1. Field of the Invention
The present invention relates generally to lithography systems. More particularly, the present invention relates to recycling gas used in a lithography tool.
2. Background Art
Lithography is a process used to create features (e.g., devices) on a surface of one or more substrates (e.g., semiconductor wafers, or the like). Substrates can include those used in the manufacture of flat panel displays, circuit boards, various integrated circuits, and the like. During lithography, the substrate is positioned on a substrate stage and is exposed to an image projected onto the surface of the substrate. The image is formed by an exposure system. The exposure system includes a light source, optics, and a reticle (e.g., a mask) having a pattern used to form the image. The reticle is generally located between the light source and the substrate. In extreme ultraviolet (EUV) or electron beam systems, the light source is housed in a light source vacuum chamber and the exposure system and substrate are housed in an optics vacuum chamber. The light source chamber and the optical chamber can be coupled via a gaslock.
In a lithography, feature (e.g., device) size is based on a wavelength of the light source. To produce integrated circuits with a relatively high density of devices, which allows for higher operating speeds, it is desirable to image relatively small features. To produce these small features, a light source is needed that emits short wavelengths of light (e.g., around 13 nm). This radiation is called EUV light, which is produced by plasma sources, discharge sources, synchrotron radiation from electron storage rings, or the like.
In some systems, utilizing a discharge plasma light source creates EUV light. This type of light source uses a gas or target material that is ionized to create the plasma. For example, the plasma-based light source can use a gas such as xenon. Then, the plasma is formed by an electrical discharge. Typically, the EUV radiation can be in the range of 13–14 nm. In other systems, EUV radiation is produced from laser produced plasma sources. In the laser produced plasma source, a jet of material (e.g., xenon, clustered xenon, water droplets, ice particles, lithium, tin vapor, etc.) can be ejected from a nozzle. A laser is spaced from the nozzle and emits a pulse that irradiates the jet to create the plasma. This plasma subsequently emits EUV radiation.
In order to produce a relatively large amount EUV light, a concentration of xenon must be relatively high where the plasma is being created (e.g., in the light source chamber). This produces a pressure that is too high for efficient transmission of the EUV light through the remainder of the system (e.g., the optics chamber). As a result, the path in which the EUV light travels must be evacuated. Usually, large vacuum pumps are used to remove the source gas as quickly as possible after it has performed its function of creating the EUV light. Unfortunately, at high machine throughput, a relatively large amount of source gas is pumped away. The cost of source gas such as xenon is substantial, and will result in a higher per wafer cost unless the source gas is recycled. Recycling the source gas is complicated by the inclusion of other gases being emitted from the remainder of the EUV lithography tool that mix with the source gas.
Accordingly, in some lithography tools the source gas is kept separate from gases in the remainder of the lithography tool by a very thin membrane. The membrane also removes unwanted radiation by functioning as a spectral filter. However, lithography tools having high throughput and high light intensity may not be able to have the membrane due to high thermal loading, which destroys the membrane. Thermal calculations show that the membrane would have to have a very large surface area to avoid vaporizing when the light source is turned on. A large surface, extremely thin membrane cannot be used in practice, even if they could be manufactured, due to their fragile nature. If the membrane is removed, a barrier between the source chamber and the rest of the tool is gone and gas mixing occurs, making the source gas recycling task extremely challenging, and in some cases completely impractical.
Therefore, what is needed is a system and method that efficiently recycles gases used in a lithographic system.
Embodiments of the present invention provide a system including a first chamber including an element that emits light based on a first gas, a second chamber that uses the emitted light to perform a process and that includes a partial pressure of a second gas, or a partial pressure consisting of a mixture of gases, a pump used to pump at least the first gas into a storage device, and a controller used to route gas from the storage device to a recycling device.
Other embodiments of the present invention provide a method including (a) producing light with a first gas, (b) processing optics (e.g., cleaning, protecting, etc.) with a second gas, (c) pumping at least one of the first and second gases after steps (a) and (b) to a storage device, and (d) routing at least one of the first and second gases from the storage device to a recycling device.
Further embodiments, features, and advantages of the present inventions, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers may indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number may identify the drawing in which the reference number first appears.
While specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the pertinent art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present invention. It will be apparent to a person skilled in the pertinent art that this invention can also be employed in a variety of other applications.
Overview
Embodiments of the present invention provide a system and method used to recycle gases in a lithography tool. A first chamber includes an element that emits light based on a first gas. A second chamber uses the emitted light to perform a process and includes the second gas. It should be understood that the pressure in these chambers is relatively low (i.e., near perfect vacuum), so the word ‘gas’ in this embodiment can refer to a partial pressure of gas found in this vacuum. The first and second gases converge between the two chambers, and at least one of the gases is pumped to a storage device. From the storage device, at least one of the two gases is recycled either within the system or remote from the system and possibly reused within the system. A gaslock can couple the first chamber to the second chamber. In such a gaslock, a gas source supplies a third gas between the first and the second gas in the gaslock, such that the first gas is isolated from the second gas in the gaslock. The first, second, and/or third gas can be pumped to the storage device and routed to the recycling device. The first, second, and/or third gas can be recycled for reuse.
System Having A Gaslock and A System That Recycles Gases
When a plasma-based light source is housed in first chamber 202, a first gas or other material 208 (e.g., xenon, lithium vapor, tin, krypton, water vapor, a metal target, or the like) is ionized to create the plasma, as discussed above. First gas 208 is only supplied to first chamber 202 during a time when light is being generated. At other times (e.g., during stand-by, idle, maintenance, or other modes), first chamber 202 is substantially in a vacuum state. Second chamber 204 includes a second gas (e.g., a process gases, such as helium, argon, hydrogen, nitrogen, or the like) 210. Second gas 210 can be used to reduce contamination in second chamber 204 and protect lithography tool mirrors located in second chamber 204. Similar to first gas 208, second gas 210 is only supplied to second chamber 204 during a time when cleaning or protection is required. At other times, second chamber 204 is substantially in a vacuum state. In this embodiment, a vacuum state is needed in chambers 202 and 204 to allow EUV light to be transmitted because EUV light has a substantially short wavelength (e.g., 13–14 nm), so it cannot readily pass through any substantial amount of gas, which usually absorbs the light. Thus, a vacuum state allows this wavelength of light to easily travel to and through second chamber 204.
The flow of third gas 304 forces molecules of first gas 208 to travel in a direction of arrow 308. Similarly, the flow of third gas 304 forces molecules of second gas 210 to travel in a direction of arrow 310. Thus, the flow of third gas 304 isolates first gas 208 from the second gas 210. In an embodiment, first gas 208 and third gas 304 are pumped from first chamber 202 using a pump (e.g., a vacuum pump) 312. Then, first gas 208 is separated from third gas 304 in recycling device 314, such that first gas 208 can be reused to form the emitted light. For example, third gas 304 can be chosen to have a freezing point (e.g., minus 60 EC), which is substantially above a freezing point (e.g., −200 E C) of first gas 208. Then, third gas 304 is frozen, separated from first gas 208, and removed from recycling device 314. In various embodiments, first gas 208 can either be reused directly from recycling device 314 or transmitted to gas source 300.
In an alternative embodiment, controller 316 can be used to send first gas 208 and third gas 304 to storage 318, which can be internal or external to system 200 or a location holding system 200. A recycling device 320 can be coupled between storage 318 and gas source 208 and/or a gas source emitting third gas 304. Recycling device 320 can function similar to recycling device 314. In an embodiment where recycling device 320 is “off-site,” storage 318 can either be moved to the “off-site” location or the gasses can be removed from storage 318 and brought to the “off-site” location. It is to be appreciated that in various embodiments third gas 304 can be reused after exiting recycling device 314 or 320 or it can be discarded. Also, although not shown, it is to be appreciated that second gas 210 can also be recycled using similar or functionally similar devices, as is known in the art.
System with No Gaslock that Recycles Gases
A dramatic cost savings can result from recycling and reusing the first, second, and/or third gases. This is because a large portion of the expense of the manufacture of wafers can be supplying these relative expensive gases, especially in an EUV lithography system.
Methods for Recycling Gases Used in a Lithography System
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 10/392,793, filed Mar. 20, 2003 (now U.S. Pat. No. 6,919,573 that issued Jul. 19, 2005), which is incorporated by reference in its entirety. This application is related to U.S. application Ser. No. 11/087,639, filed Mar. 24, 2005, which is a continuation of U.S. application Ser. No. 10/770,476, filed Feb. 4, 2004 (now U.S. Pat. No. 6,894,293 that issued May 17, 2005), which is a continuation of U.S. application Ser. No. 10/300,898, filed Nov. 21, 2002 (now U.S. Pat. No. 6,770,895 that issued Aug. 3, 2004), which are all incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4866517 | Mochizuki et al. | Sep 1989 | A |
5991360 | Matsui et al. | Nov 1999 | A |
6064072 | Partlo et al. | May 2000 | A |
6133577 | Gutowski et al. | Oct 2000 | A |
6188076 | Silfvast et al. | Feb 2001 | B1 |
6341008 | Murayama et al. | Jan 2002 | B1 |
6376329 | Sogard et al. | Apr 2002 | B1 |
6385290 | Kondo et al. | May 2002 | B1 |
6493423 | Bisschops | Dec 2002 | B1 |
6504903 | Kondo et al. | Jan 2003 | B1 |
6507641 | Kondo et al. | Jan 2003 | B1 |
6538257 | Bisschops | Mar 2003 | B1 |
6559922 | Hansell et al. | May 2003 | B1 |
6566667 | Partlo et al. | May 2003 | B1 |
6633364 | Hayashi | Oct 2003 | B1 |
6753941 | Visser | Jun 2004 | B1 |
6762424 | Wester | Jul 2004 | B1 |
6770895 | Roux | Aug 2004 | B1 |
6894293 | Roux | May 2005 | B1 |
6895145 | Ho | May 2005 | B1 |
6919573 | Roux | Jul 2005 | B1 |
20010004104 | Bijkerk et al. | Jun 2001 | A1 |
20010038442 | Hansell et al. | Nov 2001 | A1 |
20010055101 | Hayashi | Dec 2001 | A1 |
20020014598 | Melnychuk et al. | Feb 2002 | A1 |
20020083409 | Hamm | Jun 2002 | A1 |
20020084428 | Visser et al. | Jul 2002 | A1 |
20020088940 | Watanabe et al. | Jul 2002 | A1 |
20020154279 | Koster et al. | Oct 2002 | A1 |
20030038929 | Tokuda et al. | Feb 2003 | A1 |
20040108470 | Ichki et al. | Jun 2004 | A1 |
20040155205 | Roux | Aug 2004 | A1 |
20040183030 | Roux | Sep 2004 | A1 |
20050169767 | Roux | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
101 34 033 | Oct 2002 | DE |
102 38 096 | Feb 2004 | DE |
0384754 | Aug 1990 | EP |
0826629 | Mar 1998 | EP |
1 098 226 | May 2001 | EP |
1 186 958 | Mar 2002 | EP |
1 248 499 | Oct 2002 | EP |
0 676 672 | Jun 2003 | EP |
1 422 568 | May 2004 | EP |
1 460 479 | Sep 2004 | EP |
10-221499 | Aug 1998 | JP |
2001-511311 | Aug 1998 | JP |
2001-108799 | Apr 2001 | JP |
2003-7611 | Jan 2003 | JP |
WO 9936950 | Jul 1999 | WO |
WO 9963790 | Dec 1999 | WO |
WO 02084406 | Oct 2002 | WO |
WO 2004051698 | Jun 2004 | WO |
WO 2004082340 | Sep 2004 | WO |
WO 2004084592 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050263720 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10392793 | Mar 2003 | US |
Child | 11169016 | US |