The present invention relates to a method for plasma-free etching of silicon using the etching gas ClF3 or XeF2 and its use.
In semiconductor technology, etching procedures are among the most essential processing technologies for the targeted removal of materials. The etching of silicon is a known and important processing step both in electronic circuit technology and also in microsystem technology. However, it is fundamentally different in principle that the manufacture of an electronic circuit typically represents a planar problem, while micromechanical components typically are three-dimensional, i.e., the structuring depth is unequally pronounced. The etching of defined, in particular spatially narrow areas in depth is therefore among the fundamental technologies, in particular in microsystem technology. A demand for an etching method having greater etching speed results therefrom.
A deep etching method for silicon is described in German Published Patent Application No. 42 41 045, with the aid of which deep trenches having vertical walls may be produced in a silicon substrate, for example. Deposition steps, in which a Teflon-like polymer is deposited on the side wall, and fluorine-based etching steps, which are isotropic per se and are made locally anisotropic by driving the side wall polymer forward during the etching, alternate with one another. Although deep trenches having vertical walls may thus be achieved in a controlled and reproducible way, shortening the time of the etching procedure is desirable.
On the other hand, it is described in German Patent Application No. 10 2004 036 803.1 that the mixed semiconductor silicon-germanium (SiGe) can be used as the material to be removed in a micromechanical component on a substrate. The sacrificial layer may be made of SiGe here, which is typically deposited on the substrate via a CVD process (“chemical vapor deposition”). The actual structure layer is produced and structured on this sacrificial layer. By controlled removal of the sacrificial layer, a freestanding structure is produced thereon. Chlorine trifluoride (ClF3) is preferably suggested as the etching gas, the etching gas SiGe etching highly selectively in relation to Si. However, refining this technology for etching silicon is neither discussed nor suggested.
Example embodiments of the present invention provide an etching method for silicon having a high etching rate and the use of such a method.
The etching method according to example embodiments of the present invention and its use have the advantage that very rapid etching of silicon without plasma is made possible. Even great etching depths may thus be achieved in an accelerated manner and the required etching time may therefore be significantly shortened. The method reduces the manufacturing costs for chips having pronounced depth structuring in this manner.
The method is suitable in particular for etching structures which are very narrow laterally, because fine, spatially selective etching is ensured.
Exemplary embodiments of the present invention are explained in greater detail on the basis of the drawings and the following description.
a and 3b show an etching method according to an example embodiment of the present invention.
The method according to example embodiments of the present invention is based on the feature that the mixed semiconductor SiGe may be etched significantly more rapidly than Si. In addition, the superior higher etching rate for SiGe already occurs with a small proportion of germanium, for example, already from 3% germanium.
Therefore, for plasma-free etching of silicon having one or more areas to be etched, it is provided that the silicon be converted into the mixed semiconductor SiGe by introducing germanium and etched by supplying the etching gas ClF3 or XeF2. The method very advantageously allows the introduction of germanium and the supply of the etching gas ClF3 or XeF2 to be performed at the same time or, if needed, also alternatingly. In both cases, it is possible to introduce germanium selectively only at the areas of the silicon to be etched.
The variations of the general method will now be explained on the basis of examples. Although the silicon is provided as the substrate material itself in the examples, it may also be provided as a layer on a substrate in principle. In any case, the substrate is positioned during the method in a processing chamber known to those skilled in the art.
The introduction of germanium 30, 35 and the supply of etching gas ClF3 15 to substrate 1 in the processing chamber also occur at the same time in an exemplary embodiment according to
A further exemplary embodiment results from alternatingly introducing germanium 30, 35 into the silicon and introducing etching gas ClF3 15, i.e., etching using ClF3 15. As shown in
All described exemplary embodiments may be used for manufacturing substrates 1 in particular having deep structures such as through holes, trenches, or cavities in silicon. Moreover, the etching gas ClF3 may be replaced by XeF2 in all exemplary embodiments.
The penetration into the depth of silicon substrate 1 up into the vias or partition trenches introduced in substrate 1 is also made possible, which is not possible using the layered application of SiGe mixed semiconductors known from the related art. Cavities may thus be produced without the generally known edge loss of KOH etching, for example.
All micromechanical sensors offer interesting possible applications in principle. In addition, because of the accelerated etching, the method is also suitable for cutting up substrates 1, in particular for substrates 1 having a non-rectangular shape, such as needle-shaped or circular substrates. Finally, the method may preferably be used for cutting up substrates 1 having open structures, which only allow dry cutting.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 047 081.5 | Sep 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/066442 | 9/18/2006 | WO | 00 | 6/11/2008 |