAGGUACAUAGAU
3528
5943-5965






A







AD-1735350
UGAAUUCCAGUCUUAUCUUA
3260
4312-4332
UUAAGAUAAGACUGGAAUUCAA
3529
4310-4332



A


A







AD-1735351
UUGCUGUAAUACCAAAACUA
3261
4485-4505
UUAGUUUUGGUAUUACAGCAAA
3530
4483-4505



A


U







AD-1735352
GGAUCACUUCUUUCAAAUCA
3262
1061-1081
UUGAUUUGAAAGAAGUGAUCCA
3531
1059-1081



A


A







AD-1735353
GAACUAGAAAACUAUUCUUA
3263
3795-3815
UUAAGAAUAGUUUUCUAGUUCC
3532
3793-3815



A


U







AD-1735354
ACAUUUCCAUACUGUCUGUU
3264
5484-5504
UAACAGACAGUAUGGAAAUGUG
3533
5482-5504



A


A







AD-1735355
UGAUCCUUCACAGUGUCAAU
3265
5158-5178
UAUUGACACUGUGAAGGAUCAA
3534
5156-5178



A


A







AD-1735356
GAUUUCUGAGAACAAGUAAA
3266
4729-4749
UUUUACUUGUUCUCAGAAAUCA
3535
4727-4749



A


G







AD-1735357
CCUACUUGUGAAAUACAUUU
3267
4906-4926
UAAAUGUAUUUCACAAGUAGGG
3536
4904-4926



A


U







AD-1735358
CAACUGGAAUUUUCCAAUUU
3268
2297-2317
UAAAUUGGAAAAUUCCAGUUGC
3537
2295-2317



A


U







AD-1735359
UCUAAUCCUGAUGAGAGUUA
3269
2649-2669
UUAACUCUCAUCAGGAUUAGAG
3538
2647-2669



A


C







AD-1735360
AGCCUCAUUAUCAAAAUUCU
3270
1288-1308
UAGAAUUUUGAUAAUGAGGCUU
3539
1286-1308



A


A







AD-1735361
AAUUUCUGAUGCUUUUUACU
3271
4220-4240
UAGUAAAAAGCAUCAGAAAUUG
3540
4218-4240



A


A







AD-1735362
UACCAUUAGAUGAAAUCUUA
3272
5788-5808
UUAAGAUUUCAUCUAAUGGUAC
3541
5786-5808



A


A







AD-1735363
CUGUGAAUUCUUCCAACCAUA
3273
1816-1836
UAUGGUUGGAAGAAUUCACAGG
3542
1814-1836






A







AD-1735364
CUAAUACUCCAGAUUUUUAU
3274
1948-1968
UAUAAAAAUCUGGAGUAUUAGG
3543
1946-1968



A


U







AD-1735365
GGACACAUACAUUGAAUAAA
3275
4550-4570
UUUUAUUCAAUGUAUGUGUCCU
3544
4548-4570



A


U







AD-1735366
UUUGUCAUAAUGCUGCUUUG
3276
3887-3907
UCAAAGCAGCAUUAUGACAAAG
3545
3885-3907



A


U







AD-1735367
UUCAUCUUUCUGUUAAUUUC
3277
4637-4657
UGAAAUUAACAGAAAGAUGAAC
3546
4635-4657



A


A







AD-1735368
CAGUGAAACCAUUAAUUUUC
3278
5028-5048
UGAAAAUUAAUGGUUUCACUGU
3547
5026-5048



A


G







AD-1735369
UAACUGCAAGACUGAUUUCU
3279
4716-4736
UAGAAAUCAGUCUUGCAGUUAG
3548
4714-4736



A


G







AD-1735370
AGAAUUCCUCCUUACCUCAAA
3280
3547-3567
UUUGAGGUAAGGAGGAAUUCUC
3549
3545-3567






C







AD-1735371
UAUUACAGAUCUUACUUUGU
3281
5830-5850
UACAAAGUAAGAUCUGUAAUAU
3550
5828-5850



A


G







AD-1735372
UUAUCUGAAAGAUAUCAAUU
3282
5111-5131
UAAUUGAUAUCUUUCAGAUAAG
3551
5109-5131



A


C







AD-1735373
AGAUCUGUUCUGGAAAAUCA
3283
2811-2831
UUGAUUUUCCAGAACAGAUCUG
3552
2809-2831



A


U







AD-1735374
CCCAGAAUACAACUUCCUUCA
3284
2867-2887
UGAAGGAAGUUGUAUUCUGGGC
3553
2865-2887






G







AD-1735375
GUUGAUCUUUCAGUGCUAAA
3285
1323-1343
UUUUAGCACUGAAAGAUCAACU
3554
1321-1343



A


C







AD-1735376
CUAAGCUUUAUUUAUUAGAC
3286
5191-5211
UGUCUAAUAAAUAAAGCUUAGU
3555
5189-5211



A


G







AD-1735377
AGCUUGGAAUCUAUAUCUUU
3287
2843-2863
UAAAGAUAUAGAUUCCAAGCUG
3556
2841-2863



A


A







AD-1735378
UUAUUAUUUCUGAAGCCUAA
3288
4699-4719
UUUAGGCUUCAGAAAUAAUAAG
3557
4697-4719



A


U







AD-1735379
CCUUUGUUGUAUUUAACAAA
3289
4187-4207
UUUUGUUAAAUACAACAAAGGU
3558
4185-4207



A


C







AD-1735380
GCUCUCUAACUAAUCGAUCAA
3290
1852-1872
UUGAUCGAUUAGUUAGAGAGCC
3559
1850-1872






A







AD-1735381
AAAGACUACAUGACAGAAAU
3291
4666-4686
UAUUUCUGUCAUGUAGUCUUUA
3560
4664-4686



A


G







AD-1735382
CAGGAUUCGUAUUUUUAAAG
3292
4418-4438
UCUUUAAAAAUACGAAUCCUGA
3561
4416-4438



A


G







AD-1735383
CCUUGCUAAGUAAUUGACAU
3293
5659-5679
UAUGUCAAUUACUUAGCAAGGG
3562
5657-5679



A


U







AD-1735384
CCUAUGCACUUUCACAGGAAA
3294
3778-3798
UUUCCUGUGAAAGUGCAUAGGA
3563
3776-3798






G







AD-1735385
AUGCUGAAAUAUGUUUCAAC
3295
2019-2039
UGUUGAAACAUAUUUCAGCAUU
3564
2017-2039



A


U







AD-1735386
CCUUUUAAUUCAAAUCUACU
3296
1710-1730
UAGUAGAUUUGAAUUAAAAGGC
3565
1708-1730



A


C







AD-1735387
ACUGGACUUAUUGGAUUUAA
3297
5577-5597
UUUAAAUCCAAUAAGUCCAGUA
3566
5575-5597



A


U







AD-1735388
CAUCUGAAUCAGAUGGUACA
3298
2038-2058
UUGUACCAUCUGAUUCAGAUGU
3567
2036-2058



A


U







AD-1735389
AAUUCUGAUAGCAAUCUGUG
3299
1980-2000
UCACAGAUUGCUAUCAGAAUUU
3568
1978-2000



A


C







AD-1735390
UCAAGUCAAGGAUGCUAUCU
3300
1683-1703
UAGAUAGCAUCCUUGACUUGAA
3569
1681-1703



A


A







AD-1735391
UCACUGAAAACCACAAGAUA
3301
3466-3486
UUAUCUUGUGGUUUUCAGUGAG
3570
3464-3486



A


G







AD-1735392
ACCUGUUGAACAGUCUUCAA
3302
1616-1636
UUUGAAGACUGUUCAACAGGUA
3571
1614-1636



A


G







AD-1735393
UCAAGUGACAUAUUUCAGUU
3303
3957-3977
UAACUGAAAUAUGUCACUUGAG
3572
3955-3977



A


U







AD-1735394
UCAGGAACUUCAGGAUUGCU
3304
1596-1616
UAGCAAUCCUGAAGUUCCUGAG
3573
1594-1616



A


C







AD-1735395
ACGGAGUAUUAGUAGCUUAA
3305
1412-1432
UUUAAGCUACUAAUACUCCGUA
3574
1410-1432



A


G







AD-1735396
AUUGUCAAUGAAUUUUAUGA
3306
3135-3155
UUCAUAAAAUUCAUUGACAAUG
3575
3133-3155



A


C







AD-1735397
GAACAGCAAACAAAUAUUGA
3307
2214-2234
UUCAAUAUUUGUUUGCUGUUCA
3576
2212-2234



A


C







AD-1735398
UGAACUAUUUUCGUGCAUUA
3308
2434-2454
UUAAUGCACGAAAAUAGUUCAU
3577
2432-2454



A


A







AD-1735399
ACUGGAAUACUUAUUUUUCA
3309
4751-4771
UUGAAAAAUAAGUAUUCCAGUU
3578
4749-4771



A


C







AD-1735400
UUAUCUUGCAGAGAUCUCUG
3310
1918-1938
UCAGAGAUCUCUGCAAGAUAAC
3579
1916-1938



A


G







AD-1735401
GAAGUGUUAGAAUUUUUGAU
3311
5142-5162
UAUCAAAAAUUCUAACACUUCC
3580
5140-5162



A


A







AD-1735402
UCAAUUUAAGAUCUCUGGAA
3312
5125-5145
UUUCCAGAGAUCUUAAAUUGAU
3581
5123-5145



A


A







AD-1735403
UGGACCAUAUUUACAAUGUU
3313
4856-4876
UAACAUUGUAAAUAUGGUCCAU
3582
4854-4876



A


U







AD-1735404
UAGUCAUUGAAGCAAUCCUU
3314
2926-2946
UAAGGAUUGCUUCAAUGACUAA
3583
2924-2946



A


A







AD-1735405
AGCUGUUUAGGUUUAACAAU
3315
4353-4373
UAUUGUUAAACCUAAACAGCUU
3584
4351-4373



A


U







AD-1735406
CAAGGCAAAUGAUGUAAAUA
3316
2993-3013
UUAUUUACAUCAUUUGCCUUGG
3585
2991-3013



A


C







AD-1735407
AUCCAAUUACUACUGGAAAC
3317
5603-5623
UGUUUCCAGUAGUAAUUGGAUU
3586
5601-5623



A


U







AD-1735408
ACUUACAAUAUAUAUAUCCU
3318
5328-5348
UAGGAUAUAUAUAUUGUAAGUG
3587
5326-5348



A


C







AD-1735409
AUGCAGUUUGGUAUCUGACA
3319
2512-2532
UUGUCAGAUACCAAACUGCAUG
3588
2510-2532



A


U







AD-1735410
CCUUAUUUCAAGACACUGGU
3320
2377-2397
UACCAGUGUCUUGAAAUAAGGU
3589
2375-2397



A


A







AD-1735411
GAAGGGAUUUAUUCUUUAGU
3321
4373-4393
UACUAAAGAAUAAAUCCCUUCA
3590
4371-4393



A


U







AD-1735412
AUCCUUGCUACGGAUCUUAA
3322
2940-2960
UUUAAGAUCCGUAGCAAGGAUU
3591
2938-2960



A


G







AD-1735413
ACUGACUAUCCCGAAGCAAAA
3323
1727-1747
UUUUGCUUCGGGAUAGUCAGUA
3592
1725-1747






G







AD-1735414
UGUAUUUCUGCUAUUAUUUC
3324
5390-5410
UGAAAUAAUAGCAGAAAUACAC
3593
5388-5410



A


U







AD-1735415
UGUAACAAUAACUAGCCUAA
3325
5680-5700
UUUAGGCUAGUUAUUGUUACAU
3594
5678-5700



A


A







AD-1735416
GUUGUUUUUACUCUAGCUCA
3326
4400-4420
UUGAGCUAGAGUAAAAACAACA
3595
4398-4420



A


A







AD-1735417
CAGGCAGUUUUAUACAAUGA
3327
2790-2810
UUCAUUGUAUAAAACUGCCUGA
3596
2788-2810



A


G







AD-1735418
AGGAUUCUCAGUCAGGUUAU
3328
2352-2372
UAUAACCUGACUGAGAAUCCUU
3597
2350-2372



A


C







AD-1735419
AUUUUCCAUCAUGUUUAAGU
3329
5371-5391
UACUUAAACAUGAUGGAAAAUG
3598
5369-5391



A


U







AD-1735420
UGCCACUUUUGUUACCAUUG
3330
5238-5258
UCAAUGGUAACAAAAGUGGCAG
3599
5236-5258



A


C







AD-1735421
ACUUGCUAGUGUGUGGAUAU
3331
4882-4902
UAUAUCCACACACUAGCAAGUU
3600
4880-4902



A


U







AD-1735422
AAUCUUACUUGAGAAAUUGC
3332
5801-5821
UGCAAUUUCUCAAGUAAGAUUU
3601
5799-5821



A


C







AD-1735423
AGUUCGAGACUUGCAUUUGA
3333
3101-3121
UUCAAAUGCAAGUCUCGAACUU
3602
3099-3121



A


U







AD-1735424
CCAUAGAAUUUCCUGAUACU
3334
1873-1893
UAGUAUCAGGAAAUUCUAUGGG
3603
1871-1893



A


U







AD-1735425
AGGUAAUUCCUUUAGAAUAU
3335
5050-5070
UAUAUUCUAAAGGAAUUACCUU
3604
5048-5070



A


G







AD-1735426
CUUAUGGAAACUCAACAAGA
3336
2118-2138
UUCUUGUUGAGUUUCCAUAAGU
3605
2116-2138



A


U







AD-1735427
AAGCAGCAUUUUAAAUUACG
3337
5554-5574
UCGUAAUUUAAAAUGCUGCUUU
3606
5552-5574



A


U







AD-1735428
UGACUCUCAACUGACCAUUCA
3338
3699-3719
UGAAUGGUCAGUUGAGAGUCAG
3607
3697-3719






C







AD-1735429
AGGUUUAUCCAUGAAGGACU
3339
4161-4181
UAGUCCUUCAUGGAUAAACCUA
3608
4159-4181



A


G







AD-1735430
ACCAAGAAUUUGGCAUUUCA
3340
1666-1686
UUGAAAUGCCAAAUUCUUGGUG
3609
1664-1686



A


A







AD-1735431
UAUCUAGAAUAUUUGGCUUA
3341
5094-5114
UUAAGCCAAAUAUUCUAGAUAA
3610
5092-5114



A


G







AD-1735432
CUCCUGCAGAAUACAUACAAA
3342
5412-5432
UUUGUAUGUAUUCUGCAGGAGA
3611
5410-5432






G







AD-1735433
UCACACCAUUUCCUGGAUUUA
3343
1474-1494
UAAAUCCAGGAAAUGGUGUGAG
3612
1472-1494






A







AD-1735434
AUGUGGAAUUCAAGCGCUUU
3344
2899-2919
UAAAGCGCUUGAAUUCCACAUG
3613
2897-2919



A


A







AD-1735435
AUUGUGUAUUAUCUACUAUG
3345
4240-4260
UCAUAGUAGAUAAUACACAAUA
3614
4238-4260



A


G







AD-1735436
AAUGGAGUAAUGAAAAUGAU
3346
3025-3045
UAUCAUUUUCAUUACUCCAUUC
3615
3023-3045



A


U







AD-1735437
ACUGGUUUAUUGGAAAUAUU
3347
2391-2411
UAAUAUUUCCAAUAAACCAGUG
3616
2389-2411



A


U







AD-1735438
CAAGUGUAUGUGUAUAAAGU
3348
5429-5449
UACUUUAUACACAUACACUUGU
3617
5427-5449



A


A







AD-1735439
UACAAGCAUGCAUAUUGAGA
3349
5457-5477
UUCUCAAUAUGCAUGCUUGUAC
3618
5455-5477



A


A







AD-1735440
UGUGUCUUUUAUGUCUUUGA
3350
4036-4056
UUCAAAGACAUAAAAGACACAC
3619
4034-4056



A


U







AD-1735441
AUUUUCUCGCAGAAUUCAAU
3351
2971-2991
UAUUGAAUUCUGCGAGAAAAUC
3620
2969-2991



A


A







AD-1735442
UAGCGACAGUUUGAGUAAAA
3352
3609-3629
UUUUUACUCAAACUGUCGCUAU
3621
3607-3629



A


U







AD-1735443
CUGGUGUAUGAAUACUUUGU
3353
3872-3892
UACAAAGUAUUCAUACACCAGU
3622
3870-3892



A


G







AD-1735444
GUGAUAAGUGGCUAACAGAA
3354
2182-2202
UUUCUGUUAGCCACUUAUCACC
3623
2180-2202



A


U







AD-1735445
GUAGGCUAAUAUUUUCUAUU
3355
4962-4982
UAAUAGAAAAUAUUAGCCUACC
3624
4960-4982



A


A







AD-1735446
CCUCUUCAUCCUCGACUGUCA
3356
1089-1109
UGACAGUCGAGGAUGAAGAGGC
3625
1087-1109






G







AD-1735447
AAUUGCCAUAAGCCAUAUUA
3357
5815-5835
UUAAUAUGGCUUAUGGCAAUUU
3626
5813-5835



A


C







AD-1735448
GCGAAUAUUUUGUCAGCUAA
3358
3437-3457
UUUAGCUGACAAAAUAUUCGCC
3627
3435-3457



A


G







AD-1735449
AUCCAGUGUUGCCUUUCUGA
3359
4093-4113
UUCAGAAAGGCAACACUGGAUU
3628
4091-4113



A


C







AD-1735450
AAAGUCUAUGCCUGUCUAAA
3360
4068-4088
UUUUAGACAGGCAUAGACUUUU
3629
4066-4088



A


C







AD-1735451
GGACAUCAGAAGUUUGAAUU
3361
4298-4318
UAAUUCAAACUUCUGAUGUCCA
3630
4296-4318



A


U







AD-1735452
GGCGAAUUGCUUAUAUUUCU
3362
2617-2637
UAGAAAUAUAAGCAAUUCGCCC
3631
2615-2637



A


A







AD-1735453
CACACUAUGUGUAAACCAGU
3363
5261-5281
UACUGGUUUACACAUAGUGUGU
3632
5259-5281



A


G







AD-1735454
CAGGUGAAGAAGAAAACAUU
3364
2077-2097
UAAUGUUUUCUUCUUCACCUGA
3633
2075-2097



A


U







AD-1735455
GUGAGCUCUUAUUUUUCACU
3365
3914-3934
UAGUGAAAAAUAAGAGCUCACU
3634
3912-3934



A


A







AD-1735456
AAAGCUGAUGGGAAUAAACU
3366
3519-3539
UAGUUUAUUCCCAUCAGCUUUA
3635
3517-3539



A


C







AD-1735457
GUGUCGUUAGGAGAAACUGC
3367
1164-1184
UGCAGUUUCUCCUAACGACACG
3636
1162-1184



A


C







AD-1735458
GGGACUUAAAACAAUGGUAU
3368
1267-1287
UAUACCAUUGUUUUAAGUCCCA
3637
1265-1287



A


A







AD-1735459
CUGAUGGUAGAAUUAACCAU
3369
2596-2616
UAUGGUUAAUUCUACCAUCAGA
3638
2594-2616



A


A







AD-1735460
ACUAUGUGUGUUUUAUUUCU
3370
4254-4274
UAGAAAUAAAACACACAUAGUA
3639
4252-4274



A


G







AD-1735461
CUGAUAAUUUAUAUUUGCAC
3371
5310-5330
UGUGCAAAUAUAAAUUAUCAGU
3640
5308-5330



A


C







AD-1735462
GUCCUUAAAUUAUUUAACCC
3372
5641-5661
UGGGUUAAAUAAUUUAAGGACU
3641
5639-5661



A


A







AD-1735463
CGCAAUAUGGUGUCAGAUCU
3373
1350-1370
UAGAUCUGACACCAUAUUGCGA
3642
1348-1370



A


G







AD-1735464
UUCGAAGAGCUGCUCUAAUC
3374
2636-2656
UGAUUAGAGCAGCUCUUCGAAG
3643
2634-2656



A


A







AD-1735465
UUUCUGCUGAGAGUAUUCAG
3375
4269-4289
UCUGAAUACUCUCAGCAGAAAU
3644
4267-4289



A


A







AD-1735466
UUGAACAGGAAGUAUCACUG
3376
2230-2250
UCAGUGAUACUUCCUGUUCAAU
3645
2228-2250



A


A







AD-1735467
UGCCUUGUAUUUCCAGAGAA
3377
1228-1248
UUUCUCUGGAAAUACAAGGCAA
3646
1226-1248



A


C







AD-1735468
GUUACUAUGGCAGUUGCAAA
3378
1189-1209
UUUUGCAACUGCCAUAGUAACU
3647
1187-1209



A


G







AD-1735469
AUGGCUGAAUUUUAAAGCUG
3379
4338-4358
UCAGCUUUAAAAUUCAGCCAUG
3648
4336-4358



A


G







AD-1735470
GUCCAUUCAUGGAUCGUUCU
3380
3193-3213
UAGAACGAUCCAUGAAUGGACU
3649
3191-3213



A


G







AD-1735471
UGUGUAACUCCUAUGAUGCU
3381
3268-3288
UAGCAUCAUAGGAGUUACACAG
3650
3266-3288



A


G







AD-1735472
UGGCAGUUUCCCACUCCUAUA
3382
3763-3783
UAUAGGAGUGGGAAACUGCCAG
3651
3761-3783






C







AD-1735473
CCUCAAGCAGAUGAGAUUCA
3383
3561-3581
UUGAAUCUCAUCUGCUUGAGGU
3652
3559-3581



A


A







AD-1735474
AUGUUGUUUUCUCAAAAGCA
3384
5539-5559
UUGCUUUUGAGAAAACAACAUA
3653
5537-5559



A


A







AD-1735475
GAGGGAUUUCUGCUCAAUGC
3385
4111-4131
UGCAUUGAGCAGAAAUCCCUCA
3654
4109-4131



A


G







AD-1735476
GCCUUCUUCUUCCUCACCUGA
3386
 654-674
UCAGGUGAGGAAGAAGAAGGCA
3655
 652-674






C







AD-1735477
UUGAGAUUGAAUCACAUUUC
3387
5471-5491
UGAAAUGUGAUUCAAUCUCAAU
3656
5469-5491



A


A







AD-1735478
CUGUUCAGUGCUAUUCUCCCA
3388
4137-4157
UGGGAGAAUAGCACUGAACAGU
3657
4135-4157






G







AD-1735479
CCUGGCUUACAGCAGAUCCAA
3389
2544-2564
UUGGAUCUGCUGUAAGCCAGGA
3658
2542-2564






A







AD-1735480
GACAGCAGAAAAUUAUUUCA
3390
2157-2177
UUGAAAUAAUUUUCUGCUGUCU
3659
2155-2177



A


U







AD-1735481
UUGGGUUUCUUUAGUUUAUG
3391
5522-5542
UCAUAAACUAAAGAAACCCAAU
3660
5520-5542



A


A







AD-1735482
CACCAUGUAGGUCUCAGAAG
3392
1770-1790
UCUUCUGAGACCUACAUGGUGA
3661
1768-1790



A


G







AD-1735483
GUUGUGGAACAGGAAAUGAA
3393
2569-2589
UUUCAUUUCCUGUUCCACAACC
3662
2567-2589



A


A







AD-1735484
GGAGAACAUAUCAUAUUUUG
3394
4988-5008
UCAAAAUAUGAUAUGUUCUCCA
3663
4986-5008



A


A







AD-1735485
CAGCCAAAAUGAUGGCAAAA
3395
4940-4960
UUUUUGCCAUCAUUUUGGCUGC
3664
4938-4960



A


U







AD-1735486
CCAAUUUUUGAACUUGUAGA
3396
2310-2330
UUCUACAAGUUCAAAAAUUGGA
3665
2308-2330



A


A







AD-1735487
AUAGGAAUAGUUUGCCAACU
3397
1558-1578
UAGUUGGCAAACUAUUCCUAUU
3666
1556-1578



A


U







AD-1735488
UUUGAAUGUUUUGGAGAAAA
3398
4051-4071
UUUUUCUCCAAAACAUUCAAAG
3667
4049-4071



A


A







AD-1735489
GUCAAUAUUUAAUGAAUCAC
3399
5172-5192
UGUGAUUCAUUAAAUAUUGACA
3668
5170-5192



A


C







AD-1735490
UGAGAAUAUAUUAAAUGCAC
3400
5764-5784
UGUGCAUUUAAUAUAUUCUCAC
3669
5762-5784



A


A







AD-1735491
UAACAAGGGACUAAAUAGGA
3401
1544-1564
UUCCUAUUUAGUCCCUUGUUAA
3670
1542-1564



A


G







AD-1735492
GGCUUCUUCUUCCACCUCUGA
3402
 408-428
UCAGAGGUGGAAGAAGAAGCCG
3671
 406-428






C







AD-1735493
UUGGAACAUGUGGUUAUCUU
3403
4573-4593
UAAGAUAACCACAUGUUCCAAU
3672
4571-4593



A


U







AD-1735494
CAGAGAACAGAUGAUUCUUU
3404
1241-1261
UAAAGAAUCAUCUGUUCUCUGG
3673
1239-1261



A


A







AD-1735495
CUGUUAUUUUAUUGGGUUUU
3405
5499-5519
UAAAACCCAAUAAAAUAACAGA
3674
5497-5519



A


C







AD-1735496
AUGAAGAAGCAAAUCUUGGU
3406
3163-3183
UACCAAGAUUUGCUUCUUCAUC
3675
3161-3183



A


U







AD-1735497
UUUGGAAUCAUGCAAUUUUG
3407
5004-5024
UCAAAAUUGCAUGAUUCCAAAA
3676
5002-5024



A


U







AD-1735498
CAAUGUUUUGUAAACUUGCU
3408
4869-4889
UAGCAAGUUUACAAAACAUUGU
3677
4867-4889



A


A







AD-1735499
GGAUCGUAAUAAUGGCAAAA
3409
1640-1660
UUUUUGCCAUUAUUACGAUCCC
3678
1638-1660



A


A







AD-1735500
GUGCUUUCUCAGGUUCCUGU
3410
1435-1455
UACAGGAACCUGAGAAAGCACC
3679
1433-1455



A


C







AD-1735501
AUGAUACUGAAAGUGGUGAU
3411
3331-3351
UAUCACCACUUUCAGUAUCAUU
3680
3329-3351



A


A







AD-1735502
UCACUGGACCUGAUUUUAGU
3412
2244-2264
UACUAAAAUCAGGUCCAGUGAU
3681
2242-2264



A


A







AD-1735503
GAACUUUUUGCUUUUAUGAA
3413
3991-4011
UUUCAUAAAAGCAAAAAGUUCC
3682
3989-4011



A


U







AD-1735504
GAACACAGCACAGAUUUGUU
3414
4451-4471
UAACAAAUCUGUGCUGUGUUCA
3683
4449-4471



A


U







AD-1735505
AUAUGGAAGGAAAUCGUAGA
3415
3483-3503
UUCUACGAUUUCCUUCCAUAUC
3684
3481-3503



A


U







AD-1735506
GCUAUCUAAAUGGGCCUUUU
3416
1696-1716
UAAAAGGCCCAUUUAGAUAGCA
3685
1694-1716



A


U







AD-1735507
CAAAACCACCAAGAAGGAAA
3417
3409-3429
UUUUCCUUCUUGGUGGUUUUGG
3686
3407-3429



A


A







AD-1735508
CCACAGAUGUGCUACAUGCAA
3418
2497-2517
UUGCAUGUAGCACAUCUGUGGC
3687
2495-2517






A







AD-1735509
AAAGUCAUACAUGUACAAGC
3419
5444-5464
UGCUUGUACAUGUAUGACUUUA
3688
5442-5464



A


U







AD-1735510
UAGAAGCAGAAGAGGAUAAU
3420
3313-3333
UAUUAUCCUCUUCUGCUUCUAA
3689
3311-3333



A


C







AD-1735511
CGUGUGUUCGCACAGCUUGA
3421
 611-631
UUCAAGCUGUGCGAACACACGC
3690
 609-631



A


U







AD-1735512
GCUGGUGUUUUGUCCAGUCU
3422
1791-1811
UAGACUGGACAAAACACCAGCU
3691
1789-1811



A


C







AD-1735513
AUGGAAAACAAUCUAAAUCC
3423
3390-3410
UGGAUUUAGAUUGUUUUCCAUU
3692
3388-3410



A


U







AD-1735514
CAUUAGAAAAUGGCUAUCGA
3424
2449-2469
UUCGAUAGCCAUUUUCUAAUGC
3693
2447-2469



A


A







AD-1735515
AUGGACAGAAGGCAUUGUCA
3425
3122-3142
UUGACAAUGCCUUCUGUCCAUU
3694
3120-3142



A


U







AD-1735516
CAGAUUGCUGCAGUGGAAAA
3426
2056-2076
UUUUUCCACUGCAGCAAUCUGU
3695
2054-2076



A


A







AD-1735517
AGGUGGAAAUGGAGUUGAUC
3427
1310-1330
UGAUCAACUCCAUUUCCACCUC
3696
1308-1330



A


C







AD-1735518
CUGGGCAAUGCACCUAAUACA
3428
1935-1955
UGUAUUAGGUGCAUUGCCCAGA
3697
1933-1955






G







AD-1735519
AUUUCCCUCUGCCUAAAGACA
3429
4652-4672
UGUCUUUAGGCAGAGGGAAAUU
3698
4650-4672






A







AD-1735520
CGCUUCUGCAACGUGGAGCUA
3430
 429-449
UAGCUCCACGUUGCAGAAGCGG
3699
 427-449






C







AD-1735521
AGAUUCAUAUUGUAUUUCCC
3431
4014-4034
UGGGAAAUACAAUAUGAAUCUA
3700
4012-4034



A


U







AD-1735522
AGGACAAAUGCAUUUCUAGU
3432
2754-2774
UACUAGAAAUGCAUUUGUCCUC
3701
2752-2774



A


C







AD-1735523
UUAGACGUGUUGAGUGAGUG
3433
5205-5225
UCACUCACUCAACACGUCUAAU
3702
5203-5225



A


A







AD-1735524
CUGUGGACAUCAAAUGCUGA
3434
2006-2026
UUCAGCAUUUGAUGUCCACAGC
3703
2004-2026



A


U







AD-1735525
AGGCCUUAAUACUGUGAGAG
3435
3729-3749
UCUCUCACAGUAUUAAGGCCUG
3704
3727-3749



A


U







AD-1735526
AGAAAUCAUUGCCUAGUGUU
3436
3672-3692
UAACACUAGGCAAUGAUUUCUG
3705
3670-3692



A


C







AD-1735527
UGAGUGCUGAGUUCCUUGCU
3437
5219-5239
UAGCAAGGAACUCAGCACUCAC
3706
5217-5239



A


U







AD-1735528
GCCAUGCAUGAUUAUGAUCA
3438
2727-2747
UUGAUCAUAAUCAUGCAUGGCA
3707
2725-2747



A


G







AD-1735529
UGCUGCUGGUUUGCUACCAG
3439
3284-3304
UCUGGUAGCAAACCAGCAGCAU
3708
3282-3304



A


C







AD-1735530
CAGAUGAAGAGGAAUAGCGA
3440
3595-3615
UUCGCUAUUCCUCUUCAUCUGC
3709
3593-3615



A


C







AD-1735531
AUCCAGGUGCAUCAAUUUCU
3441
4207-4227
UAGAAAUUGAUGCACCUGGAUU
3710
4205-4227



A


U







AD-1735532
AAUAAGCCAAGCGUUAUCUU
3442
1905-1925
UAAGAUAACGCUUGGCUUAUUA
3711
1903-1925



A


A







AD-1735533
GAGAGGAUCCUUGCUCUGCU
3443
3744-3764
UAGCAGAGCAAGGAUCCUCUCA
3712
3742-3764



A


C







AD-1735534
AUGAUGAAGACGGUGAAGAA
3444
3349-3369
UUUCUUCACCGUCUUCAUCAUC
3713
3347-3369



A


A







AD-1735535
UCGUAAGUGUAAGAAAGAAU
3445
5743-5763
UAUUCUUUCUUACACUUACGAA
3714
5741-5763



A


U







AD-1735536
AUCUGUGUAACAGCUGUGGA
3446
1993-2013
UUCCACAGCUGUUACACAGAUU
3715
1991-2013



A


G







AD-1735537
AUUUAAAAUUCCCACUCAACA
3447
2408-2428
UGUUGAGUGGGAAUUUUAAAUA
3716
2406-2428






U







AD-1735538
GACCAGUGUCUACUGGCUCUA
3448
1837-1857
UAGAGCCAGUAGACACUGGUCC
3717
1835-1857






A







AD-1735539
CGCUUUCGUUUUUUAGUCAU
3449
2913-2933
UAUGACUAAAAAACGAAAGCGC
3718
2911-2933



A


U







AD-1735540
UCCGUGUUGACCCAUGUUGCA
3450
3829-3849
UGCAACAUGGGUCAACACGGAU
3719
3827-3849






G







AD-1735541
AUACAGAAGAUGAAGAAAUG
3451
3373-3393
UCAUUUCUUCAUCUUCUGUAUC
3720
3371-3393



A


U







AD-1735542
UCUCCCGAGCUGAAACUUAAA
3452
5719-5739
UUUAAGUUUCAGCUCGGGAGAG
3721
5717-5739






A







AD-1735543
UGCAUCAAACUGGCAGAUAU
3453
3066-3086
UAUAUCUGCCAGUUUGAUGCAC
3722
3064-3086



A


A







AD-1735544
UUGCAAAAUAUUCAGGAGAC
3454
1202-1222
UGUCUCCUGAAUAUUUUGCAAC
3723
1200-1222



A


U







AD-1735545
ACAAUCGUAUACAUGCCACAA
3455
2482-2502
UUGUGGCAUGUAUACGAUUGUG
3724
2480-2502






A







AD-1735546
AAUAGAAAAGAUGAGCAACU
3456
2282-2302
UAGUUGCUCAUCUUUUCUAUUA
3725
2280-2302



A


A







AD-1735547
UAUCUUAUGUUCCAUGGCUG
3457
4325-4345
UCAGCCAUGGAACAUAAGAUAA
3726
4323-4345



A


G







AD-1735548
CUACGUGAAGAGCUGCGUGA
3458
 362-382
UUCACGCAGCUCUUCACGUAGC
3727
 360-382



A


C







AD-1735549
GAAUUGAUGGCUCUAUACGU
3459
2700-2720
UACGUAUAGAGCCAUCAAUUCU
3728
2698-2720



A


A







AD-1735550
UUCAGGUAAUUGAAGAGGCA
3460
3577-3597
UUGCCUCUUCAAUUACCUGAAU
3729
3575-3597



A


C







AD-1735551
AAGGACUGAGUGACCUUUGU
3461
4174-4194
UACAAAGGUCACUCAGUCCUUC
3730
4172-4194



A


A







AD-1735552
CGAGAGUCUGAGGAACGGCU
3462
 344-364
UAGCCGUUCCUCAGACUCUCGG
3731
 342-364



A


G







AD-1735553
AUUCUUUGGGAUUGGGACUU
3463
1254-1274
UAAGUCCCAAUCCCAAAGAAUC
3732
1252-1274



A


A







AD-1735554
UACCAGGUCAGUGGUUAGAA
3464
3298-3318
UUUCUAACCACUGACCUGGUAG
3733
3296-3318



A


C







AD-1735555
AUUCAGGUUUGCCAUGGACA
3465
4283-4303
UUGUCCAUGGCAAACCUGAAUA
3734
4281-4303



A


C







AD-1735556
GCAGCUAAACUGGUCCUGGA
3466
  34-54
UUCCAGGACCAGUUUAGCUGCC
3735
  32-54



A


G







AD-1735557
AGUAAUGGCAUAGAAUGGAG
3467
3012-3032
UCUCCAUUCUAUGCCAUUACUA
3736
3010-3032



A


U







AD-1735558
AAUUGCAAGAAAAUGGACCA
3468
4843-4863
UUGGUCCAUUUUCUUGCAAUUA
3737
4841-4863



A


U







AD-1735559
CGGCACUGCGUUCUGGUGCUA
3469
 921-941
UAGCACCAGAACGCAGUGCCGG
3738
 919-941






A







AD-1735560
AGUCAUAUUGAAGAAGCCCA
3470
3633-3653
UUGGGCUUCUUCAAUAUGACUU
3739
3631-3653



A


U







AD-1735561
UCAUCAUGCUGCGUCAGCUUA
3471
2828-2848
UAAGCUGACGCAGCAUGAUGAU
3740
2826-2848






U







AD-1735562
AAAUGAUCGCCUCUUGGUAU
3472
3038-3058
UAUACCAAGAGGCGAUCAUUUU
3741
3036-3058



A


C







AD-1735563
AUUUGAAGAUAUAAAGAGCA
3473
4922-4942
UUGCUCUUUAUAUCUUCAAAUG
3742
4920-4942



A


U







AD-1735564
GGUCUCCUUCACCAGCCUCGA
3474
 965-985
UCGAGGCUGGUGAAGGAGACCC
3743
 963-985






A







AD-1735565
GAAACAGAGAAGAAAGACAG
3475
2142-2162
UCUGUCUUUCUUCUCUGUUUCC
3744
2140-2162



A


U







AD-1735566
UUCUAGUGGCUACAAAUGCC
3476
2767-2787
UGGCAUUUGUAGCCACUAGAAA
3745
2765-2787



A


U







AD-1735567
GGAGAGAAAUCAGGAAGGAU
3477
2337-2357
UAUCCUUCCUGAUUUCUCUCCC
3746
2335-2357



A


A







AD-1735568
AUAUAGUGAGCCCUAAAGGA
3478
4533-4553
UUCCUUUAGGGCUCACUAUAUU
3747
4531-4553



A


U







AD-1735569
GCUGCCUUUGUCCUCGCCCUA
3479
 528-548
UAGGGCGAGGACAAAGGCAGCC
3748
 526-548






A







AD-1735570
GGCAAAAGACCUCACCAAGAA
3480
1653-1673
UUCUUGGUGAGGUCUUUUGCCA
3749
1651-1673






U







AD-1735571
UUCAGCAUCGCCUGUGCCUUA
3481
 639-659
UAAGGCACAGGCGAUGCUGAAG
3750
 637-659






A







AD-1735572
GCUAAAUGAGGCUCGCAAUA
3482
1337-1357
UUAUUGCGAGCCUCAUUUAGCA
3751
1335-1357



A


C







AD-1735573
CAGCUUCGUCUGGUGGGUCU
3483
 950-970
UAGACCCACCAGACGAAGCUGG
3752
 948-970



A


C







AD-1735574
AUAUGGUAUUGGCAUGCAGU
3484
5066-5086
UACUGCAUGCCAAUACCAUAUU
3753
5064-5086



A


C







AD-1735575
AAACUGCAGGUGGAGAAUUC
3485
3534-3554
UGAAUUCUCCACCUGCAGUUUA
3754
3532-3554



A


U







AD-1735576
UAUGGCUGCCUGUCUUCAAA
3486
2667-2687
UUUUGAAGACAGGCAGCCAUAA
3755
2665-2687



A


C







AD-1735577
CUGUUCUGAAAUAGAGGACC
3487
1499-1519
UGGUCCUCUAUUUCAGAACAGG
3756
1497-1519



A


G







AD-1735578
UCUAUUUUUAAAGCCGCUGG
3488
5898-5918
UCCAGCGGCUUUAAAAAUAGAA
3757
5896-5918



A


A







AD-1735579
GCUGAGGAGAAGCUCAGGAA
3489
1583-1603
UUUCCUGAGCUUCUCCUCAGCU
3758
1581-1603



A


G







AD-1735580
CAAGCCUUCCACCACAAGUCA
3490
1381-1401
UGACUUGUGGUGGAAGGCUUGG
3759
1379-1401






A







AD-1735581
UUCAGUUACCAAAGUGGCCA
3491
3970-3990
UUGGCCACUUUGGUAACUGAAA
3760
3968-3990



A


U







AD-1735582
CACCUGCUUCCUCACCCGGAA
3492
 668-688
UUCCGGGUGAGGAAGCAGGUGA
3761
 666-688






G







AD-1735583
UUUUAUCACCCACAUAGUGG
3493
3242-3262
UCCACUAUGUGGGUGAUAAAAG
3762
3240-3262



A


A







AD-1735584
AGGAGACCGUCGUUGCCUUG
3494
1215-1235
UCAAGGCAACGACGGUCUCCUG
3763
1213-1235



A


A







AD-1735585
AUGGCCCAGCAAAAGUUCGA
3495
3088-3108
UUCGAACUUUUGCUGGGCCAUU
3764
3086-3108



A


U







AD-1735586
AGACGCCAAAGCCAUGCGGUA
3496
 290-310
UACCGCAUGGCUUUGGCGUCUC
3765
 288-310






G







AD-1735587
CAGCUAAUGCACCACCUCACA
3497
3450-3470
UGUGAGGUGGUGCAUUAGCUGA
3766
3448-3470






C







AD-1735588
GGAAAAGCAGACGGCGAAUA
3498
3424-3444
UUAUUCGCCGUCUGCUUUUCCU
3767
3422-3444



A


U







AD-1735589
GCUUUGCUGGGUAGUGAGCU
3499
3901-3921
UAGCUCACUACCCAGCAAAGCA
3768
3899-3921



A


G
















TABLE 13







Modified Sense and Antisense Strand Sequences of PDE3B dsRNA Agents Comprising an Unsaturated C22 Hydrocarbon Chain


Conjugated to Position 6 on the Sense Strand, Counting from the 5′-end of the Sense Strand















SEQ

SEQ

SEQ


Duplex

ID

ID
mRNA
ID


Name
Sense Sequence 5′ to 3
NO:
Antisense Sequence 5′ to 3′
NO:
Target Sequence 5′ to 3′
NO:





AD-
ususccu(Uda)CfuUfCfAfucuugauc
3769
VPusUfsgauCfaAfGfaugaAfgAfaggaas
4038
ACUUCCUUCUUCAUCUUGA
4307


1735321
sasa

gsu

UCAU






AD-
csascuc(Uda)AfaAfAfCfugauguuc
3770
VPusUfsgaaCfaUfCfaguuUfuAfgagugs
4039
UUCACUCUAAAACUGAUGU
4308


1735322
sasa

asa

UCAU






AD-
uscsuuc(Uda)GfuAfUfCfacugacuc
3771
VPusUfsgagUfcAfGfugauAfcAfgaagas
4040
CAUCUUCUGUAUCACUGAC
4309


1735323
sasa

usg

UCAC






AD-
csasgau(Cda)UfuCfUfGfacugaucc
3772
VPusUfsggaUfcAfGfucagAfaGfaucugs
4041
GUCAGAUCUUCUGACUGAU
4310


1735324
sasa

asc

CCAA






AD-
usgsaca(Cda)AfuUfUfUfucuccaua
3773
VPusUfsuauGfgAfGfaaaaAfuGfugucas
4042
ACUGACACAUUUUUCUCCA
4311


1735325
sasa

gsu

UAAA






AD-
gsgsaaa(Cda)UfcAfUfUfuuuacaua
3774
VPusUfsuauGfuAfAfaaauGfaGfuuuccs
4043
CUGGAAACUCAUUUUUACA
4312


1735326
sasa

asg

UAAU






AD-
asuscag(Cda)AfaCfUfUfagaaauuc
3775
VPusAfsgaaUfuUfCfuaagUfuGfcugaus
4044
UUAUCAGCAACUUAGAAAU
4313


1735327
susa

asa

UCUG






AD-
csusuau(Ada)UfuUfCfUfcuagagua
3776
VPusGfsuacUfcUfAfgagaAfaUfauaags
4045
UCCUUAUAUUUCUCUAGAG
4314


1735328
scsa

gsa

UACA






AD-
asascuc(Cda)AfaGfAfAfucuuuuau
3777
VPusGfsauaAfaAfGfauucUfuGfgaguus
4046
AAAACUCCAAGAAUCUUUU
4315


1735329
scsa

usu

AUCA






AD-
csusuca(Ada)AfcAfUfUfccugcauu
3778
VPusUfsaauGfcAfGfgaauGfuUfugaags
4047
GUCUUCAAACAUUCCUGCA
4316


1735330
sasa

asc

UUAG






AD-
uscsguu(Cda)UfuCfUfCfcucaacua
3779
VPusCfsuagUfuGfAfggagAfaGfaacgas
4048
GAUCGUUCUUCUCCUCAAC
4317


1735331
sgsa

usc

UAGC






AD-
asasaga(Uda)UfaAfUfCfcucucaca
3780
VPusGfsuguGfaGfAfggauUfaAfucuuu
4049
CCAAAGAUUAAUCCUCUCA
4318


1735332
scsa

sgsg

CACC






AD-
ascsuaa(Cda)CfuCfAfUfcaaagaua
3781
VPusGfsuauCfuUfUfgaugAfgGfuuagu
4050
AAACUAACCUCAUCAAAGA
4319


1735333
scsa

susu

UACA






AD-
csascca(Cda)UfuAfUfUfacuaauaa
3782
VPusUfsuuaUfuAfGfuaauAfaGfuggug
4051
CCCACCACUUAUUACUAAU
4320


1735334
sasa

sgsg

AAAA






AD-
usgsgua(Cda)UfaGfAfAfauauucu
3783
VPusAfsaagAfaUfAfuuucUfaGfuaccas
4052
GCUGGUACUAGAAAUAUUC
4321


1735335
ususa

gsc

UUUU






AD-
gscsugu(Cda)AfuUfUfGfuucacuc
3784
VPusUfsagaGfuGfAfacaaAfuGfacagcs
4053
UAGCUGUCAUUUGUUCACU
4322


1735336
usasa

usa

CUAA






AD-
ascsuca(Ada)CfaAfUfUfuaugaacu
3785
VPusUfsaguUfcAfUfaaauUfgUfugagus
4054
CCACUCAACAAUUUAUGAA
4323


1735337
sasa

gsg

CUAU






AD-
asgsuau(Gda)AfcUfCfAfuuaauaga
3786
VPusUfsucuAfuUfAfaugaGfuCfauacus
4055
AGAGUAUGACUCAUUAAUA
4324


1735338
sasa

csu

GAAA






AD-
csusgcu(Gda)AfuUfUfUfcuuaauaa
3787
VPusCfsuuaUfuAfAfgaaaAfuCfagcags
4056
UACUGCUGAUUUUCUUAAU
4325


1735339
sgsa

usa

AAGC






AD-
usasucu(Uda)UfaGfAfUfccacaucu
3788
VPusAfsagaUfgUfGfgaucUfaAfagauas
4057
GUUAUCUUUAGAUCCACAU
4326


1735340
susa

asc

CUUA






AD-
csgsaga(Cda)AfuUfCfCfuuaucaca
3789
VPusUfsuguGfaUfAfaggaAfuGfucucg
4058
AUCGAGACAUUCCUUAUCA
4327


1735341
sasa

sasu

CAAU






AD-
usascug(Ada)AfuCfAfGfauuaauu
3790
VPusGfsaaaUfuAfAfucugAfuUfcaguas
4059
GUUACUGAAUCAGAUUAAU
4328


1735342
uscsa

asc

UUCU






AD-
csusuac(Uda)UfaAfAfUfccuucacu
3791
VPusCfsaguGfaAfGfgauuUfaAfguaags
4060
CCCUUACUUAAAUCCUUCA
4329


1735343
sgsa

gsg

CUGG






AD-
uscsgaa(Ada)GfaAfUfCfauucaaac
3792
VPusAfsguuUfgAfAfugauUfcUfuucga
4061
UCUCGAAAGAAUCAUUCAA
4330


1735344
susa

sgsa

ACUU






AD-
asasaug(Ada)CfcUfAfUfcacuacuu
3793
VPusUfsaagUfaGfUfgauaGfgUfcauuus
4062
AGAAAUGACCUAUCACUAC
4331


1735345
sasa

csu

UUAU






AD-
csasagu(Cda)AfuUfUfCfcucucuac
3794
VPusCfsguaGfaGfAfggaaAfuGfacuugs
4063
CACAAGUCAUUUCCUCUCU
4332


1735346
sgsa

usg

ACGG






AD-
asusgca(Gda)UfuUfCfUfuacuuauc
3795
VPusAfsgauAfaGfUfaagaAfaCfugcaus
4064
GCAUGCAGUUUCUUACUUA
4333


1735347
susa

gsc

UCUA






AD-
uscsaau(Gda)CfaAfUfAfcacuguuc
3796
VPusUfsgaaCfaGfUfguauUfgCfauugas
4065
GCUCAAUGCAAUACACUGU
4334


1735348
sasa

gsc

UCAG






AD-
uscsuau(Gda)UfaCfCfUfacugacac
3797
VPusUfsgugUfcAfGfuaggUfaCfauagas
4066
UAUCUAUGUACCUACUGAC
4335


1735349
sasa

usa

ACAU






AD-
usgsaau(Uda)CfcAfGfUfcuuaucuu
3798
VPusUfsaagAfuAfAfgacuGfgAfauucas
4067
UUUGAAUUCCAGUCUUAUC
4336


1735350
sasa

asa

UUAU






AD-
ususgcu(Gda)UfaAfUfAfccaaaacu
3799
VPusUfsaguUfuUfGfguauUfaCfagcaas
4068
AUUUGCUGUAAUACCAAAA
4337


1735351
sasa

asu

CUAA






AD-
gsgsauc(Ada)CfuUfCfUfuucaaauc
3800
VPusUfsgauUfuGfAfaagaAfgUfgauccs
4069
UUGGAUCACUUCUUUCAAA
4338


1735352
sasa

asa

UCAG






AD-
gsasacu(Ada)GfaAfAfAfcuauucuu
3801
VPusUfsaagAfaUfAfguuuUfcUfaguucs
4070
AGGAACUAGAAAACUAUUC
4339


1735353
sasa

csu

UUAA






AD-
ascsauu(Uda)CfcAfUfAfcugucugu
3802
VPusAfsacaGfaCfAfguauGfgAfaaugus
4071
UCACAUUUCCAUACUGUCU
4340


1735354
susa

gsa

GUUA






AD-
usgsauc(Cda)UfuCfAfCfagugucaa
3803
VPusAfsuugAfcAfCfugugAfaGfgaucas
4072
UUUGAUCCUUCACAGUGUC
4341


1735355
susa

asa

AAUA






AD-
gsasuuu(Cda)UfgAfGfAfacaaguaa
3804
VPusUfsuuaCfuUfGfuucuCfaGfaaaucs
4073
CUGAUUUCUGAGAACAAGU
4342


1735356
sasa

asg

AAAG






AD-
cscsuac(Uda)UfgUfGfAfaauacauu
3805
VPusAfsaauGfuAfUfuucaCfaAfguaggs
4074
ACCCUACUUGUGAAAUACA
4343


1735357
susa

gsu

UUUG






AD-
csasacu(Gda)GfaAfUfUfuuccaauu
3806
VPusAfsaauUfgGfAfaaauUfcCfaguugs
4075
AGCAACUGGAAUUUUCCAA
4344


1735358
susa

csu

UUUU






AD-
uscsuaa(Uda)CfcUfGfAfugagaguu
3807
VPusUfsaacUfcUfCfaucaGfgAfuuagas
4076
GCUCUAAUCCUGAUGAGAG
4345


1735359
sasa

gsc

UUAU






AD-
asgsccu(Cda)AfuUfAfUfcaaaauuc
3808
VPusAfsgaaUfuUfUfgauaAfuGfaggcus
4077
UAAGCCUCAUUAUCAAAAU
4346


1735360
susa

usa

UCUG






AD-
asasuuu(Cda)UfgAfUfGfcuuuuua
3809
VPusAfsguaAfaAfAfgcauCfaGfaaauus
4078
UCAAUUUCUGAUGCUUUUU
4347


1735361
csusa

gsa

ACUA






AD-
usascca(Uda)UfaGfAfUfgaaaucuu
3810
VPusUfsaagAfuUfUfcaucUfaAfugguas
4079
UGUACCAUUAGAUGAAAUC
4348


1735362
sasa

csa

UUAC






AD-
csusgug(Ada)AfuUfCfUfuccaacca
3811
VPusAfsuggUfuGfGfaagaAfuUfcacags
4080
UCCUGUGAAUUCUUCCAAC
4349


1735363
susa

gsa

CAUG






AD-
csusaau(Ada)CfuCfCfAfgauuuuua
3812
VPusAfsuaaAfaAfUfcuggAfgUfauuags
4081
ACCUAAUACUCCAGAUUUU
4350


1735364
susa

gsu

UAUC






AD-
gsgsaca(Cda)AfuAfCfAfuugaauaa
3813
VPusUfsuuaUfuCfAfauguAfuGfugucc
4082
AAGGACACAUACAUUGAAU
4351


1735365
sasa

susu

AAAU






AD-
ususugu(Cda)AfuAfAfUfgcugcuu
3814
VPusCfsaaaGfcAfGfcauuAfuGfacaaas
4083
ACUUUGUCAUAAUGCUGCU
4352


1735366
usgsa

gsu

UUGC






AD-
ususcau(Cda)UfuUfCfUfguuaauu
3815
VPusGfsaaaUfuAfAfcagaAfaGfaugaas
4084
UGUUCAUCUUUCUGUUAAU
4353


1735367
uscsa

csa

UUCC






AD-
csasgug(Ada)AfaCfCfAfuuaauuuu
3816
VPusGfsaaaAfuUfAfauggUfuUfcacugs
4085
CACAGUGAAACCAUUAAUU
4354


1735368
scsa

usg

UUCC






AD-
usasacu(Gda)CfaAfGfAfcugauuuc
3817
VPusAfsgaaAfuCfAfgucuUfgCfaguuas
4086
CCUAACUGCAAGACUGAUU
4355


1735369
susa

gsg

UCUG






AD-
asgsaau(Uda)CfcUfCfCfuuaccuca
3818
VPusUfsugaGfgUfAfaggaGfgAfauucu
4087
GGAGAAUUCCUCCUUACCU
4356


1735370
sasa

scsc

CAAG






AD-
usasuua(Cda)AfgAfUfCfuuacuuu
3819
VPusAfscaaAfgUfAfagauCfuGfuaauas
4088
CAUAUUACAGAUCUUACUU
4357


1735371
gsusa

usg

UGUU






AD-
ususauc(Uda)GfaAfAfGfauaucaau
3820
VPusAfsauuGfaUfAfucuuUfcAfgauaas
4089
GCUUAUCUGAAAGAUAUCA
4358


1735372
susa

gsc

AUUU






AD-
asgsauc(Uda)GfuUfCfUfggaaaauc
3821
VPusUfsgauUfuUfCfcagaAfcAfgaucus
4090
ACAGAUCUGUUCUGGAAAA
4359


1735373
sasa

gsu

UCAU






AD-
cscscag(Ada)AfuAfCfAfacuuccuu
3822
VPusGfsaagGfaAfGfuuguAfuUfcuggg
4091
CGCCCAGAAUACAACUUCC
4360


1735374
scsa

scsg

UUCU






AD-
gsusuga(Uda)CfuUfUfCfagugcuaa
3823
VPusUfsuuaGfcAfCfugaaAfgAfucaacs
4092
GAGUUGAUCUUUCAGUGCU
4361


1735375
sasa

usc

AAAU






AD-
csusaag(Cda)UfuUfAfUfuuauuaga
3824
VPusGfsucuAfaUfAfaauaAfaGfcuuags
4093
CACUAAGCUUUAUUUAUUA
4362


1735376
scsa

usg

GACG






AD-
asgscuu(Gda)GfaAfUfCfuauaucuu
3825
VPusAfsaagAfuAfUfagauUfcCfaagcus
4094
UCAGCUUGGAAUCUAUAUC
4363


1735377
susa

gsa

UUUC






AD-
ususauu(Ada)UfuUfCfUfgaagccua
3826
VPusUfsuagGfcUfUfcagaAfaUfaauaas
4095
ACUUAUUAUUUCUGAAGCC
4364


1735378
sasa

gsu

UAAC






AD-
cscsuuu(Gda)UfuGfUfAfuuuaacaa
3827
VPusUfsuugUfuAfAfauacAfaCfaaaggs
4096
GACCUUUGUUGUAUUUAAC
4365


1735379
sasa

usc

AAAA






AD-
gscsucu(Cda)UfaAfCfUfaaucgauc
3828
VPusUfsgauCfgAfUfuaguUfaGfagagcs
4097
UGGCUCUCUAACUAAUCGA
4366


1735380
sasa

csa

UCAC






AD-
asasaga(Cda)UfaCfAfUfgacagaaa
3829
VPusAfsuuuCfuGfUfcaugUfaGfucuuu
4098
CUAAAGACUACAUGACAGA
4367


1735381
susa

sasg

AAUG






AD-
csasgga(Uda)UfcGfUfAfuuuuuaaa
3830
VPusCfsuuuAfaAfAfauacGfaAfuccugs
4099
CUCAGGAUUCGUAUUUUUA
4368


1735382
sgsa

asg

AAGA






AD-
cscsuug(Cda)UfaAfGfUfaauugaca
3831
VPusAfsuguCfaAfUfuacuUfaGfcaaggs
4100
ACCCUUGCUAAGUAAUUGA
4369


1735383
susa

gsu

CAUA






AD-
cscsuau(Gda)CfaCfUfUfucacagga
3832
VPusUfsuccUfgUfGfaaagUfgCfauaggs
4101
CUCCUAUGCACUUUCACAG
4370


1735384
sasa

asg

GAAC






AD-
asusgcu(Gda)AfaAfUfAfuguuuca
3833
VPusGfsuugAfaAfCfauauUfuCfagcaus
4102
AAAUGCUGAAAUAUGUUUC
4371


1735385
ascsa

usu

AACA






AD-
cscsuuu(Uda)AfaUfUfCfaaaucuac
3834
VPusAfsguaGfaUfUfugaaUfuAfaaaggs
4103
GGCCUUUUAAUUCAAAUCU
4372


1735386
susa

csc

ACUG






AD-
ascsugg(Ada)CfuUfAfUfuggauuu
3835
VPusUfsuaaAfuCfCfaauaAfgUfccagus
4104
AUACUGGACUUAUUGGAUU
4373


1735387
asasa

asu

UAAU






AD-
csasucu(Gda)AfaUfCfAfgaugguac
3836
VPusUfsguaCfcAfUfcugaUfuCfagaugs
4105
AACAUCUGAAUCAGAUGGU
4374


1735388
sasa

usu

ACAG






AD-
asasuuc(Uda)GfaUfAfGfcaaucugu
3837
VPusCfsacaGfaUfUfgcuaUfcAfgaauus
4106
GAAAUUCUGAUAGCAAUCU
4375


1735389
sgsa

usc

GUGU






AD-
uscsaag(Uda)CfaAfGfGfaugcuauc
3838
VPusAfsgauAfgCfAfuccuUfgAfcuugas
4107
UUUCAAGUCAAGGAUGCUA
4376


1735390
susa

asa

UCUA






AD-
uscsacu(Gda)AfaAfAfCfcacaagau
3839
VPusUfsaucUfuGfUfgguuUfuCfaguga
4108
CCUCACUGAAAACCACAAG
4377


1735391
sasa

sgsg

AUAU






AD-
ascscug(Uda)UfgAfAfCfagucuuca
3840
VPusUfsugaAfgAfCfuguuCfaAfcaggus
4109
CUACCUGUUGAACAGUCUU
4378


1735392
sasa

asg

CAAG






AD-
uscsaag(Uda)GfaCfAfUfauuucagu
3841
VPusAfsacuGfaAfAfuaugUfcAfcuugas
4110
ACUCAAGUGACAUAUUUCA
4379


1735393
susa

gsu

GUUA






AD-
uscsagg(Ada)AfcUfUfCfaggauugc
3842
VPusAfsgcaAfuCfCfugaaGfuUfccugas
4111
GCUCAGGAACUUCAGGAUU
4380


1735394
susa

gsc

GCUA






AD-
ascsgga(Gda)UfaUfUfAfguagcuua
3843
VPusUfsuaaGfcUfAfcuaaUfaCfuccgus
4112
CUACGGAGUAUUAGUAGCU
4381


1735395
sasa

asg

UAAU






AD-
asusugu(Cda)AfaUfGfAfauuuuau
3844
VPusUfscauAfaAfAfuucaUfuGfacaaus
4113
GCAUUGUCAAUGAAUUUUA
4382


1735396
gsasa

gsc

UGAG






AD-
gsasaca(Gda)CfaAfAfCfaaauauug
3845
VPusUfscaaUfaUfUfuguuUfgCfuguucs
4114
GUGAACAGCAAACAAAUAU
4383


1735397
sasa

asc

UGAA






AD-
usgsaac(Uda)AfuUfUfUfcgugcau
3846
VPusUfsaauGfcAfCfgaaaAfuAfguucas
4115
UAUGAACUAUUUUCGUGCA
4384


1735398
usasa

usa

UUAG






AD-
ascsugg(Ada)AfuAfCfUfuauuuuu
3847
VPusUfsgaaAfaAfUfaaguAfuUfccagus
4116
GAACUGGAAUACUUAUUUU
4385


1735399
csasa

usc

UCAU






AD-
ususauc(Uda)UfgCfAfGfagaucucu
3848
VPusCfsagaGfaUfCfucugCfaAfgauaas
4117
CGUUAUCUUGCAGAGAUCU
4386


1735400
sgsa

csg

CUGG






AD-
gsasagu(Gda)UfuAfGfAfauuuuug
3849
VPusAfsucaAfaAfAfuucuAfaCfacuucs
4118
UGGAAGUGUUAGAAUUUU
4387


1735401
asusa

csa

UGAUC






AD-
uscsaau(Uda)UfaAfGfAfucucugga
3850
VPusUfsuccAfgAfGfaucuUfaAfauugas
4119
UAUCAAUUUAAGAUCUCUG
4388


1735402
sasa

usa

GAAG






AD-
usgsgac(Cda)AfuAfUfUfuacaaugu
3851
VPusAfsacaUfuGfUfaaauAfuGfguccas
4120
AAUGGACCAUAUUUACAAU
4389


1735403
susa

usu

GUUU






AD-
usasguc(Ada)UfuGfAfAfgcaauccu
3852
VPusAfsaggAfuUfGfcuucAfaUfgacuas
4121
UUUAGUCAUUGAAGCAAUC
4390


1735404
susa

asa

CUUG






AD-
asgscug(Uda)UfuAfGfGfuuuaacaa
3853
VPusAfsuugUfuAfAfaccuAfaAfcagcus
4122
AAAGCUGUUUAGGUUUAAC
4391


1735405
susa

usu

AAUG






AD-
csasagg(Cda)AfaAfUfGfauguaaau
3854
VPusUfsauuUfaCfAfucauUfuGfccuugs
4123
GCCAAGGCAAAUGAUGUAA
4392


1735406
sasa

gsc

AUAG






AD-
asuscca(Ada)UfuAfCfUfacuggaaa
3855
VPusGfsuuuCfcAfGfuaguAfaUfuggau
4124
AAAUCCAAUUACUACUGGA
4393


1735407
scsa

susu

AACU






AD-
ascsuua(Cda)AfaUfAfUfauauaucc
3856
VPusAfsggaUfaUfAfuauaUfuGfuaagus
4125
GCACUUACAAUAUAUAUAU
4394


1735408
susa

gsc

CCUG






AD-
asusgca(Gda)UfuUfGfGfuaucugac
3857
VPusUfsgucAfgAfUfaccaAfaCfugcaus
4126
ACAUGCAGUUUGGUAUCUG
4395


1735409
sasa

gsu

ACAA






AD-
cscsuua(Uda)UfuCfAfAfgacacugg
3858
VPusAfsccaGfuGfUfcuugAfaAfuaaggs
4127
UACCUUAUUUCAAGACACU
4396


1735410
susa

usa

GGUU






AD-
gsasagg(Gda)AfuUfUfAfuucuuua
3859
VPusAfscuaAfaGfAfauaaAfuCfccuucs
4128
AUGAAGGGAUUUAUUCUUU
4397


1735411
gsusa

asu

AGUC






AD-
asusccu(Uda)GfcUfAfCfggaucuua
3860
VPusUfsuaaGfaUfCfcguaGfcAfaggaus
4129
CAAUCCUUGCUACGGAUCU
4398


1735412
sasa

usg

UAAA






AD-
ascsuga(Cda)UfaUfCfCfcgaagcaa
3861
VPusUfsuugCfuUfCfgggaUfaGfucagus
4130
CUACUGACUAUCCCGAAGC
4399


1735413
sasa

asg

AAAG






AD-
usgsuau(Uda)UfcUfGfCfuauuauu
3862
VPusGfsaaaUfaAfUfagcaGfaAfauacas
4131
AGUGUAUUUCUGCUAUUAU
4400


1735414
uscsa

csu

UUCC






AD-
usgsuaa(Cda)AfaUfAfAfcuagccua
3863
VPusUfsuagGfcUfAfguuaUfuGfuuacas
4132
UAUGUAACAAUAACUAGCC
4401


1735415
sasa

usa

UAAA






AD-
gsusugu(Uda)UfuUfAfCfucuagcu
3864
VPusUfsgagCfuAfGfaguaAfaAfacaacs
4133
UUGUUGUUUUUACUCUAGC
4402


1735416
csasa

asa

UCAG






AD-
csasggc(Ada)GfuUfUfUfauacaaug
3865
VPusUfscauUfgUfAfuaaaAfcUfgccugs
4134
CUCAGGCAGUUUUAUACAA
4403


1735417
sasa

asg

UGAC






AD-
asgsgau(Uda)CfuCfAfGfucagguua
3866
VPusAfsuaaCfcUfGfacugAfgAfauccus
4135
GAAGGAUUCUCAGUCAGGU
4404


1735418
susa

usc

UAUG






AD-
asusuuu(Cda)CfaUfCfAfuguuuaag
3867
VPusAfscuuAfaAfCfaugaUfgGfaaaaus
4136
ACAUUUUCCAUCAUGUUUA
4405


1735419
susa

gsu

AGUG






AD-
usgscca(Cda)UfuUfUfGfuuaccauu
3868
VPusCfsaauGfgUfAfacaaAfaGfuggcas
4137
GCUGCCACUUUUGUUACCA
4406


1735420
sgsa

gsc

UUGU






AD-
ascsuug(Cda)UfaGfUfGfuguggau
3869
VPusAfsuauCfcAfCfacacUfaGfcaagus
4138
AAACUUGCUAGUGUGUGGA
4407


1735421
asusa

usu

UAUG






AD-
asasucu(Uda)AfcUfUfGfagaaauug
3870
VPusGfscaaUfuUfCfucaaGfuAfagauus
4139
GAAAUCUUACUUGAGAAAU
4408


1735422
scsa

usc

UGCC






AD-
asgsuuc(Gda)AfgAfCfUfugcauuu
3871
VPusUfscaaAfuGfCfaaguCfuCfgaacus
4140
AAAGUUCGAGACUUGCAUU
4409


1735423
gsasa

usu

UGAA






AD-
cscsaua(Gda)AfaUfUfUfccugauac
3872
VPusAfsguaUfcAfGfgaaaUfuCfuauggs
4141
ACCCAUAGAAUUUCCUGAU
4410


1735424
susa

gsu

ACUG






AD-
asgsgua(Ada)UfuCfCfUfuuagaaua
3873
VPusAfsuauUfcUfAfaaggAfaUfuaccus
4142
CAAGGUAAUUCCUUUAGAA
4411


1735425
susa

usg

UAUG






AD-
csusuau(Gda)GfaAfAfCfucaacaag
3874
VPusUfscuuGfuUfGfaguuUfcCfauaags
4143
AACUUAUGGAAACUCAACA
4412


1735426
sasa

usu

AGAA






AD-
asasgca(Gda)CfaUfUfUfuaaauuac
3875
VPusCfsguaAfuUfUfaaaaUfgCfugcuus
4144
AAAAGCAGCAUUUUAAAUU
4413


1735427
sgsa

usu

ACGA






AD-
usgsacu(Cda)UfcAfAfCfugaccauu
3876
VPusGfsaauGfgUfCfaguuGfaGfagucas
4145
GCUGACUCUCAACUGACCA
4414


1735428
scsa

gsc

UUCC






AD-
asgsguu(Uda)AfuCfCfAfugaaggac
3877
VPusAfsgucCfuUfCfauggAfuAfaaccus
4146
CUAGGUUUAUCCAUGAAGG
4415


1735429
susa

asg

ACUG






AD-
ascscaa(Gda)AfaUfUfUfggcauuuc
3878
VPusUfsgaaAfuGfCfcaaaUfuCfuuggus
4147
UCACCAAGAAUUUGGCAUU
4416


1735430
sasa

gsa

UCAA






AD-
usasucu(Ada)GfaAfUfAfuuuggcu
3879
VPusUfsaagCfcAfAfauauUfcUfagauas
4148
CUUAUCUAGAAUAUUUGGC
4417


1735431
usasa

asg

UUAU






AD-
csusccu(Gda)CfaGfAfAfuacauaca
3880
VPusUfsuguAfuGfUfauucUfgCfaggag
4149
CUCUCCUGCAGAAUACAUA
4418


1735432
sasa

sasg

CAAG






AD-
uscsaca(Cda)CfaUfUfUfccuggauu
3881
VPusAfsaauCfcAfGfgaaaUfgGfugugas
4150
UCUCACACCAUUUCCUGGA
4419


1735433
susa

gsa

UUUU






AD-
asusgug(Gda)AfaUfUfCfaagcgcuu
3882
VPusAfsaagCfgCfUfugaaUfuCfcacaus
4151
UCAUGUGGAAUUCAAGCGC
4420


1735434
susa

gsa

UUUC






AD-
asusugu(Gda)UfaUfUfAfucuacua
3883
VPusCfsauaGfuAfGfauaaUfaCfacaaus
4152
CUAUUGUGUAUUAUCUACU
4421


1735435
usgsa

asg

AUGU






AD-
asasugg(Ada)GfuAfAfUfgaaaauga
3884
VPusAfsucaUfuUfUfcauuAfcUfccauus
4153
AGAAUGGAGUAAUGAAAA
4422


1735436
susa

csu

UGAUC






AD-
ascsugg(Uda)UfuAfUfUfggaaaua
3885
VPusAfsauaUfuUfCfcaauAfaAfccagus
4154
ACACUGGUUUAUUGGAAAU
4423


1735437
ususa

gsu

AUUU






AD-
csasagu(Gda)UfaUfGfUfguauaaag
3886
VPusAfscuuUfaUfAfcacaUfaCfacuugs
4155
UACAAGUGUAUGUGUAUAA
4424


1735438
susa

usa

AGUC






AD-
usascaa(Gda)CfaUfGfCfauauugag
3887
VPusUfscucAfaUfAfugcaUfgCfuuguas
4156
UGUACAAGCAUGCAUAUUG
4425


1735439
sasa

csa

AGAU






AD-
usgsugu(Cda)UfuUfUfAfugucuuu
3888
VPusUfscaaAfgAfCfauaaAfaGfacacas
4157
AGUGUGUCUUUUAUGUCUU
4426


1735440
gsasa

csu

UGAA






AD-
asusuuu(Cda)UfcGfCfAfgaauucaa
3889
VPusAfsuugAfaUfUfcugcGfaGfaaaaus
4158
UGAUUUUCUCGCAGAAUUC
4427


1735441
susa

csa

AAUG






AD-
usasgcg(Ada)CfaGfUfUfugaguaaa
3890
VPusUfsuuuAfcUfCfaaacUfgUfcgcuas
4159
AAUAGCGACAGUUUGAGUA
4428


1735442
sasa

usu

AAAG






AD-
csusggu(Gda)UfaUfGfAfauacuuu
3891
VPusAfscaaAfgUfAfuucaUfaCfaccags
4160
CACUGGUGUAUGAAUACUU
4429


1735443
gsusa

usg

UGUC






AD-
gsusgau(Ada)AfgUfGfGfcuaacaga
3892
VPusUfsucuGfuUfAfgccaCfuUfaucacs
4161
AGGUGAUAAGUGGCUAACA
4430


1735444
sasa

csu

GAAG






AD-
gsusagg(Cda)UfaAfUfAfuuuucua
3893
VPusAfsauaGfaAfAfauauUfaGfccuacs
4162
UGGUAGGCUAAUAUUUUCU
4431


1735445
ususa

csa

AUUA






AD-
cscsucu(Uda)CfaUfCfCfucgacugu
3894
VPusGfsacaGfuCfGfaggaUfgAfagaggs
4163
CGCCUCUUCAUCCUCGACU
4432


1735446
scsa

csg

GUCC






AD-
asasuug(Cda)CfaUfAfAfgccauauu
3895
VPusUfsaauAfuGfGfcuuaUfgGfcaauus
4164
GAAAUUGCCAUAAGCCAUA
4433


1735447
sasa

usc

UUAC






AD-
gscsgaa(Uda)AfuUfUfUfgucagcua
3896
VPusUfsuagCfuGfAfcaaaAfuAfuucgcs
4165
CGGCGAAUAUUUUGUCAGC
4434


1735448
sasa

csg

UAAU






AD-
asuscca(Gda)UfgUfUfGfccuuucug
3897
VPusUfscagAfaAfGfgcaaCfaCfuggaus
4166
GAAUCCAGUGUUGCCUUUC
4435


1735449
sasa

usc

UGAG






AD-
asasagu(Cda)UfaUfGfCfcugucuaa
3898
VPusUfsuuaGfaCfAfggcaUfaGfacuuus
4167
GAAAAGUCUAUGCCUGUCU
4436


1735450
sasa

usc

AAAA






AD-
gsgsaca(Uda)CfaGfAfAfguuugaau
3899
VPusAfsauuCfaAfAfcuucUfgAfuguccs
4168
AUGGACAUCAGAAGUUUGA
4437


1735451
susa

asu

AUUC






AD-
gsgscga(Ada)UfuGfCfUfuauauuu
3900
VPusAfsgaaAfuAfUfaagcAfaUfucgccs
4169
UGGGCGAAUUGCUUAUAUU
4438


1735452
csusa

csa

UCUU






AD-
csascac(Uda)AfuGfUfGfuaaaccag
3901
VPusAfscugGfuUfUfacacAfuAfgugug
4170
CACACACUAUGUGUAAACC
4439


1735453
susa

susg

AGUC






AD-
csasggu(Gda)AfaGfAfAfgaaaacau
3902
VPusAfsaugUfuUfUfcuucUfuCfaccugs
4171
AUCAGGUGAAGAAGAAAAC
4440


1735454
susa

asu

AUUU






AD-
gsusgag(Cda)UfcUfUfAfuuuuuca
3903
VPusAfsgugAfaAfAfauaaGfaGfcucacs
4172
UAGUGAGCUCUUAUUUUUC
4441


1735455
csusa

usa

ACUG






AD-
asasagc(Uda)GfaUfGfGfgaauaaac
3904
VPusAfsguuUfaUfUfcccaUfcAfgcuuus
4173
GUAAAGCUGAUGGGAAUAA
4442


1735456
susa

asc

ACUG






AD-
gsusguc(Gda)UfuAfGfGfagaaacu
3905
VPusGfscagUfuUfCfuccuAfaCfgacacs
4174
GCGUGUCGUUAGGAGAAAC
4443


1735457
gscsa

gsc

UGCA






AD-
gsgsgac(Uda)UfaAfAfAfcaauggua
3906
VPusAfsuacCfaUfUfguuuUfaAfgucccs
4175
UUGGGACUUAAAACAAUGG
4444


1735458
susa

asa

UAUA






AD-
csusgau(Gda)GfuAfGfAfauuaacca
3907
VPusAfsuggUfuAfAfuucuAfcCfaucags
4176
UUCUGAUGGUAGAAUUAAC
4445


1735459
susa

asa

CAUG






AD-
ascsuau(Gda)UfgUfGfUfuuuauuu
3908
VPusAfsgaaAfuAfAfaacaCfaCfauagus
4177
CUACUAUGUGUGUUUUAUU
4446


1735460
csusa

asg

UCUG






AD-
csusgau(Ada)AfuUfUfAfuauuugc
3909
VPusGfsugcAfaAfUfauaaAfuUfaucags
4178
GACUGAUAAUUUAUAUUUG
4447


1735461
ascsa

usc

CACU






AD-
gsusccu(Uda)AfaAfUfUfauuuaacc
3910
VPusGfsgguUfaAfAfuaauUfuAfaggacs
4179
UAGUCCUUAAAUUAUUUAA
4448


1735462
scsa

usa

CCCU






AD-
csgscaa(Uda)AfuGfGfUfgucagauc
3911
VPusAfsgauCfuGfAfcaccAfuAfuugcgs
4180
CUCGCAAUAUGGUGUCAGA
4449


1735463
susa

asg

UCUU






AD-
ususcga(Ada)GfaGfCfUfgcucuaau
3912
VPusGfsauuAfgAfGfcagcUfcUfucgaas
4181
UCUUCGAAGAGCUGCUCUA
4450


1735464
scsa

gsa

AUCC






AD-
ususucu(Gda)CfuGfAfGfaguauuc
3913
VPusCfsugaAfuAfCfucucAfgCfagaaas
4182
UAUUUCUGCUGAGAGUAUU
4451


1735465
asgsa

usa

CAGG






AD-
ususgaa(Cda)AfgGfAfAfguaucacu
3914
VPusCfsaguGfaUfAfcuucCfuGfuucaas
4183
UAUUGAACAGGAAGUAUCA
4452


1735466
sgsa

usa

CUGG






AD-
usgsccu(Uda)GfuAfUfUfuccagaga
3915
VPusUfsucuCfuGfGfaaauAfcAfaggcas
4184
GUUGCCUUGUAUUUCCAGA
4453


1735467
sasa

asc

GAAC






AD-
gsusuac(Uda)AfuGfGfCfaguugcaa
3916
VPusUfsuugCfaAfCfugccAfuAfguaacs
4185
CAGUUACUAUGGCAGUUGC
4454


1735468
sasa

usg

AAAA






AD-
asusggc(Uda)GfaAfUfUfuuaaagcu
3917
VPusCfsagcUfuUfAfaaauUfcAfgccaus
4186
CCAUGGCUGAAUUUUAAAG
4455


1735469
sgsa

gsg

CUGU






AD-
gsuscca(Uda)UfcAfUfGfgaucguuc
3918
VPusAfsgaaCfgAfUfccauGfaAfuggacs
4187
CAGUCCAUUCAUGGAUCGU
4456


1735470
susa

usg

UCUU






AD-
usgsugu(Ada)AfcUfCfCfuaugaug
3919
VPusAfsgcaUfcAfUfaggaGfuUfacacas
4188
CCUGUGUAACUCCUAUGAU
4457


1735471
csusa

gsg

GCUG






AD-
usgsgca(Gda)UfuUfCfCfcacuccua
3920
VPusAfsuagGfaGfUfgggaAfaCfugccas
4189
GCUGGCAGUUUCCCACUCC
4458


1735472
susa

gsc

UAUG






AD-
cscsuca(Ada)GfcAfGfAfugagauuc
3921
VPusUfsgaaUfcUfCfaucuGfcUfugaggs
4190
UACCUCAAGCAGAUGAGAU
4459


1735473
sasa

usa

UCAG






AD-
asusguu(Gda)UfuUfUfCfucaaaagc
3922
VPusUfsgcuUfuUfGfagaaAfaCfaacaus
4191
UUAUGUUGUUUUCUCAAAA
4460


1735474
sasa

asa

GCAG






AD-
gsasggg(Ada)UfuUfCfUfgcucaau
3923
VPusGfscauUfgAfGfcagaAfaUfcccucs
4192
CUGAGGGAUUUCUGCUCAA
4461


1735475
gscsa

asg

UGCA






AD-
gscscuu(Cda)UfuCfUfUfccucaccu
3924
VPusCfsaggUfgAfGfgaagAfaGfaaggcs
4193
GUGCCUUCUUCUUCCUCAC
4462


1735476
sgsa

asc

CUGC






AD-
ususgag(Ada)UfuGfAfAfucacauu
3925
VPusGfsaaaUfgUfGfauucAfaUfcucaas
4194
UAUUGAGAUUGAAUCACAU
4463


1735477
uscsa

usa

UUCC






AD-
csusguu(Cda)AfgUfGfCfuauucucc
3926
VPusGfsggaGfaAfUfagcaCfuGfaacags
4195
CACUGUUCAGUGCUAUUCU
4464


1735478
scsa

usg

CCCA






AD-
cscsugg(Cda)UfuAfCfAfgcagaucc
3927
VPusUfsggaUfcUfGfcuguAfaGfccaggs
4196
UUCCUGGCUUACAGCAGAU
4465


1735479
sasa

asa

CCAC






AD-
gsascag(Cda)AfgAfAfAfauuauuuc
3928
VPusUfsgaaAfuAfAfuuuuCfuGfcuguc
4197
AAGACAGCAGAAAAUUAUU
4466


1735480
sasa

susu

UCAG






AD-
ususggg(Uda)UfuCfUfUfuaguuua
3929
VPusCfsauaAfaCfUfaaagAfaAfcccaas
4198
UAUUGGGUUUCUUUAGUUU
4467


1735481
usgsa

usa

AUGU






AD-
csascca(Uda)GfuAfGfGfucucagaa
3930
VPusCfsuucUfgAfGfaccuAfcAfuggugs
4199
CUCACCAUGUAGGUCUCAG
4468


1735482
sgsa

asg

AAGA






AD-
gsusugu(Gda)GfaAfCfAfggaaaug
3931
VPusUfsucaUfuUfCfcuguUfcCfacaacs
4200
UGGUUGUGGAACAGGAAAU
4469


1735483
asasa

csa

GAAA






AD-
gsgsaga(Ada)CfaUfAfUfcauauuuu
3932
VPusCfsaaaAfuAfUfgauaUfgUfucuccs
4201
UUGGAGAACAUAUCAUAUU
4470


1735484
sgsa

asa

UUGG






AD-
csasgcc(Ada)AfaAfUfGfauggcaaa
3933
VPusUfsuuuGfcCfAfucauUfuUfggcug
4202
AGCAGCCAAAAUGAUGGCA
4471


1735485
sasa

scsu

AAAU






AD-
cscsaau(Uda)UfuUfGfAfacuuguag
3934
VPusUfscuaCfaAfGfuucaAfaAfauuggs
4203
UUCCAAUUUUUGAACUUGU
4472


1735486
sasa

asa

AGAA






AD-
asusagg(Ada)AfuAfGfUfuugccaac
3935
VPusAfsguuGfgCfAfaacuAfuUfccuaus
4204
AAAUAGGAAUAGUUUGCCA
4473


1735487
susa

usu

ACUC






AD-
ususuga(Ada)UfgUfUfUfuggagaa
3936
VPusUfsuuuCfuCfCfaaaaCfaUfucaaas
4205
UCUUUGAAUGUUUUGGAGA
4474


1735488
asasa

gsa

AAAG






AD-
gsuscaa(Uda)AfuUfUfAfaugaauca
3937
VPusGfsugaUfuCfAfuuaaAfuAfuugacs
4206
GUGUCAAUAUUUAAUGAAU
4475


1735489
scsa

asc

CACU






AD-
usgsaga(Ada)UfaUfAfUfuaaaugca
3938
VPusGfsugcAfuUfUfaauaUfaUfucucas
4207
UGUGAGAAUAUAUUAAAU
4476


1735490
scsa

csa

GCACA






AD-
usasaca(Ada)GfgGfAfCfuaaauagg
3939
VPusUfsccuAfuUfUfagucCfcUfuguuas
4208
CUUAACAAGGGACUAAAUA
4477


1735491
sasa

asg

GGAA






AD-
gsgscuu(Cda)UfuCfUfUfccaccucu
3940
VPusCfsagaGfgUfGfgaagAfaGfaagccs
4209
GCGGCUUCUUCUUCCACCU
4478


1735492
sgsa

gsc

CUGC






AD-
ususgga(Ada)CfaUfGfUfgguuauc
3941
VPusAfsagaUfaAfCfcacaUfgUfuccaas
4210
AAUUGGAACAUGUGGUUAU
4479


1735493
ususa

usu

CUUU






AD-
csasgag(Ada)AfcAfGfAfugauucu
3942
VPusAfsaagAfaUfCfaucuGfuUfcucugs
4211
UCCAGAGAACAGAUGAUUC
4480


1735494
ususa

gsa

UUUG






AD-
csusguu(Ada)UfuUfUfAfuuggguu
3943
VPusAfsaaaCfcCfAfauaaAfaUfaacagsa
4212
GUCUGUUAUUUUAUUGGGU
4481


1735495
ususa

sc

UUUA






AD-
asusgaa(Gda)AfaGfCfAfaaucuugg
3944
VPusAfsccaAfgAfUfuugcUfuCfuucaus
4213
AGAUGAAGAAGCAAAUCUU
4482


1735496
susa

csu

GGUC






AD-
ususugg(Ada)AfuCfAfUfgcaauuu
3945
VPusCfsaaaAfuUfGfcaugAfuUfccaaas
4214
AUUUUGGAAUCAUGCAAUU
4483


1735497
usgsa

asu

UUGC






AD-
csasaug(Uda)UfuUfGfUfaaacuugc
3946
VPusAfsgcaAfgUfUfuacaAfaAfcauugs
4215
UACAAUGUUUUGUAAACUU
4484


1735498
susa

usa

GCUA






AD-
gsgsauc(Gda)UfaAfUfAfauggcaaa
3947
VPusUfsuuuGfcCfAfuuauUfaCfgauccs
4216
UGGGAUCGUAAUAAUGGCA
4485


1735499
sasa

csa

AAAG






AD-
gsusgcu(Uda)UfcUfCfAfgguuccu
3948
VPusAfscagGfaAfCfcugaGfaAfagcacs
4217
GGGUGCUUUCUCAGGUUCC
4486


1735500
gsusa

csc

UGUA






AD-
asusgau(Ada)CfuGfAfAfaguggug
3949
VPusAfsucaCfcAfCfuuucAfgUfaucaus
4218
UAAUGAUACUGAAAGUGGU
4487


1735501
asusa

usa

GAUG






AD-
uscsacu(Gda)GfaCfCfUfgauuuuag
3950
VPusAfscuaAfaAfUfcaggUfcCfagugas
4219
UAUCACUGGACCUGAUUUU
4488


1735502
susa

usa

AGUA






AD-
gsasacu(Uda)UfuUfGfCfuuuuaug
3951
VPusUfsucaUfaAfAfagcaAfaAfaguucs
4220
AGGAACUUUUUGCUUUUAU
4489


1735503
asasa

csu

GAAA






AD-
gsasaca(Cda)AfgCfAfCfagauuugu
3952
VPusAfsacaAfaUfCfugugCfuGfuguucs
4221
AUGAACACAGCACAGAUUU
4490


1735504
susa

asu

GUUA






AD-
asusaug(Gda)AfaGfGfAfaaucguag
3953
VPusUfscuaCfgAfUfuuccUfuCfcauaus
4222
AGAUAUGGAAGGAAAUCGU
4491


1735505
sasa

csu

AGAG






AD-
gscsuau(Cda)UfaAfAfUfgggccuu
3954
VPusAfsaaaGfgCfCfcauuUfaGfauagcs
4223
AUGCUAUCUAAAUGGGCCU
4492


1735506
ususa

asu

UUUA






AD-
csasaaa(Cda)CfaCfCfAfagaaggaas
3955
VPusUfsuucCfuUfCfuuggUfgGfuuuug
4224
UCCAAAACCACCAAGAAGG
4493


1735507
asa

sgsa

AAAA






AD-
cscsaca(Gda)AfuGfUfGfcuacaugc
3956
VPusUfsgcaUfgUfAfgcacAfuCfuguggs
4225
UGCCACAGAUGUGCUACAU
4494


1735508
sasa

csa

GCAG






AD-
asasagu(Cda)AfuAfCfAfuguacaag
3957
VPusGfscuuGfuAfCfauguAfuGfacuuu
4226
AUAAAGUCAUACAUGUACA
4495


1735509
scsa

sasu

AGCA






AD-
usasgaa(Gda)CfaGfAfAfgaggauaa
3958
VPusAfsuuaUfcCfUfcuucUfgCfuucuas
4227
GUUAGAAGCAGAAGAGGAU
4496


1735510
susa

asc

AAUG






AD-
csgsugu(Gda)UfuCfGfCfacagcuug
3959
VPusUfscaaGfcUfGfugcgAfaCfacacgs
4228
AGCGUGUGUUCGCACAGCU
4497


1735511
sasa

csu

UGAG






AD-
gscsugg(Uda)GfuUfUfUfguccagu
3960
VPusAfsgacUfgGfAfcaaaAfcAfccagcs
4229
GAGCUGGUGUUUUGUCCAG
4498


1735512
csusa

usc

UCUG






AD-
asusgga(Ada)AfaCfAfAfucuaaauc
3961
VPusGfsgauUfuAfGfauugUfuUfuccau
4230
AAAUGGAAAACAAUCUAAA
4499


1735513
scsa

susu

UCCA






AD-
csasuua(Gda)AfaAfAfUfggcuaucg
3962
VPusUfscgaUfaGfCfcauuUfuCfuaaugs
4231
UGCAUUAGAAAAUGGCUAU
4500


1735514
sasa

csa

CGAG






AD-
asusgga(Cda)AfgAfAfGfgcauugu
3963
VPusUfsgacAfaUfGfccuuCfuGfuccaus
4232
AAAUGGACAGAAGGCAUUG
4501


1735515
csasa

usu

UCAA






AD-
csasgau(Uda)GfcUfGfCfaguggaaa
3964
VPusUfsuuuCfcAfCfugcaGfcAfaucugs
4233
UACAGAUUGCUGCAGUGGA
4502


1735516
sasa

usa

AAAU






AD-
asgsgug(Gda)AfaAfUfGfgaguuga
3965
VPusGfsaucAfaCfUfccauUfuCfcaccus
4234
GGAGGUGGAAAUGGAGUU
4503


1735517
uscsa

CSC

GAUCU






AD-
csusggg(Cda)AfaUfGfCfaccuaaua
3966
VPusGfsuauUfaGfGfugcaUfuGfcccags
4235
CUCUGGGCAAUGCACCUAA
4504


1735518
scsa

asg

UACU






AD-
asusuuc(Cda)CfuCfUfGfccuaaaga
3967
VPusGfsucuUfuAfGfgcagAfgGfgaaaus
4236
UAAUUUCCCUCUGCCUAAA
4505


1735519
scsa

usa

GACU






AD-
csgscuu(Cda)UfgCfAfAfcguggagc
3968
VPusAfsgcuCfcAfCfguugCfaGfaagcgs
4237
GCCGCUUCUGCAACGUGGA
4506


1735520
susa

gsc

GCUG






AD-
asgsauu(Cda)AfuAfUfUfguauuuc
3969
VPusGfsggaAfaUfAfcaauAfuGfaaucus
4238
AUAGAUUCAUAUUGUAUUU
4507


1735521
cscsa

asu

CCCA






AD-
asgsgac(Ada)AfaUfGfCfauuucuag
3970
VPusAfscuaGfaAfAfugcaUfuUfguccus
4239
GGAGGACAAAUGCAUUUCU
4508


1735522
susa

CSC

AGUG






AD-
ususaga(Cda)GfuGfUfUfgagugag
3971
VPusCfsacuCfaCfUfcaacAfcGfucuaas
4240
UAUUAGACGUGUUGAGUGA
4509


1735523
usgsa

usa

GUGC






AD-
csusgug(Gda)AfcAfUfCfaaaugcug
3972
VPusUfscagCfaUfUfugauGfuCfcacags
4241
AGCUGUGGACAUCAAAUGC
4510


1735524
sasa

csu

UGAA






AD-
asgsgcc(Uda)UfaAfUfAfcugugaga
3973
VPusCfsucuCfaCfAfguauUfaAfggccus
4242
ACAGGCCUUAAUACUGUGA
4511


1735525
sgsa

gsu

GAGG






AD-
asgsaaa(Uda)CfaUfUfGfccuagugu
3974
VPusAfsacaCfuAfGfgcaaUfgAfuuucus
4243
GCAGAAAUCAUUGCCUAGU
4512


1735526
susa

gsc

GUUC






AD-
usgsagu(Gda)CfuGfAfGfuuccuug
3975
VPusAfsgcaAfgGfAfacucAfgCfacucas
4244
AGUGAGUGCUGAGUUCCUU
4513


1735527
csusa

csu

GCUG






AD-
gscscau(Gda)CfaUfGfAfuuaugauc
3976
VPusUfsgauCfaUfAfaucaUfgCfauggcs
4245
CUGCCAUGCAUGAUUAUGA
4514


1735528
sasa

asg

UCAC






AD-
usgscug(Cda)UfgGfUfUfugcuacca
3977
VPusCfsuggUfaGfCfaaacCfaGfcagcas
4246
GAUGCUGCUGGUUUGCUAC
4515


1735529
sgsa

usc

CAGG






AD-
csasgau(Gda)AfaGfAfGfgaauagcg
3978
VPusUfscgcUfaUfUfccucUfuCfaucugs
4247
GGCAGAUGAAGAGGAAUAG
4516


1735530
sasa

CSC

CGAC






AD-
asuscca(Gda)GfuGfCfAfucaauuuc
3979
VPusAfsgaaAfuUfGfaugcAfcCfuggaus
4248
AAAUCCAGGUGCAUCAAUU
4517


1735531
susa

usu

UCUG






AD-
asasuaa(Gda)CfcAfAfGfcguuaucu
3980
VPusAfsagaUfaAfCfgcuuGfgCfuuauus
4249
UUAAUAAGCCAAGCGUUAU
4518


1735532
susa

asa

CUUG






AD-
gsasgag(Gda)AfuCfCfUfugcucugc
3981
VPusAfsgcaGfaGfCfaaggAfuCfcucucs
4250
GUGAGAGGAUCCUUGCUCU
4519


1735533
susa

asc

GCUG






AD-
asusgau(Gda)AfaGfAfCfggugaaga
3982
VPusUfsucuUfcAfCfcgucUfuCfaucaus
4251
UGAUGAUGAAGACGGUGAA
4520


1735534
sasa

csa

GAAU






AD-
uscsgua(Ada)GfuGfUfAfagaaagaa
3983
VPusAfsuucUfuUfCfuuacAfcUfuacgas
4252
AUUCGUAAGUGUAAGAAAG
4521


1735535
susa

asu

AAUG






AD-
asuscug(Uda)GfuAfAfCfagcugug
3984
VPusUfsccaCfaGfCfuguuAfcAfcagaus
4253
CAAUCUGUGUAACAGCUGU
4522


1735536
gsasa

usg

GGAC






AD-
asusuua(Ada)AfaUfUfCfccacucaa
3985
VPusGfsuugAfgUfGfggaaUfuUfuaaau
4254
AUAUUUAAAAUUCCCACUC
4523


1735537
scsa

sasu

AACA






AD-
gsascca(Gda)UfgUfCfUfacuggcuc
3986
VPusAfsgagCfcAfGfuagaCfaCfuggucs
4255
UGGACCAGUGUCUACUGGC
4524


1735538
susa

csa

UCUC






AD-
csgscuu(Uda)CfgUfUfUfuuuaguc
3987
VPusAfsugaCfuAfAfaaaaCfgAfaagcgs
4256
AGCGCUUUCGUUUUUUAGU
4525


1735539
asusa

csu

CAUU






AD-
uscscgu(Gda)UfuGfAfCfccauguu
3988
VPusGfscaaCfaUfGfggucAfaCfacggas
4257
CAUCCGUGUUGACCCAUGU
4526


1735540
gscsa

usg

UGCA






AD-
asusaca(Gda)AfaGfAfUfgaagaaau
3989
VPusCfsauuUfcUfUfcaucUfuCfuguaus
4258
AGAUACAGAAGAUGAAGAA
4527


1735541
sgsa

csu

AUGG






AD-
uscsucc(Cda)GfaGfCfUfgaaacuua
3990
VPusUfsuaaGfuUfUfcagcUfcGfggagas
4259
UCUCUCCCGAGCUGAAACU
4528


1735542
sasa

gsa

UAAA






AD-
usgscau(Cda)AfaAfCfUfggcagaua
3991
VPusAfsuauCfuGfCfcaguUfuGfaugcas
4260
UGUGCAUCAAACUGGCAGA
4529


1735543
susa

csa

UAUA






AD-
ususgca(Ada)AfaUfAfUfucaggaga
3992
VPusGfsucuCfcUfGfaauaUfuUfugcaas
4261
AGUUGCAAAAUAUUCAGGA
4530


1735544
scsa

csu

GACC






AD-
ascsaau(Cda)GfuAfUfAfcaugccac
3993
VPusUfsgugGfcAfUfguauAfcGfauugu
4262
UCACAAUCGUAUACAUGCC
4531


1735545
sasa

sgsa

ACAG






AD-
asasuag(Ada)AfaAfGfAfugagcaac
3994
VPusAfsguuGfcUfCfaucuUfuUfcuauus
4263
UUAAUAGAAAAGAUGAGCA
4532


1735546
susa

asa

ACUG






AD-
usasucu(Uda)AfuGfUfUfccauggc
3995
VPusCfsagcCfaUfGfgaacAfuAfagauas
4264
CUUAUCUUAUGUUCCAUGG
4533


1735547
usgsa

asg

CUGA






AD-
csusacg(Uda)GfaAfGfAfgcugcgu
3996
VPusUfscacGfcAfGfcucuUfcAfcguags
4265
GGCUACGUGAAGAGCUGCG
4534


1735548
gsasa

CSC

UGAG






AD-
gsasauu(Gda)AfuGfGfCfucuauacg
3997
VPusAfscguAfuAfGfagccAfuCfaauucs
4266
UAGAAUUGAUGGCUCUAUA
4535


1735549
susa

usa

CGUG






AD-
ususcag(Gda)UfaAfUfUfgaagaggc
3998
VPusUfsgccUfcUfUfcaauUfaCfcugaas
4267
GAUUCAGGUAAUUGAAGAG
4536


1735550
sasa

usc

GCAG






AD-
asasgga(Cda)UfgAfGfUfgaccuuug
3999
VPusAfscaaAfgGfUfcacuCfaGfuccuus
4268
UGAAGGACUGAGUGACCUU
4537


1735551
susa

csa

UGUU






AD-
csgsaga(Gda)UfcUfGfAfggaacggc
4000
VPusAfsgccGfuUfCfcucaGfaCfucucgs
4269
CCCGAGAGUCUGAGGAACG
4538


1735552
susa

gsg

GCUA






AD-
asusucu(Uda)UfgGfGfAfuugggac
4001
VPusAfsaguCfcCfAfauccCfaAfagaaus
4270
UGAUUCUUUGGGAUUGGGA
4539


1735553
ususa

csa

CUUA






AD-
usascca(Gda)GfuCfAfGfugguuaga
4002
VPusUfsucuAfaCfCfacugAfcCfugguas
4271
GCUACCAGGUCAGUGGUUA
4540


1735554
sasa

gsc

GAAG






AD-
asusuca(Gda)GfuUfUfGfccauggac
4003
VPusUfsgucCfaUfGfgcaaAfcCfugaaus
4272
GUAUUCAGGUUUGCCAUGG
4541


1735555
sasa

asc

ACAU






AD-
gscsagc(Uda)AfaAfCfUfgguccugg
4004
VPusUfsccaGfgAfCfcaguUfuAfgcugcs
4273
CGGCAGCUAAACUGGUCCU
4542


1735556
sasa

csg

GGAG






AD-
asgsuaa(Uda)GfgCfAfUfagaaugga
4005
VPusCfsuccAfuUfCfuaugCfcAfuuacus
4274
AUAGUAAUGGCAUAGAAUG
4543


1735557
sgsa

asu

GAGU






AD-
asasuug(Cda)AfaGfAfAfaauggacc
4006
VPusUfsgguCfcAfUfuuucUfuGfcaauus
4275
AUAAUUGCAAGAAAAUGGA
4544


1735558
sasa

asu

CCAU






AD-
csgsgca(Cda)UfgCfGfUfucuggugc
4007
VPusAfsgcaCfcAfGfaacgCfaGfugccgs
4276
UCCGGCACUGCGUUCUGGU
4545


1735559
susa

gsa

GCUG






AD-
asgsuca(Uda)AfuUfGfAfagaagccc
4008
VPusUfsgggCfuUfCfuucaAfuAfugacus
4277
AAAGUCAUAUUGAAGAAGC
4546


1735560
sasa

usu

CCAG






AD-
uscsauc(Ada)UfgCfUfGfcgucagcu
4009
VPusAfsagcUfgAfCfgcagCfaUfgaugas
4278
AAUCAUCAUGCUGCGUCAG
4547


1735561
susa

usu

CUUG






AD-
asasaug(Ada)UfcGfCfCfucuuggua
4010
VPusAfsuacCfaAfGfaggcGfaUfcauuus
4279
GAAAAUGAUCGCCUCUUGG
4548


1735562
susa

usc

UAUG






AD-
asusuug(Ada)AfgAfUfAfuaaagag
4011
VPusUfsgcuCfuUfUfauauCfuUfcaaaus
4280
ACAUUUGAAGAUAUAAAGA
4549


1735563
csasa

gsu

GCAG






AD-
gsgsucu(Cda)CfuUfCfAfccagccuc
4012
VPusCfsgagGfcUfGfgugaAfgGfagaccs
4281
UGGGUCUCCUUCACCAGCC
4550


1735564
sgsa

csa

UCGG






AD-
gsasaac(Ada)GfaGfAfAfgaaagaca
4013
VPusCfsuguCfuUfUfcuucUfcUfguuucs
4282
AGGAAACAGAGAAGAAAGA
4551


1735565
sgsa

csu

CAGC






AD-
ususcua(Gda)UfgGfCfUfacaaaugc
4014
VPusGfsgcaUfuUfGfuagcCfaCfuagaas
4283
AUUUCUAGUGGCUACAAAU
4552


1735566
scsa

asu

GCCC






AD-
gsgsaga(Gda)AfaAfUfCfaggaagga
4015
VPusAfsuccUfuCfCfugauUfuCfucuccs
4284
UGGGAGAGAAAUCAGGAAG
4553


1735567
susa

csa

GAUU






AD-
asusaua(Gda)UfgAfGfCfccuaaagg
4016
VPusUfsccuUfuAfGfggcuCfaCfuauaus
4285
AAAUAUAGUGAGCCCUAAA
4554


1735568
sasa

usu

GGAC






AD-
gscsugc(Cda)UfuUfGfUfccucgccc
4017
VPusAfsgggCfgAfGfgacaAfaGfgcagcs
4286
UGGCUGCCUUUGUCCUCGC
4555


1735569
susa

csa

CCUG






AD-
gsgscaa(Ada)AfgAfCfCfucaccaag
4018
VPusUfscuuGfgUfGfagguCfuUfuugcc
4287
AUGGCAAAAGACCUCACCA
4556


1735570
sasa

sasu

AGAA






AD-
ususcag(Cda)AfuCfGfCfcugugccu
4019
VPusAfsaggCfaCfAfggcgAfuGfcugaas
4288
UCUUCAGCAUCGCCUGUGC
4557


1735571
susa

gsa

CUUC






AD-
gscsuaa(Ada)UfgAfGfGfcucgcaau
4020
VPusUfsauuGfcGfAfgccuCfaUfuuagcs
4289
GUGCUAAAUGAGGCUCGCA
4558


1735572
sasa

asc

AUAU






AD-
csasgcu(Uda)CfgUfCfUfggugggu
4021
VPusAfsgacCfcAfCfcagaCfgAfagcugs
4290
GCCAGCUUCGUCUGGUGGG
4559


1735573
csusa

gsc

UCUC






AD-
asusaug(Gda)UfaUfUfGfgcaugcag
4022
VPusAfscugCfaUfGfccaaUfaCfcauaus
4291
GAAUAUGGUAUUGGCAUGC
4560


1735574
susa

usc

AGUU






AD-
asasacu(Gda)CfaGfGfUfggagaauu
4023
VPusGfsaauUfcUfCfcaccUfgCfaguuus
4292
AUAAACUGCAGGUGGAGAA
4561


1735575
scsa

asu

UUCC






AD-
usasugg(Cda)UfgCfCfUfgucuucaa
4024
VPusUfsuugAfaGfAfcaggCfaGfccauas
4293
GUUAUGGCUGCCUGUCUUC
4562


1735576
sasa

asc

AAAC






AD-
csusguu(Cda)UfgAfAfAfuagagga
4025
VPusGfsgucCfuCfUfauuuCfaGfaacags
4294
CCCUGUUCUGAAAUAGAGG
4563


1735577
cscsa

gsg

ACCC






AD-
uscsuau(Uda)UfuUfAfAfagccgcu
4026
VPusCfscagCfgGfCfuuuaAfaAfauagas
4295
UUUCUAUUUUUAAAGCCGC
4564


1735578
gsgsa

asa

UGGU






AD-
gscsuga(Gda)GfaGfAfAfgcucagga
4027
VPusUfsuccUfgAfGfcuucUfcCfucagcs
4296
CAGCUGAGGAGAAGCUCAG
4565


1735579
sasa

usg

GAAC






AD-
csasagc(Cda)UfuCfCfAfccacaagu
4028
VPusGfsacuUfgUfGfguggAfaGfgcuug
4297
UCCAAGCCUUCCACCACAA
4566


1735580
scsa

sgsa

GUCA






AD-
ususcag(Uda)UfaCfCfAfaaguggcc
4029
VPusUfsggcCfaCfUfuuggUfaAfcugaas
4298
AUUUCAGUUACCAAAGUGG
4567


1735581
sasa

asu

CCAG






AD-
csasccu(Gda)CfuUfCfCfucacccgg
4030
VPusUfsccgGfgUfGfaggaAfgCfaggugs
4299
CUCACCUGCUUCCUCACCC
4568


1735582
sasa

asg

GGAC






AD-
ususuua(Uda)CfaCfCfCfacauagug
4031
VPusCfscacUfaUfGfugggUfgAfuaaaas
4300
UCUUUUAUCACCCACAUAG
4569


1735583
sgsa

gsa

UGGG






AD-
asgsgag(Ada)CfcGfUfCfguugccuu
4032
VPusCfsaagGfcAfAfcgacGfgUfcuccus
4301
UCAGGAGACCGUCGUUGCC
4570


1735584
sgsa

gsa

UUGU






AD-
asusggc(Cda)CfaGfCfAfaaaguucg
4033
VPusUfscgaAfcUfUfuugcUfgGfgccaus
4302
AAAUGGCCCAGCAAAAGUU
4571


1735585
sasa

usu

CGAG






AD-
asgsacg(Cda)CfaAfAfGfccaugcgg
4034
VPusAfsccgCfaUfGfgcuuUfgGfcgucus
4303
CGAGACGCCAAAGCCAUGC
4572


1735586
susa

csg

GGUC






AD-
csasgcu(Ada)AfuGfCfAfccaccuca
4035
VPusGfsugaGfgUfGfgugcAfuUfagcug
4304
GUCAGCUAAUGCACCACCU
4573


1735587
scsa

sasc

CACU






AD-
gsgsaaa(Ada)GfcAfGfAfcggcgaau
4036
VPusUfsauuCfgCfCfgucuGfcUfuuuccs
4305
AAGGAAAAGCAGACGGCGA
4574


1735588
sasa

usu

AUAU






AD-
gscsuuu(Gda)CfuGfGfGfuagugag
4037
VPusAfsgcuCfaCfUfacccAfgCfaaagcs
4306
CUGCUUUGCUGGGUAGUGA
4575


1735589
csusa

asg

GCUC
















TABLE 14







Unmodified Sense and Antisense Strand Sequences of PDE3B


dsRNA Agents Comprising a GalNAc Derivative Targeting Ligand















SEQ


SEQ



Duplex
Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Name
5′ to 3′
NO:
NM_000922.4
5′ to 3′
NO:
NM_000922.4





AD-1735591
UUCCUUCUUCAUCUUGAUCA
3231
2880-2900
UUGAUCAAGAUGAAGAAGGAAG
3500
2878-2900



A


U







AD-1735592
CACUCUAAAACUGAUGUUCA
3232
4621-4641
UUGAACAUCAGUUUUAGAGUGA
3501
4619-4641



A


A







AD-1735593
UCUUCUGUAUCACUGACUCA
3233
1752-1772
UUGAGUCAGUGAUACAGAAGAU
3502
1750-1772



A


G







AD-1735594
CAGAUCUUCUGACUGAUCCA
3234
1363-1383
UUGGAUCAGUCAGAAGAUCUGA
3503
1361-1383



A


C







AD-1735595
UGACACAUUUUUCUCCAUAA
3235
5958-5978
UUUAUGGAGAAAAAUGUGUCAG
3504
5956-5978



A


U







AD-1735596
GGAAACUCAUUUUUACAUAA
3236
5617-5637
UUUAUGUAAAAAUGAGUUUCCA
3505
5615-5637



A


G







AD-1735597
AUCAGCAACUUAGAAAUUCU
3237
1966-1986
UAGAAUUUCUAAGUUGCUGAUA
3506
1964-1986



A


A







AD-1735598
CUUAUAUUUCUCUAGAGUAC
3238
5351-5371
UGUACUCUAGAGAAAUAUAAGG
3507
5349-5371



A


A







AD-1735599
AACUCCAAGAAUCUUUUAUC
3239
3229-3249
UGAUAAAAGAUUCUUGGAGUUU
3508
3227-3249



A


U







AD-1735600
CUUCAAACAUUCCUGCAUUA
3240
2680-2700
UUAAUGCAGGAAUGUUUGAAGA
3509
2678-2700



A


C







AD-1735601
UCGUUCUUCUCCUCAACUAG
3241
3206-3226
UCUAGUUGAGGAGAAGAACGAU
3510
3204-3226



A


C







AD-1735602
AAAGAUUAAUCCUCUCACAC
3242
1460-1480
UGUGUGAGAGGAUUAAUCUUUG
3511
1458-1480



A


G







AD-1735603
ACUAACCUCAUCAAAGAUAC
3243
4501-4521
UGUAUCUUUGAUGAGGUUAGUU
3512
4499-4521



A


U







AD-1735604
CACCACUUAUUACUAAUAAA
3244
5283-5303
UUUUAUUAGUAAUAAGUGGUGG
3513
5281-5303



A


G







AD-1735605
UGGUACUAGAAAUAUUCUUU
3245
5915-5935
UAAAGAAUAUUUCUAGUACCAG
3514
5913-5935



A


C







AD-1735606
GCUGUCAUUUGUUCACUCUA
3246
4608-4628
UUAGAGUGAACAAAUGACAGCU
3515
4606-4628



A


A







AD-1735607
ACUCAACAAUUUAUGAACUA
3247
2421-2441
UUAGUUCAUAAAUUGUUGAGUG
3516
2419-2441



A


G







AD-1735608
AGUAUGACUCAUUAAUAGAA
3248
2269-2289
UUUCUAUUAAUGAGUCAUACUC
3517
2267-2289



A


U







AD-1735609
CUGCUGAUUUUCUUAAUAAG
3249
1891-1911
UCUUAUUAAGAAAAUCAGCAGU
3518
1889-1911



A


A







AD-1735610
UAUCUUUAGAUCCACAUCUU
3250
4587-4607
UAAGAUGUGGAUCUAAAGAUAA
3519
4585-4607



A


C







AD-1735611
CGAGACAUUCCUUAUCACAA
3251
2466-2486
UUUGUGAUAAGGAAUGUCUCGA
3520
2464-2486



A


U







AD-1735612
UACUGAAUCAGAUUAAUUUC
3252
5850-5870
UGAAAUUAAUCUGAUUCAGUAA
3521
5848-5870



A


C







AD-1735613
CUUACUUAAAUCCUUCACUG
3253
3855-3875
UCAGUGAAGGAUUUAAGUAAGG
3522
3853-3875



A


G







AD-1735614
UCGAAAGAAUCAUUCAAACU
3254
2100-2120
UAGUUUGAAUGAUUCUUUCGAG
3523
2098-2120



A


A







AD-1735615
AAAUGACCUAUCACUACUUA
3255
4682-4702
UUAAGUAGUGAUAGGUCAUUUC
3524
4680-4702



A


U







AD-1735616
CAAGUCAUUUCCUCUCUACG
3256
1395-1415
UCGUAGAGAGGAAAUGACUUGU
3525
1393-1415



A


G







AD-1735617
AUGCAGUUUCUUACUUAUCU
3257
5079-5099
UAGAUAAGUAAGAAACUGCAUG
3526
5077-5099



A


C







AD-1735618
UCAAUGCAAUACACUGUUCA
3258
4124-4144
UUGAACAGUGUAUUGCAUUGAG
3527
4122-4144



A


C







AD-1735619
UCUAUGUACCUACUGACACA
3259
5945-5965
UUGUGUCAGUAGGUACAUAGAU
3528
5943-5965



A


A







AD-1735620
UGAAUUCCAGUCUUAUCUUA
3260
4312-4332
UUAAGAUAAGACUGGAAUUCAA
3529
4310-4332



A


A







AD-1735621
UUGCUGUAAUACCAAAACUA
3261
4485-4505
UUAGUUUUGGUAUUACAGCAAA
3530
4483-4505



A


U







AD-1735622
GGAUCACUUCUUUCAAAUCA
3262
1061-1081
UUGAUUUGAAAGAAGUGAUCCA
3531
1059-1081



A


A







AD-1735623
GAACUAGAAAACUAUUCUUA
3263
3795-3815
UUAAGAAUAGUUUUCUAGUUCC
3532
3793-3815



A


U







AD-1735624
ACAUUUCCAUACUGUCUGUU
3264
5484-5504
UAACAGACAGUAUGGAAAUGUG
3533
5482-5504



A


A







AD-1735625
UGAUCCUUCACAGUGUCAAU
3265
5158-5178
UAUUGACACUGUGAAGGAUCAA
3534
5156-5178



A


A







AD-1735626
GAUUUCUGAGAACAAGUAAA
3266
4729-4749
UUUUACUUGUUCUCAGAAAUCA
3535
4727-4749



A


G







AD-1735627
CCUACUUGUGAAAUACAUUU
3267
4906-4926
UAAAUGUAUUUCACAAGUAGGG
3536
4904-4926



A


U







AD-1735628
CAACUGGAAUUUUCCAAUUU
3268
2297-2317
UAAAUUGGAAAAUUCCAGUUGC
3537
2295-2317



A


U







AD-1735629
UCUAAUCCUGAUGAGAGUUA
3269
2649-2669
UUAACUCUCAUCAGGAUUAGAG
3538
2647-2669



A


C







AD-1735630
AGCCUCAUUAUCAAAAUUCU
3270
1288-1308
UAGAAUUUUGAUAAUGAGGCUU
3539
1286-1308



A


A







AD-1735631
AAUUUCUGAUGCUUUUUACU
3271
4220-4240
UAGUAAAAAGCAUCAGAAAUUG
3540
4218-4240



A


A







AD-1735632
UACCAUUAGAUGAAAUCUUA
3272
5788-5808
UUAAGAUUUCAUCUAAUGGUAC
3541
5786-5808



A


A







AD-1735633
CUGUGAAUUCUUCCAACCAU
3273
1816-1836
UAUGGUUGGAAGAAUUCACAGG
3542
1814-1836



A


A







AD-1735634
CUAAUACUCCAGAUUUUUAU
3274
1948-1968
UAUAAAAAUCUGGAGUAUUAGG
3543
1946-1968



A


U







AD-1735635
GGACACAUACAUUGAAUAAA
3275
4550-4570
UUUUAUUCAAUGUAUGUGUCCU
3544
4548-4570



A


U







AD-1735636
UUUGUCAUAAUGCUGCUUUG
3276
3887-3907
UCAAAGCAGCAUUAUGACAAAG
3545
3885-3907



A


U







AD-1735637
UUCAUCUUUCUGUUAAUUUC
3277
4637-4657
UGAAAUUAACAGAAAGAUGAAC
3546
4635-4657



A


A







AD-1735638
CAGUGAAACCAUUAAUUUUC
3278
5028-5048
UGAAAAUUAAUGGUUUCACUGU
3547
5026-5048



A


G







AD-1735639
UAACUGCAAGACUGAUUUCU
3279
4716-4736
UAGAAAUCAGUCUUGCAGUUAG
3548
4714-4736



A


G







AD-1735640
AGAAUUCCUCCUUACCUCAA
3280
3547-3567
UUUGAGGUAAGGAGGAAUUCUC
3549
3545-3567



A


C







AD-1735641
UAUUACAGAUCUUACUUUGU
3281
5830-5850
UACAAAGUAAGAUCUGUAAUAU
3550
5828-5850



A


G







AD-1735642
UUAUCUGAAAGAUAUCAAUU
3282
5111-5131
UAAUUGAUAUCUUUCAGAUAAG
3551
5109-5131



A


C







AD-1735643
AGAUCUGUUCUGGAAAAUCA
3283
2811-2831
UUGAUUUUCCAGAACAGAUCUG
3552
2809-2831



A


U







AD-1735644
CCCAGAAUACAACUUCCUUC
3284
2867-2887
UGAAGGAAGUUGUAUUCUGGGC
3553
2865-2887



A


G







AD-1735645
GUUGAUCUUUCAGUGCUAAA
3285
1323-1343
UUUUAGCACUGAAAGAUCAACU
3554
1321-1343



A


C







AD-1735646
CUAAGCUUUAUUUAUUAGAC
3286
5191-5211
UGUCUAAUAAAUAAAGCUUAGU
3555
5189-5211



A


G







AD-1735647
AGCUUGGAAUCUAUAUCUUU
3287
2843-2863
UAAAGAUAUAGAUUCCAAGCUG
3556
2841-2863



A


A







AD-1735648
UUAUUAUUUCUGAAGCCUAA
3288
4699-4719
UUUAGGCUUCAGAAAUAAUAAG
3557
4697-4719



A


U







AD-1735649
CCUUUGUUGUAUUUAACAAA
3289
4187-4207
UUUUGUUAAAUACAACAAAGGU
3558
4185-4207



A


C







AD-1735650
GCUCUCUAACUAAUCGAUCA
3290
1852-1872
UUGAUCGAUUAGUUAGAGAGCC
3559
1850-1872



A


A







AD-1735651
AAAGACUACAUGACAGAAAU
3291
4666-4686
UAUUUCUGUCAUGUAGUCUUUA
3560
4664-4686



A


G







AD-1735652
CAGGAUUCGUAUUUUUAAAG
3292
4418-4438
UCUUUAAAAAUACGAAUCCUGA
3561
4416-4438



A


G







AD-1735653
CCUUGCUAAGUAAUUGACAU
3293
5659-5679
UAUGUCAAUUACUUAGCAAGGG
3562
5657-5679



A


U







AD-1735654
CCUAUGCACUUUCACAGGAA
3294
3778-3798
UUUCCUGUGAAAGUGCAUAGGA
3563
3776-3798



A


G







AD-1735655
AUGCUGAAAUAUGUUUCAAC
3295
2019-2039
UGUUGAAACAUAUUUCAGCAUU
3564
2017-2039



A


U







AD-1735656
CCUUUUAAUUCAAAUCUACU
3296
1710-1730
UAGUAGAUUUGAAUUAAAAGGC
3565
1708-1730



A


C







AD-1735657
ACUGGACUUAUUGGAUUUAA
3297
5577-5597
UUUAAAUCCAAUAAGUCCAGUA
3566
5575-5597



A


U







AD-1735658
CAUCUGAAUCAGAUGGUACA
3298
2038-2058
UUGUACCAUCUGAUUCAGAUGU
3567
2036-2058



A


U







AD-1735659
AAUUCUGAUAGCAAUCUGUG
3299
1980-2000
UCACAGAUUGCUAUCAGAAUUU
3568
1978-2000



A


C







AD-1735660
UCAAGUCAAGGAUGCUAUCU
3300
1683-1703
UAGAUAGCAUCCUUGACUUGAA
3569
1681-1703



A


A







AD-1735661
UCACUGAAAACCACAAGAUA
3301
3466-3486
UUAUCUUGUGGUUUUCAGUGAG
3570
3464-3486



A


G







AD-1735662
ACCUGUUGAACAGUCUUCAA
3302
1616-1636
UUUGAAGACUGUUCAACAGGUA
3571
1614-1636



A


G







AD-1735663
UCAAGUGACAUAUUUCAGUU
3303
3957-3977
UAACUGAAAUAUGUCACUUGAG
3572
3955-3977



A


U







AD-1735664
UCAGGAACUUCAGGAUUGCU
3304
1596-1616
UAGCAAUCCUGAAGUUCCUGAG
3573
1594-1616



A


C







AD-1735665
ACGGAGUAUUAGUAGCUUAA
3305
1412-1432
UUUAAGCUACUAAUACUCCGUA
3574
1410-1432



A


G







AD-1735666
AUUGUCAAUGAAUUUUAUGA
3306
3135-3155
UUCAUAAAAUUCAUUGACAAUG
3575
3133-3155



A


C







AD-1735667
GAACAGCAAACAAAUAUUGA
3307
2214-2234
UUCAAUAUUUGUUUGCUGUUCA
3576
2212-2234



A


C







AD-1735668
UGAACUAUUUUCGUGCAUUA
3308
2434-2454
UUAAUGCACGAAAAUAGUUCAU
3577
2432-2454



A


A







AD-1735669
ACUGGAAUACUUAUUUUUCA
3309
4751-4771
UUGAAAAAUAAGUAUUCCAGUU
3578
4749-4771



A


C







AD-1735670
UUAUCUUGCAGAGAUCUCUG
3310
1918-1938
UCAGAGAUCUCUGCAAGAUAAC
3579
1916-1938



A


G







AD-1735671
GAAGUGUUAGAAUUUUUGAU
3311
5142-5162
UAUCAAAAAUUCUAACACUUCC
3580
5140-5162



A


A







AD-1735672
UCAAUUUAAGAUCUCUGGAA
3312
5125-5145
UUUCCAGAGAUCUUAAAUUGAU
3581
5123-5145



A


A







AD-1735673
UGGACCAUAUUUACAAUGUU
3313
4856-4876
UAACAUUGUAAAUAUGGUCCAU
3582
4854-4876



A


U







AD-1735674
UAGUCAUUGAAGCAAUCCUU
3314
2926-2946
UAAGGAUUGCUUCAAUGACUAA
3583
2924-2946



A


A







AD-1735675
AGCUGUUUAGGUUUAACAAU
3315
4353-4373
UAUUGUUAAACCUAAACAGCUU
3584
4351-4373



A


U







AD-1735676
CAAGGCAAAUGAUGUAAAUA
3316
2993-3013
UUAUUUACAUCAUUUGCCUUGG
3585
2991-3013



A


C







AD-1735677
AUCCAAUUACUACUGGAAAC
3317
5603-5623
UGUUUCCAGUAGUAAUUGGAUU
3586
5601-5623



A


U







AD-1735678
ACUUACAAUAUAUAUAUCCU
3318
5328-5348
UAGGAUAUAUAUAUUGUAAGUG
3587
5326-5348



A


C







AD-1735679
AUGCAGUUUGGUAUCUGACA
3319
2512-2532
UUGUCAGAUACCAAACUGCAUG
3588
2510-2532



A


U







AD-1735680
CCUUAUUUCAAGACACUGGU
3320
2377-2397
UACCAGUGUCUUGAAAUAAGGU
3589
2375-2397



A


A







AD-1735681
GAAGGGAUUUAUUCUUUAGU
3321
4373-4393
UACUAAAGAAUAAAUCCCUUCA
3590
4371-4393



A


U







AD-1735682
AUCCUUGCUACGGAUCUUAA
3322
2940-2960
UUUAAGAUCCGUAGCAAGGAUU
3591
2938-2960



A


G







AD-1735683
ACUGACUAUCCCGAAGCAAA
3323
1727-1747
UUUUGCUUCGGGAUAGUCAGUA
3592
1725-1747



A


G







AD-1735684
UGUAUUUCUGCUAUUAUUUC
3324
5390-5410
UGAAAUAAUAGCAGAAAUACAC
3593
5388-5410



A


U







AD-1735685
UGUAACAAUAACUAGCCUAA
3325
5680-5700
UUUAGGCUAGUUAUUGUUACAU
3594
5678-5700



A


A







AD-1735686
GUUGUUUUUACUCUAGCUCA
3326
4400-4420
UUGAGCUAGAGUAAAAACAACA
3595
4398-4420



A


A







AD-1735687
CAGGCAGUUUUAUACAAUGA
3327
2790-2810
UUCAUUGUAUAAAACUGCCUGA
3596
2788-2810



A


G







AD-1735688
AGGAUUCUCAGUCAGGUUAU
3328
2352-2372
UAUAACCUGACUGAGAAUCCUU
3597
2350-2372



A


C







AD-1735689
AUUUUCCAUCAUGUUUAAGU
3329
5371-5391
UACUUAAACAUGAUGGAAAAUG
3598
5369-5391



A


U







AD-1735690
UGCCACUUUUGUUACCAUUG
3330
5238-5258
UCAAUGGUAACAAAAGUGGCAG
3599
5236-5258



A


C







AD-1735691
ACUUGCUAGUGUGUGGAUAU
3331
4882-4902
UAUAUCCACACACUAGCAAGUU
3600
4880-4902



A


U







AD-1735692
AAUCUUACUUGAGAAAUUGC
3332
5801-5821
UGCAAUUUCUCAAGUAAGAUUU
3601
5799-5821



A


C







AD-1735693
AGUUCGAGACUUGCAUUUGA
3333
3101-3121
UUCAAAUGCAAGUCUCGAACUU
3602
3099-3121



A


U







AD-1735694
CCAUAGAAUUUCCUGAUACU
3334
1873-1893
UAGUAUCAGGAAAUUCUAUGGG
3603
1871-1893



A


U







AD-1735695
AGGUAAUUCCUUUAGAAUAU
3335
5050-5070
UAUAUUCUAAAGGAAUUACCUU
3604
5048-5070



A


G







AD-1735696
CUUAUGGAAACUCAACAAGA
3336
2118-2138
UUCUUGUUGAGUUUCCAUAAGU
3605
2116-2138



A


U







AD-1735697
AAGCAGCAUUUUAAAUUACG
3337
5554-5574
UCGUAAUUUAAAAUGCUGCUUU
3606
5552-5574



A


U







AD-1735698
UGACUCUCAACUGACCAUUC
3338
3699-3719
UGAAUGGUCAGUUGAGAGUCAG
3607
3697-3719



A


C







AD-1735699
AGGUUUAUCCAUGAAGGACU
3339
4161-4181
UAGUCCUUCAUGGAUAAACCUA
3608
4159-4181



A


G







AD-1735700
ACCAAGAAUUUGGCAUUUCA
3340
1666-1686
UUGAAAUGCCAAAUUCUUGGUG
3609
1664-1686



A


A







AD-1735701
UAUCUAGAAUAUUUGGCUUA
3341
5094-5114
UUAAGCCAAAUAUUCUAGAUAA
3610
5092-5114



A


G







AD-1735702
CUCCUGCAGAAUACAUACAA
3342
5412-5432
UUUGUAUGUAUUCUGCAGGAGA
3611
5410-5432



A


G







AD-1735703
UCACACCAUUUCCUGGAUUU
3343
1474-1494
UAAAUCCAGGAAAUGGUGUGAG
3612
1472-1494



A


A







AD-1735704
AUGUGGAAUUCAAGCGCUUU
3344
2899-2919
UAAAGCGCUUGAAUUCCACAUG
3613
2897-2919



A


A







AD-1735705
AUUGUGUAUUAUCUACUAUG
3345
4240-4260
UCAUAGUAGAUAAUACACAAUA
3614
4238-4260



A


G







AD-1735706
AAUGGAGUAAUGAAAAUGAU
3346
3025-3045
UAUCAUUUUCAUUACUCCAUUC
3615
3023-3045



A


U







AD-1735707
ACUGGUUUAUUGGAAAUAUU
3347
2391-2411
UAAUAUUUCCAAUAAACCAGUG
3616
2389-2411



A


U







AD-1735708
CAAGUGUAUGUGUAUAAAGU
3348
5429-5449
UACUUUAUACACAUACACUUGU
3617
5427-5449



A


A







AD-1735709
UACAAGCAUGCAUAUUGAGA
3349
5457-5477
UUCUCAAUAUGCAUGCUUGUAC
3618
5455-5477



A


A







AD-1735710
UGUGUCUUUUAUGUCUUUGA
3350
4036-4056
UUCAAAGACAUAAAAGACACAC
3619
4034-4056



A


U







AD-1735711
AUUUUCUCGCAGAAUUCAAU
3351
2971-2991
UAUUGAAUUCUGCGAGAAAAUC
3620
2969-2991



A


A







AD-1735712
UAGCGACAGUUUGAGUAAAA
3352
3609-3629
UUUUUACUCAAACUGUCGCUAU
3621
3607-3629



A


U







AD-1735713
CUGGUGUAUGAAUACUUUGU
3353
3872-3892
UACAAAGUAUUCAUACACCAGU
3622
3870-3892



A


G







AD-1735714
GUGAUAAGUGGCUAACAGAA
3354
2182-2202
UUUCUGUUAGCCACUUAUCACC
3623
2180-2202



A


U







AD-1735715
GUAGGCUAAUAUUUUCUAUU
3355
4962-4982
UAAUAGAAAAUAUUAGCCUACC
3624
4960-4982



A


A







AD-1735716
CCUCUUCAUCCUCGACUGUC
3356
1089-1109
UGACAGUCGAGGAUGAAGAGGC
3625
1087-1109



A


G







AD-1735717
AAUUGCCAUAAGCCAUAUUA
3357
5815-5835
UUAAUAUGGCUUAUGGCAAUUU
3626
5813-5835



A


C







AD-1735718
GCGAAUAUUUUGUCAGCUAA
3358
3437-3457
UUUAGCUGACAAAAUAUUCGCC
3627
3435-3457



A


G







AD-1735719
AUCCAGUGUUGCCUUUCUGA
3359
4093-4113
UUCAGAAAGGCAACACUGGAUU
3628
4091-4113



A


C







AD-1735720
AAAGUCUAUGCCUGUCUAAA
3360
4068-4088
UUUUAGACAGGCAUAGACUUUU
3629
4066-4088



A


C







AD-1735721
GGACAUCAGAAGUUUGAAUU
3361
4298-4318
UAAUUCAAACUUCUGAUGUCCA
3630
4296-4318



A


U







AD-1735722
GGCGAAUUGCUUAUAUUUCU
3362
2617-2637
UAGAAAUAUAAGCAAUUCGCCC
3631
2615-2637



A


A







AD-1735723
CACACUAUGUGUAAACCAGU
3363
5261-5281
UACUGGUUUACACAUAGUGUGU
3632
5259-5281



A


G







AD-1735724
CAGGUGAAGAAGAAAACAUU
3364
2077-2097
UAAUGUUUUCUUCUUCACCUGA
3633
2075-2097



A


U







AD-1735725
GUGAGCUCUUAUUUUUCACU
3365
3914-3934
UAGUGAAAAAUAAGAGCUCACU
3634
3912-3934



A


A







AD-1735726
AAAGCUGAUGGGAAUAAACU
3366
3519-3539
UAGUUUAUUCCCAUCAGCUUUA
3635
3517-3539



A


C







AD-1735727
GUGUCGUUAGGAGAAACUGC
3367
1164-1184
UGCAGUUUCUCCUAACGACACG
3636
1162-1184



A


C







AD-1735728
GGGACUUAAAACAAUGGUAU
3368
1267-1287
UAUACCAUUGUUUUAAGUCCCA
3637
1265-1287



A


A







AD-1735729
CUGAUGGUAGAAUUAACCAU
3369
2596-2616
UAUGGUUAAUUCUACCAUCAGA
3638
2594-2616



A


A







AD-1735730
ACUAUGUGUGUUUUAUUUCU
3370
4254-4274
UAGAAAUAAAACACACAUAGUA
3639
4252-4274



A


G







AD-1735731
CUGAUAAUUUAUAUUUGCAC
3371
5310-5330
UGUGCAAAUAUAAAUUAUCAGU
3640
5308-5330



A


C







AD-1735732
GUCCUUAAAUUAUUUAACCC
3372
5641-5661
UGGGUUAAAUAAUUUAAGGACU
3641
5639-5661



A


A







AD-1735733
CGCAAUAUGGUGUCAGAUCU
3373
1350-1370
UAGAUCUGACACCAUAUUGCGA
3642
1348-1370



A


G







AD-1735734
UUCGAAGAGCUGCUCUAAUC
3374
2636-2656
UGAUUAGAGCAGCUCUUCGAAG
3643
2634-2656



A


A







AD-1735735
UUUCUGCUGAGAGUAUUCAG
3375
4269-4289
UCUGAAUACUCUCAGCAGAAAU
3644
4267-4289



A


A







AD-1735736
UUGAACAGGAAGUAUCACUG
3376
2230-2250
UCAGUGAUACUUCCUGUUCAAU
3645
2228-2250



A


A







AD-1735737
UGCCUUGUAUUUCCAGAGAA
3377
1228-1248
UUUCUCUGGAAAUACAAGGCAA
3646
1226-1248



A


C







AD-1735738
GUUACUAUGGCAGUUGCAAA
3378
1189-1209
UUUUGCAACUGCCAUAGUAACU
3647
1187-1209



A


G







AD-1735739
AUGGCUGAAUUUUAAAGCUG
3379
4338-4358
UCAGCUUUAAAAUUCAGCCAUG
3648
4336-4358



A


G







AD-1735740
GUCCAUUCAUGGAUCGUUCU
3380
3193-3213
UAGAACGAUCCAUGAAUGGACU
3649
3191-3213



A


G







AD-1735741
UGUGUAACUCCUAUGAUGCU
3381
3268-3288
UAGCAUCAUAGGAGUUACACAG
3650
3266-3288



A


G







AD-1735742
UGGCAGUUUCCCACUCCUAU
3382
3763-3783
UAUAGGAGUGGGAAACUGCCAG
3651
3761-3783



A


C







AD-1735743
CCUCAAGCAGAUGAGAUUCA
3383
3561-3581
UUGAAUCUCAUCUGCUUGAGGU
3652
3559-3581



A


A







AD-1735744
AUGUUGUUUUCUCAAAAGCA
3384
5539-5559
UUGCUUUUGAGAAAACAACAUA
3653
5537-5559



A


A







AD-1735745
GAGGGAUUUCUGCUCAAUGC
3385
4111-4131
UGCAUUGAGCAGAAAUCCCUCA
3654
4109-4131



A


G







AD-1735746
GCCUUCUUCUUCCUCACCUG
3386
654-674
UCAGGUGAGGAAGAAGAAGGCA
3655
652-674



A


C







AD-1735747
UUGAGAUUGAAUCACAUUUC
3387
5471-5491
UGAAAUGUGAUUCAAUCUCAAU
3656
5469-5491



A


A







AD-1735748
CUGUUCAGUGCUAUUCUCCC
3388
4137-4157
UGGGAGAAUAGCACUGAACAGU
3657
4135-4157



A


G







AD-1735749
CCUGGCUUACAGCAGAUCCA
3389
2544-2564
UUGGAUCUGCUGUAAGCCAGGA
3658
2542-2564



A


A







AD-1735750
GACAGCAGAAAAUUAUUUCA
3390
2157-2177
UUGAAAUAAUUUUCUGCUGUCU
3659
2155-2177



A


U







AD-1735751
UUGGGUUUCUUUAGUUUAUG
3391
5522-5542
UCAUAAACUAAAGAAACCCAAU
3660
5520-5542



A


A







AD-1735752
CACCAUGUAGGUCUCAGAAG
3392
1770-1790
UCUUCUGAGACCUACAUGGUGA
3661
1768-1790



A


G







AD-1735753
GUUGUGGAACAGGAAAUGAA
3393
2569-2589
UUUCAUUUCCUGUUCCACAACC
3662
2567-2589



A


A







AD-1735754
GGAGAACAUAUCAUAUUUUG
3394
4988-5008
UCAAAAUAUGAUAUGUUCUCCA
3663
4986-5008



A


A







AD-1735755
CAGCCAAAAUGAUGGCAAAA
3395
4940-4960
UUUUUGCCAUCAUUUUGGCUGC
3664
4938-4960



A


U







AD-1735756
CCAAUUUUUGAACUUGUAGA
3396
2310-2330
UUCUACAAGUUCAAAAAUUGGA
3665
2308-2330



A


A







AD-1735757
AUAGGAAUAGUUUGCCAACU
3397
1558-1578
UAGUUGGCAAACUAUUCCUAUU
3666
1556-1578



A


U







AD-1735758
UUUGAAUGUUUUGGAGAAAA
3398
4051-4071
UUUUUCUCCAAAACAUUCAAAG
3667
4049-4071



A


A







AD-1735759
GUCAAUAUUUAAUGAAUCAC
3399
5172-5192
UGUGAUUCAUUAAAUAUUGACA
3668
5170-5192



A


C







AD-1735760
UGAGAAUAUAUUAAAUGCAC
3400
5764-5784
UGUGCAUUUAAUAUAUUCUCAC
3669
5762-5784



A


A







AD-1735761
UAACAAGGGACUAAAUAGGA
3401
1544-1564
UUCCUAUUUAGUCCCUUGUUAA
3670
1542-1564



A


G







AD-1735762
GGCUUCUUCUUCCACCUCUG
3402
408-428
UCAGAGGUGGAAGAAGAAGCCG
3671
406-428



A


C







AD-1735763
UUGGAACAUGUGGUUAUCUU
3403
4573-4593
UAAGAUAACCACAUGUUCCAAU
3672
4571-4593



A


U







AD-1735764
CAGAGAACAGAUGAUUCUUU
3404
1241-1261
UAAAGAAUCAUCUGUUCUCUGG
3673
1239-1261



A


A







AD-1735765
CUGUUAUUUUAUUGGGUUUU
3405
5499-5519
UAAAACCCAAUAAAAUAACAGA
3674
5497-5519



A


C







AD-1735766
AUGAAGAAGCAAAUCUUGGU
3406
3163-3183
UACCAAGAUUUGCUUCUUCAUC
3675
3161-3183



A


U







AD-1735767
UUUGGAAUCAUGCAAUUUUG
3407
5004-5024
UCAAAAUUGCAUGAUUCCAAAA
3676
5002-5024



A


U







AD-1735768
CAAUGUUUUGUAAACUUGCU
3408
4869-4889
UAGCAAGUUUACAAAACAUUGU
3677
4867-4889



A


A







AD-1735769
GGAUCGUAAUAAUGGCAAAA
3409
1640-1660
UUUUUGCCAUUAUUACGAUCCC
3678
1638-1660



A


A







AD-1735770
GUGCUUUCUCAGGUUCCUGU
3410
1435-1455
UACAGGAACCUGAGAAAGCACC
3679
1433-1455



A


C







AD-1735771
AUGAUACUGAAAGUGGUGAU
3411
3331-3351
UAUCACCACUUUCAGUAUCAUU
3680
3329-3351



A


A







AD-1735772
UCACUGGACCUGAUUUUAGU
3412
2244-2264
UACUAAAAUCAGGUCCAGUGAU
3681
2242-2264



A


A







AD-1735773
GAACUUUUUGCUUUUAUGAA
3413
3991-4011
UUUCAUAAAAGCAAAAAGUUCC
3682
3989-4011



A


U







AD-1735774
GAACACAGCACAGAUUUGUU
3414
4451-4471
UAACAAAUCUGUGCUGUGUUCA
3683
4449-4471



A


U







AD-1735775
AUAUGGAAGGAAAUCGUAGA
3415
3483-3503
UUCUACGAUUUCCUUCCAUAUC
3684
3481-3503



A


U







AD-1735776
GCUAUCUAAAUGGGCCUUUU
3416
1696-1716
UAAAAGGCCCAUUUAGAUAGCA
3685
1694-1716



A


U







AD-1735777
CAAAACCACCAAGAAGGAAA
3417
3409-3429
UUUUCCUUCUUGGUGGUUUUGG
3686
3407-3429



A


A







AD-1735778
CCACAGAUGUGCUACAUGCA
3418
2497-2517
UUGCAUGUAGCACAUCUGUGGC
3687
2495-2517



A


A







AD-1735779
AAAGUCAUACAUGUACAAGC
3419
5444-5464
UGCUUGUACAUGUAUGACUUUA
3688
5442-5464



A


U







AD-1735780
UAGAAGCAGAAGAGGAUAAU
3420
3313-3333
UAUUAUCCUCUUCUGCUUCUAA
3689
3311-3333



A


C







AD-1735781
CGUGUGUUCGCACAGCUUGA
3421
611-631
UUCAAGCUGUGCGAACACACGC
3690
609-631



A


U







AD-1735782
GCUGGUGUUUUGUCCAGUCU
3422
1791-1811
UAGACUGGACAAAACACCAGCU
3691
1789-1811



A


C







AD-1735783
AUGGAAAACAAUCUAAAUCC
3423
3390-3410
UGGAUUUAGAUUGUUUUCCAUU
3692
3388-3410



A


U







AD-1735784
CAUUAGAAAAUGGCUAUCGA
3424
2449-2469
UUCGAUAGCCAUUUUCUAAUGC
3693
2447-2469



A


A







AD-1735785
AUGGACAGAAGGCAUUGUCA
3425
3122-3142
UUGACAAUGCCUUCUGUCCAUU
3694
3120-3142



A


U







AD-1735786
CAGAUUGCUGCAGUGGAAAA
3426
2056-2076
UUUUUCCACUGCAGCAAUCUGU
3695
2054-2076



A


A







AD-1735787
AGGUGGAAAUGGAGUUGAUC
3427
1310-1330
UGAUCAACUCCAUUUCCACCUC
3696
1308-1330



A


C







AD-1735788
CUGGGCAAUGCACCUAAUAC
3428
1935-1955
UGUAUUAGGUGCAUUGCCCAGA
3697
1933-1955



A


G







AD-1735789
AUUUCCCUCUGCCUAAAGAC
3429
4652-4672
UGUCUUUAGGCAGAGGGAAAUU
3698
4650-4672



A


A







AD-1735790
CGCUUCUGCAACGUGGAGCU
3430
429-449
UAGCUCCACGUUGCAGAAGCGG
3699
427-449



A


C







AD-1735791
AGAUUCAUAUUGUAUUUCCC
3431
4014-4034
UGGGAAAUACAAUAUGAAUCUA
3700
4012-4034



A


U







AD-1735792
AGGACAAAUGCAUUUCUAGU
3432
2754-2774
UACUAGAAAUGCAUUUGUCCUC
3701
2752-2774



A


C







AD-1735793
UUAGACGUGUUGAGUGAGUG
3433
5205-5225
UCACUCACUCAACACGUCUAAU
3702
5203-5225



A


A







AD-1735794
CUGUGGACAUCAAAUGCUGA
3434
2006-2026
UUCAGCAUUUGAUGUCCACAGC
3703
2004-2026



A


U







AD-1735795
AGGCCUUAAUACUGUGAGAG
3435
3729-3749
UCUCUCACAGUAUUAAGGCCUG
3704
3727-3749



A


U







AD-1735796
AGAAAUCAUUGCCUAGUGUU
3436
3672-3692
UAACACUAGGCAAUGAUUUCUG
3705
3670-3692



A


C







AD-1735797
UGAGUGCUGAGUUCCUUGCU
3437
5219-5239
UAGCAAGGAACUCAGCACUCAC
3706
5217-5239



A


U







AD-1735798
GCCAUGCAUGAUUAUGAUCA
3438
2727-2747
UUGAUCAUAAUCAUGCAUGGCA
3707
2725-2747



A


G







AD-1735799
UGCUGCUGGUUUGCUACCAG
3439
3284-3304
UCUGGUAGCAAACCAGCAGCAU
3708
3282-3304



A


C







AD-1735800
CAGAUGAAGAGGAAUAGCGA
3440
3595-3615
UUCGCUAUUCCUCUUCAUCUGC
3709
3593-3615



A


C







AD-1735801
AUCCAGGUGCAUCAAUUUCU
3441
4207-4227
UAGAAAUUGAUGCACCUGGAUU
3710
4205-4227



A


U







AD-1735802
AAUAAGCCAAGCGUUAUCUU
3442
1905-1925
UAAGAUAACGCUUGGCUUAUUA
3711
1903-1925



A


A







AD-1735803
GAGAGGAUCCUUGCUCUGCU
3443
3744-3764
UAGCAGAGCAAGGAUCCUCUCA
3712
3742-3764



A


C







AD-1735804
AUGAUGAAGACGGUGAAGAA
3444
3349-3369
UUUCUUCACCGUCUUCAUCAUC
3713
3347-3369



A


A







AD-1735805
UCGUAAGUGUAAGAAAGAAU
3445
5743-5763
UAUUCUUUCUUACACUUACGAA
3714
5741-5763



A


U







AD-1735806
AUCUGUGUAACAGCUGUGGA
3446
1993-2013
UUCCACAGCUGUUACACAGAUU
3715
1991-2013



A


G







AD-1735807
AUUUAAAAUUCCCACUCAAC
3447
2408-2428
UGUUGAGUGGGAAUUUUAAAUA
3716
2406-2428



A


U







AD-1735808
GACCAGUGUCUACUGGCUCU
3448
1837-1857
UAGAGCCAGUAGACACUGGUCC
3717
1835-1857



A


A







AD-1735809
CGCUUUCGUUUUUUAGUCAU
3449
2913-2933
UAUGACUAAAAAACGAAAGCGC
3718
2911-2933



A


U







AD-1735810
UCCGUGUUGACCCAUGUUGC
3450
3829-3849
UGCAACAUGGGUCAACACGGAU
3719
3827-3849



A


G







AD-1735811
AUACAGAAGAUGAAGAAAUG
3451
3373-3393
UCAUUUCUUCAUCUUCUGUAUC
3720
3371-3393



A


U







AD-1735812
UCUCCCGAGCUGAAACUUAA
3452
5719-5739
UUUAAGUUUCAGCUCGGGAGAG
3721
5717-5739



A


A







AD-1735813
UGCAUCAAACUGGCAGAUAU
3453
3066-3086
UAUAUCUGCCAGUUUGAUGCAC
3722
3064-3086



A


A







AD-1735814
UUGCAAAAUAUUCAGGAGAC
3454
1202-1222
UGUCUCCUGAAUAUUUUGCAAC
3723
1200-1222



A


U







AD-1735815
ACAAUCGUAUACAUGCCACA
3455
2482-2502
UUGUGGCAUGUAUACGAUUGUG
3724
2480-2502



A


A







AD-1735816
AAUAGAAAAGAUGAGCAACU
3456
2282-2302
UAGUUGCUCAUCUUUUCUAUUA
3725
2280-2302



A


A







AD-1735817
UAUCUUAUGUUCCAUGGCUG
3457
4325-4345
UCAGCCAUGGAACAUAAGAUAA
3726
4323-4345



A


G







AD-1735818
CUACGUGAAGAGCUGCGUGA
3458
362-382
UUCACGCAGCUCUUCACGUAGC
3727
360-382



A


C







AD-1735819
GAAUUGAUGGCUCUAUACGU
3459
2700-2720
UACGUAUAGAGCCAUCAAUUCU
3728
2698-2720



A


A







AD-1735820
UUCAGGUAAUUGAAGAGGCA
3460
3577-3597
UUGCCUCUUCAAUUACCUGAAU
3729
3575-3597



A


C







AD-1735821
AAGGACUGAGUGACCUUUGU
3461
4174-4194
UACAAAGGUCACUCAGUCCUUC
3730
4172-4194



A


A







AD-1735822
CGAGAGUCUGAGGAACGGCU
3462
344-364
UAGCCGUUCCUCAGACUCUCGG
3731
342-364



A


G







AD-1735823
AUUCUUUGGGAUUGGGACUU
3463
1254-1274
UAAGUCCCAAUCCCAAAGAAUC
3732
1252-1274



A


A







AD-1735824
UACCAGGUCAGUGGUUAGAA
3464
3298-3318
UUUCUAACCACUGACCUGGUAG
3733
3296-3318



A


C







AD-1735825
AUUCAGGUUUGCCAUGGACA
3465
4283-4303
UUGUCCAUGGCAAACCUGAAUA
3734
4281-4303



A


C







AD-1735826
GCAGCUAAACUGGUCCUGGA
3466
34-54
UUCCAGGACCAGUUUAGCUGCC
3735
32-54



A


G







AD-1735827
AGUAAUGGCAUAGAAUGGAG
3467
3012-3032
UCUCCAUUCUAUGCCAUUACUA
3736
3010-3032



A


U







AD-1735828
AAUUGCAAGAAAAUGGACCA
3468
4843-4863
UUGGUCCAUUUUCUUGCAAUUA
3737
4841-4863



A


U







AD-1735829
CGGCACUGCGUUCUGGUGCU
3469
921-941
UAGCACCAGAACGCAGUGCCGG
3738
919-941



A


A







AD-1735830
AGUCAUAUUGAAGAAGCCCA
3470
3633-3653
UUGGGCUUCUUCAAUAUGACUU
3739
3631-3653



A


U







AD-1735831
UCAUCAUGCUGCGUCAGCUU
3471
2828-2848
UAAGCUGACGCAGCAUGAUGAU
3740
2826-2848



A


U







AD-1735832
AAAUGAUCGCCUCUUGGUAU
3472
3038-3058
UAUACCAAGAGGCGAUCAUUUU
3741
3036-3058



A


C







AD-1735833
AUUUGAAGAUAUAAAGAGCA
3473
4922-4942
UUGCUCUUUAUAUCUUCAAAUG
3742
4920-4942



A


U







AD-1735834
GGUCUCCUUCACCAGCCUCG
3474
965-985
UCGAGGCUGGUGAAGGAGACCC
3743
963-985



A


A







AD-1735835
GAAACAGAGAAGAAAGACAG
3475
2142-2162
UCUGUCUUUCUUCUCUGUUUCC
3744
2140-2162



A


U







AD-1735836
UUCUAGUGGCUACAAAUGCC
3476
2767-2787
UGGCAUUUGUAGCCACUAGAAA
3745
2765-2787



A


U







AD-1735837
GGAGAGAAAUCAGGAAGGAU
3477
2337-2357
UAUCCUUCCUGAUUUCUCUCCC
3746
2335-2357



A


A







AD-1735838
AUAUAGUGAGCCCUAAAGGA
3478
4533-4553
UUCCUUUAGGGCUCACUAUAUU
3747
4531-4553



A


U







AD-1735839
GCUGCCUUUGUCCUCGCCCU
3479
528-548
UAGGGCGAGGACAAAGGCAGCC
3748
526-548



A


A







AD-1735840
GGCAAAAGACCUCACCAAGA
3480
1653-1673
UUCUUGGUGAGGUCUUUUGCCA
3749
1651-1673



A


U







AD-1735841
UUCAGCAUCGCCUGUGCCUU
3481
639-659
UAAGGCACAGGCGAUGCUGAAG
3750
637-659



A


A







AD-1735842
GCUAAAUGAGGCUCGCAAUA
3482
1337-1357
UUAUUGCGAGCCUCAUUUAGCA
3751
1335-1357



A


C







AD-1735843
CAGCUUCGUCUGGUGGGUCU
3483
950-970
UAGACCCACCAGACGAAGCUGG
3752
948-970



A


C







AD-1735844
AUAUGGUAUUGGCAUGCAGU
3484
5066-5086
UACUGCAUGCCAAUACCAUAUU
3753
5064-5086



A


C







AD-1735845
AAACUGCAGGUGGAGAAUUC
3485
3534-3554
UGAAUUCUCCACCUGCAGUUUA
3754
3532-3554



A


U







AD-1735846
UAUGGCUGCCUGUCUUCAAA
3486
2667-2687
UUUUGAAGACAGGCAGCCAUAA
3755
2665-2687



A


C







AD-1735847
CUGUUCUGAAAUAGAGGACC
3487
1499-1519
UGGUCCUCUAUUUCAGAACAGG
3756
1497-1519



A


G







AD-1735848
UCUAUUUUUAAAGCCGCUGG
3488
5898-5918
UCCAGCGGCUUUAAAAAUAGAA
3757
5896-5918



A


A







AD-1735849
GCUGAGGAGAAGCUCAGGAA
3489
1583-1603
UUUCCUGAGCUUCUCCUCAGCU
3758
1581-1603



A


G







AD-1735850
CAAGCCUUCCACCACAAGUC
3490
1381-1401
UGACUUGUGGUGGAAGGCUUGG
3759
1379-1401



A


A







AD-1735851
UUCAGUUACCAAAGUGGCCA
3491
3970-3990
UUGGCCACUUUGGUAACUGAAA
3760
3968-3990



A


U







AD-1735852
CACCUGCUUCCUCACCCGGA
3492
668-688
UUCCGGGUGAGGAAGCAGGUGA
3761
666-688



A


G







AD-1735853
UUUUAUCACCCACAUAGUGG
3493
3242-3262
UCCACUAUGUGGGUGAUAAAAG
3762
3240-3262



A


A







AD-1735854
AGGAGACCGUCGUUGCCUUG
3494
1215-1235
UCAAGGCAACGACGGUCUCCUG
3763
1213-1235



A


A







AD-1735855
AUGGCCCAGCAAAAGUUCGA
3495
3088-3108
UUCGAACUUUUGCUGGGCCAUU
3764
3086-3108



A


U







AD-1735856
AGACGCCAAAGCCAUGCGGU
3496
290-310
UACCGCAUGGCUUUGGCGUCUC
3765
288-310



A


G







AD-1735857
CAGCUAAUGCACCACCUCAC
3497
3450-3470
UGUGAGGUGGUGCAUUAGCUGA
3766
3448-3470



A


C







AD-1735858
GGAAAAGCAGACGGCGAAUA
3498
3424-3444
UUAUUCGCCGUCUGCUUUUCCU
3767
3422-3444



A


U







AD-1735859
GCUUUGCUGGGUAGUGAGCU
3499
3901-3921
UAGCUCACUACCCAGCAAAGCA
3768
3899-3921



A


G







AD-1735860
AAAUGAAACAGAUUCUGAUG
4576
2582-2602
UCAUCAGAAUCUGUUUCAUUUC
4577
2580-2602



A


C
















TABLE 15







Modified Sense and Antisense Strand Sequences of PDE3B dsRNA Agents


Comprising a GalNAc Derivative Targeting Ligand















SEQ

SEQ

SEQ


Duplex
Sense Sequence
ID
Antisense Sequence
ID
mRNA Target
ID


Name
5′ to 3′
NO:
5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
ususccuuCfuUfCfAfucuugau
4578
VPusUfsgauCfaAfGfaugaAfgAfagga
4038
ACUUCCUUCUUCAUCUUGA
4307


1735591
csasa

asgsu

UCAU






AD-
csascucuAfaAfAfCfugauguu
4579
VPusUfsgaaCfaUfCfaguuUfuAfgagu
4039
UUCACUCUAAAACUGAUGU
4308


1735592
csasa

gsasa

UCAU






AD-
uscsuucuGfuAfUfCfacugacu
4580
VPusUfsgagUfcAfGfugauAfcAfgaag
4040
CAUCUUCUGUAUCACUGAC
4309


1735593
csasa

asusg

UCAC






AD-
csasgaucUfuCfUfGfacugauc
4581
VPusUfsggaUfcAfGfucagAfaGfaucu
4041
GUCAGAUCUUCUGACUGAU
4310


1735594
csasa

gsasc

CCAA






AD-
usgsacacAfuUfUfUfucuccau
4582
VPusUfsuauGfgAfGfaaaaAfuGfuguc
4042
ACUGACACAUUUUUCUCCA
4311


1735595
asasa

asgsu

UAAA






AD-
gsgsaaacUfcAfUfUfuuuacau
4583
VPusUfsuauGfuAfAfaaauGfaGfuuuc
4043
CUGGAAACUCAUUUUUACA
4312


1735596
asasa

csasg

UAAU






AD-
asuscagcAfaCfUfUfagaaauu
4584
VPusAfsgaaUfuUfCfuaagUfuGfcuga
4044
UUAUCAGCAACUUAGAAAU
4313


1735597
csusa

usasa

UCUG






AD-
csusuauaUfuUfCfUfcuagagu
4585
VPusGfsuacUfcUfAfgagaAfaUfauaa
4045
UCCUUAUAUUUCUCUAGAG
4314


1735598
ascsa

gsgsa

UACA






AD-
asascuccAfaGfAfAfucuuuua
4586
VPusGfsauaAfaAfGfauucUfuGfgagu
4046
AAAACUCCAAGAAUCUUUU
4315


1735599
uscsa

ususu

AUCA






AD-
csusucaaAfcAfUfUfccugcau
4587
VPusUfsaauGfcAfGfgaauGfuUfugaa
4047
GUCUUCAAACAUUCCUGCA
4316


1735600
usasa

gsasc

UUAG






AD-
uscsguucUfuCfUfCfcucaacu
4588
VPusCfsuagUfuGfAfggagAfaGfaacg
4048
GAUCGUUCUUCUCCUCAAC
4317


1735601
asgsa

asusc

UAGC






AD-
asasagauUfaAfUfCfcucucac
4589
VPusGfsuguGfaGfAfggauUfaAfucuu
4049
CCAAAGAUUAAUCCUCUCA
4318


1735602
ascsa

usgsg

CACC






AD-
ascsuaacCfuCfAfUfcaaagau
4590
VPusGfsuauCfuUfUfgaugAfgGfuuag
4050
AAACUAACCUCAUCAAAGA
4319


1735603
ascsa

ususu

UACA






AD-
csasccacUfuAfUfUfacuaaua
4591
VPusUfsuuaUfuAfGfuaauAfaGfuggu
4051
CCCACCACUUAUUACUAAU
4320


1735604
asasa

gsgsg

AAAA






AD-
usgsguacUfaGfAfAfauauucu
4592
VPusAfsaagAfaUfAfuuucUfaGfuacc
4052
GCUGGUACUAGAAAUAUUC
4321


1735605
ususa

asgsc

UUUU






AD-
gscsugucAfuUfUfGfuucacuc
4593
VPusUfsagaGfuGfAfacaaAfuGfacag
4053
UAGCUGUCAUUUGUUCACU
4322


1735606
usasa

csusa

CUAA






AD-
ascsucaaCfaAfUfUfuaugaac
4594
VPusUfsaguUfcAfUfaaauUfgUfugag
4054
CCACUCAACAAUUUAUGAA
4323


1735607
usasa

usgsg

CUAU






AD-
asgsuaugAfcUfCfAfuuaauag
4595
VPusUfsucuAfuUfAfaugaGfuCfauac
4055
AGAGUAUGACUCAUUAAUA
4324


1735608
asasa

uscsu

GAAA






AD-
csusgcugAfuUfUfUfcuuaaua
4596
VPusCfsuuaUfuAfAfgaaaAfuCfagca
4056
UACUGCUGAUUUUCUUAAU
4325


1735609
asgsa

gsusa

AAGC






AD-
usasucuuUfaGfAfUfccacauc
4597
VPusAfsagaUfgUfGfgaucUfaAfagau
4057
GUUAUCUUUAGAUCCACAU
4326


1735610
ususa

asasc

CUUA






AD-
csgsagacAfuUfCfCfuuaucac
4598
VPusUfsuguGfaUfAfaggaAfuGfucuc
4058
AUCGAGACAUUCCUUAUCA
4327


1735611
asasa

gsasu

CAAU






AD-
usascugaAfuCfAfGfauuaauu
4599
VPusGfsaaaUfuAfAfucugAfuUfcagu
4059
GUUACUGAAUCAGAUUAAU
4328


1735612
uscsa

asasc

UUCU






AD-
csusuacuUfaAfAfUfccuucac
4600
VPusCfsaguGfaAfGfgauuUfaAfguaa
4060
CCCUUACUUAAAUCCUUCA
4329


1735613
usgsa

gsgsg

CUGG






AD-
uscsgaaaGfaAfUfCfauucaaa
4601
VPusAfsguuUfgAfAfugauUfcUfuucg
4061
UCUCGAAAGAAUCAUUCAA
4330


1735614
csusa

asgsa

ACUU






AD-
asasaugaCfcUfAfUfcacuacu
4602
VPusUfsaagUfaGfUfgauaGfgUfcauu
4062
AGAAAUGACCUAUCACUAC
4331


1735615
usasa

uscsu

UUAU






AD-
csasagucAfuUfUfCfcucucua
4603
VPusCfsguaGfaGfAfggaaAfuGfacuu
4063
CACAAGUCAUUUCCUCUCU
4332


1735616
csgsa

gsusg

ACGG






AD-
asusgcagUfuUfCfUfuacuuau
4604
VPusAfsgauAfaGfUfaagaAfaCfugca
4064
GCAUGCAGUUUCUUACUUA
4333


1735617
csusa

usgsc

UCUA






AD-
uscsaaugCfaAfUfAfcacuguu
4605
VPusUfsgaaCfaGfUfguauUfgCfauug
4065
GCUCAAUGCAAUACACUGU
4334


1735618
csasa

asgsc

UCAG






AD-
uscsuaugUfaCfCfUfacugaca
4606
VPusUfsgugUfcAfGfuaggUfaCfauag
4066
UAUCUAUGUACCUACUGAC
4335


1735619
csasa

asusa

ACAU






AD-
usgsaauuCfcAfGfUfcuuaucu
4607
VPusUfsaagAfuAfAfgacuGfgAfauuc
4067
UUUGAAUUCCAGUCUUAUC
4336


1735620
usasa

asasa

UUAU






AD-
ususgcugUfaAfUfAfccaaaac
4608
VPusUfsaguUfuUfGfguauUfaCfagca
4068
AUUUGCUGUAAUACCAAAA
4337


1735621
usasa

asasu

CUAA






AD-
gsgsaucaCfuUfCfUfuucaaau
4609
VPusUfsgauUfuGfAfaagaAfgUfgauc
4069
UUGGAUCACUUCUUUCAAA
4338


1735622
csasa

csasa

UCAG






AD-
gsasacuaGfaAfAfAfcuauucu
4610
VPusUfsaagAfaUfAfguuuUfcUfaguu
4070
AGGAACUAGAAAACUAUUC
4339


1735623
usasa

cscsu

UUAA






AD-
ascsauuuCfcAfUfAfcugucug
4611
VPusAfsacaGfaCfAfguauGfgAfaaug
4071
UCACAUUUCCAUACUGUCU
4340


1735624
ususa

usgsa

GUUA






AD-
usgsauccUfuCfAfCfaguguca
4612
VPusAfsuugAfcAfCfugugAfaGfgauc
4072
UUUGAUCCUUCACAGUGUC
4341


1735625
asusa

asasa

AAUA






AD-
gsasuuucUfgAfGfAfacaagua
4613
VPusUfsuuaCfuUfGfuucuCfaGfaaau
4073
CUGAUUUCUGAGAACAAGU
4342


1735626
asasa

csasg

AAAG






AD-
cscsuacuUfgUfGfAfaauacau
4614
VPusAfsaauGfuAfUfuucaCfaAfguag
4074
ACCCUACUUGUGAAAUACA
4343


1735627
ususa

gsgsu

UUUG






AD-
csasacugGfaAfUfUfuuccaau
4615
VPusAfsaauUfgGfAfaaauUfcCfaguu
4075
AGCAACUGGAAUUUUCCAA
4344


1735628
ususa

gscsu

UUUU






AD-
uscsuaauCfcUfGfAfugagagu
4616
VPusUfsaacUfcUfCfaucaGfgAfuuag
4076
GCUCUAAUCCUGAUGAGAG
4345


1735629
usasa

asgsc

UUAU






AD-
asgsccucAfuUfAfUfcaaaauu
4617
VPusAfsgaaUfuUfUfgauaAfuGfaggc
4077
UAAGCCUCAUUAUCAAAAU
4346


1735630
csusa

ususa

UCUG






AD-
asasuuucUfgAfUfGfcuuuuua
4618
VPusAfsguaAfaAfAfgcauCfaGfaaau
4078
UCAAUUUCUGAUGCUUUUU
4347


1735631
csusa

usgsa

ACUA






AD-
usasccauUfaGfAfUfgaaaucu
4619
VPusUfsaagAfuUfUfcaucUfaAfuggu
4079
UGUACCAUUAGAUGAAAUC
4348


1735632
usasa

ascsa

UUAC






AD-
csusgugaAfuUfCfUfuccaacc
4620
VPusAfsuggUfuGfGfaagaAfuUfcaca
4080
UCCUGUGAAUUCUUCCAAC
4349


1735633
asusa

gsgsa

CAUG






AD-
csusaauaCfuCfCfAfgauuuuu
4621
VPusAfsuaaAfaAfUfcuggAfgUfauua
4081
ACCUAAUACUCCAGAUUUU
4350


1735634
asusa

gsgsu

UAUC






AD-
gsgsacacAfuAfCfAfuugaaua
4622
VPusUfsuuaUfuCfAfauguAfuGfuguc
4082
AAGGACACAUACAUUGAAU
4351


1735635
asasa

csusu

AAAU






AD-
ususugucAfuAfAfUfgcugcuu
4623
VPusCfsaaaGfcAfGfcauuAfuGfacaa
4083
ACUUUGUCAUAAUGCUGCU
4352


1735636
usgsa

asgsu

UUGC






AD-
ususcaucUfuUfCfUfguuaauu
4624
VPusGfsaaaUfuAfAfcagaAfaGfauga
4084
UGUUCAUCUUUCUGUUAAU
4353


1735637
uscsa

ascsa

UUCC






AD-
csasgugaAfaCfCfAfuuaauuu
4625
VPusGfsaaaAfuUfAfauggUfuUfcacu
4085
CACAGUGAAACCAUUAAUU
4354


1735638
uscsa

gsusg

UUCC






AD-
usasacugCfaAfGfAfcugauuu
4626
VPusAfsgaaAfuCfAfgucuUfgCfaguu
4086
CCUAACUGCAAGACUGAUU
4355


1735639
csusa

asgsg

UCUG






AD-
asgsaauuCfcUfCfCfuuaccuc
4627
VPusUfsugaGfgUfAfaggaGfgAfauuc
4087
GGAGAAUUCCUCCUUACCU
4356


1735640
asasa

uscsc

CAAG






AD-
usasuuacAfgAfUfCfuuacuuu
4628
VPusAfscaaAfgUfAfagauCfuGfuaau
4088
CAUAUUACAGAUCUUACUU
4357


1735641
gsusa

asusg

UGUU






AD-
ususaucuGfaAfAfGfauaucaa
4629
VPusAfsauuGfaUfAfucuuUfcAfgaua
4089
GCUUAUCUGAAAGAUAUCA
4358


1735642
ususa

asgsc

AUUU






AD-
asgsaucuGfuUfCfUfggaaaau
4630
VPusUfsgauUfuUfCfcagaAfcAfgauc
4090
ACAGAUCUGUUCUGGAAAA
4359


1735643
csasa

usgsu

UCAU






AD-
cscscagaAfuAfCfAfacuuccu
4631
VPusGfsaagGfaAfGfuuguAfuUfcugg
4091
CGCCCAGAAUACAACUUCC
4360


1735644
uscsa

gscsg

UUCU






AD-
gsusugauCfuUfUfCfagugcua
4632
VPusUfsuuaGfcAfCfugaaAfgAfucaa
4092
GAGUUGAUCUUUCAGUGCU
4361


1735645
asasa

csusc

AAAU






AD-
csusaagcUfuUfAfUfuuauuag
4633
VPusGfsucuAfaUfAfaauaAfaGfcuua
4093
CACUAAGCUUUAUUUAUUA
4362


1735646
ascsa

gsusg

GACG






AD-
asgscuugGfaAfUfCfuauaucu
4634
VPusAfsaagAfuAfUfagauUfcCfaagc
4094
UCAGCUUGGAAUCUAUAUC
4363


1735647
ususa

usgsa

UUUC






AD-
ususauuaUfuUfCfUfgaagccu
4635
VPusUfsuagGfcUfUfcagaAfaUfaaua
4095
ACUUAUUAUUUCUGAAGCC
4364


1735648
asasa

asgsu

UAAC






AD-
cscsuuugUfuGfUfAfuuuaaca
4636
VPusUfsuugUfuAfAfauacAfaCfaaag
4096
GACCUUUGUUGUAUUUAAC
4365


1735649
asasa

gsusc

AAAA






AD-
gscsucucUfaAfCfUfaaucgau
4637
VPusUfsgauCfgAfUfuaguUfaGfagag
4097
UGGCUCUCUAACUAAUCGA
4366


1735650
csasa

cscsa

UCAC






AD-
asasagacUfaCfAfUfgacagaa
4638
VPusAfsuuuCfuGfUfcaugUfaGfucuu
4098
CUAAAGACUACAUGACAGA
4367


1735651
asusa

usasg

AAUG






AD-
csasggauUfcGfUfAfuuuuuaa
4639
VPusCfsuuuAfaAfAfauacGfaAfuccu
4099
CUCAGGAUUCGUAUUUUUA
4368


1735652
asgsa

gsasg

AAGA






AD-
cscsuugcUfaAfGfUfaauugac
4640
VPusAfsuguCfaAfUfuacuUfaGfcaag
4100
ACCCUUGCUAAGUAAUUGA
4369


1735653
asusa

gsgsu

CAUA






AD-
cscsuaugCfaCfUfUfucacagg
4641
VPusUfsuccUfgUfGfaaagUfgCfauag
4101
CUCCUAUGCACUUUCACAG
4370


1735654
asasa

gsasg

GAAC






AD-
asusgcugAfaAfUfAfuguuuca
4642
VPusGfsuugAfaAfCfauauUfuCfagca
4102
AAAUGCUGAAAUAUGUUUC
4371


1735655
ascsa

ususu

AACA






AD-
cscsuuuuAfaUfUfCfaaaucua
4643
VPusAfsguaGfaUfUfugaaUfuAfaaag
4103
GGCCUUUUAAUUCAAAUCU
4372


1735656
csusa

gscsc

ACUG






AD-
ascsuggaCfuUfAfUfuggauuu
4644
VPusUfsuaaAfuCfCfaauaAfgUfccag
4104
AUACUGGACUUAUUGGAUU
4373


1735657
asasa

usasu

UAAU






AD-
csasucugAfaUfCfAfgauggua
4645
VPusUfsguaCfcAfUfcugaUfuCfagau
4105
AACAUCUGAAUCAGAUGGU
4374


1735658
csasa

gsusu

ACAG






AD-
asasuucuGfaUfAfGfcaaucug
4646
VPusCfsacaGfaUfUfgcuaUfcAfgaau
4106
GAAAUUCUGAUAGCAAUCU
4375


1735659
usgsa

ususc

GUGU






AD-
uscsaaguCfaAfGfGfaugcuau
4647
VPusAfsgauAfgCfAfuccuUfgAfcuug
4107
UUUCAAGUCAAGGAUGCUA
4376


1735660
csusa

asasa

UCUA






AD-
uscsacugAfaAfAfCfcacaaga
4648
VPusUfsaucUfuGfUfgguuUfuCfagug
4108
CCUCACUGAAAACCACAAG
4377


1735661
usasa

asgsg

AUAU






AD-
ascscuguUfgAfAfCfagucuuc
4649
VPusUfsugaAfgAfCfuguuCfaAfcagg
4109
CUACCUGUUGAACAGUCUU
4378


1735662
asasa

usasg

CAAG






AD-
uscsaaguGfaCfAfUfauuucag
4650
VPusAfsacuGfaAfAfuaugUfcAfcuug
4110
ACUCAAGUGACAUAUUUCA
4379


1735663
ususa

asgsu

GUUA






AD-
uscsaggaAfcUfUfCfaggauug
4651
VPusAfsgcaAfuCfCfugaaGfuUfccug
4111
GCUCAGGAACUUCAGGAUU
4380


1735664
csusa

asgsc

GCUA






AD-
ascsggagUfaUfUfAfguagcuu
4652
VPusUfsuaaGfcUfAfcuaaUfaCfuccg
4112
CUACGGAGUAUUAGUAGCU
4381


1735665
asasa

usasg

UAAU






AD-
asusugucAfaUfGfAfauuuuau
4653
VPusUfscauAfaAfAfuucaUfuGfacaa
4113
GCAUUGUCAAUGAAUUUUA
4382


1735666
gsasa

usgsc

UGAG






AD-
gsasacagCfaAfAfCfaaauauu
4654
VPusUfscaaUfaUfUfuguuUfgCfuguu
4114
GUGAACAGCAAACAAAUAU
4383


1735667
gsasa

csasc

UGAA






AD-
usgsaacuAfuUfUfUfcgugcau
4655
VPusUfsaauGfcAfCfgaaaAfuAfguuc
4115
UAUGAACUAUUUUCGUGCA
4384


1735668
usasa

asusa

UUAG






AD-
ascsuggaAfuAfCfUfUauuuuu
4656
VPusUfsgaaAfaAfUfaaguAfuUfccag
4116
GAACUGGAAUACUUAUUUU
4385


1735669
csasa

ususc

UCAU






AD-
ususaucuUfgCfAfGfagaucuc
4657
VPusCfsagaGfaUfCfucugCfaAfgaua
4117
CGUUAUCUUGCAGAGAUCU
4386


1735670
usgsa

ascsg

CUGG






AD-
gsasagugUfuAfGfAfauuuuu
4658
VPusAfsucaAfaAfAfuucuAfaCfacuu
4118
UGGAAGUGUUAGAAUUUUU
4387


1735671
gasusa

cscsa

GAUC






AD-
uscsaauuUfaAfGfAfucucugg
4659
VPusUfsuccAfgAfGfaucuUfaAfauug
4119
UAUCAAUUUAAGAUCUCUG
4388


1735672
asasa

asusa

GAAG






AD-
usgsgaccAfuAfUfUfuacaaug
4660
VPusAfsacaUfuGfUfaaauAfuGfgucc
4120
AAUGGACCAUAUUUACAAU
4389


1735673
ususa

asusu

GUUU






AD-
usasgucaUfuGfAfAfgcaaucc
4661
VPusAfsaggAfuUfGfcuucAfaUfgacu
4121
UUUAGUCAUUGAAGCAAUC
4390


1735674
ususa

asasa

CUUG






AD-
asgscuguUfuAfGfGfuuuaaca
4662
VPusAfsuugUfuAfAfaccuAfaAfcagc
4122
AAAGCUGUUUAGGUUUAAC
4391


1735675
asusa

ususu

AAUG






AD-
csasaggcAfaAfUfGfauguaaa
4663
VPusUfsauuUfaCfAfucauUfuGfccuu
4123
GCCAAGGCAAAUGAUGUAA
4392


1735676
usasa

gsgsc

AUAG






AD-
asusccaaUfuAfCfUfacuggaa
4664
VPusGfsuuuCfcAfGfuaguAfaUfugga
4124
AAAUCCAAUUACUACUGGA
4393


1735677
ascsa

ususu

AACU






AD-
ascsuuacAfaUfAfUfauauauc
4665
VPusAfsggaUfaUfAfuauaUfuGfuaag
4125
GCACUUACAAUAUAUAUAU
4394


1735678
csusa

usgsc

CCUG






AD-
asusgcagUfuUfGfGfuaucuga
4666
VPusUfsgucAfgAfUfaccaAfaCfugca
4126
ACAUGCAGUUUGGUAUCUG
4395


1735679
csasa

usgsu

ACAA






AD-
cscsuuauUfuCfAfAfgacacug
4667
VPusAfsccaGfuGfUfcuugAfaAfuaag
4127
UACCUUAUUUCAAGACACU
4396


1735680
gsusa

gsusa

GGUU






AD-
gsasagggAfuUfUfAfuucuuua
4668
VPusAfscuaAfaGfAfauaaAfuCfccuu
4128
AUGAAGGGAUUUAUUCUUU
4397


1735681
gsusa

csasu

AGUC






AD-
asusccuuGfcUfAfCfggaucuu
4669
VPusUfsuaaGfaUfCfcguaGfcAfagga
4129
CAAUCCUUGCUACGGAUCU
4398


1735682
asasa

ususg

UAAA






AD-
ascsugacUfaUfCfCfcgaagca
4670
VPusUfsuugCfuUfCfgggaUfaGfucag
4130
CUACUGACUAUCCCGAAGC
4399


1735683
asasa

usasg

AAAG






AD-
usgsuauuUfcUfGfCfuauuauu
4671
VPusGfsaaaUfaAfUfagcaGfaAfauac
4131
AGUGUAUUUCUGCUAUUAU
4400


1735684
uscsa

ascsu

UUCC






AD-
usgsuaacAfaUfAfAfcuagccu
4672
VPusUfsuagGfcUfAfguuaUfuGfuuac
4132
UAUGUAACAAUAACUAGCC
4401


1735685
asasa

asusa

UAAA






AD-
gsusuguuUfuUfAfCfucuagcu
4673
VPusUfsgagCfuAfGfaguaAfaAfacaa
4133
UUGUUGUUUUUACUCUAGC
4402


1735686
csasa

csasa

UCAG






AD-
csasggcaGfuUfUfUfauacaau
4674
VPusUfscauUfgUfAfuaaaAfcUfgccu
4134
CUCAGGCAGUUUUAUACAA
4403


1735687
gsasa

gsasg

UGAC






AD-
asgsgauuCfuCfAfGfucagguu
4675
VPusAfsuaaCfcUfGfacugAfgAfaucc
4135
GAAGGAUUCUCAGUCAGGU
4404


1735688
asusa

ususc

UAUG






AD-
asusuuucCfaUfCfAfuguuuaa
4676
VPusAfscuuAfaAfCfaugaUfgGfaaaa
4136
ACAUUUUCCAUCAUGUUUA
4405


1735689
gsusa

usgsu

AGUG






AD-
usgsccacUfuUfUfGfuuaccau
4677
VPusCfsaauGfgUfAfacaaAfaGfuggc
4137
GCUGCCACUUUUGUUACCA
4406


1735690
usgsa

asgsc

UUGU






AD-
ascsuugcUfaGfUfGfuguggau
4678
VPusAfsuauCfcAfCfacacUfaGfcaag
4138
AAACUUGCUAGUGUGUGGA
4407


1735691
asusa

ususu

UAUG






AD-
asasucuuAfcUfUfGfagaaauu
4679
VPusGfscaaUfuUfCfucaaGfuAfagau
4139
GAAAUCUUACUUGAGAAAU
4408


1735692
gscsa

ususc

UGCC






AD-
asgsuucgAfgAfCfUfugcauuu
4680
VPusUfscaaAfuGfCfaaguCfuCfgaac
4140
AAAGUUCGAGACUUGCAUU
4409


1735693
gsasa

ususu

UGAA






AD-
cscsauagAfaUfUfUfccugaua
4681
VPusAfsguaUfcAfGfgaaaUfuCfuaug
4141
ACCCAUAGAAUUUCCUGAU
4410


1735694
csusa

gsgsu

ACUG






AD-
asgsguaaUfuCfCfUfuuagaau
4682
VPusAfsuauUfcUfAfaaggAfaUfuacc
4142
CAAGGUAAUUCCUUUAGAA
4411


1735695
asusa

ususg

UAUG






AD-
csusuaugGfaAfAfCfucaacaa
4683
VPusUfscuuGfuUfGfaguuUfcCfauaa
4143
AACUUAUGGAAACUCAACA
4412


1735696
gsasa

gsusu

AGAA






AD-
asasgcagCfaUfUfUfuaaauua
4684
VPusCfsguaAfuUfUfaaaaUfgCfugcu
4144
AAAAGCAGCAUUUUAAAUU
4413


1735697
csgsa

ususu

ACGA






AD-
usgsacucUfcAfAfCfugaccau
4685
VPusGfsaauGfgUfCfaguuGfaGfaguc
4145
GCUGACUCUCAACUGACCA
4414


1735698
uscsa

asgsc

UUCC






AD-
asgsguuuAfuCfCfAfugaagga
4686
VPusAfsgucCfuUfCfauggAfuAfaacc
4146
CUAGGUUUAUCCAUGAAGG
4415


1735699
csusa

usasg

ACUG






AD-
ascscaagAfaUfUfUfggcauuu
4687
VPusUfsgaaAfuGfCfcaaaUfuCfuugg
4147
UCACCAAGAAUUUGGCAUU
4416


1735700
csasa

usgsa

UCAA






AD-
usasucuaGfaAfUfAfuuuggcu
4688
VPusUfsaagCfcAfAfauauUfcUfagau
4148
CUUAUCUAGAAUAUUUGGC
4417


1735701
usasa

asasg

UUAU






AD-
csusccugCfaGfAfAfuacauac
4689
VPusUfsuguAfuGfUfauucUfgCfagga
4149
CUCUCCUGCAGAAUACAUA
4418


1735702
asasa

gsasg

CAAG






AD-
uscsacacCfaUfUfUfccuggau
4690
VPusAfsaauCfcAfGfgaaaUfgGfugug
4150
UCUCACACCAUUUCCUGGA
4419


1735703
ususa

asgsa

UUUU






AD-
asusguggAfaUfUfCfaagcgcu
4691
VPusAfsaagCfgCfUfugaaUfuCfcaca
4151
UCAUGUGGAAUUCAAGCGC
4420


1735704
ususa

usgsa

UUUC






AD-
asusugugUfaUfUfAfucuacua
4692
VPusCfsauaGfuAfGfauaaUfaCfacaa
4152
CUAUUGUGUAUUAUCUACU
4421


1735705
usgsa

usasg

AUGU






AD-
asasuggaGfuAfAfUfgaaaaug
4693
VPusAfsucaUfuUfUfcauuAfcUfccau
4153
AGAAUGGAGUAAUGAAAAU
4422


1735706
asusa

uscsu

GAUC






AD-
ascsugguUfuAfUfUfggaaaua
4694
VPusAfsauaUfuUfCfcaauAfaAfccag
4154
ACACUGGUUUAUUGGAAAU
4423


1735707
ususa

usgsu

AUUU






AD-
csasagugUfaUfGfUfguauaaa
4695
VPusAfscuuUfaUfAfcacaUfaCfacuu
4155
UACAAGUGUAUGUGUAUAA
4424


1735708
gsusa

gsusa

AGUC






AD-
usascaagCfaUfGfCfauauuga
4696
VPusUfscucAfaUfAfugcaUfgCfuugu
4156
UGUACAAGCAUGCAUAUUG
4425


1735709
gsasa

ascsa

AGAU






AD-
usgsugucUfuUfUfAfugucuuu
4697
VPusUfscaaAfgAfCfauaaAfaGfacac
4157
AGUGUGUCUUUUAUGUCUU
4426


1735710
gsasa

ascsu

UGAA






AD-
asusuuucUfcGfCfAfgaauuca
4698
VPusAfsuugAfaUfUfcugcGfaGfaaaa
4158
UGAUUUUCUCGCAGAAUUC
4427


1735711
asusa

uscsa

AAUG






AD-
usasgcgaCfaGfUfUfugaguaa
4699
VPusUfsuuuAfcUfCfaaacUfgUfcgcu
4159
AAUAGCGACAGUUUGAGUA
4428


1735712
asasa

asusu

AAAG






AD-
csusggugUfaUfGfAfauacuuu
4700
VPusAfscaaAfgUfAfuucaUfaCfacca
4160
CACUGGUGUAUGAAUACUU
4429


1735713
gsusa

gsusg

UGUC






AD-
gsusgauaAfgUfGfGfcuaacag
4701
VPusUfsucuGfuUfAfgccaCfuUfauca
4161
AGGUGAUAAGUGGCUAACA
4430


1735714
asasa

cscsu

GAAG






AD-
gsusaggcUfaAfUfAfuuuucua
4702
VPusAfsauaGfaAfAfauauUfaGfccua
4162
UGGUAGGCUAAUAUUUUCU
4431


1735715
ususa

cscsa

AUUA






AD-
cscsucuuCfaUfCfCfucgacug
4703
VPusGfsacaGfuCfGfaggaUfgAfagag
4163
CGCCUCUUCAUCCUCGACU
4432


1735716
uscsa

gscsg

GUCC






AD-
asasuugcCfaUfAfAfgccauau
4704
VPusUfsaauAfuGfGfcuuaUfgGfcaau
4164
GAAAUUGCCAUAAGCCAUA
4433


1735717
usasa

ususc

UUAC






AD-
gscsgaauAfuUfUfUfgucagcu
4705
VPusUfsuagCfuGfAfcaaaAfuAfuucg
4165
CGGCGAAUAUUUUGUCAGC
4434


1735718
asasa

cscsg

UAAU






AD-
asusccagUfgUfUfGfccuuucu
4706
VPusUfscagAfaAfGfgcaaCfaCfugga
4166
GAAUCCAGUGUUGCCUUUC
4435


1735719
gsasa

ususc

UGAG






AD-
asasagucUfaUfGfCfcugucua
4707
VPusUfsuuaGfaCfAfggcaUfaGfacuu
4167
GAAAAGUCUAUGCCUGUCU
4436


1735720
asasa

ususc

AAAA






AD-
gsgsacauCfaGfAfAfguuugaa
4708
VPusAfsauuCfaAfAfcuucUfgAfuguc
4168
AUGGACAUCAGAAGUUUGA
4437


1735721
ususa

csasu

AUUC






AD-
gsgscgaaUfuGfCfUfuauauuu
4709
VPusAfsgaaAfuAfUfaagcAfaUfucgc
4169
UGGGCGAAUUGCUUAUAUU
4438


1735722
csusa

cscsa

UCUU






AD-
csascacuAfuGfUfGfuaaacca
4710
VPusAfscugGfuUfUfacacAfuAfgugu
4170
CACACACUAUGUGUAAACC
4439


1735723
gsusa

gsusg

AGUC






AD-
csasggugAfaGfAfAfgaaaaca
4711
VPusAfsaugUfuUfUfcuucUfuCfaccu
4171
AUCAGGUGAAGAAGAAAAC
4440


1735724
ususa

gsasu

AUUU






AD-
gsusgagcUfcUfUfAfuuuuuca
4712
VPusAfsgugAfaAfAfauaaGfaGfcuca
4172
UAGUGAGCUCUUAUUUUUC
4441


1735725
csusa

csusa

ACUG






AD-
asasagcuGfaUfGfGfgaauaaa
4713
VPusAfsguuUfaUfUfcccaUfcAfgcuu
4173
GUAAAGCUGAUGGGAAUAA
4442


1735726
csusa

usasc

ACUG






AD-
gsusgucgUfuAfGfGfagaaacu
4714
VPusGfscagUfuUfCfuccuAfaCfgaca
4174
GCGUGUCGUUAGGAGAAAC
4443


1735727
gscsa

csgsc

UGCA






AD-
gsgsgacuUfaAfAfAfcaauggu
4715
VPusAfsuacCfaUfUfguuuUfaAfgucc
4175
UUGGGACUUAAAACAAUGG
4444


1735728
asusa

csasa

UAUA






AD-
csusgaugGfuAfGfAfauuaacc
4716
VPusAfsuggUfuAfAfuucuAfcCfauca
4176
UUCUGAUGGUAGAAUUAAC
4445


1735729
asusa

gsasa

CAUG






AD-
ascsuaugUfgUfGfUfuuuauuu
4717
VPusAfsgaaAfuAfAfaacaCfaCfauag
4177
CUACUAUGUGUGUUUUAUU
4446


1735730
csusa

usasg

UCUG






AD-
csusgauaAfuUfUfAfuauuugc
4718
VPusGfsugcAfaAfUfauaaAfuUfauca
4178
GACUGAUAAUUUAUAUUUG
4447


1735731
ascsa

gsusc

CACU






AD-
gsusccuuAfaAfUfUfauuuaac
4719
VPusGfsgguUfaAfAfuaauUfuAfagga
4179
UAGUCCUUAAAUUAUUUAA
4448


1735732
cscsa

csusa

CCCU






AD-
csgscaauAfuGfGfUfgucagau
4720
VPusAfsgauCfuGfAfcaccAfuAfuugc
4180
CUCGCAAUAUGGUGUCAGA
4449


1735733
csusa

gsasg

UCUU






AD-
ususcgaaGfaGfCfUfgcucuaa
4721
VPusGfsauuAfgAfGfcagcUfcUfucga
4181
UCUUCGAAGAGCUGCUCUA
4450


1735734
uscsa

asgsa

AUCC






AD-
ususucugCfuGfAfGfaguauuc
4722
VPusCfsugaAfuAfCfucucAfgCfagaa
4182
UAUUUCUGCUGAGAGUAUU
4451


1735735
asgsa

asusa

CAGG






AD-
ususgaacAfgGfAfAfguaucac
4723
VPusCfsaguGfaUfAfcuucCfuGfuuca
4183
UAUUGAACAGGAAGUAUCA
4452


1735736
usgsa

asusa

CUGG






AD-
usgsccuuGfuAfUfUfuccagag
4724
VPusUfsucuCfuGfGfaaauAfcAfaggc
4184
GUUGCCUUGUAUUUCCAGA
4453


1735737
asasa

asasc

GAAC






AD-
gsusuacuAfuGfGfCfaguugca
4725
VPusUfsuugCfaAfCfugccAfuAfguaa
4185
CAGUUACUAUGGCAGUUGC
4454


1735738
asasa

csusg

AAAA






AD-
asusggcuGfaAfUfUfuuaaagc
4726
VPusCfsagcUfuUfAfaaauUfcAfgcca
4186
CCAUGGCUGAAUUUUAAAG
4455


1735739
usgsa

usgsg

CUGU






AD-
gsusccauUfcAfUfGfgaucguu
4727
VPusAfsgaaCfgAfUfccauGfaAfugga
4187
CAGUCCAUUCAUGGAUCGU
4456


1735740
csusa

csusg

UCUU






AD-
usgsuguaAfcUfCfCfuaugaug
4728
VPusAfsgcaUfcAfUfaggaGfuUfacac
4188
CCUGUGUAACUCCUAUGAU
4457


1735741
csusa

asgsg

GCUG






AD-
usgsgcagUfuUfCfCfcacuccu
4729
VPusAfsuagGfaGfUfgggaAfaCfugcc
4189
GCUGGCAGUUUCCCACUCC
4458


1735742
asusa

asgsc

UAUG






AD-
cscsucaaGfcAfGfAfugagauu
4730
VPusUfsgaaUfcUfCfaucuGfcUfugag
4190
UACCUCAAGCAGAUGAGAU
4459


1735743
csasa

gsusa

UCAG






AD-
asusguugUfuUfUfCfucaaaag
4731
VPusUfsgcuUfuUfGfagaaAfaCfaaca
4191
UUAUGUUGUUUUCUCAAAA
4460


1735744
csasa

usasa

GCAG






AD-
gsasgggaUfuUfCfUfgcucaau
4732
VPusGfscauUfgAfGfcagaAfaUfcccu
4192
CUGAGGGAUUUCUGCUCAA
4461


1735745
gscsa

csasg

UGCA






AD-
gscscuucUfuCfUfUfccucacc
4733
VPusCfsaggUfgAfGfgaagAfaGfaagg
4193
GUGCCUUCUUCUUCCUCAC
4462


1735746
usgsa

csasc

CUGC






AD-
ususgagaUfuGfAfAfucacauu
4734
VPusGfsaaaUfgUfGfauucAfaUfcuca
4194
UAUUGAGAUUGAAUCACAU
4463


1735747
uscsa

asusa

UUCC






AD-
csusguucAfgUfGfCfuauucuc
4735
VPusGfsggaGfaAfUfagcaCfuGfaaca
4195
CACUGUUCAGUGCUAUUCU
4464


1735748
cscsa

gsusg

CCCA






AD-
cscsuggcUfuAfCfAfgcagauc
4736
VPusUfsggaUfcUfGfcuguAfaGfccag
4196
UUCCUGGCUUACAGCAGAU
4465


1735749
csasa

gsasa

CCAC






AD-
gsascagcAfgAfAfAfauuauuu
4737
VPusUfsgaaAfuAfAfuuuuCfuGfcugu
4197
AAGACAGCAGAAAAUUAUU
4466


1735750
csasa

csusu

UCAG






AD-
ususggguUfuCfUfUfuaguuua
4738
VPusCfsauaAfaCfUfaaagAfaAfccca
4198
UAUUGGGUUUCUUUAGUUU
4467


1735751
usgsa

asusa

AUGU






AD-
csasccauGfuAfGfGfucucaga
4739
VPusCfsuucUfgAfGfaccuAfcAfuggu
4199
CUCACCAUGUAGGUCUCAG
4468


1735752
asgsa

gsasg

AAGA






AD-
gsusugugGfaAfCfAfggaaaug
4740
VPusUfsucaUfuUfCfcuguUfcCfacaa
4200
UGGUUGUGGAACAGGAAAU
4469


1735753
asasa

cscsa

GAAA






AD-
gsgsagaaCfaUfAfUfcauauuu
4741
VPusCfsaaaAfuAfUfgauaUfgUfucuc
4201
UUGGAGAACAUAUCAUAUU
4470


1735754
usgsa

csasa

UUGG






AD-
csasgccaAfaAfUfGfauggcaa
4742
VPusUfsuuuGfcCfAfucauUfuUfggcu
4202
AGCAGCCAAAAUGAUGGCA
4471


1735755
asasa

gscsu

AAAU






AD-
cscsaauuUfuUfGfAfacuugua
4743
VPusUfscuaCfaAfGfuucaAfaAfauug
4203
UUCCAAUUUUUGAACUUGU
4472


1735756
gsasa

gsasa

AGAA






AD-
asusaggaAfuAfGfUfuugccaa
4744
VPusAfsguuGfgCfAfaacuAfuUfccua
4204
AAAUAGGAAUAGUUUGCCA
4473


1735757
csusa

ususu

ACUC






AD-
ususugaaUfgUfUfUfuggagaa
4745
VPusUfsuuuCfuCfCfaaaaCfaUfucaa
4205
UCUUUGAAUGUUUUGGAGA
4474


1735758
asasa

asgsa

AAAG






AD-
gsuscaauAfuUfUfAfaugaauc
4746
VPusGfsugaUfuCfAfuuaaAfuAfuuga
4206
GUGUCAAUAUUUAAUGAAU
4475


1735759
ascsa

csasc

CACU






AD-
usgsagaaUfaUfAfUfuaaaugc
4747
VPusGfsugcAfuUfUfaauaUfaUfucuc
4207
UGUGAGAAUAUAUUAAAUG
4476


1735760
ascsa

ascsa

CACA






AD-
usasacaaGfgGfAfCfuaaauag
4748
VPusUfsccuAfuUfUfagucCfcUfuguu
4208
CUUAACAAGGGACUAAAUA
4477


1735761
gsasa

asasg

GGAA






AD-
gsgscuucUfuCfUfUfccaccuc
4749
VPusCfsagaGfgUfGfgaagAfaGfaagc
4209
GCGGCUUCUUCUUCCACCU
4478


1735762
usgsa

csgsc

CUGC






AD-
ususggaaCfaUfGfUfgguuauc
4750
VPusAfsagaUfaAfCfcacaUfgUfucca
4210
AAUUGGAACAUGUGGUUAU
4479


1735763
ususa

asusu

CUUU






AD-
csasgagaAfcAfGfAfugauucu
4751
VPusAfsaagAfaUfCfaucuGfuUfcucu
4211
UCCAGAGAACAGAUGAUUC
4480


1735764
ususa

gsgsa

UUUG






AD-
csusguuaUfuUfUfAfuuggguu
4752
VPusAfsaaaCfcCfAfauaaAfaUfaaca
4212
GUCUGUUAUUUUAUUGGGU
4481


1735765
ususa

gsasc

UUUA






AD-
asusgaagAfaGfCfAfaaucuug
4753
VPusAfsccaAfgAfUfuugcUfuCfuuca
4213
AGAUGAAGAAGCAAAUCUU
4482


1735766
gsusa

uscsu

GGUC






AD-
ususuggaAfuCfAfUfgcaauuu
4754
VPusCfsaaaAfuUfGfcaugAfuUfccaa
4214
AUUUUGGAAUCAUGCAAUU
4483


1735767
usgsa

asasu

UUGC






AD-
csasauguUfuUfGfUfaaacuug
4755
VPusAfsgcaAfgUfUfuacaAfaAfcauu
4215
UACAAUGUUUUGUAAACUU
4484


1735768
csusa

gsusa

GCUA






AD-
gsgsaucgUfaAfUfAfauggcaa
4756
VPusUfsuuuGfcCfAfuuauUfaCfgauc
4216
UGGGAUCGUAAUAAUGGCA
4485


1735769
asasa

cscsa

AAAG






AD-
gsusgcuuUfcUfCfAfgguuccu
4757
VPusAfscagGfaAfCfcugaGfaAfagca
4217
GGGUGCUUUCUCAGGUUCC
4486


1735770
gsusa

cscsc

UGUA






AD-
asusgauaCfuGfAfAfaguggug
4758
VPusAfsucaCfcAfCfuuucAfgUfauca
4218
UAAUGAUACUGAAAGUGGU
4487


1735771
asusa

ususa

GAUG






AD-
uscsacugGfaCfCfUfgauuuua
4759
VPusAfscuaAfaAfUfcaggUfcCfagug
4219
UAUCACUGGACCUGAUUUU
4488


1735772
gsusa

asusa

AGUA






AD-
gsasacuuUfuUfGfCfuuuuaug
4760
VPusUfsucaUfaAfAfagcaAfaAfaguu
4220
AGGAACUUUUUGCUUUUAU
4489


1735773
asasa

cscsu

GAAA






AD-
gsasacacAfgCfAfCfagauuug
4761
VPusAfsacaAfaUfCfugugCfuGfuguu
4221
AUGAACACAGCACAGAUUU
4490


1735774
ususa

csasu

GUUA






AD-
asusauggAfaGfGfAfaaucgua
4762
VPusUfscuaCfgAfUfuuccUfuCfcaua
4222
AGAUAUGGAAGGAAAUCGU
4491


1735775
gsasa

uscsu

AGAG






AD-
gscsuaucUfaAfAfUfgggccuu
4763
VPusAfsaaaGfgCfCfcauuUfaGfauag
4223
AUGCUAUCUAAAUGGGCCU
4492


1735776
ususa

csasu

UUUA






AD-
csasaaacCfaCfCfAfagaagga
4764
VPusUfsuucCfuUfCfuuggUfgGfuuuu
4224
UCCAAAACCACCAAGAAGG
4493


1735777
asasa

gsgsa

AAAA






AD-
cscsacagAfuGfUfGfcuacaug
4765
VPusUfsgcaUfgUfAfgcacAfuCfugug
4225
UGCCACAGAUGUGCUACAU
4494


1735778
csasa

gscsa

GCAG






AD-
asasagucAfuAfCfAfuguacaa
4766
VPusGfscuuGfuAfCfauguAfuGfacuu
4226
AUAAAGUCAUACAUGUACA
4495


1735779
gscsa

usasu

AGCA






AD-
usasgaagCfaGfAfAfgaggaua
4767
VPusAfsuuaUfcCfUfcuucUfgCfuucu
4227
GUUAGAAGCAGAAGAGGAU
4496


1735780
asusa

asasc

AAUG






AD-
csgsugugUfuCfGfCfacagcuu
4768
VPusUfscaaGfcUfGfugcgAfaCfacac
4228
AGCGUGUGUUCGCACAGCU
4497


1735781
gsasa

gscsu

UGAG






AD-
gscsugguGfuUfUfUfguccag
4769
VPusAfsgacUfgGfAfcaaaAfcAfccag
4229
GAGCUGGUGUUUUGUCCAG
4498


1735782
ucsusa

csusc

UCUG






AD-
asusggaaAfaCfAfAfucuaaau
4770
VPusGfsgauUfuAfGfauugUfuUfucca
4230
AAAUGGAAAACAAUCUAAA
4499


1735783
cscsa

ususu

UCCA






AD-
csasuuagAfaAfAfUfggcuauc
4771
VPusUfscgaUfaGfCfcauuUfuCfuaau
4231
UGCAUUAGAAAAUGGCUAU
4500


1735784
gsasa

gscsa

CGAG






AD-
asusggacAfgAfAfGfgcauugu
4772
VPusUfsgacAfaUfGfccuuCfuGfucca
4232
AAAUGGACAGAAGGCAUUG
4501


1735785
csasa

ususu

UCAA






AD-
csasgauuGfcUfGfCfaguggaa
4773
VPusUfsuuuCfcAfCfugcaGfcAfaucu
4233
UACAGAUUGCUGCAGUGGA
4502


1735786
asasa

gsusa

AAAU






AD-
asgsguggAfaAfUfGfgaguuga
4774
VPusGfsaucAfaCfUfccauUfuCfcacc
4234
GGAGGUGGAAAUGGAGUUG
4503


1735787
uscsa

uscsc

AUCU






AD-
csusgggcAfaUfGfCfaccuaau
4775
VPusGfsuauUfaGfGfugcaUfuGfccca
4235
CUCUGGGCAAUGCACCUAA
4504


1735788
ascsa

gsasg

UACU






AD-
asusuuccCfuCfUfGfccuaaag
4776
VPusGfsucuUfuAfGfgcagAfgGfgaaa
4236
UAAUUUCCCUCUGCCUAAA
4505


1735789
ascsa

ususa

GACU






AD-
csgscuucUfgCfAfAfcguggag
4777
VPusAfsgcuCfcAfCfguugCfaGfaagc
4237
GCCGCUUCUGCAACGUGGA
4506


1735790
csusa

gsgsc

GCUG






AD-
asgsauucAfuAfUfUfguauuuc
4778
VPusGfsggaAfaUfAfcaauAfuGfaauc
4238
AUAGAUUCAUAUUGUAUUU
4507


1735791
cscsa

usasu

CCCA






AD-
asgsgacaAfaUfGfCfauuucua
4779
VPusAfscuaGfaAfAfugcaUfuUfgucc
4239
GGAGGACAAAUGCAUUUCU
4508


1735792
gsusa

uscsc

AGUG






AD-
ususagacGfuGfUfUfgagugag
4780
VPusCfsacuCfaCfUfcaacAfcGfucua
4240
UAUUAGACGUGUUGAGUGA
4509


1735793
usgsa

asusa

GUGC






AD-
csusguggAfcAfUfCfaaaugcu
4781
VPusUfscagCfaUfUfugauGfuCfcaca
4241
AGCUGUGGACAUCAAAUGC
4510


1735794
gsasa

gscsu

UGAA






AD-
asgsgccuUfaAfUfAfcugugag
4782
VPusCfsucuCfaCfAfguauUfaAfggcc
4242
ACAGGCCUUAAUACUGUGA
4511


1735795
asgsa

usgsu

GAGG






AD-
asgsaaauCfaUfUfGfccuagug
4783
VPusAfsacaCfuAfGfgcaaUfgAfuuuc
4243
GCAGAAAUCAUUGCCUAGU
4512


1735796
ususa

usgsc

GUUC






AD-
usgsagugCfuGfAfGfuuccuug
4784
VPusAfsgcaAfgGfAfacucAfgCfacuc
4244
AGUGAGUGCUGAGUUCCUU
4513


1735797
csusa

ascsu

GCUG






AD-
gscscaugCfaUfGfAfuuaugau
4785
VPusUfsgauCfaUfAfaucaUfgCfaugg
4245
CUGCCAUGCAUGAUUAUGA
4514


1735798
csasa

csasg

UCAC






AD-
usgscugcUfgGfUfUfugcuacc
4786
VPusCfsuggUfaGfCfaaacCfaGfcagc
4246
GAUGCUGCUGGUUUGCUAC
4515


1735799
asgsa

asusc

CAGG






AD-
csasgaugAfaGfAfGfgaauagc
4787
VPusUfscgcUfaUfUfccucUfuCfaucu
4247
GGCAGAUGAAGAGGAAUAG
4516


1735800
gsasa

gscsc

CGAC






AD-
asusccagGfuGfCfAfucaauuu
4788
VPusAfsgaaAfuUfGfaugcAfcCfugga
4248
AAAUCCAGGUGCAUCAAUU
4517


1735801
csusa

ususu

UCUG






AD-
asasuaagCfcAfAfGfcguuauc
4789
VPusAfsagaUfaAfCfgcuuGfgCfuuau
4249
UUAAUAAGCCAAGCGUUAU
4518


1735802
ususa

usasa

CUUG






AD-
gsasgaggAfuCfCfUfugcucug
4790
VPusAfsgcaGfaGfCfaaggAfuCfcucu
4250
GUGAGAGGAUCCUUGCUCU
4519


1735803
csusa

csasc

GCUG






AD-
asusgaugAfaGfAfCfggugaag
4791
VPusUfsucuUfcAfCfcgucUfuCfauca
4251
UGAUGAUGAAGACGGUGAA
4520


1735804
asasa

uscsa

GAAU






AD-
uscsguaaGfuGfUfAfagaaaga
4792
VPusAfsuucUfuUfCfuuacAfcUfuacg
4252
AUUCGUAAGUGUAAGAAAG
4521


1735805
asusa

asasu

AAUG






AD-
asuscuguGfuAfAfCfagcugug
4793
VPusUfsccaCfaGfCfuguuAfcAfcaga
4253
CAAUCUGUGUAACAGCUGU
4522


1735806
gsasa

ususg

GGAC






AD-
asusuuaaAfaUfUfCfccacuca
4794
VPusGfsuugAfgUfGfggaaUfuUfuaaa
4254
AUAUUUAAAAUUCCCACUC
4523


1735807
ascsa

usasu

AACA






AD-
gsasccagUfgUfCfUfacuggcu
4795
VPusAfsgagCfcAfGfuagaCfaCfuggu
4255
UGGACCAGUGUCUACUGGC
4524


1735808
csusa

cscsa

UCUC






AD-
csgscuuuCfgUfUfUfuuuaguc
4796
VPusAfsugaCfuAfAfaaaaCfgAfaagc
4256
AGCGCUUUCGUUUUUUAGU
4525


1735809
asusa

gscsu

CAUU






AD-
uscscgugUfuGfAfCfccauguu
4797
VPusGfscaaCfaUfGfggucAfaCfacgg
4257
CAUCCGUGUUGACCCAUGU
4526


1735810
gscsa

asusg

UGCA






AD-
asusacagAfaGfAfUfgaagaaa
4798
VPusCfsauuUfcUfUfcaucUfuCfugua
4258
AGAUACAGAAGAUGAAGAA
4527


1735811
usgsa

uscsu

AUGG






AD-
uscsucccGfaGfCfUfgaaacuu
4799
VPusUfsuaaGfuUfUfcagcUfcGfggag
4259
UCUCUCCCGAGCUGAAACU
4528


1735812
asasa

asgsa

UAAA






AD-
usgscaucAfaAfCfUfggcagau
4800
VPusAfsuauCfuGfCfcaguUfuGfaugc
4260
UGUGCAUCAAACUGGCAGA
4529


1735813
asusa

ascsa

UAUA






AD-
ususgcaaAfaUfAfUfucaggag
4801
VPusGfsucuCfcUfGfaauaUfuUfugca
4261
AGUUGCAAAAUAUUCAGGA
4530


1735814
ascsa

ascsu

GACC






AD-
ascsaaucGfuAfUfAfcaugcca
4802
VPusUfsgugGfcAfUfguauAfcGfauug
4262
UCACAAUCGUAUACAUGCC
4531


1735815
csasa

usgsa

ACAG






AD-
asasuagaAfaAfGfAfugagcaa
4803
VPusAfsguuGfcUfCfaucuUfuUfcuau
4263
UUAAUAGAAAAGAUGAGCA
4532


1735816
csusa

usasa

ACUG






AD-
usasucuuAfuGfUfUfccauggc
4804
VPusCfsagcCfaUfGfgaacAfuAfagau
4264
CUUAUCUUAUGUUCCAUGG
4533


1735817
usgsa

asasg

CUGA






AD-
csusacguGfaAfGfAfgcugogu
4805
VPusUfscacGfcAfGfcucuUfcAfcgua
4265
GGCUACGUGAAGAGCUGCG
4534


1735818
gsasa

gscsc

UGAG






AD-
gsasauugAfuGfGfCfucuauac
4806
VPusAfscguAfuAfGfagccAfuCfaauu
4266
UAGAAUUGAUGGCUCUAUA
4535


1735819
gsusa

csusa

CGUG






AD-
ususcaggUfaAfUfUfgaagagg
4807
VPusUfsgccUfcUfUfcaauUfaCfcuga
4267
GAUUCAGGUAAUUGAAGAG
4536


1735820
csasa

asusc

GCAG






AD-
asasggacUfgAfGfUfgaccuuu
4808
VPusAfscaaAfgGfUfcacuCfaGfuccu
4268
UGAAGGACUGAGUGACCUU
4537


1735821
gsusa

uscsa

UGUU






AD-
csgsagagUfcUfGfAfggaacgg
4809
VPusAfsgccGfuUfCfcucaGfaCfucuc
4269
CCCGAGAGUCUGAGGAACG
4538


1735822
csusa

gsgsg

GCUA






AD-
asusucuuUfgGfGfAfuugggac
4810
VPusAfsaguCfcCfAfauccCfaAfagaa
4270
UGAUUCUUUGGGAUUGGGA
4539


1735823
ususa

uscsa

CUUA






AD-
usasccagGfuCfAfGfugguuag
4811
VPusUfsucuAfaCfCfacugAfcCfuggu
4271
GCUACCAGGUCAGUGGUUA
4540


1735824
asasa

asgsc

GAAG






AD-
asusucagGfuUfUfGfccaugga
4812
VPusUfsgucCfaUfGfgcaaAfcCfugaa
4272
GUAUUCAGGUUUGCCAUGG
4541


1735825
csasa

usasc

ACAU






AD-
gscsagcuAfaAfCfUfgguccug
4813
VPusUfsccaGfgAfCfcaguUfuAfgcug
4273
CGGCAGCUAAACUGGUCCU
4542


1735826
gsasa

cscsg

GGAG






AD-
asgsuaauGfgCfAfUfagaaugg
4814
VPusCfsuccAfuUfCfuaugCfcAfuuac
4274
AUAGUAAUGGCAUAGAAUG
4543


1735827
asgsa

usasu

GAGU






AD-
asasuugcAfaGfAfAfaauggac
4815
VPusUfsgguCfcAfUfuuucUfuGfcaau
4275
AUAAUUGCAAGAAAAUGGA
4544


1735828
csasa

usasu

CCAU






AD-
csgsgcacUfgCfGfUfucuggug
4816
VPusAfsgcaCfcAfGfaacgCfaGfugcc
4276
UCCGGCACUGCGUUCUGGU
4545


1735829
csusa

gsgsa

GCUG






AD-
asgsucauAfuUfGfAfagaagcc
4817
VPusUfsgggCfuUfCfuucaAfuAfugac
4277
AAAGUCAUAUUGAAGAAGC
4546


1735830
csasa

ususu

CCAG






AD-
uscsaucaUfgCfUfGfcgucagc
4818
VPusAfsagcUfgAfCfgcagCfaUfgaug
4278
AAUCAUCAUGCUGCGUCAG
4547


1735831
ususa

asusu

CUUG






AD-
asasaugaUfcGfCfCfucuuggu
4819
VPusAfsuacCfaAfGfaggcGfaUfcauu
4279
GAAAAUGAUCGCCUCUUGG
4548


1735832
asusa

ususc

UAUG






AD-
asusuugaAfgAfUfAfuaaagag
4820
VPusUfsgcuCfuUfUfauauCfuUfcaaa
4280
ACAUUUGAAGAUAUAAAGA
4549


1735833
csasa

usgsu

GCAG






AD-
gsgsucucCfuUfCfAfccagccu
4821
VPusCfsgagGfcUfGfgugaAfgGfagac
4281
UGGGUCUCCUUCACCAGCC
4550


1735834
csgsa

cscsa

UCGG






AD-
gsasaacaGfaGfAfAfgaaagac
4822
VPusCfsuguCfuUfUfcuucUfcUfguuu
4282
AGGAAACAGAGAAGAAAGA
4551


1735835
asgsa

cscsu

CAGC






AD-
ususcuagUfgGfCfUfacaaaug
4823
VPusGfsgcaUfuUfGfuagcCfaCfuaga
4283
AUUUCUAGUGGCUACAAAU
4552


1735836
cscsa

asasu

GCCC






AD-
gsgsagagAfaAfUfCfaggaagg
4824
VPusAfsuccUfuCfCfugauUfuCfucuc
4284
UGGGAGAGAAAUCAGGAAG
4553


1735837
asusa

cscsa

GAUU






AD-
asusauagUfgAfGfCfccuaaag
4825
VPusUfsccuUfuAfGfggcuCfaCfuaua
4285
AAAUAUAGUGAGCCCUAAA
4554


1735838
gsasa

ususu

GGAC






AD-
gscsugccUfuUfGfUfccucgcc
4826
VPusAfsgggCfgAfGfgacaAfaGfgcag
4286
UGGCUGCCUUUGUCCUCGC
4555


1735839
csusa

cscsa

CCUG






AD-
gsgscaaaAfgAfCfCfucaccaa
4827
VPusUfscuuGfgUfGfagguCfuUfuugc
4287
AUGGCAAAAGACCUCACCA
4556


1735840
gsasa

csasu

AGAA






AD-
ususcagcAfuCfGfCfcugugcc
4828
VPusAfsaggCfaCfAfggcgAfuGfcuga
4288
UCUUCAGCAUCGCCUGUGC
4557


1735841
ususa

asgsa

CUUC






AD-
gscsuaaaUfgAfGfGfcucgcaa
4829
VPusUfsauuGfcGfAfgccuCfaUfuuag
4289
GUGCUAAAUGAGGCUCGCA
4558


1735842
usasa

csasc

AUAU






AD-
csasgcuuCfgUfCfUfggugggu
4830
VPusAfsgacCfcAfCfcagaCfgAfagcu
4290
GCCAGCUUCGUCUGGUGGG
4559


1735843
csusa

gsgsc

UCUC






AD-
asusauggUfaUfUfGfgcaugca
4831
VPusAfscugCfaUfGfccaaUfaCfcaua
4291
GAAUAUGGUAUUGGCAUGC
4560


1735844
gsusa

ususc

AGUU






AD-
asasacugCfaGfGfUfggagaau
4832
VPusGfsaauUfcUfCfcaccUfgCfaguu
4292
AUAAACUGCAGGUGGAGAA
4561


1735845
uscsa

usasu

UUCC






AD-
usasuggcUfgCfCfUfgucuuca
4833
VPusUfsuugAfaGfAfcaggCfaGfccau
4293
GUUAUGGCUGCCUGUCUUC
4562


1735846
asasa

asasc

AAAC






AD-
csusguucUfgAfAfAfuagagga
4834
VPusGfsgucCfuCfUfauuuCfaGfaaca
4294
CCCUGUUCUGAAAUAGAGG
4563


1735847
cscsa

gsgsg

ACCC






AD-
uscsuauuUfuUfAfAfagccgcu
4835
VPusCfscagCfgGfCfuuuaAfaAfauag
4295
UUUCUAUUUUUAAAGCCGC
4564


1735848
gsgsa

asasa

UGGU






AD-
gscsugagGfaGfAfAfgcucagg
4836
VPusUfsuccUfgAfGfcuucUfcCfucag
4296
CAGCUGAGGAGAAGCUCAG
4565


1735849
asasa

csusg

GAAC






AD-
csasagccUfuCfCfAfccacaag
4837
VPusGfsacuUfgUfGfguggAfaGfgcuu
4297
UCCAAGCCUUCCACCACAA
4566


1735850
uscsa

gsgsa

GUCA






AD-
ususcaguUfaCfCfAfaaguggc
4838
VPusUfsggcCfaCfUfuuggUfaAfcuga
4298
AUUUCAGUUACCAAAGUGG
4567


1735851
csasa

asasu

CCAG






AD-
csasccugCfuUfCfCfucacccg
4839
VPusUfsccgGfgUfGfaggaAfgCfaggu
4299
CUCACCUGCUUCCUCACCC
4568


1735852
gsasa

gsasg

GGAC






AD-
ususuuauCfaCfCfCfacauagu
4840
VPusCfscacUfaUfGfugggUfgAfuaaa
4300
UCUUUUAUCACCCACAUAG
4569


1735853
gsgsa

asgsa

UGGG






AD-
asgsgagaCfcGfUfCfguugccu
4841
VPusCfsaagGfcAfAfcgacGfgUfcucc
4301
UCAGGAGACCGUCGUUGCC
4570


1735854
usgsa

usgsa

UUGU






AD-
asusggccCfaGfCfAfaaaguuc
4842
VPusUfscgaAfcUfUfuugcUfgGfgcca
4302
AAAUGGCCCAGCAAAAGUU
4571


1735855
gsasa

ususu

CGAG






AD-
asgsacgcCfaAfAfGfccaugcg
4843
VPusAfsccgCfaUfGfgcuuUfgGfcguc
4303
CGAGACGCCAAAGCCAUGC
4572


1735856
gsusa

uscsg

GGUC






AD-
csasgcuaAfuGfCfAfccaccuc
4844
VPusGfsugaGfgUfGfgugcAfuUfagcu
4304
GUCAGCUAAUGCACCACCU
4573


1735857
ascsa

gsasc

CACU






AD-
gsgsaaaaGfcAfGfAfcggcgaa
4845
VPusUfsauuCfgCfCfgucuGfcUfuuuc
4305
AAGGAAAAGCAGACGGCGA
4574


1735858
usasa

csusu

AUAU






AD-
gscsuuugCfuGfGfGfuagugag
4846
VPusAfsgcuCfaCfUfacccAfgCfaaag
4306
CUGCUUUGCUGGGUAGUGA
4575


1735859
csusa

csasg

GCUC






AD-
asasaugaAfaCfAfGfauucuga
4847
VPusCfsaucAfgAfAfucugUfuUfcauu
4848
GGAAAUGAAACAGAUUCUG
4849


1735860
usgsa

uscsc

AUGG
















TABLE 16







Unmodified Sense and Antisense Strand Sequences of INHBC dsRNA Agents Comprising a GalNAc


 Derivative Targeting Ligand















SEQ
Range in

SEQ
Range in


Duplex
Sense Sequence
ID
NM_
Antisense Sequence
ID
NM_


Name
5′ to 3′
NO:
005538.4
5′ to 3
NO:
005538.4





AD-1730493
UCUUCCAGGGCCUCUGGCA
4850
   6-26
ACUGCCAGAGGCCCUGGAAG
4985
   4-26



GU


AAG







AD-1730512
CAGGACAGAGUUGAGACCA
4851
  27-47
AGUGGUCUCAACUCUGUCCU
4986
  25-47



CU


GGC







AD-1730529
CACAGCUGUUGAGACCCUG
4852
  44-64
AUCAGGGUCUCAACAGCUGU
4987
  42-64



AU


GGU







AD-1730554
GAGUCUGUAUUGCUCAAGA
4853
  69-89
AUUCUUGAGCAAUACAGACU
4988
  67-89



AU


CAG







AD-1730570
UGACCUCCUCAUUGCUUCU
4854
 105-125
ACAGAAGCAAUGAGGAGGUC
4989
 103-125



GU


AUU







AD-1730588
UGGCCUUUCUCCUCCUGGC
4855
 123-143
AAGCCAGGAGGAGAAAGGCC
4990
 121-143



UU


AGA







AD-1730606
CUCCAACCACAGUGGCCAC
4856
 141-161
AAGUGGCCACUGUGGUUGGA
4991
 139-161



UU


GCC







AD-1730636
GCGGUCAGUGUCCAGCAUG
4857
 171-191
AACAUGCUGGACACUGACCG
4992
 169-191



UU


CCA







AD-1730643
ACCUUGGAACUGGAGAGCC
4858
 200-220
AUGGCUCUCCAGUUCCAAGG
4993
 198-220



AU


UGG







AD-1730667
GAGCUGCUUCUUGAUCUGG
4859
 224-244
AGCCAGAUCAAGAAGCAGCU
4994
 222-244



CU


CCC







AD-1730691
AGAAGCAUCUUGGACAAGC
4860
 248-268
AAGCUUGUCCAAGAUGCUUC
4995
 246-268



UU


UCU







AD-1730726
CCAACACUGAACCGCCCUG
4861
 284-304
AACAGGGCGGUUCAGUGUUG
4996
 282-304



UU


GGC







AD-1730749
CAGAGCUGCUUUGAGGACU
4862
 307-327
ACAGUCCUCAAAGCAGCUCU
4997
 305-327



GU


GGA







AD-1730765
ACUGCACUGCAGCACCUCC
4863
 323-343
AUGGAGGUGCUGCAGUGCAG
4998
 321-343



AU


UCC







AD-1730769
GCACUUCUAGAGGACAACA
4864
 359-379
ACUGUUGUCCUCUAGAAGUG
4999
 357-379



GU


CCC







AD-1730790
GAACAGGAAUGUGAAAUCA
4865
 380-400
AAUGAUUUCACAUUCCUGUU
5000
 378-400



UU


CCC







AD-1730807
CAUCAGCUUUGCUGAGACA
4866
 397-417
ACUGUCUCAGCAAAGCUGAU
5001
 395-417



GU


GAU







AD-1730825
AGGCCUCUCCACCAUCAACC
4867
 415-435
AGGUUGAUGGUGGAGAGGCC
5002
 413-435



U


UGU







AD-1730841
AACCAGACUCGUCUUGAUU
4868
 431-451
AAAAUCAAGACGAGUCUGGU
5003
 429-451



UU


UGA







AD-1730857
AUUUUCACUUCUCCUCUGA
4869
 447-467
AAUCAGAGGAGAAGUGAAA
5004
 445-467



UU


AUCA







AD-1730873
UGAUAGAACUGCUGGUGAC
4870
 463-483
AUGUCACCAGCAGUUCUAUC
5005
 461-483



AU


AGA







AD-1730910
AGUCUCAUGUUCUUUGUGC
4871
 500-520
AUGCACAAAGAACAUGAGAC
5006
 498-520



AU


UGG







AD-1730926
UGCAGCUCCCUUCCAAUAC
4872
 516-536
AGGUAUUGGAAGGGAGCUGC
5007
 514-536



CU


ACA







AD-1730942
UACCACUUGGACCUUGAAA
4873
 532-552
ACUUUCAAGGUCCAAGUGGU
5008
 530-552



GU


AUU







AD-1730958
AAAGUGAGAGUCCUUGUGC
4874
 548-568
AAGCACAAGGACUCUCACUU
5009
 546-568



UU


UCA







AD-1730982
CCACAUAAUACCAACCUCA
4875
 572-592
AGUGAGGUUGGUAUUAUGU
5010
 570-592



CU


GGAC







AD-1731003
UUGGCUACUCAGUACCUGC
4876
 593-613
AAGCAGGUACUGAGUAGCCA
5011
 591-613



UU


AGG







AD-1731019
UGCUGGAGGUGGAUGCCAG
4877
 609-629
AACUGGCAUCCACCUCCAGC
5012
 607-629



UU


AGG







AD-1731035
CAGUGGCUGGCAUCAACUC
4878
 625-645
AGGAGUUGAUGCCAGCCACU
5013
 623-645



CU


GGC







AD-1731042
CCUGAAGCUCAAGCUGCCU
4879
 653-673
ACAGGCAGCUUGAGCUUCAG
5014
 651-673



GU


GCC







AD-1731064
GAGCUGGUACUUGAAGGCC
4880
 695-715
AUGGCCUUCAAGUACCAGCU
5015
 693-715



AU


CCA







AD-1731088
GCCCAGAGCUCAGUCAUCC
4881
 719-739
AAGGAUGACUGAGCUCUGGG
5016
 717-739



UU


CUA







AD-1731117
UGCCCAUAGGCCUUUUGUG
4882
 748-768
ACCACAAAAGGCCUAUGGGC
5017
 746-768



GU


AGC







AD-1731134
UGGCAGCCCGGGUGAGAGU
4883
 765-785
AAACUCUCACCCGGGCUGCC
5018
 763-785



UU


ACA







AD-1731137
GCAAACACCAGAUUCACCG
4884
 789-809
AUCGGUGAAUCUGGUGUUUG
5019
 787-809



AU


CCC







AD-1731156
ACGAGGCAUCGACUGCCAA
4885
 808-828
ACUUGGCAGUCGAUGCCUCG
5020
 806-828



GU


UCG







AD-1731173
AAGGAGGGUCCAGGAUGUG
4886
 825-845
AGCACAUCCUGGACCCUCCU
5021
 823-845



CU


UGG







AD-1731189
GUGCUGUCGACAAGAGUUU
4887
 841-861
AAAAACUCUUGUCGACAGCA
5022
 839-861



UU


CAU







AD-1731205
UUUUUUGUGGACUUCCGUG
4888
 857-877
AUCACGGAAGUCCACAAAAA
5023
 855-877



AU


ACU







AD-1731234
GCACGACUGGAUCAUCCAG
4889
 886-906
AGCUGGAUGAUCCAGUCGUG
5024
 884-906



CU


CCA







AD-1731264
CGCCAUGAACUUCUGCAUA
4890
 916-936
ACUAUGCAGAAGUUCAUGGC
5025
 914-936



GU


GUA







AD-1731289
UGCCCACUACACAUAGCAG
4891
 941-961
ACCUGCUAUGUGUAGUGGGC
5026
 939-961



GU


ACU







AD-1731307
GGCAUGCCUGGUAUUGCUG
4892
 959-979
AGCAGCAAUACCAGGCAUGC
5027
 957-979



CU


CUG







AD-1731323
CUGCCUCCUUUCACACUGC
4893
 975-995
AUGCAGUGUGAAAGGAGGCA
5028
 973-995



AU


GCA







AD-1731340
GCAGUGCUCAAUCUUCUCA
4894
 992-1012
AUUGAGAAGAUUGAGCACUG
5029
 990-1012



AU


CAG







AD-1731358
AAGGCCAACACAGCUGCAG
4895
1010-1030
ACCUGCAGCUGUGUUGGCCU
5030
1008-1030



GU


UGA







AD-1731371
GCUCAUGCUGUGUACCCAC
4896
1044-1064
ACGUGGGUACACAGCAUGAG
5031
1042-1064



GU


CCC







AD-1731380
GUCUCUGCUCUAUUAUGAC
4897
1078-1098
AUGUCAUAAUAGAGCAGAGA
5032
1076-1098



AU


CAG







AD-1731398
GACAGGGACAGCAACAUUG
4898
1094-1114
AACAAUGUUGCUGUCCCUGU
5033
1092-1114



UU


CAU







AD-1731415
UGUCAAGACUGACAUACCU
4899
1111-1131
ACAGGUAUGUCAGUCUUGAC
5034
1109-1131



GU


AAU







AD-1731431
CCUGACAUGGUAGUAGAGG
4900
1127-1147
AGCCUCUACUACCAUGUCAG
5035
1125-1147



CU


GUA







AD-1731457
AGUUAGUCUAUGUGUGGUA
4901
1157-1177
AAUACCACACAUAGACUAAC
5036
1155-1177



UU


UGC







AD-1731484
CCAAGGUUGCAUGGGAAAA
4902
1184-1204
AGUUUUCCCAUGCAACCUUG
5037
1182-1204



CU


GGC







AD-1731492
ACAGAAGUGCACUUCCUUG
4903
1212-1232
AUCAAGGAAGUGCACUUCUG
5038
1210-1232



AU


UAG







AD-1731511
AGAGGAGGGAAUGACCUCA
4904
1231-1251
AAUGAGGUCAUUCCCUCCUC
5039
1229-1251



UU


UCA







AD-1731527
UCAUUCUCUGUCCAGAAUG
4905
1247-1267
AACAUUCUGGACAGAGAAUG
5040
1245-1267



UU


AGG







AD-1731545
GUGGACUCCCUCUUCCUGA
4906
1265-1285
ACUCAGGAAGAGGGAGUCCA
5041
1263-1285



GU


CAU







AD-1731562
GAGCAUCUUAUGGAAAUUA
4907
1282-1302
AGUAAUUUCCAUAAGAUGCU
5042
1280-1302



CU


CAG







AD-1731564
CACCUUUGACUUGAAGAAA
4908
1304-1324
AGUUUCUUCAAGUCAAAGGU
5043
1302-1324



CU


GGG







AD-1731584
CUUCAUCUAAAGCAAGUCA
4909
1324-1344
AGUGACUUGCUUUAGAUGAA
5044
1322-1344



CU


GGU







AD-1731600
UCACUGUGCCAUCUUCCUG
4910
1340-1360
AUCAGGAAGAUGGCACAGUG
5045
1338-1360



AU


ACU







AD-1731618
GACCACUACCCUCUUUCCU
4911
1358-1378
AUAGGAAAGAGGGUAGUGG
5046
1356-1378



AU


UCAG







AD-1731646
UCCAUCCCGCUAGUCCAUCC
4912
1386-1406
AGGAUGGACUAGCGGGAUGG
5047
1384-1406



U


ACU







AD-1731671
ACCCAUCUCCAACCAUGAG
4913
1431-1451
AGCUCAUGGUUGGAGAUGGG
5048
1429-1451



CU


UCU







AD-1731687
GAGCAAUGCCAUCUGGUUC
4914
1447-1467
AGGAACCAGAUGGCAUUGCU
5049
1445-1467



CU


CAU







AD-1731704
UCCCAGGCAAAGACACCCU
4915
1464-1484
AAAGGGUGUCUUUGCCUGGG
5050
1462-1484



UU


AAC







AD-1731720
CCUUAGCUCACCUUUAAUA
4916
1480-1500
ACUAUUAAAGGUGAGCUAAG
5051
1478-1500



GU


GGU







AD-1731728
ACCCACUAUGCCUUCCUGU
4917
1508-1528
AGACAGGAAGGCAUAGUGGG
5052
1506-1528



CU


UUA







AD-1731745
GUCCUUUCUACUCAAUGGU
4918
1525-1545
AGACCAUUGAGUAGAAAGGA
5053
1523-1545



CU


CAG







AD-1731750
UCCAAGAUGAGUUGACACA
4919
1550-1570
AUUGUGUCAACUCAUCUUGG
5054
1548-1570



AU


AGU







AD-1731753
CAAUUUUUGUGGAUCUCCA
4920
1580-1600
ACUGGAGAUCCACAAAAAUU
5055
1578-1600



GU


GGG







AD-1731782
UCUUUGGAUUCACCAAAGU
4921
1609-1629
AAACUUUGGUGAAUCCAAAG
5056
1607-1629



UU


AAG







AD-1731813
UGCCCAAAAUAGAGGCUUA
4922
1640-1660
AGUAAGCCUCUAUUUUGGGC
5057
1638-1660



CU


AGC







AD-1731819
CUGUCCUUCUUAGUUGUCC
4923
1685-1705
AUGGACAACUAAGAAGGACA
5058
1683-1705



AU


GGG







AD-1731842
GAACUACUAAAGCUCUCUU
4924
1708-1728
AAAAGAGAGCUUUAGUAGU
5059
1706-1728



UU


UCAC







AD-1731858
CUUUGCAUACCUUCAUCCA
4925
1724-1744
AAUGGAUGAAGGUAUGCAA
5060
1722-1744



UU


AGAG







AD-1731874
CCAUUUUUUGUCCUUCUCU
4926
1740-1760
ACAGAGAAGGACAAAAAAUG
5061
1738-1760



GU


GAU







AD-1731890
GCCUUUCUCUAUGCCCUUA
4927
1759-1779
AUUAAGGGCAUAGAGAAAG
5062
1757-1779



AU


GCAG







AD-1731906
UUAAGGGCUGACUUGCCUG
4928
1775-1795
AUCAGGCAAGUCAGCCCUUA
5063
1773-1795



AU


AGG







AD-1731923
UGAGCUCUAUCACCUGAGC
4929
1792-1812
AAGCUCAGGUGAUAGAGCUC
5064
1790-1812



UU


AGG







AD-1731932
UCUGGCUUCCUGCUGAGGU
4930
1821-1841
AGACCUCAGCAGGAAGCCAG
5065
1819-1841



CU


AGG







AD-1731958
UUUCUUAUCCCUGUUCCCU
4931
1847-1867
AGAGGGAACAGGGAUAAGA
5066
1845-1867



CU


AAUG







AD-1731978
UCUGUCUAGGUGUCAUGGU
4932
1867-1887
AAACCAUGACACCUAGACAG
5067
1865-1887



UU


AGA







AD-1731997
UCUGUGUAACUGUGGCUAU
4933
1886-1906
AAAUAGCCACAGUUACACAG
5068
1884-1906



UU


AAC







AD-1732013
UAUUCUGUGUCCCUACACU
4934
1902-1922
AUAGUGUAGGGACACAGAAU
5069
1900-1922



AU


AGC







AD-1732031
GCCUACAUUCUGAUAUAAC
4935
1953-1973
AAGUUAUAUCAGAAUGUAG
5070
1951-1973



UU


GCAG







AD-1732048
CCUAAAGGCUUUCUAUCUU
4936
1991-2011
ACAAGAUAGAAAGCCUUUAG
5071
1989-2011



GU


GAC







AD-1732062
CUCAACAUCUCAUACUGGU
4937
2025-2045
AAACCAGUAUGAGAUGUUGA
5072
2023-2045



UU


GGC







AD-1732078
GGUUCCCUUAACUCUGCCU
4938
2041-2061
AUAGGCAGAGUUAAGGGAAC
5073
2039-2061



AU


CAG







AD-1732094
CCUAUACCUCUGUAAAUAA
4939
2057-2077
AAUUAUUUACAGAGGUAUA
5074
2055-2077



UU


GGCA







AD-1732110
UAAUUCCUUCACUAAGUUC
4940
2073-2093
AAGAACUUAGUGAAGGAAU
5075
2071-2093



UU


UAUU







AD-1732157
AAAGUCCUCUAUCUCCUAC
4941
2120-2140
AUGUAGGAGAUAGAGGACU
5076
2118-2140



AU


UUUC







AD-1732173
UACAAGGGCCCUAACUGGC
4942
2136-2156
AUGCCAGUUAGGGCCCUUGU
5077
2134-2156



AU


AGG







AD-1732176
CAGAUGACACAGAGCCUGC
4943
2159-2179
AGGCAGGCUCUGUGUCAUCU
5078
2157-2179



CU


GGG







AD-1732195
CUGCUUAUGCUGUAGUCUG
4944
2178-2198
AGCAGACUACAGCAUAAGCA
5079
2176-2198



CU


GGC







AD-1732217
ACUCUGCUGUCUCUUCACA
4945
2200-2220
AAUGUGAAGAGACAGCAGAG
5080
2198-2220



UU


UAG







AD-1732235
AUGGUCUCCUCAGAACUGA
4946
2218-2238
AUUCAGUUCUGAGGAGACCA
5081
2216-2238



AU


UGU







AD-1732253
AACUAUUGUAUCCAUCUCA
4947
2236-2256
AGUGAGAUGGAUACAAUAG
5082
2234-2256



CU


UUCA







AD-1732269
UCACACUUUAUGCCUCUUC
4948
2252-2272
AAGAAGAGGCAUAAAGUGU
5083
2250-2272



UU


GAGA







AD-1732291
AUCCUUCCAGAACCAUCUU
4949
2294-2314
AAAAGAUGGUUCUGGAAGG
5084
2292-2314



UU


AUGG







AD-1732308
UUUGAGGUCUCAUGGCUAA
4950
2311-2331
AAUUAGCCAUGAGACCUCAA
5085
2309-2331



UU


AGA







AD-1732335
UAGGCUUUACCUGUUCCCU
4951
2338-2358
AGAGGGAACAGGUAAAGCCU
5086
2336-2358



CU


AGG







AD-1732353
UCUGUAAUCCCUCCAAAAG
4952
2356-2376
AUCUUUUGGAGGGAUUACAG
5087
2354-2376



AU


AGG







AD-1732372
AUGAGACAGAUCUAUGCUU
4953
2375-2395
ACAAGCAUAGAUCUGUCUCA
5088
2373-2395



GU


UCU







AD-1732389
UUGGUCAUCCAGUAAACUG
4954
2392-2412
AUCAGUUUACUGGAUGACCA
5089
2390-2412



AU


AGC







AD-1732415
GUGGGCACGCAAGUGUGGG
4955
2418-2438
AUCCCACACUUGCGUGCCCA
5090
2416-2438



AU


CAG







AD-1732440
AGGCAUGCUCAGAGCUGGC
4956
2443-2463
AAGCCAGCUCUGAGCAUGCC
5091
2441-2463



UU


UCU







AD-1732469
UCUGACUUGCCUUCCUUUC
4957
2472-2492
AUGAAAGGAAGGCAAGUCAG
5092
2470-2492



AU


AGG







AD-1732479
UGCUCCACCCAGGAGUCCU
4958
2503-2523
ACAGGACUCCUGGGUGGAGC
5093
2501-2523



GU


ACU







AD-1732500
CUGGAAGCUGGAAUGGGCA
4959
2524-2544
AUUGCCCAUUCCAGCUUCCA
5094
2522-2544



AU


GGC







AD-1732520
GGGCUGCUGGAGUGGGACA
4960
2544-2564
ACUGUCCCACUCCAGCAGCC
5095
2542-2564



GU


CUU







AD-1732533
CAGGGAGAAGAGGAAGGCC
4961
2561-2581
AAGGCCUUCCUCUUCUCCCU
5096
2559-2581



UU


GUC







AD-1732549
GCCUGGAUGAGGAGAGGGU
4962
2577-2597
ACACCCUCUCCUCAUCCAGG
5097
2575-2597



GU


CCU







AD-1732565
GUGGCAUUUGCUCUGAGAC
4963
2594-2614
AAGUCUCAGAGCAAAUGCCA
5098
2592-2614



UU


CCC







AD-1732584
UGGGUCCUUUUUAGACCUU
4964
2613-2633
AAAAGGUCUAAAAAGGACCC
5099
2611-2633



UU


AGU







AD-1732604
CUCCCUUUGGCUGGACAGU
4965
2654-2674
AGACUGUCCAGCCAAAGGGA
5100
2652-2674



CU


GGA







AD-1732625
UGAACCAUGAGGUCGAUAA
4966
2675-2695
AAUUAUCGACCUCAUGGUUC
5101
2673-2695



UU


AGG







AD-1732644
UGUCUGCAGCCCAAGGCCG
4967
2694-2714
AUCGGCCUUGGGCUGCAGAC
5102
2692-2714



AU


AUU







AD-1732661
CGAGUUUGCGCAAAACCCA
4968
2711-2731
AAUGGGUUUUGCGCAAACUC
5103
2709-2731



UU


GGC







AD-1732677
CCAUGUGUUCUUUGGUAAA
4969
2727-2747
AGUUUACCAAAGAACACAUG
5104
2725-2747



CU


GGU







AD-1732696
CGUGAUGUCUGUGUUUGCU
4970
2746-2766
AGAGCAAACACAGACAUCAC
5105
2744-2766



CU


GUU







AD-1732708
CUCCUAUGAGGGUAAGAGG
4971
2779-2799
AACCUCUUACCCUCAUAGGA
5106
2777-2799



UU


GGG







AD-1732728
CCCUGAAAUAGGAACCCUA
4972
2799-2819
ACUAGGGUUCCUAUUUCAGG
5107
2797-2819



GU


GAC







AD-1732744
CUAGAGGAGAAAGUCUGAA
4973
2815-2835
AUUUCAGACUUUCUCCUCUA
5108
2813-2835



AU


GGG







AD-1732757
GACUGUAAAUCUGAGCUUG
4974
2849-2869
AUCAAGCUCAGAUUUACAGU
5109
2847-2869



AU


CCC







AD-1732786
GAGCAACCCAUGGAAGUUA
4975
2878-2898
AAUAACUUCCAUGGGUUGCU
5110
2876-2898



UU


CAG







AD-1732807
CCACCUUUGACUUGAGGAG
4976
2899-2919
AUCUCCUCAAGUCAAAGGUG
5111
2897-2919



AU


GGA







AD-1732827
CCUUCAUCUAAGGAGAAUC
4977
2919-2939
AAGAUUCUCCUUAGAUGAAG
5112
2917-2939



UU


GUC







AD-1732849
GGAGGCCUUCUGGUGUCUC
4978
2941-2961
AGGAGACACCAGAAGGCCUC
5113
2939-2961



CU


CUU







AD-1732865
UCCCAAUUACAGCUUAGUC
4979
2995-3015
AAGACUAAGCUGUAAUUGGG
5114
2993-3015



UU


AAG







AD-1732881
GUCUCCAGGGCUAGGACUG
4980
3011-3031
ACCAGUCCUAGCCCUGGAGA
5115
3009-3031



GU


CUA







AD-1732885
AAGCAAAGUGAGUCAUUCA
4981
3035-3055
AGUGAAUGACUCACUUUGCU
5116
3033-3055



CU


UUA







AD-1732890
GUGGUGAACAAUUUAUUAA
4982
3079-3099
AAUUAAUAAAUUGUUCACCA
5117
3077-3099



UU


CCC







AD-1732908
UAGGACUUUAAUGCAAUAU
4983
3104-3124
AAAUAUUGCAUUAAAGUCCU
5118
3102-3124



UU


AUC







AD-1732940
GAACAAAAUAGCCUACUUU
4984
3160-3180
AAAAAGUAGGCUAUUUUGU
5119
3158-3180



UU


UCAU
















TABLE 17







Modified Sense and Antisense Strand Sequences of INHBC dsRNA Agents Comprising a GalNAc Derivative Targeting Ligand















SEQ

SEQ

SEQ


Duplex

ID

ID

ID


Name
Sense Sequence 5′ to 3′
NO:
Sense Sequence 5′ to 3′
NO:
mRNA Target Sequence 5′ to 3′
NO:





AD-
uscsuuccAfgGfGfCfcucuggca
5120
asCfsugcCfaGfAfggccCfuGfgaaga
5255
CUUCUUCCAGGGCCUCUGG
5390


1730493
guL96

sasg

CAGC






AD-
csasggacAfgAfGfUfugagaccac
5121
asGfsuggUfcUfCfaacuCfuGfuccug
5256
GCCAGGACAGAGUUGAGAC
5391


1730512
uL96

sgsc

CACA






AD-
csascagcUfgUfUfGfagacccuga
5122
asUfscagGfgUfCfucaaCfaGfcugug
5257
ACCACAGCUGUUGAGACCC
5392


1730529
uL96

sgsu

UGAG






AD-
gsasgucuGfuAfUfUfgcucaaga
5123
asUfsucuUfgAfGfcaauAfcAfgacuc
5258
CUGAGUCUGUAUUGCUCAA
5393


1730554
auL96

sasg

GAAG






AD-
usgsaccuCfcUfCfAfuugcuucu
5124
asCfsagaAfgCfAfaugaGfgAfgguca
5259
AAUGACCUCCUCAUUGCUU
5394


1730570
guL96

susu

CUGG






AD-
usgsgccuUfuCfUfCfcuccuggc
5125
asAfsgccAfgGfAfggagAfaAfggcc
5260
UCUGGCCUUUCUCCUCCUG
5395


1730588
uuL96

asgsa

GCUC






AD-
csusccaaCfcAfCfAfguggccacu
5126
asAfsgugGfcCfAfcuguGfgUfugga
5261
GGCUCCAACCACAGUGGCC
5396


1730606
uL96

gscsc

ACUC






AD-
gscsggucAfgUfGfUfccagcaug
5127
asAfscauGfcUfGfgacaCfuGfaccgc
5262
UGGCGGUCAGUGUCCAGCA
5397


1730636
uuL96

scsa

UGUG






AD-
ascscuugGfaAfCfUfggagagcca
5128
asUfsggcUfcUfCfcaguUfcCfaaggu
5263
CCACCUUGGAACUGGAGAG
5398


1730643
uL96

sgsg

CCAG






AD-
gsasgcugCfuUfCfUfugaucugg
5129
asGfsccaGfaUfCfaagaAfgCfagcuc
5264
GGGAGCUGCUUCUUGAUCU
5399


1730667
cuL96

scsc

GGCC






AD-
asgsaagcAfuCfUfUfggacaagcu
5130
asAfsgcuUfgUfCfcaagAfuGfcuuc
5265
AGAGAAGCAUCUUGGACAA
5400


1730691
uL96

uscsu

GCUG






AD-
cscsaacaCfuGfAfAfccgcccugu
5131
asAfscagGfgCfGfguucAfgUfguug
5266
GCCCAACACUGAACCGCCCU
5401


1730726
uL96

gsgsc

GUG






AD-
csasgagcUfgCfUfUfugaggacu
5132
asCfsaguCfcUfCfaaagCfaGfcucug
5267
UCCAGAGCUGCUUUGAGGA
5402


1730749
gul96

sgsa

CUGC






AD-
ascsugcaCfuGfCfAfgcaccucca
5133
asUfsggaGfgUfGfcugcAfgUfgcag
5268
GGACUGCACUGCAGCACCU
5403


1730765
uL96

uscsc

CCAC






AD-
gscsacuuCfuAfGfAfggacaacag
5134
asCfsuguUfgUfCfcucuAfgAfagug
5269
GGGCACUUCUAGAGGACAA
5404


1730769
uL96

cscsc

CAGG






AD-
gsasacagGfaAfUfGfugaaaucau
5135
asAfsugaUfuUfCfacauUfcCfuguuc
5270
GGGAACAGGAAUGUGAAAU
5405


1730790
uL96

scsc

CAUC






AD-
csasucagCfuUfUfGfcugagacag
5136
asCfsuguCfuCfAfgcaaAfgCfugaug
5271
AUCAUCAGCUUUGCUGAGA
5406


1730807
uL96

sasu

CAGG






AD-
asgsgccuCfuCfCfAfccaucaacc
5137
asGfsguuGfaUfGfguggAfgAfggcc
5272
ACAGGCCUCUCCACCAUCAA
5407


1730825
uL96

usgsu

CCA






AD-
asasccagAfcUfCfGfucuugauuu
5138
asAfsaauCfaAfGfacgaGfuCfugguu
5273
UCAACCAGACUCGUCUUGA
5408


1730841
uL96

sgsa

UUUU






AD-
asusuuucAfcUfUfCfuccucuga
5139
asAfsucaGfaGfGfagaaGfuGfaaaau
5274
UGAUUUUCACUUCUCCUCU
5409


1730857
uuL96

scsa

GAUA






AD-
usgsauagAfaCfUfGfcuggugac
5140
asUfsgucAfcCfAfgcagUfuCfuauca
5275
UCUGAUAGAACUGCUGGUG
5410


1730873
auL96

sgsa

ACAG






AD-
asgsucucAfuGfUfUfcuuugugc
5141
asUfsgcaCfaAfAfgaacAfuGfagacu
5276
CCAGUCUCAUGUUCUUUGU
5411


1730910
auL96

sgsg

GCAG






AD-
usgscagcUfcCfCfUfuccaauacc
5142
asGfsguaUfuGfGfaaggGfaGfcugc
5277
UGUGCAGCUCCCUUCCAAU
5412


1730926
uL96

ascsa

ACCA






AD-
usasccacUfuGfGfAfccuugaaag
5143
asCfsuuuCfaAfGfguccAfaGfuggu
5278
AAUACCACUUGGACCUUGA
5413


1730942
uL96

asusu

AAGU






AD-
asasagugAfgAfGfUfccuugugc
5144
asAfsgcaCfaAfGfgacuCfuCfacuuu
5279
UGAAAGUGAGAGUCCUUGU
5414


1730958
uuL96

scsa

GCUG






AD-
cscsacauAfaUfAfCfcaaccucac
5145
asGfsugaGfgUfUfgguaUfuAfugug
5280
GUCCACAUAAUACCAACCU
5415


1730982
uL96

gsasc

CACC






AD-
ususggcuAfcUfCfAfguaccugc
5146
asAfsgcaGfgUfAfcugaGfuAfgccaa
5281
CCUUGGCUACUCAGUACCU
5416


1731003
uuL96

sgsg

GCUG






AD-
usgscuggAfgGfUfGfgaugccag
5147
asAfscugGfcAfUfccacCfuCfcagca
5282
CCUGCUGGAGGUGGAUGCC
5417


1731019
uuL96

sgsg

AGUG






AD-
csasguggCfuGfGfCfaucaacucc
5148
asGfsgagUfuGfAfugccAfgCfcacu
5283
GCCAGUGGCUGGCAUCAAC
5418


1731035
uL96

gsgsc

UCCC






AD-
cscsugaaGfcUfCfAfagcugccug
5149
asCfsaggCfaGfCfuugaGfcUfucagg
5284
GGCCUGAAGCUCAAGCUGC
5419


1731042
uL96

scsc

CUGC






AD-
gsasgcugGfuAfCfUfugaaggcc
5150
asUfsggcCfuUfCfaaguAfcCfagcuc
5285
UGGAGCUGGUACUUGAAGG
5420


1731064
auL96

scsa

CCAG






AD-
gscsccagAfgCfUfCfagucauccu
5151
asAfsggaUfgAfCfugagCfuCfuggg
5286
UAGCCCAGAGCUCAGUCAU
5421


1731088
uL96

csusa

CCUG






AD-
usgscccaUfaGfGfCfcuuuugug
5152
asCfscacAfaAfAfggccUfaUfgggca
5287
GCUGCCCAUAGGCCUUUUG
5422


1731117
gul96

sgsc

UGGC






AD-
usgsgcagCfcCfGfGfgugagagu
5153
asAfsacuCfuCfAfcccgGfgCfugcca
5288
UGUGGCAGCCCGGGUGAGA
5423


1731134
uuL96

scsa

GUUG






AD-
gscsaaacAfcCfAfGfauucaccga
5154
asUfscggUfgAfAfucugGfuGfuuug
5289
GGGCAAACACCAGAUUCAC
5424


1731137
uL96

cscsc

CGAC






AD-
ascsgaggCfaUfCfGfacugccaag
5155
asCfsuugGfcAfGfucgaUfgCfcucg
5290
CGACGAGGCAUCGACUGCC
5425


1731156
uL96

uscsg

AAGG






AD-
asasggagGfgUfCfCfaggaugug
5156
asGfscacAfuCfCfuggaCfcCfuccuu
5291
CCAAGGAGGGUCCAGGAUG
5426


1731173
cuL96

sgsg

UGCU






AD-
gsusgcugUfcGfAfCfaagaguuu
5157
asAfsaaaCfuCfUfugucGfaCfagcac
5292
AUGUGCUGUCGACAAGAGU
5427


1731189
uuL96

sasu

UUUU






AD-
ususuuuuGfuGfGfAfcuuccgug
5158
asUfscacGfgAfAfguccAfcAfaaaaa
5293
AGUUUUUUGUGGACUUCCG
5428


1731205
auL96

scsu

UGAG






AD-
gscsacgaCfuGfGfAfucauccagc
5159
asGfscugGfaUfGfauccAfgUfcgug
5294
UGGCACGACUGGAUCAUCC
5429


1731234
uL96

cscsa

AGCC






AD-
csgsccauGfaAfCfUfucugcauag
5160
asCfsuauGfcAfGfaaguUfcAfuggc
5295
UACGCCAUGAACUUCUGCA
5430


1731264
uL96

gsusa

UAGG






AD-
usgscccaCfuAfCfAfcauagcagg
5161
asCfscugCfuAfUfguguAfgUfgggc
5296
AGUGCCCACUACACAUAGC
5431


1731289
uL96

ascsu

AGGC






AD-
gsgscaugCfcUfGfGfuauugcug
5162
asGfscagCfaAfUfaccaGfgCfaugcc
5297
CAGGCAUGCCUGGUAUUGC
5432


1731307
cuL96

susg

UGCC






AD-
csusgccuCfcUfUfUfcacacugca
5163
asUfsgcaGfuGfUfgaaaGfgAfggca
5298
UGCUGCCUCCUUUCACACU
5433


1731323
uL96

gscsa

GCAG






AD-
gscsagugCfuCfAfAfucuucucaa
5164
asUfsugaGfaAfGfauugAfgCfacug
5299
CUGCAGUGCUCAAUCUUCU
5434


1731340
uL96

csasg

CAAG






AD-
asasggccAfaCfAfCfagcugcagg
5165
asCfscugCfaGfCfugugUfuGfgccu
5300
UCAAGGCCAACACAGCUGC
5435


1731358
uL96

usgsa

AGGC






AD-
gscsucauGfcUfGfUfguacccacg
5166
asCfsgugGfgUfAfcacaGfcAfugagc
5301
GGGCUCAUGCUGUGUACCC
5436


1731371
uL96

scsc

ACGG






AD-
gsuscucuGfcUfCfUfauuaugaca
5167
asUfsgucAfuAfAfuagaGfcAfgaga
5302
CUGUCUCUGCUCUAUUAUG
5437


1731380
uL96

csasg

ACAG






AD-
gsascaggGfaCfAfGfcaacauugu
5168
asAfscaaUfgUfUfgcugUfcCfcuguc
5303
AUGACAGGGACAGCAACAU
5438


1731398
uL96

sasu

UGUC






AD-
usgsucaaGfaCfUfGfacauaccug
5169
asCfsaggUfaUfGfucagUfcUfugaca
5304
AUUGUCAAGACUGACAUAC
5439


1731415
uL96

sasu

CUGA






AD-
cscsugacAfuGfGfUfaguagagg
5170
asGfsccuCfuAfCfuaccAfuGfucagg
5305
UACCUGACAUGGUAGUAGA
5440


1731431
cuL96

susa

GGCC






AD-
asgsuuagUfcUfAfUfguguggua
5171
asAfsuacCfaCfAfcauaGfaCfuaacu
5306
GCAGUUAGUCUAUGUGUGG
5441


1731457
uuL96

sgsc

UAUG






AD-
cscsaaggUfuGfCfAfugggaaaac
5172
asGfsuuuUfcCfCfaugcAfaCfcuugg
5307
GCCCAAGGUUGCAUGGGAA
5442


1731484
uL96

sgsc

AACA






AD-
ascsagaaGfuGfCfAfcuuccuuga
5173
asUfscaaGfgAfAfgugcAfcUfucug
5308
CUACAGAAGUGCACUUCCU
5443


1731492
uL96

usasg

UGAG






AD-
asgsaggaGfgGfAfAfugaccuca
5174
asAfsugaGfgUfCfauucCfcUfccucu
5309
UGAGAGGAGGGAAUGACCU
5444


1731511
uuL96

scsa

CAUU






AD-
uscsauucUfcUfGfUfccagaaugu
5175
asAfscauUfcUfGfgacaGfaGfaauga
5310
CCUCAUUCUCUGUCCAGAA
5445


1731527
uL96

sgsg

UGUG






AD-
gsusggacUfcCfCfUfcuuccugag
5176
asCfsucaGfgAfAfgaggGfaGfuccac
5311
AUGUGGACUCCCUCUUCCU
5446


1731545
uL96

sasu

GAGC






AD-
gsasgcauCfuUfAfUfggaaauuac
5177
asGfsuaaUfuUfCfcauaAfgAfugcuc
5312
CUGAGCAUCUUAUGGAAAU
5447


1731562
uL96

sasg

UACC






AD-
csasccuuUfgAfCfUfugaagaaac
5178
asGfsuuuCfuUfCfaaguCfaAfaggu
5313
CCCACCUUUGACUUGAAGA
5448


1731564
uL96

gsgsg

AACC






AD-
csusucauCfuAfAfAfgcaagucac
5179
asGfsugaCfuUfGfcuuuAfgAfugaa
5314
ACCUUCAUCUAAAGCAAGU
5449


1731584
uL96

gsgsu

CACU






AD-
uscsacugUfgCfCfAfucuuccuga
5180
asUfscagGfaAfGfauggCfaCfaguga
5315
AGUCACUGUGCCAUCUUCC
5450


1731600
uL96

scsu

UGAC






AD-
gsasccacUfaCfCfCfucuuuccua
5181
asUfsaggAfaAfGfagggUfaGfuggu
5316
CUGACCACUACCCUCUUUCC
5451


1731618
uL96

csasg

UAG






AD-
uscscaucCfcGfCfUfaguccaucc
5182
asGfsgauGfgAfCfuagcGfgGfaugg
5317
AGUCCAUCCCGCUAGUCCA
5452


1731646
uL96

ascsu

UCCC






AD-
ascsccauCfuCfCfAfaccaugagc
5183
asGfscucAfuGfGfuuggAfgAfuggg
5318
AGACCCAUCUCCAACCAUG
5453


1731671
uL96

uscsu

AGCA






AD-
gsasgcaaUfgCfCfAfucugguucc
5184
asGfsgaaCfcAfGfauggCfaUfugcuc
5319
AUGAGCAAUGCCAUCUGGU
5454


1731687
uL96

sasu

UCCC






AD-
uscsccagGfcAfAfAfgacacccuu
5185
asAfsaggGfuGfUfcuuuGfcCfuggg
5320
GUUCCCAGGCAAAGACACC
5455


1731704
uL96

asasc

CUUA






AD-
cscsuuagCfuCfAfCfcuuuaauag
5186
asCfsuauUfaAfAfggugAfgCfuaag
5321
ACCCUUAGCUCACCUUUAA
5456


1731720
uL96

gsgsu

UAGA






AD-
ascsccacUfaUfGfCfcuuccuguc
5187
asGfsacaGfgAfAfggcaUfaGfuggg
5322
UAACCCACUAUGCCUUCCU
5457


1731728
uL96

ususa

GUCC






AD-
gsusccuuUfcUfAfCfucaauggu
5188
asGfsaccAfuUfGfaguaGfaAfaggac
5323
CUGUCCUUUCUACUCAAUG
5458


1731745
cuL96

sasg

GUCC






AD-
uscscaagAfuGfAfGfuugacacaa
5189
asUfsuguGfuCfAfacucAfuCfuugg
5324
ACUCCAAGAUGAGUUGACA
5459


1731750
uL96

asgsu

CAAC






AD-
csasauuuUfuGfUfGfgaucucca
5190
asCfsuggAfgAfUfccacAfaAfaauug
5325
CCCAAUUUUUGUGGAUCUC
5460


1731753
guL96

sgsg

CAGA






AD-
uscsuuugGfaUfUfCfaccaaaguu
5191
asAfsacuUfuGfGfugaaUfcCfaaaga
5326
CUUCUUUGGAUUCACCAAA
5461


1731782
uL96

sasg

GUUU






AD-
usgscccaAfaAfUfAfgaggcuuac
5192
asGfsuaaGfcCfUfcuauUfuUfgggca
5327
GCUGCCCAAAAUAGAGGCU
5462


1731813
uL96

sgsc

UACC






AD-
csusguccUfuCfUfUfaguugucc
5193
asUfsggaCfaAfCfuaagAfaGfgacag
5328
CCCUGUCCUUCUUAGUUGU
5463


1731819
auL96

sgsg

CCAG






AD-
gsasacuaCfuAfAfAfgcucucuu
5194
asAfsaagAfgAfGfcuuuAfgUfaguu
5329
GUGAACUACUAAAGCUCUC
5464


1731842
uuL96

csasc

UUUG






AD-
csusuugcAfuAfCfCfuucauccau
5195
asAfsuggAfuGfAfagguAfuGfcaaa
5330
CUCUUUGCAUACCUUCAUC
5465


1731858
uL96

gsasg

CAUU






AD-
cscsauuuUfuUfGfUfccuucucu
5196
asCfsagaGfaAfGfgacaAfaAfaaugg
5331
AUCCAUUUUUUGUCCUUCU
5466


1731874
guL96

sasu

CUGC






AD-
gscscuuuCfuCfUfAfugcccuuaa
5197
asUfsuaaGfgGfCfauagAfgAfaaggc
5332
CUGCCUUUCUCUAUGCCCU
5467


1731890
uL96

sasg

UAAG






AD-
ususaaggGfcUfGfAfcuugccug
5198
asUfscagGfcAfAfgucaGfcCfcuuaa
5333
CCUUAAGGGCUGACUUGCC
5468


1731906
auL96

sgsg

UGAG






AD-
usgsagcuCfuAfUfCfaccugagcu
5199
asAfsgcuCfaGfGfugauAfgAfgcuc
5334
CCUGAGCUCUAUCACCUGA
5469


1731923
uL96

asgsg

GCUC






AD-
uscsuggcUfuCfCfUfgcugaggu
5200
asGfsaccUfcAfGfcaggAfaGfccaga
5335
CCUCUGGCUUCCUGCUGAG
5470


1731932
cuL96

sgsg

GUCA






AD-
ususucuuAfuCfCfCfuguucccu
5201
asGfsaggGfaAfCfagggAfuAfagaaa
5336
CAUUUCUUAUCCCUGUUCC
5471


1731958
cuL96

susg

CUCU






AD-
uscsugucUfaGfGfUfgucauggu
5202
asAfsaccAfuGfAfcaccUfaGfacaga
5337
UCUCUGUCUAGGUGUCAUG
5472


1731978
uuL96

sgsa

GUUC






AD-
uscsugugUfaAfCfUfguggcuau
5203
asAfsauaGfcCfAfcaguUfaCfacaga
5338
GUUCUGUGUAACUGUGGCU
5473


1731997
uuL96

sasc

AUUC






AD-
usasuucuGfuGfUfCfccuacacua
5204
asUfsaguGfuAfGfggacAfcAfgaau
5339
GCUAUUCUGUGUCCCUACA
5474


1732013
uL96

asgsc

CUAC






AD-
gscscuacAfuUfCfUfgauauaacu
5205
asAfsguuAfuAfUfcagaAfuGfuagg
5340
CUGCCUACAUUCUGAUAUA
5475


1732031
uL96

csasg

ACUG






AD-
cscsuaaaGfgCfUfUfucuaucuug
5206
asCfsaagAfuAfGfaaagCfcUfuuagg
5341
GUCCUAAAGGCUUUCUAUC
5476


1732048
uL96

sasc

UUGC






AD-
csuscaacAfuCfUfCfauacugguu
5207
asAfsaccAfgUfAfugagAfuGfuuga
5342
GCCUCAACAUCUCAUACUG
5477


1732062
uL96

gsgsc

GUUC






AD-
gsgsuuccCfuUfAfAfcucugccu
5208
asUfsaggCfaGfAfguuaAfgGfgaacc
5343
CUGGUUCCCUUAACUCUGC
5478


1732078
auL96

sasg

CUAU






AD-
cscsuauaCfcUfCfUfguaaauaau
5209
asAfsuuaUfuUfAfcagaGfgUfauag
5344
UGCCUAUACCUCUGUAAAU
5479


1732094
uL96

gscsa

AAUU






AD-
usasauucCfuUfCfAfcuaaguucu
5210
asAfsgaaCfuUfAfgugaAfgGfaauu
5345
AAUAAUUCCUUCACUAAGU
5480


1732110
uL96

asusu

UCUC






AD-
asasagucCfuCfUfAfucuccuaca
5211
asUfsguaGfgAfGfauagAfgGfacuu
5346
GAAAAGUCCUCUAUCUCCU
5481


1732157
uL96

ususc

ACAA






AD-
usascaagGfgCfCfCfuaacuggca
5212
asUfsgccAfgUfUfagggCfcCfuugu
5347
CCUACAAGGGCCCUAACUG
5482


1732173
uL96

asgsg

GCAC






AD-
csasgaugAfcAfCfAfgagccugcc
5213
asGfsgcaGfgCfUfcuguGfuCfaucu
5348
CCCAGAUGACACAGAGCCU
5483


1732176
uL96

gsgsg

GCCU






AD-
csusgcuuAfuGfCfUfguagucug
5214
asGfscagAfcUfAfcagcAfuAfagcag
5349
GCCUGCUUAUGCUGUAGUC
5484


1732195
cuL96

sgsc

UGCC






AD-
ascsucugCfuGfUfCfucuucacau
5215
asAfsuguGfaAfGfagacAfgCfagag
5350
CUACUCUGCUGUCUCUUCA
5485


1732217
uL96

usasg

CAUG






AD-
asusggucUfcCfUfCfagaacugaa
5216
asUfsucaGfuUfCfugagGfaGfaccau
5351
ACAUGGUCUCCUCAGAACU
5486


1732235
uL96

sgsu

GAAC






AD-
asascuauUfgUfAfUfccaucucac
5217
asGfsugaGfaUfGfgauaCfaAfuagu
5352
UGAACUAUUGUAUCCAUCU
5487


1732253
uL96

uscsa

CACA






AD-
uscsacacUfuUfAfUfgccucuucu
5218
asAfsgaaGfaGfGfcauaAfaGfuguga
5353
UCUCACACUUUAUGCCUCU
5488


1732269
uL96

sgsa

UCUU






AD-
asusccuuCfcAfGfAfaccaucuuu
5219
asAfsaagAfuGfGfuucuGfgAfagga
5354
CCAUCCUUCCAGAACCAUCU
5489


1732291
uL96

usgsg

UUG






AD-
ususugagGfuCfUfCfauggcuaa
5220
asAfsuuaGfcCfAfugagAfcCfucaaa
5355
UCUUUGAGGUCUCAUGGCU
5490


1732308
uuL96

sgsa

AAUA






AD-
usasggcuUfuAfCfCfuguucccu
5221
asGfsaggGfaAfCfagguAfaAfgccua
5356
CCUAGGCUUUACCUGUUCC
5491


1732335
cuL96

sgsg

CUCU






AD-
uscsuguaAfuCfCfCfuccaaaaga
5222
asUfscuuUfuGfGfagggAfuUfacag
5357
CCUCUGUAAUCCCUCCAAA
5492


1732353
uL96

asgsg

AGAU






AD-
asusgagaCfaGfAfUfcuaugcuu
5223
asCfsaagCfaUfAfgaucUfgUfcucau
5358
AGAUGAGACAGAUCUAUGC
5493


1732372
gul96

scsu

UUGG






AD-
ususggucAfuCfCfAfguaaacug
5224
asUfscagUfuUfAfcuggAfuGfaccaa
5359
GCUUGGUCAUCCAGUAAAC
5494


1732389
auL96

sgsc

UGAC






AD-
gsusgggcAfcGfCfAfaguguggg
5225
asUfscccAfcAfCfuugcGfuGfcccac
5360
CUGUGGGCACGCAAGUGUG
5495


1732415
auL96

sasg

GGAG






AD-
asgsgcauGfcUfCfAfgagcuggc
5226
asAfsgccAfgCfUfcugaGfcAfugccu
5361
AGAGGCAUGCUCAGAGCUG
5496


1732440
uuL96

scsu

GCUG






AD-
uscsugacUfuGfCfCfuuccuuuca
5227
asUfsgaaAfgGfAfaggcAfaGfucaga
5362
CCUCUGACUUGCCUUCCUU
5497


1732469
uL96

sgsg

UCAC






AD-
usgscuccAfcCfCfAfggaguccug
5228
asCfsaggAfcUfCfcuggGfuGfgagca
5363
AGUGCUCCACCCAGGAGUC
5498


1732479
uL96

scsu

CUGC






AD-
csusggaaGfcUfGfGfaaugggcaa
5229
asUfsugcCfcAfUfuccaGfcUfuccag
5364
GCCUGGAAGCUGGAAUGGG
5499


1732500
uL96

sgsc

CAAG






AD-
gsgsgcugCfuGfGfAfgugggaca
5230
asCfsuguCfcCfAfcuccAfgCfagccc
5365
AAGGGCUGCUGGAGUGGGA
5500


1732520
guL96

susu

CAGG






AD-
csasgggaGfaAfGfAfggaaggcc
5231
asAfsggcCfuUfCfcucuUfcUfcccug
5366
GACAGGGAGAAGAGGAAGG
5501


1732533
uuL96

susc

CCUG






AD-
gscscuggAfuGfAfGfgagagggu
5232
asCfsaccCfuCfUfccucAfuCfcaggc
5367
AGGCCUGGAUGAGGAGAGG
5502


1732549
gul96

scsu

GUGG






AD-
gsusggcaUfuUfGfCfucugagac
5233
asAfsgucUfcAfGfagcaAfaUfgccac
5368
GGGUGGCAUUUGCUCUGAG
5503


1732565
uuL96

scsc

ACUG






AD-
usgsggucCfuUfUfUfuagaccuu
5234
asAfsaagGfuCfUfaaaaAfgGfaccca
5369
ACUGGGUCCUUUUUAGACC
5504


1732584
uuL96

sgsu

UUUG






AD-
csuscccuUfuGfGfCfuggacaguc
5235
asGfsacuGfuCfCfagccAfaAfgggag
5370
UCCUCCCUUUGGCUGGACA
5505


1732604
uL96

sgsa

GUCC






AD-
usgsaaccAfuGfAfGfgucgauaa
5236
asAfsuuaUfcGfAfccucAfuGfguuc
5371
CCUGAACCAUGAGGUCGAU
5506


1732625
uuL96

asgsg

AAUG






AD-
usgsucugCfaGfCfCfcaaggccga
5237
asUfscggCfcUfUfgggcUfgCfagaca
5372
AAUGUCUGCAGCCCAAGGC
5507


1732644
uL96

susu

CGAG






AD-
csgsaguuUfgCfGfCfaaaacccau
5238
asAfsuggGfuUfUfugcgCfaAfacuc
5373
GCCGAGUUUGCGCAAAACC
5508


1732661
uL96

gsgsc

CAUG






AD-
cscsauguGfuUfCfUfuugguaaa
5239
asGfsuuuAfcCfAfaagaAfcAfcaugg
5374
ACCCAUGUGUUCUUUGGUA
5509


1732677
cuL96

sgsu

AACG






AD-
csgsugauGfuCfUfGfuguuugcu
5240
asGfsagcAfaAfCfacagAfcAfucacg
5375
AACGUGAUGUCUGUGUUUG
5510


1732696
cuL96

susu

CUCA






AD-
csusccuaUfgAfGfGfguaagagg
5241
asAfsccuCfuUfAfcccuCfaUfaggag
5376
CCCUCCUAUGAGGGUAAGA
5511


1732708
uuL96

sgsg

GGUC






AD-
cscscugaAfaUfAfGfgaacccuag
5242
asCfsuagGfgUfUfccuaUfuUfcagg
5377
GUCCCUGAAAUAGGAACCC
5512


1732728
uL96

gsasc

UAGA






AD-
csusagagGfaGfAfAfagucugaaa
5243
asUfsuucAfgAfCfuuucUfcCfucua
5378
CCCUAGAGGAGAAAGUCUG
5513


1732744
uL96

gsgsg

AAAA






AD-
gsascuguAfaAfUfCfugagcuug
5244
asUfscaaGfcUfCfagauUfuAfcaguc
5379
GGGACUGUAAAUCUGAGCU
5514


1732757
auL96

scsc

UGAG






AD-
gsasgcaaCfcCfAfUfggaaguuau
5245
asAfsuaaCfuUfCfcaugGfgUfugcuc
5380
CUGAGCAACCCAUGGAAGU
5515


1732786
uL96

sasg

UAUC






AD-
cscsaccuUfuGfAfCfuugaggaga
5246
asUfscucCfuCfAfagucAfaAfggug
5381
UCCCACCUUUGACUUGAGG
5516


1732807
uL96

gsgsa

AGAC






AD-
cscsuucaUfcUfAfAfggagaaucu
5247
asAfsgauUfcUfCfcuuaGfaUfgaagg
5382
GACCUUCAUCUAAGGAGAA
5517


1732827
uL96

susc

UCUA






AD-
gsgsaggcCfuUfCfUfggugucuc
5248
asGfsgagAfcAfCfcagaAfgGfccucc
5383
AAGGAGGCCUUCUGGUGUC
5518


1732849
cuL96

susu

UCCC






AD-
uscsccaaUfuAfCfAfgcuuagucu
5249
asAfsgacUfaAfGfcuguAfaUfuggg
5384
CUUCCCAAUUACAGCUUAG
5519


1732865
uL96

asasg

UCUC






AD-
gsuscuccAfgGfGfCfuaggacug
5250
asCfscagUfcCfUfagccCfuGfgagac
5385
UAGUCUCCAGGGCUAGGAC
5520


1732881
gul96

susa

UGGG






AD-
asasgcaaAfgUfGfAfgucauucac
5251
asGfsugaAfuGfAfcucaCfuUfugcu
5386
UAAAGCAAAGUGAGUCAUU
5521


1732885
uL96

ususa

CACC






AD-
gsusggugAfaCfAfAfuuuauuaa
5252
asAfsuuaAfuAfAfauugUfuCfaccac
5387
GGGUGGUGAACAAUUUAUU
5522


1732890
uuL96

scsc

AAUC






AD-
usasggacUfuUfAfAfugcaauau
5253
asAfsauaUfuGfCfauuaAfaGfuccua
5388
GAUAGGACUUUAAUGCAAU
5523


1732908
uuL96

susc

AUUA






AD-
gsasacaaAfaUfAfGfccuacuuuu
5254
asAfsaaaGfuAfGfgcuaUfuUfuguu
5389
AUGAACAAAAUAGCCUACU
5524


1732940
uL96

csasu

UUUA
















TABLE 18







Single dose screen for dsRNA agents


targeting INHBE in Hep3b cells










INHBE/gapdh
INHBE/gapdh



10 nM
1 nM












Average %

Average %




message

message


Duplex Name
remaining
SD
remaining
SD














AD-1657845.1
111.502
7.324
91.264
6.933


AD-1657834.1
73.740
4.726
60.700
3.044


AD-1657822.1
44.254
6.361
31.710
2.225


AD-1657811.1
57.311
6.952
42.989
3.234


AD-1657793.1
57.109
9.054
57.657
1.772


AD-1657776.1
31.680
4.646
29.169
6.609


AD-1657760.1
20.839
4.152
19.336
1.898


AD-1657744.1
34.473
7.839
30.596
0.788


AD-1657741.1
74.347
14.701
74.106
5.550


AD-1657727.1
72.423
11.797
80.936
2.697


AD-1657716.1
22.638
3.700
23.912
6.962


AD-1657704.1
28.552
6.159
28.798
6.146


AD-1657687.1
54.039
9.112
54.137
1.783


AD-1657674.1
47.061
4.830
43.380
3.109


AD-1657653.1
31.466
2.523
32.508
1.736


AD-1657641.1
24.346
3.640
25.044
1.349


AD-1657615.1
48.959
8.120
56.602
4.347


AD-1657600.1
68.423
6.167
71.585
7.687


AD-1657586.1
54.978
13.599
52.685
2.375


AD-1657575.1
55.241
7.227
57.979
7.288


AD-1657564.1
45.901
2.503
54.016
1.990


AD-1657552.1
82.298
13.007
76.189
6.130


AD-1657540.1
22.575
2.322
21.798
2.756


AD-1657529.1
33.762
2.785
32.357
0.747


AD-1657520.1
40.770
2.904
40.577
2.140


AD-1657503.1
81.097
10.061
95.267
5.483


AD-1657463.1
104.817
3.003
102.395
7.680


AD-1657475.1
32.866
3.805
36.728
3.060


AD-1657457.1
55.309
7.525
62.481
4.757


AD-1657446.1
64.718
5.426
70.633
2.386


AD-1657431.1
82.429
3.640
94.677
7.863


AD-1657410.1
85.127
11.511
95.982
4.312


AD-1657395.1
34.606
4.035
44.299
3.633


AD-1657385.1
25.376
4.571
30.272
1.859


AD-1657374.1
34.005
3.832
40.414
6.995


AD-1657359.1
36.416
4.539
42.496
1.445


AD-1657347.1
49.056
7.109
53.442
1.120


AD-1657335.1
38.944
8.573
57.606
15.402


AD-1657324.1
67.982
8.933
60.199
1.498


AD-1657322.1
70.552
6.423
98.389
1.565


AD-1657299.1
51.716
10.063
51.866
3.171


AD-1657286.1
58.362
4.990
59.650
3.084


AD-1657274.1
49.867
7.374
55.066
2.475


AD-1657261.1
67.171
10.247
75.283
5.022


AD-1657245.1
107.148
10.325
107.609
3.856


AD-1657234.1
49.466
10.471
55.763
3.564


AD-1657211.1
66.217
9.659
89.842
2.170


AD-1657202.1
24.284
0.920
30.464
1.354


AD-1657185.1
52.769
4.360
57.078
1.715


AD-1657164.1
98.337
9.509
102.454
1.987


AD-1657147.1
33.650
4.858
37.393
2.032


AD-1657133.1
47.322
3.533
59.465
4.976


AD-1657119.1
33.540
5.318
27.596
0.347


AD-1657113.1
19.963
4.057
20.771
1.598


AD-1657099.1
34.125
3.942
37.359
1.925


AD-1657085.1
37.089
9.439
33.790
1.346


AD-1657069.1
40.171
5.158
39.186
5.693


AD-1657058.1
22.085
1.950
23.312
5.043


AD-1657045.1
37.085
2.715
32.953
2.922


AD-1657037.1
27.931
2.008
28.287
1.070


AD-1657022.1
43.503
4.641
49.124
2.709


AD-1657013.1
25.911
5.728
31.816
2.016


AD-1656996.1
66.202
1.771
84.949
2.887


AD-1656969.1
22.138
0.831
20.535
1.620


AD-1656958.1
15.865
1.070
16.371
1.040


AD-1656954.1
40.878
9.408
53.844
4.173


AD-1656942.1
30.879
6.184
43.036
3.002


AD-1656926.1
83.175
10.550
103.354
10.184


AD-1656915.1
43.426
5.790
45.498
3.633


AD-1656900.1
57.647
7.574
71.612
1.628


AD-1656888.1
20.414
2.786
20.645
0.527


AD-1656876.1
41.507
8.799
64.531
3.928


AD-1656873.1
95.455
1.755
110.427
4.031


AD-1656862.1
28.261
3.728
25.877
4.127


AD-1656849.1
42.736
6.226
53.757
4.118


AD-1656832.1
22.284
4.193
24.704
1.507


AD-1656820.1
36.282
2.484
49.723
2.973


AD-1656808.1
33.056
6.984
23.344
1.171


AD-1656792.1
32.327
4.602
63.303
4.848


AD-1656775.1
78.089
6.399
74.958
10.131


AD-1656762.1
34.695
5.445
45.070
2.460


AD-1656754.1
68.025
10.751
95.733
6.112


AD-1656740.1
109.099
15.708
110.169
5.851


AD-1656728.1
58.629
6.016
78.387
19.524


AD-1656716.1
58.703
8.377
76.566
8.896


AD-1656701.1
101.804
8.079
101.812
6.138


AD-1656690.1
72.753
13.083
85.011
9.161


AD-1656679.1
26.622
3.632
44.404
2.181


AD-1656667.1
84.688
16.798
93.321
4.608


AD-1656647.1
52.261
9.437
79.158
1.290


AD-1656634.1
68.804
4.037
72.522
8.828


AD-1656622.1
64.773
3.958
61.094
3.211


AD-1656602.1
90.930
8.206
97.503
6.469


AD-1656591.1
67.929
6.205
50.621
2.250


AD-1656587.1
130.517
14.507
112.466
5.072


AD-1656570.1
54.831
8.259
67.275
4.341


AD-1656559.1
99.324
16.587
94.525
10.986


AD-1656547.1
47.881
6.431
47.546
13.507


AD-1656535.1
45.730
4.759
47.345
3.749


AD-1656504.1
18.728
1.669
28.522
5.548


AD-1656492.1
56.190
5.381
90.874
4.381


AD-1656480.1
123.739
13.306
109.755
2.612


AD-1656468.1
109.278
12.715
110.494
6.230


AD-1656449.1
59.340
4.424
63.755
3.688


AD-1656437.1
37.011
10.928
37.870
1.699


AD-1656417.1
71.490
5.406
76.482
4.881


AD-1656406.1
24.283
4.442
22.173
1.760


AD-1656392.1
32.989
8.824
25.987
9.238


AD-1656383.1
136.848
18.447
130.314
12.433


AD-1656372.1
108.305
5.297
103.207
3.375


AD-1656360.1
67.214
8.162
87.294
8.571


AD-1656333.1
28.433
5.041
26.718
2.141


AD-1656319.1
56.184
4.092
52.184
3.756


AD-1656307.1
102.315
8.887
96.572
4.261


AD-1656292.1
26.799
5.415
30.140
4.062


AD-1656280.1
42.240
7.706
36.464
2.246


AD-1656265.1
72.020
14.577
80.758
6.589


AD-1656260.1
102.537
13.790
115.141
23.155


AD-1656254.1
114.062
4.103
126.823
2.379


AD-1656233.1
99.276
14.267
93.223
3.260


AD-1656220.1
52.087
6.444
47.137
2.748


AD-1656196.1
69.556
7.457
78.281
3.008


AD-1656185.1
59.059
6.916
59.771
1.753


AD-1656164.1
52.037
5.249
49.894
1.671


AD-1656146.1
61.416
9.782
69.569
10.125


AD-1656139.1
81.533
5.159
79.120
3.969


AD-1656125.1
106.018
7.449
120.205
7.924


AD-1656108.1
92.474
5.568
120.457
12.135


AD-1656097.1
86.405
6.346
95.682
6.379


AD-1656086.1
97.906
14.028
98.562
6.521


AD-1656074.1
78.172
13.741
91.731
5.480


AD-1656054.1
85.044
8.142
90.847
4.543


AD-1656043.1
50.700
6.709
47.910
3.196


AD-1656026.1
109.741
12.514
93.624
7.670


AD-1656008.1
86.662
8.226
98.543
23.583









Example 4. Design, Synthesis and In Vitro Screening of Additional dsRNA Duplexes

Additional siRNAs were designed, synthesized, and prepared using methods known in the art and described above in Example 2.


A detailed list of the additional unmodified INHBE sense and antisense strand nucleotide sequences is shown in Table 19. A detailed list of the modified INHBE sense and antisense strand nucleotide sequences is shown in Table 20.


Single dose screens of the additional agents were performed by free uptake and transfection.


For free uptake, experiments were performed by adding 2.5 μl of siRNA duplexes in PBS per well into a 96 well plate. Complete growth media (47.5 μl) containing about 1.5×104 primary human hepatocytes (PHH) or primary cynomolgus hepatocytes (PCH) were then added to the siRNA. Cells were incubated for 48 hours prior to RNA purification and RT-qPCR. Single dose experiments were performed at 250 nM, 100 nM, 10 nM and 1 nM final duplex concentration.


For transfections, cells (i.e., Hep3b cells, primary human hepatocytes, or primary cynomolgus hepatocytes) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in Eagle's Minimum Essential Medium (Gibco) supplemented with 10% FBS (ATCC) before being released from the plate by trypsinization. Transfection was carried out by adding 7.5 μl of Opti-MEM plus 0.1 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat 13778-150) to 2.5 μl of each siRNA duplex to an individual well in a 384-well plate. The mixture was then incubated at room temperature for 15 minutes. Forty μl of complete growth media without antibiotic containing ˜1.5×104 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at 10, 1 and 0.1 nM final duplex concentration.


Total RNA isolation was performed using DYNABEADS. Briefly, cells were lysed in 10 μl of Lysis/Binding Buffer containing 3 μL of beads per well and mixed for 10 minutes on an electrostatic shaker. The washing steps were automated on a Biotek EL406, using a magnetic plate support. Beads were washed (in 3 μl) once in Buffer A, once in Buffer B, and twice in Buffer E, with aspiration steps in between. Following a final aspiration, complete 12 μl RT mixture was added to each well, as described below.


For cDNA synthesis, a master mix of 1.5 μl 10× Buffer, 0.6 μl 10×dNTPs, 1.5 μl Random primers, 0.75 μl Reverse Transcriptase, 0.75 μl RNase inhibitor and 9.9 μl of H2O per reaction were added per well. Plates were sealed, agitated for 10 minutes on an electrostatic shaker, and then incubated at 37 degrees C. for 2 hours. Following this, the plates were agitated at 80 degrees C. for 8 minutes.


RT-qPCR was performed as described above and relative fold change was calculated as described above.


The results of the transfection assays of the dsRNA agents listed in Tables 19 and 20 in Hep3b cells are shown in Table 21A.


The results of the free uptake experiments and the transfection assays of the dsRNA agents listed in Tables 19 and 20 in primary human hepatocytes (PHH) are shown in Table 21B.


The results of the free uptake experiments and the transfection assays of the dsRNA agents listed in Tables 19 and 20 in primary cynomolgus hepatocytes (PCH) are shown in Table 21C.









TABLE 19







Unmodified Sense and Antisense Strand Sequences of INHBE dsRNA Agents















SEQ
Range in

SEQ
Range in



Sense Strand Sequence
ID
NM_
Antisense Strand Sequence
ID
NM_


Duplex Name
5′ to 3′
NO.
031479.5
5′ to 3′
NO.
031479.5





AD-1706265.1
GCCAGACAUGAGCUGUGAGGU
5525
   5-25
ACCUCACAGCUCAUGUCUGGCUA
5978
   3-25





AD-1706266.1
CCAGACAUGAGCUGUGAGGGU
5526
   6-26
ACCCTCACAGCTCAUGUCUGGCU
5979
   4-26





AD-1706268.1
AGACAUGAGCUGUGAGGGUCU
5527
   8-28
AGACCCTCACAGCUCAUGUCUGG
5980
   6-28





AD-1706269.1
GACAUGAGCUGUGAGGGUCAU
5528
   9-29
ATGACCCUCACAGCUCAUGUCUG
5981
   7-29





AD-1706270.1
ACAUGAGCUGUGAGGGUCAAU
5529
  10-30
ATUGACCCUCACAGCUCAUGUCU
5982
   8-30





AD-1706271.1
CAUGAGCUGUGAGGGUCAAGU
5530
  11-31
ACUUGACCCUCACAGCUCAUGUC
5983
   9-31





AD-1706272.1
AUGAGCUGUGAGGGUCAAGCU
5531
  12-32
AGCUTGACCCUCACAGCUCAUGU
5984
  10-32





AD-1706273.1
UGAGCUGUGAGGGUCAAGCAU
5532
  13-33
ATGCTUGACCCTCACAGCUCAUG
5985
  11-33





AD-1706274.1
GAGCUGUGAGGGUCAAGCACU
5533
  14-34
AGUGCUTGACCCUCACAGCUCAU
5986
  12-34





AD-1706275.1
AGCUGUGAGGGUCAAGCACAU
5534
  15-35
ATGUGCTUGACCCUCACAGCUCA
5987
  13-35





AD-1706276.1
GCUGUGAGGGUCAAGCACAGU
5535
  16-36
ACUGTGCUUGACCCUCACAGCUC
5988
  14-36





AD-1706277.1
CUGUGAGGGUCAAGCACAGCU
5536
  17-37
AGCUGUGCUUGACCCUCACAGCU
5989
  15-37





AD-1706278.1
UGUGAGGGUCAAGCACAGCUU
5537
  18-38
AAGCTGTGCUUGACCCUCACAGC
5990
  16-38





AD-1706279.1
GUGAGGGUCAAGCACAGCUAU
5538
  19-39
ATAGCUGUGCUTGACCCUCACAG
5991
  17-39





AD-1706280.1
UGAGGGUCAAGCACAGCUAUU
5539
  20-40
AAUAGCTGUGCTUGACCCUCACA
5992
  18-40





AD-1706281.1
GAGGGUCAAGCACAGCUAUCU
 129
  21-41
AGAUAGCUGUGCUUGACCCUCAC
 263
  19-41





AD-1706282.1
AGGGUCAAGCACAGCUAUCCU
5540
  22-42
AGGATAGCUGUGCUUGACCCUCA
5993
  20-42





AD-1706283.1
GGGUCAAGCACAGCUAUCCAU
5541
  23-43
ATGGAUAGCUGTGCUUGACCCUC
5994
  21-43





AD-1706287.1
CAAGCACAGCUAUCCAUCAGU
5542
  27-47
ACUGAUGGAUAGCUGUGCUUGAC
5995
  25-47





AD-1706288.1
AAGCACAGCUAUCCAUCAGAU
5543
  28-48
ATCUGATGGAUAGCUGUGCUUGA
5996
  26-48





AD-1706290.1
GCACAGCUAUCCAUCAGAUGU
5544
  30-50
ACAUCUGAUGGAUAGCUGUGCUU
5997
  28-50





AD-1706291.1
CACAGCUAUCCAUCAGAUGAU
5545
  31-51
ATCATCTGAUGGAUAGCUGUGCU
5998
  29-51





AD-1706292.1
ACAGCUAUCCAUCAGAUGAUU
5546
  32-52
AAUCAUCUGAUGGAUAGCUGUGC
5999
  30-52





AD-1706293.1
CAGCUAUCCAUCAGAUGAUCU
5547
  33-53
AGAUCATCUGATGGAUAGCUGUG
6000
  31-53





AD-1706294.1
AGCUAUCCAUCAGAUGAUCUU
5548
  34-54
AAGATCAUCUGAUGGAUAGCUGU
6001
  32-54





AD-1706295.1
GCUAUCCAUCAGAUGAUCUAU
5549
  35-55
ATAGAUCAUCUGAUGGAUAGCUG
6002
  33-55





AD-1706296.1
CUAUCCAUCAGAUGAUCUACU
5550
  36-56
AGUAGATCAUCTGAUGGAUAGCU
6003
  34-56





AD-1706297.1
UAUCCAUCAGAUGAUCUACUU
5551
  37-57
AAGUAGAUCAUCUGAUGGAUAGC
6004
  35-57





AD-1706298.1
AUCCAUCAGAUGAUCUACUUU
 130
  38-58
AAAGTAGAUCATCUGAUGGAUAG
6005
  36-58





AD-1706299.1
UCCAUCAGAUGAUCUACUUUU
5552
  39-59
AAAAGUAGAUCAUCUGAUGGAUA
6006
  37-59





AD-1706300.1
CCAUCAGAUGAUCUACUUUCU
5553
  40-60
AGAAAGTAGAUCAUCUGAUGGAU
6007
  38-60





AD-1706301.1
CAUCAGAUGAUCUACUUUCAU
5554
  41-61
ATGAAAGUAGATCAUCUGAUGGA
6008
  39-61





AD-1706302.1
AUCAGAUGAUCUACUUUCAGU
5555
  42-62
ACUGAAAGUAGAUCAUCUGAUGG
6009
  40-62





AD-1706303.1
UCAGAUGAUCUACUUUCAGCU
5556
  43-63
AGCUGAAAGUAGAUCAUCUGAUG
6010
  41-63





AD-1706304.1
CAGAUGAUCUACUUUCAGCCU
5557
  44-64
AGGCTGAAAGUAGAUCAUCUGAU
6011
  42-64





AD-1706305.1
AGAUGAUCUACUUUCAGCCUU
5558
  45-65
AAGGCUGAAAGTAGAUCAUCUGA
6012
  43-65





AD-1706306.1
GAUGAUCUACUUUCAGCCUUU
5559
  46-66
AAAGGCTGAAAGUAGAUCAUCUG
6013
  44-66





AD-1706307.1
AUGAUCUACUUUCAGCCUUCU
5560
  47-67
AGAAGGCUGAAAGUAGAUCAUCU
6014
  45-67





AD-1706308.1
UGAUCUACUUUCAGCCUUCCU
5561
  48-68
AGGAAGGCUGAAAGUAGAUCAUC
6015
  46-68





AD-1706309.1
GAUCUACUUUCAGCCUUCCUU
 131
  49-69
AAGGAAGGCUGAAAGUAGAUCAU
 265
  47-69





AD-1706310.1
AUCUACUUUCAGCCUUCCUGU
5562
  50-70
ACAGGAAGGCUGAAAGUAGAUCA
6016
  48-70





AD-1706311.1
UCUACUUUCAGCCUUCCUGAU
5563
  51-71
ATCAGGAAGGCTGAAAGUAGAUC
6017
  49-71





AD-1706312.1
CUACUUUCAGCCUUCCUGAGU
5564
  52-72
ACUCAGGAAGGCUGAAAGUAGAU
6018
  50-72





AD-1706313.1
UACUUUCAGCCUUCCUGAGUU
5565
  53-73
AACUCAGGAAGGCUGAAAGUAGA
6019
  51-73





AD-1706314.1
ACUUUCAGCCUUCCUGAGUCU
5566
  54-74
AGACTCAGGAAGGCUGAAAGUAG
6020
  52-74





AD-1706318.1
UCAGCCUUCCUGAGUCCCAGU
5567
  58-78
ACUGGGACUCAGGAAGGCUGAAA
6021
  56-78





AD-1706337.1
GACAAUAGAAGACAGGUGGCU
5568
  77-97
AGCCACCUGUCTUCUAUUGUCUG
6022
  75-97





AD-1706338.1
ACAAUAGAAGACAGGUGGCUU
5569
  78-98
AAGCCACCUGUCUUCUAUUGUCU
6023
  76-98





AD-1706380.1
GUGGCAGUGGUGUCUGCUGUU
 136
 120-140
AACAGCAGACACCACUGCCACAC
 270
 118-140





AD-1706381.1
UGGCAGUGGUGUCUGCUGUCU
5570
 121-141
AGACAGCAGACACCACUGCCACA
6024
 119-141





AD-1706382.1
GGCAGUGGUGUCUGCUGUCAU
5571
 122-142
ATGACAGCAGACACCACUGCCAC
6025
 120-142





AD-1706383.1
GCAGUGGUGUCUGCUGUCACU
5572
 123-143
AGUGACAGCAGACACCACUGCCA
6026
 121-143





AD-1706384.1
CAGUGGUGUCUGCUGUCACUU
5573
 124-144
AAGUGACAGCAGACACCACUGCC
6027
 122-144





AD-1706385.1
AGUGGUGUCUGCUGUCACUGU
5574
 125-145
ACAGTGACAGCAGACACCACUGC
6028
 123-145





AD-1706386.1
GUGGUGUCUGCUGUCACUGUU
5575
 126-146
AACAGUGACAGCAGACACCACUG
6029
 124-146





AD-1706387.1
UGGUGUCUGCUGUCACUGUGU
5576
 127-147
ACACAGTGACAGCAGACACCACU
6030
 125-147





AD-1706388.1
GGUGUCUGCUGUCACUGUGCU
5577
 128-148
AGCACAGUGACAGCAGACACCAC
6031
 126-148





AD-1706407.1
CAGACUCAACAGACGGAGCAU
5578
 168-188
ATGCTCCGUCUGUUGAGUCUGAU
6032
 166-188





AD-1706408.1
AGACUCAACAGACGGAGCAAU
5579
 169-189
ATUGCUCCGUCTGUUGAGUCUGA
6033
 167-189





AD-1706409.1
GACUCAACAGACGGAGCAACU
5580
 170-190
AGUUGCTCCGUCUGUUGAGUCUG
6034
 168-190





AD-1706410.1
ACUCAACAGACGGAGCAACUU
5581
 171-191
AAGUTGCUCCGTCUGUUGAGUCU
6035
 169-191





AD-1706411.1
CUCAACAGACGGAGCAACUGU
5582
 172-192
ACAGTUGCUCCGUCUGUUGAGUC
6036
 170-192





AD-1706412.1
UCAACAGACGGAGCAACUGCU
5583
 173-193
AGCAGUTGCUCCGUCUGUUGAGU
6037
 171-193





AD-1706413.1
CAACAGACGGAGCAACUGCCU
5584
 174-194
AGGCAGTUGCUCCGUCUGUUGAG
6038
 172-194





AD-1706414.1
AACAGACGGAGCAACUGCCAU
5585
 175-195
ATGGCAGUUGCTCCGUCUGUUGA
6039
 173-195





AD-1706415.1
ACAGACGGAGCAACUGCCAUU
5586
 176-196
AAUGGCAGUUGCUCCGUCUGUUG
6040
 174-196





AD-1706416.1
CAGACGGAGCAACUGCCAUCU
5587
 177-197
AGAUGGCAGUUGCUCCGUCUGUU
6041
 175-197





AD-1706417.1
AGACGGAGCAACUGCCAUCCU
5588
 178-198
AGGATGGCAGUTGCUCCGUCUGU
6042
 176-198





AD-1706418.1
GACGGAGCAACUGCCAUCCGU
5589
 179-199
ACGGAUGGCAGTUGCUCCGUCUG
6043
 177-199





AD-1706419.1
ACGGAGCAACUGCCAUCCGAU
 139
 180-200
ATCGGATGGCAGUUGCUCCGUCU
6044
 178-200





AD-1706420.1
CGGAGCAACUGCCAUCCGAGU
5590
 181-201
ACUCGGAUGGCAGUUGCUCCGUC
6045
 179-201





AD-1706421.1
GGAGCAACUGCCAUCCGAGGU
5591
 182-202
ACCUCGGAUGGCAGUUGCUCCGU
6046
 180-202





AD-1706423.1
AGCAACUGCCAUCCGAGGCUU
5592
 184-204
AAGCCUCGGAUGGCAGUUGCUCC
6047
 182-204





AD-1706424.1
GCAACUGCCAUCCGAGGCUCU
5593
 185-205
AGAGCCTCGGATGGCAGUUGCUC
6048
 183-205





AD-1706425.1
CAACUGCCAUCCGAGGCUCCU
5594
 186-206
AGGAGCCUCGGAUGGCAGUUGCU
6049
 184-206





AD-1706520.1
CAAGCAGAACGAGCUCUGGUU
 146
 339-359
AACCAGAGCUCGUUCUGCUUGGG
 280
 337-359





AD-1706521.1
AAGCAGAACGAGCUCUGGUGU
5595
 340-360
ACACCAGAGCUCGUUCUGCUUGG
6050
 338-360





AD-1706522.1
AGCAGAACGAGCUCUGGUGCU
5596
 341-361
AGCACCAGAGCTCGUUCUGCUUG
6051
 339-361





AD-1706523.1
GCAGAACGAGCUCUGGUGCUU
5597
 342-362
AAGCACCAGAGCUCGUUCUGCUU
6052
 340-362





AD-1706524.1
CAGAACGAGCUCUGGUGCUGU
5598
 343-363
ACAGCACCAGAGCUCGUUCUGCU
6053
 341-363





AD-1706525.1
AGAACGAGCUCUGGUGCUGGU
5599
 344-364
ACCAGCACCAGAGCUCGUUCUGC
6054
 342-364





AD-1706526.1
GAACGAGCUCUGGUGCUGGAU
5600
 345-365
ATCCAGCACCAGAGCUCGUUCUG
6055
 343-365





AD-1706527.1
AACGAGCUCUGGUGCUGGAGU
5601
 346-366
ACUCCAGCACCAGAGCUCGUUCU
6056
 344-366





AD-1706528.1
ACGAGCUCUGGUGCUGGAGCU
5602
 347-367
AGCUCCAGCACCAGAGCUCGUUC
6057
 345-367





AD-1706530.1
GAGCUCUGGUGCUGGAGCUAU
5603
 349-369
ATAGCUCCAGCACCAGAGCUCGU
6058
 347-369





AD-1706532.1
GCUCUGGUGCUGGAGCUAGCU
5604
 351-371
AGCUAGCUCCAGCACCAGAGCUC
6059
 349-371





AD-1706533.1
CUCUGGUGCUGGAGCUAGCCU
5605
 352-372
AGGCTAGCUCCAGCACCAGAGCU
6060
 350-372





AD-1706534.1
UCUGGUGCUGGAGCUAGCCAU
5606
 353-373
ATGGCUAGCUCCAGCACCAGAGC
6061
 351-373





AD-1706535.1
CUGGUGCUGGAGCUAGCCAAU
 147
 354-374
ATUGGCTAGCUCCAGCACCAGAG
6062
 352-374





AD-1706536.1
UGGUGCUGGAGCUAGCCAAGU
5607
 355-375
ACUUGGCUAGCTCCAGCACCAGA
6063
 353-375





AD-1706537.1
GGUGCUGGAGCUAGCCAAGCU
5608
 356-376
AGCUTGGCUAGCUCCAGCACCAG
6064
 354-376





AD-1706538.1
GUGCUGGAGCUAGCCAAGCAU
5609
 357-377
ATGCTUGGCUAGCUCCAGCACCA
6065
 355-377





AD-1706539.1
UGCUGGAGCUAGCCAAGCAGU
5610
 358-378
ACUGCUTGGCUAGCUCCAGCACC
6066
 356-378





AD-1706543.1
GGAGCUAGCCAAGCAGCAAAU
5611
 362-382
ATUUGCTGCUUGGCUAGCUCCAG
6067
 360-382





AD-1706544.1
GAGCUAGCCAAGCAGCAAAUU
5612
 363-383
AAUUTGCUGCUTGGCUAGCUCCA
6068
 361-383





AD-1706545.1
AGCUAGCCAAGCAGCAAAUCU
5613
 364-384
AGAUTUGCUGCTUGGCUAGCUCC
6069
 362-384





AD-1706546.1
GCUAGCCAAGCAGCAAAUCCU
5614
 365-385
AGGATUTGCUGCUUGGCUAGCUC
6070
 363-385





AD-1706547.1
CUAGCCAAGCAGCAAAUCCUU
 148
 366-386
AAGGAUTUGCUGCUUGGCUAGCU
6071
 364-386





AD-1706548.1
UAGCCAAGCAGCAAAUCCUGU
5615
 367-387
ACAGGATUUGCTGCUUGGCUAGC
6072
 365-387





AD-1706549.1
AGCCAAGCAGCAAAUCCUGGU
5616
 368-388
ACCAGGAUUUGCUGCUUGGCUAG
6073
 366-388





AD-1706550.1
GCCAAGCAGCAAAUCCUGGAU
5617
 369-389
ATCCAGGAUUUGCUGCUUGGCUA
6074
 367-389





AD-1706578.1
ACCUGACCAGUCGUCCCAGAU
5618
 397-417
ATCUGGGACGACUGGUCAGGUGC
6075
 395-417





AD-1706579.1
CCUGACCAGUCGUCCCAGAAU
5619
 398-418
ATUCTGGGACGACUGGUCAGGUG
6076
 396-418





AD-1706580.1
CUGACCAGUCGUCCCAGAAUU
5620
 399-419
AAUUCUGGGACGACUGGUCAGGU
6077
 397-419





AD-1706581.1
UGACCAGUCGUCCCAGAAUAU
5621
 400-420
ATAUTCTGGGACGACUGGUCAGG
6078
 398-420





AD-1706582.1
GACCAGUCGUCCCAGAAUAAU
5622
 401-421
ATUATUCUGGGACGACUGGUCAG
6079
 399-421





AD-1706583.1
ACCAGUCGUCCCAGAAUAACU
  66
 402-422
AGUUAUTCUGGGACGACUGGUCA
  57
 400-422





AD-1706584.1
CCAGUCGUCCCAGAAUAACUU
5623
 403-423
AAGUTATUCUGGGACGACUGGUC
6080
 401-423





AD-1706585.1
CAGUCGUCCCAGAAUAACUCU
5624
 404-424
AGAGTUAUUCUGGGACGACUGGU
6081
 402-424





AD-1706586.1
AGUCGUCCCAGAAUAACUCAU
5625
 405-425
ATGAGUTAUUCTGGGACGACUGG
6082
 403-425





AD-1706587.1
GUCGUCCCAGAAUAACUCAUU
5626
 406-426
AAUGAGTUAUUCUGGGACGACUG
6083
 404-426





AD-1706588.1
UCGUCCCAGAAUAACUCAUCU
 151
 407-427
AGAUGAGUUAUTCUGGGACGACU
6084
 405-427





AD-1706589.1
CGUCCCAGAAUAACUCAUCCU
5627
 408-428
AGGATGAGUUATUCUGGGACGAC
6085
 406-428





AD-1706590.1
GUCCCAGAAUAACUCAUCCUU
5628
 409-429
AAGGAUGAGUUAUUCUGGGACGA
6086
 407-429





AD-1706591.1
UCCCAGAAUAACUCAUCCUCU
5629
 410-430
AGAGGATGAGUTAUUCUGGGACG
6087
 408-430





AD-1706592.1
CCCAGAAUAACUCAUCCUCCU
5630
 411-431
AGGAGGAUGAGTUAUUCUGGGAC
6088
 409-431





AD-1706593.1
CCAGAAUAACUCAUCCUCCAU
  67
 412-432
ATGGAGGAUGAGUUAUUCUGGGA
  59
 410-432





AD-1706594.1
CAGAAUAACUCAUCCUCCACU
5631
 413-433
AGUGGAGGAUGAGUUAUUCUGGG
6089
 411-433





AD-1706635.1
GGGAGUGUGGCUCCAGGGAAU
5632
 474-494
ATUCCCTGGAGCCACACUCCCUG
6090
 472-494





AD-1706636.1
GGAGUGUGGCUCCAGGGAAUU
5633
 475-495
AAUUCCCUGGAGCCACACUCCCU
6091
 473-495





AD-1706637.1
GAGUGUGGCUCCAGGGAAUGU
5634
 476-496
ACAUTCCCUGGAGCCACACUCCC
6092
 474-496





AD-1706638.1
AGUGUGGCUCCAGGGAAUGGU
 154
 477-497
ACCATUCCCUGGAGCCACACUCC
6093
 475-497





AD-1706639.1
GAGGAGGUCAUCAGCUUUGCU
5635
 498-518
AGCAAAGCUGATGACCUCCUCCC
6094
 496-518





AD-1706640.1
AGGAGGUCAUCAGCUUUGCUU
5636
 499-519
AAGCAAAGCUGAUGACCUCCUCC
6095
 497-519





AD-1706641.1
GGAGGUCAUCAGCUUUGCUAU
5637
 500-520
ATAGCAAAGCUGAUGACCUCCUC
6096
 498-520





AD-1706642.1
GAGGUCAUCAGCUUUGCUACU
5638
 501-521
AGUAGCAAAGCTGAUGACCUCCU
6097
 499-521





AD-1706643.1
AGGUCAUCAGCUUUGCUACUU
5639
 502-522
AAGUAGCAAAGCUGAUGACCUCC
6098
 500-522





AD-1706644.1
GGUCAUCAGCUUUGCUACUGU
5640
 503-523
ACAGTAGCAAAGCUGAUGACCUC
6099
 501-523





AD-1706645.1
GUCAUCAGCUUUGCUACUGUU
5641
 504-524
AACAGUAGCAAAGCUGAUGACCU
6100
 502-524





AD-1706646.1
UCAUCAGCUUUGCUACUGUCU
5642
 505-525
AGACAGTAGCAAAGCUGAUGACC
6101
 503-525





AD-1706649.1
UCAGCUUUGCUACUGUCACAU
5643
 508-528
ATGUGACAGUAGCAAAGCUGAUG
6102
 506-528





AD-1706650.1
CAGCUUUGCUACUGUCACAGU
5644
 509-529
ACUGTGACAGUAGCAAAGCUGAU
6103
 507-529





AD-1706651.1
AGCUUUGCUACUGUCACAGAU
5645
 510-530
ATCUGUGACAGTAGCAAAGCUGA
6104
 508-530





AD-1706652.1
GCUUUGCUACUGUCACAGACU
5646
 511-531
AGUCTGTGACAGUAGCAAAGCUG
6105
 509-531





AD-1706653.1
CUUUGCUACUGUCACAGACUU
5647
 512-532
AAGUCUGUGACAGUAGCAAAGCU
6106
 510-532





AD-1706654.1
UUUGCUACUGUCACAGACUCU
5648
 513-533
AGAGTCTGUGACAGUAGCAAAGC
6107
 511-533





AD-1706655.1
UUGCUACUGUCACAGACUCCU
5649
 514-534
AGGAGUCUGUGACAGUAGCAAAG
6108
 512-534





AD-1706656.1
UGCUACUGUCACAGACUCCAU
5650
 515-535
ATGGAGTCUGUGACAGUAGCAAA
6109
 513-535





AD-1706660.1
ACUGUCACAGACUCCACUUCU
5651
 519-539
AGAAGUGGAGUCUGUGACAGUAG
6110
 517-539





AD-1706661.1
CUGUCACAGACUCCACUUCAU
  68
 520-540
ATGAAGTGGAGTCUGUGACAGUA
6111
 518-540





AD-1706662.1
UGUCACAGACUCCACUUCAGU
  69
 521-541
ACUGAAGUGGAGUCUGUGACAGU
  61
 519-541





AD-1706664.1
UCACAGACUCCACUUCAGCCU
5652
 523-543
AGGCTGAAGUGGAGUCUGUGACA
6112
 521-543





AD-1706665.1
CACAGACUCCACUUCAGCCUU
5653
 524-544
AAGGCUGAAGUGGAGUCUGUGAC
6113
 522-544





AD-1706666.1
ACAGACUCCACUUCAGCCUAU
5654
 525-545
ATAGGCTGAAGTGGAGUCUGUGA
6114
 523-545





AD-1706667.1
CAGACUCCACUUCAGCCUACU
5655
 526-546
AGUAGGCUGAAGUGGAGUCUGUG
6115
 524-546





AD-1706668.1
AGACUCCACUUCAGCCUACAU
5656
 527-547
ATGUAGGCUGAAGUGGAGUCUGU
6116
 525-547





AD-1706669.1
GACUCCACUUCAGCCUACAGU
5657
 528-548
ACUGTAGGCUGAAGUGGAGUCUG
6117
 526-548





AD-1706670.1
ACUCCACUUCAGCCUACAGCU
5658
 529-549
AGCUGUAGGCUGAAGUGGAGUCU
6118
 527-549





AD-1706671.1
CUCCACUUCAGCCUACAGCUU
5659
 530-550
AAGCTGTAGGCTGAAGUGGAGUC
6119
 528-550





AD-1706672.1
UCCACUUCAGCCUACAGCUCU
 156
 531-551
AGAGCUGUAGGCUGAAGUGGAGU
 291
 529-551





AD-1706673.1
CCACUUCAGCCUACAGCUCCU
5660
 532-552
AGGAGCTGUAGGCUGAAGUGGAG
6120
 530-552





AD-1706674.1
CACUUCAGCCUACAGCUCCCU
5661
 533-553
AGGGAGCUGUAGGCUGAAGUGGA
6121
 531-553





AD-1706675.1
ACUUCAGCCUACAGCUCCCUU
5662
 534-554
AAGGGAGCUGUAGGCUGAAGUGG
6122
 532-554





AD-1706678.1
UCAGCCUACAGCUCCCUGCUU
5663
 537-557
AAGCAGGGAGCTGUAGGCUGAAG
6123
 535-557





AD-1706729.1
CACCUGUACCAUGCCCGCCUU
5664
 588-608
AAGGCGGGCAUGGUACAGGUGGU
6124
 586-608





AD-1706731.1
CCUGUACCAUGCCCGCCUGUU
5665
 590-610
AACAGGCGGGCAUGGUACAGGUG
6125
 588-610





AD-1706732.1
CUGUACCAUGCCCGCCUGUGU
5666
 591-611
ACACAGGCGGGCAUGGUACAGGU
6126
 589-611





AD-1706735.1
UACCAUGCCCGCCUGUGGCUU
 160
 594-614
AAGCCACAGGCGGGCAUGGUACA
 295
 592-614





AD-1706745.1
CACCCUUCCUGGCACUCUUUU
5667
 626-646
AAAAGAGUGCCAGGAAGGGUGGG
6127
 624-646





AD-1706746.1
ACCCUUCCUGGCACUCUUUGU
5668
 627-647
ACAAAGAGUGCCAGGAAGGGUGG
6128
 625-647





AD-1706747.1
CCCUUCCUGGCACUCUUUGCU
 161
 628-648
AGCAAAGAGUGCCAGGAAGGGUG
 296
 626-648





AD-1706748.1
CCUUCCUGGCACUCUUUGCUU
5669
 629-649
AAGCAAAGAGUGCCAGGAAGGGU
6129
 627-649





AD-1706749.1
CUUCCUGGCACUCUUUGCUUU
5670
 630-650
AAAGCAAAGAGTGCCAGGAAGGG
6130
 628-650





AD-1706750.1
UUCCUGGCACUCUUUGCUUGU
5671
 631-651
ACAAGCAAAGAGUGCCAGGAAGG
6131
 629-651





AD-1706751.1
UCCUGGCACUCUUUGCUUGAU
5672
 632-652
ATCAAGCAAAGAGUGCCAGGAAG
6132
 630-652





AD-1706752.1
CCUGGCACUCUUUGCUUGAGU
5673
 633-653
ACUCAAGCAAAGAGUGCCAGGAA
6133
 631-653





AD-1706753.1
CUGGCACUCUUUGCUUGAGGU
5674
 634-654
ACCUCAAGCAAAGAGUGCCAGGA
6134
 632-654





AD-1706754.1
UGGCACUCUUUGCUUGAGGAU
5675
 635-655
ATCCTCAAGCAAAGAGUGCCAGG
6135
 633-655





AD-1706755.1
GGCACUCUUUGCUUGAGGAUU
5676
 636-656
AAUCCUCAAGCAAAGAGUGCCAG
6136
 634-656





AD-1706756.1
GCACUCUUUGCUUGAGGAUCU
5677
 637-657
AGAUCCTCAAGCAAAGAGUGCCA
6137
 635-657





AD-1706758.1
ACUCUUUGCUUGAGGAUCUUU
5678
 639-659
AAAGAUCCUCAAGCAAAGAGUGC
6138
 637-659





AD-1706759.1
CUCUUUGCUUGAGGAUCUUCU
 162
 640-660
AGAAGATCCUCAAGCAAAGAGUG
6139
 638-660





AD-1706760.1
UCUUUGCUUGAGGAUCUUCCU
5679
 641-661
AGGAAGAUCCUCAAGCAAAGAGU
6140
 639-661





AD-1706761.1
CUUUGCUUGAGGAUCUUCCGU
  70
 642-662
ACGGAAGAUCCTCAAGCAAAGAG
  62
 640-662





AD-1706762.1
UUUGCUUGAGGAUCUUCCGAU
5680
 643-663
ATCGGAAGAUCCUCAAGCAAAGA
6141
 641-663





AD-1706763.1
UUGCUUGAGGAUCUUCCGAUU
5681
 644-664
AAUCGGAAGAUCCUCAAGCAAAG
6142
 642-664





AD-1706764.1
UGCUUGAGGAUCUUCCGAUGU
5682
 645-665
ACAUCGGAAGATCCUCAAGCAAA
6143
 643-665





AD-1706765.1
GCUUGAGGAUCUUCCGAUGGU
5683
 646-666
ACCATCGGAAGAUCCUCAAGCAA
6144
 644-666





AD-1706796.1
CUGGCUGAGCACCACAUCACU
5684
 702-722
AGUGAUGUGGUGCUCAGCCAGGA
6145
 700-722





AD-1706797.1
UGGCUGAGCACCACAUCACCU
5685
 703-723
AGGUGATGUGGTGCUCAGCCAGG
6146
 701-723





AD-1706798.1
GGCUGAGCACCACAUCACCAU
5686
 704-724
ATGGTGAUGUGGUGCUCAGCCAG
6147
 702-724





AD-1706799.1
GCUGAGCACCACAUCACCAAU
5687
 705-725
ATUGGUGAUGUGGUGCUCAGCCA
6148
 703-725





AD-1706800.1
CUGAGCACCACAUCACCAACU
5688
 706-726
AGUUGGTGAUGTGGUGCUCAGCC
6149
 704-726





AD-1706801.1
UGAGCACCACAUCACCAACCU
5689
 707-727
AGGUTGGUGAUGUGGUGCUCAGC
6150
 705-727





AD-1706802.1
GAGCACCACAUCACCAACCUU
 164
 708-728
AAGGTUGGUGATGUGGUGCUCAG
6151
 706-728





AD-1706803.1
AGCACCACAUCACCAACCUGU
5690
 709-729
ACAGGUTGGUGAUGUGGUGCUCA
6152
 707-729





AD-1706804.1
GCACCACAUCACCAACCUGGU
5691
 710-730
ACCAGGTUGGUGAUGUGGUGCUC
6153
 708-730





AD-1706807.1
CCACAUCACCAACCUGGGCUU
5692
 713-733
AAGCCCAGGUUGGUGAUGUGGUG
6154
 711-733





AD-1706808.1
CACAUCACCAACCUGGGCUGU
5693
 714-734
ACAGCCCAGGUTGGUGAUGUGGU
6155
 712-734





AD-1706809.1
ACAUCACCAACCUGGGCUGGU
5694
 715-735
ACCAGCCCAGGTUGGUGAUGUGG
6156
 713-735





AD-1706811.1
AUCACCAACCUGGGCUGGCAU
5695
 717-737
ATGCCAGCCCAGGUUGGUGAUGU
6157
 715-737





AD-1706812.1
UCACCAACCUGGGCUGGCAUU
5696
 718-738
AAUGCCAGCCCAGGUUGGUGAUG
6158
 716-738





AD-1706831.1
UACCUUAACUCUGCCCUCUAU
5697
 737-757
ATAGAGGGCAGAGUUAAGGUAUG
6159
 735-757





AD-1706832.1
ACCUUAACUCUGCCCUCUAGU
5698
 738-758
ACUAGAGGGCAGAGUUAAGGUAU
6160
 736-758





AD-1706833.1
CCUUAACUCUGCCCUCUAGUU
5699
 739-759
AACUAGAGGGCAGAGUUAAGGUA
6161
 737-759





AD-1706834.1
CUUAACUCUGCCCUCUAGUGU
5700
 740-760
ACACTAGAGGGCAGAGUUAAGGU
6162
 738-760





AD-1706835.1
UUAACUCUGCCCUCUAGUGGU
5701
 741-761
ACCACUAGAGGGCAGAGUUAAGG
6163
 739-761





AD-1706836.1
UAACUCUGCCCUCUAGUGGCU
5702
 742-762
AGCCACTAGAGGGCAGAGUUAAG
6164
 740-762





AD-1706848.1
AAGUCUGGUGUCCUGAAACUU
5703
 774-794
AAGUTUCAGGACACCAGACUUCU
6165
 772-794





AD-1706849.1
AGUCUGGUGUCCUGAAACUGU
5704
 775-795
ACAGTUTCAGGACACCAGACUUC
6166
 773-795





AD-1706850.1
GUCUGGUGUCCUGAAACUGCU
5705
 776-796
AGCAGUTUCAGGACACCAGACUU
6167
 774-796





AD-1706851.1
UCUGGUGUCCUGAAACUGCAU
5706
 777-797
ATGCAGTUUCAGGACACCAGACU
6168
 775-797





AD-1706852.1
CUGGUGUCCUGAAACUGCAAU
5707
 778-798
ATUGCAGUUUCAGGACACCAGAC
6169
 776-798





AD-1706853.1
UGGUGUCCUGAAACUGCAACU
5708
 779-799
AGUUGCAGUUUCAGGACACCAGA
6170
 777-799





AD-1706854.1
GGUGUCCUGAAACUGCAACUU
5709
 780-800
AAGUTGCAGUUTCAGGACACCAG
6171
 778-800





AD-1706855.1
GUGUCCUGAAACUGCAACUAU
5710
 781-801
ATAGTUGCAGUTUCAGGACACCA
6172
 779-801





AD-1706856.1
UGUCCUGAAACUGCAACUAGU
5711
 782-802
ACUAGUTGCAGTUUCAGGACACC
6173
 780-802





AD-1706857.1
GUCCUGAAACUGCAACUAGAU
 169
 783-803
ATCUAGTUGCAGUUUCAGGACAC
6174
 781-803





AD-1706858.1
UCCUGAAACUGCAACUAGACU
5712
 784-804
AGUCTAGUUGCAGUUUCAGGACA
6175
 782-804





AD-1706859.1
CCUGAAACUGCAACUAGACUU
5713
 785-805
AAGUCUAGUUGCAGUUUCAGGAC
6176
 783-805





AD-1706860.1
CUGAAACUGCAACUAGACUGU
5714
 786-806
ACAGTCTAGUUGCAGUUUCAGGA
6177
 784-806





AD-1706861.1
UGAAACUGCAACUAGACUGCU
5715
 787-807
AGCAGUCUAGUTGCAGUUUCAGG
6178
 785-807





AD-1706862.1
GAAACUGCAACUAGACUGCAU
5716
 788-808
ATGCAGTCUAGTUGCAGUUUCAG
6179
 786-808





AD-1706863.1
AAACUGCAACUAGACUGCAGU
5717
 789-809
ACUGCAGUCUAGUUGCAGUUUCA
6180
 787-809





AD-1706864.1
AACUGCAACUAGACUGCAGAU
5718
 790-810
ATCUGCAGUCUAGUUGCAGUUUC
6181
 788-810





AD-1706866.1
CUGCAACUAGACUGCAGACCU
5719
 792-812
AGGUCUGCAGUCUAGUUGCAGUU
6182
 790-812





AD-1706873.1
GGCAACAGCACAGUUACUGGU
5720
 819-839
ACCAGUAACUGTGCUGUUGCCUU
6183
 817-839





AD-1706874.1
GCAACAGCACAGUUACUGGAU
5721
 820-840
ATCCAGTAACUGUGCUGUUGCCU
6184
 818-840





AD-1706875.1
CAACAGCACAGUUACUGGACU
5722
 821-841
AGUCCAGUAACTGUGCUGUUGCC
6185
 819-841





AD-1706876.1
AACAGCACAGUUACUGGACAU
5723
 822-842
ATGUCCAGUAACUGUGCUGUUGC
6186
 820-842





AD-1706877.1
ACAGCACAGUUACUGGACAAU
 170
 823-843
ATUGTCCAGUAACUGUGCUGUUG
6187
 821-843





AD-1706878.1
CAGCACAGUUACUGGACAACU
5724
 824-844
AGUUGUCCAGUAACUGUGCUGUU
6188
 822-844





AD-1706879.1
AGCACAGUUACUGGACAACCU
5725
 825-845
AGGUTGTCCAGTAACUGUGCUGU
6189
 823-845





AD-1706908.1
CUUGGACACAGCAGGACACCU
5726
 854-874
AGGUGUCCUGCTGUGUCCAAGAG
6190
 852-874





AD-1706909.1
UUGGACACAGCAGGACACCAU
5727
 855-875
ATGGTGTCCUGCUGUGUCCAAGA
6191
 853-875





AD-1706910.1
UGGACACAGCAGGACACCAGU
5728
 856-876
ACUGGUGUCCUGCUGUGUCCAAG
6192
 854-876





AD-1706911.1
GGACACAGCAGGACACCAGCU
5729
 857-877
AGCUGGTGUCCTGCUGUGUCCAA
6193
 855-877





AD-1706912.1
GACACAGCAGGACACCAGCAU
5730
 858-878
ATGCTGGUGUCCUGCUGUGUCCA
6194
 856-878





AD-1706913.1
ACACAGCAGGACACCAGCAGU
5731
 859-879
ACUGCUGGUGUCCUGCUGUGUCC
6195
 857-879





AD-1706914.1
CACAGCAGGACACCAGCAGCU
5732
 860-880
AGCUGCTGGUGTCCUGCUGUGUC
6196
 858-880





AD-1706918.1
GCAGGACACCAGCAGCCCUUU
5733
 864-884
AAAGGGCUGCUGGUGUCCUGCUG
6197
 862-884





AD-1706921.1
GGACACCAGCAGCCCUUCCUU
5734
 867-887
AAGGAAGGGCUGCUGGUGUCCUG
6198
 865-887





AD-1706922.1
GACACCAGCAGCCCUUCCUAU
 173
 868-888
ATAGGAAGGGCTGCUGGUGUCCU
6199
 866-888





AD-1706923.1
ACACCAGCAGCCCUUCCUAGU
5735
 869-889
ACUAGGAAGGGCUGCUGGUGUCC
6200
 867-889





AD-1706925.1
ACCAGCAGCCCUUCCUAGAGU
5736
 871-891
ACUCTAGGAAGGGCUGCUGGUGU
6201
 869-891





AD-1706926.1
CCAGCAGCCCUUCCUAGAGCU
5737
 872-892
AGCUCUAGGAAGGGCUGCUGGUG
6202
 870-892





AD-1706927.1
CAGCAGCCCUUCCUAGAGCUU
5738
 873-893
AAGCTCTAGGAAGGGCUGCUGGU
6203
 871-893





AD-1706929.1
GCAGCCCUUCCUAGAGCUUAU
5739
 875-895
ATAAGCTCUAGGAAGGGCUGCUG
6204
 873-895





AD-1706930.1
CAGCCCUUCCUAGAGCUUAAU
5740
 876-896
ATUAAGCUCUAGGAAGGGCUGCU
6205
 874-896





AD-1706931.1
AGCCCUUCCUAGAGCUUAAGU
5741
 877-897
ACUUAAGCUCUAGGAAGGGCUGC
6206
 875-897





AD-1706932.1
GCCCUUCCUAGAGCUUAAGAU
5742
 878-898
ATCUTAAGCUCTAGGAAGGGCUG
6207
 876-898





AD-1706933.1
CCCUUCCUAGAGCUUAAGAUU
5743
 879-899
AAUCTUAAGCUCUAGGAAGGGCU
6208
 877-899





AD-1706934.1
CCUUCCUAGAGCUUAAGAUCU
 174
 880-900
AGAUCUTAAGCTCUAGGAAGGGC
6209
 878-900





AD-1706982.1
UUACGUAGACUUCCAGGAACU
5744
 986-1006
AGUUCCTGGAAGUCUACGUAAUG
6210
 984-1006





AD-1706983.1
UACGUAGACUUCCAGGAACUU
 178
 987-1007
AAGUTCCUGGAAGUCUACGUAAU
6211
 985-1007





AD-1706984.1
ACGUAGACUUCCAGGAACUGU
5745
 988-1008
ACAGTUCCUGGAAGUCUACGUAA
6212
 986-1008





AD-1706985.1
CGUAGACUUCCAGGAACUGGU
5746
 989-1009
ACCAGUTCCUGGAAGUCUACGUA
6213
 987-1009





AD-1706987.1
UAGACUUCCAGGAACUGGGAU
5747
 991-1011
ATCCCAGUUCCTGGAAGUCUACG
6214
 989-1011





AD-1706988.1
AGACUUCCAGGAACUGGGAUU
5748
 992-1012
AAUCCCAGUUCCUGGAAGUCUAC
6215
 990-1012





AD-1706989.1
GACUUCCAGGAACUGGGAUGU
5749
 993-1013
ACAUCCCAGUUCCUGGAAGUCUA
6216
 991-1013





AD-1706990.1
ACUUCCAGGAACUGGGAUGGU
5750
 994-1014
ACCATCCCAGUTCCUGGAAGUCU
6217
 992-1014





AD-1706991.1
CUUCCAGGAACUGGGAUGGCU
5751
 995-1015
AGCCAUCCCAGTUCCUGGAAGUC
6218
 993-1015





AD-1707013.1
GACUGGAUACUGCAGCCCGAU
5752
1017-1037
ATCGGGCUGCAGUAUCCAGUCCC
6219
1015-1037





AD-1707014.1
ACUGGAUACUGCAGCCCGAGU
5753
1018-1038
ACUCGGGCUGCAGUAUCCAGUCC
6220
1016-1038





AD-1707015.1
CUGGAUACUGCAGCCCGAGGU
5754
1019-1039
ACCUCGGGCUGCAGUAUCCAGUC
6221
1017-1039





AD-1707016.1
GUACCAGCUGAAUUACUGCAU
5755
1040-1060
ATGCAGTAAUUCAGCUGGUACCC
6222
1038-1060





AD-1707017.1
UACCAGCUGAAUUACUGCAGU
 181
1041-1061
ACUGCAGUAAUTCAGCUGGUACC
6223
1039-1061





AD-1707018.1
ACCAGCUGAAUUACUGCAGUU
5756
1042-1062
AACUGCAGUAATUCAGCUGGUAC
6224
1040-1062





AD-1707019.1
CCAGCUGAAUUACUGCAGUGU
5757
1043-1063
ACACTGCAGUAAUUCAGCUGGUA
6225
1041-1063





AD-1707020.1
CAGCUGAAUUACUGCAGUGGU
5758
1044-1064
ACCACUGCAGUAAUUCAGCUGGU
6226
1042-1064





AD-1707021.1
AGCUGAAUUACUGCAGUGGGU
5759
1045-1065
ACCCACTGCAGTAAUUCAGCUGG
6227
1043-1065





AD-1707022.1
GCUGAAUUACUGCAGUGGGCU
5760
1046-1066
AGCCCACUGCAGUAAUUCAGCUG
6228
1044-1066





AD-1707023.1
CUGAAUUACUGCAGUGGGCAU
5761
1047-1067
ATGCCCACUGCAGUAAUUCAGCU
6229
1045-1067





AD-1707024.1
UGAAUUACUGCAGUGGGCAGU
5762
1048-1068
ACUGCCCACUGCAGUAAUUCAGC
6230
1046-1068





AD-1707025.1
GAAUUACUGCAGUGGGCAGUU
5763
1049-1069
AACUGCCCACUGCAGUAAUUCAG
6231
1047-1069





AD-1707030.1
ACUGCAGUGGGCAGUGCCCUU
 182
1054-1074
AAGGGCACUGCCCACUGCAGUAA
 317
1052-1074





AD-1707047.1
CAGGCAUUGCUGCCUCUUUCU
 183
1093-1113
AGAAAGAGGCAGCAAUGCCUGGG
 318
1091-1113





AD-1707048.1
AGGCAUUGCUGCCUCUUUCCU
5764
1094-1114
AGGAAAGAGGCAGCAAUGCCUGG
6232
1092-1114





AD-1707049.1
GGCAUUGCUGCCUCUUUCCAU
5765
1095-1115
ATGGAAAGAGGCAGCAAUGCCUG
6233
1093-1115





AD-1707050.1
GCAUUGCUGCCUCUUUCCAUU
5766
1096-1116
AAUGGAAAGAGGCAGCAAUGCCU
6234
1094-1116





AD-1707051.1
CAUUGCUGCCUCUUUCCAUUU
5767
1097-1117
AAAUGGAAAGAGGCAGCAAUGCC
6235
1095-1117





AD-1707052.1
AUUGCUGCCUCUUUCCAUUCU
5768
1098-1118
AGAATGGAAAGAGGCAGCAAUGC
6236
1096-1118





AD-1707053.1
UUGCUGCCUCUUUCCAUUCUU
5769
1099-1119
AAGAAUGGAAAGAGGCAGCAAUG
6237
1097-1119





AD-1707054.1
UGCUGCCUCUUUCCAUUCUGU
5770
1100-1120
ACAGAATGGAAAGAGGCAGCAAU
6238
1098-1120





AD-1707055.1
GCUGCCUCUUUCCAUUCUGCU
5771
1101-1121
AGCAGAAUGGAAAGAGGCAGCAA
6239
1099-1121





AD-1707056.1
CUGCCUCUUUCCAUUCUGCCU
5772
1102-1122
AGGCAGAAUGGAAAGAGGCAGCA
6240
1100-1122





AD-1707057.1
UGCCUCUUUCCAUUCUGCCGU
5773
1103-1123
ACGGCAGAAUGGAAAGAGGCAGC
6241
1101-1123





AD-1707058.1
GCCUCUUUCCAUUCUGCCGUU
5774
1104-1124
AACGGCAGAAUGGAAAGAGGCAG
6242
1102-1124





AD-1707059.1
CCUCUUUCCAUUCUGCCGUCU
5775
1105-1125
AGACGGCAGAATGGAAAGAGGCA
6243
1103-1125





AD-1707060.1
CUCUUUCCAUUCUGCCGUCUU
5776
1106-1126
AAGACGGCAGAAUGGAAAGAGGC
6244
1104-1126





AD-1707061.1
UCUUUCCAUUCUGCCGUCUUU
5777
1107-1127
AAAGACGGCAGAAUGGAAAGAGG
6245
1105-1127





AD-1707062.1
CUUUCCAUUCUGCCGUCUUCU
5778
1108-1128
AGAAGACGGCAGAAUGGAAAGAG
6246
1106-1128





AD-1707063.1
UUUCCAUUCUGCCGUCUUCAU
 184
1109-1129
ATGAAGACGGCAGAAUGGAAAGA
6247
1107-1129





AD-1707064.1
UUCCAUUCUGCCGUCUUCAGU
5779
1110-1130
ACUGAAGACGGCAGAAUGGAAAG
6248
1108-1130





AD-1707065.1
UCCAUUCUGCCGUCUUCAGCU
5780
1111-1131
AGCUGAAGACGGCAGAAUGGAAA
6249
1109-1131





AD-1707066.1
CCAUUCUGCCGUCUUCAGCCU
5781
1112-1132
AGGCTGAAGACGGCAGAAUGGAA
6250
1110-1132





AD-1707067.1
CAUUCUGCCGUCUUCAGCCUU
5782
1113-1133
AAGGCUGAAGACGGCAGAAUGGA
6251
1111-1133





AD-1707070.1
UCUGCCGUCUUCAGCCUCCUU
5783
1116-1136
AAGGAGGCUGAAGACGGCAGAAU
6252
1114-1136





AD-1707074.1
CCGUCUUCAGCCUCCUCAAAU
5784
1120-1140
ATUUGAGGAGGCUGAAGACGGCA
6253
1118-1140





AD-1707075.1
CGUCUUCAGCCUCCUCAAAGU
 185
1121-1141
ACUUTGAGGAGGCUGAAGACGGC
6254
1119-1141





AD-1707076.1
GUCUUCAGCCUCCUCAAAGCU
5785
1122-1142
AGCUTUGAGGAGGCUGAAGACGG
6255
1120-1142





AD-1707077.1
UCUUCAGCCUCCUCAAAGCCU
5786
1123-1143
AGGCTUTGAGGAGGCUGAAGACG
6256
1121-1143





AD-1707078.1
CUUCAGCCUCCUCAAAGCCAU
5787
1124-1144
ATGGCUTUGAGGAGGCUGAAGAC
6257
1122-1144





AD-1707080.1
UCAGCCUCCUCAAAGCCAACU
5788
1126-1146
AGUUGGCUUUGAGGAGGCUGAAG
6258
1124-1146





AD-1707081.1
CAGCCUCCUCAAAGCCAACAU
5789
1127-1147
ATGUTGGCUUUGAGGAGGCUGAA
6259
1125-1147





AD-1707082.1
AGCCUCCUCAAAGCCAACAAU
5790
1128-1148
ATUGTUGGCUUTGAGGAGGCUGA
6260
1126-1148





AD-1707083.1
GCCUCCUCAAAGCCAACAAUU
5791
1129-1149
AAUUGUTGGCUTUGAGGAGGCUG
6261
1127-1149





AD-1707084.1
CCUCCUCAAAGCCAACAAUCU
5792
1130-1150
AGAUTGTUGGCTUUGAGGAGGCU
6262
1128-1150





AD-1707085.1
CUCCUCAAAGCCAACAAUCCU
5793
1131-1151
AGGATUGUUGGCUUUGAGGAGGC
6263
1129-1151





AD-1707086.1
UCCUCAAAGCCAACAAUCCUU
5794
1132-1152
AAGGAUTGUUGGCUUUGAGGAGG
6264
1130-1152





AD-1707087.1
CCUCAAAGCCAACAAUCCUUU
 186
1133-1153
AAAGGATUGUUGGCUUUGAGGAG
6265
1131-1153





AD-1707088.1
CUCAAAGCCAACAAUCCUUGU
5795
1134-1154
ACAAGGAUUGUTGGCUUUGAGGA
6266
1132-1154





AD-1707092.1
AAGCCAACAAUCCUUGGCCUU
5796
1138-1158
AAGGCCAAGGATUGUUGGCUUUG
6267
1136-1158





AD-1707093.1
AGCCAACAAUCCUUGGCCUGU
5797
1139-1159
ACAGGCCAAGGAUUGUUGGCUUU
6268
1137-1159





AD-1707094.1
GCCAACAAUCCUUGGCCUGCU
5798
1140-1160
AGCAGGCCAAGGAUUGUUGGCUU
6269
1138-1160





AD-1707095.1
CCAACAAUCCUUGGCCUGCCU
5799
1141-1161
AGGCAGGCCAAGGAUUGUUGGCU
6270
1139-1161





AD-1707097.1
AACAAUCCUUGGCCUGCCAGU
5800
1143-1163
ACUGGCAGGCCAAGGAUUGUUGG
6271
1141-1163





AD-1707098.1
ACAAUCCUUGGCCUGCCAGUU
5801
1144-1164
AACUGGCAGGCCAAGGAUUGUUG
6272
1142-1164





AD-1707105.1
UUGGCCUGCCAGUACCUCCUU
5802
1151-1171
AAGGAGGUACUGGCAGGCCAAGG
6273
1149-1171





AD-1707125.1
GUUGUGUCCCUACUGCCCGAU
5803
1171-1191
ATCGGGCAGUAGGGACACAACAG
6274
1169-1191





AD-1707126.1
UUGUGUCCCUACUGCCCGAAU
5804
1172-1192
ATUCGGGCAGUAGGGACACAACA
6275
1170-1192





AD-1707127.1
UGUGUCCCUACUGCCCGAAGU
5805
1173-1193
ACUUCGGGCAGTAGGGACACAAC
6276
1171-1193





AD-1707128.1
GUGUCCCUACUGCCCGAAGGU
 189
1174-1194
ACCUTCGGGCAGUAGGGACACAA
6277
1172-1194





AD-1707129.1
UGUCCCUACUGCCCGAAGGCU
5806
1175-1195
AGCCTUCGGGCAGUAGGGACACA
6278
1173-1195





AD-1707132.1
UCUCUCUCCUCUACCUGGAUU
5807
1198-1218
AAUCCAGGUAGAGGAGAGAGAGG
6279
1196-1218





AD-1707133.1
CUCUCUCCUCUACCUGGAUCU
5808
1199-1219
AGAUCCAGGUAGAGGAGAGAGAG
6280
1197-1219





AD-1707134.1
UCUCUCCUCUACCUGGAUCAU
5809
1200-1220
ATGATCCAGGUAGAGGAGAGAGA
6281
1198-1220





AD-1707135.1
CUCUCCUCUACCUGGAUCAUU
5810
1201-1221
AAUGAUCCAGGTAGAGGAGAGAG
6282
1199-1221





AD-1707136.1
UCUCCUCUACCUGGAUCAUAU
5811
1202-1222
ATAUGATCCAGGUAGAGGAGAGA
6283
1200-1222





AD-1707137.1
CUCCUCUACCUGGAUCAUAAU
5812
1203-1223
ATUATGAUCCAGGUAGAGGAGAG
6284
1201-1223





AD-1707138.1
UCCUCUACCUGGAUCAUAAUU
5813
1204-1224
AAUUAUGAUCCAGGUAGAGGAGA
6285
1202-1224





AD-1707139.1
CCUCUACCUGGAUCAUAAUGU
5814
1205-1225
ACAUTATGAUCCAGGUAGAGGAG
6286
1203-1225





AD-1707140.1
CUCUACCUGGAUCAUAAUGGU
5815
1206-1226
ACCATUAUGAUCCAGGUAGAGGA
6287
1204-1226





AD-1707141.1
UCUACCUGGAUCAUAAUGGCU
5816
1207-1227
AGCCAUTAUGATCCAGGUAGAGG
6288
1205-1227





AD-1707142.1
CUACCUGGAUCAUAAUGGCAU
5817
1208-1228
ATGCCATUAUGAUCCAGGUAGAG
6289
1206-1228





AD-1707143.1
UACCUGGAUCAUAAUGGCAAU
 191
1209-1229
ATUGCCAUUAUGAUCCAGGUAGA
6290
1207-1229





AD-1707144.1
ACCUGGAUCAUAAUGGCAAUU
5818
1210-1230
AAUUGCCAUUATGAUCCAGGUAG
6291
1208-1230





AD-1707145.1
CCUGGAUCAUAAUGGCAAUGU
5819
1211-1231
ACAUTGCCAUUAUGAUCCAGGUA
6292
1209-1231





AD-1707146.1
CUGGAUCAUAAUGGCAAUGUU
5820
1212-1232
AACATUGCCAUTAUGAUCCAGGU
6293
1210-1232





AD-1707147.1
UGGAUCAUAAUGGCAAUGUGU
5821
1213-1233
ACACAUTGCCATUAUGAUCCAGG
6294
1211-1233





AD-1707148.1
GGAUCAUAAUGGCAAUGUGGU
5822
1214-1234
ACCACATUGCCAUUAUGAUCCAG
6295
1212-1234





AD-1707149.1
GAUCAUAAUGGCAAUGUGGUU
5823
1215-1235
AACCACAUUGCCAUUAUGAUCCA
6296
1213-1235





AD-1707150.1
AUCAUAAUGGCAAUGUGGUCU
5824
1216-1236
AGACCACAUUGCCAUUAUGAUCC
6297
1214-1236





AD-1707151.1
UCAUAAUGGCAAUGUGGUCAU
5825
1217-1237
ATGACCACAUUGCCAUUAUGAUC
6298
1215-1237





AD-1707152.1
CAUAAUGGCAAUGUGGUCAAU
5826
1218-1238
ATUGACCACAUTGCCAUUAUGAU
6299
1216-1238





AD-1707153.1
AUAAUGGCAAUGUGGUCAAGU
5827
1219-1239
ACUUGACCACATUGCCAUUAUGA
6300
1217-1239





AD-1707154.1
UAAUGGCAAUGUGGUCAAGAU
5828
1220-1240
ATCUTGACCACAUUGCCAUUAUG
6301
1218-1240





AD-1707155.1
AAUGGCAAUGUGGUCAAGACU
 192
1221-1241
AGUCTUGACCACAUUGCCAUUAU
6302
1219-1241





AD-1707156.1
AUGGCAAUGUGGUCAAGACGU
5829
1222-1242
ACGUCUTGACCACAUUGCCAUUA
6303
1220-1242





AD-1707157.1
UGGCAAUGUGGUCAAGACGGU
5830
1223-1243
ACCGTCTUGACCACAUUGCCAUU
6304
1221-1243





AD-1707158.1
GGCAAUGUGGUCAAGACGGAU
5831
1224-1244
ATCCGUCUUGACCACAUUGCCAU
6305
1222-1244





AD-1707159.1
GCAAUGUGGUCAAGACGGAUU
5832
1225-1245
AAUCCGTCUUGACCACAUUGCCA
6306
1223-1245





AD-1707160.1
CAAUGUGGUCAAGACGGAUGU
5833
1226-1246
ACAUCCGUCUUGACCACAUUGCC
6307
1224-1246





AD-1707161.1
AAUGUGGUCAAGACGGAUGUU
5834
1227-1247
AACATCCGUCUTGACCACAUUGC
6308
1225-1247





AD-1707162.1
AUGUGGUCAAGACGGAUGUGU
5835
1228-1248
ACACAUCCGUCTUGACCACAUUG
6309
1226-1248





AD-1707163.1
UGUGGUCAAGACGGAUGUGCU
5836
1229-1249
AGCACATCCGUCUUGACCACAUU
6310
1227-1249





AD-1707164.1
GUGGUCAAGACGGAUGUGCCU
5837
1230-1250
AGGCACAUCCGTCUUGACCACAU
6311
1228-1250





AD-1707165.1
UGGUCAAGACGGAUGUGCCAU
5838
1231-1251
ATGGCACAUCCGUCUUGACCACA
6312
1229-1251





AD-1707166.1
GGUCAAGACGGAUGUGCCAGU
5839
1232-1252
ACUGGCACAUCCGUCUUGACCAC
6313
1230-1252





AD-1707167.1
GUCAAGACGGAUGUGCCAGAU
5840
1233-1253
ATCUGGCACAUCCGUCUUGACCA
6314
1231-1253





AD-1707168.1
UCAAGACGGAUGUGCCAGAUU
5841
1234-1254
AAUCTGGCACATCCGUCUUGACC
6315
1232-1254





AD-1707169.1
CAAGACGGAUGUGCCAGAUAU
5842
1235-1255
ATAUCUGGCACAUCCGUCUUGAC
6316
1233-1255





AD-1707170.1
AAGACGGAUGUGCCAGAUAUU
 193
1236-1256
AAUATCTGGCACAUCCGUCUUGA
6317
1234-1256





AD-1707171.1
AGACGGAUGUGCCAGAUAUGU
5843
1237-1257
ACAUAUCUGGCACAUCCGUCUUG
6318
1235-1257





AD-1707172.1
GACGGAUGUGCCAGAUAUGGU
5844
1238-1258
ACCATATCUGGCACAUCCGUCUU
6319
1236-1258





AD-1707173.1
ACGGAUGUGCCAGAUAUGGUU
5845
1239-1259
AACCAUAUCUGGCACAUCCGUCU
6320
1237-1259





AD-1707174.1
CGGAUGUGCCAGAUAUGGUGU
5846
1240-1260
ACACCATAUCUGGCACAUCCGUC
6321
1238-1260





AD-1707176.1
GAUGUGCCAGAUAUGGUGGUU
5847
1242-1262
AACCACCAUAUCUGGCACAUCCG
6322
1240-1262





AD-1707177.1
AUGUGCCAGAUAUGGUGGUGU
5848
1243-1263
ACACCACCAUATCUGGCACAUCC
6323
1241-1263





AD-1707178.1
UGUGCCAGAUAUGGUGGUGGU
5849
1244-1264
ACCACCACCAUAUCUGGCACAUC
6324
1242-1264





AD-1707179.1
GUGCCAGAUAUGGUGGUGGAU
5850
1245-1265
ATCCACCACCATAUCUGGCACAU
6325
1243-1265





AD-1707180.1
UGCCAGAUAUGGUGGUGGAGU
5851
1246-1266
ACUCCACCACCAUAUCUGGCACA
6326
1244-1266





AD-1707182.1
CCAGAUAUGGUGGUGGAGGCU
5852
1248-1268
AGCCTCCACCACCAUAUCUGGCA
6327
1246-1268





AD-1707189.1
UGGUGGUGGAGGCCUGUGGCU
5853
1255-1275
AGCCACAGGCCTCCACCACCAUA
6328
1253-1275





AD-1707190.1
GGUGGUGGAGGCCUGUGGCUU
5854
1256-1276
AAGCCACAGGCCUCCACCACCAU
6329
1254-1276





AD-1707197.1
GAGGCCUGUGGCUGCAGCUAU
 195
1263-1283
ATAGCUGCAGCCACAGGCCUCCA
6330
1261-1283





AD-1707200.1
GCCUGUGGCUGCAGCUAGCAU
5855
1266-1286
ATGCTAGCUGCAGCCACAGGCCU
6331
1264-1286





AD-1707201.1
CCUGUGGCUGCAGCUAGCAAU
5856
1267-1287
ATUGCUAGCUGCAGCCACAGGCC
6332
1265-1287





AD-1707202.1
CUGUGGCUGCAGCUAGCAAGU
5857
1268-1288
ACUUGCTAGCUGCAGCCACAGGC
6333
1266-1288





AD-1707203.1
UGUGGCUGCAGCUAGCAAGAU
5858
1269-1289
ATCUTGCUAGCTGCAGCCACAGG
6334
1267-1289





AD-1707204.1
GUGGCUGCAGCUAGCAAGAGU
5859
1270-1290
ACUCTUGCUAGCUGCAGCCACAG
6335
1268-1290





AD-1707205.1
UGGCUGCAGCUAGCAAGAGGU
5860
1271-1291
ACCUCUTGCUAGCUGCAGCCACA
6336
1269-1291





AD-1707206.1
GGCUGCAGCUAGCAAGAGGAU
5861
1272-1292
ATCCTCTUGCUAGCUGCAGCCAC
6337
1270-1292





AD-1707207.1
GCUGCAGCUAGCAAGAGGACU
5862
1273-1293
AGUCCUCUUGCTAGCUGCAGCCA
6338
1271-1293





AD-1707208.1
CUGCAGCUAGCAAGAGGACCU
5863
1274-1294
AGGUCCTCUUGCUAGCUGCAGCC
6339
1272-1294





AD-1707209.1
UGCAGCUAGCAAGAGGACCUU
 196
1275-1295
AAGGTCCUCUUGCUAGCUGCAGC
6340
1273-1295





AD-1707210.1
GCAGCUAGCAAGAGGACCUGU
5864
1276-1296
ACAGGUCCUCUTGCUAGCUGCAG
6341
1274-1296





AD-1707211.1
CAGCUAGCAAGAGGACCUGGU
5865
1277-1297
ACCAGGTCCUCTUGCUAGCUGCA
6342
1275-1297





AD-1707212.1
GCUUUGGAGUGAAGAGACCAU
5866
1298-1318
ATGGTCTCUUCACUCCAAAGCCC
6343
1296-1318





AD-1707213.1
CUUUGGAGUGAAGAGACCAAU
 197
1299-1319
ATUGGUCUCUUCACUCCAAAGCC
6344
1297-1319





AD-1707214.1
UUUGGAGUGAAGAGACCAAGU
5867
1300-1320
ACUUGGTCUCUTCACUCCAAAGC
6345
1298-1320





AD-1707216.1
UGGAGUGAAGAGACCAAGAUU
5868
1302-1322
AAUCTUGGUCUCUUCACUCCAAA
6346
1300-1322





AD-1707217.1
GGAGUGAAGAGACCAAGAUGU
5869
1303-1323
ACAUCUTGGUCTCUUCACUCCAA
6347
1301-1323





AD-1707218.1
GAGUGAAGAGACCAAGAUGAU
5870
1304-1324
ATCATCTUGGUCUCUUCACUCCA
6348
1302-1324





AD-1707221.1
UGAAGAGACCAAGAUGAAGUU
5871
1307-1327
AACUTCAUCUUGGUCUCUUCACU
6349
1305-1327





AD-1707223.1
AAGAGACCAAGAUGAAGUUUU
5872
1309-1329
AAAACUTCAUCTUGGUCUCUUCA
6350
1307-1329





AD-1707224.1
AGAGACCAAGAUGAAGUUUCU
 198
1310-1330
AGAAACTUCAUCUUGGUCUCUUC
6351
1308-1330





AD-1707225.1
GAGACCAAGAUGAAGUUUCCU
5873
1311-1331
AGGAAACUUCATCUUGGUCUCUU
6352
1309-1331





AD-1707226.1
AGACCAAGAUGAAGUUUCCCU
5874
1312-1332
AGGGAAACUUCAUCUUGGUCUCU
6353
1310-1332





AD-1707227.1
GACCAAGAUGAAGUUUCCCAU
5875
1313-1333
ATGGGAAACUUCAUCUUGGUCUC
6354
1311-1333





AD-1707228.1
ACCAAGAUGAAGUUUCCCAGU
5876
1314-1334
ACUGGGAAACUTCAUCUUGGUCU
6355
1312-1334





AD-1707229.1
CCAAGAUGAAGUUUCCCAGGU
5877
1315-1335
ACCUGGGAAACTUCAUCUUGGUC
6356
1313-1335





AD-1707230.1
CAAGAUGAAGUUUCCCAGGCU
5878
1316-1336
AGCCTGGGAAACUUCAUCUUGGU
6357
1314-1336





AD-1707231.1
AAGAUGAAGUUUCCCAGGCAU
5879
1317-1337
ATGCCUGGGAAACUUCAUCUUGG
6358
1315-1337





AD-1707232.1
AGAUGAAGUUUCCCAGGCACU
5880
1318-1338
AGUGCCTGGGAAACUUCAUCUUG
6359
1316-1338





AD-1707233.1
GAUGAAGUUUCCCAGGCACAU
5881
1319-1339
ATGUGCCUGGGAAACUUCAUCUU
6360
1317-1339





AD-1707234.1
AUGAAGUUUCCCAGGCACAGU
5882
1320-1340
ACUGTGCCUGGGAAACUUCAUCU
6361
1318-1340





AD-1707236.1
GAAGUUUCCCAGGCACAGGGU
5883
1322-1342
ACCCTGTGCCUGGGAAACUUCAU
6362
1320-1342





AD-1707237.1
AAGUUUCCCAGGCACAGGGCU
5884
1323-1343
AGCCCUGUGCCTGGGAAACUUCA
6363
1321-1343





AD-1707239.1
GUUUCCCAGGCACAGGGCAUU
5885
1325-1345
AAUGCCCUGUGCCUGGGAAACUU
6364
1323-1345





AD-1707240.1
UUUCCCAGGCACAGGGCAUCU
5886
1326-1346
AGAUGCCCUGUGCCUGGGAAACU
6365
1324-1346





AD-1707241.1
UUCCCAGGCACAGGGCAUCUU
5887
1327-1347
AAGATGCCCUGTGCCUGGGAAAC
6366
1325-1347





AD-1707242.1
UCCCAGGCACAGGGCAUCUGU
5888
1328-1348
ACAGAUGCCCUGUGCCUGGGAAA
6367
1326-1348





AD-1707275.1
CAACCCAACAACCACCUGGCU
5889
1381-1401
AGCCAGGUGGUTGUUGGGUUGGG
6368
1379-1401





AD-1707276.1
AACCCAACAACCACCUGGCAU
5890
1382-1402
ATGCCAGGUGGTUGUUGGGUUGG
6369
1380-1402





AD-1707277.1
ACCCAACAACCACCUGGCAAU
 201
1383-1403
ATUGCCAGGUGGUUGUUGGGUUG
6370
1381-1403





AD-1707278.1
CCCAACAACCACCUGGCAAUU
5891
1384-1404
AAUUGCCAGGUGGUUGUUGGGUU
6371
1382-1404





AD-1707279.1
CCAACAACCACCUGGCAAUAU
5892
1385-1405
ATAUTGCCAGGTGGUUGUUGGGU
6372
1383-1405





AD-1707280.1
CAACAACCACCUGGCAAUAUU
5893
1386-1406
AAUATUGCCAGGUGGUUGUUGGG
6373
1384-1406





AD-1707281.1
AACAACCACCUGGCAAUAUGU
5894
1387-1407
ACAUAUTGCCAGGUGGUUGUUGG
6374
1385-1407





AD-1707282.1
ACAACCACCUGGCAAUAUGAU
5895
1388-1408
ATCATATUGCCAGGUGGUUGUUG
6375
1386-1408





AD-1707283.1
CAACCACCUGGCAAUAUGACU
5896
1389-1409
AGUCAUAUUGCCAGGUGGUUGUU
6376
1387-1409





AD-1707284.1
AACCACCUGGCAAUAUGACUU
5897
1390-1410
AAGUCATAUUGCCAGGUGGUUGU
6377
1388-1410





AD-1707285.1
ACCACCUGGCAAUAUGACUCU
5898
1391-1411
AGAGTCAUAUUGCCAGGUGGUUG
6378
1389-1411





AD-1707286.1
CCACCUGGCAAUAUGACUCAU
5899
1392-1412
ATGAGUCAUAUTGCCAGGUGGUU
6379
1390-1412





AD-1707287.1
CACCUGGCAAUAUGACUCACU
5900
1393-1413
AGUGAGTCAUATUGCCAGGUGGU
6380
1391-1413





AD-1707288.1
ACCUGGCAAUAUGACUCACUU
5901
1394-1414
AAGUGAGUCAUAUUGCCAGGUGG
6381
1392-1414





AD-1707289.1
CCUGGCAAUAUGACUCACUUU
5902
1395-1415
AAAGTGAGUCATAUUGCCAGGUG
6382
1393-1415





AD-1707290.1
CUGGCAAUAUGACUCACUUGU
5903
1396-1416
ACAAGUGAGUCAUAUUGCCAGGU
6383
1394-1416





AD-1707291.1
UGGCAAUAUGACUCACUUGAU
5904
1397-1417
ATCAAGTGAGUCAUAUUGCCAGG
6384
1395-1417





AD-1707292.1
GGCAAUAUGACUCACUUGACU
 202
1398-1418
AGUCAAGUGAGTCAUAUUGCCAG
6385
1396-1418





AD-1707293.1
GCAAUAUGACUCACUUGACCU
5905
1399-1419
AGGUCAAGUGAGUCAUAUUGCCA
6386
1397-1419





AD-1707299.1
GGACCCAAAUGGGCACUUUCU
5906
1425-1445
AGAAAGTGCCCAUUUGGGUCCCA
6387
1423-1445





AD-1707301.1
ACCCAAAUGGGCACUUUCUUU
5907
1427-1447
AAAGAAAGUGCCCAUUUGGGUCC
6388
1425-1447





AD-1707302.1
CCCAAAUGGGCACUUUCUUGU
5908
1428-1448
ACAAGAAAGUGCCCAUUUGGGUC
6389
1426-1448





AD-1707303.1
CCAAAUGGGCACUUUCUUGUU
5909
1429-1449
AACAAGAAAGUGCCCAUUUGGGU
6390
1427-1449





AD-1707304.1
CAAAUGGGCACUUUCUUGUCU
5910
1430-1450
AGACAAGAAAGTGCCCAUUUGGG
6391
1428-1450





AD-1707305.1
AAAUGGGCACUUUCUUGUCUU
5911
1431-1451
AAGACAAGAAAGUGCCCAUUUGG
6392
1429-1451





AD-1707306.1
AAUGGGCACUUUCUUGUCUGU
  71
1432-1452
ACAGACAAGAAAGUGCCCAUUUG
  63
1430-1452





AD-1707307.1
AUGGGCACUUUCUUGUCUGAU
5912
1433-1453
ATCAGACAAGAAAGUGCCCAUUU
6393
1431-1453





AD-1707308.1
UGGGCACUUUCUUGUCUGAGU
5913
1434-1454
ACUCAGACAAGAAAGUGCCCAUU
6394
1432-1454





AD-1707309.1
GGGCACUUUCUUGUCUGAGAU
5914
1435-1455
ATCUCAGACAAGAAAGUGCCCAU
6395
1433-1455





AD-1707310.1
GGCACUUUCUUGUCUGAGACU
5915
1436-1456
AGUCTCAGACAAGAAAGUGCCCA
6396
1434-1456





AD-1707311.1
GCACUUUCUUGUCUGAGACUU
5916
1437-1457
AAGUCUCAGACAAGAAAGUGCCC
6397
1435-1457





AD-1707312.1
CACUUUCUUGUCUGAGACUCU
5917
1438-1458
AGAGTCTCAGACAAGAAAGUGCC
6398
1436-1458





AD-1707313.1
ACUUUCUUGUCUGAGACUCUU
 204
1439-1459
AAGAGUCUCAGACAAGAAAGUGC
339
1437-1459





AD-1707314.1
CUUUCUUGUCUGAGACUCUGU
5918
1440-1460
ACAGAGTCUCAGACAAGAAAGUG
6399
1438-1460





AD-1707315.1
UUUCUUGUCUGAGACUCUGGU
5919
1441-1461
ACCAGAGUCUCAGACAAGAAAGU
6400
1439-1461





AD-1707316.1
UUCUUGUCUGAGACUCUGGCU
5920
1442-1462
AGCCAGAGUCUCAGACAAGAAAG
6401
1440-1462





AD-1707317.1
UCUUGUCUGAGACUCUGGCUU
5921
1443-1463
AAGCCAGAGUCTCAGACAAGAAA
6402
1441-1463





AD-1707318.1
CUUGUCUGAGACUCUGGCUUU
5922
1444-1464
AAAGCCAGAGUCUCAGACAAGAA
6403
1442-1464





AD-1707337.1
UAUUCCAGGUUGGCUGAUGUU
5923
1463-1483
AACATCAGCCAACCUGGAAUAAG
6404
1461-1483





AD-1707338.1
AUUCCAGGUUGGCUGAUGUGU
5924
1464-1484
ACACAUCAGCCAACCUGGAAUAA
6405
1462-1484





AD-1707339.1
UUCCAGGUUGGCUGAUGUGUU
5925
1465-1485
AACACATCAGCCAACCUGGAAUA
6406
1463-1485





AD-1707340.1
UCCAGGUUGGCUGAUGUGUUU
 206
1466-1486
AAACACAUCAGCCAACCUGGAAU
 341
1464-1486





AD-1707341.1
CCAGGUUGGCUGAUGUGUUGU
5926
1467-1487
ACAACACAUCAGCCAACCUGGAA
6407
1465-1487





AD-1707342.1
CAGGUUGGCUGAUGUGUUGGU
5927
1468-1488
ACCAACACAUCAGCCAACCUGGA
6408
1466-1488





AD-1707388.1
GAUUUCCUGCCCUAAGUCCUU
 210
1534-1554
AAGGACTUAGGGCAGGAAAUCAU
6409
1532-1554





AD-1707390.1
UUUCCUGCCCUAAGUCCUGUU
5928
1536-1556
AACAGGACUUAGGGCAGGAAAUC
6410
1534-1556





AD-1707411.1
AGAAGAUGUCAGGGACUAGGU
5929
1557-1577
ACCUAGTCCCUGACAUCUUCUCA
6411
1555-1577





AD-1707412.1
GAAGAUGUCAGGGACUAGGGU
5930
1558-1578
ACCCTAGUCCCTGACAUCUUCUC
6412
1556-1578





AD-1707415.1
AAGAUGUCAGGGACUAGGGAU
5931
1559-1579
ATCCCUAGUCCCUGACAUCUUCU
6413
1557-1579





AD-1707416.1
AGAUGUCAGGGACUAGGGAGU
5932
1560-1580
ACUCCCTAGUCCCUGACAUCUUC
6414
1558-1580





AD-1707417.1
GAUGUCAGGGACUAGGGAGGU
5933
1561-1581
ACCUCCCUAGUCCCUGACAUCUU
6415
1559-1581





AD-1707418.1
AUGUCAGGGACUAGGGAGGGU
5934
1562-1582
ACCCTCCCUAGTCCCUGACAUCU
6416
1560-1582





AD-1707466.1
GAGGAGGAAGCAGAUAGAUGU
5935
1646-1666
ACAUCUAUCUGCUUCCUCCUCCC
6417
1644-1666





AD-1707467.1
AGGAGGAAGCAGAUAGAUGGU
5936
1647-1667
ACCATCTAUCUGCUUCCUCCUCC
6418
1645-1667





AD-1707468.1
GGAGGAAGCAGAUAGAUGGUU
 215
1648-1668
AACCAUCUAUCTGCUUCCUCCUC
6419
1646-1668





AD-1707469.1
GAGGAAGCAGAUAGAUGGUCU
5937
1649-1669
AGACCATCUAUCUGCUUCCUCCU
6420
1647-1669





AD-1707470.1
AGGAAGCAGAUAGAUGGUCCU
5938
1650-1670
AGGACCAUCUATCUGCUUCCUCC
6421
1648-1670





AD-1707471.1
GGAAGCAGAUAGAUGGUCCAU
5939
1651-1671
ATGGACCAUCUAUCUGCUUCCUC
6422
1649-1671





AD-1707472.1
GAAGCAGAUAGAUGGUCCAGU
5940
1652-1672
ACUGGACCAUCTAUCUGCUUCCU
6423
1650-1672





AD-1707473.1
AAGCAGAUAGAUGGUCCAGCU
5941
1653-1673
AGCUGGACCAUCUAUCUGCUUCC
6424
1651-1673





AD-1707474.1
AGCAGAUAGAUGGUCCAGCAU
5942
1654-1674
ATGCTGGACCATCUAUCUGCUUC
6425
1652-1674





AD-1707475.1
GCAGAUAGAUGGUCCAGCAGU
5943
1655-1675
ACUGCUGGACCAUCUAUCUGCUU
6426
1653-1675





AD-1707476.1
CAGAUAGAUGGUCCAGCAGGU
5944
1656-1676
ACCUGCTGGACCAUCUAUCUGCU
6427
1654-1676





AD-1707477.1
AGAUAGAUGGUCCAGCAGGCU
5945
1657-1677
AGCCTGCUGGACCAUCUAUCUGC
6428
1655-1677





AD-1707478.1
GAUAGAUGGUCCAGCAGGCUU
5946
1658-1678
AAGCCUGCUGGACCAUCUAUCUG
6429
1656-1678





AD-1707479.1
AUAGAUGGUCCAGCAGGCUUU
5947
1659-1679
AAAGCCTGCUGGACCAUCUAUCU
6430
1657-1679





AD-1707480.1
UAGAUGGUCCAGCAGGCUUGU
5948
1660-1680
ACAAGCCUGCUGGACCAUCUAUC
6431
1658-1680





AD-1707481.1
AGAUGGUCCAGCAGGCUUGAU
5949
1661-1681
ATCAAGCCUGCTGGACCAUCUAU
6432
1659-1681





AD-1707482.1
GAUGGUCCAGCAGGCUUGAAU
5950
1662-1682
ATUCAAGCCUGCUGGACCAUCUA
6433
1660-1682





AD-1707483.1
AUGGUCCAGCAGGCUUGAAGU
5951
1663-1683
ACUUCAAGCCUGCUGGACCAUCU
6434
1661-1683





AD-1707484.1
UGGUCCAGCAGGCUUGAAGCU
5952
1664-1684
AGCUTCAAGCCTGCUGGACCAUC
6435
1662-1684





AD-1707485.1
GGUCCAGCAGGCUUGAAGCAU
5953
1665-1685
ATGCTUCAAGCCUGCUGGACCAU
6436
1663-1685





AD-1707486.1
GUCCAGCAGGCUUGAAGCAGU
5954
1666-1686
ACUGCUTCAAGCCUGCUGGACCA
6437
1664-1686





AD-1707553.1
AAGGUCAAGAGGGAGAUGGGU
5955
1733-1753
ACCCAUCUCCCTCUUGACCUUCC
6438
1731-1753





AD-1707554.1
AGGUCAAGAGGGAGAUGGGCU
5956
1734-1754
AGCCCATCUCCCUCUUGACCUUC
6439
1732-1754





AD-1707555.1
GGUCAAGAGGGAGAUGGGCAU
5957
1735-1755
ATGCCCAUCUCCCUCUUGACCUU
6440
1733-1755





AD-1707556.1
GUCAAGAGGGAGAUGGGCAAU
 221
1736-1756
ATUGCCCAUCUCCCUCUUGACCU
6441
1734-1756





AD-1707557.1
UCAAGAGGGAGAUGGGCAAGU
5958
1737-1757
ACUUGCCCAUCTCCCUCUUGACC
6442
1735-1757





AD-1707577.1
GCGCUGAGGGAGGAUGCUUAU
5959
1757-1777
ATAAGCAUCCUCCCUCAGCGCCU
6443
1755-1777





AD-1707578.1
CGCUGAGGGAGGAUGCUUAGU
5960
1758-1778
ACUAAGCAUCCTCCCUCAGCGCC
6444
1756-1778





AD-1707605.1
GCACUAAGCCUAAGAAGUUCU
5961
1811-1831
AGAACUTCUUAGGCUUAGUGCCU
6445
1809-1831





AD-1707606.1
CACUAAGCCUAAGAAGUUCCU
5962
1812-1832
AGGAACTUCUUAGGCUUAGUGCC
6446
1810-1832





AD-1707623.1
ACAGGACCCACUGGGAGACAU
5963
1849-1869
ATGUCUCCCAGTGGGUCCUGUCC
6447
1847-1869





AD-1707624.1
CAGGACCCACUGGGAGACAAU
5964
1850-1870
ATUGTCTCCCAGUGGGUCCUGUC
6448
1848-1870





AD-1707625.1
AGGACCCACUGGGAGACAAGU
5965
1851-1871
ACUUGUCUCCCAGUGGGUCCUGU
6449
1849-1871





AD-1707626.1
GGACCCACUGGGAGACAAGCU
5966
1852-1872
AGCUTGTCUCCCAGUGGGUCCUG
6450
1850-1872





AD-1707627.1
GACCCACUGGGAGACAAGCAU
5967
1853-1873
ATGCTUGUCUCCCAGUGGGUCCU
6451
1851-1873





AD-1707628.1
ACCCACUGGGAGACAAGCAUU
5968
1854-1874
AAUGCUTGUCUCCCAGUGGGUCC
6452
1852-1874





AD-1707629.1
CCCACUGGGAGACAAGCAUUU
5969
1855-1875
AAAUGCTUGUCTCCCAGUGGGUC
6453
1853-1875





AD-1707630.1
CCACUGGGAGACAAGCAUUUU
5970
1856-1876
AAAATGCUUGUCUCCCAGUGGGU
6454
1854-1876





AD-1707631.1
CACUGGGAGACAAGCAUUUAU
 227
1857-1877
ATAAAUGCUUGTCUCCCAGUGGG
6455
1855-1877





AD-1707632.1
ACUGGGAGACAAGCAUUUAUU
5971
1858-1878
AAUAAATGCUUGUCUCCCAGUGG
6456
1856-1878





AD-1707633.1
CUGGGAGACAAGCAUUUAUAU
5972
1859-1879
ATAUAAAUGCUTGUCUCCCAGUG
6457
1857-1879





AD-1707634.1
UGGGAGACAAGCAUUUAUACU
5973
1860-1880
AGUATAAAUGCTUGUCUCCCAGU
6458
1858-1880





AD-1707636.1
GGAGACAAGCAUUUAUACUUU
5974
1862-1882
AAAGTATAAAUGCUUGUCUCCCA
6459
1860-1882





AD-1707637.1
GAGACAAGCAUUUAUACUUUU
5975
1863-1883
AAAAGUAUAAATGCUUGUCUCCC
6460
1861-1883





AD-1707638.1
AGACAAGCAUUUAUACUUUCU
5976
1864-1884
AGAAAGTAUAAAUGCUUGUCUCC
6461
1862-1884





AD-1707639.1
GACAAGCAUUUAUACUUUCUU
  72
1865-1885
AAGAAAGUAUAAAUGCUUGUCUC
  64
1863-1885





AD-1707640.1
ACAAGCAUUUAUACUUUCUUU
  73
1866-1886
AAAGAAAGUAUAAAUGCUUGUCU
  65
1864-1886





AD-1707641.1
CAAGCAUUUAUACUUUCUUUU
5977
1867-1887
AAAAGAAAGUATAAAUGCUUGUC
6462
1865-1887





AD-1708118.1
CCAGACAUGAGCUGUGAGGGU
5526
44373
ACCCTCACAGCUCAUGUCUGGCU
6463
44312





AD-1708120.1
AGACAUGAGCUGUGAGGGUCU
5527
 860-880
AGACCCTCACAGCUCAUGUCUGG
5980
 858-880





AD-1708124.1
AUGAGCUGUGAGGGUCAAGCU
5531
 864-884
AGCUTGACCCUCACAGCUCAUGU
5984
 862-884





AD-1708126.1
GAGCUGUGAGGGUCAAGCACU
5533
 866-886
AGUGCUTGACCCUCACAGCUCAU
5986
 864-886





AD-1708127.1
AGCUGUGAGGGUCAAGCACAU
5534
  15-35
AUGUGCTUGACCCUCACAGCUCA
6464
  13-35





AD-1708130.1
UGUGAGGGUCAAGCACAGCUU
5537
 870-890
AAGCTGTGCUUGACCCUCACAGC
5990
 868-890





AD-1708132.1
UGAGGGUCAAGCACAGCUAUU
5539
  20-40
AAUAGCTGUGCUUGACCCUCACA
6465
  18-40





AD-1708135.1
GGGUCAAGCACAGCUAUCCAU
5541
  23-43
AUGGAUAGCUGUGCUUGACCCUC
6466
  21-43





AD-1708140.1
AAGCACAGCUAUCCAUCAGAU
5543
  28-48
AUCUGATGGAUAGCUGUGCUUGA
6467
  26-48





AD-1708143.1
CACAGCUAUCCAUCAGAUGAU
5545
  31-51
AUCATCTGAUGGAUAGCUGUGCU
6468
  29-51





AD-1708145.1
CAGCUAUCCAUCAGAUGAUCU
5547
  33-53
AGAUCATCUGAUGGAUAGCUGUG
6469
  31-53





AD-1708146.1
AGCUAUCCAUCAGAUGAUCUU
5548
 886-906
AAGATCAUCUGAUGGAUAGCUGU
6001
 884-906





AD-1708148.1
CUAUCCAUCAGAUGAUCUACU
5550
  36-56
AGUAGATCAUCUGAUGGAUAGCU
6470
  34-56





AD-1708149.1
UAUCCAUCAGAUGAUCUACUU
5551
  37-57
AAGUAGAUCAUCUGAUGGAUAGC
6004
  35-57





AD-1708151.1
UCCAUCAGAUGAUCUACUUUU
5552
 891-911
AAAAGUAGAUCAUCUGAUGGAUA
6006
 889-911





AD-1708152.1
CCAUCAGAUGAUCUACUUUCU
5553
 892-912
AGAAAGTAGAUCAUCUGAUGGAU
6007
 890-912





AD-1708156.1
CAGAUGAUCUACUUUCAGCCU
5557
  44-64
AGGCTGAAAGUAGAUCAUCUGAU
6011
  42-64





AD-1708158.1
GAUGAUCUACUUUCAGCCUUU
5559
  46-66
AAAGGCTGAAAGUAGAUCAUCUG
6013
  44-66





AD-1708163.1
UCUACUUUCAGCCUUCCUGAU
5563
  51-71
AUCAGGAAGGCUGAAAGUAGAUC
6471
  49-71





AD-1708166.1
ACUUUCAGCCUUCCUGAGUCU
5566
  54-74
AGACTCAGGAAGGCUGAAAGUAG
6020
  52-74





AD-1708170.1
UCAGCCUUCCUGAGUCCCAGU
5567
 910-930
ACUGGGACUCAGGAAGGCUGAAA
6021
 908-930





AD-1708220.1
GUGGCAGUGGUGUCUGCUGUU
 136
 120-140
AACAGCAGACACCACUGCCACAC
 270
 118-140





AD-1708223.1
GCAGUGGUGUCUGCUGUCACU
5572
 123-143
AGUGACAGCAGACACCACUGCCA
6026
 121-143





AD-1708225.1
AGUGGUGUCUGCUGUCACUGU
5574
 125-145
ACAGTGACAGCAGACACCACUGC
6028
 123-145





AD-1708227.1
UGGUGUCUGCUGUCACUGUGU
5576
 127-147
ACACAGTGACAGCAGACACCACU
6030
 125-147





AD-1708245.1
GACUCAACAGACGGAGCAACU
5580
 170-190
AGUUGCTCCGUCUGUUGAGUCUG
6034
 168-190





AD-1708248.1
UCAACAGACGGAGCAACUGCU
5583
 173-193
AGCAGUTGCUCCGUCUGUUGAGU
6037
 171-193





AD-1708249.1
CAACAGACGGAGCAACUGCCU
5584
1026-1046
AGGCAGTUGCUCCGUCUGUUGAG
6038
1024-1046





AD-1708251.1
ACAGACGGAGCAACUGCCAUU
5586
 176-196
AAUGGCAGUUGCUCCGUCUGUUG
6040
 174-196





AD-1708255.1
ACGGAGCAACUGCCAUCCGAU
 139
 180-200
AUCGGATGGCAGUUGCUCCGUCU
6472
 178-200





AD-1708260.1
GCAACUGCCAUCCGAGGCUCU
5593
 185-205
AGAGCCTCGGAUGGCAGUUGCUC
6473
 183-205





AD-1708342.1
CAAGCAGAACGAGCUCUGGUU
 146
 339-359
AACCAGAGCUCGUUCUGCUUGGG
 280
 337-359





AD-1708344.1
AGCAGAACGAGCUCUGGUGCU
5596
 341-361
AGCACCAGAGCUCGUUCUGCUUG
6474
 339-361





AD-1708347.1
AGAACGAGCUCUGGUGCUGGU
5599
1196-1216
ACCAGCACCAGAGCUCGUUCUGC
6054
1194-1216





AD-1708350.1
ACGAGCUCUGGUGCUGGAGCU
5602
 347-367
AGCUCCAGCACCAGAGCUCGUUC
6057
 345-367





AD-1708356.1
UCUGGUGCUGGAGCUAGCCAU
5606
1205-1225
AUGGCUAGCUCCAGCACCAGAGC
6475
1203-1225





AD-1708357.1
CUGGUGCUGGAGCUAGCCAAU
 147
 354-374
AUUGGCTAGCUCCAGCACCAGAG
6476
 352-374





AD-1708361.1
UGCUGGAGCUAGCCAAGCAGU
5610
 358-378
ACUGCUTGGCUAGCUCCAGCACC
6066
 356-378





AD-1708365.1
GGAGCUAGCCAAGCAGCAAAU
5611
 362-382
AUUUGCTGCUUGGCUAGCUCCAG
6477
 360-382





AD-1708368.1
GCUAGCCAAGCAGCAAAUCCU
5614
 365-385
AGGATUTGCUGCUUGGCUAGCUC
6070
 363-385





AD-1708369.1
CUAGCCAAGCAGCAAAUCCUU
148
 366-386
AAGGAUTUGCUGCUUGGCUAGCU
6071
 364-386





AD-1708397.1
UGACCAGUCGUCCCAGAAUAU
5621
1252-1272
AUAUTCTGGGACGACUGGUCAGG
6478
1250-1272





AD-1708399.1
ACCAGUCGUCCCAGAAUAACU
  66
 402-422
AGUUAUTCUGGGACGACUGGUCA
  57
 400-422





AD-1708401.1
CAGUCGUCCCAGAAUAACUCU
5624
1256-1276
AGAGTUAUUCUGGGACGACUGGU
6081
1254-1276





AD-1708402.1
AGUCGUCCCAGAAUAACUCAU
5625
 405-425
AUGAGUTAUUCUGGGACGACUGG
6479
 403-425





AD-1708403.1
GUCGUCCCAGAAUAACUCAUU
5626
 406-426
AAUGAGTUAUUCUGGGACGACUG
6083
 404-426





AD-1708405.1
CGUCCCAGAAUAACUCAUCCU
5627
 408-428
AGGATGAGUUAUUCUGGGACGAC
6480
 406-428





AD-1708407.1
UCCCAGAAUAACUCAUCCUCU
5629
 410-430
AGAGGATGAGUUAUUCUGGGACG
6481
 408-430





AD-1708408.1
CCCAGAAUAACUCAUCCUCCU
5630
1263-1283
AGGAGGAUGAGUUAUUCUGGGAC
6482
1261-1283





AD-1708447.1
GGGAGUGUGGCUCCAGGGAAU
5632
 474-494
AUUCCCTGGAGCCACACUCCCUG
6483
 472-494





AD-1708454.1
GAGGUCAUCAGCUUUGCUACU
5638
 501-521
AGUAGCAAAGCUGAUGACCUCCU
6484
 499-521





AD-1708457.1
GUCAUCAGCUUUGCUACUGUU
5641
 504-524
AACAGUAGCAAAGCUGAUGACCU
6100
 502-524





AD-1708458.1
UCAUCAGCUUUGCUACUGUCU
5642
1357-1377
AGACAGTAGCAAAGCUGAUGACC
6101
1355-1377





AD-1708462.1
CAGCUUUGCUACUGUCACAGU
5644
1361-1381
ACUGTGACAGUAGCAAAGCUGAU
6103
1359-1381





AD-1708464.1
GCUUUGCUACUGUCACAGACU
5646
 511-531
AGUCTGTGACAGUAGCAAAGCUG
6105
 509-531





AD-1708466.1
UUUGCUACUGUCACAGACUCU
5648
 513-533
AGAGTCTGUGACAGUAGCAAAGC
6107
 511-533





AD-1708468.1
UGCUACUGUCACAGACUCCAU
5650
 515-535
AUGGAGTCUGUGACAGUAGCAAA
6485
 513-535





AD-1708473.1
CUGUCACAGACUCCACUUCAU
  68
 520-540
AUGAAGTGGAGUCUGUGACAGUA
  60
 518-540





AD-1708476.1
UCACAGACUCCACUUCAGCCU
5652
 523-543
AGGCTGAAGUGGAGUCUGUGACA
6112
 521-543





AD-1708478.1
ACAGACUCCACUUCAGCCUAU
5654
 525-545
AUAGGCTGAAGUGGAGUCUGUGA
6486
 523-545





AD-1708482.1
ACUCCACUUCAGCCUACAGCU
5658
 529-549
AGCUGUAGGCUGAAGUGGAGUCU
6118
 527-549





AD-1708483.1
CUCCACUUCAGCCUACAGCUU
5659
 530-550
AAGCTGTAGGCUGAAGUGGAGUC
6487
 528-550





AD-1708485.1
CCACUUCAGCCUACAGCUCCU
5660
 532-552
AGGAGCTGUAGGCUGAAGUGGAG
6120
 530-552





AD-1708559.1
UGGCACUCUUUGCUUGAGGAU
5675
 635-655
AUCCTCAAGCAAAGAGUGCCAGG
6488
 633-655





AD-1708561.1
GCACUCUUUGCUUGAGGAUCU
5677
 637-657
AGAUCCTCAAGCAAAGAGUGCCA
6137
 635-657





AD-1708564.1
CUCUUUGCUUGAGGAUCUUCU
 162
 640-660
AGAAGATCCUCAAGCAAAGAGUG
6139
 638-660





AD-1708565.1
UCUUUGCUUGAGGAUCUUCCU
5679
 641-661
AGGAAGAUCCUCAAGCAAAGAGU
6140
 639-661





AD-1708567.1
UUUGCUUGAGGAUCUUCCGAU
5680
 643-663
AUCGGAAGAUCCUCAAGCAAAGA
6489
 641-663





AD-1708647.1
UGGCUGAGCACCACAUCACCU
5685
1555-1575
AGGUGATGUGGUGCUCAGCCAGG
6490
1553-1575





AD-1708648.1
GGCUGAGCACCACAUCACCAU
5686
1556-1576
AUGGTGAUGUGGUGCUCAGCCAG
6491
1554-1576





AD-1708650.1
CUGAGCACCACAUCACCAACU
5688
 706-726
AGUUGGTGAUGUGGUGCUCAGCC
6492
 704-726





AD-1708657.1
CCACAUCACCAACCUGGGCUU
5692
 713-733
AAGCCCAGGUUGGUGAUGUGGUG
6154
 711-733





AD-1708662.1
UCACCAACCUGGGCUGGCAUU
5696
1570-1590
AAUGCCAGCCCAGGUUGGUGAUG
6158
1568-1590





AD-1708680.1
CCUUAACUCUGCCCUCUAGUU
5699
 739-759
AACUAGAGGGCAGAGUUAAGGUA
6161
 737-759





AD-1708683.1
UAACUCUGCCCUCUAGUGGCU
5702
 742-762
AGCCACTAGAGGGCAGAGUUAAG
6164
 740-762





AD-1708697.1
GUCUGGUGUCCUGAAACUGCU
5705
1628-1648
AGCAGUTUCAGGACACCAGACUU
6167
1626-1648





AD-1708698.1
UCUGGUGUCCUGAAACUGCAU
5706
1629-1649
AUGCAGTUUCAGGACACCAGACU
6493
1627-1649





AD-1708700.1
UGGUGUCCUGAAACUGCAACU
5708
 779-799
AGUUGCAGUUUCAGGACACCAGA
6170
 777-799





AD-1708704.1
GUCCUGAAACUGCAACUAGAU
 169
 783-803
AUCUAGTUGCAGUUUCAGGACAC
6494
 781-803





AD-1708706.1
CCUGAAACUGCAACUAGACUU
5713
 785-805
AAGUCUAGUUGCAGUUUCAGGAC
6176
 783-805





AD-1708707.1
CUGAAACUGCAACUAGACUGU
5714
 786-806
ACAGTCTAGUUGCAGUUUCAGGA
6177
 784-806





AD-1708709.1
GAAACUGCAACUAGACUGCAU
5716
 788-808
AUGCAGTCUAGUUGCAGUUUCAG
6495
 786-808





AD-1708711.1
AACUGCAACUAGACUGCAGAU
5718
 790-810
AUCUGCAGUCUAGUUGCAGUUUC
6496
 788-810





AD-1708719.1
GCAACAGCACAGUUACUGGAU
5721
 820-840
AUCCAGTAACUGUGCUGUUGCCU
6497
 818-840





AD-1708721.1
AACAGCACAGUUACUGGACAU
5723
1677-1697
AUGUCCAGUAACUGUGCUGUUGC
6498
1675-1697





AD-1708724.1
AGCACAGUUACUGGACAACCU
5725
 825-845
AGGUTGTCCAGUAACUGUGCUGU
6499
 823-845





AD-1708746.1
UUGGACACAGCAGGACACCAU
5727
 855-875
AUGGTGTCCUGCUGUGUCCAAGA
6500
 853-875





AD-1708748.1
GGACACAGCAGGACACCAGCU
5729
1712-1732
AGCUGGTGUCCUGCUGUGUCCAA
6501
1710-1732





AD-1708751.1
CACAGCAGGACACCAGCAGCU
5732
 860-880
AGCUGCTGGUGUCCUGCUGUGUC
6502
 858-880





AD-1708759.1
GACACCAGCAGCCCUUCCUAU
 173
 868-888
AUAGGAAGGGCUGCUGGUGUCCU
 308
 866-888





AD-1708763.1
CCAGCAGCCCUUCCUAGAGCU
5737
 872-892
AGCUCUAGGAAGGGCUGCUGGUG
6202
 870-892





AD-1708764.1
CAGCAGCCCUUCCUAGAGCUU
5738
 873-893
AAGCTCTAGGAAGGGCUGCUGGU
6203
 871-893





AD-1708766.1
GCAGCCCUUCCUAGAGCUUAU
5739
1730-1750
AUAAGCTCUAGGAAGGGCUGCUG
6503
1728-1750





AD-1708771.1
CCUUCCUAGAGCUUAAGAUCU
 174
 880-900
AGAUCUTAAGCUCUAGGAAGGGC
6504
 878-900





AD-1708813.1
UUACGUAGACUUCCAGGAACU
5744
 986-1006
AGUUCCTGGAAGUCUACGUAAUG
6210
 984-1006





AD-1708819.1
AGACUUCCAGGAACUGGGAUU
5748
 992-1012
AAUCCCAGUUCCUGGAAGUCUAC
6215
 990-1012





AD-1708842.1
GUACCAGCUGAAUUACUGCAU
5755
1040-1060
AUGCAGTAAUUCAGCUGGUACCC
6505
1038-1060





AD-1708844.1
ACCAGCUGAAUUACUGCAGUU
5756
1042-1062
AACUGCAGUAAUUCAGCUGGUAC
6506
1040-1062





AD-1708849.1
CUGAAUUACUGCAGUGGGCAU
5761
1047-1067
AUGCCCACUGCAGUAAUUCAGCU
6507
1045-1067





AD-1708856.1
ACUGCAGUGGGCAGUGCCCUU
 182
1054-1074
AAGGGCACUGCCCACUGCAGUAA
 317
1052-1074





AD-1708872.1
CAGGCAUUGCUGCCUCUUUCU
 183
1093-1113
AGAAAGAGGCAGCAAUGCCUGGG
 318
1091-1113





AD-1708875.1
CAUUGCUGCCUCUUUCCAUUU
5767
1097-1117
AAAUGGAAAGAGGCAGCAAUGCC
6235
1095-1117





AD-1708882.1
GCCUCUUUCCAUUCUGCCGUU
5774
1104-1124
AACGGCAGAAUGGAAAGAGGCAG
6242
1102-1124





AD-1708887.1
UUUCCAUUCUGCCGUCUUCAU
 184
1109-1129
AUGAAGACGGCAGAAUGGAAAGA
 319
1107-1129





AD-1708889.1
UCCAUUCUGCCGUCUUCAGCU
5780
1111-1131
AGCUGAAGACGGCAGAAUGGAAA
6249
1109-1131





AD-1708890.1
CCAUUCUGCCGUCUUCAGCCU
5781
1112-1132
AGGCTGAAGACGGCAGAAUGGAA
6250
1110-1132





AD-1708899.1
CGUCUUCAGCCUCCUCAAAGU
 185
1121-1141
ACUUTGAGGAGGCUGAAGACGGC
6254
1119-1141





AD-1708901.1
UCUUCAGCCUCCUCAAAGCCU
5786
1978-1998
AGGCTUTGAGGAGGCUGAAGACG
6256
1976-1998





AD-1708902.1
CUUCAGCCUCCUCAAAGCCAU
5787
1979-1999
AUGGCUTUGAGGAGGCUGAAGAC
6508
1977-1999





AD-1708907.1
GCCUCCUCAAAGCCAACAAUU
5791
1129-1149
AAUUGUTGGCUUUGAGGAGGCUG
6509
1127-1149





AD-1708908.1
CCUCCUCAAAGCCAACAAUCU
5792
1130-1150
AGAUTGTUGGCUUUGAGGAGGCU
6510
1128-1150





AD-1708911.1
CCUCAAAGCCAACAAUCCUUU
 186
1133-1153
AAAGGATUGUUGGCUUUGAGGAG
6265
1131-1153





AD-1708921.1
AACAAUCCUUGGCCUGCCAGU
5800
1143-1163
ACUGGCAGGCCAAGGAUUGUUGG
6271
1141-1163





AD-1708956.1
UCUCCUCUACCUGGAUCAUAU
5811
2057-2077
AUAUGATCCAGGUAGAGGAGAGA
6511
2055-2077





AD-1708957.1
CUCCUCUACCUGGAUCAUAAU
5812
1203-1223
AUUATGAUCCAGGUAGAGGAGAG
6512
1201-1223





AD-1708962.1
CUACCUGGAUCAUAAUGGCAU
5817
2063-2083
AUGCCATUAUGAUCCAGGUAGAG
6513
2061-2083





AD-1708963.1
UACCUGGAUCAUAAUGGCAAU
 191
1209-1229
AUUGCCAUUAUGAUCCAGGUAGA
 326
1207-1229





AD-1708971.1
UCAUAAUGGCAAUGUGGUCAU
5825
2072-2092
AUGACCACAUUGCCAUUAUGAUC
6514
2070-2092





AD-1708974.1
UAAUGGCAAUGUGGUCAAGAU
5828
1220-1240
AUCUTGACCACAUUGCCAUUAUG
6515
1218-1240





AD-1708976.1
AUGGCAAUGUGGUCAAGACGU
5829
1222-1242
ACGUCUTGACCACAUUGCCAUUA
6303
1220-1242





AD-1708977.1
UGGCAAUGUGGUCAAGACGGU
5830
2078-2098
ACCGTCTUGACCACAUUGCCAUU
6304
2076-2098





AD-1708984.1
GUGGUCAAGACGGAUGUGCCU
5837
2085-2105
AGGCACAUCCGUCUUGACCACAU
6516
2083-2105





AD-1708986.1
GGUCAAGACGGAUGUGCCAGU
5839
2087-2107
ACUGGCACAUCCGUCUUGACCAC
6313
2085-2107





AD-1708990.1
AAGACGGAUGUGCCAGAUAUU
 193
1236-1256
AAUATCTGGCACAUCCGUCUUGA
6317
1234-1256





AD-1709009.1
UGGUGGUGGAGGCCUGUGGCU
5853
1255-1275
AGCCACAGGCCUCCACCACCAUA
6517
1253-1275





AD-1709021.1
CCUGUGGCUGCAGCUAGCAAU
5856
1267-1287
AUUGCUAGCUGCAGCCACAGGCC
6518
1265-1287





AD-1709022.1
CUGUGGCUGCAGCUAGCAAGU
5857
2123-2143
ACUUGCTAGCUGCAGCCACAGGC
6333
2121-2143





AD-1709026.1
GGCUGCAGCUAGCAAGAGGAU
5861
1272-1292
AUCCTCTUGCUAGCUGCAGCCAC
6519
1270-1292





AD-1709028.1
CUGCAGCUAGCAAGAGGACCU
5863
1274-1294
AGGUCCTCUUGCUAGCUGCAGCC
6339
1272-1294





AD-1709031.1
CAGCUAGCAAGAGGACCUGGU
5865
1277-1297
ACCAGGTCCUCUUGCUAGCUGCA
6520
1275-1297





AD-1709032.1
GCUUUGGAGUGAAGAGACCAU
5866
2153-2173
AUGGTCTCUUCACUCCAAAGCCC
6521
2151-2173





AD-1709034.1
UUUGGAGUGAAGAGACCAAGU
5867
2155-2175
ACUUGGTCUCUUCACUCCAAAGC
6522
2153-2175





AD-1709038.1
GAGUGAAGAGACCAAGAUGAU
5870
2159-2179
AUCATCTUGGUCUCUUCACUCCA
6523
2157-2179





AD-1709041.1
UGAAGAGACCAAGAUGAAGUU
5871
1307-1327
AACUTCAUCUUGGUCUCUUCACU
6349
1305-1327





AD-1709044.1
AGAGACCAAGAUGAAGUUUCU
 198
1310-1330
AGAAACTUCAUCUUGGUCUCUUC
6351
1308-1330





AD-1709052.1
AGAUGAAGUUUCCCAGGCACU
5880
2173-2193
AGUGCCTGGGAAACUUCAUCUUG
6359
2171-2193





AD-1709056.1
GAAGUUUCCCAGGCACAGGGU
5883
1322-1342
ACCCTGTGCCUGGGAAACUUCAU
6362
1320-1342





AD-1709090.1
ACCCAACAACCACCUGGCAAU
 201
1383-1403
AUUGCCAGGUGGUUGUUGGGUUG
 336
1381-1403





AD-1709097.1
AACCACCUGGCAAUAUGACUU
5897
1390-1410
AAGUCATAUUGCCAGGUGGUUGU
6377
1388-1410





AD-1709098.1
ACCACCUGGCAAUAUGACUCU
5898
2246-2266
AGAGTCAUAUUGCCAGGUGGUUG
6378
2244-2266





AD-1709100.1
CACCUGGCAAUAUGACUCACU
5900
1393-1413
AGUGAGTCAUAUUGCCAGGUGGU
6524
1391-1413





AD-1709102.1
CCUGGCAAUAUGACUCACUUU
5902
1395-1415
AAAGTGAGUCAUAUUGCCAGGUG
6525
1393-1415





AD-1709104.1
UGGCAAUAUGACUCACUUGAU
5904
1397-1417
AUCAAGTGAGUCAUAUUGCCAGG
6526
1395-1417





AD-1709106.1
GCAAUAUGACUCACUUGACCU
5905
1399-1419
AGGUCAAGUGAGUCAUAUUGCCA
6386
1397-1419





AD-1709111.1
GGACCCAAAUGGGCACUUUCU
5906
1425-1445
AGAAAGTGCCCAUUUGGGUCCCA
6387
1423-1445





AD-1709120.1
UGGGCACUUUCUUGUCUGAGU
5913
2289-2309
ACUCAGACAAGAAAGUGCCCAUU
6394
2287-2309





AD-1709122.1
GGCACUUUCUUGUCUGAGACU
5915
1436-1456
AGUCTCAGACAAGAAAGUGCCCA
6396
1434-1456





AD-1709124.1
CACUUUCUUGUCUGAGACUCU
5917
1438-1458
AGAGTCTCAGACAAGAAAGUGCC
6398
1436-1458





AD-1709126.1
CUUUCUUGUCUGAGACUCUGU
5918
1440-1460
ACAGAGTCUCAGACAAGAAAGUG
6399
1438-1460





AD-1709128.1
UUCUUGUCUGAGACUCUGGCU
5920
1442-1462
AGCCAGAGUCUCAGACAAGAAAG
6401
1440-1462





AD-1709130.1
CUUGUCUGAGACUCUGGCUUU
5922
2299-2319
AAAGCCAGAGUCUCAGACAAGAA
6403
2297-2319





AD-1709148.1
UAUUCCAGGUUGGCUGAUGUU
5923
1463-1483
AACATCAGCCAACCUGGAAUAAG
6404
1461-1483





AD-1709151.1
UCCAGGUUGGCUGAUGUGUUU
 206
1466-1486
AAACACAUCAGCCAACCUGGAAU
 341
1464-1486





AD-1709201.1
CUCUCUCCUCUACCUGGAUCU
5808
1199-1219
AGAUCCAGGUAGAGGAGAGAGAG
6280
1197-1219





AD-1709237.1
GAUUUCCUGCCCUAAGUCCUU
 210
1534-1554
AAGGACTUAGGGCAGGAAAUCAU
6409
1532-1554





AD-1709239.1
UUUCCUGCCCUAAGUCCUGUU
5928
1536-1556
AACAGGACUUAGGGCAGGAAAUC
6410
1534-1556





AD-1709253.1
AGAAGAUGUCAGGGACUAGGU
5929
1557-1577
ACCUAGTCCCUGACAUCUUCUCA
6411
1555-1577





AD-1709254.1
AAGAUGUCAGGGACUAGGGAU
5931
1559-1579
AUCCCUAGUCCCUGACAUCUUCU
6527
1557-1579





AD-1709298.1
AGGAGGAAGCAGAUAGAUGGU
5936
1647-1667
ACCATCTAUCUGCUUCCUCCUCC
6418
1645-1667





AD-1709300.1
GAGGAAGCAGAUAGAUGGUCU
5937
1649-1669
AGACCATCUAUCUGCUUCCUCCU
6420
1647-1669





AD-1709301.1
AGGAAGCAGAUAGAUGGUCCU
5938
2499-2519
AGGACCAUCUAUCUGCUUCCUCC
6528
2497-2519





AD-1709304.1
AAGCAGAUAGAUGGUCCAGCU
5941
2502-2522
AGCUGGACCAUCUAUCUGCUUCC
6424
2500-2522





AD-1709307.1
CAGAUAGAUGGUCCAGCAGGU
5944
1656-1676
ACCUGCTGGACCAUCUAUCUGCU
6427
1654-1676





AD-1709310.1
AUAGAUGGUCCAGCAGGCUUU
5947
1659-1679
AAAGCCTGCUGGACCAUCUAUCU
6430
1657-1679





AD-1709314.1
AUGGUCCAGCAGGCUUGAAGU
5951
1663-1683
ACUUCAAGCCUGCUGGACCAUCU
6434
1661-1683





AD-1709315.1
UGGUCCAGCAGGCUUGAAGCU
5952
2513-2533
AGCUTCAAGCCUGCUGGACCAUC
6529
2511-2533





AD-1709317.1
GUCCAGCAGGCUUGAAGCAGU
5954
1666-1686
ACUGCUTCAAGCCUGCUGGACCA
6437
1664-1686





AD-1709372.1
GGUCAAGAGGGAGAUGGGCAU
5957
2584-2604
AUGCCCAUCUCCCUCUUGACCUU
6530
2582-2604





AD-1709390.1
GCGCUGAGGGAGGAUGCUUAU
5959
1757-1777
AUAAGCAUCCUCCCUCAGCGCCU
6531
1755-1777





AD-1709410.1
GCACUAAGCCUAAGAAGUUCU
5961
1811-1831
AGAACUTCUUAGGCUUAGUGCCU
6445
1809-1831





AD-1709411.1
CACUAAGCCUAAGAAGUUCCU
5962
1812-1832
AGGAACTUCUUAGGCUUAGUGCC
6446
1810-1832





AD-1709429.1
CAGGACCCACUGGGAGACAAU
5964
1850-1870
AUUGTCTCCCAGUGGGUCCUGUC
6532
1848-1870





AD-1709431.1
GGACCCACUGGGAGACAAGCU
5966
2701-2721
AGCUTGTCUCCCAGUGGGUCCUG
6450
2699-2721





AD-1709433.1
ACCCACUGGGAGACAAGCAUU
5968
1854-1874
AAUGCUTGUCUCCCAGUGGGUCC
6452
1852-1874





AD-1709434.1
CCCACUGGGAGACAAGCAUUU
5969
1855-1875
AAAUGCTUGUCUCCCAGUGGGUC
6533
1853-1875





AD-1709442.1
GAGACAAGCAUUUAUACUUUU
5975
2712-2732
AAAAGUAUAAAUGCUUGUCUCCC
6534
2710-2732





AD-1709443.1
AGACAAGCAUUUAUACUUUCU
5976
1864-1884
AGAAAGTAUAAAUGCUUGUCUCC
6461
1862-1884





AD-1709502.1
AGGUCAAGAGGGAGAUGGGCU
5956
1734-1754
AGCCCATCUCCCUCUUGACCUUC
6439
1732-1754





AD-1711741.1
CAAGCACAGCUAUCCAUCAGU
5542
  27-47
ACUGAUGGAUAGCUGUGCUUGCU
6535
  25-47





AD-1711742.1
AUCUACUUUCAGCCUUCCUGU
5562
  50-70
ACAGGAAGGCUGAAAGUAGAUCU
6536
  48-70





AD-1711743.1
AGCCAAGCAGCAAAUCCUGGU
5616
 368-388
ACCAGGAUUUGCUGCUUGGCUCU
6537
 366-388





AD-1711744.1
ACCAGUCGUCCCAGAAUAACU
  66
 402-422
AGUUAUTCUGGGACGACUGGUCU
  58
 400-422





AD-1711745.1
CCUGGCACUCUUUGCUUGAGU
5673
 633-653
ACUCAAGCAAAGAGUGCCAGGCU
6538
 631-653





AD-1711746.1
CUGGCACUCUUUGCUUGAGGU
5674
 634-654
ACCUCAAGCAAAGAGUGCCAGCU
6539
 632-654





AD-1711747.1
CUUUGCUUGAGGAUCUUCCGU
  70
 642-662
ACGGAAGAUCCTCAAGCAAAGCU
6540
 640-662





AD-1711748.1
UUUGCUUGAGGAUCUUCCGAU
5680
 643-663
ATCGGAAGAUCCUCAAGCAAACU
6541
 641-663





AD-1711749.1
UUGCUUGAGGAUCUUCCGAUU
5681
 644-664
AAUCGGAAGAUCCUCAAGCAACU
6542
 642-664





AD-1711750.1
UGCUUGAGGAUCUUCCGAUGU
5682
 645-665
ACAUCGGAAGATCCUCAAGCACU
6543
 643-665





AD-1711751.1
GCUUGAGGAUCUUCCGAUGGU
5683
 646-666
ACCATCGGAAGAUCCUCAAGCCU
6544
 644-666





AD-1711752.1
AGCACCACAUCACCAACCUGU
5690
 709-729
ACAGGUTGGUGAUGUGGUGCUCU
6545
 707-729





AD-1711753.1
ACGUAGACUUCCAGGAACUGU
5745
 988-1008
ACAGTUCCUGGAAGUCUACGUCU
6546
 986-1008





AD-1711754.1
CGUAGACUUCCAGGAACUGGU
5746
 989-1009
ACCAGUTCCUGGAAGUCUACGCU
6547
 987-1009





AD-1711755.1
GACUUCCAGGAACUGGGAUGU
5749
 993-1013
ACAUCCCAGUUCCUGGAAGUCCU
6548
 991-1013





AD-1711756.1
UGCUGCCUCUUUCCAUUCUGU
5770
1100-1120
ACAGAATGGAAAGAGGCAGCACU
6549
1098-1120





AD-1711757.1
GCUGCCUCUUUCCAUUCUGCU
5771
1101-1121
AGCAGAAUGGAAAGAGGCAGCCU
6550
1099-1121





AD-1711758.1
CUGCCUCUUUCCAUUCUGCCU
5772
1102-1122
AGGCAGAAUGGAAAGAGGCAGCU
6551
1100-1122





AD-1711759.1
UUCCAUUCUGCCGUCUUCAGU
5779
1110-1130
ACUGAAGACGGCAGAAUGGAACU
6552
1108-1130





AD-1711760.1
CCUCAAAGCCAACAAUCCUUU
 186
1133-1153
AAAGGATUGUUGGCUUUGAGGCU
6553
1131-1153





AD-1711761.1
CUCAAAGCCAACAAUCCUUGU
5795
1134-1154
ACAAGGAUUGUTGGCUUUGAGCU
6554
1132-1154





AD-1711762.1
UGUGUCCCUACUGCCCGAAGU
5805
1173-1193
ACUUCGGGCAGTAGGGACACACU
6555
1171-1193





AD-1711763.1
GUGUCCCUACUGCCCGAAGGU
 189
1174-1194
ACCUTCGGGCAGUAGGGACACCU
6556
1172-1194





AD-1711764.1
CCUCUACCUGGAUCAUAAUGU
5814
1205-1225
ACAUTATGAUCCAGGUAGAGGCU
6557
1203-1225





AD-1711765.1
CUCUACCUGGAUCAUAAUGGU
5815
1206-1226
ACCATUAUGAUCCAGGUAGAGCU
6558
1204-1226





AD-1711766.1
GGAUCAUAAUGGCAAUGUGGU
5822
1214-1234
ACCACATUGCCAUUAUGAUCCCU
6559
1212-1234





AD-1711767.1
GAUCAUAAUGGCAAUGUGGUU
5823
1215-1235
AACCACAUUGCCAUUAUGAUCCU
6560
1213-1235





AD-1711768.1
AUGGCAAUGUGGUCAAGACGU
5829
1222-1242
ACGUCUTGACCACAUUGCCAUCU
6561
1220-1242





AD-1711769.1
GGCAAUGUGGUCAAGACGGAU
5831
1224-1244
ATCCGUCUUGACCACAUUGCCCU
6562
1222-1244





AD-1711770.1
GCAAUGUGGUCAAGACGGAUU
5832
1225-1245
AAUCCGTCUUGACCACAUUGCCU
6563
1223-1245





AD-1711771.1
UGCCAGAUAUGGUGGUGGAGU
5851
1246-1266
ACUCCACCACCAUAUCUGGCACU
6564
1244-1266





AD-1711772.1
UGGCUGCAGCUAGCAAGAGGU
5860
1271-1291
ACCUCUTGCUAGCUGCAGCCACU
6565
1269-1291





AD-1711773.1
GGAGUGAAGAGACCAAGAUGU
5869
1303-1323
ACAUCUTGGUCTCUUCACUCCCU
6566
1301-1323





AD-1711774.1
AAGAGACCAAGAUGAAGUUUU
5872
1309-1329
AAAACUTCAUCTUGGUCUCUUCU
6567
1307-1329





AD-1711775.1
UUCCAGGUUGGCUGAUGUGUU
5925
1465-1485
AACACATCAGCCAACCUGGAACU
6568
1463-1485





AD-1711776.1
CCAGGUUGGCUGAUGUGUUGU
5926
1467-1487
ACAACACAUCAGCCAACCUGGCU
6569
1465-1487





AD-1711777.1
CAGGUUGGCUGAUGUGUUGGU
5927
1468-1488
ACCAACACAUCAGCCAACCUGCU
6570
1466-1488





AD-1711778.1
GUCCAGCAGGCUUGAAGCAGU
5954
1666-1686
ACUGCUTCAAGCCUGCUGGACCU
6571
1664-1686





AD-1711779.1
GGAGACAAGCAUUUAUACUUU
5974
1862-1882
AAAGTATAAAUGCUUGUCUCCCU
6572
1860-1882
















TABLE 20







Modified Sense and Antisense Strand Sequences of INHBE dsRNA Agents















SEQ

SEQ

SEQ




ID

ID

ID


Duplex Name
Sense Strand Sequence 5′ to 3′
NO.
Antisense Strand Sequence 5′ to 3′
NO.
mRNA target sequence
NO.





AD-1706265.1
gscscagacaUfGfAfgcugugagguL96
6573
asdCscudCadCagcudCaUfgucuggcsusa
7233
UAGCCAGACAUGAGCUGUGAGGG
7944





AD-1706266.1
cscsagacauGfAfGfcugugaggguL96
6574
asdCsccdTcdAcagcdTcAfugucuggscsu
7234
AGCCAGACAUGAGCUGUGAGGGU
7945





AD-1706268.1
asgsacaugaGfCfUfgugagggucuL96
6575
asdGsacdCcdTcacadGcUfcaugucusgsg
7235
CCAGACAUGAGCUGUGAGGGUCA
7946





AD-1706269.1
gsascaugagCfUfGfugagggucauL96
6576
asdTsgadCcdCucacdAgCfucaugucsusg
7236
CAGACAUGAGCUGUGAGGGUCAA
7947





AD-1706270.1
ascsaugagcUfGfUfgagggucaauL96
6577
asdTsugdAcdCcucadCaGfcucauguscsu
7237
AGACAUGAGCUGUGAGGGUCAAG
7948





AD-1706271.1
csasugagcuGfUfGfagggucaaguL96
6578
asdCsuudGadCccucdAcAfgcucaugsusc
7238
GACAUGAGCUGUGAGGGUCAAGC
7949





AD-1706272.1
asusgagcugUfGfAfgggucaagcuL96
6579
asdGscudTgdAcccudCaCfagcucausgsu
7239
ACAUGAGCUGUGAGGGUCAAGCA
7950





AD-1706273.1
usgsagcuguGfAfGfggucaagcauL96
6580
asdTsgcdTudGacccdTcAfcagcucasusg
7240
CAUGAGCUGUGAGGGUCAAGCAC
7951





AD-1706274.1
gsasgcugugAfGfGfgucaagcacuL96
6581
asdGsugdCudTgaccdCuCfacagcucsasu
7241
AUGAGCUGUGAGGGUCAAGCACA
7952





AD-1706275.1
asgscugugaGfGfGfucaagcacauL96
6582
asdTsgudGcdTugacdCcUfcacagcuscsa
7242
UGAGCUGUGAGGGUCAAGCACAG
7953





AD-1706276.1
gscsugugagGfGfUfcaagcacaguL96
6583
asdCsugdTgdCuugadCcCfucacagcsusc
7243
GAGCUGUGAGGGUCAAGCACAGC
7954





AD-1706277.1
csusgugaggGfUfCfaagcacagcuL96
6584
asdGscudGudGcuugdAcCfcucacagscsu
7244
AGCUGUGAGGGUCAAGCACAGCU
7955





AD-1706278.1
usgsugagggUfCfAfagcacagcuuL96
6585
asdAsgcdTgdTgcuudGaCfccucacasgsc
7245
GCUGUGAGGGUCAAGCACAGCUA
7956





AD-1706279.1
gsusgaggguCfAfAfgcacagcuauL96
6586
asdTsagdCudGugcudTgAfcccucacsasg
7246
CUGUGAGGGUCAAGCACAGCUAU
7957





AD-1706280.1
usgsagggucAfAfGfcacagcuauuL96
6587
asdAsuadGcdTgugcdTuGfacccucascsa
7247
UGUGAGGGUCAAGCACAGCUAUC
7958





AD-1706281.1
gsasgggucaAfGfCfacagcuaucuL96
6588
asdGsaudAgdCugugdCuUfgacccucsasc
7248
GUGAGGGUCAAGCACAGCUAUCC
7959





AD-1706282.1
asgsggucaaGfCfAfcagcuauccuL96
6589
asdGsgadTadGcugudGcUfugacccuscsa
7249
UGAGGGUCAAGCACAGCUAUCCA
7960





AD-1706283.1
gsgsgucaagCfAfCfagcuauccauL96
6590
asdTsggdAudAgcugdTgCfuugacccsusc
7250
GAGGGUCAAGCACAGCUAUCCAU
7961





AD-1706287.1
csasagcacaGfCfUfauccaucaguL96
6591
asdCsugdAudGgauadGcUfgugcuugsasc
7251
GUCAAGCACAGCUAUCCAUCAGA
7962





AD-1706288.1
asasgcacagCfUfAfuccaucagauL96
6592
asdTscudGadTggaudAgCfugugcuusgsa
7252
UCAAGCACAGCUAUCCAUCAGAU
7963





AD-1706290.1
gscsacagcuAfUfCfcaucagauguL96
6593
asdCsaudCudGauggdAuAfgcugugcsusu
7253
AAGCACAGCUAUCCAUCAGAUGA
7964





AD-1706291.1
csascagcuaUfCfCfaucagaugauL96
6594
asdTscadTcdTgaugdGaUfagcugugscsu
7254
AGCACAGCUAUCCAUCAGAUGAU
7965





AD-1706292.1
ascsagcuauCfCfAfucagaugauuL96
6595
asdAsucdAudCugaudGgAfuagcugusgsc
7255
GCACAGCUAUCCAUCAGAUGAUC
7966





AD-1706293.1
csasgcuaucCfAfUfcagaugaucuL96
6596
asdGsaudCadTcugadTgGfauagcugsusg
7256
CACAGCUAUCCAUCAGAUGAUCU
7967





AD-1706294.1
asgscuauccAfUfCfagaugaucuuL96
6597
asdAsgadTcdAucugdAuGfgauagcusgsu
7257
ACAGCUAUCCAUCAGAUGAUCUA
7968





AD-1706295.1
gscsuauccaUfCfAfgaugaucuauL96
6598
asdTsagdAudCaucudGaUfggauagcsusg
7258
CAGCUAUCCAUCAGAUGAUCUAC
7969





AD-1706296.1
csusauccauCfAfGfaugaucuacuL96
6599
asdGsuadGadTcaucdTgAfuggauagscsu
7259
AGCUAUCCAUCAGAUGAUCUACU
7970





AD-1706297.1
usasuccaucAfGfAfugaucuacuuL96
6600
asdAsgudAgdAucaudCuGfauggauasgsc
7260
GCUAUCCAUCAGAUGAUCUACUU
7971





AD-1706298.1
asusccaucaGfAfUfgaucuacuuuL96
6601
asdAsagdTadGaucadTcUfgauggausasg
7261
CUAUCCAUCAGAUGAUCUACUUU
7972





AD-1706299.1
uscscaucagAfUfGfaucuacuuuuL96
6602
asdAsaadGudAgaucdAuCfugauggasusa
7262
UAUCCAUCAGAUGAUCUACUUUC
7973





AD-1706300.1
cscsaucagaUfGfAfucuacuuucuL96
6603
asdGsaadAgdTagaudCaUfcugauggsasu
7263
AUCCAUCAGAUGAUCUACUUUCA
7974





AD-1706301.1
csasucagauGfAfUfcuacuuucauL96
6604
asdTsgadAadGuagadTcAfucugaugsgsa
7264
UCCAUCAGAUGAUCUACUUUCAG
7975





AD-1706302.1
asuscagaugAfUfCfuacuuucaguL96
6605
asdCsugdAadAguagdAuCfaucugausgsg
7265
CCAUCAGAUGAUCUACUUUCAGC
7976





AD-1706303.1
uscsagaugaUfCfUfacuuucagcuL96
6606
asdGscudGadAaguadGaUfcaucugasusg
7266
CAUCAGAUGAUCUACUUUCAGCC
7977





AD-1706304.1
csasgaugauCfUfAfcuuucagccuL96
6607
asdGsgcdTgdAaagudAgAfucaucugsasu
7267
AUCAGAUGAUCUACUUUCAGCCU
7978





AD-1706305.1
asgsaugaucUfAfCfuuucagccuuL96
6608
asdAsggdCudGaaagdTaGfaucaucusgsa
7268
UCAGAUGAUCUACUUUCAGCCUU
7979





AD-1706306.1
gsasugaucuAfCfUfuucagccuuuL96
6609
asdAsagdGcdTgaaadGuAfgaucaucsusg
7269
CAGAUGAUCUACUUUCAGCCUUC
7980





AD-1706307.1
asusgaucuaCfUfUfucagccuucuL96
6610
asdGsaadGgdCugaadAgUfagaucauscsu
7270
AGAUGAUCUACUUUCAGCCUUCC
7981





AD-1706308.1
usgsaucuacUfUfUfcagccuuccuL96
6611
asdGsgadAgdGcugadAaGfuagaucasusc
7271
GAUGAUCUACUUUCAGCCUUCCU
7982





AD-1706309.1
gsasucuacuUfUfCfagccuuccuuL96
6612
asdAsggdAadGgcugdAaAfguagaucsasu
7272
AUGAUCUACUUUCAGCCUUCCUG
7983





AD-1706310.1
asuscuacuuUfCfAfgccuuccuguL96
6613
asdCsagdGadAggcudGaAfaguagauscsa
7273
UGAUCUACUUUCAGCCUUCCUGA
7984





AD-1706311.1
uscsuacuuuCfAfGfccuuccugauL96
6614
asdTscadGgdAaggcdTgAfaaguagasusc
7274
GAUCUACUUUCAGCCUUCCUGAG
7985





AD-1706312.1
csusacuuucAfGfCfcuuccugaguL96
6615
asdCsucdAgdGaaggdCuGfaaaguagsasu
7275
AUCUACUUUCAGCCUUCCUGAGU
7986





AD-1706313.1
usascuuucaGfCfCfuuccugaguuL96
6616
asdAscudCadGgaagdGcUfgaaaguasgsa
7276
UCUACUUUCAGCCUUCCUGAGUC
7987





AD-1706314.1
ascsuuucagCfCfUfuccugagucuL96
6617
asdGsacdTcdAggaadGgCfugaaagusasg
7277
CUACUUUCAGCCUUCCUGAGUCC
7988





AD-1706318.1
uscsagccuuCfCfUfgagucccaguL96
6618
asdCsugdGgdAcucadGgAfaggcugasasa
7278
UUUCAGCCUUCCUGAGUCCCAGA
7989





AD-1706337.1
gsascaauagAfAfGfacagguggcuL96
6619
asdGsccdAcdCugucdTuCfuauugucsusg
7279
CAGACAAUAGAAGACAGGUGGCU
7990





AD-1706338.1
ascsaauagaAfGfAfcagguggcuuL96
6620
asdAsgcdCadCcugudCuUfcuauuguscsu
7280
AGACAAUAGAAGACAGGUGGCUG
7991





AD-1706380.1
gsusggcaguGfGfUfgucugcuguuL96
6621
asdAscadGcdAgacadCcAfcugccacsasc
7281
GUGUGGCAGUGGUGUCUGCUGUC
7992





AD-1706381.1
usgsgcagugGfUfGfucugcugucuL96
6622
asdGsacdAgdCagacdAcCfacugccascsa
7282
UGUGGCAGUGGUGUCUGCUGUCA
7993





AD-1706382.1
gsgscaguggUfGfUfcugcugucauL96
6623
asdTsgadCadGcagadCaCfcacugccsasc
7283
GUGGCAGUGGUGUCUGCUGUCAC
7994





AD-1706383.1
gscsagugguGfUfCfugcugucacuL96
6624
asdGsugdAcdAgcagdAcAfccacugcscsa
7284
UGGCAGUGGUGUCUGCUGUCACU
7995





AD-1706384.1
csasguggugUfCfUfgcugucacuuL96
6625
asdAsgudGadCagcadGaCfaccacugscsc
7285
GGCAGUGGUGUCUGCUGUCACUG
7996





AD-1706385.1
asgsugguguCfUfGfcugucacuguL96
6626
asdCsagdTgdAcagcdAgAfcaccacusgsc
7286
GCAGUGGUGUCUGCUGUCACUGU
7997





AD-1706386.1
gsusggugucUfGfCfugucacuguuL96
6627
asdAscadGudGacagdCaGfacaccacsusg
7287
CAGUGGUGUCUGCUGUCACUGUG
7998





AD-1706387.1
usgsgugucuGfCfUfgucacuguguL96
6628
asdCsacdAgdTgacadGcAfgacaccascsu
7288
AGUGGUGUCUGCUGUCACUGUGC
7999





AD-1706388.1
gsgsugucugCfUfGfucacugugcuL96
6629
asdGscadCadGugacdAgCfagacaccsasc
7289
GUGGUGUCUGCUGUCACUGUGCC
8000





AD-1706407.1
csasgacucaAfCfAfgacggagcauL96
6630
asdTsgcdTcdCgucudGuUfgagucugsasu
7290
AUCAGACUCAACAGACGGAGCAA
8001





AD-1706408.1
asgsacucaaCfAfGfacggagcaauL96
6631
asdTsugdCudCcgucdTgUfugagucusgsa
7291
UCAGACUCAACAGACGGAGCAAC
8002





AD-1706409.1
gsascucaacAfGfAfcggagcaacuL96
6632
asdGsuudGcdTccgudCuGfuugagucsusg
7292
CAGACUCAACAGACGGAGCAACU
8003





AD-1706410.1
ascsucaacaGfAfCfggagcaacuuL96
6633
asdAsgudTgdCuccgdTcUfguugaguscsu
7293
AGACUCAACAGACGGAGCAACUG
8004





AD-1706411.1
csuscaacagAfCfGfgagcaacuguL96
6634
asdCsagdTudGcuccdGuCfuguugagsusc
7294
GACUCAACAGACGGAGCAACUGC
8005





AD-1706412.1
uscsaacagaCfGfGfagcaacugcuL96
6635
asdGscadGudTgcucdCgUfcuguugasgsu
7295
ACUCAACAGACGGAGCAACUGCC
8006





AD-1706413.1
csasacagacGfGfAfgcaacugccuL96
6636
asdGsgcdAgdTugcudCcGfucuguugsasg
7296
CUCAACAGACGGAGCAACUGCCA
8007





AD-1706414.1
asascagacgGfAfGfcaacugccauL96
6637
asdTsggdCadGuugcdTcCfgucuguusgsa
7297
UCAACAGACGGAGCAACUGCCAU
8008





AD-1706415.1
ascsagacggAfGfCfaacugccauuL96
6638
asdAsugdGcdAguugdCuCfcgucugususg
7298
CAACAGACGGAGCAACUGCCAUC
8009





AD-1706416.1
csasgacggaGfCfAfacugccaucuL96
6639
asdGsaudGgdCaguudGcUfccgucugsusu
7299
AACAGACGGAGCAACUGCCAUCC
8010





AD-1706417.1
asgsacggagCfAfAfcugccauccuL96
6640
asdGsgadTgdGcagudTgCfuccgucusgsu
7300
ACAGACGGAGCAACUGCCAUCCG
8011





AD-1706418.1
gsascggagcAfAfCfugccauccguL96
6641
asdCsggdAudGgcagdTuGfcuccgucsusg
7301
CAGACGGAGCAACUGCCAUCCGA
8012





AD-1706419.1
ascsggagcaAfCfUfgccauccgauL96
6642
asdTscgdGadTggcadGuUfgcuccguscsu
7302
AGACGGAGCAACUGCCAUCCGAG
8013





AD-1706420.1
csgsgagcaaCfUfGfccauccgaguL96
6643
asdCsucdGgdAuggcdAgUfugcuccgsusc
7303
GACGGAGCAACUGCCAUCCGAGG
8014





AD-1706421.1
gsgsagcaacUfGfCfcauccgagguL96
6644
asdCscudCgdGauggdCaGfuugcuccsgsu
7304
ACGGAGCAACUGCCAUCCGAGGC
8015





AD-1706423.1
asgscaacugCfCfAfuccgaggcuuL96
6645
asdAsgcdCudCggaudGgCfaguugcuscsc
7305
GGAGCAACUGCCAUCCGAGGCUC
8016





AD-1706424.1
gscsaacugcCfAfUfccgaggcucuL96
6646
asdGsagdCcdTcggadTgGfcaguugcsusc
7306
GAGCAACUGCCAUCCGAGGCUCC
8017





AD-1706425.1
csasacugccAfUfCfcgaggcuccuL96
6647
asdGsgadGcdCucggdAuGfgcaguugscsu
7307
AGCAACUGCCAUCCGAGGCUCCU
8018





AD-1706520.1
csasagcagaAfCfGfagcucugguuL96
6648
asdAsccdAgdAgcucdGuUfcugcuugsgsg
7308
CCCAAGCAGAACGAGCUCUGGUG
8019





AD-1706521.1
asasgcagaaCfGfAfgcucugguguL96
6649
asdCsacdCadGagcudCgUfucugcuusgsg
7309
CCAAGCAGAACGAGCUCUGGUGC
8020





AD-1706522.1
asgscagaacGfAfGfcucuggugcuL96
6650
asdGscadCcdAgagcdTcGfuucugcususg
7310
CAAGCAGAACGAGCUCUGGUGCU
8021





AD-1706523.1
gscsagaacgAfGfCfucuggugcuuL96
6651
asdAsgcdAcdCagagdCuCfguucugcsusu
7311
AAGCAGAACGAGCUCUGGUGCUG
8022





AD-1706524.1
csasgaacgaGfCfUfcuggugcuguL96
6652
asdCsagdCadCcagadGcUfcguucugscsu
7312
AGCAGAACGAGCUCUGGUGCUGG
8023





AD-1706525.1
asgsaacgagCfUfCfuggugcugguL96
6653
asdCscadGcdAccagdAgCfucguucusgsc
7313
GCAGAACGAGCUCUGGUGCUGGA
8024





AD-1706526.1
gsasacgagcUfCfUfggugcuggauL96
6654
asdTsccdAgdCaccadGaGfcucguucsusg
7314
CAGAACGAGCUCUGGUGCUGGAG
8025





AD-1706527.1
asascgagcuCfUfGfgugcuggaguL96
6655
asdCsucdCadGcaccdAgAfgcucguuscsu
7315
AGAACGAGCUCUGGUGCUGGAGC
8026





AD-1706528.1
ascsgagcucUfGfGfugcuggagcuL96
6656
asdGscudCcdAgcacdCaGfagcucgususc
7316
GAACGAGCUCUGGUGCUGGAGCU
8027





AD-1706530.1
gsasgcucugGfUfGfcuggagcuauL96
6657
asdTsagdCudCcagcdAcCfagagcucsgsu
7317
ACGAGCUCUGGUGCUGGAGCUAG
8028





AD-1706532.1
gscsucugguGfCfUfggagcuagcuL96
6658
asdGscudAgdCuccadGcAfccagagcsusc
7318
GAGCUCUGGUGCUGGAGCUAGCC
8029





AD-1706533.1
csuscuggugCfUfGfgagcuagccuL96
6659
asdGsgcdTadGcuccdAgCfaccagagscsu
7319
AGCUCUGGUGCUGGAGCUAGCCA
8030





AD-1706534.1
uscsuggugcUfGfGfagcuagccauL96
6660
asdTsggdCudAgcucdCaGfcaccagasgsc
7320
GCUCUGGUGCUGGAGCUAGCCAA
8031





AD-1706535.1
csusggugcuGfGfAfgcuagccaauL96
6661
asdTsugdGcdTagcudCcAfgcaccagsasg
7321
CUCUGGUGCUGGAGCUAGCCAAG
8032





AD-1706536.1
usgsgugcugGfAfGfcuagccaaguL96
6662
asdCsuudGgdCuagcdTcCfagcaccasgsa
7322
UCUGGUGCUGGAGCUAGCCAAGC
8033





AD-1706537.1
gsgsugcuggAfGfCfuagccaagcuL96
6663
asdGscudTgdGcuagdCuCfcagcaccsasg
7323
CUGGUGCUGGAGCUAGCCAAGCA
8034





AD-1706538.1
gsusgcuggaGfCfUfagccaagcauL96
6664
asdTsgcdTudGgcuadGcUfccagcacscsa
7324
UGGUGCUGGAGCUAGCCAAGCAG
8035





AD-1706539.1
usgscuggagCfUfAfgccaagcaguL96
6665
asdCsugdCudTggcudAgCfuccagcascsc
7325
GGUGCUGGAGCUAGCCAAGCAGC
8036





AD-1706543.1
gsgsagcuagCfCfAfagcagcaaauL96
6666
asdTsuudGcdTgcuudGgCfuagcuccsasg
7326
CUGGAGCUAGCCAAGCAGCAAAU
8037





AD-1706544.1
gsasgcuagcCfAfAfgcagcaaauuL96
6667
asdAsuudTgdCugcudTgGfcuagcucscsa
7327
UGGAGCUAGCCAAGCAGCAAAUC
8038





AD-1706545.1
asgscuagccAfAfGfcagcaaaucuL96
6668
asdGsaudTudGcugcdTuGfgcuagcuscsc
7328
GGAGCUAGCCAAGCAGCAAAUCC
8039





AD-1706546.1
gscsuagccaAfGfCfagcaaauccuL96
6669
asdGsgadTudTgcugdCuUfggcuagcsusc
7329
GAGCUAGCCAAGCAGCAAAUCCU
8040





AD-1706547.1
csusagccaaGfCfAfgcaaauccuuL96
6670
asdAsggdAudTugcudGcUfuggcuagscsu
7330
AGCUAGCCAAGCAGCAAAUCCUG
8041





AD-1706548.1
usasgccaagCfAfGfcaaauccuguL96
6671
asdCsagdGadTuugcdTgCfuuggcuasgsc
7331
GCUAGCCAAGCAGCAAAUCCUGG
8042





AD-1706549.1
asgsccaagcAfGfCfaaauccugguL96
6672
asdCscadGgdAuuugdCuGfcuuggcusasg
7332
CUAGCCAAGCAGCAAAUCCUGGA
8043





AD-1706550.1
gscscaagcaGfCfAfaauccuggauL96
6673
asdTsccdAgdGauuudGcUfgcuuggcsusa
7333
UAGCCAAGCAGCAAAUCCUGGAU
8044





AD-1706578.1
ascscugaccAfGfUfcgucccagauL96
6674
asdTscudGgdGacgadCuGfgucaggusgsc
7334
GCACCUGACCAGUCGUCCCAGAA
8045





AD-1706579.1
cscsugaccaGfUfCfgucccagaauL96
6675
asdTsucdTgdGgacgdAcUfggucaggsusg
7335
CACCUGACCAGUCGUCCCAGAAU
8046





AD-1706580.1
csusgaccagUfCfGfucccagaauuL96
6676
asdAsuudCudGggacdGaCfuggucagsgsu
7336
ACCUGACCAGUCGUCCCAGAAUA
8047





AD-1706581.1
usgsaccaguCfGfUfcccagaauauL96
6677
asdTsaudTcdTgggadCgAfcuggucasgsg
7337
CCUGACCAGUCGUCCCAGAAUAA
8048





AD-1706582.1
gsasccagucGfUfCfccagaauaauL96
6678
asdTsuadTudCugggdAcGfacuggucsasg
7338
CUGACCAGUCGUCCCAGAAUAAC
8049





AD-1706583.1
ascscagucgUfCfCfcagaauaacuL96
6679
asdGsuudAudTcuggdGaCfgacugguscsa
  75
UGACCAGUCGUCCCAGAAUAACU
8050





AD-1706584.1
cscsagucguCfCfCfagaauaacuuL96
6680
asdAsgudTadTucugdGgAfcgacuggsusc
7339
GACCAGUCGUCCCAGAAUAACUC
8051





AD-1706585.1
csasgucgucCfCfAfgaauaacucuL96
6681
asdGsagdTudAuucudGgGfacgacugsgsu
7340
ACCAGUCGUCCCAGAAUAACUCA
8052





AD-1706586.1
asgsucguccCfAfGfaauaacucauL96
6682
asdTsgadGudTauucdTgGfgacgacusgsg
7341
CCAGUCGUCCCAGAAUAACUCAU
8053





AD-1706587.1
gsuscgucccAfGfAfauaacucauuL96
6683
asdAsugdAgdTuauudCuGfggacgacsusg
7342
CAGUCGUCCCAGAAUAACUCAUC
8054





AD-1706588.1
uscsgucccaGfAfAfuaacucaucuL96
6684
asdGsaudGadGuuaudTcUfgggacgascsu
7343
AGUCGUCCCAGAAUAACUCAUCC
8055





AD-1706589.1
csgsucccagAfAfUfaacucauccuL96
6685
asdGsgadTgdAguuadTuCfugggacgsasc
7344
GUCGUCCCAGAAUAACUCAUCCU
8056





AD-1706590.1
gsuscccagaAfUfAfacucauccuuL96
6686
asdAsggdAudGaguudAuUfcugggacsgsa
7345
UCGUCCCAGAAUAACUCAUCCUC
8057





AD-1706591.1
uscsccagaaUfAfAfcucauccucuL96
6687
asdGsagdGadTgagudTaUfucugggascsg
7346
CGUCCCAGAAUAACUCAUCCUCC
8058





AD-1706592.1
cscscagaauAfAfCfucauccuccuL96
6688
asdGsgadGgdAugagdTuAfuucugggsasc
7347
GUCCCAGAAUAACUCAUCCUCCA
8059





AD-1706593.1
cscsagaauaAfCfUfcauccuccauL96
6689
asdTsggdAgdGaugadGuUfauucuggsgsa
  78
UCCCAGAAUAACUCAUCCUCCAC
8060





AD-1706594.1
csasgaauaaCfUfCfauccuccacuL96
6690
asdGsugdGadGgaugdAgUfuauucugsgsg
7348
CCCAGAAUAACUCAUCCUCCACC
8061





AD-1706635.1
gsgsgaguguGfGfCfuccagggaauL96
6691
asdTsucdCcdTggagdCcAfcacucccsusg
7349
CAGGGAGUGUGGCUCCAGGGAAU
8062





AD-1706636.1
gsgsagugugGfCfUfccagggaauuL96
6692
asdAsuudCcdCuggadGcCfacacuccscsu
7350
AGGGAGUGUGGCUCCAGGGAAUG
8063





AD-1706637.1
gsasguguggCfUfCfcagggaauguL96
6693
asdCsaudTcdCcuggdAgCfcacacucscsc
7351
GGGAGUGUGGCUCCAGGGAAUGG
8064





AD-1706638.1
asgsuguggcUfCfCfagggaaugguL96
6694
asdCscadTudCccugdGaGfccacacuscsc
7352
GGAGUGUGGCUCCAGGGAAUGGG
8065





AD-1706639.1
gsasggagguCfAfUfcagcuuugcuL96
6695
asdGscadAadGcugadTgAfccuccucscsc
7353
GGGAGGAGGUCAUCAGCUUUGCU
8066





AD-1706640.1
asgsgaggucAfUfCfagcuuugcuuL96
6696
asdAsgcdAadAgcugdAuGfaccuccuscsc
7354
GGAGGAGGUCAUCAGCUUUGCUA
8067





AD-1706641.1
gsgsaggucaUfCfAfgcuuugcuauL96
6697
asdTsagdCadAagcudGaUfgaccuccsusc
7355
GAGGAGGUCAUCAGCUUUGCUAC
8068





AD-1706642.1
gsasggucauCfAfGfcuuugcuacuL96
6698
asdGsuadGcdAaagcdTgAfugaccucscsu
7356
AGGAGGUCAUCAGCUUUGCUACU
8069





AD-1706643.1
asgsgucaucAfGfCfuuugcuacuuL96
6699
asdAsgudAgdCaaagdCuGfaugaccuscsc
7357
GGAGGUCAUCAGCUUUGCUACUG
8070





AD-1706644.1
gsgsucaucaGfCfUfuugcuacuguL96
6700
asdCsagdTadGcaaadGcUfgaugaccsusc
7358
GAGGUCAUCAGCUUUGCUACUGU
8071





AD-1706645.1
gsuscaucagCfUfUfugcuacuguuL96
6701
asdAscadGudAgcaadAgCfugaugacscsu
7359
AGGUCAUCAGCUUUGCUACUGUC
8072





AD-1706646.1
uscsaucagcUfUfUfgcuacugucuL96
6702
asdGsacdAgdTagcadAaGfcugaugascsc
7360
GGUCAUCAGCUUUGCUACUGUCA
8073





AD-1706649.1
uscsagcuuuGfCfUfacugucacauL96
6703
asdTsgudGadCaguadGcAfaagcugasusg
7361
CAUCAGCUUUGCUACUGUCACAG
8074





AD-1706650.1
csasgcuuugCfUfAfcugucacaguL96
6704
asdCsugdTgdAcagudAgCfaaagcugsasu
7362
AUCAGCUUUGCUACUGUCACAGA
8075





AD-1706651.1
asgscuuugcUfAfCfugucacagauL96
6705
asdTscudGudGacagdTaGfcaaagcusgsa
7363
UCAGCUUUGCUACUGUCACAGAC
8076





AD-1706652.1
gscsuuugcuAfCfUfgucacagacuL96
6706
asdGsucdTgdTgacadGuAfgcaaagcsusg
7364
CAGCUUUGCUACUGUCACAGACU
8077





AD-1706653.1
csusuugcuaCfUfGfucacagacuuL96
6707
asdAsgudCudGugacdAgUfagcaaagscsu
7365
AGCUUUGCUACUGUCACAGACUC
8078





AD-1706654.1
ususugcuacUfGfUfcacagacucuL96
6708
asdGsagdTcdTgugadCaGfuagcaaasgsc
7366
GCUUUGCUACUGUCACAGACUCC
8079





AD-1706655.1
ususgcuacuGfUfCfacagacuccuL96
6709
asdGsgadGudCugugdAcAfguagcaasasg
7367
CUUUGCUACUGUCACAGACUCCA
8080





AD-1706656.1
usgscuacugUfCfAfcagacuccauL96
6710
asdTsggdAgdTcugudGaCfaguagcasasa
7368
UUUGCUACUGUCACAGACUCCAC
8081





AD-1706660.1
ascsugucacAfGfAfcuccacuucuL96
6711
asdGsaadGudGgagudCuGfugacagusasg
7369
CUACUGUCACAGACUCCACUUCA
8082





AD-1706661.1
csusgucacaGfAfCfuccacuucauL96
6712
asdTsgadAgdTggagdTcUfgugacagsusa
7370
UACUGUCACAGACUCCACUUCAG
8083





AD-1706662.1
usgsucacagAfCfUfccacuucaguL96
6713
asdCsugdAadGuggadGuCfugugacasgsu
  82
ACUGUCACAGACUCCACUUCAGC
8084





AD-1706664.1
uscsacagacUfCfCfacuucagccuL96
6714
asdGsgcdTgdAagugdGaGfucugugascsa
7371
UGUCACAGACUCCACUUCAGCCU
8085





AD-1706665.1
csascagacuCfCfAfcuucagccuuL96
6715
asdAsggdCudGaagudGgAfgucugugsasc
7372
GUCACAGACUCCACUUCAGCCUA
8086





AD-1706666.1
ascsagacucCfAfCfuucagccuauL96
6716
asdTsagdGcdTgaagdTgGfagucugusgsa
7373
UCACAGACUCCACUUCAGCCUAC
8087





AD-1706667.1
csasgacuccAfCfUfucagccuacuL96
6717
asdGsuadGgdCugaadGuGfgagucugsusg
7374
CACAGACUCCACUUCAGCCUACA
8088





AD-1706668.1
asgsacuccaCfUfUfcagccuacauL96
6718
asdTsgudAgdGcugadAgUfggagucusgsu
7375
ACAGACUCCACUUCAGCCUACAG
8089





AD-1706669.1
gsascuccacUfUfCfagccuacaguL96
6719
asdCsugdTadGgcugdAaGfuggagucsusg
7376
CAGACUCCACUUCAGCCUACAGC
8090





AD-1706670.1
ascsuccacuUfCfAfgccuacagcuL96
6720
asdGscudGudAggcudGaAfguggaguscsu
7377
AGACUCCACUUCAGCCUACAGCU
8091





AD-1706671.1
csusccacuuCfAfGfccuacagcuuL96
6721
asdAsgcdTgdTaggcdTgAfaguggagsusc
7378
GACUCCACUUCAGCCUACAGCUC
8092





AD-1706672.1
uscscacuucAfGfCfcuacagcucuL96
6722
asdGsagdCudGuaggdCuGfaaguggasgsu
7379
ACUCCACUUCAGCCUACAGCUCC
8093





AD-1706673.1
cscsacuucaGfCfCfuacagcuccuL96
6723
asdGsgadGcdTguagdGcUfgaaguggsasg
7380
CUCCACUUCAGCCUACAGCUCCC
8094





AD-1706674.1
csascuucagCfCfUfacagcucccuL96
6724
asdGsggdAgdCuguadGgCfugaagugsgsa
7381
UCCACUUCAGCCUACAGCUCCCU
8095





AD-1706675.1
ascsuucagcCfUfAfcagcucccuuL96
6725
asdAsggdGadGcugudAgGfcugaagusgsg
7382
CCACUUCAGCCUACAGCUCCCUG
8096





AD-1706678.1
uscsagccuaCfAfGfcucccugcuuL96
6726
asdAsgcdAgdGgagcdTgUfaggcugasasg
7383
CUUCAGCCUACAGCUCCCUGCUC
8097





AD-1706729.1
csasccuguaCfCfAfugcccgccuuL96
6727
asdAsggdCgdGgcaudGgUfacaggugsgsu
7384
ACCACCUGUACCAUGCCCGCCUG
8098





AD-1706731.1
cscsuguaccAfUfGfcccgccuguuL96
6728
asdAscadGgdCgggcdAuGfguacaggsusg
7385
CACCUGUACCAUGCCCGCCUGUG
8099





AD-1706732.1
csusguaccaUfGfCfccgccuguguL96
6729
asdCsacdAgdGcgggdCaUfgguacagsgsu
7386
ACCUGUACCAUGCCCGCCUGUGG
8100





AD-1706735.1
usasccaugcCfCfGfccuguggcuuL96
6730
asdAsgcdCadCaggcdGgGfcaugguascsa
7387
UGUACCAUGCCCGCCUGUGGCUG
8101





AD-1706745.1
csascccuucCfUfGfgcacucuuuuL96
6731
asdAsaadGadGugccdAgGfaagggugsgsg
7388
CCCACCCUUCCUGGCACUCUUUG
8102





AD-1706746.1
ascsccuuccUfGfGfcacucuuuguL96
6732
asdCsaadAgdAgugcdCaGfgaagggusgsg
7389
CCACCCUUCCUGGCACUCUUUGC
8103





AD-1706747.1
cscscuuccuGfGfCfacucuuugcuL96
6733
asdGscadAadGagugdCcAfggaagggsusg
7390
CACCCUUCCUGGCACUCUUUGCU
8104





AD-1706748.1
cscsuuccugGfCfAfcucuuugcuuL96
6734
asdAsgcdAadAgagudGcCfaggaaggsgsu
7391
ACCCUUCCUGGCACUCUUUGCUU
8105





AD-1706749.1
csusuccuggCfAfCfucuuugcuuuL96
6735
asdAsagdCadAagagdTgCfcaggaagsgsg
7392
CCCUUCCUGGCACUCUUUGCUUG
8106





AD-1706750.1
ususccuggcAfCfUfcuuugcuuguL96
6736
asdCsaadGcdAaagadGuGfccaggaasgsg
7393
CCUUCCUGGCACUCUUUGCUUGA
8107





AD-1706751.1
uscscuggcaCfUfCfuuugcuugauL96
6737
asdTscadAgdCaaagdAgUfgccaggasasg
7394
CUUCCUGGCACUCUUUGCUUGAG
8108





AD-1706752.1
cscsuggcacUfCfUfuugcuugaguL96
6738
asdCsucdAadGcaaadGaGfugccaggsasa
7395
UUCCUGGCACUCUUUGCUUGAGG
8109





AD-1706753.1
csusggcacuCfUfUfugcuugagguL96
6739
asdCscudCadAgcaadAgAfgugccagsgsa
7396
UCCUGGCACUCUUUGCUUGAGGA
8110





AD-1706754.1
usgsgcacucUfUfUfgcuugaggauL96
6740
asdTsccdTcdAagcadAaGfagugccasgsg
7397
CCUGGCACUCUUUGCUUGAGGAU
8111





AD-1706755.1
gsgscacucuUfUfGfcuugaggauuL96
6741
asdAsucdCudCaagcdAaAfgagugccsasg
7398
CUGGCACUCUUUGCUUGAGGAUC
8112





AD-1706756.1
gscsacucuuUfGfCfuugaggaucuL96
6742
asdGsaudCcdTcaagdCaAfagagugcscsa
7399
UGGCACUCUUUGCUUGAGGAUCU
8113





AD-1706758.1
ascsucuuugCfUfUfgaggaucuuuL96
6743
asdAsagdAudCcucadAgCfaaagagusgsc
7400
GCACUCUUUGCUUGAGGAUCUUC
8114





AD-1706759.1
csuscuuugcUfUfGfaggaucuucuL96
6744
asdGsaadGadTccucdAaGfcaaagagsusg
7401
CACUCUUUGCUUGAGGAUCUUCC
8115





AD-1706760.1
uscsuuugcuUfGfAfggaucuuccuL96
6745
asdGsgadAgdAuccudCaAfgcaaagasgsu
7402
ACUCUUUGCUUGAGGAUCUUCCG
8116





AD-1706761.1
csusuugcuuGfAfGfgaucuuccguL96
6746
asdCsggdAadGauccdTcAfagcaaagsasg
  84
CUCUUUGCUUGAGGAUCUUCCGA
8117





AD-1706762.1
ususugcuugAfGfGfaucuuccgauL96
6747
asdTscgdGadAgaucdCuCfaagcaaasgsa
7403
UCUUUGCUUGAGGAUCUUCCGAU
8118





AD-1706763.1
ususgcuugaGfGfAfucuuccgauuL96
6748
asdAsucdGgdAagaudCcUfcaagcaasasg
7404
CUUUGCUUGAGGAUCUUCCGAUG
8119





AD-1706764.1
usgscuugagGfAfUfcuuccgauguL96
6749
asdCsaudCgdGaagadTcCfucaagcasasa
7405
UUUGCUUGAGGAUCUUCCGAUGG
8120





AD-1706765.1
gscsuugaggAfUfCfuuccgaugguL96
6750
asdCscadTcdGgaagdAuCfcucaagcsasa
7406
UUGCUUGAGGAUCUUCCGAUGGG
8121





AD-1706796.1
csusggcugaGfCfAfccacaucacuL96
6751
asdGsugdAudGuggudGcUfcagccagsgsa
7407
UCCUGGCUGAGCACCACAUCACC
8122





AD-1706797.1
usgsgcugagCfAfCfcacaucaccuL96
6752
asdGsgudGadTguggdTgCfucagccasgsg
7408
CCUGGCUGAGCACCACAUCACCA
8123





AD-1706798.1
gsgscugagcAfCfCfacaucaccauL96
6753
asdTsggdTgdAugugdGuGfcucagccsasg
7409
CUGGCUGAGCACCACAUCACCAA
8124





AD-1706799.1
gscsugagcaCfCfAfcaucaccaauL96
6754
asdTsugdGudGaugudGgUfgcucagcscsa
7410
UGGCUGAGCACCACAUCACCAAC
8125





AD-1706800.1
csusgagcacCfAfCfaucaccaacuL96
6755
asdGsuudGgdTgaugdTgGfugcucagscsc
7411
GGCUGAGCACCACAUCACCAACC
8126





AD-1706801.1
usgsagcaccAfCfAfucaccaaccuL96
6756
asdGsgudTgdGugaudGuGfgugcucasgsc
7412
GCUGAGCACCACAUCACCAACCU
8127





AD-1706802.1
gsasgcaccaCfAfUfcaccaaccuuL96
6757
asdAsggdTudGgugadTgUfggugcucsasg
7413
CUGAGCACCACAUCACCAACCUG
8128





AD-1706803.1
asgscaccacAfUfCfaccaaccuguL96
6758
asdCsagdGudTggugdAuGfuggugcuscsa
7414
UGAGCACCACAUCACCAACCUGG
8129





AD-1706804.1
gscsaccacaUfCfAfccaaccugguL96
6759
asdCscadGgdTuggudGaUfguggugcsusc
7415
GAGCACCACAUCACCAACCUGGG
8130





AD-1706807.1
cscsacaucaCfCfAfaccugggcuuL96
6760
asdAsgcdCcdAgguudGgUfgauguggsusg
7416
CACCACAUCACCAACCUGGGCUG
8131





AD-1706808.1
csascaucacCfAfAfccugggcuguL96
6761
asdCsagdCcdCaggudTgGfugaugugsgsu
7417
ACCACAUCACCAACCUGGGCUGG
8132





AD-1706809.1
ascsaucaccAfAfCfcugggcugguL96
6762
asdCscadGcdCcaggdTuGfgugaugusgsg
7418
CCACAUCACCAACCUGGGCUGGC
8133





AD-1706811.1
asuscaccaaCfCfUfgggcuggcauL96
6763
asdTsgcdCadGcccadGgUfuggugausgsu
7419
ACAUCACCAACCUGGGCUGGCAU
8134





AD-1706812.1
uscsaccaacCfUfGfggcuggcauuL96
6764
asdAsugdCcdAgcccdAgGfuuggugasusg
7420
CAUCACCAACCUGGGCUGGCAUA
8135





AD-1706831.1
usasccuuaaCfUfCfugcccucuauL96
6765
asdTsagdAgdGgcagdAgUfuaagguasusg
7421
CAUACCUUAACUCUGCCCUCUAG
8136





AD-1706832.1
ascscuuaacUfCfUfgcccucuaguL96
6766
asdCsuadGadGggcadGaGfuuaaggusasu
7422
AUACCUUAACUCUGCCCUCUAGU
8137





AD-1706833.1
cscsuuaacuCfUfGfcccucuaguuL96
6767
asdAscudAgdAgggcdAgAfguuaaggsusa
7423
UACCUUAACUCUGCCCUCUAGUG
8138





AD-1706834.1
csusuaacucUfGfCfccucuaguguL96
6768
asdCsacdTadGagggdCaGfaguuaagsgsu
7424
ACCUUAACUCUGCCCUCUAGUGG
8139





AD-1706835.1
ususaacucuGfCfCfcucuagugguL96
6769
asdCscadCudAgaggdGcAfgaguuaasgsg
7425
CCUUAACUCUGCCCUCUAGUGGC
8140





AD-1706836.1
usasacucugCfCfCfucuaguggcuL96
6770
asdGsccdAcdTagagdGgCfagaguuasasg
7426
CUUAACUCUGCCCUCUAGUGGCU
8141





AD-1706848.1
asasgucuggUfGfUfccugaaacuuL96
6771
asdAsgudTudCaggadCaCfcagacuuscsu
7427
AGAAGUCUGGUGUCCUGAAACUG
8142





AD-1706849.1
asgsucugguGfUfCfcugaaacuguL96
6772
asdCsagdTudTcaggdAcAfccagacususc
7428
GAAGUCUGGUGUCCUGAAACUGC
8143





AD-1706850.1
gsuscuggugUfCfCfugaaacugcuL96
6773
asdGscadGudTucagdGaCfaccagacsusu
7429
AAGUCUGGUGUCCUGAAACUGCA
8144





AD-1706851.1
uscsugguguCfCfUfgaaacugcauL96
6774
asdTsgcdAgdTuucadGgAfcaccagascsu
7430
AGUCUGGUGUCCUGAAACUGCAA
8145





AD-1706852.1
csusggugucCfUfGfaaacugcaauL96
6775
asdTsugdCadGuuucdAgGfacaccagsasc
7431
GUCUGGUGUCCUGAAACUGCAAC
8146





AD-1706853.1
usgsguguccUfGfAfaacugcaacuL96
6776
asdGsuudGcdAguuudCaGfgacaccasgsa
7432
UCUGGUGUCCUGAAACUGCAACU
8147





AD-1706854.1
gsgsuguccuGfAfAfacugcaacuuL96
6777
asdAsgudTgdCaguudTcAfggacaccsasg
7433
CUGGUGUCCUGAAACUGCAACUA
8148





AD-1706855.1
gsusguccugAfAfAfcugcaacuauL96
6778
asdTsagdTudGcagudTuCfaggacacscsa
7434
UGGUGUCCUGAAACUGCAACUAG
8149





AD-1706856.1
usgsuccugaAfAfCfugcaacuaguL96
6779
asdCsuadGudTgcagdTuUfcaggacascsc
7435
GGUGUCCUGAAACUGCAACUAGA
8150





AD-1706857.1
gsusccugaaAfCfUfgcaacuagauL96
6780
asdTscudAgdTugcadGuUfucaggacsasc
7436
GUGUCCUGAAACUGCAACUAGAC
8151





AD-1706858.1
uscscugaaaCfUfGfcaacuagacuL96
6781
asdGsucdTadGuugcdAgUfuucaggascsa
7437
UGUCCUGAAACUGCAACUAGACU
8152





AD-1706859.1
cscsugaaacUfGfCfaacuagacuuL96
6782
asdAsgudCudAguugdCaGfuuucaggsasc
7438
GUCCUGAAACUGCAACUAGACUG
8153





AD-1706860.1
csusgaaacuGfCfAfacuagacuguL96
6783
asdCsagdTcdTaguudGcAfguuucagsgsa
7439
UCCUGAAACUGCAACUAGACUGC
8154





AD-1706861.1
usgsaaacugCfAfAfcuagacugcuL96
6784
asdGscadGudCuagudTgCfaguuucasgsg
7440
CCUGAAACUGCAACUAGACUGCA
8155





AD-1706862.1
gsasaacugcAfAfCfuagacugcauL96
6785
asdTsgcdAgdTcuagdTuGfcaguuucsasg
7441
CUGAAACUGCAACUAGACUGCAG
8156





AD-1706863.1
asasacugcaAfCfUfagacugcaguL96
6786
asdCsugdCadGucuadGuUfgcaguuuscsa
7442
UGAAACUGCAACUAGACUGCAGA
8157





AD-1706864.1
asascugcaaCfUfAfgacugcagauL96
6787
asdTscudGcdAgucudAgUfugcaguususc
7443
GAAACUGCAACUAGACUGCAGAC
8158





AD-1706866.1
csusgcaacuAfGfAfcugcagaccuL96
6788
asdGsgudCudGcagudCuAfguugcagsusu
7444
AACUGCAACUAGACUGCAGACCC
8159





AD-1706873.1
gsgscaacagCfAfCfaguuacugguL96
6789
asdCscadGudAacugdTgCfuguugccsusu
7445
AAGGCAACAGCACAGUUACUGGA
8160





AD-1706874.1
gscsaacagcAfCfAfguuacuggauL96
6790
asdTsccdAgdTaacudGuGfcuguugcscsu
7446
AGGCAACAGCACAGUUACUGGAC
8161





AD-1706875.1
csasacagcaCfAfGfuuacuggacuL96
6791
asdGsucdCadGuaacdTgUfgcuguugscsc
7447
GGCAACAGCACAGUUACUGGACA
8162





AD-1706876.1
asascagcacAfGfUfuacuggacauL96
6792
asdTsgudCcdAguaadCuGfugcuguusgsc
7448
GCAACAGCACAGUUACUGGACAA
8163





AD-1706877.1
ascsagcacaGfUfUfacuggacaauL96
6793
asdTsugdTcdCaguadAcUfgugcugususg
7449
CAACAGCACAGUUACUGGACAAC
8164





AD-1706878.1
csasgcacagUfUfAfcuggacaacuL96
6794
asdGsuudGudCcagudAaCfugugcugsusu
7450
AACAGCACAGUUACUGGACAACC
8165





AD-1706879.1
asgscacaguUfAfCfuggacaaccuL96
6795
asdGsgudTgdTccagdTaAfcugugcusgsu
7451
ACAGCACAGUUACUGGACAACCG
8166





AD-1706908.1
csusuggacaCfAfGfcaggacaccuL96
6796
asdGsgudGudCcugcdTgUfguccaagsasg
7452
CUCUUGGACACAGCAGGACACCA
8167





AD-1706909.1
ususggacacAfGfCfaggacaccauL96
6797
asdTsggdTgdTccugdCuGfuguccaasgsa
7453
UCUUGGACACAGCAGGACACCAG
8168





AD-1706910.1
usgsgacacaGfCfAfggacaccaguL96
6798
asdCsugdGudGuccudGcUfguguccasasg
7454
CUUGGACACAGCAGGACACCAGC
8169





AD-1706911.1
gsgsacacagCfAfGfgacaccagcuL96
6799
asdGscudGgdTguccdTgCfuguguccsasa
7455
UUGGACACAGCAGGACACCAGCA
8170





AD-1706912.1
gsascacagcAfGfGfacaccagcauL96
6800
asdTsgcdTgdGugucdCuGfcugugucscsa
7456
UGGACACAGCAGGACACCAGCAG
8171





AD-1706913.1
ascsacagcaGfGfAfcaccagcaguL96
6801
asdCsugdCudGgugudCcUfgcuguguscsc
7457
GGACACAGCAGGACACCAGCAGC
8172





AD-1706914.1
csascagcagGfAfCfaccagcagcuL96
6802
asdGscudGcdTggugdTcCfugcugugsusc
7458
GACACAGCAGGACACCAGCAGCC
8173





AD-1706918.1
gscsaggacaCfCfAfgcagcccuuuL96
6803
asdAsagdGgdCugcudGgUfguccugcsusg
7459
CAGCAGGACACCAGCAGCCCUUC
8174





AD-1706921.1
gsgsacaccaGfCfAfgcccuuccuuL96
6804
asdAsggdAadGggcudGcUfgguguccsusg
7460
CAGGACACCAGCAGCCCUUCCUA
8175





AD-1706922.1
gsascaccagCfAfGfcccuuccuauL96
6805
asdTsagdGadAgggcdTgCfuggugucscsu
7461
AGGACACCAGCAGCCCUUCCUAG
8176





AD-1706923.1
ascsaccagcAfGfCfccuuccuaguL96
6806
asdCsuadGgdAagggdCuGfcugguguscsc
7462
GGACACCAGCAGCCCUUCCUAGA
8177





AD-1706925.1
ascscagcagCfCfCfuuccuagaguL96
6807
asdCsucdTadGgaagdGgCfugcuggusgsu
7463
ACACCAGCAGCCCUUCCUAGAGC
8178





AD-1706926.1
cscsagcagcCfCfUfuccuagagcuL96
6808
asdGscudCudAggaadGgGfcugcuggsusg
7464
CACCAGCAGCCCUUCCUAGAGCU
8179





AD-1706927.1
csasgcagccCfUfUfccuagagcuuL96
6809
asdAsgcdTcdTaggadAgGfgcugcugsgsu
7465
ACCAGCAGCCCUUCCUAGAGCUU
8180





AD-1706929.1
gscsagcccuUfCfCfuagagcuuauL96
6810
asdTsaadGcdTcuagdGaAfgggcugcsusg
7466
CAGCAGCCCUUCCUAGAGCUUAA
8181





AD-1706930.1
csasgcccuuCfCfUfagagcuuaauL96
6811
asdTsuadAgdCucuadGgAfagggcugscsu
7467
AGCAGCCCUUCCUAGAGCUUAAG
8182





AD-1706931.1
asgscccuucCfUfAfgagcuuaaguL96
6812
asdCsuudAadGcucudAgGfaagggcusgsc
7468
GCAGCCCUUCCUAGAGCUUAAGA
8183





AD-1706932.1
gscsccuuccUfAfGfagcuuaagauL96
6813
asdTscudTadAgcucdTaGfgaagggcsusg
7469
CAGCCCUUCCUAGAGCUUAAGAU
8184





AD-1706933.1
cscscuuccuAfGfAfgcuuaagauuL96
6814
asdAsucdTudAagcudCuAfggaagggscsu
7470
AGCCCUUCCUAGAGCUUAAGAUC
8185





AD-1706934.1
cscsuuccuaGfAfGfcuuaagaucuL96
6815
asdGsaudCudTaagcdTcUfaggaaggsgsc
7471
GCCCUUCCUAGAGCUUAAGAUCC
8186





AD-1706982.1
ususacguagAfCfUfuccaggaacuL96
6816
asdGsuudCcdTggaadGuCfuacguaasusg
7472
CAUUACGUAGACUUCCAGGAACU
8187





AD-1706983.1
usascguagaCfUfUfccaggaacuuL96
6817
asdAsgudTcdCuggadAgUfcuacguasasu
7473
AUUACGUAGACUUCCAGGAACUG
8188





AD-1706984.1
ascsguagacUfUfCfcaggaacuguL96
6818
asdCsagdTudCcuggdAaGfucuacgusasa
7474
UUACGUAGACUUCCAGGAACUGG
8189





AD-1706985.1
csgsuagacuUfCfCfaggaacugguL96
6819
asdCscadGudTccugdGaAfgucuacgsusa
7475
UACGUAGACUUCCAGGAACUGGG
8190





AD-1706987.1
usasgacuucCfAfGfgaacugggauL96
6820
asdTsccdCadGuuccdTgGfaagucuascsg
7476
CGUAGACUUCCAGGAACUGGGAU
8191





AD-1706988.1
asgsacuuccAfGfGfaacugggauuL96
6821
asdAsucdCcdAguucdCuGfgaagucusasc
7477
GUAGACUUCCAGGAACUGGGAUG
8192





AD-1706989.1
gsascuuccaGfGfAfacugggauguL96
6822
asdCsaudCcdCaguudCcUfggaagucsusa
7478
UAGACUUCCAGGAACUGGGAUGG
8193





AD-1706990.1
ascsuuccagGfAfAfcugggaugguL96
6823
asdCscadTcdCcagudTcCfuggaaguscsu
7479
AGACUUCCAGGAACUGGGAUGGC
8194





AD-1706991.1
csusuccaggAfAfCfugggauggcuL96
6824
asdGsccdAudCccagdTuCfcuggaagsusc
7480
GACUUCCAGGAACUGGGAUGGCG
8195





AD-1707013.1
gsascuggauAfCfUfgcagcccgauL96
6825
asdTscgdGgdCugcadGuAfuccagucscsc
7481
GGGACUGGAUACUGCAGCCCGAG
8196





AD-1707014.1
ascsuggauaCfUfGfcagcccgaguL96
6826
asdCsucdGgdGcugcdAgUfauccaguscsc
7482
GGACUGGAUACUGCAGCCCGAGG
8197





AD-1707015.1
csusggauacUfGfCfagcccgagguL96
6827
asdCscudCgdGgcugdCaGfuauccagsusc
7483
GACUGGAUACUGCAGCCCGAGGG
8198





AD-1707016.1
gsusaccagcUfGfAfauuacugcauL96
6828
asdTsgcdAgdTaauudCaGfcugguacscsc
7484
GGGUACCAGCUGAAUUACUGCAG
8199





AD-1707017.1
usasccagcuGfAfAfuuacugcaguL96
6829
asdCsugdCadGuaaudTcAfgcugguascsc
7485
GGUACCAGCUGAAUUACUGCAGU
8200





AD-1707018.1
ascscagcugAfAfUfuacugcaguuL96
6830
asdAscudGcdAguaadTuCfagcuggusasc
7486
GUACCAGCUGAAUUACUGCAGUG
8201





AD-1707019.1
cscsagcugaAfUfUfacugcaguguL96
6831
asdCsacdTgdCaguadAuUfcagcuggsusa
7487
UACCAGCUGAAUUACUGCAGUGG
8202





AD-1707020.1
csasgcugaaUfUfAfcugcagugguL96
6832
asdCscadCudGcagudAaUfucagcugsgsu
7488
ACCAGCUGAAUUACUGCAGUGGG
8203





AD-1707021.1
asgscugaauUfAfCfugcaguggguL96
6833
asdCsccdAcdTgcagdTaAfuucagcusgsg
7489
CCAGCUGAAUUACUGCAGUGGGC
8204





AD-1707022.1
gscsugaauuAfCfUfgcagugggcuL96
6834
asdGsccdCadCugcadGuAfauucagcsusg
7490
CAGCUGAAUUACUGCAGUGGGCA
8205





AD-1707023.1
csusgaauuaCfUfGfcagugggcauL96
6835
asdTsgcdCcdAcugcdAgUfaauucagscsu
7491
AGCUGAAUUACUGCAGUGGGCAG
8206





AD-1707024.1
usgsaauuacUfGfCfagugggcaguL96
6836
asdCsugdCcdCacugdCaGfuaauucasgsc
7492
GCUGAAUUACUGCAGUGGGCAGU
8207





AD-1707025.1
gsasauuacuGfCfAfgugggcaguuL96
6837
asdAscudGcdCcacudGcAfguaauucsasg
7493
CUGAAUUACUGCAGUGGGCAGUG
8208





AD-1707030.1
ascsugcaguGfGfGfcagugcccuuL96
6838
asdAsggdGcdAcugcdCcAfcugcagusasa
7494
UUACUGCAGUGGGCAGUGCCCUC
8209





AD-1707047.1
csasggcauuGfCfUfgccucuuucuL96
6839
asdGsaadAgdAggcadGcAfaugccugsgsg
7495
CCCAGGCAUUGCUGCCUCUUUCC
8210





AD-1707048.1
asgsgcauugCfUfGfccucuuuccuL96
6840
asdGsgadAadGaggcdAgCfaaugccusgsg
7496
CCAGGCAUUGCUGCCUCUUUCCA
8211





AD-1707049.1
gsgscauugcUfGfCfcucuuuccauL96
6841
asdTsggdAadAgaggdCaGfcaaugccsusg
7497
CAGGCAUUGCUGCCUCUUUCCAU
8212





AD-1707050.1
gscsauugcuGfCfCfucuuuccauuL96
6842
asdAsugdGadAagagdGcAfgcaaugcscsu
7498
AGGCAUUGCUGCCUCUUUCCAUU
8213





AD-1707051.1
csasuugcugCfCfUfcuuuccauuuL96
6843
asdAsaudGgdAaagadGgCfagcaaugscsc
7499
GGCAUUGCUGCCUCUUUCCAUUC
8214





AD-1707052.1
asusugcugcCfUfCfuuuccauucuL96
6844
asdGsaadTgdGaaagdAgGfcagcaausgsc
7500
GCAUUGCUGCCUCUUUCCAUUCU
8215





AD-1707053.1
ususgcugccUfCfUfuuccauucuuL96
6845
asdAsgadAudGgaaadGaGfgcagcaasusg
7501
CAUUGCUGCCUCUUUCCAUUCUG
8216





AD-1707054.1
usgscugccuCfUfUfuccauucuguL96
6846
asdCsagdAadTggaadAgAfggcagcasasu
7502
AUUGCUGCCUCUUUCCAUUCUGC
8217





AD-1707055.1
gscsugccucUfUfUfccauucugcuL96
6847
asdGscadGadAuggadAaGfaggcagcsasa
7503
UUGCUGCCUCUUUCCAUUCUGCC
8218





AD-1707056.1
csusgccucuUfUfCfcauucugccuL96
6848
asdGsgcdAgdAauggdAaAfgaggcagscsa
7504
UGCUGCCUCUUUCCAUUCUGCCG
8219





AD-1707057.1
usgsccucuuUfCfCfauucugccguL96
6849
asdCsggdCadGaaugdGaAfagaggcasgsc
7505
GCUGCCUCUUUCCAUUCUGCCGU
8220





AD-1707058.1
gscscucuuuCfCfAfuucugccguuL96
6850
asdAscgdGcdAgaaudGgAfaagaggcsasg
7506
CUGCCUCUUUCCAUUCUGCCGUC
8221





AD-1707059.1
cscsucuuucCfAfUfucugccgucuL96
6851
asdGsacdGgdCagaadTgGfaaagaggscsa
7507
UGCCUCUUUCCAUUCUGCCGUCU
8222





AD-1707060.1
csuscuuuccAfUfUfcugccgucuuL96
6852
asdAsgadCgdGcagadAuGfgaaagagsgsc
7508
GCCUCUUUCCAUUCUGCCGUCUU
8223





AD-1707061.1
uscsuuuccaUfUfCfugccgucuuuL96
6853
asdAsagdAcdGgcagdAaUfggaaagasgsg
7509
CCUCUUUCCAUUCUGCCGUCUUC
8224





AD-1707062.1
csusuuccauUfCfUfgccgucuucuL96
6854
asdGsaadGadCggcadGaAfuggaaagsasg
7510
CUCUUUCCAUUCUGCCGUCUUCA
8225





AD-1707063.1
ususuccauuCfUfGfccgucuucauL96
6855
asdTsgadAgdAcggcdAgAfauggaaasgsa
7511
UCUUUCCAUUCUGCCGUCUUCAG
8226





AD-1707064.1
ususccauucUfGfCfcgucuucaguL96
6856
asdCsugdAadGacggdCaGfaauggaasasg
7512
CUUUCCAUUCUGCCGUCUUCAGC
8227





AD-1707065.1
uscscauucuGfCfCfgucuucagcuL96
6857
asdGscudGadAgacgdGcAfgaauggasasa
7513
UUUCCAUUCUGCCGUCUUCAGCC
8228





AD-1707066.1
cscsauucugCfCfGfucuucagccuL96
6858
asdGsgcdTgdAagacdGgCfagaauggsasa
7514
UUCCAUUCUGCCGUCUUCAGCCU
8229





AD-1707067.1
csasuucugcCfGfUfcuucagccuuL96
6859
asdAsggdCudGaagadCgGfcagaaugsgsa
7515
UCCAUUCUGCCGUCUUCAGCCUC
8230





AD-1707070.1
uscsugccguCfUfUfcagccuccuuL96
6860
asdAsggdAgdGcugadAgAfcggcagasasu
7516
AUUCUGCCGUCUUCAGCCUCCUC
8231





AD-1707074.1
cscsgucuucAfGfCfcuccucaaauL96
6861
asdTsuudGadGgaggdCuGfaagacggscsa
7517
UGCCGUCUUCAGCCUCCUCAAAG
8232





AD-1707075.1
csgsucuucaGfCfCfuccucaaaguL96
6862
asdCsuudTgdAggagdGcUfgaagacgsgsc
7518
GCCGUCUUCAGCCUCCUCAAAGC
8233





AD-1707076.1
gsuscuucagCfCfUfccucaaagcuL96
6863
asdGscudTudGaggadGgCfugaagacsgsg
7519
CCGUCUUCAGCCUCCUCAAAGCC
8234





AD-1707077.1
uscsuucagcCfUfCfcucaaagccuL96
6864
asdGsgcdTudTgaggdAgGfcugaagascsg
7520
CGUCUUCAGCCUCCUCAAAGCCA
8235





AD-1707078.1
csusucagccUfCfCfucaaagccauL96
6865
asdTsggdCudTugagdGaGfgcugaagsasc
7521
GUCUUCAGCCUCCUCAAAGCCAA
8236





AD-1707080.1
uscsagccucCfUfCfaaagccaacuL96
6866
asdGsuudGgdCuuugdAgGfaggcugasasg
7522
CUUCAGCCUCCUCAAAGCCAACA
8237





AD-1707081.1
csasgccuccUfCfAfaagccaacauL96
6867
asdTsgudTgdGcuuudGaGfgaggcugsasa
7523
UUCAGCCUCCUCAAAGCCAACAA
8238





AD-1707082.1
asgsccuccuCfAfAfagccaacaauL96
6868
asdTsugdTudGgcuudTgAfggaggcusgsa
7524
UCAGCCUCCUCAAAGCCAACAAU
8239





AD-1707083.1
gscscuccucAfAfAfgccaacaauuL96
6869
asdAsuudGudTggcudTuGfaggaggcsusg
7525
CAGCCUCCUCAAAGCCAACAAUC
8240





AD-1707084.1
cscsuccucaAfAfGfccaacaaucuL96
6870
asdGsaudTgdTuggcdTuUfgaggaggscsu
7526
AGCCUCCUCAAAGCCAACAAUCC
8241





AD-1707085.1
csusccucaaAfGfCfcaacaauccuL96
6871
asdGsgadTudGuuggdCuUfugaggagsgsc
7527
GCCUCCUCAAAGCCAACAAUCCU
8242





AD-1707086.1
uscscucaaaGfCfCfaacaauccuuL96
6872
asdAsggdAudTguugdGcUfuugaggasgsg
7528
CCUCCUCAAAGCCAACAAUCCUU
8243





AD-1707087.1
cscsucaaagCfCfAfacaauccuuuL96
6873
asdAsagdGadTuguudGgCfuuugaggsasg
7529
CUCCUCAAAGCCAACAAUCCUUG
8244





AD-1707088.1
csuscaaagcCfAfAfcaauccuuguL96
6874
asdCsaadGgdAuugudTgGfcuuugagsgsa
7530
UCCUCAAAGCCAACAAUCCUUGG
8245





AD-1707092.1
asasgccaacAfAfUfccuuggccuuL96
6875
asdAsggdCcdAaggadTuGfuuggcuususg
7531
CAAAGCCAACAAUCCUUGGCCUG
8246





AD-1707093.1
asgsccaacaAfUfCfcuuggccuguL96
6876
asdCsagdGcdCaaggdAuUfguuggcususu
7532
AAAGCCAACAAUCCUUGGCCUGC
8247





AD-1707094.1
gscscaacaaUfCfCfuuggccugcuL96
6877
asdGscadGgdCcaagdGaUfuguuggcsusu
7533
AAGCCAACAAUCCUUGGCCUGCC
8248





AD-1707095.1
cscsaacaauCfCfUfuggccugccuL96
6878
asdGsgcdAgdGccaadGgAfuuguuggscsu
7534
AGCCAACAAUCCUUGGCCUGCCA
8249





AD-1707097.1
asascaauccUfUfGfgccugccaguL96
6879
asdCsugdGcdAggccdAaGfgauuguusgsg
7535
CCAACAAUCCUUGGCCUGCCAGU
8250





AD-1707098.1
ascsaauccuUfGfGfccugccaguuL96
6880
asdAscudGgdCaggcdCaAfggauugususg
7536
CAACAAUCCUUGGCCUGCCAGUA
8251





AD-1707105.1
ususggccugCfCfAfguaccuccuuL96
6881
asdAsggdAgdGuacudGgCfaggccaasgsg
7537
CCUUGGCCUGCCAGUACCUCCUG
8252





AD-1707125.1
gsusugugucCfCfUfacugcccgauL96
6882
asdTscgdGgdCaguadGgGfacacaacsasg
7538
CUGUUGUGUCCCUACUGCCCGAA
8253





AD-1707126.1
ususguguccCfUfAfcugcccgaauL96
6883
asdTsucdGgdGcagudAgGfgacacaascsa
7539
UGUUGUGUCCCUACUGCCCGAAG
8254





AD-1707127.1
usgsugucccUfAfCfugcccgaaguL96
6884
asdCsuudCgdGgcagdTaGfggacacasasc
7540
GUUGUGUCCCUACUGCCCGAAGG
8255





AD-1707128.1
gsusgucccuAfCfUfgcccgaagguL96
6885
asdCscudTcdGggcadGuAfgggacacsasa
7541
UUGUGUCCCUACUGCCCGAAGGC
8256





AD-1707129.1
usgsucccuaCfUfGfcccgaaggcuL96
6886
asdGsccdTudCgggcdAgUfagggacascsa
7542
UGUGUCCCUACUGCCCGAAGGCC
8257





AD-1707132.1
uscsucucucCfUfCfuaccuggauuL96
6887
asdAsucdCadGguagdAgGfagagagasgsg
7543
CCUCUCUCUCCUCUACCUGGAUC
8258





AD-1707133.1
csuscucuccUfCfUfaccuggaucuL96
6888
asdGsaudCcdAgguadGaGfgagagagsasg
7544
CUCUCUCUCCUCUACCUGGAUCA
8259





AD-1707134.1
uscsucuccuCfUfAfccuggaucauL96
6889
asdTsgadTcdCaggudAgAfggagagasgsa
7545
UCUCUCUCCUCUACCUGGAUCAU
8260





AD-1707135.1
csuscuccucUfAfCfcuggaucauuL96
6890
asdAsugdAudCcaggdTaGfaggagagsasg
7546
CUCUCUCCUCUACCUGGAUCAUA
8261





AD-1707136.1
uscsuccucuAfCfCfuggaucauauL96
6891
asdTsaudGadTccagdGuAfgaggagasgsa
7547
UCUCUCCUCUACCUGGAUCAUAA
8262





AD-1707137.1
csusccucuaCfCfUfggaucauaauL96
6892
asdTsuadTgdAuccadGgUfagaggagsasg
7548
CUCUCCUCUACCUGGAUCAUAAU
8263





AD-1707138.1
uscscucuacCfUfGfgaucauaauuL96
6893
asdAsuudAudGauccdAgGfuagaggasgsa
7549
UCUCCUCUACCUGGAUCAUAAUG
8264





AD-1707139.1
cscsucuaccUfGfGfaucauaauguL96
6894
asdCsaudTadTgaucdCaGfguagaggsasg
7550
CUCCUCUACCUGGAUCAUAAUGG
8265





AD-1707140.1
csuscuaccuGfGfAfucauaaugguL96
6895
asdCscadTudAugaudCcAfgguagagsgsa
7551
UCCUCUACCUGGAUCAUAAUGGC
8266





AD-1707141.1
uscsuaccugGfAfUfcauaauggcuL96
6896
asdGsccdAudTaugadTcCfagguagasgsg
7552
CCUCUACCUGGAUCAUAAUGGCA
8267





AD-1707142.1
csusaccuggAfUfCfauaauggcauL96
6897
asdTsgcdCadTuaugdAuCfcagguagsasg
7553
CUCUACCUGGAUCAUAAUGGCAA
8268





AD-1707143.1
usasccuggaUfCfAfuaauggcaauL96
6898
asdTsugdCcdAuuaudGaUfccagguasgsa
7554
UCUACCUGGAUCAUAAUGGCAAU
8269





AD-1707144.1
ascscuggauCfAfUfaauggcaauuL96
6899
asdAsuudGcdCauuadTgAfuccaggusasg
7555
CUACCUGGAUCAUAAUGGCAAUG
8270





AD-1707145.1
cscsuggaucAfUfAfauggcaauguL96
6900
asdCsaudTgdCcauudAuGfauccaggsusa
7556
UACCUGGAUCAUAAUGGCAAUGU
8271





AD-1707146.1
csusggaucaUfAfAfuggcaauguuL96
6901
asdAscadTudGccaudTaUfgauccagsgsu
7557
ACCUGGAUCAUAAUGGCAAUGUG
8272





AD-1707147.1
usgsgaucauAfAfUfggcaauguguL96
6902
asdCsacdAudTgccadTuAfugauccasgsg
7558
CCUGGAUCAUAAUGGCAAUGUGG
8273





AD-1707148.1
gsgsaucauaAfUfGfgcaaugugguL96
6903
asdCscadCadTugccdAuUfaugauccsasg
7559
CUGGAUCAUAAUGGCAAUGUGGU
8274





AD-1707149.1
gsasucauaaUfGfGfcaaugugguuL96
6904
asdAsccdAcdAuugcdCaUfuaugaucscsa
7560
UGGAUCAUAAUGGCAAUGUGGUC
8275





AD-1707150.1
asuscauaauGfGfCfaauguggucuL96
6905
asdGsacdCadCauugdCcAfuuaugauscsc
7561
GGAUCAUAAUGGCAAUGUGGUCA
8276





AD-1707151.1
uscsauaaugGfCfAfauguggucauL96
6906
asdTsgadCcdAcauudGcCfauuaugasusc
7562
GAUCAUAAUGGCAAUGUGGUCAA
8277





AD-1707152.1
csasuaauggCfAfAfuguggucaauL96
6907
asdTsugdAcdCacaudTgCfcauuaugsasu
7563
AUCAUAAUGGCAAUGUGGUCAAG
8278





AD-1707153.1
asusaauggcAfAfUfguggucaaguL96
6908
asdCsuudGadCcacadTuGfccauuausgsa
7564
UCAUAAUGGCAAUGUGGUCAAGA
8279





AD-1707154.1
usasauggcaAfUfGfuggucaagauL96
6909
asdTscudTgdAccacdAuUfgccauuasusg
7565
CAUAAUGGCAAUGUGGUCAAGAC
8280





AD-1707155.1
asasuggcaaUfGfUfggucaagacuL96
6910
asdGsucdTudGaccadCaUfugccauusasu
7566
AUAAUGGCAAUGUGGUCAAGACG
8281





AD-1707156.1
asusggcaauGfUfGfgucaagacguL96
6911
asdCsgudCudTgaccdAcAfuugccaususa
7567
UAAUGGCAAUGUGGUCAAGACGG
8282





AD-1707157.1
usgsgcaaugUfGfGfucaagacgguL96
6912
asdCscgdTcdTugacdCaCfauugccasusu
7568
AAUGGCAAUGUGGUCAAGACGGA
8283





AD-1707158.1
gsgscaauguGfGfUfcaagacggauL96
6913
asdTsccdGudCuugadCcAfcauugccsasu
7569
AUGGCAAUGUGGUCAAGACGGAU
8284





AD-1707159.1
gscsaaugugGfUfCfaagacggauuL96
6914
asdAsucdCgdTcuugdAcCfacauugcscsa
7570
UGGCAAUGUGGUCAAGACGGAUG
8285





AD-1707160.1
csasauguggUfCfAfagacggauguL96
6915
asdCsaudCcdGucuudGaCfcacauugscsc
7571
GGCAAUGUGGUCAAGACGGAUGU
8286





AD-1707161.1
asasugugguCfAfAfgacggauguuL96
6916
asdAscadTcdCgucudTgAfccacauusgsc
7572
GCAAUGUGGUCAAGACGGAUGUG
8287





AD-1707162.1
asusguggucAfAfGfacggauguguL96
6917
asdCsacdAudCcgucdTuGfaccacaususg
7573
CAAUGUGGUCAAGACGGAUGUGC
8288





AD-1707163.1
usgsuggucaAfGfAfcggaugugcuL96
6918
asdGscadCadTccgudCuUfgaccacasusu
7574
AAUGUGGUCAAGACGGAUGUGCC
8289





AD-1707164.1
gsusggucaaGfAfCfggaugugccuL96
6919
asdGsgcdAcdAuccgdTcUfugaccacsasu
7575
AUGUGGUCAAGACGGAUGUGCCA
8290





AD-1707165.1
usgsgucaagAfCfGfgaugugccauL96
6920
asdTsggdCadCauccdGuCfuugaccascsa
7576
UGUGGUCAAGACGGAUGUGCCAG
8291





AD-1707166.1
gsgsucaagaCfGfGfaugugccaguL96
6921
asdCsugdGcdAcaucdCgUfcuugaccsasc
7577
GUGGUCAAGACGGAUGUGCCAGA
8292





AD-1707167.1
gsuscaagacGfGfAfugugccagauL96
6922
asdTscudGgdCacaudCcGfucuugacscsa
7578
UGGUCAAGACGGAUGUGCCAGAU
8293





AD-1707168.1
uscsaagacgGfAfUfgugccagauuL96
6923
asdAsucdTgdGcacadTcCfgucuugascsc
7579
GGUCAAGACGGAUGUGCCAGAUA
8294





AD-1707169.1
csasagacggAfUfGfugccagauauL96
6924
asdTsaudCudGgcacdAuCfcgucuugsasc
7580
GUCAAGACGGAUGUGCCAGAUAU
8295





AD-1707170.1
asasgacggaUfGfUfgccagauauuL96
6925
asdAsuadTcdTggcadCaUfccgucuusgsa
7581
UCAAGACGGAUGUGCCAGAUAUG
8296





AD-1707171.1
asgsacggauGfUfGfccagauauguL96
6926
asdCsaudAudCuggcdAcAfuccgucususg
7582
CAAGACGGAUGUGCCAGAUAUGG
8297





AD-1707172.1
gsascggaugUfGfCfcagauaugguL96
6927
asdCscadTadTcuggdCaCfauccgucsusu
7583
AAGACGGAUGUGCCAGAUAUGGU
8298





AD-1707173.1
ascsggauguGfCfCfagauaugguuL96
6928
asdAsccdAudAucugdGcAfcauccguscsu
7584
AGACGGAUGUGCCAGAUAUGGUG
8299





AD-1707174.1
csgsgaugugCfCfAfgauaugguguL96
6929
asdCsacdCadTaucudGgCfacauccgsusc
7585
GACGGAUGUGCCAGAUAUGGUGG
8300





AD-1707176.1
gsasugugccAfGfAfuauggugguuL96
6930
asdAsccdAcdCauaudCuGfgcacaucscsg
7586
CGGAUGUGCCAGAUAUGGUGGUG
8301





AD-1707177.1
asusgugccaGfAfUfauggugguguL96
6931
asdCsacdCadCcauadTcUfggcacauscsc
7587
GGAUGUGCCAGAUAUGGUGGUGG
8302





AD-1707178.1
usgsugccagAfUfAfugguggugguL96
6932
asdCscadCcdAccaudAuCfuggcacasusc
7588
GAUGUGCCAGAUAUGGUGGUGGA
8303





AD-1707179.1
gsusgccagaUfAfUfggugguggauL96
6933
asdTsccdAcdCaccadTaUfcuggcacsasu
7589
AUGUGCCAGAUAUGGUGGUGGAG
8304





AD-1707180.1
usgsccagauAfUfGfgugguggaguL96
6934
asdCsucdCadCcaccdAuAfucuggcascsa
7590
UGUGCCAGAUAUGGUGGUGGAGG
8305





AD-1707182.1
cscsagauauGfGfUfgguggaggcuL96
6935
asdGsccdTcdCaccadCcAfuaucuggscsa
7591
UGCCAGAUAUGGUGGUGGAGGCC
8306





AD-1707189.1
usgsguggugGfAfGfgccuguggcuL96
6936
asdGsccdAcdAggccdTcCfaccaccasusa
7592
UAUGGUGGUGGAGGCCUGUGGCU
8307





AD-1707190.1
gsgsugguggAfGfGfccuguggcuuL96
6937
asdAsgcdCadCaggcdCuCfcaccaccsasu
7593
AUGGUGGUGGAGGCCUGUGGCUG
8308





AD-1707197.1
gsasggccugUfGfGfcugcagcuauL96
6938
asdTsagdCudGcagcdCaCfaggccucscsa
7594
UGGAGGCCUGUGGCUGCAGCUAG
8309





AD-1707200.1
gscscuguggCfUfGfcagcuagcauL96
6939
asdTsgcdTadGcugcdAgCfcacaggcscsu
7595
AGGCCUGUGGCUGCAGCUAGCAA
8310





AD-1707201.1
cscsuguggcUfGfCfagcuagcaauL96
6940
asdTsugdCudAgcugdCaGfccacaggscsc
7596
GGCCUGUGGCUGCAGCUAGCAAG
8311





AD-1707202.1
csusguggcuGfCfAfgcuagcaaguL96
6941
asdCsuudGcdTagcudGcAfgccacagsgsc
7597
GCCUGUGGCUGCAGCUAGCAAGA
8312





AD-1707203.1
usgsuggcugCfAfGfcuagcaagauL96
6942
asdTscudTgdCuagcdTgCfagccacasgsg
7598
CCUGUGGCUGCAGCUAGCAAGAG
8313





AD-1707204.1
gsusggcugcAfGfCfuagcaagaguL96
6943
asdCsucdTudGcuagdCuGfcagccacsasg
7599
CUGUGGCUGCAGCUAGCAAGAGG
8314





AD-1707205.1
usgsgcugcaGfCfUfagcaagagguL96
6944
asdCscudCudTgcuadGcUfgcagccascsa
7600
UGUGGCUGCAGCUAGCAAGAGGA
8315





AD-1707206.1
gsgscugcagCfUfAfgcaagaggauL96
6945
asdTsccdTcdTugcudAgCfugcagccsasc
7601
GUGGCUGCAGCUAGCAAGAGGAC
8316





AD-1707207.1
gscsugcagcUfAfGfcaagaggacuL96
6946
asdGsucdCudCuugcdTaGfcugcagcscsa
7602
UGGCUGCAGCUAGCAAGAGGACC
8317





AD-1707208.1
csusgcagcuAfGfCfaagaggaccuL96
6947
asdGsgudCcdTcuugdCuAfgcugcagscsc
7603
GGCUGCAGCUAGCAAGAGGACCU
8318





AD-1707209.1
usgscagcuaGfCfAfagaggaccuuL96
6948
asdAsggdTcdCucuudGcUfagcugcasgsc
7604
GCUGCAGCUAGCAAGAGGACCUG
8319





AD-1707210.1
gscsagcuagCfAfAfgaggaccuguL96
6949
asdCsagdGudCcucudTgCfuagcugcsasg
7605
CUGCAGCUAGCAAGAGGACCUGG
8320





AD-1707211.1
csasgcuagcAfAfGfaggaccugguL96
6950
asdCscadGgdTccucdTuGfcuagcugscsa
7606
UGCAGCUAGCAAGAGGACCUGGG
8321





AD-1707212.1
gscsuuuggaGfUfGfaagagaccauL96
6951
asdTsggdTcdTcuucdAcUfccaaagcscsc
7607
GGGCUUUGGAGUGAAGAGACCAA
8322





AD-1707213.1
csusuuggagUfGfAfagagaccaauL96
6952
asdTsugdGudCucuudCaCfuccaaagscsc
7608
GGCUUUGGAGUGAAGAGACCAAG
8323





AD-1707214.1
ususuggaguGfAfAfgagaccaaguL96
6953
asdCsuudGgdTcucudTcAfcuccaaasgsc
7609
GCUUUGGAGUGAAGAGACCAAGA
8324





AD-1707216.1
usgsgagugaAfGfAfgaccaagauuL96
6954
asdAsucdTudGgucudCuUfcacuccasasa
7610
UUUGGAGUGAAGAGACCAAGAUG
8325





AD-1707217.1
gsgsagugaaGfAfGfaccaagauguL96
6955
asdCsaudCudTggucdTcUfucacuccsasa
7611
UUGGAGUGAAGAGACCAAGAUGA
8326





AD-1707218.1
gsasgugaagAfGfAfccaagaugauL96
6956
asdTscadTcdTuggudCuCfuucacucscsa
7612
UGGAGUGAAGAGACCAAGAUGAA
8327





AD-1707221.1
usgsaagagaCfCfAfagaugaaguuL96
6957
asdAscudTcdAucuudGgUfcucuucascsu
7613
AGUGAAGAGACCAAGAUGAAGUU
8328





AD-1707223.1
asasgagaccAfAfGfaugaaguuuuL96
6958
asdAsaadCudTcaucdTuGfgucucuuscsa
7614
UGAAGAGACCAAGAUGAAGUUUC
8329





AD-1707224.1
asgsagaccaAfGfAfugaaguuucuL96
6959
asdGsaadAcdTucaudCuUfggucucususc
7615
GAAGAGACCAAGAUGAAGUUUCC
8330





AD-1707225.1
gsasgaccaaGfAfUfgaaguuuccuL96
6960
asdGsgadAadCuucadTcUfuggucucsusu
7616
AAGAGACCAAGAUGAAGUUUCCC
8331





AD-1707226.1
asgsaccaagAfUfGfaaguuucccuL96
6961
asdGsggdAadAcuucdAuCfuuggucuscsu
7617
AGAGACCAAGAUGAAGUUUCCCA
8332





AD-1707227.1
gsasccaagaUfGfAfaguuucccauL96
6962
asdTsggdGadAacuudCaUfcuuggucsusc
7618
GAGACCAAGAUGAAGUUUCCCAG
8333





AD-1707228.1
ascscaagauGfAfAfguuucccaguL96
6963
asdCsugdGgdAaacudTcAfucuugguscsu
7619
AGACCAAGAUGAAGUUUCCCAGG
8334





AD-1707229.1
cscsaagaugAfAfGfuuucccagguL96
6964
asdCscudGgdGaaacdTuCfaucuuggsusc
7620
GACCAAGAUGAAGUUUCCCAGGC
8335





AD-1707230.1
csasagaugaAfGfUfuucccaggcuL96
6965
asdGsccdTgdGgaaadCuUfcaucuugsgsu
7621
ACCAAGAUGAAGUUUCCCAGGCA
8336





AD-1707231.1
asasgaugaaGfUfUfucccaggcauL96
6966
asdTsgcdCudGggaadAcUfucaucuusgsg
7622
CCAAGAUGAAGUUUCCCAGGCAC
8337





AD-1707232.1
asgsaugaagUfUfUfcccaggcacuL96
6967
asdGsugdCcdTgggadAaCfuucaucususg
7623
CAAGAUGAAGUUUCCCAGGCACA
8338





AD-1707233.1
gsasugaaguUfUfCfccaggcacauL96
6968
asdTsgudGcdCugggdAaAfcuucaucsusu
7624
AAGAUGAAGUUUCCCAGGCACAG
8339





AD-1707234.1
asusgaaguuUfCfCfcaggcacaguL96
6969
asdCsugdTgdCcuggdGaAfacuucauscsu
7625
AGAUGAAGUUUCCCAGGCACAGG
8340





AD-1707236.1
gsasaguuucCfCfAfggcacaggguL96
6970
asdCsccdTgdTgccudGgGfaaacuucsasu
7626
AUGAAGUUUCCCAGGCACAGGGC
8341





AD-1707237.1
asasguuuccCfAfGfgcacagggcuL96
6971
asdGsccdCudGugccdTgGfgaaacuuscsa
7627
UGAAGUUUCCCAGGCACAGGGCA
8342





AD-1707239.1
gsusuucccaGfGfCfacagggcauuL96
6972
asdAsugdCcdCugugdCcUfgggaaacsusu
7628
AAGUUUCCCAGGCACAGGGCAUC
8343





AD-1707240.1
ususucccagGfCfAfcagggcaucuL96
6973
asdGsaudGcdCcugudGcCfugggaaascsu
7629
AGUUUCCCAGGCACAGGGCAUCU
8344





AD-1707241.1
ususcccaggCfAfCfagggcaucuuL96
6974
asdAsgadTgdCccugdTgCfcugggaasasc
7630
GUUUCCCAGGCACAGGGCAUCUG
8345





AD-1707242.1
uscsccaggcAfCfAfgggcaucuguL96
6975
asdCsagdAudGcccudGuGfccugggasasa
7631
UUUCCCAGGCACAGGGCAUCUGU
8346





AD-1707275.1
csasacccaaCfAfAfccaccuggcuL96
6976
asdGsccdAgdGuggudTgUfuggguugsgsg
7632
CCCAACCCAACAACCACCUGGCA
8347





AD-1707276.1
asascccaacAfAfCfcaccuggcauL96
6977
asdTsgcdCadGguggdTuGfuuggguusgsg
7633
CCAACCCAACAACCACCUGGCAA
8348





AD-1707277.1
ascsccaacaAfCfCfaccuggcaauL96
6978
asdTsugdCcdAggugdGuUfguugggususg
7634
CAACCCAACAACCACCUGGCAAU
8349





AD-1707278.1
cscscaacaaCfCfAfccuggcaauuL96
6979
asdAsuudGcdCaggudGgUfuguugggsusu
7635
AACCCAACAACCACCUGGCAAUA
8350





AD-1707279.1
cscsaacaacCfAfCfcuggcaauauL96
6980
asdTsaudTgdCcaggdTgGfuuguuggsgsu
7636
ACCCAACAACCACCUGGCAAUAU
8351





AD-1707280.1
csasacaaccAfCfCfuggcaauauuL96
6981
asdAsuadTudGccagdGuGfguuguugsgsg
7637
CCCAACAACCACCUGGCAAUAUG
8352





AD-1707281.1
asascaaccaCfCfUfggcaauauguL96
6982
asdCsaudAudTgccadGgUfgguuguusgsg
7638
CCAACAACCACCUGGCAAUAUGA
8353





AD-1707282.1
ascsaaccacCfUfGfgcaauaugauL96
6983
asdTscadTadTugccdAgGfugguugususg
7639
CAACAACCACCUGGCAAUAUGAC
8354





AD-1707283.1
csasaccaccUfGfGfcaauaugacuL96
6984
asdGsucdAudAuugcdCaGfgugguugsusu
7640
AACAACCACCUGGCAAUAUGACU
8355





AD-1707284.1
asasccaccuGfGfCfaauaugacuuL96
6985
asdAsgudCadTauugdCcAfggugguusgsu
7641
ACAACCACCUGGCAAUAUGACUC
8356





AD-1707285.1
ascscaccugGfCfAfauaugacucuL96
6986
asdGsagdTcdAuauudGcCfagguggususg
7642
CAACCACCUGGCAAUAUGACUCA
8357





AD-1707286.1
cscsaccuggCfAfAfuaugacucauL96
6987
asdTsgadGudCauaudTgCfcagguggsusu
7643
AACCACCUGGCAAUAUGACUCAC
8358





AD-1707287.1
csasccuggcAfAfUfaugacucacuL96
6988
asdGsugdAgdTcauadTuGfccaggugsgsu
7644
ACCACCUGGCAAUAUGACUCACU
8359





AD-1707288.1
ascscuggcaAfUfAfugacucacuuL96
6989
asdAsgudGadGucaudAuUfgccaggusgsg
7645
CCACCUGGCAAUAUGACUCACUU
8360





AD-1707289.1
cscsuggcaaUfAfUfgacucacuuuL96
6990
asdAsagdTgdAgucadTaUfugccaggsusg
7646
CACCUGGCAAUAUGACUCACUUG
8361





AD-1707290.1
csusggcaauAfUfGfacucacuuguL96
6991
asdCsaadGudGagucdAuAfuugccagsgsu
7647
ACCUGGCAAUAUGACUCACUUGA
8362





AD-1707291.1
usgsgcaauaUfGfAfcucacuugauL96
6992
asdTscadAgdTgagudCaUfauugccasgsg
7648
CCUGGCAAUAUGACUCACUUGAC
8363





AD-1707292.1
gsgscaauauGfAfCfucacuugacuL96
6993
asdGsucdAadGugagdTcAfuauugccsasg
7649
CUGGCAAUAUGACUCACUUGACC
8364





AD-1707293.1
gscsaauaugAfCfUfcacuugaccuL96
6994
asdGsgudCadAgugadGuCfauauugcscsa
7650
UGGCAAUAUGACUCACUUGACCC
8365





AD-1707299.1
gsgsacccaaAfUfGfggcacuuucuL96
6995
asdGsaadAgdTgcccdAuUfuggguccscsa
7651
UGGGACCCAAAUGGGCACUUUCU
8366





AD-1707301.1
ascsccaaauGfGfGfcacuuucuuuL96
6996
asdAsagdAadAgugcdCcAfuuuggguscsc
7652
GGACCCAAAUGGGCACUUUCUUG
8367





AD-1707302.1
cscscaaaugGfGfCfacuuucuuguL96
6997
asdCsaadGadAagugdCcCfauuugggsusc
7653
GACCCAAAUGGGCACUUUCUUGU
8368





AD-1707303.1
cscsaaauggGfCfAfcuuucuuguuL96
6998
asdAscadAgdAaagudGcCfcauuuggsgsu
7654
ACCCAAAUGGGCACUUUCUUGUC
8369





AD-1707304.1
csasaaugggCfAfCfuuucuugucuL96
6999
asdGsacdAadGaaagdTgCfccauuugsgsg
7655
CCCAAAUGGGCACUUUCUUGUCU
8370





AD-1707305.1
asasaugggcAfCfUfuucuugucuuL96
7000
asdAsgadCadAgaaadGuGfcccauuusgsg
7656
CCAAAUGGGCACUUUCUUGUCUG
8371





AD-1707306.1
asasugggcaCfUfUfucuugucuguL96
7001
asdCsagdAcdAagaadAgUfgcccauususg
  86
CAAAUGGGCACUUUCUUGUCUGA
8372





AD-1707307.1
asusgggcacUfUfUfcuugucugauL96
7002
asdTscadGadCaagadAaGfugcccaususu
7657
AAAUGGGCACUUUCUUGUCUGAG
8373





AD-1707308.1
usgsggcacuUfUfCfuugucugaguL96
7003
asdCsucdAgdAcaagdAaAfgugcccasusu
7658
AAUGGGCACUUUCUUGUCUGAGA
8374





AD-1707309.1
gsgsgcacuuUfCfUfugucugagauL96
7004
asdTscudCadGacaadGaAfagugcccsasu
7659
AUGGGCACUUUCUUGUCUGAGAC
8375





AD-1707310.1
gsgscacuuuCfUfUfgucugagacuL96
7005
asdGsucdTcdAgacadAgAfaagugccscsa
7660
UGGGCACUUUCUUGUCUGAGACU
8376





AD-1707311.1
gscsacuuucUfUfGfucugagacuuL96
7006
asdAsgudCudCagacdAaGfaaagugcscsc
7661
GGGCACUUUCUUGUCUGAGACUC
8377





AD-1707312.1
csascuuucuUfGfUfcugagacucuL96
7007
asdGsagdTcdTcagadCaAfgaaagugscsc
7662
GGCACUUUCUUGUCUGAGACUCU
8378





AD-1707313.1
ascsuuucuuGfUfCfugagacucuuL96
7008
asdAsgadGudCucagdAcAfagaaagusgsc
7663
GCACUUUCUUGUCUGAGACUCUG
8379





AD-1707314.1
csusuucuugUfCfUfgagacucuguL96
7009
asdCsagdAgdTcucadGaCfaagaaagsusg
7664
CACUUUCUUGUCUGAGACUCUGG
8380





AD-1707315.1
ususucuuguCfUfGfagacucugguL96
7010
asdCscadGadGucucdAgAfcaagaaasgsu
7665
ACUUUCUUGUCUGAGACUCUGGC
8381





AD-1707316.1
ususcuugucUfGfAfgacucuggcuL96
7011
asdGsccdAgdAgucudCaGfacaagaasasg
7666
CUUUCUUGUCUGAGACUCUGGCU
8382





AD-1707317.1
uscsuugucuGfAfGfacucuggcuuL96
7012
asdAsgcdCadGagucdTcAfgacaagasasa
7667
UUUCUUGUCUGAGACUCUGGCUU
8383





AD-1707318.1
csusugucugAfGfAfcucuggcuuuL96
7013
asdAsagdCcdAgagudCuCfagacaagsasa
7668
UUCUUGUCUGAGACUCUGGCUUA
8384





AD-1707337.1
usasuuccagGfUfUfggcugauguuL96
7014
asdAscadTcdAgccadAcCfuggaauasasg
7669
CUUAUUCCAGGUUGGCUGAUGUG
8385





AD-1707338.1
asusuccaggUfUfGfgcugauguguL96
7015
asdCsacdAudCagccdAaCfcuggaausasa
7670
UUAUUCCAGGUUGGCUGAUGUGU
8386





AD-1707339.1
ususccagguUfGfGfcugauguguuL96
7016
asdAscadCadTcagcdCaAfccuggaasusa
7671
UAUUCCAGGUUGGCUGAUGUGUU
8387





AD-1707340.1
uscscagguuGfGfCfugauguguuuL96
7017
asdAsacdAcdAucagdCcAfaccuggasasu
7672
AUUCCAGGUUGGCUGAUGUGUUG
8388





AD-1707341.1
cscsagguugGfCfUfgauguguuguL96
7018
asdCsaadCadCaucadGcCfaaccuggsasa
7673
UUCCAGGUUGGCUGAUGUGUUGG
8389





AD-1707342.1
csasgguuggCfUfGfauguguugguL96
7019
asdCscadAcdAcaucdAgCfcaaccugsgsa
7674
UCCAGGUUGGCUGAUGUGUUGGG
8390





AD-1707388.1
gsasuuuccuGfCfCfcuaaguccuuL96
7020
asdAsggdAcdTuaggdGcAfggaaaucsasu
7675
AUGAUUUCCUGCCCUAAGUCCUG
8391





AD-1707390.1
ususuccugcCfCfUfaaguccuguuL96
7021
asdAscadGgdAcuuadGgGfcaggaaasusc
7676
GAUUUCCUGCCCUAAGUCCUGUG
8392





AD-1707411.1
asgsaagaugUfCfAfgggacuagguL96
7022
asdCscudAgdTcccudGaCfaucuucuscsa
7677
UGAGAAGAUGUCAGGGACUAGGG
8393





AD-1707412.1
gsasagauguCfAfGfggacuaggguL96
7023
asdCsccdTadGucccdTgAfcaucuucsusc
7678
GAGAAGAUGUCAGGGACUAGGGA
8394





AD-1707415.1
asasgaugucAfGfGfgacuagggauL96
7024
asdTsccdCudAguccdCuGfacaucuuscsu
7679
AGAAGAUGUCAGGGACUAGGGAG
8395





AD-1707416.1
asgsaugucaGfGfGfacuagggaguL96
7025
asdCsucdCcdTagucdCcUfgacaucususc
7680
GAAGAUGUCAGGGACUAGGGAGG
8396





AD-1707417.1
gsasugucagGfGfAfcuagggagguL96
7026
asdCscudCcdCuagudCcCfugacaucsusu
7681
AAGAUGUCAGGGACUAGGGAGGG
8397





AD-1707418.1
asusgucaggGfAfCfuagggaggguL96
7027
asdCsccdTcdCcuagdTcCfcugacauscsu
7682
AGAUGUCAGGGACUAGGGAGGGA
8398





AD-1707466.1
gsasggaggaAfGfCfagauagauguL96
7028
asdCsaudCudAucugdCuUfccuccucscsc
7683
GGGAGGAGGAAGCAGAUAGAUGG
8399





AD-1707467.1
asgsgaggaaGfCfAfgauagaugguL96
7029
asdCscadTcdTaucudGcUfuccuccuscsc
7684
GGAGGAGGAAGCAGAUAGAUGGU
8400





AD-1707468.1
gsgsaggaagCfAfGfauagaugguuL96
7030
asdAsccdAudCuaucdTgCfuuccuccsusc
7685
GAGGAGGAAGCAGAUAGAUGGUC
8401





AD-1707469.1
gsasggaagcAfGfAfuagauggucuL96
7031
asdGsacdCadTcuaudCuGfcuuccucscsu
7686
AGGAGGAAGCAGAUAGAUGGUCC
8402





AD-1707470.1
asgsgaagcaGfAfUfagaugguccuL96
7032
asdGsgadCcdAucuadTcUfgcuuccuscsc
7687
GGAGGAAGCAGAUAGAUGGUCCA
8403





AD-1707471.1
gsgsaagcagAfUfAfgaugguccauL96
7033
asdTsggdAcdCaucudAuCfugcuuccsusc
7688
GAGGAAGCAGAUAGAUGGUCCAG
8404





AD-1707472.1
gsasagcagaUfAfGfaugguccaguL96
7034
asdCsugdGadCcaucdTaUfcugcuucscsu
7689
AGGAAGCAGAUAGAUGGUCCAGC
8405





AD-1707473.1
asasgcagauAfGfAfugguccagcuL96
7035
asdGscudGgdAccaudCuAfucugcuuscsc
7690
GGAAGCAGAUAGAUGGUCCAGCA
8406





AD-1707474.1
asgscagauaGfAfUfgguccagcauL96
7036
asdTsgcdTgdGaccadTcUfaucugcususc
7691
GAAGCAGAUAGAUGGUCCAGCAG
8407





AD-1707475.1
gscsagauagAfUfGfguccagcaguL96
7037
asdCsugdCudGgaccdAuCfuaucugcsusu
7692
AAGCAGAUAGAUGGUCCAGCAGG
8408





AD-1707476.1
csasgauagaUfGfGfuccagcagguL96
7038
asdCscudGcdTggacdCaUfcuaucugscsu
7693
AGCAGAUAGAUGGUCCAGCAGGC
8409





AD-1707477.1
asgsauagauGfGfUfccagcaggcuL96
7039
asdGsccdTgdCuggadCcAfucuaucusgsc
7694
GCAGAUAGAUGGUCCAGCAGGCU
8410





AD-1707478.1
gsasuagaugGfUfCfcagcaggcuuL96
7040
asdAsgcdCudGcuggdAcCfaucuaucsusg
7695
CAGAUAGAUGGUCCAGCAGGCUU
8411





AD-1707479.1
asusagauggUfCfCfagcaggcuuuL96
7041
asdAsagdCcdTgcugdGaCfcaucuauscsu
7696
AGAUAGAUGGUCCAGCAGGCUUG
8412





AD-1707480.1
usasgaugguCfCfAfgcaggcuuguL96
7042
asdCsaadGcdCugcudGgAfccaucuasusc
7697
GAUAGAUGGUCCAGCAGGCUUGA
8413





AD-1707481.1
asgsauggucCfAfGfcaggcuugauL96
7043
asdTscadAgdCcugcdTgGfaccaucusasu
7698
AUAGAUGGUCCAGCAGGCUUGAA
8414





AD-1707482.1
gsasugguccAfGfCfaggcuugaauL96
7044
asdTsucdAadGccugdCuGfgaccaucsusa
7699
UAGAUGGUCCAGCAGGCUUGAAG
8415





AD-1707483.1
asusgguccaGfCfAfggcuugaaguL96
7045
asdCsuudCadAgccudGcUfggaccauscsu
7700
AGAUGGUCCAGCAGGCUUGAAGC
8416





AD-1707484.1
usgsguccagCfAfGfgcuugaagcuL96
7046
asdGscudTcdAagccdTgCfuggaccasusc
7701
GAUGGUCCAGCAGGCUUGAAGCA
8417





AD-1707485.1
gsgsuccagcAfGfGfcuugaagcauL96
7047
asdTsgcdTudCaagcdCuGfcuggaccsasu
7702
AUGGUCCAGCAGGCUUGAAGCAG
8418





AD-1707486.1
gsusccagcaGfGfCfuugaagcaguL96
7048
asdCsugdCudTcaagdCcUfgcuggacscsa
7703
UGGUCCAGCAGGCUUGAAGCAGG
8419





AD-1707553.1
asasggucaaGfAfGfggagauggguL96
7049
asdCsccdAudCucccdTcUfugaccuuscsc
7704
GGAAGGUCAAGAGGGAGAUGGGC
8420





AD-1707554.1
asgsgucaagAfGfGfgagaugggcuL96
7050
asdGsccdCadTcuccdCuCfuugaccususc
7705
GAAGGUCAAGAGGGAGAUGGGCA
8421





AD-1707555.1
gsgsucaagaGfGfGfagaugggcauL96
7051
asdTsgcdCcdAucucdCcUfcuugaccsusu
7706
AAGGUCAAGAGGGAGAUGGGCAA
8422





AD-1707556.1
gsuscaagagGfGfAfgaugggcaauL96
7052
asdTsugdCcdCaucudCcCfucuugacscsu
7707
AGGUCAAGAGGGAGAUGGGCAAG
8423





AD-1707557.1
uscsaagaggGfAfGfaugggcaaguL96
7053
asdCsuudGcdCcaucdTcCfcucuugascsc
7708
GGUCAAGAGGGAGAUGGGCAAGG
8424





AD-1707577.1
gscsgcugagGfGfAfggaugcuuauL96
7054
asdTsaadGcdAuccudCcCfucagcgcscsu
7709
AGGCGCUGAGGGAGGAUGCUUAG
8425





AD-1707578.1
csgscugaggGfAfGfgaugcuuaguL96
7055
asdCsuadAgdCauccdTcCfcucagcgscsc
7710
GGCGCUGAGGGAGGAUGCUUAGG
8426





AD-1707605.1
gscsacuaagCfCfUfaagaaguucuL96
7056
asdGsaadCudTcuuadGgCfuuagugcscsu
7711
AGGCACUAAGCCUAAGAAGUUCC
8427





AD-1707606.1
csascuaagcCfUfAfagaaguuccuL96
7057
asdGsgadAcdTucuudAgGfcuuagugscsc
7712
GGCACUAAGCCUAAGAAGUUCCC
8428





AD-1707623.1
ascsaggaccCfAfCfugggagacauL96
7058
asdTsgudCudCccagdTgGfguccuguscsc
7713
GGACAGGACCCACUGGGAGACAA
8429





AD-1707624.1
csasggacccAfCfUfgggagacaauL96
7059
asdTsugdTcdTcccadGuGfgguccugsusc
7714
GACAGGACCCACUGGGAGACAAG
8430





AD-1707625.1
asgsgacccaCfUfGfggagacaaguL96
7060
asdCsuudGudCucccdAgUfggguccusgsu
7715
ACAGGACCCACUGGGAGACAAGC
8431





AD-1707626.1
gsgsacccacUfGfGfgagacaagcuL96
7061
asdGscudTgdTcuccdCaGfuggguccsusg
7716
CAGGACCCACUGGGAGACAAGCA
8432





AD-1707627.1
gsascccacuGfGfGfagacaagcauL96
7062
asdTsgcdTudGucucdCcAfgugggucscsu
7717
AGGACCCACUGGGAGACAAGCAU
8433





AD-1707628.1
ascsccacugGfGfAfgacaagcauuL96
7063
asdAsugdCudTgucudCcCfaguggguscsc
7718
GGACCCACUGGGAGACAAGCAUU
8434





AD-1707629.1
cscscacuggGfAfGfacaagcauuuL96
7064
asdAsaudGcdTugucdTcCfcagugggsusc
7719
GACCCACUGGGAGACAAGCAUUU
8435





AD-1707630.1
cscsacugggAfGfAfcaagcauuuuL96
7065
asdAsaadTgdCuugudCuCfccaguggsgsu
7720
ACCCACUGGGAGACAAGCAUUUA
8436





AD-1707631.1
csascugggaGfAfCfaagcauuuauL96
7066
asdTsaadAudGcuugdTcUfcccagugsgsg
7721
CCCACUGGGAGACAAGCAUUUAU
8437





AD-1707632.1
ascsugggagAfCfAfagcauuuauuL96
7067
asdAsuadAadTgcuudGuCfucccagusgsg
7722
CCACUGGGAGACAAGCAUUUAUA
8438





AD-1707633.1
csusgggagaCfAfAfgcauuuauauL96
7068
asdTsaudAadAugcudTgUfcucccagsusg
7723
CACUGGGAGACAAGCAUUUAUAC
8439





AD-1707634.1
usgsggagacAfAfGfcauuuauacuL96
7069
asdGsuadTadAaugcdTuGfucucccasgsu
7724
ACUGGGAGACAAGCAUUUAUACU
8440





AD-1707636.1
gsgsagacaaGfCfAfuuuauacuuuL96
7070
asdAsagdTadTaaaudGcUfugucuccscsa
7725
UGGGAGACAAGCAUUUAUACUUU
8441





AD-1707637.1
gsasgacaagCfAfUfuuauacuuuuL96
7071
asdAsaadGudAuaaadTgCfuugucucscsc
7726
GGGAGACAAGCAUUUAUACUUUC
8442





AD-1707638.1
asgsacaagcAfUfUfuauacuuucuL96
7072
asdGsaadAgdTauaadAuGfcuugucuscsc
7727
GGAGACAAGCAUUUAUACUUUCU
8443





AD-1707639.1
gsascaagcaUfUfUfauacuuucuuL96
7073
asdAsgadAadGuauadAaUfgcuugucsusc
  88
GAGACAAGCAUUUAUACUUUCUU
8444





AD-1707640.1
ascsaagcauUfUfAfuacuuucuuuL96
7074
asdAsagdAadAguaudAaAfugcuuguscsu
  90
AGACAAGCAUUUAUACUUUCUUU
8445





AD-1707641.1
csasagcauuUfAfUfacuuucuuuuL96
7075
asdAsaadGadAaguadTaAfaugcuugsusc
7728
GACAAGCAUUUAUACUUUCUUUC
8446





AD-1708118.1
cscsagacAfuGfAfGfcugugaggguL96
7076
asCfsccdTc(Agn)cagcucAfuGfucuggscsu
7729
AGCCAGACAUGAGCUGUGAGGGU
7945





AD-1708120.1
asgsacauGfaGfCfUfgugagggucuL96
7077
asGfsacdCc(Tgn)cacagcUfcAfugucusgsg
7730
CCAGACAUGAGCUGUGAGGGUCA
7946





AD-1708124.1
asusgagcUfgUfGfAfgggucaagcuL96
7078
asGfscudTg(Agn)cccucaCfaGfcucausgsu
7731
ACAUGAGCUGUGAGGGUCAAGCA
7950





AD-1708126.1
gsasgcugUfgAfGfGfgucaagcacuL96
7079
asGfsugdCu(Tgn)gacccuCfaCfagcucsasu
7732
AUGAGCUGUGAGGGUCAAGCACA
7952





AD-1708127.1
asgscuguGfaGfGfGfucaagcacauL96
7080
asUfsgudGc(Tgn)ugacccUfcAfcagcuscsa
7733
UGAGCUGUGAGGGUCAAGCACAG
7953





AD-1708130.1
usgsugagGfgUfCfAfagcacagcuuL96
7081
asAfsgcdTg(Tgn)gcuugaCfcCfucacasgsc
7734
GCUGUGAGGGUCAAGCACAGCUA
7956





AD-1708132.1
usgsagggUfcAfAfGfcacagcuauuL96
7082
asAfsuadGc(Tgn)gugcuuGfaCfccucascsa
7735
UGUGAGGGUCAAGCACAGCUAUC
7958





AD-1708135.1
gsgsgucaAfgCfAfCfagcuauccauL96
7083
asUfsggdAu(Agn)gcugugCfuUfgacccsusc
7736
GAGGGUCAAGCACAGCUAUCCAU
7961





AD-1708140.1
asasgcacAfgCfUfAfuccaucagauL96
7084
asUfscudGa(Tgn)ggauagCfuGfugcuusgsa
7737
UCAAGCACAGCUAUCCAUCAGAU
7963





AD-1708143.1
csascagcUfaUfCfCfaucagaugauL96
7085
asUfscadTc(Tgn)gauggaUfaGfcugugscsu
7738
AGCACAGCUAUCCAUCAGAUGAU
7965





AD-1708145.1
csasgcuaUfcCfAfUfcagaugaucuL96
7086
asGfsaudCa(Tgn)cugaugGfaUfagcugsusg
7739
CACAGCUAUCCAUCAGAUGAUCU
7967





AD-1708146.1
asgscuauCfcAfUfCfagaugaucuuL96
7087
asAfsgadTc(Agn)ucugauGfgAfuagcusgsu
7740
ACAGCUAUCCAUCAGAUGAUCUA
7968





AD-1708148.1
csusauccAfuCfAfGfaugaucuacuL96
7088
asGfsuadGa(Tgn)caucugAfuGfgauagscsu
7741
AGCUAUCCAUCAGAUGAUCUACU
7970





AD-1708149.1
usasuccaUfcAfGfAfugaucuacuuL96
7089
asAfsgudAg(Agn)ucaucuGfaUfggauasgsc
7742
GCUAUCCAUCAGAUGAUCUACUU
7971





AD-1708151.1
uscscaucAfgAfUfGfaucuacuuuuL96
7090
asAfsaadGu(Agn)gaucauCfuGfauggasusa
7743
UAUCCAUCAGAUGAUCUACUUUC
7973





AD-1708152.1
cscsaucaGfaUfGfAfucuacuuucuL96
7091
asGfsaadAg(Tgn)agaucaUfcUfgauggsasu
7744
AUCCAUCAGAUGAUCUACUUUCA
7974





AD-1708156.1
csasgaugAfuCfUfAfcuuucagccuL96
7092
asGfsgcdTg(Agn)aaguagAfuCfaucugsasu
7745
AUCAGAUGAUCUACUUUCAGCCU
7978





AD-1708158.1
gsasugauCfuAfCfUfuucagccuuuL96
7093
asAfsagdGc(Tgn)gaaaguAfgAfucaucsusg
7746
CAGAUGAUCUACUUUCAGCCUUC
7980





AD-1708163.1
uscsuacuUfuCfAfGfccuuccugauL96
7094
asUfscadGg(Agn)aggcugAfaAfguagasusc
7747
GAUCUACUUUCAGCCUUCCUGAG
7985





AD-1708166.1
ascsuuucAfgCfCfUfuccugagucuL96
7095
asGfsacdTc(Agn)ggaaggCfuGfaaagusasg
7748
CUACUUUCAGCCUUCCUGAGUCC
7988





AD-1708170.1
uscsagccUfuCfCfUfgagucccaguL96
7096
asCfsugdGg(Agn)cucaggAfaGfgcugasasa
7749
UUUCAGCCUUCCUGAGUCCCAGG
8447





AD-1708220.1
gsusggcaGfuGfGfUfgucugcuguuL96
405
asAfscadGc(Agn)gacaccAfcUfgccacsasc
7750
GUGUGGCAGUGGUGUCUGCUGUC
7992





AD-1708223.1
gscsagugGfuGfUfCfugcugucacuL96
7097
asGfsugdAc(Agn)gcagacAfcCfacugcscsa
7751
UGGCAGUGGUGUCUGCUGUCACU
7995





AD-1708225.1
asgsugguGfuCfUfGfcugucacuguL96
7098
asCfsagdTg(Agn)cagcagAfcAfccacusgsc
7752
GCAGUGGUGUCUGCUGUCACUGU
7997





AD-1708227.1
usgsguguCfuGfCfUfgucacuguguL96
7099
asCfsacdAg(Tgn)gacagcAfgAfcaccascsu
7753
AGUGGUGUCUGCUGUCACUGUGC
7999





AD-1708245.1
gsascucaAfcAfGfAfcggagcaacuL96
7100
asGfsuudGc(Tgn)ccgucuGfuUfgagucsusg
7754
CAGACUCAACAGACGGAGCAACU
8003





AD-1708248.1
uscsaacaGfaCfGfGfagcaacugcuL96
7101
asGfscadGu(Tgn)gcuccgUfcUfguugasgsu
7755
ACUCAACAGACGGAGCAACUGCC
8006





AD-1708249.1
csasacagAfcGfGfAfgcaacugccuL96
7102
asGfsgcdAg(Tgn)ugcuccGfuCfuguugsasg
7756
CUCAACAGACGGAGCAACUGCCA
8007





AD-1708251.1
ascsagacGfgAfGfCfaacugccauuL96
7103
asAfsugdGc(Agn)guugcuCfcGfucugususg
7757
CAACAGACGGAGCAACUGCCAUC
8009





AD-1708255.1
ascsggagCfaAfCfUfgccauccgauL96
 408
asUfscgdGa(Tgn)ggcaguUfgCfuccguscsu
7758
AGACGGAGCAACUGCCAUCCGAG
8013





AD-1708260.1
gscsaacuGfcCfAfUfccgaggcucuL96
7104
asGfsagdCc(Tgn)cggaugGfcAfguugcsusc
7759
GAGCAACUGCCAUCCGAGGCUCC
8017





AD-1708342.1
csasagcaGfaAfCfGfagcucugguuL96
 415
asAfsccdAg(Agn)gcucguUfcUfgcuugsgsg
7760
CCCAAGCAGAACGAGCUCUGGUG
8019





AD-1708344.1
asgscagaAfcGfAfGfcucuggugcuL96
7105
asGfscadCc(Agn)gagcucGfuUfcugcususg
7761
CAAGCAGAACGAGCUCUGGUGCU
8021





AD-1708347.1
asgsaacgAfgCfUfCfuggugcugguL96
7106
asCfscadGc(Agn)ccagagCfuCfguucusgsc
7762
GCAGAACGAGCUCUGGUGCUGGA
8024





AD-1708350.1
ascsgagcUfcUfGfGfugcuggagcuL96
7107
asGfscudCc(Agn)gcaccaGfaGfcucgususc
7763
GAACGAGCUCUGGUGCUGGAGCU
8027





AD-1708356.1
uscsugguGfcUfGfGfagcuagccauL96
7108
asUfsggdCu(Agn)gcuccaGfcAfccagasgsc
7764
GCUCUGGUGCUGGAGCUAGCCAA
8031





AD-1708357.1
csusggugCfuGfGfAfgcuagccaauL96
 416
asUfsugdGc(Tgn)agcuccAfgCfaccagsasg
7765
CUCUGGUGCUGGAGCUAGCCAAG
8032





AD-1708361.1
usgscuggAfgCfUfAfgccaagcaguL96
7109
asCfsugdCu(Tgn)ggcuagCfuCfcagcascsc
7766
GGUGCUGGAGCUAGCCAAGCAGC
8036





AD-1708365.1
gsgsagcuAfgCfCfAfagcagcaaauL96
7110
asUfsuudGc(Tgn)gcuuggCfuAfgcuccsasg
7767
CUGGAGCUAGCCAAGCAGCAAAU
8037





AD-1708368.1
gscsuagcCfaAfGfCfagcaaauccuL96
7111
asGfsgadTu(Tgn)gcugcuUfgGfcuagcsusc
7768
GAGCUAGCCAAGCAGCAAAUCCU
8040





AD-1708369.1
csusagccAfaGfCfAfgcaaauccuuL96
 417
asAfsggdAu(Tgn)ugcugcUfuGfgcuagscsu
7769
AGCUAGCCAAGCAGCAAAUCCUG
8041





AD-1708397.1
usgsaccaGfuCfGfUfcccagaauauL96
7112
asUfsaudTc(Tgn)gggacgAfcUfggucasgsg
7770
UCUGACCAGUCGUCCCAGAAUAA
8448





AD-1708399.1
ascscaguCfgUfCfCfcagaauaacuL96
7113
asGfsuudAu(Tgn)cugggaCfgAfcugguscsa
7771
UGACCAGUCGUCCCAGAAUAACU
8050





AD-1708401.1
csasgucgUfcCfCfAfgaauaacucuL96
7114
asGfsagdTu(Agn)uucuggGfaCfgacugsgsu
7772
ACCAGUCGUCCCAGAAUAACUCA
8052





AD-1708402.1
asgsucguCfcCfAfGfaauaacucauL96
7115
asUfsgadGu(Tgn)auucugGfgAfcgacusgsg
7773
CCAGUCGUCCCAGAAUAACUCAU
8053





AD-1708403.1
gsuscgucCfcAfGfAfauaacucauuL96
7116
asAfsugdAg(Tgn)uauucuGfgGfacgacsusg
7774
CAGUCGUCCCAGAAUAACUCAUC
8054





AD-1708405.1
csgsucccAfgAfAfUfaacucauccuL96
7117
asGfsgadTg(Agn)guuauuCfuGfggacgsasc
7775
GUCGUCCCAGAAUAACUCAUCCU
8056





AD-1708407.1
uscsccagAfaUfAfAfcucauccucuL96
7118
asGfsagdGa(Tgn)gaguuaUfuCfugggascsg
7776
CGUCCCAGAAUAACUCAUCCUCC
8058





AD-1708408.1
cscscagaAfuAfAfCfucauccuccuL96
7119
asGfsgadGg(Agn)ugaguuAfuUfcugggsasc
7777
GUCCCAGAAUAACUCAUCCUCCA
8059





AD-1708447.1
gsgsgaguGfuGfGfCfuccagggaauL96
7120
asUfsucdCc(Tgn)ggagccAfcAfcucccsusg
7778
CAGGGAGUGUGGCUCCAGGGAAU
8062





AD-1708454.1
gsasggucAfuCfAfGfcuuugcuacuL96
7121
asGfsuadGc(Agn)aagcugAfuGfaccucscsu
7779
AGGAGGUCAUCAGCUUUGCUACU
8069





AD-1708457.1
gsuscaucAfgCfUfUfugcuacuguuL96
7122
asAfscadGu(Agn)gcaaagCfuGfaugacscsu
7780
AGGUCAUCAGCUUUGCUACUGUC
8072





AD-1708458.1
uscsaucaGfcUfUfUfgcuacugucuL96
7123
asGfsacdAg(Tgn)agcaaaGfcUfgaugascsc
7781
GGUCAUCAGCUUUGCUACUGUCA
8073





AD-1708462.1
csasgcuuUfgCfUfAfcugucacaguL96
7124
asCfsugdTg(Agn)caguagCfaAfagcugsasu
7782
AUCAGCUUUGCUACUGUCACAGA
8075





AD-1708464.1
gscsuuugCfuAfCfUfgucacagacuL96
7125
asGfsucdTg(Tgn)gacaguAfgCfaaagcsusg
7783
CAGCUUUGCUACUGUCACAGACU
8077





AD-1708466.1
ususugcuAfcUfGfUfcacagacucuL96
7126
asGfsagdTc(Tgn)gugacaGfuAfgcaaasgsc
7784
GCUUUGCUACUGUCACAGACUCC
8079





AD-1708468.1
usgscuacUfgUfCfAfcagacuccauL96
7127
asUfsggdAg(Tgn)cugugaCfaGfuagcasasa
7785
UUUGCUACUGUCACAGACUCCAC
8081





AD-1708473.1
csusgucaCfaGfAfCfuccacuucauL96
 425
asUfsgadAg(Tgn)ggagucUfgUfgacagsusa
  80
UACUGUCACAGACUCCACUUCAG
8083





AD-1708476.1
uscsacagAfcUfCfCfacuucagccuL96
7128
asGfsgcdTg(Agn)aguggaGfuCfugugascsa
7786
UGUCACAGACUCCACUUCAGCCU
8085





AD-1708478.1
ascsagacUfcCfAfCfuucagccuauL96
7129
asUfsagdGc(Tgn)gaagugGfaGfucugusgsa
7787
UCACAGACUCCACUUCAGCCUAC
8087





AD-1708482.1
ascsuccaCfuUfCfAfgccuacagcuL96
7130
asGfscudGu(Agn)ggcugaAfgUfggaguscsu
7788
AGACUCCACUUCAGCCUACAGCU
8091





AD-1708483.1
csusccacUfuCfAfGfccuacagcuuL96
7131
asAfsgcdTg(Tgn)aggcugAfaGfuggagsusc
7789
GACUCCACUUCAGCCUACAGCUC
8092





AD-1708485.1
cscsacuuCfaGfCfCfuacagcuccuL96
7132
asGfsgadGc(Tgn)guaggcUfgAfaguggsasg
7790
CUCCACUUCAGCCUACAGCUCCC
8094





AD-1708559.1
usgsgcacUfcUfUfUfgcuugaggauL96
7133
asUfsccdTc(Agn)agcaaaGfaGfugccasgsg
7791
CCUGGCACUCUUUGCUUGAGGAU
8111





AD-1708561.1
gscsacucUfuUfGfCfuugaggaucuL96
7134
asGfsaudCc(Tgn)caagcaAfaGfagugcscsa
7792
UGGCACUCUUUGCUUGAGGAUCU
8113





AD-1708564.1
csuscuuuGfcUfUfGfaggaucuucuL96
 432
asGfsaadGa(Tgn)ccucaaGfcAfaagagsusg
7793
CACUCUUUGCUUGAGGAUCUUCC
8115





AD-1708565.1
uscsuuugCfuUfGfAfggaucuuccuL96
7135
asGfsgadAg(Agn)uccucaAfgCfaaagasgsu
7794
ACUCUUUGCUUGAGGAUCUUCCG
8116





AD-1708567.1
ususugcuUfgAfGfGfaucuuccgauL96
7136
asUfscgdGa(Agn)gauccuCfaAfgcaaasgsa
7795
UCUUUGCUUGAGGAUCUUCCGAU
8118





AD-1708647.1
usgsgcugAfgCfAfCfcacaucaccuL96
7137
asGfsgudGa(Tgn)guggugCfuCfagccasgsg
7796
UUUGGCUGAGCACCACAUCACCA
8449





AD-1708648.1
gsgscugaGfcAfCfCfacaucaccauL96
7138
asUfsggdTg(Agn)ugugguGfcUfcagccsasg
7797
UUGGCUGAGCACCACAUCACCAA
8450





AD-1708650.1
csusgagcAfcCfAfCfaucaccaacuL96
7139
asGfsuudGg(Tgn)gaugugGfuGfcucagscsc
7798
GGCUGAGCACCACAUCACCAACC
8126





AD-1708657.1
cscsacauCfaCfCfAfaccugggcuuL96
7140
asAfsgcdCc(Agn)gguuggUfgAfuguggsusg
7799
CACCACAUCACCAACCUGGGCUG
8131





AD-1708662.1
uscsaccaAfcCfUfGfggcuggcauuL96
7141
asAfsugdCc(Agn)gcccagGfuUfggugasusg
7800
CAUCACCAACCUGGGCUGGCAUG
8451





AD-1708680.1
cscsuuaaCfuCfUfGfcccucuaguuL96
7142
asAfscudAg(Agn)gggcagAfgUfuaaggsusa
7801
UACCUUAACUCUGCCCUCUAGUG
8138





AD-1708683.1
usasacucUfgCfCfCfucuaguggcuL96
7143
asGfsccdAc(Tgn)agagggCfaGfaguuasasg
7802
CUUAACUCUGCCCUCUAGUGGCU
8141





AD-1708697.1
gsuscuggUfgUfCfCfugaaacugcuL96
7144
asGfscadGu(Tgn)ucaggaCfaCfcagacsusu
7803
AAGUCUGGUGUCCUGAAACUGCA
8144





AD-1708698.1
uscsugguGfuCfCfUfgaaacugcauL96
7145
asUfsgcdAg(Tgn)uucaggAfcAfccagascsu
7804
AGUCUGGUGUCCUGAAACUGCAA
8145





AD-1708700.1
usgsguguCfcUfGfAfaacugcaacuL96
7146
asGfsuudGc(Agn)guuucaGfgAfcaccasgsa
7805
UCUGGUGUCCUGAAACUGCAACU
8147





AD-1708704.1
gsusccugAfaAfCfUfgcaacuagauL96
 439
asUfscudAg(Tgn)ugcaguUfuCfaggacsasc
7806
GUGUCCUGAAACUGCAACUAGAC
8151





AD-1708706.1
cscsugaaAfcUfGfCfaacuagacuuL96
7147
asAfsgudCu(Agn)guugcaGfuUfucaggsasc
7807
GUCCUGAAACUGCAACUAGACUG
8153





AD-1708707.1
csusgaaaCfuGfCfAfacuagacuguL96
7148
asCfsagdTc(Tgn)aguugcAfgUfuucagsgsa
7808
UCCUGAAACUGCAACUAGACUGC
8154





AD-1708709.1
gsasaacuGfcAfAfCfuagacugcauL96
7149
asUfsgcdAg(Tgn)cuaguuGfcAfguuucsasg
7809
CUGAAACUGCAACUAGACUGCAG
8156





AD-1708711.1
asascugcAfaCfUfAfgacugcagauL96
7150
asUfscudGc(Agn)gucuagUfuGfcaguususc
7810
GAAACUGCAACUAGACUGCAGAC
8158





AD-1708719.1
gscsaacaGfcAfCfAfguuacuggauL96
7151
asUfsccdAg(Tgn)aacuguGfcUfguugcscsu
7811
AGGCAACAGCACAGUUACUGGAC
8161





AD-1708721.1
asascagcAfcAfGfUfuacuggacauL96
7152
asUfsgudCc(Agn)guaacuGfuGfcuguusgsc
7812
ACAACAGCACAGUUACUGGACAA
8452





AD-1708724.1
asgscacaGfuUfAfCfuggacaaccuL96
7153
asGfsgudTg(Tgn)ccaguaAfcUfgugcusgsu
7813
ACAGCACAGUUACUGGACAACCG
8166





AD-1708746.1
ususggacAfcAfGfCfaggacaccauL96
7154
asUfsggdTg(Tgn)ccugcuGfuGfuccaasgsa
7814
UCUUGGACACAGCAGGACACCAG
8168





AD-1708748.1
gsgsacacAfgCfAfGfgacaccagcuL96
7155
asGfscudGg(Tgn)guccugCfuGfuguccsasa
7815
CUGGACACAGCAGGACACCAGCA
8453





AD-1708751.1
csascagcAfgGfAfCfaccagcagcuL96
7156
asGfscudGc(Tgn)ggugucCfuGfcugugsusc
7816
GACACAGCAGGACACCAGCAGCC
8173





AD-1708759.1
gsascaccAfgCfAfGfcccuuccuauL96
 443
asUfsagdGa(Agn)gggcugCfuGfgugucscsu
7817
AGGACACCAGCAGCCCUUCCUAG
8176





AD-1708763.1
cscsagcaGfcCfCfUfuccuagagcuL96
7157
asGfscudCu(Agn)ggaaggGfcUfgcuggsusg
7818
CACCAGCAGCCCUUCCUAGAGCU
8179





AD-1708764.1
csasgcagCfcCfUfUfccuagagcuuL96
7158
asAfsgcdTc(Tgn)aggaagGfgCfugcugsgsu
7819
ACCAGCAGCCCUUCCUAGAGCUU
8180





AD-1708766.1
gscsagccCfuUfCfCfuagagcuuauL96
7159
asUfsaadGc(Tgn)cuaggaAfgGfgcugcsusg
7820
CAGCAGCCCUUCCUAGAGCUUAA
8181





AD-1708771.1
cscsuuccUfaGfAfGfcuuaagaucuL96
 444
asGfsaudCu(Tgn)aagcucUfaGfgaaggsgsc
7821
GCCCUUCCUAGAGCUUAAGAUCC
8186





AD-1708813.1
ususacguAfgAfCfUfuccaggaacuL96
7160
asGfsuudCc(Tgn)ggaaguCfuAfcguaasusg
7822
CAUUACGUAGACUUCCAGGAACU
8187





AD-1708819.1
asgsacuuCfcAfGfGfaacugggauuL96
7161
asAfsucdCc(Agn)guuccuGfgAfagucusasc
7823
GUAGACUUCCAGGAACUGGGAUG
8192





AD-1708842.1
gsusaccaGfcUfGfAfauuacugcauL96
7162
asUfsgcdAg(Tgn)aauucaGfcUfgguacscsc
7824
GGGUACCAGCUGAAUUACUGCAG
8199





AD-1708844.1
ascscagcUfgAfAfUfuacugcaguuL96
7163
asAfscudGc(Agn)guaauuCfaGfcuggusasc
7825
GUACCAGCUGAAUUACUGCAGUG
8201





AD-1708849.1
csusgaauUfaCfUfGfcagugggcauL96
7164
asUfsgcdCc(Agn)cugcagUfaAfuucagscsu
7826
AGCUGAAUUACUGCAGUGGGCAG
8206





AD-1708856.1
ascsugcaGfuGfGfGfcagugcccuuL96
 452
asAfsggdGc(Agn)cugcccAfcUfgcagusasa
7827
UUACUGCAGUGGGCAGUGCCCUC
8209





AD-1708872.1
csasggcaUfuGfCfUfgccucuuucuL96
 453
asGfsaadAg(Agn)ggcagcAfaUfgccugsgsg
7828
CCCAGGCAUUGCUGCCUCUUUCC
8210





AD-1708875.1
csasuugcUfgCfCfUfcuuuccauuuL96
7165
asAfsaudGg(Agn)aagaggCfaGfcaaugscsc
7829
GGCAUUGCUGCCUCUUUCCAUUC
8214





AD-1708882.1
gscscucuUfuCfCfAfuucugccguuL96
7166
asAfscgdGc(Agn)gaauggAfaAfgaggcsasg
7830
CUGCCUCUUUCCAUUCUGCCGUC
8221





AD-1708887.1
ususuccaUfuCfUfGfccgucuucauL96
 454
asUfsgadAg(Agn)cggcagAfaUfggaaasgsa
7831
UCUUUCCAUUCUGCCGUCUUCAG
8226





AD-1708889.1
uscscauuCfuGfCfCfgucuucagcuL96
7167
asGfscudGa(Agn)gacggcAfgAfauggasasa
7832
UUUCCAUUCUGCCGUCUUCAGCC
8228





AD-1708890.1
cscsauucUfgCfCfGfucuucagccuL96
7168
asGfsgcdTg(Agn)agacggCfaGfaauggsasa
7833
UUCCAUUCUGCCGUCUUCAGCCU
8229





AD-1708899.1
csgsucuuCfaGfCfCfuccucaaaguL96
 455
asCfsuudTg(Agn)ggaggcUfgAfagacgsgsc
7834
GCCGUCUUCAGCCUCCUCAAAGC
8233





AD-1708901.1
uscsuucaGfcCfUfCfcucaaagccuL96
7169
asGfsgcdTu(Tgn)gaggagGfcUfgaagascsg
7835
CGUCUUCAGCCUCCUCAAAGCCA
8235





AD-1708902.1
csusucagCfcUfCfCfucaaagccauL96
7170
asUfsggdCu(Tgn)ugaggaGfgCfugaagsasc
7836
GUCUUCAGCCUCCUCAAAGCCAA
8236





AD-1708907.1
gscscuccUfcAfAfAfgccaacaauuL96
7171
asAfsuudGu(Tgn)ggcuuuGfaGfgaggcsusg
7837
CAGCCUCCUCAAAGCCAACAAUC
8240





AD-1708908.1
cscsuccuCfaAfAfGfccaacaaucuL96
7172
asGfsaudTg(Tgn)uggcuuUfgAfggaggscsu
7838
AGCCUCCUCAAAGCCAACAAUCC
8241





AD-1708911.1
cscsucaaAfgCfCfAfacaauccuuuL96
 456
asAfsagdGa(Tgn)uguuggCfuUfugaggsasg
7839
CUCCUCAAAGCCAACAAUCCUUG
8244





AD-1708921.1
asascaauCfcUfUfGfgccugccaguL96
7173
asCfsugdGc(Agn)ggccaaGfgAfuuguusgsg
7840
CCAACAAUCCUUGGCCUGCCAGU
8250





AD-1708956.1
uscsuccuCfuAfCfCfuggaucauauL96
7174
asUfsaudGa(Tgn)ccagguAfgAfggagasgsa
7841
UCUCUCCUCUACCUGGAUCAUAA
8262





AD-1708957.1
csusccucUfaCfCfUfggaucauaauL96
7175
asUfsuadTg(Agn)uccaggUfaGfaggagsasg
7842
CUCUCCUCUACCUGGAUCAUAAU
8263





AD-1708962.1
csusaccuGfgAfUfCfauaauggcauL96
7176
asUfsgcdCa(Tgn)uaugauCfcAfgguagsasg
7843
CUCUACCUGGAUCAUAAUGGCAA
8268





AD-1708963.1
usasccugGfaUfCfAfuaauggcaauL96
 461
asUfsugdCc(Agn)uuaugaUfcCfagguasgsa
7844
UCUACCUGGAUCAUAAUGGCAAU
8269





AD-1708971.1
uscsauaaUfgGfCfAfauguggucauL96
7177
asUfsgadCc(Agn)cauugcCfaUfuaugasusc
7845
GAUCAUAAUGGCAAUGUGGUCAA
8277





AD-1708974.1
usasauggCfaAfUfGfuggucaagauL96
7178
asUfscudTg(Agn)ccacauUfgCfcauuasusg
7846
CAUAAUGGCAAUGUGGUCAAGAC
8280





AD-1708976.1
asusggcaAfuGfUfGfgucaagacguL96
7179
asCfsgudCu(Tgn)gaccacAfuUfgccaususa
7847
UAAUGGCAAUGUGGUCAAGACGG
8282





AD-1708977.1
usgsgcaaUfgUfGfGfucaagacgguL96
7180
asCfscgdTc(Tgn)ugaccaCfaUfugccasusu
7848
AAUGGCAAUGUGGUCAAGACGGA
8283





AD-1708984.1
gsusggucAfaGfAfCfggaugugccuL96
7181
asGfsgcdAc(Agn)uccgucUfuGfaccacsasu
7849
AUGUGGUCAAGACGGAUGUGCCA
8290





AD-1708986.1
gsgsucaaGfaCfGfGfaugugccaguL96
7182
asCfsugdGc(Agn)cauccgUfcUfugaccsasc
7850
GUGGUCAAGACGGAUGUGCCAGA
8292





AD-1708990.1
asasgacgGfaUfGfUfgccagauauuL96
 463
asAfsuadTc(Tgn)ggcacaUfcCfgucuusgsa
7851
UCAAGACGGAUGUGCCAGAUAUG
8296





AD-1709009.1
usgsguggUfgGfAfGfgccuguggcuL96
7183
asGfsccdAc(Agn)ggccucCfaCfcaccasusa
7852
UAUGGUGGUGGAGGCCUGUGGCU
8307





AD-1709021.1
cscsugugGfcUfGfCfagcuagcaauL96
7184
asUfsugdCu(Agn)gcugcaGfcCfacaggscsc
7853
GGCCUGUGGCUGCAGCUAGCAAG
8311





AD-1709022.1
csusguggCfuGfCfAfgcuagcaaguL96
7185
asCfsuudGc(Tgn)agcugcAfgCfcacagsgsc
7854
GCCUGUGGCUGCAGCUAGCAAGA
8312





AD-1709026.1
gsgscugcAfgCfUfAfgcaagaggauL96
7186
asUfsccdTc(Tgn)ugcuagCfuGfcagccsasc
7855
GUGGCUGCAGCUAGCAAGAGGAC
8316





AD-1709028.1
csusgcagCfuAfGfCfaagaggaccuL96
7187
asGfsgudCc(Tgn)cuugcuAfgCfugcagscsc
7856
GGCUGCAGCUAGCAAGAGGACCU
8318





AD-1709031.1
csasgcuaGfcAfAfGfaggaccugguL96
7188
asCfscadGg(Tgn)ccucuuGfcUfagcugscsa
7857
UGCAGCUAGCAAGAGGACCUGGG
8321





AD-1709032.1
gscsuuugGfaGfUfGfaagagaccauL96
7189
asUfsggdTc(Tgn)cuucacUfcCfaaagcscsc
7858
GGGCUUUGGAGUGAAGAGACCAA
8322





AD-1709034.1
ususuggaGfuGfAfAfgagaccaaguL96
7190
asCfsuudGg(Tgn)cucuucAfcUfccaaasgsc
7859
GCUUUGGAGUGAAGAGACCAAGA
8324





AD-1709038.1
gsasgugaAfgAfGfAfccaagaugauL96
7191
asUfscadTc(Tgn)uggucuCfuUfcacucscsa
7860
UGGAGUGAAGAGACCAAGAUGAA
8327





AD-1709041.1
usgsaagaGfaCfCfAfagaugaaguuL96
7192
asAfscudTc(Agn)ucuuggUfcUfcuucascsu
7861
AGUGAAGAGACCAAGAUGAAGUU
8328





AD-1709044.1
asgsagacCfaAfGfAfugaaguuucuL96
 468
asGfsaadAc(Tgn)ucaucuUfgGfucucususc
7862
GAAGAGACCAAGAUGAAGUUUCC
8330





AD-1709052.1
asgsaugaAfgUfUfUfcccaggcacuL96
7193
asGfsugdCc(Tgn)gggaaaCfuUfcaucususg
7863
CAAGAUGAAGUUUCCCAGGCACA
8338





AD-1709056.1
gsasaguuUfcCfCfAfggcacaggguL96
7194
asCfsccdTg(Tgn)gccuggGfaAfacuucsasu
7864
AUGAAGUUUCCCAGGCACAGGGC
8341





AD-1709090.1
ascsccaaCfaAfCfCfaccuggcaauL96
 471
asUfsugdCc(Agn)ggugguUfgUfugggususg
7865
CAACCCAACAACCACCUGGCAAU
8349





AD-1709097.1
asasccacCfuGfGfCfaauaugacuuL96
7195
asAfsgudCa(Tgn)auugccAfgGfugguusgsu
7866
ACAACCACCUGGCAAUAUGACUC
8356





AD-1709098.1
ascscaccUfgGfCfAfauaugacucuL96
7196
asGfsagdTc(Agn)uauugcCfaGfguggususg
7867
CAACCACCUGGCAAUAUGACUCA
8357





AD-1709100.1
csasccugGfcAfAfUfaugacucacuL96
7197
asGfsugdAg(Tgn)cauauuGfcCfaggugsgsu
7868
ACCACCUGGCAAUAUGACUCACU
8359





AD-1709102.1
cscsuggcAfaUfAfUfgacucacuuuL96
7198
asAfsagdTg(Agn)gucauaUfuGfccaggsusg
7869
CACCUGGCAAUAUGACUCACUUG
8361





AD-1709104.1
usgsgcaaUfaUfGfAfcucacuugauL96
7199
asUfscadAg(Tgn)gagucaUfaUfugccasgsg
7870
CCUGGCAAUAUGACUCACUUGAC
8363





AD-1709106.1
gscsaauaUfgAfCfUfcacuugaccuL96
7200
asGfsgudCa(Agn)gugaguCfaUfauugcscsa
7871
UGGCAAUAUGACUCACUUGACCC
8365





AD-1709111.1
gsgsacccAfaAfUfGfggcacuuucuL96
7201
asGfsaadAg(Tgn)gcccauUfuGfgguccscsa
7872
UGGGACCCAAAUGGGCACUUUCU
8366





AD-1709120.1
usgsggcaCfuUfUfCfuugucugaguL96
7202
asCfsucdAg(Agn)caagaaAfgUfgcccasusu
7873
AAUGGGCACUUUCUUGUCUGAGA
8374





AD-1709122.1
gsgscacuUfuCfUfUfgucugagacuL96
7203
asGfsucdTc(Agn)gacaagAfaAfgugccscsa
7874
UGGGCACUUUCUUGUCUGAGACU
8376





AD-1709124.1
csascuuuCfuUfGfUfcugagacucuL96
7204
asGfsagdTc(Tgn)cagacaAfgAfaagugscsc
7875
GGCACUUUCUUGUCUGAGACUCU
8378





AD-1709126.1
csusuucuUfgUfCfUfgagacucuguL96
7205
asCfsagdAg(Tgn)cucagaCfaAfgaaagsusg
7876
CACUUUCUUGUCUGAGACUCUGG
8380





AD-1709128.1
ususcuugUfcUfGfAfgacucuggcuL96
7206
asGfsccdAg(Agn)gucucaGfaCfaagaasasg
7877
CUUUCUUGUCUGAGACUCUGGCU
8382





AD-1709130.1
csusugucUfgAfGfAfcucuggcuuuL96
7207
asAfsagdCc(Agn)gagucuCfaGfacaagsasa
7878
UUCUUGUCUGAGACUCUGGCUUG
8454





AD-1709148.1
usasuuccAfgGfUfUfggcugauguuL96
7208
asAfscadTc(Agn)gccaacCfuGfgaauasasg
7879
CUUAUUCCAGGUUGGCUGAUGUG
8385





AD-1709151.1
uscscaggUfuGfGfCfugauguguuuL96
 476
asAfsacdAc(Agn)ucagccAfaCfcuggasasu
7880
AUUCCAGGUUGGCUGAUGUGUUG
8388





AD-1709201.1
csuscucuCfcUfCfUfaccuggaucuL96
7209
asGfsaudCc(Agn)gguagaGfgAfgagagsasg
7881
CUCUCUCUCCUCUACCUGGAUCA
8259





AD-1709237.1
gsasuuucCfuGfCfCfcuaaguccuuL96
 480
asAfsggdAc(Tgn)uagggcAfgGfaaaucsasu
7882
AUGAUUUCCUGCCCUAAGUCCUG
8391





AD-1709239.1
ususuccuGfcCfCfUfaaguccuguuL96
7210
asAfscadGg(Agn)cuuaggGfcAfggaaasusc
7883
GAUUUCCUGCCCUAAGUCCUGUG
8392





AD-1709253.1
asgsaagaUfgUfCfAfgggacuagguL96
7211
asCfscudAg(Tgn)cccugaCfaUfcuucuscsa
7884
UGAGAAGAUGUCAGGGACUAGGG
8393





AD-1709254.1
asasgaugUfcAfGfGfgacuagggauL96
7212
asUfsccdCu(Agn)gucccuGfaCfaucuuscsu
7885
AGAAGAUGUCAGGGACUAGGGAG
8395





AD-1709298.1
asgsgaggAfaGfCfAfgauagaugguL96
7213
asCfscadTc(Tgn)aucugcUfuCfcuccuscsc
7886
GGAGGAGGAAGCAGAUAGAUGGU
8400





AD-1709300.1
gsasggaaGfcAfGfAfuagauggucuL96
7214
asGfsacdCa(Tgn)cuaucuGfcUfuccucscsu
7887
AGGAGGAAGCAGAUAGAUGGUCC
8402





AD-1709301.1
asgsgaagCfaGfAfUfagaugguccuL96
7215
asGfsgadCc(Agn)ucuaucUfgCfuuccuscsc
7888
GGAGGAAGCAGAUAGAUGGUCCA
8403





AD-1709304.1
asasgcagAfuAfGfAfugguccagcuL96
7216
asGfscudGg(Agn)ccaucuAfuCfugcuuscsc
7889
GGAAGCAGAUAGAUGGUCCAGCA
8406





AD-1709307.1
csasgauaGfaUfGfGfuccagcagguL96
7217
asCfscudGc(Tgn)ggaccaUfcUfaucugscsu
7890
AGCAGAUAGAUGGUCCAGCAGGC
8409





AD-1709310.1
asusagauGfgUfCfCfagcaggcuuuL96
7218
asAfsagdCc(Tgn)gcuggaCfcAfucuauscsu
7891
AGAUAGAUGGUCCAGCAGGCUUG
8412





AD-1709314.1
asusggucCfaGfCfAfggcuugaaguL96
7219
asCfsuudCa(Agn)gccugcUfgGfaccauscsu
7892
AGAUGGUCCAGCAGGCUUGAAGC
8416





AD-1709315.1
usgsguccAfgCfAfGfgcuugaagcuL96
7220
asGfscudTc(Agn)agccugCfuGfgaccasusc
7893
GAUGGUCCAGCAGGCUUGAAGCA
8417





AD-1709317.1
gsusccagCfaGfGfCfuugaagcaguL96
7221
asCfsugdCu(Tgn)caagccUfgCfuggacscsa
7894
UGGUCCAGCAGGCUUGAAGCAGG
8419





AD-1709372.1
gsgsucaaGfaGfGfGfagaugggcauL96
7222
asUfsgcdCc(Agn)ucucccUfcUfugaccsusu
7895
AGGGUCAAGAGGGAGAUGGGCAA
8455





AD-1709390.1
gscsgcugAfgGfGfAfggaugcuuauL96
7223
asUfsaadGc(Agn)uccuccCfuCfagcgcscsu
7896
AGGCGCUGAGGGAGGAUGCUUAG
8425





AD-1709410.1
gscsacuaAfgCfCfUfaagaaguucuL96
7224
asGfsaadCu(Tgn)cuuaggCfuUfagugcscsu
7897
AGGCACUAAGCCUAAGAAGUUCC
8427





AD-1709411.1
csascuaaGfcCfUfAfagaaguuccuL96
7225
asGfsgadAc(Tgn)ucuuagGfcUfuagugscsc
7898
GGCACUAAGCCUAAGAAGUUCCC
8428





AD-1709429.1
csasggacCfcAfCfUfgggagacaauL96
7226
asUfsugdTc(Tgn)cccaguGfgGfuccugsusc
7899
GACAGGACCCACUGGGAGACAAG
8430





AD-1709431.1
gsgsacccAfcUfGfGfgagacaagcuL96
7227
asGfscudTg(Tgn)cucccaGfuGfgguccsusg
7900
CAGGACCCACUGGGAGACAAGCA
8432





AD-1709433.1
ascsccacUfgGfGfAfgacaagcauuL96
7228
asAfsugdCu(Tgn)gucuccCfaGfuggguscsc
7901
GGACCCACUGGGAGACAAGCAUU
8434





AD-1709434.1
cscscacuGfgGfAfGfacaagcauuuL96
7229
asAfsaudGc(Tgn)ugucucCfcAfgugggsusc
7902
GACCCACUGGGAGACAAGCAUUU
8435





AD-1709442.1
gsasgacaAfgCfAfUfuuauacuuuuL96
7230
asAfsaadGu(Agn)uaaaugCfuUfgucucscsc
7903
GGGAGACAAGCAUUUAUACUUUC
8442





AD-1709443.1
asgsacaaGfcAfUfUfuauacuuucuL96
7231
asGfsaadAg(Tgn)auaaauGfcUfugucuscsc
7904
GGAGACAAGCAUUUAUACUUUCU
8443





AD-1709502.1
asgsgucaAfgAfGfGfgagaugggcuL96
7232
asGfsccdCa(Tgn)cucccuCfuUfgaccususc
7905
GAAGGUCAAGAGGGAGAUGGGCA
8421





AD-1711741.1
csasagcacaGfCfUfauccaucaguL96
6591
asdCsugdAudGgauadGcUfgugcuugscsu
7906
GUCAAGCACAGCUAUCCAUCAGA
7962





AD-1711742.1
asuscuacuuUfCfAfgccuuccuguL96
6613
asdCsagdGadAggcudGaAfaguagauscsu
7907
UGAUCUACUUUCAGCCUUCCUGA
7984





AD-1711743.1
asgsccaagcAfGfCfaaauccugguL96
6672
asdCscadGgdAuuugdCuGfcuuggcuscsu
7908
CUAGCCAAGCAGCAAAUCCUGGA
8043





AD-1711744.1
ascscagucgUfCfCfcagaauaacuL96
6679
asdGsuudAudTcuggdGaCfgacugguscsu
  76
UGACCAGUCGUCCCAGAAUAACU
8050





AD-1711745.1
cscsuggcacUfCfUfuugcuugaguL96
6738
asdCsucdAadGcaaadGaGfugccaggscsu
7909
UUCCUGGCACUCUUUGCUUGAGG
8109





AD-1711746.1
csusggcacuCfUfUfugcuugagguL96
6739
asdCscudCadAgcaadAgAfgugccagscsu
7910
UCCUGGCACUCUUUGCUUGAGGA
8110





AD-1711747.1
csusuugcuuGfAfGfgaucuuccguL96
6746
asdCsggdAadGauccdTcAfagcaaagscsu
7911
CUCUUUGCUUGAGGAUCUUCCGA
8117





AD-1711748.1
ususugcuugAfGfGfaucuuccgauL96
6747
asdTscgdGadAgaucdCuCfaagcaaascsu
7912
UCUUUGCUUGAGGAUCUUCCGAU
8118





AD-1711749.1
ususgcuugaGfGfAfucuuccgauuL96
6748
asdAsucdGgdAagaudCcUfcaagcaascsu
7913
CUUUGCUUGAGGAUCUUCCGAUG
8119





AD-1711750.1
usgscuugagGfAfUfcuuccgauguL96
6749
asdCsaudCgdGaagadTcCfucaagcascsu
7914
UUUGCUUGAGGAUCUUCCGAUGG
8120





AD-1711751.1
gscsuugaggAfUfCfuuccgaugguL96
6750
asdCscadTcdGgaagdAuCfcucaagcscsu
7915
UUGCUUGAGGAUCUUCCGAUGGG
8121





AD-1711752.1
asgscaccacAfUfCfaccaaccuguL96
6758
asdCsagdGudTggugdAuGfuggugcuscsu
7916
UGAGCACCACAUCACCAACCUGG
8129





AD-1711753.1
ascsguagacUfUfCfcaggaacuguL96
6818
asdCsagdTudCcuggdAaGfucuacguscsu
7917
UUACGUAGACUUCCAGGAACUGG
8189





AD-1711754.1
csgsuagacuUfCfCfaggaacugguL96
6819
asdCscadGudTccugdGaAfgucuacgscsu
7918
UACGUAGACUUCCAGGAACUGGG
8190





AD-1711755.1
gsascuuccaGfGfAfacugggauguL96
6822
asdCsaudCcdCaguudCcUfggaagucscsu
7919
UAGACUUCCAGGAACUGGGAUGG
8193





AD-1711756.1
usgscugccuCfUfUfuccauucuguL96
6846
asdCsagdAadTggaadAgAfggcagcascsu
7920
AUUGCUGCCUCUUUCCAUUCUGC
8217





AD-1711757.1
gscsugccucUfUfUfccauucugcuL96
6847
asdGscadGadAuggadAaGfaggcagcscsu
7921
UUGCUGCCUCUUUCCAUUCUGCC
8218





AD-1711758.1
csusgccucuUfUfCfcauucugccuL96
6848
asdGsgcdAgdAauggdAaAfgaggcagscsu
7922
UGCUGCCUCUUUCCAUUCUGCCG
8219





AD-1711759.1
ususccauucUfGfCfcgucuucaguL96
6856
asdCsugdAadGacggdCaGfaauggaascsu
7923
CUUUCCAUUCUGCCGUCUUCAGC
8227





AD-1711760.1
cscsucaaagCfCfAfacaauccuuuL96
6873
asdAsagdGadTuguudGgCfuuugaggscsu
7924
CUCCUCAAAGCCAACAAUCCUUG
8244





AD-1711761.1
csuscaaagcCfAfAfcaauccuuguL96
6874
asdCsaadGgdAuugudTgGfcuuugagscsu
7925
UCCUCAAAGCCAACAAUCCUUGG
8245





AD-1711762.1
usgsugucccUfAfCfugcccgaaguL96
6884
asdCsuudCgdGgcagdTaGfggacacascsu
7926
GUUGUGUCCCUACUGCCCGAAGG
8255





AD-1711763.1
gsusgucccuAfCfUfgcccgaagguL96
6885
asdCscudTcdGggcadGuAfgggacacscsu
7927
UUGUGUCCCUACUGCCCGAAGGC
8256





AD-1711764.1
cscsucuaccUfGfGfaucauaauguL96
6894
asdCsaudTadTgaucdCaGfguagaggscsu
7928
CUCCUCUACCUGGAUCAUAAUGG
8265





AD-1711765.1
csuscuaccuGfGfAfucauaaugguL96
6895
asdCscadTudAugaudCcAfgguagagscsu
7929
UCCUCUACCUGGAUCAUAAUGGC
8266





AD-1711766.1
gsgsaucauaAfUfGfgcaaugugguL96
6903
asdCscadCadTugccdAuUfaugauccscsu
7930
CUGGAUCAUAAUGGCAAUGUGGU
8274





AD-1711767.1
gsasucauaaUfGfGfcaaugugguuL96
6904
asdAsccdAcdAuugcdCaUfuaugaucscsu
7931
UGGAUCAUAAUGGCAAUGUGGUC
8275





AD-1711768.1
asusggcaauGfUfGfgucaagacguL96
6911
asdCsgudCudTgaccdAcAfuugccauscsu
7932
UAAUGGCAAUGUGGUCAAGACGG
8282





AD-1711769.1
gsgscaauguGfGfUfcaagacggauL96
6913
asdTsccdGudCuugadCcAfcauugccscsu
7933
AUGGCAAUGUGGUCAAGACGGAU
8284





AD-1711770.1
gscsaaugugGfUfCfaagacggauuL96
6914
asdAsucdCgdTcuugdAcCfacauugcscsu
7934
UGGCAAUGUGGUCAAGACGGAUG
8285





AD-1711771.1
usgsccagauAfUfGfgugguggaguL96
6934
asdCsucdCadCcaccdAuAfucuggcascsu
7935
UGUGCCAGAUAUGGUGGUGGAGG
8305





AD-1711772.1
usgsgcugcaGfCfUfagcaagagguL96
6944
asdCscudCudTgcuadGcUfgcagccascsu
7936
UGUGGCUGCAGCUAGCAAGAGGA
8315





AD-1711773.1
gsgsagugaaGfAfGfaccaagauguL96
6955
asdCsaudCudTggucdTcUfucacuccscsu
7937
UUGGAGUGAAGAGACCAAGAUGA
8326





AD-1711774.1
asasgagaccAfAfGfaugaaguuuuL96
6958
asdAsaadCudTcaucdTuGfgucucuuscsu
7938
UGAAGAGACCAAGAUGAAGUUUC
8329





AD-1711775.1
ususccagguUfGfGfcugauguguuL96
7016
asdAscadCadTcagcdCaAfccuggaascsu
7939
UAUUCCAGGUUGGCUGAUGUGUU
8387





AD-1711776.1
cscsagguugGfCfUfgauguguuguL96
7018
asdCsaadCadCaucadGcCfaaccuggscsu
7940
UUCCAGGUUGGCUGAUGUGUUGG
8389





AD-1711777.1
csasgguuggCfUfGfauguguugguL96
7019
asdCscadAcdAcaucdAgCfcaaccugscsu
7941
UCCAGGUUGGCUGAUGUGUUGGG
8390





AD-1711778.1
gsusccagcaGfGfCfuugaagcaguL96
7048
asdCsugdCudTcaagdCcUfgcuggacscsu
7942
UGGUCCAGCAGGCUUGAAGCAGG
8419





AD-1711779.1
gsgsagacaaGfCfAfuuuauacuuuL96
7070
asdAsagdTadTaaaudGcUfugucuccscsu
7943
UGGGAGACAAGCAUUUAUACUUU
8441
















TABLE 21A







Single dose screen for dsRNA agents targeting INHBE in Hep3b cells











10 nM
1 nM
0.1 nM














% Avg

% Avg

% Avg



Duplex
message

message

message


Name
remaining
STDEV
remaining
STDEV
remaining
STDEV
















AD-1708158.1
34.54
8.05
71.33
9.23
107.64
15.41


AD-1706305.1
35.48
5.41
73.21
3.56
104.59
20.16


AD-1706299.1
36.87
8.53
79.64
15.65
114.93
19.80


AD-1706300.1
37.80
4.13
73.84
6.08
114.88
21.29


AD-1706297.1
39.37
5.42
70.23
10.61
86.59
21.82


AD-1706306.1
39.71
4.79
72.04
14.92
130.55
3.74


AD-1706410.1
40.85
1.71
62.77
3.66
109.95
30.95


AD-1706298.1
40.98
10.04
64.11
16.28
101.43
28.55


AD-1706304.1
44.69
8.85
92.06
13.52
109.73
9.34


AD-1706302.1
50.26
9.48
84.61
11.73
122.60
29.73


AD-1706292.1
52.60
17.55
75.07
12.50
124.87
12.45


AD-1706296.1
52.71
5.68
75.22
5.52
131.62
16.26


AD-1708152.1
53.50
0.47
87.86
10.25
136.07
12.18


AD-1706307.1
54.31
26.05
89.68
30.45
110.24
8.38


AD-1706301.1
54.75
12.47
84.13
5.13
124.19
16.94


AD-1706287.1
55.23
11.82
83.57
17.26
115.00
21.38


AD-1706411.1
55.84
10.32
89.82
7.68
103.89
21.25


AD-1706295.1
56.58
15.21
71.06
10.26
113.27
21.71


AD-1706294.1
56.72
15.26
76.70
11.02
129.67
23.61


AD-1706409.1
56.75
9.70
86.44
11.10
119.28
17.80


AD-1706293.1
61.24
25.25
76.63
12.52
130.80
28.10


AD-1706290.1
62.56
11.16
95.20
16.61
116.52
11.90


AD-1706383.1
64.06
16.13
86.94
9.74
112.75
11.83


AD-1706291.1
64.59
12.17
108.70
24.87
106.57
31.50


AD-1706280.1
65.32
6.57
91.46
16.24
108.01
13.13


AD-1708140.1
65.34
2.95
87.20
9.24
106.96
6.65


AD-1708146.1
65.43
11.72
84.84
10.88
112.01
18.37


AD-1706313.1
66.71
16.10
94.16
19.83
100.38
27.90


AD-1706408.1
67.80
19.49
71.97
16.90
125.25
16.19


AD-1708120.1
68.00
23.76
81.05
8.12
121.03
26.25


AD-1711741.1
68.04
23.87
87.67
14.56
132.56
17.04


AD-1708151.1
69.02
16.00
89.83
4.84
118.89
22.05


AD-1706309.1
69.77
8.67
84.02
11.60
138.93
37.04


AD-1706318.1
70.20
18.67
91.66
23.35
114.12
16.35


AD-1706273.1
70.34
15.43
134.72
59.02
106.63
19.73


AD-1708156.1
70.85
5.13
94.15
10.42
122.14
12.71


AD-1706310.1
70.85
8.64
92.35
8.01
109.09
13.66


AD-1708143.1
72.22
46.65
74.07
2.75
99.36
33.10


AD-1706270.1
73.33
11.55
107.41
33.72
104.81
18.07


AD-1708245.1
74.06
11.02
91.64
18.81
115.07
18.23


AD-1708148.1
75.43
10.51
110.24
42.78
127.20
18.92


AD-1706288.1
78.50
9.54
106.30
33.79
112.08
17.34


AD-1706269.1
78.75
9.19
97.34
9.54
94.15
26.99


AD-1706387.1
79.56
16.72
90.68
20.17
99.57
33.24


AD-1708126.1
81.86
10.41
89.72
13.80
110.36
19.57


AD-1706268.1
82.69
6.38
87.59
10.70
91.80
35.13


AD-1708149.1
83.56
16.19
87.38
11.09
116.42
10.39


AD-1706283.1
83.95
15.44
114.55
19.46
110.69
12.30


AD-1708118.1
83.97
11.32
78.18
3.60
92.20
9.25


AD-1708166.1
84.10
9.90
120.20
18.18
104.28
12.44


AD-1711742.1
84.46
23.20
96.26
12.03
105.58
8.27


AD-1708145.1
84.74
24.20
97.39
17.29
113.55
20.45


AD-1706282.1
85.07
19.02
95.14
23.04
120.96
13.71


AD-1708135.1
87.22
17.87
100.41
17.38
108.11
12.87


AD-1706314.1
87.98
27.86
94.95
10.60
118.63
19.08


AD-1706381.1
90.73
25.96
112.16
35.12
117.51
25.58


AD-1706311.1
92.14
18.67
116.08
9.92
129.88
24.01


AD-1706384.1
93.18
20.64
101.34
25.11
104.37
25.79


AD-1706385.1
93.50
27.94
105.31
39.58
104.75
6.41


AD-1706308.1
94.84
25.04
103.73
23.79
113.80
17.87


AD-1706338.1
95.49
12.86
98.18
6.39
136.37
13.09


AD-1708132.1
96.59
16.59
110.68
23.93
127.48
24.20


AD-1706380.1
96.60
21.61
90.75
13.70
111.95
26.19


AD-1706407.1
97.98
15.10
117.50
33.82
125.93
8.66


AD-1708170.1
98.46
11.64
116.36
41.97
132.15
17.12


AD-1706337.1
98.84
10.33
101.92
12.86
124.77
20.13


AD-1706272.1
99.84
23.62
102.80
15.05
118.13
8.50


AD-1706386.1
100.40
14.63
96.49
11.10
119.90
15.42


AD-1706271.1
101.04
6.69
99.68
8.67
133.49
59.61


AD-1708223.1
101.44
30.82
98.53
16.39
117.67
7.67


AD-1706276.1
101.53
28.71
96.11
25.46
115.66
33.58


AD-1708124.1
102.72
19.13
102.79
8.17
120.68
21.81


AD-1706277.1
103.69
22.61
112.76
19.13
90.36
25.09


AD-1706303.1
103.98
5.20
97.67
13.09
113.42
28.98


AD-1706279.1
104.53
24.13
99.52
8.70
122.09
25.99


AD-1708225.1
104.78
20.86
105.12
19.62
108.70
16.14


AD-1708127.1
106.25
18.25
114.08
21.32
118.31
11.91


AD-1708227.1
106.53
19.55
107.67
15.93
120.02
29.17


AD-1706388.1
106.60
11.81
110.39
11.58
121.56
34.41


AD-1706281.1
107.68
6.05
98.05
9.70
127.45
22.05


AD-1706266.1
107.82
19.26
98.57
12.19
110.48
5.27


AD-1706312.1
108.02
20.50
107.33
27.61
118.30
21.42


AD-1708163.1
109.49
8.50
95.21
3.04
100.00
28.35


AD-1708130.1
112.07
20.84
114.29
5.99
135.90
28.66


AD-1708220.1
114.56
17.32
93.03
8.40
127.48
21.09


AD-1706274.1
117.23
47.42
95.56
7.23
95.48
3.56


AD-1706275.1
117.99
17.97
122.96
24.59
102.24
29.51


AD-1706265.1
119.46
15.25
106.15
16.69
130.11
27.52


AD-1706278.1
122.93
41.94
93.47
14.43
116.53
8.92


AD-1706382.1
130.38
29.68
115.88
31.75
114.07
27.35


AD-1706642.1
9.07
1.33
33.95
3.33
73.03
9.20


AD-1706584.1
11.10
1.36
39.89
8.90
62.11
12.60


AD-1711744.1
14.39
2.21
50.24
8.89
79.57
19.84


AD-1706588.1
14.86
1.91
40.60
4.38
72.24
12.92


AD-1706583.1
16.40
0.91
54.91
8.04
90.07
11.50


AD-1706591.1
16.85
2.64
45.21
8.78
75.32
9.41


AD-1706593.1
16.97
1.82
62.83
22.14
82.42
26.66


AD-1706587.1
17.58
1.56
58.63
25.19
80.99
11.23


AD-1706547.1
17.83
3.49
53.09
6.40
81.19
10.29


AD-1708399.1
17.89
2.66
59.18
20.24
81.63
18.75


AD-1706548.1
17.90
0.67
52.53
5.0
96.83
14.58


AD-1708368.1
21.79
3.78
74.77
6.39
117.69
7.52


AD-1706640.1
23.16
2.61
60.43
5.36
91.90
28.74


AD-1706641.1
23.47
7.60
61.82
8.03
86.84
9.06


AD-1708357.1
24.90
5.49
64.54
8.39
99.70
20.16


AD-1706524.1
25.32
5.84
71.07
11.04
105.11
25.09


AD-1706585.1
26.06
3.02
64.13
14.21
104.94
17.17


AD-1706590.1
27.08
6.74
90.13
35.33
97.84
35.28


AD-1708407.1
27.22
9.42
61.08
8.83
82.76
13.93


AD-1706594.1
28.01
3.55
68.81
7.80
93.18
9.04


AD-1706414.1
28.37
4.53
58.04
13.63
87.06
19.77


AD-1706538.1
28.83
3.95
87.81
10.78
103.20
18.94


AD-1708251.1
29.62
3.42
61.88
15.03
91.39
20.22


AD-1706546.1
30.40
3.43
74.52
6.92
108.55
16.73


AD-1706543.1
32.12
2.74
73.00
8.20
108.30
25.23


AD-1706536.1
32.84
7.47
64.01
14.33
92.38
12.26


AD-1706545.1
34.25
3.85
62.46
5.73
98.45
9.25


AD-1706520.1
35.55
5.51
81.69
15.12
110.53
13.75


AD-1706582.1
35.83
6.13
61.53
16.96
94.95
16.97


AD-1706525.1
36.55
4.29
94.16
23.25
91.09
12.66


AD-1708369.1
38.82
21.75
70.72
3.62
97.58
17.63


AD-1708255.1
39.07
5.04
67.52
11.96
90.89
8.17


AD-1706535.1
39.19
8.70
104.28
31.11
97.46
6.66


AD-1706415.1
39.83
5.22
55.55
6.77
80.55
9.38


AD-1706544.1
39.98
3.88
60.76
7.29
80.11
18.18


AD-1706639.1
42.73
3.36
79.43
15.67
101.15
20.49


AD-1706550.1
42.82
15.97
94.02
43.73
107.95
26.18


AD-1708248.1
43.04
3.60
68.74
8.58
93.13
19.62


AD-1708365.1
43.52
8.08
106.40
35.35
101.61
17.99


AD-1706589.1
43.66
11.75
73.57
3.09
103.81
11.11


AD-1706523.1
43.71
6.67
91.11
14.54
116.01
5.91


AD-1706586.1
44.05
8.35
99.17
34.89
102.65
24.81


AD-1706412.1
44.67
9.33
82.62
12.75
95.04
15.60


AD-1706420.1
45.19
4.57
71.65
14.31
101.49
40.85


AD-1708401.1
46.32
4.32
109.46
36.49
137.97
46.10


AD-1706537.1
47.21
3.01
83.85
7.81
113.39
14.02


AD-1708397.1
47.56
4.70
82.21
16.77
103.46
14.37


AD-1706592.1
49.61
12.76
74.80
17.42
103.97
30.99


AD-1706539.1
50.47
7.14
64.47
6.46
81.84
2.50


AD-1706532.1
51.25
5.15
79.01
18.04
96.02
7.54


AD-1706580.1
51.56
13.09
58.56
10.84
100.76
23.90


AD-1706413.1
51.63
5.56
67.89
6.33
81.80
12.55


AD-1706419.1
54.23
19.04
93.19
30.98
121.41
34.52


AD-1706581.1
54.84
7.00
71.33
14.93
84.09
14.17


AD-1708447.1
54.87
13.52
104.94
21.63
118.08
18.05


AD-1706579.1
54.95
7.90
70.62
4.25
104.36
27.78


AD-1708408.1
56.12
12.89
90.61
8.36
99.13
20.61


AD-1706549.1
56.65
9.42
81.71
9.47
97.16
9.63


AD-1708342.1
56.93
7.61
80.26
12.73
106.80
25.07


AD-1706636.1
57.82
5.41
85.94
12.63
99.00
13.47


AD-1706425.1
58.29
2.96
76.30
14.61
95.32
14.22


AD-1706578.1
60.60
13.60
87.09
12.39
109.98
28.08


AD-1706418.1
63.28
10.61
96.91
13.82
111.41
24.53


AD-1708356.1
64.77
12.61
78.57
18.09
99.15
15.61


AD-1708347.1
65.00
17.57
82.04
19.82
95.21
15.90


AD-1706424.1
65.38
7.09
85.09
16.40
105.96
30.35


AD-1706417.1
66.98
12.66
85.33
20.21
111.43
27.23


AD-1706521.1
68.72
12.27
90.93
12.68
119.35
25.53


AD-1706530.1
70.98
12.28
86.64
9.70
94.88
14.24


AD-1706522.1
71.46
9.68
106.53
20.33
92.61
7.37


AD-1706527.1
71.63
5.56
97.88
24.77
112.26
31.32


AD-1706416.1
72.34
8.83
80.67
4.08
98.15
20.87


AD-1706534.1
76.28
8.47
81.77
15.66
99.83
24.74


AD-1706421.1
79.32
6.14
93.79
19.12
122.72
30.72


AD-1711743.1
80.13
9.62
88.65
8.30
93.61
12.47


AD-1706635.1
80.53
12.44
85.68
19.07
105.70
21.04


AD-1706528.1
81.09
5.66
73.66
5.18
122.46
19.28


AD-1706637.1
82.19
27.49
90.88
12.79
111.05
20.25


AD-1708403.1
83.00
19.04
92.02
7.56
116.05
23.70


AD-1708405.1
85.44
23.49
103.54
43.41
116.29
44.00


AD-1706533.1
85.51
14.92
115.23
27.84
101.95
17.97


AD-1708344.1
85.73
11.66
97.48
5.76
110.94
21.22


AD-1708361.1
86.28
9.76
88.85
15.65
109.24
31.96


AD-1706423.1
88.17
11.15
84.06
8.73
122.58
38.31


AD-1708260.1
88.99
5.12
94.37
17.05
114.30
29.22


AD-1708350.1
90.61
12.13
85.27
9.24
100.73
9.67


AD-1706638.1
95.90
12.95
85.50
18.85
110.68
17.30


AD-1708402.1
99.66
13.44
91.37
13.19
111.56
29.33


AD-1706526.1
101.27
3.70
93.41
11.90
113.66
19.87


AD-1708249.1
102.18
16.36
97.35
19.73
116.55
34.10


AD-1706661.1
6.60
0.84
74.72
4.36
110.66
17.49


AD-1708473.1
6.62
1.40
69.52
3.82
108.89
15.87


AD-1706665.1
6.77
0.79
67.01
13.10
103.64
16.11


AD-1706650.1
7.00
1.13
70.73
11.82
108.62
8.15


AD-1706645.1
7.25
3.64
74.87
8.06
107.77
11.83


AD-1706653.1
7.74
1.35
76.42
7.69
113.74
17.40


AD-1711749.1
8.54
1.25
68.74
2.15
106.66
11.71


AD-1706763.1
8.70
2.21
72.90
15.62
107.52
10.92


AD-1708478.1
9.57
1.33
78.24
7.40
107.29
10.61


AD-1706749.1
10.07
1.20
74.95
9.09
99.46
4.18


AD-1706643.1
10.53
1.64
73.09
9.66
90.78
10.00


AD-1706666.1
13.18
2.44
80.01
9.39
106.83
5.84


AD-1706796.1
15.63
3.43
89.88
10.35
103.93
11.87


AD-1706667.1
17.36
4.27
101.51
16.36
111.65
19.15


AD-1706671.1
17.42
2.37
90.42
16.21
103.59
6.63


AD-1706662.1
18.09
2.45
95.05
11.73
105.69
13.23


AD-1706660.1
18.70
4.24
91.56
4.98
105.45
10.46


AD-1706668.1
19.20
2.47
80.70
4.94
104.90
16.86


AD-1706678.1
19.89
4.19
95.24
9.95
106.34
7.14


AD-1706761.1
20.09
5.94
103.36
8.72
110.93
4.49


AD-1706729.1
20.69
1.20
82.71
9.83
98.57
7.22


AD-1706758.1
20.84
2.84
97.40
12.07
111.12
8.71


AD-1706802.1
21.81
2.61
87.99
12.58
104.85
6.50


AD-1706762.1
21.86
1.22
87.78
3.24
106.95
10.71


AD-1706673.1
22.52
4.61
95.13
17.07
106.48
11.75


AD-1706656.1
24.59
2.05
83.54
7.22
100.64
2.81


AD-1706654.1
24.83
1.15
109.60
22.66
105.15
8.80


AD-1706651.1
25.30
2.94
93.94
14.27
112.44
11.34


AD-1708561.1
25.60
3.99
104.77
12.81
102.89
6.87


AD-1706644.1
26.90
0.85
84.09
3.99
101.42
5.45


AD-1706674.1
28.45
3.09
88.45
9.49
104.73
2.90


AD-1706759.1
29.16
20.00
85.18
8.32
110.91
17.22


AD-1711747.1
29.23
3.34
92.97
13.24
109.77
11.44


AD-1706655.1
29.64
16.36
94.04
14.12
106.67
15.84


AD-1706755.1
29.74
4.96
90.27
13.45
89.74
8.63


AD-1706750.1
29.94
9.26
87.13
8.39
109.44
12.06


AD-1706756.1
29.99
0.59
92.61
17.60
106.44
15.86


AD-1706799.1
30.02
5.93
97.59
14.48
111.47
11.09


AD-1708485.1
30.12
11.59
89.97
7.46
105.61
12.03


AD-1706652.1
31.17
4.31
94.61
4.74
105.02
6.14


AD-1706649.1
32.31
8.03
95.79
12.11
97.70
9.45


AD-1706764.1
32.90
0.57
96.72
28.52
109.38
11.25


AD-1706760.1
33.00
4.03
89.53
11.65
101.22
11.01


AD-1706748.1
35.18
4.35
96.77
10.82
110.03
9.91


AD-1711750.1
37.69
7.93
98.35
9.29
106.27
9.06


AD-1708457.1
38.56
5.40
93.19
5.67
107.79
12.22


AD-1706751.1
39.44
19.99
94.73
9.40
109.19
8.46


AD-1708454.1
40.71
3.27
89.75
12.18
107.44
15.74


AD-1706753.1
40.99
9.16
100.89
28.03
110.69
15.45


AD-1708564.1
41.34
4.73
88.93
5.25
95.35
1.26


AD-1706746.1
42.57
6.65
88.82
8.77
107.73
13.47


AD-1708464.1
42.62
3.80
95.60
4.87
104.61
11.22


AD-1706672.1
43.78
10.25
95.27
10.60
98.19
9.52


AD-1711746.1
45.65
2.07
112.78
25.92
102.47
13.57


AD-1708483.1
48.04
7.38
101.48
24.43
102.75
7.74


AD-1708565.1
48.61
10.48
99.08
14.13
99.70
5.83


AD-1706797.1
48.74
5.96
90.55
14.02
100.91
9.04


AD-1711748.1
50.55
10.58
104.32
12.32
105.92
11.82


AD-1706646.1
50.78
11.75
105.91
14.08
101.10
6.21


AD-1708468.1
50.98
6.40
99.67
13.25
111.96
9.91


AD-1706664.1
51.96
13.92
90.04
8.66
108.53
15.23


AD-1706747.1
52.03
8.41
103.06
21.38
114.38
11.30


AD-1706765.1
53.56
7.63
93.88
18.00
95.27
4.65


AD-1706800.1
53.95
8.49
95.50
8.96
107.45
9.95


AD-1708462.1
54.04
6.29
92.64
7.40
118.65
14.56


AD-1706752.1
55.51
8.14
88.82
6.13
97.91
7.54


AD-1706745.1
57.43
9.49
93.02
5.38
97.74
7.60


AD-1706669.1
63.72
7.32
90.06
8.80
102.31
8.84


AD-1708466.1
64.64
14.05
95.96
16.75
100.99
12.25


AD-1706675.1
64.77
2.67
100.96
6.87
108.17
9.63


AD-1711751.1
65.52
14.01
99.40
20.89
95.72
19.18


AD-1711745.1
68.13
7.56
101.21
11.15
100.69
4.58


AD-1706803.1
73.64
8.01
92.32
11.60
104.35
10.44


AD-1706754.1
73.79
5.20
88.05
10.42
101.75
12.74


AD-1708482.1
75.95
14.79
99.22
6.65
99.58
19.78


AD-1706801.1
78.50
13.33
93.60
9.95
100.32
4.13


AD-1708458.1
78.70
7.33
87.84
4.93
103.98
9.93


AD-1711752.1
79.38
12.59
82.60
8.23
97.25
4.37


AD-1708567.1
80.84
18.53
93.23
9.30
100.82
7.56


AD-1706804.1
81.90
4.96
97.61
18.31
104.98
5.27


AD-1706670.1
83.22
11.36
101.97
12.99
99.92
6.96


AD-1706732.1
85.31
21.66
96.44
10.50
104.05
12.80


AD-1708647.1
85.35
15.28
119.04
41.38
108.04
20.54


AD-1706798.1
85.62
7.06
103.36
13.05
100.71
15.44


AD-1708476.1
88.09
5.36
99.39
9.61
107.56
11.68


AD-1708650.1
89.03
12.02
113.51
14.13
106.25
8.75


AD-1706735.1
92.62
7.77
111.07
11.08
108.42
10.58


AD-1706731.1
94.79
6.67
97.21
9.56
99.62
3.81


AD-1708559.1
95.00
7.62
100.14
12.07
102.77
7.98


AD-1708648.1
108.92
28.51
99.75
9.85
106.66
6.01


AD-1706854.1
25.37
3.01
103.72
47.41
103.23
9.61


AD-1708766.1
26.83
6.17
96.07
18.36
102.24
7.86


AD-1706929.1
27.18
8.06
75.76
7.80
97.46
18.20


AD-1706934.1
27.89
6.08
92.28
12.84
98.05
12.81


AD-1706879.1
35.05
3.81
88.34
13.15
104.53
21.27


AD-1706833.1
35.80
6.70
95.10
10.15
105.49
8.37


AD-1706856.1
36.63
4.23
110.20
26.30
107.65
12.80


AD-1706858.1
37.72
6.21
81.87
12.77
92.77
14.43


AD-1706930.1
40.50
1.61
108.05
35.35
86.82
30.20


AD-1706875.1
40.60
4.27
118.37
25.42
98.68
15.75


AD-1706855.1
41.18
11.54
131.44
55.87
98.30
19.73


AD-1706863.1
43.26
4.15
100.28
15.63
92.69
21.34


AD-1706933.1
43.61
9.36
102.54
30.69
104.09
5.81


AD-1706849.1
47.30
6.81
102.81
19.95
84.13
29.87


AD-1708707.1
50.03
11.97
108.24
34.23
104.48
11.54


AD-1706831.1
52.48
7.54
115.05
20.86
102.75
17.63


AD-1706861.1
52.54
16.14
101.45
26.45
108.92
30.66


AD-1706878.1
53.45
9.24
104.31
24.53
108.89
11.75


AD-1706860.1
54.13
8.56
93.86
12.56
107.75
22.52


AD-1706876.1
54.16
11.40
102.97
37.17
100.98
9.73


AD-1706922.1
54.52
11.46
116.79
22.40
97.89
10.04


AD-1706877.1
54.71
8.75
124.94
31.32
111.27
15.98


AD-1706910.1
56.13
5.44
100.89
10.10
99.37
24.39


AD-1708724.1
56.38
11.75
113.47
33.12
96.26
14.65


AD-1706851.1
56.88
8.13
99.19
16.09
100.04
9.14


AD-1706848.1
57.59
19.63
88.30
19.11
108.41
23.17


AD-1706862.1
57.90
17.76
100.76
21.18
98.92
19.89


AD-1706873.1
60.54
4.01
77.98
11.86
83.33
21.11


AD-1706925.1
61.27
5.41
141.22
45.16
112.13
14.93


AD-1706807.1
63.36
6.27
119.59
35.44
106.38
16.29


AD-1706808.1
63.79
6.32
81.18
2.15
83.79
14.66


AD-1706913.1
64.51
5.44
86.83
10.13
102.68
11.81


AD-1708771.1
65.72
13.62
73.79
9.06
99.46
12.36


AD-1708657.1
66.55
5.60
90.80
25.74
100.19
11.20


AD-1706852.1
66.74
13.45
110.13
42.60
109.17
10.74


AD-1706908.1
68.07
13.31
114.93
23.24
97.36
4.38


AD-1706927.1
69.35
9.74
96.16
18.41
110.08
10.62


AD-1706932.1
69.69
5.02
104.45
21.71
97.67
11.10


AD-1706834.1
70.38
6.62
84.04
8.43
99.35
17.43


AD-1706918.1
71.54
17.49
113.13
10.29
114.70
17.65


AD-1706866.1
71.83
14.46
88.92
33.22
106.35
14.58


AD-1706983.1
73.76
8.01
112.98
24.54
86.85
26.78


AD-1706859.1
74.92
24.74
90.87
21.71
100.06
13.80


AD-1706982.1
76.10
19.78
106.63
36.38
98.22
13.19


AD-1706835.1
77.42
15.50
104.09
23.87
101.43
22.46


AD-1706921.1
77.52
19.03
100.22
19.85
98.95
16.37


AD-1706989.1
78.00
22.52
93.63
12.00
92.94
19.53


AD-1708746.1
79.02
19.60
114.66
35.50
100.74
15.01


AD-1706850.1
79.32
13.85
91.59
5.45
94.78
15.55


AD-1706985.1
80.89
13.10
88.36
16.54
108.60
10.83


AD-1706923.1
81.37
21.19
106.79
11.31
103.06
13.83


AD-1706909.1
81.73
14.01
116.11
47.50
105.49
14.70


AD-1706811.1
81.88
17.25
92.52
16.10
101.66
13.54


AD-1708813.1
85.76
27.33
115.49
21.38
109.30
9.84


AD-1708748.1
87.90
14.15
86.02
8.62
100.81
2.57


AD-1706984.1
88.94
16.25
113.85
25.66
108.56
14.03


AD-1708697.1
89.52
10.09
120.53
38.28
113.90
9.54


AD-1706911.1
89.91
17.73
101.81
15.95
95.76
15.10


AD-1708709.1
90.74
14.16
100.10
17.53
107.72
14.67


AD-1706853.1
91.75
13.32
113.59
26.59
113.95
29.85


AD-1706926.1
96.63
6.03
95.17
15.95
103.87
30.98


AD-1706832.1
97.54
16.47
104.10
33.68
107.00
11.63


AD-1706987.1
98.29
12.34
95.69
20.12
98.30
10.47


AD-1706809.1
98.67
26.38
99.13
15.24
82.43
14.61


AD-1708700.1
99.27
21.13
106.72
9.99
96.03
19.58


AD-1706988.1
101.65
24.29
106.78
29.53
106.48
20.25


AD-1706914.1
101.79
11.21
90.48
4.14
100.55
13.62


AD-1706931.1
103.40
66.16
107.78
26.76
101.02
24.37


AD-1708683.1
104.06
8.55
125.73
42.10
107.19
5.34


AD-1711754.1
104.34
15.76
114.12
40.53
105.06
9.88


AD-1706836.1
106.36
12.55
100.96
22.23
103.19
32.20


AD-1708662.1
107.32
8.18
88.67
10.59
96.58
9.88


AD-1708759.1
107.49
28.12
89.51
14.33
101.64
19.99


AD-1708680.1
108.20
15.23
97.77
24.39
102.61
12.78


AD-1706874.1
109.21
20.84
100.69
38.85
100.93
14.52


AD-1706864.1
110.63
16.57
101.39
23.00
101.73
22.95


AD-1711753.1
111.19
14.58
93.59
17.39
110.58
13.90


AD-1706912.1
111.75
15.92
105.01
18.67
108.43
10.78


AD-1708751.1
112.97
12.72
116.26
23.93
104.25
11.26


AD-1708721.1
114.27
20.90
100.77
14.87
104.56
12.44


AD-1708819.1
116.07
29.98
91.50
9.56
112.22
10.56


AD-1708698.1
117.55
77.59
94.05
14.37
72.00
40.57


AD-1706857.1
118.83
19.85
117.65
40.36
108.84
4.65


AD-1708704.1
119.12
34.40
128.50
32.16
109.76
22.57


AD-1706812.1
119.69
43.53
122.34
33.51
87.62
24.43


AD-1708719.1
122.89
21.25
107.22
23.83
99.76
9.98


AD-1708706.1
127.72
37.05
95.70
14.61
99.73
16.92


AD-1708764.1
131.45
28.75
107.92
18.70
105.12
19.46


AD-1708763.1
137.95
34.65
119.14
40.49
113.97
7.55


AD-1708711.1
175.32
14.43
126.75
39.55
116.98
7.84


AD-1707061.1
8.33
1.86
88.81
10.65
90.67
24.02


AD-1707058.1
9.98
1.11
94.75
9.86
101.20
14.48


AD-1707063.1
12.85
3.24
99.95
14.44
104.17
16.47


AD-1707050.1
13.92
2.38
93.91
11.33
98.57
8.81


AD-1707060.1
13.97
2.53
92.54
10.48
120.97
7.47


AD-1707075.1
16.10
2.42
99.13
4.47
111.23
16.36


AD-1707017.1
17.50
2.11
99.33
5.23
109.99
17.00


AD-1708882.1
18.85
3.63
101.54
16.25
108.57
19.96


AD-1707086.1
19.02
2.90
101.81
13.51
110.60
8.16


AD-1707088.1
19.02
1.40
105.64
12.93
111.73
30.08


AD-1707087.1
19.19
2.03
105.11
7.90
115.78
14.42


AD-1707053.1
19.50
3.76
94.83
13.66
109.87
21.89


AD-1711760.1
20.00
1.81
88.73
4.33
110.48
5.26


AD-1711761.1
21.94
3.63
97.37
7.10
120.53
32.80


AD-1707051.1
22.12
1.59
105.96
10.05
112.06
12.44


AD-1707084.1
22.54
7.73
105.12
14.83
112.28
15.31


AD-1707085.1
22.65
1.28
97.83
9.25
123.86
10.32


AD-1707054.1
23.29
2.06
99.81
8.18
109.43
12.98


AD-1707052.1
23.59
2.74
94.34
13.80
111.93
13.23


AD-1707095.1
25.27
3.63
104.94
27.94
110.90
14.62


AD-1707092.1
25.31
6.58
92.76
19.70
101.56
14.57


AD-1711756.1
25.49
5.39
96.10
8.16
104.56
9.24


AD-1707062.1
25.58
5.66
92.16
4.07
117.28
15.75


AD-1707047.1
25.77
8.14
99.31
12.88
114.18
9.49


AD-1707070.1
27.17
2.34
94.16
12.13
119.42
12.78


AD-1708899.1
27.37
5.49
100.65
3.32
111.69
14.24


AD-1708902.1
27.66
3.25
92.63
7.26
106.35
19.13


AD-1707098.1
28.90
9.71
92.87
12.33
96.92
27.94


AD-1707066.1
32.02
8.19
94.37
9.02
107.58
12.73


AD-1707083.1
34.19
13.45
97.84
13.54
126.24
32.35


AD-1707057.1
34.23
5.87
100.62
7.09
121.36
13.17


AD-1707059.1
34.79
4.28
108.93
6.94
125.08
3.39


AD-1707018.1
36.61
3.49
112.84
18.20
103.78
12.48


AD-1707067.1
37.21
9.85
101.33
2.41
109.01
6.56


AD-1711758.1
37.55
1.79
95.70
13.53
101.50
11.23


AD-1707082.1
39.65
9.15
98.31
8.81
107.83
11.35


AD-1707076.1
40.68
4.39
100.27
1.83
120.22
15.13


AD-1707048.1
41.96
8.19
104.43
20.77
100.43
17.11


AD-1707019.1
42.99
5.23
99.22
6.55
107.64
17.16


AD-1708890.1
43.91
18.14
100.48
14.09
98.26
19.93


AD-1707093.1
44.02
1.40
105.14
8.37
117.58
5.28


AD-1708911.1
44.15
7.91
95.63
15.64
108.40
21.86


AD-1707105.1
44.17
8.08
110.35
11.53
115.89
15.69


AD-1707064.1
44.50
3.66
102.70
9.58
110.63
13.42


AD-1707074.1
44.84
9.51
101.54
7.85
104.90
13.69


AD-1707056.1
46.78
10.10
102.19
11.68
113.06
22.60


AD-1711762.1
49.02
6.03
97.20
2.29
107.59
3.47


AD-1707078.1
52.73
5.48
107.20
15.35
115.13
11.87


AD-1707030.1
53.66
6.53
111.11
14.02
113.90
15.90


AD-1707077.1
53.70
8.63
101.57
13.11
111.56
8.32


AD-1707065.1
53.74
1.99
108.29
8.35
122.33
12.73


AD-1707127.1
54.77
8.44
105.15
8.40
108.70
12.81


AD-1707094.1
57.47
8.53
108.23
12.77
105.37
10.86


AD-1707020.1
58.01
13.48
101.09
15.13
110.62
22.22


AD-1707021.1
58.79
18.20
124.68
43.20
100.48
22.35


AD-1707080.1
58.94
7.31
104.10
9.25
116.61
6.61


AD-1707126.1
59.59
9.32
96.42
13.31
109.61
12.60


AD-1708908.1
59.96
11.47
105.79
7.21
205.27
163.17


AD-1707125.1
60.35
4.53
103.79
11.65
116.67
11.23


AD-1708901.1
60.42
16.23
92.03
15.94
119.73
19.06


AD-1711755.1
60.73
5.54
97.60
4.64
113.80
6.04


AD-1707055.1
61.12
9.30
96.50
10.89
102.20
22.76


AD-1707014.1
61.49
4.18
99.29
8.04
109.12
13.68


AD-1707023.1
62.68
15.83
97.52
15.74
104.31
8.10


AD-1706991.1
64.23
11.46
88.71
9.37
95.92
12.46


AD-1707081.1
64.73
13.16
107.14
11.08
112.73
29.65


AD-1708872.1
66.53
19.46
88.90
9.68
112.87
12.88


AD-1707097.1
67.80
12.95
105.41
12.10
108.88
12.85


AD-1708907.1
69.34
5.34
111.02
6.94
103.77
12.88


AD-1707013.1
70.83
20.94
107.47
7.74
94.44
11.05


AD-1707015.1
71.33
23.32
105.50
8.59
106.57
16.42


AD-1708887.1
71.55
15.47
106.33
10.29
110.30
17.14


AD-1707129.1
71.65
20.96
103.58
6.43
91.33
26.27


AD-1708844.1
72.88
12.10
116.14
37.29
110.62
3.95


AD-1708856.1
73.95
18.67
103.53
5.03
80.24
39.02


AD-1708875.1
76.60
11.35
99.59
15.59
135.66
18.88


AD-1708889.1
79.17
11.66
110.70
17.57
120.98
7.68


AD-1707049.1
80.31
5.85
108.76
7.19
119.03
5.82


AD-1711763.1
84.78
21.20
99.75
14.69
113.14
14.33


AD-1707024.1
87.28
6.38
93.68
12.29
108.98
14.26


AD-1707022.1
87.29
14.92
98.16
14.55
102.07
11.52


AD-1707128.1
87.44
2.93
94.65
5.66
109.94
20.88


AD-1711759.1
88.12
18.24
106.57
14.25
111.09
6.10


AD-1707016.1
88.23
17.94
94.55
2.56
104.53
16.40


AD-1711757.1
88.63
12.42
95.80
12.28
122.43
7.14


AD-1708842.1
89.93
21.36
125.99
41.26
125.37
9.77


AD-1708849.1
91.50
19.06
116.08
31.45
79.83
13.17


AD-1706990.1
91.94
11.09
125.77
47.09
109.78
6.85


AD-1708921.1
112.06
22.19
112.08
21.18
113.33
20.65


AD-1707025.1
122.67
6.40
108.76
12.64
120.07
12.98


AD-1707152.1
13.98
2.96
115.15
23.84
101.84
9.78


AD-1708956.1
16.83
1.85
87.80
11.44
100.21
20.00


AD-1707143.1
17.33
4.80
104.40
35.77
110.39
5.62


AD-1707136.1
17.36
2.50
98.63
18.72
82.73
17.99


AD-1707146.1
20.98
3.84
108.41
18.98
107.36
8.80


AD-1707132.1
22.58
2.33
97.25
9.13
105.94
17.38


AD-1707161.1
22.68
5.03
89.57
15.63
96.67
20.00


AD-1707170.1
23.62
2.34
95.73
12.86
95.31
5.70


AD-1707154.1
25.29
4.40
86.51
3.91
105.27
17.71


AD-1707144.1
26.58
6.16
94.66
17.37
101.45
9.43


AD-1707134.1
28.54
6.01
99.26
11.19
89.22
17.73


AD-1707159.1
28.79
5.65
107.12
15.73
105.46
10.57


AD-1707149.1
29.32
2.79
155.91
29.51
94.83
22.67


AD-1707137.1
29.64
2.96
105.39
14.31
104.18
20.24


AD-1708957.1
30.15
5.52
88.33
6.86
98.55
13.20


AD-1707160.1
32.76
3.02
88.95
7.30
116.76
17.01


AD-1711769.1
32.88
5.54
83.54
10.19
93.62
9.98


AD-1711767.1
33.68
3.93
92.83
21.12
106.68
6.50


AD-1711770.1
34.57
6.07
99.82
17.88
93.32
18.62


AD-1707169.1
36.98
4.18
110.99
33.26
105.09
14.13


AD-1707210.1
37.13
8.07
95.18
12.01
100.39
16.02


AD-1711765.1
37.53
15.27
100.34
14.43
100.63
30.48


AD-1707173.1
37.95
3.50
96.79
15.17
101.14
6.92


AD-1707162.1
38.24
3.82
116.22
44.16
107.92
20.94


AD-1708974.1
38.68
2.37
109.51
33.43
100.84
3.83


AD-1707140.1
38.77
6.98
87.96
19.28
102.71
19.68


AD-1707145.1
38.82
7.25
82.00
14.95
112.74
34.49


AD-1708971.1
38.93
6.26
104.04
20.22
94.40
15.26


AD-1707166.1
39.32
7.06
101.96
7.66
98.75
7.43


AD-1707151.1
40.38
6.23
97.29
17.49
106.17
15.07


AD-1708963.1
40.88
2.50
118.93
18.80
108.47
11.31


AD-1707153.1
40.91
6.24
92.88
15.02
97.58
7.63


AD-1707157.1
44.06
14.33
97.51
12.37
98.71
6.68


AD-1707158.1
44.79
7.72
99.01
16.41
111.74
9.29


AD-1708990.1
46.04
5.68
96.56
15.31
110.10
7.50


AD-1707197.1
46.35
4.78
99.28
9.06
103.29
2.99


AD-1707168.1
46.52
7.25
114.85
40.01
121.67
21.33


AD-1707164.1
46.52
4.87
107.61
4.25
105.06
9.80


AD-1707142.1
48.03
9.69
88.73
20.26
97.14
19.70


AD-1707147.1
48.39
9.65
102.36
10.85
106.88
15.92


AD-1707133.1
48.55
7.85
90.89
12.15
94.27
15.48


AD-1707156.1
50.21
9.50
87.48
10.24
100.76
13.47


AD-1707150.1
50.56
5.47
128.77
29.09
106.27
11.80


AD-1711768.1
51.31
6.81
94.55
5.18
86.83
16.67


AD-1707177.1
52.17
7.40
97.31
19.25
93.24
6.70


AD-1707176.1
52.38
5.97
103.31
15.62
123.43
31.50


AD-1707209.1
54.24
10.92
90.52
15.49
93.77
7.34


AD-1707135.1
55.06
6.19
97.90
12.98
95.86
18.67


AD-1707201.1
56.43
9.50
141.33
27.95
111.61
7.09


AD-1707141.1
56.83
21.84
106.75
16.22
96.91
17.42


AD-1707139.1
56.98
2.61
108.61
19.57
96.36
9.51


AD-1707163.1
57.43
9.97
102.98
6.88
110.92
8.77


AD-1707211.1
58.08
16.77
100.46
12.93
89.06
15.85


AD-1707171.1
59.68
7.29
88.87
10.18
96.17
14.09


AD-1711764.1
61.91
4.80
88.61
13.52
94.06
7.03


AD-1709201.1
62.48
5.31
83.62
13.75
89.35
9.59


AD-1707167.1
64.49
6.21
88.47
6.99
93.88
9.17


AD-1707155.1
64.64
13.86
107.37
28.96
106.86
12.33


AD-1707202.1
65.35
7.10
95.62
18.04
98.52
13.35


AD-1707203.1
66.47
8.06
105.42
26.74
102.48
8.85


AD-1708977.1
67.97
6.89
111.17
12.98
112.14
9.94


AD-1707178.1
68.77
23.43
115.97
35.56
85.13
14.23


AD-1707200.1
69.32
10.45
105.72
23.83
104.89
7.43


AD-1707138.1
74.31
12.00
107.37
12.17
108.82
8.30


AD-1707207.1
76.91
13.93
119.04
36.69
105.00
9.19


AD-1707190.1
77.90
11.71
92.83
14.82
93.57
9.45


AD-1708984.1
78.01
8.72
95.54
14.71
103.87
15.45


AD-1707148.1
78.60
9.21
105.45
9.27
106.10
20.83


AD-1707172.1
79.74
8.47
106.69
11.16
99.53
16.18


AD-1708986.1
80.65
10.97
121.14
24.43
108.29
8.71


AD-1707165.1
82.20
12.26
128.70
34.94
101.82
15.99


AD-1708962.1
84.11
7.41
91.81
13.52
81.71
30.08


AD-1707204.1
84.21
9.53
104.10
25.70
98.83
16.90


AD-1711772.1
84.59
8.95
91.65
21.63
102.48
22.65


AD-1711766.1
87.33
12.72
93.37
15.24
109.16
2.18


AD-1709022.1
87.35
12.09
89.48
15.28
102.93
16.68


AD-1709028.1
88.42
9.93
93.89
24.08
104.19
7.73


AD-1707179.1
89.17
13.08
100.09
8.41
105.13
8.34


AD-1707205.1
92.52
12.36
108.95
4.96
112.68
11.95


AD-1707180.1
93.48
21.70
98.26
9.31
105.78
14.35


AD-1707174.1
93.87
10.14
95.00
16.23
109.95
15.51


AD-1707208.1
94.27
14.12
117.41
38.11
110.38
9.20


AD-1708976.1
94.71
18.83
101.36
7.68
107.96
12.07


AD-1709021.1
97.52
17.75
92.57
13.43
99.20
6.38


AD-1707189.1
99.48
6.62
96.95
9.64
97.68
11.39


AD-1707206.1
100.82
16.60
96.42
11.21
106.77
24.93


AD-1711771.1
104.52
3.03
88.98
15.82
102.81
12.47


AD-1709026.1
116.40
6.19
101.82
20.63
112.17
12.49


AD-1707182.1
118.95
22.62
116.54
37.28
114.08
5.65


AD-1709009.1
119.75
15.80
122.88
22.76
108.96
16.73


AD-1709032.1
10.65
1.46
72.91
9.78
87.30
6.27


AD-1709044.1
10.97
0.72
93.48
14.31
112.97
13.33


AD-1707224.1
12.74
2.75
71.54
13.48
91.74
19.65


AD-1707306.1
13.25
1.84
78.47
12.33
103.70
13.65


AD-1707225.1
13.42
2.08
75.80
6.57
107.46
18.05


AD-1707223.1
13.58
4.79
79.36
12.93
108.17
24.63


AD-1707305.1
13.79
0.84
97.69
13.40
103.89
16.61


AD-1711773.1
13.84
1.32
90.16
16.57
134.96
30.18


AD-1707214.1
14.01
4.99
80.78
9.25
102.66
21.99


AD-1709038.1
14.03
1.38
100.99
17.22
138.67
38.28


AD-1707317.1
14.12
1.62
84.03
15.86
107.44
6.76


AD-1707216.1
14.52
2.86
86.31
10.19
85.93
0.00


AD-1707318.1
14.74
1.94
69.40
5.08
127.81
35.42


AD-1707304.1
15.23
2.90
97.01
7.85
152.32
32.19


AD-1707313.1
15.77
3.15
80.19
14.57
98.62
21.63


AD-1707221.1
16.00
2.73
83.56
12.11
104.63
25.69


AD-1707213.1
17.50
1.12
91.79
13.61
110.12
14.97


AD-1707218.1
18.01
2.72
95.39
8.58
137.53
31.38


AD-1709130.1
18.28
2.33
73.33
9.92
95.68
6.54


AD-1711774.1
18.77
16.50
98.28
26.33
146.32
49.75


AD-1707303.1
18.77
2.61
86.31
8.27
118.33
22.15


AD-1707290.1
19.51
2.26
97.82
7.63
114.46
14.53


AD-1709034.1
19.87
8.67
95.49
13.97
134.79
30.19


AD-1707289.1
21.00
5.23
94.06
5.36
111.31
11.21


AD-1707280.1
21.21
2.95
86.67
9.47
96.46
8.51


AD-1707212.1
22.71
3.39
94.41
5.67
120.86
31.47


AD-1707288.1
22.72
4.43
93.00
14.56
113.10
14.44


AD-1707291.1
22.84
3.29
105.07
22.57
105.16
16.77


AD-1707314.1
23.13
3.99
98.59
23.48
106.37
23.07


AD-1707308.1
23.74
4.68
95.43
13.97
113.65
28.74


AD-1707217.1
25.94
18.18
80.34
11.48
105.73
13.57


AD-1707287.1
25.99
6.84
92.78
9.70
108.94
18.00


AD-1707299.1
26.27
3.08
97.87
5.04
123.11
10.32


AD-1707292.1
27.32
2.25
99.62
13.65
103.35
36.19


AD-1709124.1
27.62
2.53
93.80
21.22
117.31
37.59


AD-1707312.1
28.79
3.24
101.19
13.56
125.78
26.36


AD-1707311.1
29.58
5.31
102.79
19.49
108.80
18.25


AD-1707231.1
29.70
3.41
110.87
12.10
122.78
6.80


AD-1707315.1
29.82
4.37
94.22
15.09
117.40
27.65


AD-1709041.1
30.64
5.89
112.79
34.30
123.67
39.64


AD-1709090.1
30.91
4.76
96.67
16.65
106.46
17.17


AD-1707337.1
31.57
5.82
93.58
16.80
108.70
17.59


AD-1707281.1
33.35
3.66
101.45
3.78
107.40
22.02


AD-1707284.1
33.41
3.61
98.04
21.19
117.03
25.08


AD-1707310.1
35.62
1.48
118.56
40.26
107.58
17.75


AD-1709102.1
35.85
4.29
107.66
21.90
124.11
45.38


AD-1707307.1
35.88
8.73
96.17
12.20
109.75
10.94


AD-1707226.1
36.27
4.27
107.71
10.16
111.11
11.64


AD-1707302.1
36.97
7.05
91.71
19.52
113.79
16.00


AD-1709126.1
37.18
7.60
101.43
19.25
124.72
16.78


AD-1707228.1
38.56
18.34
98.73
17.99
112.83
33.73


AD-1707278.1
41.71
3.76
106.79
12.12
120.88
13.90


AD-1709104.1
42.57
6.08
98.63
15.39
107.51
18.98


AD-1707227.1
43.56
5.85
105.34
7.24
106.96
21.11


AD-1707279.1
43.64
6.62
95.09
24.45
98.32
22.69


AD-1709122.1
45.93
9.47
121.35
21.87
110.30
15.15


AD-1709052.1
48.00
6.56
104.18
17.40
141.43
55.52


AD-1707286.1
49.25
9.69
96.94
11.77
107.88
8.01


AD-1707232.1
49.71
4.79
103.13
6.35
101.42
20.85


AD-1707239.1
51.17
9.25
94.08
19.53
111.03
12.43


AD-1709100.1
51.61
16.14
106.55
9.21
138.74
28.67


AD-1707293.1
52.59
13.82
118.95
30.71
102.52
20.23


AD-1707338.1
52.76
8.61
101.81
10.45
115.79
26.48


AD-1707283.1
53.75
5.20
120.04
14.87
136.81
54.63


AD-1707285.1
54.11
6.28
108.86
7.48
113.13
12.98


AD-1707301.1
55.03
8.84
90.63
17.10
107.24
27.55


AD-1707309.1
56.19
6.30
97.08
9.15
105.76
21.42


AD-1707240.1
58.92
8.28
96.05
10.01
93.42
16.45


AD-1707316.1
59.31
17.56
109.46
32.98
157.17
69.02


AD-1707277.1
60.63
17.08
100.69
11.68
115.49
9.64


AD-1709106.1
61.42
6.05
98.37
14.84
129.70
28.96


AD-1709120.1
62.12
11.73
96.87
22.29
120.52
32.78


AD-1707276.1
62.36
7.14
101.51
20.17
100.78
19.23


AD-1709148.1
62.57
15.47
94.00
3.55
95.21
2.66


AD-1707275.1
62.62
6.51
93.58
14.35
99.46
19.67


AD-1709111.1
63.90
15.14
95.56
9.44
120.37
39.53


AD-1709097.1
69.40
7.55
103.39
27.37
128.13
10.58


AD-1707282.1
69.63
7.45
99.24
17.79
124.74
38.28


AD-1707234.1
70.71
9.87
114.33
37.40
110.04
19.59


AD-1707230.1
74.46
12.47
95.56
8.67
115.51
17.32


AD-1709098.1
79.18
4.31
104.27
10.48
116.87
26.13


AD-1707241.1
79.49
9.37
111.57
20.66
120.03
23.30


AD-1707236.1
85.92
13.55
109.82
23.40
131.32
45.71


AD-1709128.1
86.19
11.09
117.37
14.30
114.43
20.56


AD-1707242.1
87.51
6.96
97.20
14.18
110.78
22.01


AD-1707233.1
91.33
10.63
105.56
19.90
95.12
23.29


AD-1707237.1
91.92
10.46
106.06
19.52
113.76
36.13


AD-1707229.1
92.04
4.24
101.96
21.38
130.00
26.36


AD-1709056.1
94.72
20.30
109.17
32.34
119.96
16.65


AD-1709031.1
107.23
18.65
105.11
9.56
115.47
29.46


AD-1707636.1
10.58
3.09
73.37
13.26
101.03
16.01


AD-1711779.1
12.37
2.63
71.60
15.39
110.73
23.21


AD-1707639.1
14.43
3.04
76.92
14.30
99.84
12.54


AD-1707641.1
14.56
1.31
72.69
13.14
87.79
19.99


AD-1707640.1
15.36
5.50
73.67
8.05
84.94
24.69


AD-1707638.1
15.84
2.03
74.50
10.42
102.75
14.50


AD-1707637.1
16.00
1.31
84.11
20.33
120.69
21.72


AD-1707340.1
18.02
4.57
71.49
7.53
86.85
11.99


AD-1707632.1
19.56
3.37
101.07
23.16
99.62
10.24


AD-1711775.1
20.20
2.65
91.97
18.77
103.33
4.55


AD-1707339.1
21.62
5.49
91.29
16.30
107.99
14.63


AD-1707634.1
23.26
5.19
94.39
10.58
110.43
6.43


AD-1709151.1
24.09
2.26
95.46
13.85
85.84
17.45


AD-1709442.1
24.19
1.70
99.99
21.91
106.91
7.38


AD-1707630.1
24.82
2.27
82.71
18.99
100.07
9.51


AD-1709310.1
25.64
4.25
113.85
44.32
117.47
5.21


AD-1707605.1
25.97
3.89
94.46
16.93
109.86
6.59


AD-1709372.1
27.94
2.72
115.20
28.81
94.89
9.83


AD-1707631.1
28.93
4.48
100.66
29.44
98.29
12.45


AD-1711776.1
29.75
7.50
96.97
16.01
79.21
26.10


AD-1707633.1
30.49
6.28
103.63
27.18
99.15
10.39


AD-1709301.1
31.17
2.49
100.61
18.34
106.10
9.33


AD-1707466.1
33.17
3.58
80.17
10.16
91.78
17.83


AD-1709410.1
33.26
11.51
109.37
45.97
89.98
28.25


AD-1707629.1
34.41
10.14
100.46
13.51
108.44
26.17


AD-1707388.1
34.54
7.23
95.22
14.50
102.57
10.06


AD-1707341.1
35.41
11.95
89.30
5.48
100.63
9.92


AD-1707472.1
36.07
7.86
79.99
12.62
97.28
14.58


AD-1707470.1
37.22
3.26
80.96
13.21
106.70
7.03


AD-1709300.1
37.80
2.04
133.54
24.47
107.60
9.91


AD-1707606.1
37.97
8.54
103.68
30.81
99.47
10.48


AD-1709434.1
38.13
5.93
93.06
10.01
92.27
6.32


AD-1707479.1
38.62
3.53
100.45
19.44
104.42
10.85


AD-1707474.1
40.76
12.33
91.91
7.21
92.10
6.30


AD-1707478.1
40.81
7.35
92.42
19.60
92.52
18.25


AD-1709433.1
40.81
2.17
93.17
12.95
107.44
15.95


AD-1707342.1
41.92
3.25
95.88
23.23
99.12
7.85


AD-1707481.1
43.58
6.80
82.30
6.97
84.65
18.42


AD-1707577.1
43.88
4.91
85.72
6.14
95.04
14.26


AD-1707556.1
44.01
5.20
101.93
28.43
101.74
10.99


AD-1711777.1
45.14
11.21
114.45
10.62
96.73
20.52


AD-1709443.1
45.22
0.83
100.07
11.26
97.92
7.67


AD-1707486.1
45.51
9.49
100.63
5.39
100.14
11.85


AD-1707628.1
46.62
6.73
113.39
21.12
93.74
13.75


AD-1707480.1
46.88
6.69
102.09
18.77
110.14
13.44


AD-1709411.1
47.31
13.14
87.52
8.56
91.88
24.45


AD-1711778.1
48.28
11.80
111.20
13.56
94.81
18.75


AD-1709237.1
48.28
6.38
94.22
8.15
96.80
12.70


AD-1707483.1
48.39
4.85
99.57
17.10
94.96
21.55


AD-1709304.1
50.75
12.20
99.78
16.16
92.66
11.59


AD-1707578.1
51.22
9.70
105.42
11.28
98.33
5.94


AD-1707626.1
51.23
8.00
93.89
16.64
107.20
11.75


AD-1707553.1
51.76
10.35
97.28
9.61
95.98
19.82


AD-1709317.1
53.03
12.07
95.68
17.98
106.76
17.19


AD-1707627.1
53.41
17.00
90.59
17.84
98.25
18.90


AD-1709429.1
53.84
4.92
98.91
15.37
103.18
17.21


AD-1707469.1
54.22
8.62
96.86
15.86
105.03
6.45


AD-1707555.1
54.36
14.24
95.46
9.45
101.46
22.99


AD-1709502.1
54.67
11.47
97.24
11.50
96.65
11.03


AD-1707467.1
55.71
8.17
105.11
18.31
108.78
10.76


AD-1707473.1
57.10
9.09
85.76
12.49
101.37
17.12


AD-1707557.1
58.60
9.88
96.92
24.28
97.24
15.17


AD-1707625.1
59.10
4.85
107.25
29.88
114.62
8.75


AD-1707482.1
59.61
7.43
105.12
9.08
107.28
12.66


AD-1707471.1
60.25
8.69
115.63
30.61
110.02
25.57


AD-1707468.1
60.62
11.06
98.79
8.96
98.07
21.08


AD-1709307.1
60.77
11.96
104.13
18.31
99.16
16.21


AD-1707416.1
62.39
10.60
106.20
29.09
108.74
6.92


AD-1707476.1
62.69
6.78
98.18
21.33
114.57
25.32


AD-1707477.1
63.06
14.52
106.74
20.36
106.68
14.21


AD-1707475.1
65.11
5.23
98.37
14.42
105.46
7.86


AD-1709254.1
66.79
23.87
101.35
11.41
89.71
18.70


AD-1707390.1
67.23
7.60
100.09
13.09
95.79
8.38


AD-1709298.1
68.03
10.97
96.34
17.17
108.50
15.76


AD-1709390.1
68.34
8.57
105.65
25.15
99.82
10.51


AD-1707484.1
69.92
9.74
97.85
20.58
99.48
13.58


AD-1709314.1
72.02
3.76
122.26
28.02
109.58
16.56


AD-1709431.1
73.69
13.99
115.10
20.10
103.94
18.67


AD-1707554.1
74.14
16.74
103.41
15.16
99.75
11.58


AD-1707412.1
78.12
15.95
135.10
34.55
107.09
20.15


AD-1707624.1
81.73
10.74
121.46
18.90
111.10
15.87


AD-1707623.1
84.10
14.14
117.90
34.70
101.07
11.24


AD-1707485.1
85.82
5.18
96.24
6.20
108.58
7.26


AD-1707418.1
89.78
16.64
90.19
15.94
96.15
12.68


AD-1709315.1
92.79
10.37
93.51
7.08
103.41
13.56


AD-1707411.1
95.22
14.65
90.23
10.17
99.59
20.10


AD-1709239.1
95.51
10.13
94.42
8.85
94.47
10.55


AD-1707415.1
96.35
27.83
87.14
14.90
101.20
19.14


AD-1709253.1
99.77
27.82
101.30
20.97
100.35
31.79


AD-1707417.1
104.79
17.20
115.55
22.60
107.73
8.99
















TABLE 21B







Single Dose Screen for dsRNA agents targeting INHBE in PHH cells (% average mRNA remaining).









Duplex
Primary Human Hepatocytes Transfection
Primary Human Hepatocytes Free Uptake





















Name
10 nM
StDev
1 nM
StDev
0.1 nM
StDev
250 nM
StDev
100 nM
StDev
10 nM
StDev
1 nM
StDev
























AD-1708473
3.84
1.35
4.83
0.78
11.90
5.80
9.05
2.26
7.91
2.05
20.30
4.14
26.88
9.48


AD-1707061
4.14
0.80
7.73
1.54
10.01
4.27
5.05
2.70
9.15
1.74
19.29
6.44
22.54
5.46


AD-1708478
4.21
0.86
8.74
1.95
12.12
2.57
15.32
3.35
15.49
4.78
32.44
12.86
47.21
3.08


AD-1706584
6.01
1.00
12.11
2.32
20.47
1.86
15.62
6.96
12.92
3.51
31.81
9.56
39.52
13.24


AD-1707306
5.41
0.99
8.64
1.68
15.40
3.91
14.67
4.08
12.03
5.26
31.22
4.85
29.94
12.32


AD-1711744
7.34
0.93
22.17
1.93
24.84
6.82
16.09
6.18
18.31
7.16
46.93
10.77
21.15
6.60


AD-1707639
7.39
0.40
15.74
1.72
25.11
1.15
20.36
7.67
22.33
6.58
33.27
5.33
35.71
13.43


AD-1707641
6.30
1.05
11.48
0.98
13.72
2.64
14.35
5.72
16.48
6.07
27.41
4.58
37.17
12.82


AD-1707640
14.25
5.27
9.89
2.61
11.62
2.53
19.98
9.23
9.86
1.84
29.19
8.23
46.42
16.24


AD-1706583
9.59
2.03
11.01
2.55
33.23
7.79
32.08
9.27
34.18
1.07
44.93
7.59
47.65
14.84


AD-1708956
8.29
1.74
7.69
1.78
20.17
2.12
27.77
10.81
21.34
8.65
51.13
12.95
62.63
10.70


AD-1706591
17.87
2.33
21.38
2.89
33.74
2.09
35.01
8.34
43.04
5.73
55.08
8.42
49.40
1.88


AD-1706593
16.39
2.72
21.56
5.13
38.39
4.68
38.38
2.01
40.78
12.66
67.80
3.57
57.75
2.38


AD-1707136
9.73
2.61
12.76
1.74
18.58
4.48
21.70
6.52
26.72
8.13
49.51
9.16
62.04
21.31


AD-1706587
19.27
2.95
29.03
3.31
42.92
2.35
37.95
9.76
48.29
7.11
63.48
11.56
91.09
9.80


AD-1706547
9.05
1.63
19.91
2.05
26.11
6.44
44.96
7.86
39.42
6.77
60.57
6.79
51.76
15.33


AD-1708399
16.90
6.46
26.04
3.67
32.84
8.56
27.69
8.64
31.00
7.18
40.88
11.44
65.34
24.97


AD-1707340
12.13
0.79
18.29
2.31
35.44
5.97
51.01
14.05
57.39
11.96
66.47
11.16
81.96
6.06


AD-1706662
10.58
2.12
14.50
1.46
21.49
2.39
38.97
3.56
46.03
9.20
51.78
16.38
75.97
5.93


AD-1709130
20.00
2.26
22.86
3.41
35.13
5.88
33.52
8.58
31.04
5.07
48.54
15.67
85.19
20.45


AD-1708882
14.97
1.54
17.39
3.37
41.21
1.66
33.36
6.74
51.38
5.73
43.23
14.27
93.31
10.28


AD-1707087
10.79
2.18
20.93
4.44
27.23
4.01
33.09
7.91
45.27
4.15
61.83
8.84
92.73
15.04


AD-1707632
14.96
3.95
27.48
2.83
34.46
5.77
60.90
17.76
45.59
14.85
62.59
2.82
83.12
21.68


AD-1709034
14.35
3.38
23.39
2.66
32.18
8.41
42.08
9.32
44.37
7.57
72.83
4.37
92.28
2.99


AD-1706761
9.18
3.40
17.68
4.49
23.93
4.88
34.19
6.86
41.28
7.96
54.90
3.62
86.71
21.91


AD-1711775
29.82
4.53
38.15
3.94
51.68
4.29
76.87
14.21
89.53
9.82
94.63
6.00
124.76
12.67


AD-1706758
29.57
6.34
33.96
2.09
53.10
9.12
59.66
3.42
65.91
9.15
65.69
12.66
105.66
22.32


AD-1707339
28.32
2.83
31.07
1.55
52.58
4.24
59.15
8.31
73.87
2.72
86.02
5.27
100.65
6.19


AD-1708368
24.61
5.44
37.31
3.95
60.77
6.60
79.25
15.90
67.90
12.41
90.06
6.70
131.88
7.90


AD-1706762
11.26
2.98
25.09
2.72
35.72
3.49
46.85
13.20
50.92
17.34
84.37
11.82
94.03
4.93


AD-1707291
8.89
0.54
16.30
2.83
28.25
7.47
42.60
7.79
37.31
5.08
68.87
7.93
72.32
15.94


AD-1707314
20.85
2.68
25.87
2.99
42.31
12.16
56.47
12.93
42.72
5.67
66.58
13.04
88.09
1.99


AD-1706640
16.91
3.11
36.66
3.88
40.86
10.18
28.39
6.96
46.43
6.76
78.03
17.64
133.63
32.82


AD-1707054
14.13
2.53
22.61
2.39
34.17
3.97
55.10
7.84
59.59
7.96
87.74
3.87
119.92
16.53


AD-1706641
24.33
3.32
32.23
5.92
45.48
8.35
61.06
5.81
66.77
17.98
83.39
19.40
107.19
7.61


AD-1707308
15.25
2.92
27.67
2.72
36.27
7.33
51.25
8.34
43.23
11.57
88.07
18.70
103.21
9.29


AD-1709151
32.08
6.47
44.97
9.45
50.34
12.76
90.75
8.27
82.92
14.60
115.33
3.62
122.19
13.92


AD-1706656
8.91
1.04
21.35
4.03
31.89
3.90
43.20
8.76
58.20
16.02
89.89
23.74
118.47
20.90


AD-1706651
17.38
2.79
24.64
1.52
39.31
3.47
37.87
6.88
49.12
7.91
96.91
9.76
93.62
13.63


AD-1711756
20.57
4.05
23.96
2.75
36.33
11.33
72.94
13.08
54.99
8.99
85.20
23.87
99.26
9.01


AD-1707605
35.03
2.49
46.37
9.61
55.57
13.31
83.69
7.72
96.68
15.17
95.74
27.12
110.00
19.41


AD-1707287
27.61
1.70
32.48
1.14
47.24
9.39
73.48
6.92
70.18
9.33
93.02
11.38
110.85
27.51


AD-1708766
19.22
3.37
24.71
4.87
34.20
7.62
60.19
7.39
69.81
13.98
92.36
11.05
125.22
12.99


AD-1706644
18.94
2.78
25.14
3.46
49.00
1.82
68.06
11.84
83.45
4.42
87.08
12.23
127.39
7.76


AD-1706590
24.14
4.90
34.95
3.80
53.60
6.42
78.09
12.28
113.12
26.95
114.41
16.33
135.34
15.94


AD-1708407
24.10
7.20
30.72
4.39
43.60
6.30
74.49
11.38
70.25
8.69
90.22
13.32
105.77
8.20


AD-1707292
24.48
4.27
34.78
2.52
45.46
9.22
72.04
12.03
58.89
13.58
86.65
5.87
86.26
19.87


AD-1708899
17.77
2.91
21.87
1.95
26.43
7.65
68.65
14.69
99.52
14.24
94.06
11.30
111.70
15.07


AD-1706674
20.19
2.23
26.54
1.38
47.96
2.84
70.03
6.72
69.05
8.66
102.69
11.08
104.89
21.93


AD-1707631
20.66
2.86
19.79
4.30
32.43
5.70
61.81
11.29
71.35
13.55
93.00
11.79
126.82
9.10


AD-1706759
18.55
2.17
26.28
2.28
40.19
5.23
63.77
4.79
77.91
12.04
97.13
8.57
111.16
27.11


AD-1711747
11.52
4.71
17.00
2.82
33.59
6.89
55.08
11.20
85.92
27.07
98.80
9.94
133.36
9.56


AD-1707149
15.95
3.01
28.26
5.99
40.68
5.31
57.51
12.07
83.78
12.31
102.28
8.63
121.17
7.59


AD-1708251
31.99
5.46
30.05
3.30
44.02
7.05
65.77
7.52
59.12
18.47
100.89
12.16
103.22
24.69


AD-1711776
38.30
15.35
48.19
5.85
63.98
12.66
90.37
9.23
85.76
14.78
97.44
13.61
110.66
12.48


AD-1707315
22.73
2.34
24.01
5.64
46.41
5.45
84.80
11.81
72.86
8.03
102.13
20.54
110.56
7.38


AD-1706750
18.16
1.56
20.63
4.42
29.43
10.64
40.85
4.80
55.55
5.48
105.85
15.64
117.08
19.52


AD-1706799
31.99
6.20
33.80
5.58
46.45
8.79
90.17
12.69
101.66
26.60
111.12
20.30
133.05
18.74


AD-1708485
13.61
3.64
23.72
2.33
52.65
11.16
73.70
2.25
77.15
6.87
103.41
11.13
127.34
12.36


AD-1707633
23.63
5.15
28.24
4.65
36.48
6.12
75.57
11.01
110.02
45.47
112.62
17.17
128.91
16.41


AD-1709090
20.30
2.87
24.48
3.75
37.02
8.76
77.61
7.95
99.11
14.22
114.49
22.90
117.89
14.16


AD-1707466
63.36
14.56
61.06
10.24
79.45
2.15
92.63
22.18
85.04
23.68
98.11
26.25
92.94
9.69


AD-1711767
24.16
3.71
28.27
4.36
42.24
10.42
60.63
4.45
72.25
7.49
96.33
15.95
122.97
18.33


AD-1707388
61.29
14.42
59.32
8.57
69.95
15.09
95.33
7.44
105.65
6.00
113.84
11.51
128.35
23.12


AD-1711770
18.87
3.61
20.46
5.47
32.18
8.80
57.75
16.97
61.76
7.82
104.71
7.77
122.13
13.61


AD-1706748
24.20
6.04
35.62
6.64
50.19
11.08
78.53
12.43
88.65
8.77
105.57
16.18
128.56
25.42


AD-1707307
26.97
4.34
35.22
4.99
63.75
9.28
59.79
4.39
75.85
8.88
101.29
7.21
120.76
17.30


AD-1707302
20.32
7.78
29.18
5.74
45.72
7.23
63.84
7.84
76.67
4.98
112.01
4.31
136.13
16.48


AD-1709126
27.45
10.18
32.34
4.21
57.05
10.57
53.83
6.16
49.10
5.95
88.09
16.28
112.27
11.26


AD-1711765
17.66
4.49
22.90
2.22
28.06
8.93
40.32
5.52
60.56
12.85
94.87
19.12
99.62
14.72


AD-1707140
14.92
5.79
15.70
5.48
29.72
5.60
45.36
2.81
60.43
8.25
51.92
22.84
106.75
10.76


AD-1706751
19.74
4.12
19.51
8.94
51.31
13.73
31.89
5.76
61.33
16.59
86.50
16.71
119.06
17.21


AD-1706930
18.10
6.15
17.27
4.50
29.73
6.81
44.91
14.50
53.16
2.39
92.88
11.31
94.54
12.43


AD-1708564
33.34
10.11
34.73
8.99
65.01
8.10
68.81
10.42
82.59
24.87
107.17
6.26
105.04
13.30


AD-1706746
28.39
9.86
38.43
9.94
65.72
12.30
56.28
12.49
81.09
8.55
106.87
14.96
91.27
18.95


AD-1706863
21.83
8.44
29.55
2.92
39.21
8.12
64.73
12.20
61.97
17.33
61.21
5.92
91.41
19.42


AD-1706933
19.52
6.57
24.12
4.64
36.58
13.09
52.18
9.14
60.25
8.05
76.05
5.15
89.07
34.13


AD-1706650
8.22
2.78
9.86
1.53
18.29
4.10
18.41
2.70
31.54
9.06
47.21
2.59
82.80
6.30


AD-1706645
9.54
2.94
13.04
1.86
19.68
5.15
23.19
1.25
31.74
9.21
58.68
3.98
75.47
14.03


AD-1706763
8.78
2.73
10.89
2.20
18.03
2.25
24.39
5.06
32.66
2.25
57.89
9.13
83.09
3.30


AD-1706642
10.21
2.41
14.73
4.43
29.08
10.15
26.47
6.44
44.93
12.38
65.76
1.34
80.97
14.28


AD-1706749
10.78
3.21
18.58
2.61
29.08
1.90
40.07
4.58
45.28
6.05
78.38
3.11
70.35
25.84


AD-1709044
12.38
3.44
19.35
3.08
27.49
7.29
39.88
7.52
48.75
6.09
70.84
5.85
82.43
6.36


AD-1707063
6.22
2.57
4.60
1.96
11.68
3.24
12.46
0.47
15.19
1.73
42.37
9.63
53.30
26.27


AD-1706666
11.63
2.89
10.71
2.18
16.80
4.52
21.12
6.46
28.56
5.28
45.18
3.28
27.94
3.80


AD-1707305
10.26
4.05
7.94
3.22
10.70
3.10
15.00
2.72
19.14
2.01
52.56
17.22
58.51
0.00


AD-1707060
8.16
3.68
9.02
2.54
18.61
4.71
29.10
5.61
37.29
2.54
51.66
11.49
43.46
16.10


AD-1707318
8.67
3.65
8.96
1.42
16.04
5.89
25.62
2.76
29.27
3.58
47.38
12.44
57.54
2.19


AD-1707290
18.38
5.04
17.99
3.06
32.26
7.70
46.85
2.48
56.51
9.06
67.51
11.70
82.20
11.04


AD-1711760
10.18
3.91
15.74
2.67
25.12
9.22
40.81
3.41
42.21
6.96
65.57
7.30
50.87
7.17
















TABLE 21C







Single Dose Screen for dsRNA agents targeting INHBE in PCH cells (% average mRNA remaining).









Duplex
Primary Cyno Hepatocytes Transfection
Primary Cyno Hepatocytes Free Uptake





















Name
10 nM
StDev
1 nM
StDev
0.1 nM
StDev
250 nM
StDev
100 nM
StDev
10 nM
StDev
1 nM
StDev
























AD-1708473
7.47
2.74
32.98
4.49
38.46
5.22
5.83
1.24
7.90
0.68
13.73
3.81
36.44
9.10


AD-1707061
5.91
1.59
25.97
2.80
37.95
4.74
4.93
1.33
6.19
1.17
12.75
1.19
24.67
3.29


AD-1708478
10.87
1.82
34.31
4.82
44.21
8.99
8.33
1.99
9.75
1.98
12.20
3.03
22.11
6.43


AD-1706584
13.05
2.93
32.59
4.71
35.84
5.03
8.45
2.09
11.65
2.82
17.02
1.74
33.73
6.39


AD-1707306
9.51
0.94
34.07
4.86
43.92
7.44
11.65
1.92
8.48
1.71
14.04
3.13
39.14
5.62


AD-1711744
18.10
4.00
42.42
4.03
53.93
8.59
8.55
2.85
10.68
2.12
13.50
4.06
38.67
0.25


AD-1707639
18.01
2.14
45.23
3.14
57.21
6.84
16.87
2.63
13.75
2.87
20.90
6.68
37.20
1.37


AD-1707641
14.45
1.14
36.97
4.67
53.00
3.54
11.06
1.98
12.53
1.52
24.21
4.94
41.21
5.67


AD-1707640
20.53
3.28
37.16
9.19
62.35
9.81
15.05
3.30
20.19
1.59
24.58
4.89
25.42
2.79


AD-1706583
14.48
3.67
47.86
4.86
61.48
8.01
10.32
3.93
15.82
6.07
18.61
4.66
48.58
11.62


AD-1708956
11.09
2.08
35.23
5.58
50.07
7.79
9.32
0.27
11.90
2.85
24.94
5.33
45.15
8.24


AD-1706591
19.64
2.79
56.40
7.78
62.31
6.78
9.18
1.92
15.12
0.82
25.21
7.00
62.16
9.52


AD-1706593
18.22
3.15
50.39
3.94
50.47
8.38
9.42
2.42
11.27
2.59
23.69
6.94
50.88
10.01


AD-1707136
10.23
2.58
27.34
6.99
46.91
8.54
9.04
1.81
8.49
1.70
21.51
2.16
42.87
4.46


AD-1706587
23.87
3.81
46.95
8.49
62.57
11.27
14.48
2.31
15.69
2.72
25.82
4.63
47.27
5.35


AD-1706547
29.86
3.63
53.87
10.28
66.80
3.64
23.99
4.15
26.80
8.35
46.70
7.85
64.97
16.25


AD-1708399
24.39
4.14
56.93
4.99
62.91
13.62
12.07
3.35
13.83
4.69
26.04
4.79
66.91
13.04


AD-1707340
39.28
4.82
64.21
4.81
79.59
4.44
29.23
6.08
32.92
12.21
38.14
5.42
71.22
22.52


AD-1706662
14.59
0.79
39.23
10.93
58.74
14.45
16.76
3.53
14.74
1.00
30.41
4.29
60.37
3.75


AD-1709130
16.24
2.78
52.70
10.74
65.15
10.76
17.57
3.03
18.14
2.88
27.68
4.76
65.67
7.63


AD-1708882
16.97
1.09
45.63
12.78
77.02
4.42
11.89
0.90
12.60
2.44
27.58
2.96
58.25
5.90


AD-1707087
18.19
1.93
38.32
10.98
74.09
4.20
17.93
3.41
18.11
2.79
37.96
5.53
69.05
2.24


AD-1707632
25.08
3.09
40.42
13.55
58.16
4.73
18.92
0.75
17.82
6.37
27.71
7.00
53.11
5.97


AD-1709034
26.18
2.74
62.45
7.84
69.43
9.15
14.25
1.45
13.43
4.36
22.01
7.95
42.74
7.41


AD-1706761
14.04
2.46
48.49
12.33
57.31
7.84
11.03
0.09
9.71
1.51
22.26
3.89
83.78
32.45


AD-1711775
43.13
4.73
79.00
6.98
88.54
8.11
44.74
6.00
49.54
8.66
54.24
14.15
104.57
8.08


AD-1706758
32.06
5.59
68.22
14.20
82.73
11.67
22.92
5.17
22.67
2.26
40.00
0.42
73.16
9.75


AD-1707339
39.24
2.12
74.96
0.78
68.46
12.48
33.30
3.28
34.74
9.08
54.47
10.26
74.36
15.15


AD-1708368
40.73
3.67
67.92
16.66
91.79
9.70
23.02
3.99
26.31
3.29
39.13
4.09
76.42
15.36


AD-1706762
28.37
6.96
62.89
6.26
77.63
9.41
14.52
1.86
14.28
1.73
35.29
4.03
60.12
9.31


AD-1707291
23.69
2.29
43.10
5.34
63.68
14.11
20.65
2.71
15.40
3.39
31.37
3.02
62.75
15.07


AD-1707314
29.79
6.31
65.15
5.49
83.38
12.47
21.26
5.85
25.31
2.95
28.72
3.30
80.36
4.21


AD-1706640
35.22
5.23
62.17
10.30
72.73
4.13
12.56
2.49
13.90
2.35
31.22
3.54
67.25
0.70


AD-1707054
19.36
3.19
54.28
2.70
68.42
3.25
15.34
2.10
19.26
3.32
36.61
5.50
73.41
6.83


AD-1706641
38.81
2.77
83.23
5.90
81.54
10.41
26.69
3.72
24.16
7.74
49.31
6.53
98.76
9.65


AD-1707308
31.18
3.14
67.03
11.46
72.91
13.64
17.47
5.59
25.13
0.65
29.27
3.23
81.25
8.44


AD-1709151
58.99
7.07
99.08
24.13
82.51
23.90
49.15
8.11
35.96
12.08
52.50
11.94
106.94
11.16


AD-1706656
22.28
2.36
52.59
5.56
69.36
9.76
11.40
2.25
12.08
3.81
29.92
2.75
46.55
4.66


AD-1706651
31.17
5.34
55.09
7.98
50.19
9.10
12.74
1.10
12.86
2.14
28.96
2.78
58.95
12.54


AD-1711756
22.78
4.88
51.83
14.00
73.32
15.55
18.21
2.09
20.58
2.82
35.07
2.15
65.70
19.08


AD-1707605
51.27
4.38
77.10
19.46
83.78
3.65
48.36
10.82
47.85
10.00
49.56
7.16
93.66
26.70


AD-1707287
17.93
2.05
48.59
9.40
63.94
7.11
19.30
2.43
21.57
2.40
32.78
6.36
57.70
4.49


AD-1708766
18.81
3.17
55.43
5.57
70.17
4.47
15.34
2.89
17.95
2.34
25.44
3.89
64.23
13.01


AD-1706644
28.89
6.40
51.39
16.56
79.04
6.62
26.48
2.52
32.64
2.30
49.95
1.49
81.75
8.97


AD-1706590
38.15
1.61
80.31
6.44
92.30
6.41
26.35
3.32
25.15
5.92
40.61
6.35
78.62
8.57


AD-1708407
35.96
4.47
67.88
12.42
94.43
8.89
17.03
2.89
19.27
4.04
42.22
5.00
64.72
15.64


AD-1707292
39.27
5.95
72.26
26.50
73.87
16.12
21.97
3.63
28.47
3.81
42.02
6.40
83.02
16.74


AD-1708899
37.10
1.50
74.69
9.73
88.87
10.06
19.00
6.82
25.47
3.31
50.32
9.44
81.40
2.23


AD-1706674
32.84
9.12
64.73
4.42
83.67
6.57
23.52
5.70
28.16
5.66
35.56
3.67
79.83
4.59


AD-1707631
17.72
3.24
32.29
8.79
73.51
6.20
19.06
3.32
21.57
2.84
30.74
2.52
57.82
7.61


AD-1706759
22.82
5.97
59.65
15.92
81.70
12.26
15.52
1.03
15.75
2.69
31.88
3.25
64.72
9.61


AD-1711747
16.88
1.38
51.75
5.39
77.38
9.80
7.61
1.11
10.05
2.18
18.90
2.56
45.02
6.23


AD-1707149
30.43
7.20
68.03
10.50
95.47
10.74
12.97
2.94
15.39
4.97
31.35
3.87
51.94
2.96


AD-1708251
67.20
2.14
75.30
12.49
80.77
12.76
28.28
6.61
37.65
10.05
51.75
12.05
78.36
9.89


AD-1711776
42.99
0.86
80.17
9.26
89.90
2.55
33.31
3.56
39.81
7.57
61.94
4.12
88.88
14.71


AD-1707315
31.05
8.92
70.52
5.55
98.15
8.08
36.35
6.21
33.91
4.76
46.61
2.99
86.97
17.28


AD-1706750
20.76
2.52
61.32
8.84
71.39
12.47
16.65
1.24
15.84
3.69
29.05
2.00
65.00
9.30


AD-1706799
27.06
4.43
65.37
6.49
84.62
11.72
36.11
8.14
36.55
9.82
46.21
10.11
87.85
10.61


AD-1708485
21.96
3.70
48.80
10.16
86.49
16.04
18.55
5.12
24.80
4.25
28.45
4.00
72.48
20.64


AD-1707633
21.02
2.82
47.90
7.29
60.86
3.25
17.84
4.49
22.25
9.40
25.12
5.14
58.59
13.07


AD-1709090
21.63
1.82
53.58
8.28
75.93
13.41
25.00
6.30
24.74
12.69
36.00
2.38
65.83
23.02


AD-1707466
72.22
20.46
96.23
13.67
89.94
17.07
62.02
9.68
63.83
11.34
82.95
20.07
89.09
5.98


AD-1711767
30.18
5.67
66.05
9.01
71.99
9.45
12.82
1.91
18.77
4.64
31.68
1.25
63.00
4.37


AD-1707388
78.28
3.85
81.05
21.06
92.40
9.78
56.73
14.94
59.70
18.76
70.84
9.94
117.00
32.65


AD-1711770
24.22
4.30
50.53
10.17
60.23
15.99
13.64
4.56
18.17
4.10
29.29
5.60
63.32
20.42


AD-1706748
27.88
7.45
58.08
8.17
85.22
9.26
19.35
7.28
23.70
10.45
35.92
2.11
82.43
29.42


AD-1707307
38.24
4.51
69.58
18.90
81.80
12.11
22.77
1.58
24.06
5.50
34.26
5.34
72.51
11.65


AD-1707302
22.90
3.30
56.34
5.01
77.35
8.51
14.86
4.07
16.11
7.60
37.43
6.16
65.34
12.89


AD-1709126
37.24
1.81
67.53
14.34
74.35
12.21
25.21
2.16
25.01
0.88
40.35
2.47
78.75
5.06


AD-1711765
26.06
4.01
54.94
4.24
85.81
12.69
12.51
3.92
12.54
2.33
27.24
4.60
58.54
9.15


AD-1707140
20.69
2.95
41.27
7.55
65.60
2.37
10.68
1.92
13.99
2.40
28.57
4.11
48.20
7.92


AD-1706751
19.01
0.80
51.90
10.38
93.47
7.11
17.08
4.62
16.12
5.22
25.48
3.88
68.13
17.00


AD-1706930
13.61
2.50
33.64
4.46
54.73
9.10
15.41
3.46
19.00
6.91
30.56
6.18
74.72
7.50


AD-1708564
33.12
3.93
64.85
7.58
77.16
9.05
23.64
4.07
36.07
9.13
38.87
5.58
79.09
9.95


AD-1706746
36.26
6.43
72.34
12.42
100.13
3.81
23.12
8.26
28.72
10.09
45.63
4.80
72.75
8.12


AD-1706863
26.84
5.99
64.11
16.03
75.02
16.52
28.71
5.45
30.51
4.57
53.96
7.78
75.02
6.39


AD-1706933
24.84
2.39
53.63
19.88
61.71
13.32
16.45
2.89
21.72
2.52
33.18
7.42
67.85
12.54


AD-1706650
7.75
1.33
28.02
3.29
52.07
12.66
6.10
2.27
7.05
1.70
16.05
4.29
37.57
4.81


AD-1706645
10.74
0.62
29.43
8.71
52.47
2.06
7.63
1.56
9.23
1.42
17.05
1.33
42.18
7.55


AD-1706763
7.28
0.69
31.38
8.79
53.36
11.31
6.52
0.85
8.04
2.06
14.76
2.55
36.65
8.26


AD-1706642
8.66
3.81
30.56
5.40
54.72
4.19
8.78
3.63
11.66
6.36
16.43
3.88
36.47
4.72


AD-1706749
10.66
1.62
37.02
7.09
59.79
5.94
10.16
0.80
9.50
2.34
20.32
2.72
48.14
5.76


AD-1709044
17.47
3.75
34.89
11.05
65.44
14.86
17.68
6.18
13.10
2.45
29.34
3.15
50.29
6.25


AD-1707063
8.70
1.45
29.38
5.78
47.59
2.97
7.93
1.13
8.36
1.64
21.41
1.43
32.97
9.60


AD-1706666
16.48
2.20
40.53
4.15
60.54
0.68
15.42
6.42
15.54
5.16
40.29
3.51
35.82
2.33


AD-1707305
9.42
1.49
32.49
3.03
58.24
8.28
6.79
2.33
8.64
2.70
18.06
4.38
29.85
7.65


AD-1707060
17.25
1.90
46.73
5.87
61.56
4.71
9.86
4.04
10.63
3.23
25.87
2.46
44.20
13.53


AD-1707318
13.61
2.20
42.86
9.79
54.22
9.49
10.33
3.55
11.95
3.18
23.43
2.08
36.27
12.76


AD-1707290
17.86
5.21
49.67
8.59
62.49
5.49
14.25
3.65
13.86
4.57
36.67
7.08
43.04
4.48


AD-1711760
18.10
3.22
45.83
12.27
61.36
9.28
10.80
1.65
11.13
3.37
34.34
3.50
43.15
11.26









Example 5: In Vitro Single Dose Screening of dsRNA Duplexes Targeting PDE3B

Using methods as described above, the dsRNA agents targeting PDE3B listed in Tables 14 and 15 were screened in vitro in Hep3B cells. The results of the single dose screen are shown in Table 22.









TABLE 22







Single dose screen for dsRNA agents


targeting PDE3B in Hep3b cells










PDE3B/GAPDH




10 nM











Duplex Name
% Avg message remaining (n = 4)
SD















AD-1735860.1
23.709
2.696



AD-1735859.1
20.551
5.347



AD-1735858.1
14.679
1.474



AD-1735857.1
16.078
1.257



AD-1735856.1
64.047
7.135



AD-1735855.1
18.703
1.706



AD-1735854.1
91.214
2.665



AD-1735853.1
61.829
7.675



AD-1735852.1
24.913
1.561



AD-1735851.1
24.650
1.255



AD-1735850.1
51.046
2.446



AD-1735849.1
40.548
3.364



AD-1735848.1
71.080
3.478



AD-1735847.1
28.692
1.123



AD-1735846.1
19.800
1.135



AD-1735845.1
22.788
1.056



AD-1735844.1
44.102
0.526



AD-1735843.1
52.791
8.362



AD-1735842.1
35.622
1.690



AD-1735841.1
18.613
2.422



AD-1735840.1
57.636
0.785



AD-1735839.1
97.956
4.340



AD-1735838.1
40.270
2.411



AD-1735837.1
30.805
1.988



AD-1735836.1
35.379
6.026



AD-1735835.1
26.142
3.567



AD-1735834.1
35.490
3.096



AD-1735833.1
64.925
1.880



AD-1735832.1
21.201
2.311



AD-1735831.1
37.417
4.395



AD-1735830.1
23.780
2.967



AD-1735829.1
40.465
2.494



AD-1735828.1
53.338
1.805



AD-1735827.1
23.074
6.126



AD-1735826.1
61.743
0.745



AD-1735825.1
42.766
14.280



AD-1735824.1
19.157
0.711



AD-1735823.1
38.720
1.905



AD-1735822.1
71.730
3.742



AD-1735821.1
37.215
0.923



AD-1735820.1
24.961
0.995



AD-1735819.1
16.917
0.728



AD-1735818.1
46.222
0.902



AD-1735817.1
61.037
0.700



AD-1735816.1
35.774
2.507



AD-1735815.1
43.474
2.475



AD-1735814.1
45.076
0.985



AD-1735813.1
28.507
1.743



AD-1735812.1
70.709
1.627



AD-1735811.1
22.367
0.715



AD-1735810.1
32.837
1.316



AD-1735809.1
19.024
1.358



AD-1735808.1
37.406
3.104



AD-1735807.1
39.498
3.599



AD-1735806.1
32.960
1.566



AD-1735805.1
76.711
1.049



AD-1735804.1
30.205
1.234



AD-1735803.1
29.615
0.884



AD-1735802.1
89.553
2.905



AD-1735801.1
35.954
0.721



AD-1735800.1
22.730
2.119



AD-1735799.1
38.084
2.611



AD-1735798.1
21.808
1.760



AD-1735797.1
39.127
5.754



AD-1735796.1
24.799
3.324



AD-1735795.1
29.095
2.968



AD-1735794.1
74.630
2.670



AD-1735793.1
50.655
2.625



AD-1735792.1
21.774
1.922



AD-1735791.1
29.879
1.379



AD-1735790.1
45.278
3.178



AD-1735789.1
53.799
3.522



AD-1735788.1
24.525
2.272



AD-1735787.1
41.825
5.048



AD-1735786.1
47.854
2.516



AD-1735785.1
24.928
5.836



AD-1735784.1
26.802
2.165



AD-1735783.1
22.593
2.437



AD-1735782.1
51.096
3.906



AD-1735781.1
25.026
1.459



AD-1735780.1
17.158
1.252



AD-1735779.1
93.272
6.172



AD-1735778.1
24.207
1.738



AD-1735777.1
21.304
0.659



AD-1735776.1
23.915
5.465



AD-1735775.1
21.095
1.525



AD-1735774.1
51.845
2.742



AD-1735773.1
28.834
5.357



AD-1735772.1
22.993
2.710



AD-1735771.1
21.214
1.330



AD-1735770.1
29.426
7.369



AD-1735769.1
50.021
9.727



AD-1735768.1
51.776
2.906



AD-1735767.1
66.112
13.788



AD-1735766.1
48.132
2.745



AD-1735765.1
78.926
8.535



AD-1735764.1
31.425
6.159



AD-1735763.1
39.086
4.992



AD-1735762.1
28.522
1.684



AD-1735761.1
24.999
1.443



AD-1735760.1
100.922
13.187



AD-1735759.1
44.830
2.225



AD-1735758.1
24.656
3.386



AD-1735757.1
39.249
2.608



AD-1735756.1
25.038
2.266



AD-1735755.1
59.725
1.902



AD-1735754.1
58.172
3.336



AD-1735753.1
19.504
1.090



AD-1735752.1
39.414
3.022



AD-1735751.1
99.329
6.328



AD-1735750.1
20.627
0.706



AD-1735749.1
46.816
1.166



AD-1735748.1
28.579
1.052



AD-1735747.1
79.882
6.062



AD-1735746.1
22.412
1.094



AD-1735745.1
35.269
1.846



AD-1735744.1
80.796
4.208



AD-1735743.1
16.948
0.992



AD-1735742.1
33.029
1.186



AD-1735741.1
20.754
1.851



AD-1735740.1
65.848
4.934



AD-1735739.1
29.858
0.742



AD-1735738.1
15.106
1.527



AD-1735737.1
18.822
0.946



AD-1735736.1
21.250
2.499



AD-1735735.1
29.588
2.812



AD-1735734.1
40.456
4.030



AD-1735733.1
32.308
6.658



AD-1735732.1
84.880
4.774



AD-1735731.1
92.758
5.134



AD-1735730.1
30.568
2.601



AD-1735729.1
25.859
6.962



AD-1735728.1
14.793
0.736



AD-1735727.1
24.247
2.191



AD-1735726.1
19.711
2.888



AD-1735725.1
26.066
0.946



AD-1735724.1
21.329
0.845



AD-1735723.1
41.212
5.232



AD-1735722.1
19.123
1.479



AD-1735721.1
32.446
2.942



AD-1735720.1
27.006
6.384



AD-1735719.1
24.997
8.940



AD-1735718.1
19.553
2.845



AD-1735717.1
47.688
16.341



AD-1735716.1
20.980
2.028



AD-1735715.1
41.194
6.384



AD-1735714.1
25.154
4.575



AD-1735713.1
17.184
2.579



AD-1735712.1
17.501
1.079



AD-1735711.1
30.023
3.460



AD-1735710.1
25.387
5.162



AD-1735709.1
62.222
7.071



AD-1735708.1
85.988
22.851



AD-1735707.1
20.219
2.756



AD-1735706.1
18.664
3.260



AD-1735705.1
25.208
2.956



AD-1735704.1
20.478
1.354



AD-1735703.1
22.386
4.605



AD-1735702.1
65.465
18.354



AD-1735701.1
58.432
21.264



AD-1735700.1
29.458
1.405



AD-1735699.1
26.141
2.115



AD-1735698.1
25.475
1.590



AD-1735697.1
110.116
4.516



AD-1735696.1
21.957
2.061



AD-1735695.1
38.524
7.895



AD-1735694.1
16.352
2.076



AD-1735693.1
13.906
2.757



AD-1735692.1
87.266
12.920



AD-1735691.1
57.983
4.032



AD-1735690.1
62.142
3.477



AD-1735689.1
84.924
5.580



AD-1735688.1
17.170
1.339



AD-1735687.1
19.041
1.800



AD-1735686.1
37.229
1.697



AD-1735685.1
63.412
8.597



AD-1735684.1
82.100
4.966



AD-1735683.1
19.608
4.567



AD-1735682.1
39.393
5.573



AD-1735681.1
28.252
3.787



AD-1735680.1
20.977
1.302



AD-1735679.1
26.540
1.005



AD-1735678.1
75.941
10.521



AD-1735677.1
71.242
12.310



AD-1735676.1
14.192
4.284



AD-1735675.1
25.581
2.905



AD-1735674.1
18.237
1.270



AD-1735673.1
49.950
4.698



AD-1735672.1
45.190
4.895



AD-1735671.1
48.600
14.146



AD-1735670.1
27.972
1.043



AD-1735669.1
37.706
4.548



AD-1735668.1
21.295
2.205



AD-1735667.1
20.943
1.604



AD-1735666.1
22.679
0.591



AD-1735665.1
23.466
3.781



AD-1735664.1
21.604
7.639



AD-1735663.1
18.338
4.288



AD-1735662.1
58.417
7.253



AD-1735661.1
21.512
1.617



AD-1735660.1
17.670
1.798



AD-1735659.1
28.972
5.188



AD-1735658.1
27.689
0.477



AD-1735657.1
75.794
6.235



AD-1735656.1
21.802
5.378



AD-1735655.1
19.501
1.729



AD-1735654.1
23.484
2.101



AD-1735653.1
63.740
33.435



AD-1735652.1
27.984
3.477



AD-1735651.1
39.385
1.397



AD-1735650.1
15.347
0.813



AD-1735649.1
25.165
2.325



AD-1735648.1
33.073
2.315



AD-1735647.1
16.820
1.985



AD-1735646.1
55.994
5.828



AD-1735645.1
12.154
1.921



AD-1735644.1
17.745
1.643



AD-1735643.1
13.923
3.189



AD-1735642.1
55.255
2.792



AD-1735641.1
48.249
6.537



AD-1735640.1
18.494
0.962



AD-1735639.1
27.638
2.892



AD-1735638.1
47.689
6.093



AD-1735637.1
38.073
5.322



AD-1735636.1
19.722
3.753



AD-1735635.1
32.670
1.578



AD-1735634.1
18.063
1.428



AD-1735633.1
16.891
2.258



AD-1735632.1
95.524
0.685



AD-1735631.1
40.879
4.633



AD-1735630.1
26.068
3.356



AD-1735629.1
19.330
2.600



AD-1735628.1
17.470
1.514



AD-1735627.1
45.620
5.372



AD-1735626.1
30.086
2.595



AD-1735625.1
47.252
6.513



AD-1735624.1
83.854
10.000



AD-1735623.1
22.800
1.603



AD-1735622.1
16.870
1.728



AD-1735621.1
32.332
9.786



AD-1735620.1
42.507
1.603



AD-1735619.1
89.434
2.676



AD-1735618.1
25.773
2.560



AD-1735617.1
35.284
4.815



AD-1735616.1
13.217
1.679



AD-1735615.1
35.212
5.461



AD-1735614.1
13.061
1.196



AD-1735613.1
21.191
1.016



AD-1735612.1
62.200
9.169



AD-1735611.1
17.737
2.166



AD-1735610.1
46.749
2.389



AD-1735609.1
20.890
1.371



AD-1735608.1
16.779
2.166



AD-1735607.1
10.409
0.676



AD-1735606.1
34.953
10.155



AD-1735605.1
81.087
8.632



AD-1735604.1
53.898
11.426



AD-1735603.1
34.331
3.868



AD-1735602.1
35.125
3.978



AD-1735601.1
17.106
0.910



AD-1735600.1
38.242
3.303



AD-1735599.1
10.192
2.638



AD-1735598.1
67.145
9.671



AD-1735597.1
25.931
3.096



AD-1735596.1
70.287
11.476



AD-1735595.1
70.859
20.399



AD-1735594.1
14.430
0.732



AD-1735593.1
20.530
2.301



AD-1735592.1
45.267
10.242



AD-1735591.1
14.976
0.539










Example 6: In Vitro Single Dose Screening of dsRNA Duplexes Targeting INHBC

The dsRNA agents targeting INHBC listed in Tables 16 and 17 were screened in Hepa1-6 cells by an in vitro dual-Luciferase assay.


Briefly, Hepa1-6 cells were transfected by adding 50 μL of siRNA duplexes and 100 ng of a V180 plasmid, comprising human INHBC target sequence, nucleotides 1425-3202 of NM_005538.4, or 75 ng of a V179 plasmid, comprising human INHBC target sequence, nucleotides 1-1485 of NM_005538.4, per well along with 100 μL of Opti-MEM plus 0.5 μL of Lipofectamine 2000 per well (Invitrogen, Carlsbad CA. cat 13778-150) and then incubated at room temperature for 15 minutes. The mixture was then added to the cells which were re-suspended in 35 μL of fresh complete media. The transfected cells were incubated at 37° C. in an atmosphere of 5% CO2. Single-dose experiments were performed at 10 nM.


Twenty-four hours after the siRNAs and plasmid were transfected, Firefly (transfection control) and Renilla (fused to INHBC target sequence comprising nucleotides 1425-3202 or nucleotides 1-1485 of NM_005538.4) luciferase were measured. First, media was removed from the cells. Then, Firefly luciferase activity was measured by adding 75 μL of Dual-Glo® Luciferase Reagent equal to the culture medium volume to each well and mix. The mixture was incubated at room temperature for 30 minutes before luminescense (500 nm) was measured on a Spectramax (Molecular Devices) to detect the Firefly luciferase signal. Renilla luciferase activity was measured by adding 75 μL of room temperature of Dual-Glo® Stop & Glo® Reagent to each well and the plates were incubated for 10-15 minutes before luminescence was again measured to determine the Renilla luciferase signal. The Dual-Glo® Stop & Glo® Reagent quenches the firefly luciferase signal and sustained luminescence for the Renilla luciferase reaction. siRNA activity was determined by normalizing the Renilla (INHBC) signal to the Firefly (control) signal within each well. The magnitude of siRNA activity was then assessed relative to cells that were transfected with the same vector but were not treated with siRNA or were treated with a non-targeting siRNA. All transfections were done with n=4.


The results of the dual-luciferase assays of the agents are provided in Table 23.









TABLE 23







Dual-Luciferase Screen for dsRNA agents


targeting INHBC in Hepa1-6 Cells











RLuc/FLuc


Reporter

10 nM










Plasmid
Duplex ID
% Avg message remaining (n = 4)
SD













V180
AD-1732940.1
14.150
0.629



AD-1732908.1
7.967
0.476



AD-1732890.1
10.260
0.453



AD-1732885.1
8.392
0.401



AD-1732881.1
61.954
0.878



AD-1732865.1
16.807
0.670



AD-1732849.1
41.476
2.680



AD-1732827.1
14.425
0.743



AD-1732807.1
19.622
0.725



AD-1732786.1
17.152
0.302



AD-1732757.1
18.612
1.287



AD-1732744.1
16.097
1.579



AD-1732728.1
29.876
2.334



AD-1732708.1
68.958
7.072



AD-1732696.1
11.309
1.048



AD-1732677.1
10.846
0.810



AD-1732661.1
12.693
0.648



AD-1732644.1
21.739
2.433



AD-1732625.1
20.810
0.984



AD-1732604.1
34.719
1.881



AD-1732584.1
25.478
0.950



AD-1732565.1
23.217
1.123



AD-1732549.1
77.904
2.566



AD-1732533.1
55.404
2.637



AD-1732520.1
75.941
4.976



AD-1732500.1
60.074
4.736



AD-1732479.1
76.945
3.845



AD-1732469.1
28.398
4.223



AD-1732440.1
69.737
3.729



AD-1732415.1
79.748
4.738



AD-1732389.1
19.244
0.749



AD-1732372.1
12.871
1.092



AD-1732353.1
14.060
0.517



AD-1732335.1
16.929
0.643



AD-1732308.1
7.798
0.528



AD-1732291.1
16.073
0.324



AD-1732269.1
15.369
0.454



AD-1732253.1
11.966
0.396



AD-1732235.1
15.662
0.455



AD-1732217.1
11.891
0.307



AD-1732195.1
22.664
2.324



AD-1732176.1
40.545
3.354



AD-1732173.1
36.333
4.051



AD-1732157.1
12.425
0.688



AD-1732110.1
8.878
0.368



AD-1732094.1
16.277
0.992



AD-1732078.1
12.292
0.574



AD-1732062.1
13.286
1.417



AD-1732048.1
25.400
0.737



AD-1732031.1
12.699
1.522



AD-1732013.1
13.228
0.746



AD-1731997.1
14.695
2.144



AD-1731978.1
22.496
3.865



AD-1731958.1
20.145
0.926



AD-1731932.1
66.101
5.314



AD-1731923.1
74.139
8.370



AD-1731906.1
45.134
4.197



AD-1731890.1
33.397
2.478



AD-1731874.1
41.801
1.190



AD-1731858.1
4.851
0.510



AD-1731842.1
6.224
0.565



AD-1731819.1
11.143
0.815



AD-1731813.1
8.497
0.331



AD-1731782.1
4.415
0.145



AD-1731753.1
11.691
1.185



AD-1731750.1
5.301
0.362



AD-1731745.1
10.404
0.658



AD-1731728.1
22.012
2.859



AD-1731720.1
12.432
0.820



AD-1731704.1
5.547
0.321



AD-1731687.1
3.065
0.161



AD-1731671.1
19.915
2.526


V179
AD-1731704.1
15.257
0.906



AD-1731687.1
11.014
0.767



AD-1731671.1
34.407
2.796



AD-1731646.1
50.018
5.438



AD-1731618.1
15.753
1.031



AD-1731600.1
12.780
0.848



AD-1731584.1
8.732
0.637



AD-1731564.1
13.821
1.071



AD-1731562.1
9.409
0.428



AD-1731545.1
66.529
4.870



AD-1731527.1
92.440
1.602



AD-1731511.1
75.267
3.429



AD-1731492.1
9.940
0.588



AD-1731484.1
27.855
1.905



AD-1731457.1
18.170
2.945



AD-1731431.1
42.677
4.621



AD-1731415.1
12.748
1.092



AD-1731398.1
28.945
3.717



AD-1731380.1
48.750
4.591



AD-1731371.1
72.563
2.686



AD-1731358.1
65.200
3.035



AD-1731340.1
8.662
0.132



AD-1731323.1
43.722
2.197



AD-1731307.1
67.294
4.521



AD-1731289.1
52.881
4.906



AD-1731264.1
22.594
2.101



AD-1731234.1
55.843
3.247



AD-1731205.1
10.827
0.702



AD-1731189.1
18.905
0.211



AD-1731173.1
58.483
2.870



AD-1731156.1
82.335
3.005



AD-1731137.1
20.307
1.198



AD-1731134.1
80.176
2.738



AD-1731117.1
65.192
2.858



AD-1731088.1
68.296
3.034



AD-1731064.1
44.769
2.606



AD-1731042.1
50.015
2.644



AD-1731035.1
57.224
3.625



AD-1731019.1
98.342
5.416



AD-1731003.1
30.570
3.760



AD-1730982.1
20.454
3.248



AD-1730958.1
25.954
0.786



AD-1730942.1
19.353
1.173



AD-1730926.1
36.218
0.945



AD-1730910.1
9.242
0.575



AD-1730873.1
17.439
1.317



AD-1730857.1
7.533
0.374



AD-1730841.1
15.620
1.085



AD-1730825.1
35.996
1.675



AD-1730807.1
13.721
0.994



AD-1730790.1
8.641
0.196



AD-1730769.1
37.556
1.872



AD-1730765.1
32.573
2.368



AD-1730749.1
41.768
1.107



AD-1730726.1
37.291
1.641



AD-1730691.1
20.187
1.873



AD-1730667.1
36.466
4.387



AD-1730643.1
35.649
2.632



AD-1730636.1
90.291
3.709



AD-1730606.1
35.942
0.833



AD-1730588.1
34.769
1.603



AD-1730570.1
46.879
2.310



AD-1730554.1
10.475
0.681



AD-1730529.1
42.962
3.284



AD-1730512.1
25.624
1.247



AD-1730493.1
72.772
4.634



Positive control
0.663
0.053









Example 7: In Vitro Single Dose Screening of dsRNA Duplexes Targeting PLIN1

Using methods as described above, the dsRNA agents targeting PLIN1 listed in Tables 10 and 11 were screened in vitro in Hepa1-6 cells by the dual-Luciferase assay. The results of the single dose screen are shown in Table 24.









TABLE 24







Dual-Luciferase Screen for dsRNA agents


targeting PLIN1 in Hepa1-6 Cells










RLuc/FLuc




10 nM











Duplex ID
% Avg message remaining
SD















AD-1735320.1
53.561
4.672



AD-1735319.1
33.212
3.061



AD-1735318.1
87.299
11.406



AD-1735317.1
72.995
9.626



AD-1735316.1
80.346
7.389



AD-1735315.1
34.013
3.602



AD-1735314.1
77.100
9.948



AD-1735313.1
61.678
7.363



AD-1735312.1
47.388
4.892



AD-1735311.1
57.067
4.870



AD-1735310.1
69.433
2.837



AD-1735309.1
87.563
6.359



AD-1735308.1
54.214
6.804



AD-1735307.1
77.536
7.971



AD-1735306.1
44.999
0.952



AD-1735305.1
20.312
0.690



AD-1735304.1
37.885
1.346



AD-1735303.1
89.423
1.906



AD-1735302.1
71.173
4.238



AD-1735301.1
70.170
3.690



AD-1735300.1
62.217
7.128



AD-1735299.1
45.332
4.595



AD-1735298.1
75.846
7.520



AD-1735297.1
69.820
5.033



AD-1735296.1
64.227
7.301



AD-1735295.1
90.389
7.070



AD-1735294.1
73.067
7.141



AD-1735293.1
26.508
3.863



AD-1735292.1
91.596
11.766



AD-1735291.1
84.530
11.202



AD-1735290.1
80.139
6.540



AD-1735289.1
40.946
2.761



AD-1735288.1
33.302
3.704



AD-1735287.1
37.684
3.007



AD-1735286.1
47.467
3.016



AD-1735285.1
28.454
1.209



AD-1735284.1
30.826
3.351



AD-1735283.1
35.399
1.914



AD-1735282.1
39.620
3.772



AD-1735281.1
65.860
1.354



AD-1735280.1
21.944
2.006



AD-1735279.1
52.047
4.181



AD-1735278.1
36.993
3.597



AD-1735277.1
43.703
0.939



AD-1735276.1
24.075
1.681



AD-1735275.1
41.179
1.720



AD-1735274.1
30.228
2.242



AD-1735273.1
37.603
3.724



AD-1735272.1
27.325
2.573



AD-1735271.1
54.654
4.358



AD-1735270.1
30.214
2.322



AD-1735269.1
47.580
1.497



AD-1735268.1
29.621
2.529



AD-1735267.1
38.804
3.763



AD-1735266.1
29.659
0.328



AD-1735265.1
34.545
2.741



AD-1735264.1
80.144
6.568



AD-1735263.1
26.159
1.851



AD-1735262.1
37.861
1.332



AD-1735261.1
43.807
5.808



AD-1735260.1
30.677
2.583



AD-1735259.1
43.570
4.475



AD-1735258.1
40.682
3.274



AD-1735257.1
43.057
2.824



AD-1735256.1
38.041
2.568



AD-1735255.1
21.650
0.909



AD-1735254.1
27.873
3.744



AD-1735253.1
77.253
3.270



AD-1735252.1
39.960
2.697



AD-1735251.1
41.732
2.546



AD-1735250.1
27.088
1.383



AD-1735249.1
29.574
1.839



AD-1735248.1
45.794
3.063



AD-1735247.1
68.096
8.378



AD-1735246.1
40.621
2.231



AD-1735245.1
59.324
3.637



AD-1735244.1
22.847
1.836



AD-1735243.1
85.325
3.497



AD-1735242.1
35.687
3.410



AD-1735241.1
23.433
0.870



AD-1735240.1
31.517
1.780



AD-1735239.1
36.244
2.725



AD-1735238.1
32.611
1.443



AD-1735237.1
14.047
0.939



AD-1735236.1
16.631
0.772



AD-1735235.1
31.488
3.435



AD-1735234.1
39.842
2.222



AD-1735233.1
13.998
0.629



AD-1735232.1
47.840
5.226



AD-1735231.1
31.494
1.469



AD-1735230.1
23.989
1.990



AD-1735229.1
19.072
2.237



AD-1735228.1
16.810
1.007



AD-1735227.1
27.650
2.449



AD-1735226.1
24.667
1.786



AD-1735225.1
23.622
2.500



AD-1735224.1
24.205
1.728



AD-1735223.1
13.924
1.257



AD-1735222.1
16.961
1.476



AD-1735221.1
26.245
1.531



AD-1735220.1
28.657
1.159



AD-1735219.1
16.124
1.387



AD-1735218.1
23.929
1.107



AD-1735217.1
71.822
3.235



AD-1735216.1
22.636
1.631



AD-1735215.1
10.556
1.255



AD-1735214.1
92.571
5.143



AD-1735213.1
25.487
2.249



AD-1735212.1
12.128
0.655



AD-1735211.1
29.064
2.614



AD-1735210.1
19.343
2.334



AD-1735209.1
17.586
1.040



AD-1735208.1
13.678
0.528



AD-1735207.1
25.561
1.744



AD-1735206.1
21.848
2.252



AD-1735205.1
17.025
1.043



AD-1735204.1
15.538
0.982



AD-1735203.1
16.080
1.928



AD-1735202.1
16.432
0.718



AD-1735201.1
34.346
1.470



AD-1735200.1
24.511
1.673



AD-1735199.1
7.066
0.486



AD-1735198.1
14.709
1.084



AD-1735197.1
16.627
1.417



AD-1735196.1
13.687
0.708



AD-1735195.1
22.964
1.902



AD-1735194.1
39.620
0.928



AD-1735193.1
27.843
1.143



AD-1735192.1
17.138
0.504



AD-1735191.1
20.200
1.123



AD-1735190.1
18.874
0.788



AD-1735189.1
21.167
0.415



AD-1735188.1
25.098
3.920



AD-1735187.1
33.725
1.983



AD-1735186.1
17.016
0.284



positive control
0.759
0.092










Example 8. In Vivo Assessment of RNAi Agents in Non-Human Primates (NHP)

The pharmacodynamic activity of duplexes targeting INHBE was also assessed in vivo in non-human primates (NHP).


As depicted in FIG. 1, on Day 0 female non-human primates (n=3) were subcutaneously administered a single 3 mg/kg dose of AD-1707306, AD-1711744, AD-1708473, AD-1707640, AD-1707639, AD-1706583, AD-1706593, AD-1706761, or AD-1706662, or PBS control. Post-dose, plasma samples were collected biweekly, serum samples were collected weekly, and liver biopsy samples were collected at Days 28 and 57 post-dose to determine the effect of the agents on INHBE and INHBC mRNA expression, as described above, and clinical chemistry and hematological read-outs. Animals were sacrificed at Day 90 post-dose, tissue samples were collected and the levels of INHBE and INHBC mRNA were quantified as described above.


As depicted in FIGS. 2A and 2B, at Day 28 post-dose, a single 3 mg/kg subcutaneous dose of the agents potently inhibited INHBE expression in vivo (FIG. 2A) but not INHBC (FIG. 2B) expression.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.

Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region,a) wherein the metabolic disorder-associated target gene is INHBE and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense strand nucleotide sequences selected from the group consisting of
  • 2.-22. (canceled)
  • 23. The dsRNA agent of claim 1, wherein at least one of the nucleotides of the dsRNA agent comprises a nucleotide modification.
  • 24. (canceled)
  • 25. The dsRNA agent of claim 1, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a nucleotide modification.
  • 26. The dsRNA agent of claim 23, wherein at least one of the nucleotide modifications is selected from the group consisting of a deoxy-nucleotide modification, a 3′-terminal deoxythimidine (dT) nucleotide modification, a 2′-O-methyl nucleotide modification, a 2′-fluoro nucleotide modification, a 2′-deoxy-nucleotide modification, a locked nucleotide modification, an unlocked nucleotide modification, a conformationally restricted nucleotide modification, a constrained ethyl nucleotide modification, an abasic nucleotide modification, a 2′-amino-nucleotide modification, a 2′-O-allyl-nucleotide modification, 2′-C-alkyl-nucleotide modification, 2′-hydroxly-nucleotide modification, a 2′-methoxyethyl nucleotide modification, a 2′-O-alkyl-nucleotide modification, a morpholino nucleotide modification, a phosphoramidate modification, a non-natural base comprising nucleotide modification, a tetrahydropyran nucleotide modification, a 1,5-anhydrohexitol nucleotide modification, a cyclohexenyl nucleotide modification, a nucleotide comprising a phosphorothioate group modification, a nucleotide comprising a methylphosphonate group modification, a nucleotide comprising a 5′-phosphate modification, a nucleotide comprising a 5′-phosphate mimic modification, a thermally destabilizing nucleotide modification, a glycol nucleotide (GNA) modification, a nucleotide comprising a 2′ phosphate modification, and a 2-O—(N-methylacetamide) nucleotide modification; and combinations thereof.
  • 27.-30. (canceled)
  • 31. The dsRNA agent of claim 1, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.
  • 32. (canceled)
  • 33. The dsRNA agent of claim 1, wherein the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.
  • 34. The dsRNA agent of claim 1, wherein the double stranded region is 19-30 nucleotide pairs in length.
  • 35.-38. (canceled)
  • 39. The dsRNA agent of claim 1, wherein each strand is independently no more than 30 nucleotides in length.
  • 40.-43. (canceled)
  • 44. The dsRNA agent of claim 1, wherein at least one strand comprises a 3′ overhang of at least 1 nucleotide; or at least one strand comprises a 3′ overhang of at least 2 nucleotides.
  • 45. (canceled)
  • 46. The dsRNA agent of claim 1, wherein one or more C22 hydrocarbon chains is conjugated to one or more internal positions on at least one strand.
  • 47.-69. (canceled)
  • 70. The dsRNA agent of claim 1, further comprising a targeting ligand that targets a receptor which mediates delivery to adipose tissue.
  • 71. (canceled)
  • 72. The dsRNA agent of claim 1, further comprising a targeting ligand that targets a liver tissue.
  • 73. The dsRNA agent of claim 72, wherein the targeting ligand is conjugated to the 3′ end of the sense strand of the dsRNA agent.
  • 74. The dsRNA agent of claim 72, wherein the targeting ligand is an N-acetylgalactosamine (GalNAc) derivative.
  • 75. The dsRNA agent of claim 72, wherein the targeting ligand is one or more GalNAc derivatives attached through a monovalent, bivalent, or trivalent branched linker.
  • 76. The dsRNA agent of claim 72, wherein the targeting ligand is
  • 77. The dsRNA agent of claim 76, wherein the dsRNA agent is conjugated to the targeting ligand as shown in the following schematic
  • 78. The dsRNA agent of claim 77, wherein the X is O.
  • 79. (canceled)
  • 80. The dsRNA agent of claim 1, wherein the dsRNA agent further comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.
  • 81.-121. (canceled)
  • 122. A cell containing the dsRNA agent of claim 1.
  • 123. A pharmaceutical composition for inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) comprising the dsRNA agent of claim 1 and a pharmaceutically acceptable carrier.
  • 124.-128. (canceled)
  • 129. A method of inhibiting expression of a metabolic disorder-associated target gene selected from the group consisting of inhibin subunit beta E (INHBE), activin A receptor type 1C (ACVR1C), perilipin-1 (PLIN1), phosphodiesterase 3B (PDE3B), and inhibin subunit beta C (INHBC) in a cell, the method comprising contacting the cell with the dsRNA agent of claim 1, thereby inhibiting expression of the metabolic disorder-associated target gene in the cell.
  • 130.-144. (canceled)
  • 145. A method of treating a subject having a metabolic disorder, comprising administering to the subject a therapeutically effective amount of the dsRNA agent of claim 1, thereby treating the subject having the metabolic disorder.
  • 146.-169. (canceled)
  • 170. A kit, a vial, or a syringe comprising the dsRNA agent of claim 1.
  • 171.-173. (canceled)
RELATED APPLICATIONS

This application is a 35 § U.S.C. 111(a) continuation application which claims the benefit of priority to PCT/US2022/037658, filed on Jul. 20, 2022, which, in turn, claims the benefit of priority to U.S. Provisional Application No. 63/223,995, filed on Jul. 21, 2021, U.S. Provisional Application No. 63/278,126, filed on Nov. 11, 2021, U.S. Provisional Application No. 63/285,143, filed on Dec. 2, 2021, U.S. Provisional Application No. 63/287,578, filed on Dec. 9, 2021, U.S. Provisional Application No. 63/321,799, filed on Mar. 21, 2022, and U.S. Provisional Application No. 63/323,543, filed on Mar. 25, 2022. The entire contents of each of the foregoing applications are incorporated herein by reference.

Provisional Applications (6)
Number Date Country
63223995 Jul 2021 US
63278126 Nov 2021 US
63285143 Dec 2021 US
63287578 Dec 2021 US
63321799 Mar 2022 US
63323543 Mar 2022 US
Continuations (1)
Number Date Country
Parent PCT/US22/37658 Jul 2022 WO
Child 18403912 US