This patent application is a U.S. National Phase Application under 35 U.S.C. § 371 of International Application No. PCT/US2014/072393, filed Dec. 24, 2014, entitled NOVEL METHOD FOR CREATING ALTERNATE HARDMASK CAP INTERCONNECT STRUCTURE WITH INCREASED OVERLAY MARGIN.
Embodiments of the present invention relate generally to the manufacture of semiconductor devices. In particular, embodiments of the present invention relate to interconnect structures for semiconductor devices and methods for manufacturing such devices.
Modern integrated circuits use conductive interconnect layers to connect individual devices on a chip and/or to send and/or receive signals external to the device. Common types of interconnect layers include copper and copper alloy interconnect lines coupled to individual devices, including other interconnect lines by interconnect through vias. It is not uncommon for an integrated circuit to have multiple levels of interconnections. For example, two or more interconnect layers may be separated from each other by dielectric materials. The dielectric layers separating interconnect levels are commonly referred to as an interlayer dielectric (ILD).
As these interconnect layers are manufactured with interconnect lines having smaller pitches in order to accommodate the need for smaller chips, it becomes increasingly difficult to properly align the vias with the desired interconnect layer. In particular, during manufacturing, the location of the via edges with respect to the interconnect layer or line it is to contact may be misaligned due to natural manufacturing variation. A via however, must allow for connection of one interconnect line of one interconnect layer to the desired underlying layer or line without erroneously connecting to a different interconnect layer or line. If the via is misaligned and contacts the wrong metal feature, the chip may short circuit resulting in degraded electrical performance. One solution to address this issue is to reduce the via size, for example, by making the via narrower. However, reducing the via size results in an increase in resistance and reduces the yield during manufacturing.
Described herein are systems that include an interconnect structure that allows for contact formation to tightly pitched interconnect lines and methods of forming such devices. In the following description, various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative implementations.
Various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the present invention, however, the order of description should not be construed to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
Implementations of the invention may be formed or carried out on a substrate, such as a semiconductor substrate. In one implementation, the semiconductor substrate may be a crystalline substrate formed using a bulk silicon or a silicon-on-insulator substructure. In other implementations, the semiconductor substrate may be formed using alternate materials, which may or may not be combined with silicon, that include but are not limited to germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, indium gallium arsenide, gallium antimonide, or other combinations of group III-V or group IV materials. Although a few examples of materials from which the substrate may be formed are described here, any material that may serve as a foundation upon which a semiconductor device may be built falls within the scope of the present invention.
In an embodiment, a first hardmask layer 105 is formed over the top surface of the ILD 103. By way of example, the first hardmask layer 105 may be a dielectric material, such as a nitride or an oxide. According to an embodiment, the first hardmask layer 105 is resistant to an etching process that may be used to etch through a second interconnect layer 180, such as an additional ILD layer used for forming interconnects, that may be formed above the first hardmask layer 105. Embodiments of the invention include a first hardmask layer 105 that is between 3 nm and 10 nm thick.
According to an embodiment, interconnect structure 100 includes first and second interconnect lines 121, 122 formed into the ILD 103 in an alternating pattern, as shown in FIG. 1A. The first and second interconnect lines 121, 122 are formed with conductive materials. By way of example, and not by way of limitation, the conductive materials used to form the interconnect lines may include, Ag, Au, Co, Cu, Mo, Ni, NiSi, Pt, Ru, TiN, or W. In an embodiment, the same conductive material is used to form the first and second interconnect lines 121, 122. According to an alternative embodiment, the first and second interconnect lines 121, 122 are formed with different conductive materials.
The interconnect lines 121, 122 are spaced apart from each other by a pitch P. Embodiments of the invention include high density interconnect lines with a pitch P less than 60 nm. Further embodiments of the invention include a pitch P that is less than 30 nm. Embodiments of the invention include interconnect line widths W less than 30 nm. Additional embodiments of the invention include interconnect line widths W less than 15 nm. In an embodiment, the first and second interconnect lines 121, 122 have top surfaces that are substantially coplanar with a top surface of the first hardmask layer 105.
According to an embodiment the first interconnect lines 121 may further include a selective cap 139. The selective cap 139 may be a conductive material that is used to differentiate the surfaces of the first interconnect lines 121 from the second interconnect lines 122. The differences in the exposed surfaces is utilized to ensure proper segregation of polymers during a directed self-assembly (DSA) process that it used to form a pattern in which the first dielectric caps 125 and the second dielectric caps 126 are formed. The DSA process is described in greater detail below with respect to
According to an embodiment, first dielectric caps 125 may be formed above the first interconnect lines 121 and second dielectric caps 126 may be formed above the second interconnect lines 122. As illustrated, the first and second dielectric caps 125, 126 are formed above the first hardmask layer 105. Accordingly, a deep metal recess of the first and second interconnect lines is not needed in order to form the dielectric caps. Instead of using the trenches in which the first and second interconnect lines 121, 122 are formed to align the dielectric caps, embodiments of the invention rely on a DSA process to form a pattern above the first hardmask layer 105 in which the first and second dielectric caps 125, 126 may be formed. Since the dielectric caps are positioned above the trenches in which the first and second interconnect lines are formed, embodiments of the invention may include first and second dielectric caps 125, 126 that extend laterally beyond the edges of the interconnects. As such, embodiments may include first and second dielectric caps 125, 126 that are in direct contact with a top surface of the first hardmask layer 105.
Embodiments of the invention include first and second dielectric caps 125, 126 made from dielectric materials such as SiOXCYNZ, SiOXCY, non-conductive metal oxides and nitrides, such as, but not limited to, TiO, ZrO, TiAlZrO, AlO, or organic materials. According to an embodiment, first dielectric caps 125 and second dielectric caps 126 are made from different materials. For example, the first dielectric caps 125 are made from a material that has a high selectivity over the second dielectric caps 126 during an etching process. As used herein, when a first material is stated as having a high selectivity over a second material, the first material etches at a faster rate than the second material during a given etching process. For example, the first dielectric caps 125 may have an etch selectivity to the second dielectric cap that is approximately 10:1 or greater for a given etching process (i.e., for the given etching process, the first dielectric cap is etched at a rate that is approximately ten times greater than the rate at which the second dielectric cap is etched). According to an additional embodiment, the second dielectric caps 126 are made from a material that has a high selectivity over the first dielectric caps 125. For example, the second dielectric cap 126 may have an etch selectivity to the first dielectric cap 125 that is approximately 10:1 or greater for a given etching process. Additional embodiments of the invention include forming the first and second dielectric caps 125, 126 from materials that have a high selectivity over the first hardmask layer 105 during an etching process. By way of example, the first and second dielectric caps may both have an etch selectivity to the first hardmask layer 105 that is approximately 10:1 or greater for a given etching process.
Embodiments of the invention may also include first and second dielectric caps 126 that are selectively etched with respect to an etchstop liner 136. According to an embodiment, the etchstop liner 136 may be a conformal layer that is deposited over the surface of one or more of the first and second dielectric caps 125, 126, and over the first hardmask layer 105. By way of example, the etchstop liner 136 may have a thickness that is approximately 5 nm or less. Additional embodiments include an etchstop liner 136 that has a thickness that is between approximately 2.0 nm and 3.0 nm. The etchstop liner 136 may be a dielectric material. By way of example, the etchstop liner may be an aluminum oxide or a hafnium oxide. By way of example, the etchstop liner may have an etch selectivity to the first and second dielectric caps that is approximately 10:1 or greater. An additional embodiment of the invention may include an etchstop liner that has an etch selectivity to the first and second dielectric caps that is approximately 20:1 or greater. For example, the first and second dielectric caps may be materials that are susceptible to removal with a dry-etching process, whereas the etchstop liner 136 is a material that is resistant to the dry-etching process, but may be selectively removed with a wet-etching process.
Embodiments that utilize an etchstop liner 136 that has a high etch selectivity with respect to the first and second dielectric caps 125, 126 provides additional benefits. For example, in embodiments where the etchstop liner 136 is formed over the top surfaces 132 of either the first dielectric caps 125 or the second dielectric caps 126, the etch selectivity between the first and second dielectric caps 125, 126 does not need to be as high. The etch selectivity between the first and second dielectric caps 125, 126 may be reduced because the etchstop liner 136 protects one set of dielectric caps from an etching process while the other set of dielectric caps are left exposed.
For example, in
According to an embodiment, the interconnect structure 100 may further include one or more first through vias 123 and/or one or more second through vias 124. According to embodiments of the invention, the first and second through vias 123, 124 are integrated into the alternating pattern of the first and second interconnect lines 121,122. As such, in embodiments of the invention, a first through via 123 is formed where a first interconnect line 121 would otherwise be formed. Similarly, embodiments include forming a second through via 124 where a second interconnect line 122 would otherwise be formed.
First through vias 123 are substantially similar to the first interconnect lines 121, with the exception that the hole in which they are formed extends all the way through the ILD 103. Accordingly, the first through via 123 provides the ability to make an electrical connection through the ILD 103 to a lower level. For example, the electrical connection to the lower level may be made to a conductive line, an S/D contact of a transistor device, or any other feature of a semiconductor device that requires an electrical connection. Likewise, second through vias 124 are substantially similar to the second interconnect lines 122, with the exception that the hole in which they are formed extends all the way through the ILD 103. Similarly, the second through via 124 provides the ability to make an electrical connection through the ILD 103 to the lower level. Illustrations presented in the Figures of the present invention omit the structures of the lower level that may be contacted by the first and second through vias in order to not unnecessarily obscure the present invention. Furthermore, it is to be appreciated that the first and second through vias 123, 124 may not extend along the entire length of the trench in which they are formed (i.e., in a third dimension (into and out of the page) the first and second through vias 123, 124, may only be formed along a portion of the trench, and the remainder of the trench may formed to a depth substantially similar to the first and second interconnect lines 121, 122).
Embodiments of the invention further include first and second dielectric caps 125, 126 formed above trenches that contain the first and second through vias 123, 124 that are substantially similar to those described above with respect to the dielectric caps formed above the first and second interconnect lines 121, 122. In an embodiment, a selective cap 139 may also be formed over the top surface of the first through vias 123 and over the top surface of the conductive material filling the trenches in the third dimension (e.g., first interconnect lines 121), as described above. Providing a selective cap 139 over the first through vias 123 ensures that the DSA patterning process used to form the first and second dielectric caps continues above the through vias as well.
Referring now to
According to an embodiment, the shape of the first dielectric caps 137 may be dependent on the growth or deposition characteristics of the oxide. As illustrated, the first dielectric caps may form a “rivet head” shape. However, it is to be appreciated that the exact growth pattern of the first dielectric caps 137 are not limited to the pattern illustrated in
According to an embodiment, the second dielectric caps may also be characterized as having sidewalls that are not substantially vertical. In an embodiment, the second dielectric caps 146 may have sidewalls that are characterized as having a shape that is complementary to the sidewalls of the first dielectric caps. In the illustrated embodiment, the second dielectric caps 146 may have a shape that is substantially an “upside down rivet head”. Additional embodiments of the invention may include an interconnect structure 101 that includes second interconnect lines 122 that are recessed below a top surface of the first hardmask layer 105. In such embodiments, the sidewalls of the second dielectric caps may be characterized by a first portion that is substantially vertical and a second portion that is not substantially vertical. The vertical portion of the sidewall is defined by a sidewall of the trench in which the second interconnect lines 122 are formed, and the second portion is defined by the shape of the sidewalls of the first dielectric cap 137.
Referring now to
Interconnect structures according to embodiments of the invention may be manufactured according to the process described with respect to
A backbone layer 216 may be formed above the first hardmask layer 205. The backbone 216 may be any material suitable for the formation of a hardmask layer, such as amorphous silicon, polysilicon, amorphous carbon, silicon nitride, silicon carbide, germanium, or the like. The backbone 216 may be patterned with any conventional patterning process, such as lithography, etch, and wet cleans. In a specific embodiment, the backbone 216 may be formed with a multiple-patterning process in order to obtain a desired pitch.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In certain embodiments, the selective cap has a different resistivity than the metal used for the first interconnect lines 221. For example, when tungsten is used for the selective cap 239, its resistivity is higher than the resistivity of many commonly used interconnect materials, such as copper. Accordingly, it may be advantageous to minimize the thickness of the selective cap. In an embodiment, the thickness of the selective cap 239 may be less than the thickness of the first hardmask layer 205. In a specific embodiment, the thickness of the selective cap 239 may be less than 10 nm. Additional embodiments may include a selective cap 239 that has a thickness less than 5 nm. In an additional embodiment, a sacrificial hardmask layer (not shown) may be disposed over the selective cap 239 to protect the cap during the metal deposition and polishing operations used to form the second interconnect lines 222.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Embodiments of the invention allow for improved contact formation to tightly pitched interconnect lines. As described above, tightly pitched interconnect lines require increasingly precise alignment to form contacts to the desired interconnect lines. However, as shown in the contact formation process illustrated in
Referring now to
The etch selectivities allow for the first and second opening to have a width WO that is greater than the pitch P. For example, the first opening extends over a neighboring second through via 324 and the second opening extends over both neighboring interconnects. However, due to the etch selectivity, only the first interconnect lines 321 will be contacted. As illustrated, the etchstop liner 336 is still formed over the first interconnect lines. Accordingly, an additional etching process may be implemented to selectively remove the etchstop liner 336. Since the etchstop liner 336 has a high selectivity to the second dielectric cap 326, the etching process allows for only the first interconnect lines 321 to be exposed. For example, the etchstop liner 336 may be etched with a wet etching process that does not significantly remove the second dielectric cap 326. Accordingly, the width of the contacts may be larger than otherwise possible, and misalignment errors do not result in unwanted short-circuiting to neighboring interconnects. The larger width of the contacts also eases demands on fabrication equipment and may provide a higher yield.
Interconnect structures 101 and/or 102 illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
According to an embodiment, the DSA layer is a diblock-copolymer. By way of example, the diblock copolymer may be polystyrene-b-polymethylmethacrylate (PS-b-PMMA). In such an embodiment, the PS portion (i.e., the first polymer region 548) is driven towards the selective caps 539, while the PMMA portion (i.e., the second polymer region 549) is driven away from the selective caps 539. According to an embodiment, segregation of the DSA layer may also be driven or accelerated by annealing the DSA layer. While PS-b-PMMA is described as an exemplary embodiment, it is to be appreciated that many different materials, such as diblock copolymers, triblock copolymers (e.g., ABA, or ABC), or self-segregating combinations of homopolymers may be used.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
After the deposition of the second dielectric caps 526, the selective caps 539 may be removed, for example with a wet or dry etching process. In an embodiment, first dielectric caps 525 may then be formed above the first interconnect lines 521 and the first through vias 523. For example, the dielectric material may be deposited with a CVD, PVD, or spin on process. According to an embodiment, any overburden material may be recessed with a planarization process, such as a CMP process, so that top surfaces of the first dielectric caps 525 are substantially coplanar with a top surface of the first hardmask layer 505. Embodiments of the invention may utilize a material such as SiOxCyNz, SiOXCY, non-conductive metal oxides, or metal nitrides for the first dielectric caps 525. Additional embodiments of the invention may select a material for the first dielectric caps 525 that has a high etch selectivity over first hardmask layer 505 and over the second dielectric caps 526.
Accordingly, embodiments of the invention allow for the formation of first interconnect lines and second interconnect lines formed in an alternating pattern with dielectric caps having different etch selectivities formed over them. Embodiments of the invention include using a DSA process that is capable of pattern multiplication in order to form the alternating pattern of first interconnect lines and second interconnect lines.
The interposer 1000 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer may include metal interconnects 1008 and vias 1010, including but not limited to through-silicon vias (TSVs) 1012. The interposer 1000 may further include embedded devices 1014, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1000.
In accordance with embodiments of the invention, apparatuses or processes disclosed herein for forming an interconnect structure that includes alternating dielectric caps formed above a hardmask layer with a DSA process may be used in the fabrication of interposer 1000, or in the fabrication of the embedded devices 1014.
Computing device 1200 may include other components that may or may not be physically and electrically coupled to the motherboard or fabricated within an SoC die. These other components include, but are not limited to, volatile memory 1210 (e.g., DRAM), non-volatile memory 1212 (e.g., ROM or flash memory), a graphics processing unit 1214 (GPU), a digital signal processor 1216, a crypto processor 1242 (a specialized processor that executes cryptographic algorithms within hardware), a chipset 1220, an antenna 1222, a display or a touchscreen display 1224, a touchscreen controller 1226, a battery 1228 or other power source, a power amplifier (not shown), a global positioning system (GPS) device 1228, a compass 1230, a motion coprocessor or sensors 1232 (that may include an accelerometer, a gyroscope, and a compass), a speaker 1234, a camera 1236, user input devices 1238 (such as a keyboard, mouse, stylus, and touchpad), and a mass storage device 1240 (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communications chip 1208 enables wireless communications for the transfer of data to and from the computing device 1200. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1208 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1200 may include a plurality of communication chips 1208. For instance, a first communication chip 1208 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1208 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1204 of the computing device 1200 includes one or more devices, such as transistors, that are coupled to one or more interconnect lines in an interconnect structure that includes alternating dielectric caps formed above a hardmask layer with a DSA process, in accordance with embodiments of the invention. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 1208 may also include one or more devices, such as transistors, that are coupled to one or more interconnect lines in an interconnect structure that includes alternating dielectric caps formed above a hardmask layer with a DSA process, in accordance with embodiments of the invention.
In further embodiments, another component housed within the computing device 1200 may contain one or more devices, such as transistors, that are coupled to one or more interconnect lines in an interconnect structure that includes alternating dielectric caps formed above a hardmask layer with a DSA process, in accordance with embodiments of the invention.
In various embodiments, the computing device 1200 may be a laptop computer, a netbook computer, a notebook computer, an ultrabook computer, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1200 may be any other electronic device that processes data.
The above description of illustrated implementations of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific implementations of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications may be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific implementations disclosed in the specification and the claims. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Embodiments of the invention include an interconnect structure comprising: an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD; one or more first interconnect lines in the ILD; a first dielectric cap positioned above each of the first interconnect lines, wherein a surface of the first dielectric cap contacts a top surface of the first hardmask layer; one or more second interconnect lines in the ILD arranged in an alternating pattern with the first interconnect lines; and a second dielectric cap over a top surface of each of the second interconnect lines, wherein a surface of the second dielectric cap contacts a top surface of the first hardmask layer. Additional embodiments include an interconnect structure, further comprising a selective cap positioned over a top surface of each of the first interconnect lines. Additional embodiments include an interconnect structure, wherein the selective cap is a different material than the second interconnect lines. Additional embodiments include an interconnect structure, wherein the selective cap is tungsten (W), HfOX, or an alloy of tungsten and cobalt alloy. Additional embodiments include an interconnect structure, wherein the selective cap has a thickness that is less than a thickness of the first hardmask layer. Additional embodiments include an interconnect structure, wherein the thickness of the selective cap is less than 5 nm. Additional embodiments include an interconnect structure, wherein the sidewalls of the first and second dielectric caps are substantially vertical. Additional embodiments include an interconnect structure, wherein a centerline of each first dielectric cap is substantially aligned with a centerline of a first interconnect line Additional embodiments include an interconnect structure, wherein the sidewalls of the first and second dielectric caps are not substantially vertical. Additional embodiments include an interconnect structure, wherein the sidewalls of the second dielectric caps are complementary to the sidewalls of the first dielectric caps. Additional embodiments include an interconnect structure, wherein a first portion of the sidewalls of the second dielectric caps are substantially vertical and a second portion of the sidewalls of the second dielectric caps are not substantially vertical. Additional embodiments include an interconnect structure, further comprising an etchstop liner positioned over at least the sidewalls and a top surface of one or more of the second dielectric caps. Additional embodiments include an interconnect structure, wherein the first interconnect lines are spaced less than 30 nm from the second interconnect lines. Additional embodiments include an interconnect structure, wherein the first interconnect lines and the second interconnect lines are different materials.
Embodiments of the invention include a method of forming an interconnect structure comprising: forming one or more first trenches through a first hardmask layer and into an interlayer dielectric (ILD) formed below the first hardmask layer; disposing a first metal into the one or more first trenches to form first interconnect lines; forming a selective cap over each of the first interconnect lines; forming one or more second trenches into the ILD in an alternating pattern with the first trenches; disposing a second metal into the one or more second trenches to form second interconnect lines; disposing a DSA layer over the top surfaces of the selective caps and the second interconnect lines, wherein the DSA layer segregates into first polymer regions over the selective caps and second polymer regions over the second interconnect lines; removing the second polymer regions to expose the second interconnect lines; forming a second dielectric cap over the second interconnect lines; removing the first polymer regions to expose the selective caps; and forming a first dielectric cap over the selective caps. Additional embodiments include a method of forming an interconnect structure, wherein the DSA layer is a diblock copolymer. Additional embodiments include a method of forming an interconnect structure, wherein the diblock copolymer is polystyrene-b-polymethylmethacrylate (PS-b-PMMA), and wherein the first polymer region is PS and the second polymer region is PMMA. Additional embodiments include a method of forming an interconnect structure, wherein a polystyrene (PS) brush is grafted onto the selective caps prior to disposing the DSA layer over the top surfaces of the selective caps and the second interconnect lines. Additional embodiments include a method of forming an interconnect structure, wherein forming the first trenches comprises: forming a backbone layer above the first hardmask layer; forming spacers on the backbone layer, wherein a portion of the first hardmask layer remains exposed between the spacers; and etching through the exposed portions of the first hardmask layer and into the ILD underneath the exposed portions of the first hardmask layer. Additional embodiments include a method of forming an interconnect structure, wherein forming the second trench comprises: etching through the backbone layer; and etching through portions of the first hardmask layer and into the ILD.
Embodiments of the invention include a method of forming an interconnect structure, comprising: forming one or more first trenches through a first hardmask layer and into an interlayer dielectric (ILD) formed below the first hardmask layer; disposing a first metal into the one or more first trenches to form first interconnect lines; forming one or more second trenches into the ILD in an alternating pattern with the first trenches; disposing a sacrificial hardmask material into the one or more second trenches; forming a first dielectric cap over the first interconnect lines, wherein sidewalls of the first dielectric cap are not substantially vertical; removing the sacrificial hardmask material from the one or more second trenches; disposing a second metal into the one or more second trenches to form second interconnect lines; recessing the second interconnect lines so that a top surface of each of the one or more second interconnect lines is below a top surface of the first hardmask layer; and forming a second dielectric cap over the second interconnect lines, wherein at least a portion of the sidewalls of each of the one or more second dielectric caps are not substantially vertical. Additional embodiments include a method of forming an interconnect structure, wherein the sidewalls of the second dielectric caps are complementary to the sidewalls of the first dielectric caps. Additional embodiments include a method of forming an interconnect structure, wherein a first portion of the sidewalls of the second dielectric caps are substantially vertical and a second portion of the sidewalls of the second dielectric caps are not substantially vertical.
Embodiments of the invention include an interconnect structure comprising: an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD; one or more first interconnect lines in the ILD; a selective cap positioned over a top surface of each of the first interconnect lines, wherein the selective cap has a thickness that is less than a thickness of the first hardmask layer; a first dielectric cap positioned above each of the selective caps, wherein a surface of the first dielectric cap contacts a top surface of the first hardmask layer; one or more second interconnect lines in the ILD in an alternating pattern with the first interconnect lines; a second dielectric cap over a top surface of each of the second interconnect lines, wherein a surface of the second dielectric cap contacts a top surface of the first hardmask layer; and an etchstop liner positioned over at least sidewalls and a top surface of each of the second dielectric caps. Additional embodiments include an interconnect structure, wherein the first and second dielectric caps are a SiOxCyNz material, a SiOXCY material, a metal oxide material, or a metal nitride material, and wherein the etchstop liner is an aluminum-oxide or a hafnium-oxide material.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/072393 | 12/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/105423 | 6/30/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9054164 | Jezewski | Jun 2015 | B1 |
20040113279 | Chen et al. | Jun 2004 | A1 |
20040232558 | Toda | Nov 2004 | A1 |
20050151224 | Abe | Jul 2005 | A1 |
20090053890 | Bonilla et al. | Feb 2009 | A1 |
20090200668 | Yang et al. | Aug 2009 | A1 |
20090250815 | Yang et al. | Oct 2009 | A1 |
20130302989 | Kenny et al. | Nov 2013 | A1 |
20140038412 | Hu et al. | Feb 2014 | A1 |
20140342551 | Nam | Nov 2014 | A1 |
20160049364 | Edelstein | Feb 2016 | A1 |
20170263551 | Bristol | Sep 2017 | A1 |
20170263553 | Schenker | Sep 2017 | A1 |
20170330761 | Chawla | Nov 2017 | A1 |
Entry |
---|
International Searching Authority at the Korean Intellectual Property Office, International Search Report and Written Opinion for International Patent Application No. PCT/US2014/072393, dated Aug. 31 2015, 11 pages. |
International Preliminary Report for International Application No. PCT/US2014/072393, dated Jun. 27, 2017, 7 pages. |
Extended European Search Report for European Patent Application No. 14909263.7, dated Jul. 23, 2018, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170263551 A1 | Sep 2017 | US |