1. Field of the Invention
The present invention relates generally to the fabrication of photomasks from which patterns may be transferred to semiconductor device structures. More particularly, the present invention relates to a method for adjusting dimensions of photomask features, such as so-called “critical dimensions”, subsequent to etching a desired pattern therein and prior to utilizing the photomask to transfer the desired pattern to a semiconductor substrate.
2. State of the Art
Reticles, or photomasks, are often used in the semiconductor industry as templates for creating desired patterns in semiconductor substrates. Photomasks are typically comprised of a silicon oxide-containing substrate (e.g., glass or quartz) having a chrome-containing layer on one side thereof in which a pattern is etched. When aligned with a surface of a semiconductor substrate (conventionally with a layer of photoresist material therebetween), photomasks may be used to transfer the pattern from the photomask to the surface of the semiconductor substrate. Photomasks are typically used in place of directly writing the desired pattern on the semiconductor substrate as a substantial amount of time and expense may be saved by blanket processing through a photomask.
A photomask may be fabricated using a number of different techniques, depending upon the method of pattern writing utilized. Due to the dimensional requirements of modern semiconductor structures, writing of features on a photomask is typically conducted with a laser or electron beam. A typical process for fabricating a photomask is illustrated in
Referring to
An antireflective coating (ARC) layer 16 is disposed over the chrome-containing layer 14. The ARC layer 16 may be an inorganic ARC layer formed, for instance, from chrome oxynitride, titanium nitride, or silicon nitride; an organic ARC layer formed, for instance, from poly(vinyl pyridine), or polyimide; or a combination of inorganic and organic materials. A photoresist layer 18, formed from a conventional photoresist material, is disposed atop the ARC layer 16.
As shown in
For a variety of reasons, some photoresist layers used to fabricate photomasks according to the above process, as well as other conventional processes, may contain defective patterns. For instance, referring to
As shown in
Methods for fabricating photomasks having critical dimensions within the critical dimension tolerance, despite defects in patterned photoreist layers, have been proposed. For example, U.S. Patent Publication No. U.S. 2002/0160274 discloses a method for improving control over the dimensions of the patterned photoresist by treating the patterned photoresist with an etchant plasma to reshape the surface thereof prior to etching through the photoresist to the chrome-containing layer. However, the inventors hereof are unaware of any methods for adjusting critical dimensions of a photomask once a defect has been extended to the chrome-containing layer thereof.
The present invention, in one embodiment, includes a method for adjusting one or more dimensions of a photomask subsequent to etching of a defective pattern in the chrome-containing layer thereof. The method provides a way in which dimensions of a photomask may be adjusted by a small amount (e.g., a few angstroms) to more closely achieve a desired value, for example, of a critical dimension, even if the dimension in question is within the critical dimension tolerance without the adjustment. The method also provides a way in which photomasks previously thought to be unsalvageable and which were, accordingly, routinely discarded, may be salvaged by more severely adjusting one or more dimensions thereof, for example, by 20-30 nanometers, or more. Such adjustments may result in a potentially substantial cost savings.
An exemplary embodiment of a method incorporating teachings of the present invention includes subjecting the chrome-containing layer of a photomask to a wet etch process utilizing a solution comprising deionized water and ozone. The length of exposure is directly proportional to the degree of adjustment desired. That is, if a small adjustment in one or more dimensions of a photomask is desired, the photomask may be exposed to the deionized water and ozone solution for only a few moments, whereas if a large adjustment is necessary, the photomask may be exposed to the solution for several hours.
Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings and the appended claims.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention may be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
The present invention is directed to a method for adjusting dimensions, such as critical dimensions, of photomasks subsequent to etching of a defective pattern in the chrome-containing layer thereof. The method provides a way in which photomasks previously thought to be unsalvageable and which were, accordingly, routinely discarded, may be salvaged, resulting in a potentially substantial cost savings. The particular embodiments described herein are intended in all respects to be illustrative rather than restrictive. Other and further embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope.
It should be further understood that while in the method depicted in
With initial reference to
The intermediate structure 100 includes a chrome-containing layer 104 which resides on a silicon oxide-containing substrate 102. By way of example and not limitation, the silicon oxide-containing layer 104 may comprise a quartz plate, e.g., a fluorinated quartz plate, or a glass plate, e.g., a borosilicate glass or soda lime glass plate. As is understood by those of ordinary skill in the art, the upper surface of the chrome-containing layer 104 may be oxidized to form chrome-oxide but the layer 104 will be predominantly chrome. An antireflective coating (ARC) layer 106 is disposed over the chrome-containing layer 104. The ARC layer 106 may be an inorganic ARC layer formed, for instance, from chrome oxynitride, titanium nitride, or silicon nitride; an organic ARC layer formed, for instance, from poly(vinyl pyridine), or polyimide; or a combination of inorganic and organic materials. It is currently preferred that the ARC layer 106 be formed from chrome oxynitride. It will be understood that if the upper surface of the chrome-containing layer 104 is oxidized to form chrome oxide, such chrome oxide layer may serve as the ARC layer 106. A photoresist layer 108, formed from a conventional photoresist material, is disposed atop the ARC layer 106.
As shown in
Subsequent to developing the pattern into the photoresist layer 108, the patterned photoresist layer 108′ is etched to extend the pattern into the ARC layer 106 and the chrome-containing layer 104. This step is shown in
To adjust the dimension of substantially vertical line 110 into the critical dimension tolerance in accordance with the present invention, the photomask 114 may be subjected to a wet etch process using deionized water and ozone (O3). To accomplish this, the photomask 114 may be placed into a container containing a solution of deionized water and ozone. The solution may be formed by diffusing ozone through deionized water using a diffuser plate. Ozone is more soluble in water at lower temperatures and is degraded at higher temperatures. Therefore, more ozone may be saturated in the water by keeping the temperature of the deionized water relatively low. It is currently preferred that the deionized water be kept at a temperature of about 20.0° C. to 30.0° C. during the wet etch process. It is currently more preferred that the temperature of the deionized water be about 23.5° C. Further, it is currently preferred that the concentration of ozone diffused through the water be about 30 to 35 mg/L, more preferably about 30 to 32 mg/L.
The wet etch process of the present invention provides a method for removing portions of the material from the chrome-containing layer 104 of the photomask 114, as well as from the ARC layer 106, substantially uniformly at a rate of approximately 1.50×10−4 to 2.10×10−4 microns/minute. More particularly, the material may be substantially uniformly removed from the chrome-containing layer 104 of the photomask 114, and from the ARC layer 106, at a rate of approximately 1.60×10−4 to 1.90×10−4 microns/minute. Thus, the amount of material removed from the chrome-containing layer 104 (and the ARC layer 106) of the photomask 114 is directly proportional to the amount of time the photomask 114 is exposed to the deionized water and ozone solution. Accordingly, to effect a larger adjustment in the lateral dimension of the substantially vertical line 110, the photomask 114 may be exposed to the etchant solution for a period of time relatively longer than to effect a smaller adjustment. As shown in
While in the illustrated embodiment the critical dimension is the lateral dimension of the substantially vertical line 110, the method hereof may also be used to remove material from the chrome-containing layer 104 in the vertical direction and, thus, can similarly adjust dimensions in the vertical direction if, for instance, a lateral line (not shown) is desired. Further, while in the illustrated embodiment, one or more lines 110 having a critical dimension are defined by those portions of the chrome-containing layer 104 which are removed from the photomask 116, the method of the present invention may also be used to define structures formed from the material of the chrome-containing layer 104 which themselves have a critical dimension.
The following are examples of the wet etch process of the present invention showing removal of portions of a chrome-containing layer of a photomask that are within the scope hereof. These examples are not meant in any way to limit the scope of this invention. (All reference numerals cited in the Examples refer to
A first photomask 116 having a plurality of substantially vertical lines 120 and a plurality of substantially lateral lines 121 etched in the chrome-containing layer 104 thereof, as well as a plurality of substantially vertical structures 122 and a plurality of substantially lateral structures 123 formed from the material of chrome-containing layer 104 itself, was subjected to a wet etch process using deionized water and ozone at a temperature of 23.5° C. and an ozone concentration of 30 mg/L. Prior to exposure, the substantially vertical lines 120 had a “clear x measurement” ranging from 0.6866 micron to 0.7054 micron, with an average of 0.6965 micron and a standard deviation of 0.0036 micron. As used herein, the term “clear x measurement” refers to the lateral distance, defined by a top view of the photomask 116, between portions of the chrome-containing layer 104 which remain subsequent to extending a substantially vertical line pattern from the photoresist material (not shown) to the chrome-containing layer 104 during fabrication of the photomask 116. The “clear x measurement” is indicated by ‘a’ in
The photomask 116 was placed into a solution comprising deionized water and ozone, the solution prepared by diffusing the ozone through the deionized water using a diffuser plate, for a period of about 60 minutes. Subsequently, the clear x and clear y measurements were taken to determine how much of the material comprising the chrome-containing layer had been removed. At this stage, the substantially vertical lines 120 had a clear x measurement ranging from 0.6963 micron to 0.7141 micron, with an average of 0.7057 micron and a standard deviation of 0.0033 micron. Accordingly, the change in the clear x measurement ranged from 0.0075 micron to 0.0114 micron, with an average of 0.0093 micron and a standard deviation of 0.0009 micron. Further, the lateral lines 121 had a clear y measurement of 0.7035 micron to 0.7200 micron, with an average of 0.7098 micron and a standard deviation of 0.0027 micron. Accordingly, the change in the clear y measurement ranged from 0.0084 micron to 0.0118 micron, with an average of 0.100 micron and a standard deviation of 0.0008 micron.
Using these measurements, the etch rate was calculated. The clear x measurements showed an etch rate in the lateral direction ranging from 1.250×10−4 microns/minute to 1.900×10−4 microns/minute, with an average of 1.500×10−4 microns/minute. The clear y measurements showed an etch rate in the vertical direction ranging from 1.400×10−4 microns/minute to 1.966×10−4 microns/minute, with an average 1.666×10−4 microns/minute.
During the same experiment, the “dark x measurement” and “dark y measurement” were also taken. As used herein, the “dark x measurement” refers to the lateral dimension, defined by a top view of the photomask 116, of the substantially vertical structures 122 formed from the material of the chrome-containing layer 104 itself, which substantially vertical structures themselves may define a critical dimension. The “dark x measurement” is indicated by ‘c’ in
Prior to exposure to the solution of deionized water and ozone, the pattern had a dark x measurement ranging from 0.4903 micron to 0.5076 micron, with an average of 0.4997 micron and a standard deviation of 0.0035 micron. Subsequent to exposure to the solution of deionized water and ozone for about 60 minutes, the pattern had a dark x measurement ranging from 0.4817 micron to 0.4986 micron, with an average of 0.4902 micron and a standard deviation of 0.0035 micron. Accordingly, the change in the dark x measurement ranged from −0.0122 micron to −0.0081 micron, with an average of −0.0095 micron and a standard deviation of −0.0007 micron.
Using these measurements, the etch rate was calculated in the lateral direction to be from −2.033×10−4 microns/minute to −1.350×10−4 microns/minute, with an average of-1.583×10−4 microns/minute.
Prior to exposure to the solution of deionized water and ozone, the pattern had a dark y measurement ranging from 0.4926 micron to 0.5056 micron, with an average of 0.5012 micron and a standard deviation of 0.0029 micron. Subsequent to exposure to the solution of deionized water and ozone for about 60 minutes, the pattern had a dark y measurement ranging from 0.4826 micron to 0.4945 micron, with an average of 0.4896 micron and a standard deviation of 0.0022 micron. Accordingly, the change in the dark y measurement ranged from −0.0160 micron to −0.0090 micron, with an average of −0.0115 micron and a standard deviation of −0.0115 micron.
Using these measurements, the etch rate was calculated in the vertical direction to be from −2.666×104 microns/minute to −1.500×10−4 microns/minute, with an average of −1.916×10−4 microns/minute.
Combining the values measured from each of the clear x, clear y, dark x and dark y measurements, the average change in the material of the chrome-containing layer was 0.0101 micron over the course of 60 minutes which calculates into an etch rate of 1.683×10−4 microns/minute.
During this experiment, the clear x, clear y, dark x and dark y measurements were also taken after 30 minutes exposure to the solution. The average change in the clear x measurements after 30 minutes was 0.0033 micron, the average change in the clear y measurement was 0.0050 micron, the average change in the dark x measurement was −0.0047 micron and the average change in the dark y measurement was −0.0074 micron. These values were then used to calculate the etch rate. The clear x measurement indicated an etch rate in the lateral direction of 1.100×10−4 microns/minute, the clear y measurement indicated an etch rate in the vertical direction of 1.666×10−4 microns/minute, the dark x measurement indicated an etch rate in the lateral direction of −1.566×10−4 microns/minute and the dark y measurement indicated an etch rate in the vertical direction of −2.466×10−4 microns/minute. The results are thus indicative of a substantially uniform removal of the chrome-containing material over the course of the exposure to the deionized water and ozone solution.
A second photomask 116 having a plurality of substantially vertical 120 and lateral lines 121 etched in the chrome-containing layer 104 thereof was subjected to a wet etch process using deionized water and ozone at a temperature of 23.5° C. and an ozone concentration of 30 mg/L. Prior to the wet etch, the substantially vertical lines 120 had a clear x measurement ranging from 0.6836 micron to 0.7022 micron, with an average of 0.6935 micron and a standard deviation of 0.0035 micron, and the lateral lines 121 had a clear y measurement ranging from 0.6913 micron to 0.7060 micron, with an average of 0.6974 micron and a standard deviation of 0.0028 micron.
The photomask 116 was placed into a solution comprising deionized water and ozone, the solution prepared by diffusing the ozone through the deionized water using a diffuser plate, for a period of about 60 minutes. Subsequently, the clear x and clear y measurements were taken to determine how much of the material comprising the chrome-containing layer 104 had been removed. At this stage, the substantially vertical lines 120 had a clear x measurement ranging from 0.6963 micron to 0.7141 micron, with an average of 0.7057 micron and a standard deviation of 0.0033 micron. Accordingly, the change in the clear x measurement ranged from 0.0107 micron to 0.0143 micron, with an average of 0.0122 micron and a standard deviation of 0.0007 micron. Further, the lateral lines 121 had a clear y measurement ranging from 0.7035 micron to 0.7200 micron, with an average of 0.7098 micron and a standard deviation of 0.0027 micron. Accordingly, the change in the clear y measurement ranged from 0.0104 micron to 0.0140 micron, with an average of 0.0123 micron and a standard deviation of 0.0007 micron.
Using these measurements, the etch rate was calculated. The clear x measurements showed an etch rate in the lateral direction ranging from 1.783×10−4 microns/minute to 2.383×10−4 microns/minute, with an average of 2.033×10−4 microns/minute. The clear y measurements showed an etch rate in the vertical direction ranging from 1.733×10−4 microns/minute to 2.333×104 microns/minute, with an average of 2.050×104 microns/minute.
During the same experiment, the dark x measurement and dark y measurement were also taken. Prior to exposure to the solution of deionized water and ozone, the pattern had a dark x measurement ranging from 0.4932 micron to 0.5092 micron, with an average of 0.5010 micron and a standard deviation of 0.0034 micron. Subsequent to exposure to the solution of deionized water and ozone for about 60 minutes, the pattern had a dark x measurement ranging from 0.4817 micron to 0.4986 micron, with an average of 0.4902 micron and a standard deviation of 0.0035 micron. Accordingly, the change in the dark x measurement ranged from −0.0131 micron to −0.0095 micron, with an average of −0.0108 micron and a standard deviation of 0.0006 micron.
Using these measurements, the etch rate was calculated in the lateral direction to be from −2.183×10−4 microns/minute to −1.583×10−4 microns, with an average of −1.800×10−4 microns/minute.
Prior to exposure to the solution of deionized water and ozone, the pattern had a dark y measurement ranging from 0.4928 micron to 0.5047 micron, with an average of 0.5000 micron and a standard deviation of 0.0022 micron. Subsequent to exposure to the solution of deionized water and ozone for about 60 minutes, the pattern had a dark y measurement ranging from 0.4826 micron to 0.4945 micron, with an average of 0.4896 micron and a standard deviation of 0.0022 micron. Accordingly, the change in the dark y measurement ranged from −0.0118 micron to −0.0089 micron, with an average of −0.0103 micron and a standard deviation of 0.0007 micron.
Using these measurements, the etch rate was calculated in the vertical direction to be from 1.966×104 microns/minute to 1.483×10−4 microns/minute, with an average etch rate of 1.716×10−4 microns/minute.
Combining the values measured from each of the clear x, clear y, dark x and dark y measurements, the average change in the material of the chrome-containing layer was 0.0114 micron over the course of 60 minutes, which calculates into an etch rate of 1.900×10−4 microns/minute.
The method of the present invention may be used to adjust dimensions of photomask features subsequent to etching of a defective pattern of such features in the chrome-containing layer thereof. The method provides a way in which dimensions may be adjusted by a small amount to more closely achieve a desired critical dimension, even if within the critical dimension tolerance, or to salvage a photomask previously thought to be unsalvageable and which was, accordingly, routinely discarded. This may result in a potentially substantial cost savings. Dimensions may be adjusted in both lateral and vertical directions using the method of the present invention and, depending on the length of exposure to the deionized water and ozone solution, may be adjusted on the order of a few angstroms to 20-30 nanometers, or more.
The invention defined by the appended claims is not to be limited by particular details set forth in the above description and that other and further embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from the spirit and scope thereof.