The present invention relates to the field of multichip modules, and methods for production thereof.
Multichip modules provide a plurality of functional wafers which are supported and interconnected on a single substrate, and thereafter the module may be connected to other components as an integral unit.
As compared to integrated circuits, the multichip module provides opportunity for use of various incompatible technologies (i.e., those that cannot be fabricated together) within a single system component, and the use of relatively simpler components and lower spatial density than required within an integrated circuit to obtain the same functionality. However, by eliminating separate packaging for the components, certain costs can be reduced, density increased, and performance increased with respect to discrete packaged or wire-bonded components on a circuit board.
In normal semiconductor technology circuits, operation leads to significant heat dissipation, and when such components are supported in a multichip module, potentially significant amounts of heat must be removed through the module substrate and packaging. Therefore, the interface between the functional wafer and substrate for such modules should have a low thermal impedance (high thermal conductivity). For example, a low melting temperature alloy may be used to both electrically and mechanically bond the wafer to the substrate through a set of “solder bumps”. This process typically requires heating the substrate and wafer above the reflow temperature of the solder, and thus may damage certain temperature-sensitive electronics. Because of thermal cycling issues, the wafer and substrate should have matching thermal coefficients of expansion. Typically, there is no filler material between the wafer and substrate prior to reflow, since this could impair the reflow process or cause other problems. A filler may be added in the space between the wafer and substrate after reflow, for example to enhance thermal conductivity.
Superconducting circuits based on Rapid-Single-Flux-Quantum logic are the fastest in any electronic technology, with clock speeds in excess of 20 GHz routinely achieved, and speeds in excess of 100 GHz projected as the devices are scaled to smaller sizes. In the preferred embodiment of these integrated circuits, they are composed of thousands of Josephson junctions, each constructed from two layers of superconducting niobium with an intervening oxide layer about 1 nanometer thick. To function properly, these circuits must be cooled to cryogenic temperatures below the critical temperature of 9 K (−264 C). Further, the very thin oxide layer of the circuits can be damaged by temperatures in excess of about +200 C, so elevated temperatures in fabrication and processing must be avoided. This is a low-power, low-voltage, low-impedance technology, based on the propagation of voltage pulses less than 1 mV high and 1 picosecond wide, with device resistances of a few ohms. As the technology has developed, it has become necessary to develop multi-chip modules (MCM), where these fast voltage pulses pass between superconducting chips on a superconducting carrier. To be practical, such an MCM must be both robust and reliable for all high-speed links in the package.
Superconducting circuits as currently implemented typically have a lower functional density than their more evolved silicon semiconductor counterparts, and therefore achieving complex functionality may require multiple wafers. Superconducting circuits dissipate small amounts of power, and therefore the function of the substrate is principally to provide mechanical support and electrical pathways, and far less to provide effective dissipation of operating power. During cooldown to cryogenic temperatures, the MCM is typically mounted in a vacuum, and therefore the thermal path for cooling is generally through the supporting substrate.
A standard technique for superconducting MCMs has been developed in the prior art, based on indium-tin solder reflow. The In—Sn alloy was chosen since it melts at a very low temperature, less than 200 C. First, a superconducting chip with gold contacts is dipped in a bath of molten solder, and In—Sn droplets attach to the gold contacts and cool to form solid bumps. The chip is then carefully aligned so that these solder bumps are directly above corresponding gold contacts in the chip carrier. Then, the assembly is carefully heated to remelt the solder bumps, which then flow to wet the gold contacts on the carrier (“solder reflow”). The assembly is then clamped and cooled down to room temperature. The resulting MCM is then mounted in a cryogenic package and cooled to below 9 K for high-speed testing. Devices made in this way have demonstrated transmission of high-speed pulses up to about 100 GHz. K. E. Yokoyama, G. Akerling, A. D. Smith, and M. Wire, “Robust Superconducting Die Attach Process”, IEEE Trans. Applied Supercond., VOL. 7, NO. 2 (June 1997), pp. 2631-2634, describes In—Sn reflow (<140 C) solder bonds for superconducting MCMs using flip chip technology, i.e., a controlled collapse micro-solder reflow technique. See also, U.S. Pat. No. 5,920,464, (Reworkable microelectronic multi-chip module, Yokoyama); U.S. Pat. No. 6,032,852 (Reworkable microelectronic multi-chip module, Yokoyama), U.S. Pat. No. 6,050,476 (Reworkable microelectronic multi-chip module, Yokoyama), U.S. Pat. No. 6,216,941 (Method for forming high frequency connections to high temperature superconducting circuits, Yokoyama), each of which is expressly incorporated herein by reference. However, the existing techniques for die attachment for superconducting MCMs, including Yokoyama et al., are not adequate for the demanding ambient conditions these systems must endure. For example, modules constructed using the reflow technique according to Yokoyama et al. tend to fail under vibration, and especially ultrasonic vibration. The reliability of the bond achieved by the In—Sn solder-reflow method is very weak, with poor adhesion, and the contacts break easily with thermal cycling and handling. Furthermore, the necessary wetting during the reflow process becomes less reliable as the contact area decreases, particularly for sizes of 50 microns or less. This is unacceptable for packaging of chips with many small contacts.
When using superconducting electronics, the ability to support high data rate communications, both within a wafer, and between wafers, is critical. For example, a target specification is to provide clock and data links between receiver front ends and subsequent digital signal processing circuits at rates above 40 Gbps. Such systems find application in high bandwidth communications systems and processing circuits, which may require location in the field using a cryocooler, where environmental stresses are apparent. Thus, an improved multichip module fabrication technique with improved vibrational tolerance is desired.
Differential thermal expansion is well known to create problems in stressing glued connections. See, Hsieh (U.S. Pat. No. 6,605,491), expressly incorporated herein by reference, which discusses bonding a silicon chip to a polymeric substrate, and in particular thermal stress issues over a range of −55 C and +125 C, using adhesives generally having a high viscosity. Such thermal stress can cause bowing in flexible substrates, and flaking or cracking of the adhesive in rigid substrates. See also, U.S. Pat. No. 6,919,642. These problems would be much worse for temperature variations from above room temperature to near absolute zero, a range of over 300K. It is also well known that many materials (especially most polymers) become weak and brittle at cryogenic temperatures.
U.S. App. 20040214377 and EP 1,473,769 entitled “Low thermal expansion adhesives and encapsulants for cryogenic and high power density electronic and photonic device assembly and packaging”, expressly incorporated herein by reference, adhesives, with a high viscosity, for bonding electronic device in which small particles with a negative coefficient of thermal expansion (CTE) are added to produce a filled adhesive with small net CTE to match the wafers to be bonded, in order to prevent delamination due to stress at cryogenic temperatures.
The present invention provides a multichip module, and method of fabrication thereof, wherein a non-conductive adhesive is employed to fasten wafers to the substrate and maintain alignment between compression bonded contacts. While solder-type materials may be used as the contact material, reflow is not required, thus enhancing rework ability. Other contact materials may also be used, for example gold studs. Kaplan, S. B. Dotsenko, V. Tolpygo, D., “High-Speed Experimental Results for an Adhesive-Bonded Superconducting Multi-Chip Module”, IEEE Transactions on Applied Superconductivity, June 2007 (vol. 17(2), Part 1, pages: 971-974), expressly incorporated herein by reference.
According to one aspect of the invention, the chip and substrate for a superconducting multichip module have matched CTEs, e.g., both are silicon wafers, so a thin layer of epoxy is able to effectively bond them, without bowing or delaminating, for example, over a broad range of temperatures, despite a CTE mismatch of the adhesive material itself, particularly if the adhesive is was specially chosen to maintain its strength at cryogenic temperatures. The preferred non-conductive adhesive is an epoxy that has suitable mechanical characteristics at cryogenic temperatures, to reliably bond the wafer to the substrate, when subject to normal operating conditions, which may include cryocooler vibrations, environmental vibrations (e.g., from cryocooler operation, mobile platforms), shocks, thermal cycling (room temperature to cryogenic temperatures) and the like.
The preferred adhesive generally has a low filler concentration, and typically has a coefficient of thermal expansion which does not match that of the wafer or substrate, which themselves typically have matching coefficients, and may be formed of the same material. The preferred adhesive has a relatively low viscosity, and during the multichip module formation process, forms a thin layer between the wafer and substrate. For example, it is preferred that the layer be less than about 100 microns thick. For thin layers, the mismatch of the coefficient of thermal expansion are generally tolerated without bond failure, while thicker layers may be subject to increased stresses and may be more subject to failure. The preferred adhesive layer thickness is between about 10 microns and 70 microns, representing, at the lower extreme, the average height of InSn solder bumps, and at the upper extreme, the height of gold stud contacts.
The uncured adhesive preferably has a low viscosity, e.g., less than about 10,000 cp, preferably less than about 1,000 cp, and more preferably less than about 500 cp, which allows the adhesive to be readily distributed over the bonding area without voids, while being readily squeezed from the intercontact space and not substantially redistributing forces at the respective contacts due to compression of the wafer and substrate during curing, which are intended to be plastically deformed during the process by the application of the pressure. The plastic deformation ensures a relatively high contact area, and permits accommodation for variations in the height of the various contacts, which extend above the surface and are generally placed on the devices during a plating or dipping process, and therefore are subject to statistical variations.
It has been found that a compression cycle between the wafer and substrate in the presence of uncured adhesive leads to a functional module which is tolerant of environmental vibration at room temperature and cryogenic temperatures, yet may under some conditions be intentionally separated and rebonded.
For example, it may be desirable to rework modules in which the active electronics fail, or cannot be fully tested before assembly into a module. This therefore allows an increase in yield.
Certain epoxy bonds may be weakened, for example, by a chemical reaction or solvent which then allows mechanical force to separate the wafer from the substrate, for example, by applying a shear force, or a tensile force. Thus, the adhesive may be selected to be susceptible to degradation to provide a reworkable bond, or resistant to degradation to provide a permanent bond.
This technique has been successfully tested in the fabrication of modules that utilize either In—Sn solder or gold-stud bonds for electrical contact between chip and carrier.
It is noted that, since it is not necessary to raise the temperature of the module to reflow temperatures, heat sensitive electronics may be used, and multiple layers of wafers may be provided to increase package density and decrease average lead distance without risk that relatively later processing steps will disturb earlier formed structures. See, U.S. Pat. No. 6,829,237 (Carson et al.), expressly incorporated herein by reference, which discloses a high speed multi-stage switching network formed from stacked switching layers, possibly including superconducting switch networks on stacked chips.
The technique is not necessarily limited to superconducting circuits, nor is the adhesive limited to epoxy materials. Therefore, a more general application is contemplated. For example, the technique may be used to form MCM's using conventional semiconductors which may cryocooled. Likewise, various reactive or UV or light curable adhesives may be employed, including various epoxies, peroxide, silane/siloxane, or isocyanate adhesives. The cure may be initiated by heat, light or other energy, moisture, or catalyst exposure, for example
Adhesives provide additional advantages over the soldered contacts within MCM's for the cryogenic case. On removing an MCM from the cryogenic vacuum environment, it is likely (unless special precautions are taken) that water vapor from the air will condense onto the chip. For a soldered MCM, this can lead to corrosion of the contacts and degradation of the solder bonds. In contrast, if the MCM, and especially the interconnecting electrical contacts are hermetically sealed with epoxy, no such entrance of water can take place. While an epoxy overcoat may be used in a reflow bonded MCM, the present technology makes the reflow process unnecessary, and thus permits use of temperature sensitive circuits, and allows use of contract materials which are non-eutectic.
While the epoxy bond is being formed, the metallic bumps are preferably deformed with applied pressure. This helps assure electrical contact if the bumps are non-uniform, and generally provides an increase in contact surface area. As the epoxy cures, it preferably shrinks, maintaining the contacts under compressive strain. As the epoxy is cooled to cryogenic temperatures, it shrinks a bit further (more than the substrate or metallic bump), making the electrical contacts even more secure. Therefore, a preferred adhesive has a small but defined amount of shrinkage upon curing, and has a larger positive coefficient of thermal expansion than the chip and substrate materials, which are, for example, silicon wafers. Preferably, the chip and substrate have the same coefficient of thermal expansion, thus avoiding mismatch and shear forces within or across the adhesive boundary.
It is therefore an object to provide a method for electrically interconnecting two substrates, each having a corresponding set of preformed electrical contacts, comprising providing a liquid curable adhesive over the set of contacts of a first substrate; aligning the set of electrical contacts of the second substrate with the set of electrical contacts of the first substrate; compressing the sets of electrical contacts of the first and second substrate to displace the liquid curable adhesive and provide electrical communication between the respective sets of electrical contacts; and curing the liquid curable adhesive to form a solid matrix which maintains a relative compression between the respective sets of electrical contacts. Electrical conductivity between the respective sets of electrical contacts is preferably maintained over at least a range of temperatures between about +50 C to −175 C.
It is a further object to provide a method for forming a multichip module having at least two electrically interconnected substrates, at least one of the substrates having a deformable metal in a contact region, comprising providing a liquid curable adhesive over the set of contacts of at least a first of the substrates; aligning respective sets of electrical contacts of the first and a second substrate; compressing the sets of electrical contacts of the first and second substrate to deform the deformable metal and exclude liquid curable adhesive from the intercontact zone; and curing the liquid curable adhesive to form a solid matrix while generating a prestress to maintain a compressive force between the respective sets of electrical contacts. The cured adhesive preferably maintains mutual compression and electrical conductivity between the corresponding sets of predefined electrical contacts over at least a range of temperatures between about +50 C to −175 C. A superconducting device on at least one of the electrically interconnected substrates may then be operated at cryogenic temperatures, with high speed, narrow pulse signals reliably communicated to the other substrate.
It is a still further object to provide a module having electrical interconnections along predefined paths between at least two substrates, comprising first and second substrates, each having corresponding sets of predefined electrical contacts; and a cured adhesive surrounding the sets of predefined electrical contacts, generating a compressive force between the first and second substrates, wherein the corresponding sets of predefined electrical contacts are not thermally welded together, and are maintained in relative compression by the cured adhesive surrounding the sets of predefined electrical contacts.
Preferably, the coefficients of thermal expansion of the first and second substrates are matched, and less than the coefficient of thermal expansion of the cured adhesive, to ensure that when cooled, the contacts do not separate.
The liquid curable adhesive may comprise an epoxy adhesive, preferably being substantially unfilled, and preferably having a viscosity at 20 C of less than about 1000 cp. The adhesive preferably maintains its mechanical integrity down to cryogenic temperatures, and preferably has a positive coefficient of thermal expansion, such that if it is cured at elevated temperatures, a compressive prestress is generated after cooling. The coefficient of thermal expansion of the adhesive is preferably greater than that of the substrate, for similar reasons. Likewise, the adhesive preferably has a degree of shrinkage during curing, which will also generate a compressive prestress. The adhesive may be cured, for example, at a temperature of between about 40 C and 100 C.
The compressing preferably imposes a pressure of between about 5-100 gm per contact pair. The compression preferably plastically deforms a metal on each of the set of contacts of at least one of the first and second substrate, and for example may deform metal provided on each of the corresponding contacts. The set of contacts may include at least 20 contacts, and for example, may have 20, 40, 80 or more contacts, in addition to a set of ground contacts which are useful in Josephson junction-containing integrated circuits, and the process for forming the module is designed to ensure that each of the contacts of the respective sets forms a conductive path between the first and second substrate.
Single-chip modules (SCMs) consisting of 5-mm×5-mm chips bonded to 1-cm×1-cm silicon carriers with Sn—In eutectic solder, using a well-practiced solder-reflow die-attach method. K. E. Yokoyama, G. Akerling, A. D. Smith, and M. Wire, “Robust superconducting die attach process,” IEEE Trans. Appl. Supercond., vol. 7, pp. 2631-2634 (June 1997) (“Yokoyama”). Very impressive high-speed data were obtained with these samples. After several thermal cycles, the contact pads were cleaned of an SCM carrier by immersing it in acetone and placing it in an ultrasonic bath. The chip immediately detached from its carrier. Solder was still attached on both the chip and carrier pads. Likewise, using an ultrasonic probe to excite sound waves in another carrier lead to similar results: the chip detached. Therefore, while reflow soldering techniques for fabricating MCM's generally yield acceptable electrical performance, their mechanical performance is inferior.
The 5 mm2 test chip fabricated with HYPRES' (Elmsford, N.Y.) 1-kA/cm2 process (D. Yohannes, S. Sarwana, S. K. Tolpygo, A. Sahu, Y. A. Polyakov, and V. K. Semenov, “Characterization of HYPRES' 4.5 kA/cm2 & 8 kA/cm2Nb/AlOx/Nb fabrication processes,” IEEE Trans. Appl. Supercond., vol. 15, pp. 90-93, June 2005.) and having InSn bumps formed by dipping the chip in a molten solder bath, was placed over, and aligned with corresponding contacts on a 1 cm2 carrier, and the aligned structure heated to a reflow temperature. Each transmitter launches a pulse train onto a 1.6-Ω PTL (passive transmission line), off chip through a bump, back on chip through another bump.
Experimental results for chip-to-chip data communications on a superconducting Multi-Chip-Module (MCM) using a novel fabrication technique are provided. The MCM was produced using a non-conductive adhesive to bond a 5-mm×5-mm test chip to a 1-cm×1-cm carrier. The module demonstrated superior mechanical stability and protection from its environment during thermal cycling. The MCM also retained its electrical properties after multiple thermal cycling from room temperature to 4 K. The superconducting circuitry successfully passed single-flux quanta at rates exceeding 50 Gbps, with error rates lower than 5×10−14 at 36 Gbps using 100-micrometer diameter In—Sn solder bumps, and lower than 6×10−14 at 57 Gbps using 30-micrometer-diameter solder bumps. Although this was demonstrated with a single chip, passing the signal off the chip to the carrier and back again is equivalent to communication between two chips on a larger carrier. The extension to more than two chips is also evident.
One embodiment of the invention is intended to improve system assembly time and yield by culling known good die and permanently bonding them to the carrier. Accordingly, chips must first be tested on a test carrier, chips must be demounted from the test carrier and remounted on the MCM system carrier, and the adhesive used for initial chip testing must provide a strong bond while enabling rework.
The solder bumps were produced by dunking a carrier into a bath of liquid solder, as shown in
Solder bump heights were measured with a Veeco model NT1100 profilometer. Several fluxes were tried, but the technique frequently yielded bump height variations of as much as 50% for 5 μm high bumps, thereby reducing yield. Modules produced with gold stud bumps provided by Palomar Technologies produced superior bump uniformity (±1 μm 1σ), and excellent electrical contact.
The adhesive, shown in
Thermal cycling experiments were conducted for these modules in which the SCM was cycled between 4K and room temperature more than 10 times without any mechanical or electrical failure. These experiments were deliberately carried out on under harsh conditions, in which the SCM was subject to moisture condensation and quick changes in temperature.
The re-workable adhesive method does not result in perfect yields subsequent to the first bonding, due to difficulty in removing adhesive residues. Some chips could, however, be rebonded.
A preferred permanent non-conductive adhesive is Tra-Bond 2115, which has a relatively low viscosity of 250 cp. Tra-Bond 2151, with a viscosity of 40,000 cp, on the other hand, was too viscous, and it was difficult to squeeze out the adhesive sufficiently to get good electrical contact. The 2115 lacks filler, whereas the 2151 has added alumina and silica filler, which increases the viscosity and also the thermal conductivity. The process requires that a pressure be applied between the wafer and substrate to displace liquid adhesive from the contact region, to provide metal-to-metal contact, and further that the contacts be deformed to provide a large contact area per contact as shown in
As the preferred adhesives cure, small amount of shrinkage occurs. If the adhesive has a larger positive coefficient of thermal expansion than the wafer and substrate materials, then if the structures are heated during curing, and/or operated at reduced temperatures, a prestress will be imparted to the adhesive. Each of these advantageously increases the force placed between the respective pairs of electrical contacts, and therefore tend to maintain good electrical contact.
In order to accelerate curing of the epoxy, it may be heated. Without heating, curing takes about 24 hours at room temperature. Heating to 60 C in the alignment fixture permits effective curing to be achieved in about 2 hours. This heating also decreases the viscosity of the epoxy even further, enabling more effectively elimination of epoxy from between the electrical contacts, assuring absence of an insulating layer.
The top passivating layer for both the chip and the substrate carrier is generally amorphous SiO2. The epoxy needs to wet this layer effectively, and thus the epoxy may be specially selected for this characteristic. Likewise, since it is not intended to maintain a layer between the metallic contacts, the epoxy may be selected to have a low wettability for the metal contacts, especially when compressed during curing.
In the case of a removable adhesive, for example to permit rework or to test wafers before final assembly, various materials may be used to weaken or degrade the epoxy. The preferred method for removing a frangible epoxy is ACF-X remover (Anisotropic Conductive Film), available from Ito America Inc., www.itousa.com, which is also used for flip chip applications. It is also based on epoxy-like polymers. ACF-X causes epoxy to crack so that it can be removed mechanically. This chemical worked on some other epoxies but not on Tra-Bond 2115, which provides a permanent bond.
When using the Tra-Bond 2115 epoxy, a 2 kg force was used for chips with In—Sn bumps. There are ˜200 bumps, thus a pressure of about 10 grams per bump was applied. With gold studs, a force of 60 grams per contact was employed.
The process for forming the MCM is shown in
The adhesive is specially chosen for these purposes. The final connections must be clean metallic contacts, with very low contact resistance. Any significant insulating residue on the contacts would degrade the signal propagation. Further, the adhesive must be compatible with repeated cycling down between room temperature and cryogenic temperatures without cracking or affecting the contact resistance.
An SFQ racetrack similar to that described in Y. Hashimoto, S. Yorozu, and T. Miyazaki, “Transmission of single flux quantum between superconductor chips,” Appl. Phys. Lett., vol. 86, pp. 072502-1-072502-3 (February 2005), was employed to test the performance of the adhesive bonded multichip module. With this technique, one monitors the average voltage while a definite number of flux quanta circumnavigates a loop. This is an excellent method of determining the maximum sustainable data rate in circuits with PTLs and chip-to-chip (C2C) bump connections. A test chip was designed using a target critical current density of 4.5 kA/cm2, and increased the DFQ matching resistor and PTL impedance to 3Ω. The SCMs were assembled with adhesive mechanical bonds.
The racetrack experiment enables a specific number of flux quanta to enter the loop, and to remain circulating while the switch is on. The racetrack speed can be varied by changing the bias of a variable delay line (VDL), which contains a 70-junction Josephson transmission line (JTL). The average voltage is nΦ0/Δt, where Δt is the sum of the circuit delay (mostly in the VDL), and the time to pass through the PTL and bump transitions.
The circuit was simulated, and estimated as approximately 340 ps, or 6.1 μV/Φ0 at nominal bias. While the switch is off, there is no observed change in the average voltage. When the switch is turned on, a ramped input voltage is applied to a DC/SFQ converter. As each flux quantum is popped into the loop, the average voltage increases by approximately 6 μV, as expected. (The voltage to be measured is amplified by an Ithaco Model 1201 low noise preamplifier, Ithaco, Inc. PO Box 6437, Ithaca N.Y. 14851-6437.)
Further increases in the number of flux quanta eventually results in a marked decrease in the step height, indicating a significant increase in the bit error rate (BER). For the adhesive bonded multichip module, the linearity holds up to ˜90 μV, corresponding to a data rate of approximately 43 Gbps.
A quantitative estimate of the bit error rate can be obtained by observing how long the average voltage stays on the same voltage step. A voltage of 72 μV could be sustained for more than 10 minutes, indicating that the BER is less than 5×10−14 at a data rate of 36 Gbps.
Initial results for an experiment using 30 μm solder bumps with signal bumps spaced 80 μm apart and five nearest-neighbor ground bumps show for n=20Φ0 the maximum sustainable voltage was 119 μV, corresponding to a maximum data rate of 57.5 Gbps. The measured BER was less than 6×10−14 at this data rate.
To increase data rates, bump geometries with more closely spaced 30 μm bumps may be used, for example. The chip-immersion bump-deposition technique often results in unacceptable bump-height variations. Therefore, other bumping methods, such as vacuum-deposited solder bumps, electrographic techniques, and gold stud bumps may be employed, that will assure better uniformity.
The adhesive bonding method for multichip modules may be used, for example, to form a multichip implementation of a digital autocorrelation circuit for a received radio frequency analog signal as shown in
The present invention therefore provides a method for fabricating an MCM by providing a substrate having preformed electrical contacts, placing a liquid curable adhesive over the contacts, placing a chip having corresponding electrical contacts in alignment with the electrical contacts of the substrate to form a liquid curable adhesive-filled gap there-between, compressing the chip and substrate to displace the liquid curable adhesive between the contacts and form electrical pathways, and curing the liquid curable adhesive to form a solid which maintains the electrical pathways.
The present invention further provides an MCM which has a substrate and at least one chip in electrical communication therewith through corresponding sets of predefined electrical contacts, wherein the corresponding sets of predefined electrical contacts are not thermally welded together, and are maintained in relative compression by a cured adhesive surrounding the sets of predefined electrical contacts, which preferably maintains its substantive mechanical characteristics at cryogenic temperatures.
The present application is a Division of U.S. patent application Ser. No. 14/449,410, filed Aug. 1, 2014, now U.S. Pat. No. 9,647,194, issued May 9, 2017, which is a Continuation of U.S. patent application Ser. No. 13/243,016, filed Sep. 23, 2011, now U.S. Pat. No. 8,937,255, issued Jan. 20, 2015, which is a Division of U.S. patent application Ser. No. 11/840,931, filed Aug. 18, 2007, now U.S. Pat. No. 8,159,825, issued Apr. 17, 2012, which claims benefit of priority from U.S. Provisional Patent Application No. 60/840,379, filed Aug. 25, 2006, the entirety of which are expressly incorporated herein by reference. The present application is a Division of U.S. patent application Ser. No. 11/840,931, filed Aug. 18, 2007, and claims benefit of priority from U.S. Provisional Patent Application No. 60/840,379, filed Aug. 25, 2006, the entirety of which are expressly incorporated herein by reference.
The invention was produced under U.S. Army CERDEC SBIR Contract W15P7T-04-C-K605, and the government has certain rights herein. The invention described herein may be manufactured, used, imported, sold, and licensed by or for the Government of the United States of America without the payment of any royalty thereon or therefor.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4297607 | Lynnworth et al. | Oct 1981 | A |
| 4451119 | Meyers et al. | May 1984 | A |
| 4500860 | Vermilyea | Feb 1985 | A |
| 4554731 | Borden | Nov 1985 | A |
| 4580404 | Pez et al. | Apr 1986 | A |
| 4739633 | Faris | Apr 1988 | A |
| 4791298 | Dunn et al. | Dec 1988 | A |
| 4922242 | Parker | May 1990 | A |
| 4971416 | Khanarian et al. | Nov 1990 | A |
| 4971949 | Laskaris et al. | Nov 1990 | A |
| 5015622 | Ward et al. | May 1991 | A |
| 5036305 | Dederer et al. | Jul 1991 | A |
| 5075553 | Noble et al. | Dec 1991 | A |
| 5095216 | Walsh | Mar 1992 | A |
| 5116331 | Chapman | May 1992 | A |
| 5170930 | Dolbear et al. | Dec 1992 | A |
| 5212626 | Bell et al. | May 1993 | A |
| 5239261 | Murdock et al. | Aug 1993 | A |
| 5246782 | Kennedy et al. | Sep 1993 | A |
| 5258573 | Sugioka et al. | Nov 1993 | A |
| 5270601 | Rigney, II | Dec 1993 | A |
| 5318666 | Elkind et al. | Jun 1994 | A |
| 5369387 | Woods et al. | Nov 1994 | A |
| 5420102 | Harshavardhan et al. | May 1995 | A |
| 5428190 | Stopperan | Jun 1995 | A |
| 5432666 | Hodge | Jul 1995 | A |
| 5445308 | Nelson | Aug 1995 | A |
| 5457086 | Rigney, II | Oct 1995 | A |
| 5472510 | Harshavardhan et al. | Dec 1995 | A |
| 5476719 | Sandell et al. | Dec 1995 | A |
| 5488082 | Dietz et al. | Jan 1996 | A |
| 5488504 | Worchesky et al. | Jan 1996 | A |
| 5494033 | Buchanan et al. | Feb 1996 | A |
| 5502667 | Bertin et al. | Mar 1996 | A |
| 5504138 | Jacobs | Apr 1996 | A |
| 5536685 | Burward-Hoy | Jul 1996 | A |
| 5543662 | Burward-Hoy | Aug 1996 | A |
| 5578226 | Chan et al. | Nov 1996 | A |
| 5585624 | Asatourian et al. | Dec 1996 | A |
| 5599733 | Wan et al. | Feb 1997 | A |
| 5600140 | Asatourian | Feb 1997 | A |
| 5610389 | Asatourian | Mar 1997 | A |
| 5628031 | Kikinis et al. | May 1997 | A |
| 5629838 | Knight et al. | May 1997 | A |
| 5631447 | Smith et al. | May 1997 | A |
| 5639989 | Higgins, III | Jun 1997 | A |
| 5648320 | Jacobs | Jul 1997 | A |
| 5650230 | Huang et al. | Jul 1997 | A |
| 5657634 | Woods | Aug 1997 | A |
| 5678287 | Smith et al. | Oct 1997 | A |
| 5702984 | Bertin et al. | Dec 1997 | A |
| 5708297 | Clayton | Jan 1998 | A |
| 5714760 | Asatourian | Feb 1998 | A |
| 5716713 | Zsamboky et al. | Feb 1998 | A |
| 5731633 | Clayton | Mar 1998 | A |
| 5751553 | Clayton | May 1998 | A |
| 5774032 | Herd et al. | Jun 1998 | A |
| 5785754 | Yamamoto et al. | Jul 1998 | A |
| 5786629 | Faris | Jul 1998 | A |
| 5814885 | Pogge et al. | Sep 1998 | A |
| 5846850 | Dreiske et al. | Dec 1998 | A |
| 5866044 | Saraf et al. | Feb 1999 | A |
| 5880068 | Gamble et al. | Mar 1999 | A |
| 5920464 | Yokoyama et al. | Jul 1999 | A |
| 5932345 | Furutani et al. | Aug 1999 | A |
| 5959340 | Wan et al. | Sep 1999 | A |
| 5998868 | Pogge et al. | Dec 1999 | A |
| 6017496 | Nova et al. | Jan 2000 | A |
| 6025638 | Pogge et al. | Feb 2000 | A |
| 6030853 | Tregilgas et al. | Feb 2000 | A |
| 6032852 | Yokoyama et al. | Mar 2000 | A |
| 6033764 | Balents et al. | Mar 2000 | A |
| 6047602 | Lynnworth | Apr 2000 | A |
| 6049975 | Clayton | Apr 2000 | A |
| 6050478 | Yokoyama et al. | Apr 2000 | A |
| 6066513 | Pogge et al. | May 2000 | A |
| 6087199 | Pogge et al. | Jul 2000 | A |
| 6091145 | Clayton | Jul 2000 | A |
| 6111005 | Dietz et al. | Aug 2000 | A |
| 6114738 | Tregilgas et al. | Sep 2000 | A |
| 6118284 | Ghoshal et al. | Sep 2000 | A |
| 6121689 | Capote et al. | Sep 2000 | A |
| 6127203 | Wan et al. | Oct 2000 | A |
| 6140402 | Dietz et al. | Oct 2000 | A |
| 6146912 | Tighe et al. | Nov 2000 | A |
| 6184477 | Tanahashi | Feb 2001 | B1 |
| 6190378 | Jarvinen | Feb 2001 | B1 |
| 6194726 | Pi et al. | Feb 2001 | B1 |
| 6197222 | Saraf et al. | Mar 2001 | B1 |
| 6214733 | Sickmiller | Apr 2001 | B1 |
| 6216941 | Yokoyama et al. | Apr 2001 | B1 |
| 6232659 | Clayton | May 2001 | B1 |
| 6284085 | Gwo | Sep 2001 | B1 |
| 6284089 | Anderson et al. | Sep 2001 | B1 |
| 6329139 | Nova et al. | Dec 2001 | B1 |
| 6333553 | Pogge | Dec 2001 | B1 |
| 6355976 | Faris | Mar 2002 | B1 |
| 6359540 | Spiller et al. | Mar 2002 | B1 |
| 6417514 | Eneim et al. | Jul 2002 | B1 |
| 6460721 | Bowen et al. | Oct 2002 | B2 |
| 6544698 | Fries | Apr 2003 | B1 |
| 6548176 | Gwo | Apr 2003 | B1 |
| 6548325 | Pogge | Apr 2003 | B2 |
| 6562127 | Kud et al. | May 2003 | B1 |
| 6565942 | Anderson et al. | May 2003 | B2 |
| 6605491 | Hsieh et al. | Aug 2003 | B1 |
| 6610351 | Shchegolikhin et al. | Aug 2003 | B2 |
| 6621957 | Sullivan et al. | Sep 2003 | B1 |
| 6653124 | Freeman | Nov 2003 | B1 |
| 6675600 | Robillard et al. | Jan 2004 | B1 |
| 6679937 | Kodas et al. | Jan 2004 | B1 |
| 6693162 | Tsuji et al. | Feb 2004 | B2 |
| 6711421 | Wang et al. | Mar 2004 | B2 |
| 6712996 | Wu et al. | Mar 2004 | B2 |
| 6728113 | Knight et al. | Apr 2004 | B1 |
| 6734538 | Sturcken | May 2004 | B1 |
| 6764796 | Fries | Jul 2004 | B2 |
| 6775901 | Lee et al. | Aug 2004 | B1 |
| 6781287 | Dam et al. | Aug 2004 | B1 |
| 6829237 | Carson et al. | Dec 2004 | B2 |
| 6834380 | Khazei | Dec 2004 | B2 |
| 6873235 | Fiske et al. | Mar 2005 | B2 |
| 6916719 | Knight et al. | Jul 2005 | B1 |
| 6919642 | Hsieh et al. | Jul 2005 | B2 |
| 6925316 | Rey | Aug 2005 | B2 |
| 6933722 | Tsuda et al. | Aug 2005 | B2 |
| 6942018 | Goodson et al. | Sep 2005 | B2 |
| 6975944 | Zenhausern | Dec 2005 | B1 |
| 6988306 | Koenigsmann et al. | Jan 2006 | B2 |
| 6991024 | Goodson et al. | Jan 2006 | B2 |
| 6998178 | Apen et al. | Feb 2006 | B2 |
| 6998219 | Fries | Feb 2006 | B2 |
| 7016569 | Mule et al. | Mar 2006 | B2 |
| 7019391 | Tran | Mar 2006 | B2 |
| 7049005 | Apen et al. | May 2006 | B2 |
| 7049049 | Fries | May 2006 | B2 |
| 7131486 | Goodson et al. | Nov 2006 | B2 |
| 7134486 | Santiago et al. | Nov 2006 | B2 |
| 7185697 | Goodson et al. | Mar 2007 | B2 |
| 7253078 | Nguyen et al. | Aug 2007 | B1 |
| 7262444 | Fillion et al. | Aug 2007 | B2 |
| 7271877 | Fries | Sep 2007 | B2 |
| 7298953 | Loni et al. | Nov 2007 | B2 |
| 7316725 | Kodas et al. | Jan 2008 | B2 |
| 7330369 | Tran | Feb 2008 | B2 |
| 7334630 | Goodson et al. | Feb 2008 | B2 |
| 7375417 | Tran | May 2008 | B2 |
| 7393699 | Tran | Jul 2008 | B2 |
| 7460367 | Tracewell et al. | Dec 2008 | B2 |
| 7468238 | Fries | Dec 2008 | B2 |
| 7489537 | Tran | Feb 2009 | B2 |
| 7512297 | Farah | Mar 2009 | B2 |
| 7522417 | Pautsch et al. | Apr 2009 | B2 |
| 7554347 | Mule et al. | Jun 2009 | B2 |
| 7572573 | Fries | Aug 2009 | B2 |
| 7573561 | Fries | Aug 2009 | B2 |
| 7625420 | Kodas et al. | Dec 2009 | B1 |
| 7630227 | Tran | Dec 2009 | B2 |
| 7682700 | Sambasivan et al. | Mar 2010 | B2 |
| 7719195 | DeVincentis et al. | May 2010 | B2 |
| 7811666 | Dry | Oct 2010 | B2 |
| 7829386 | Fillion et al. | Nov 2010 | B2 |
| 7864560 | Tran | Jan 2011 | B2 |
| 7869221 | Knight et al. | Jan 2011 | B2 |
| 7880402 | DeVincentis et al. | Feb 2011 | B2 |
| 7923801 | Tian et al. | Apr 2011 | B2 |
| 7959720 | Deckman et al. | Jun 2011 | B2 |
| 7994349 | Kawabata et al. | Aug 2011 | B2 |
| 8004057 | Tian et al. | Aug 2011 | B2 |
| 8013412 | Tian | Sep 2011 | B2 |
| 8084762 | Tran | Dec 2011 | B2 |
| 8107777 | Farah | Jan 2012 | B2 |
| 8143717 | Medeiros, III | Mar 2012 | B2 |
| 8159825 | Dotsenko | Apr 2012 | B1 |
| 8169152 | DeVincentis et al. | May 2012 | B2 |
| 8174259 | Hattersley et al. | May 2012 | B2 |
| 8220539 | Vinegar et al. | Jul 2012 | B2 |
| 8234835 | Dye et al. | Aug 2012 | B2 |
| 8247050 | McCrea et al. | Aug 2012 | B2 |
| 8256233 | Boyden et al. | Sep 2012 | B2 |
| 8256512 | Stanecki | Sep 2012 | B2 |
| 8261832 | Ryan | Sep 2012 | B2 |
| 8267170 | Fowler et al. | Sep 2012 | B2 |
| 8267185 | Ocampos et al. | Sep 2012 | B2 |
| 8269260 | Tian et al. | Sep 2012 | B2 |
| 8269302 | Tian et al. | Sep 2012 | B2 |
| 8274126 | Tian et al. | Sep 2012 | B2 |
| 8281861 | Nguyen et al. | Oct 2012 | B2 |
| 8297468 | DeLay | Oct 2012 | B1 |
| 8303176 | Kochergin | Nov 2012 | B2 |
| 8327932 | Karanikas et al. | Dec 2012 | B2 |
| 8329557 | Brailove et al. | Dec 2012 | B2 |
| 8353347 | Mason | Jan 2013 | B2 |
| 8394473 | McCrea et al. | Mar 2013 | B2 |
| 8394507 | Tomantschger et al. | Mar 2013 | B2 |
| 8434555 | Bos et al. | May 2013 | B2 |
| 8441090 | Tian et al. | May 2013 | B2 |
| 8441329 | Thom et al. | May 2013 | B2 |
| 8448707 | Bass | May 2013 | B2 |
| 8449971 | Hougham et al. | May 2013 | B2 |
| 8450716 | Tran | May 2013 | B2 |
| 8466533 | Tian et al. | Jun 2013 | B2 |
| 8476727 | Tian et al. | Jul 2013 | B2 |
| 8482093 | Tian et al. | Jul 2013 | B2 |
| 8485861 | Boyden et al. | Jul 2013 | B2 |
| 8511535 | Yang et al. | Aug 2013 | B1 |
| 8513758 | Tian et al. | Aug 2013 | B2 |
| 8525287 | Tian et al. | Sep 2013 | B2 |
| 8530940 | Tian et al. | Sep 2013 | B2 |
| 8530991 | Tian et al. | Sep 2013 | B2 |
| 8530992 | Tian et al. | Sep 2013 | B2 |
| 8530993 | Tian et al. | Sep 2013 | B2 |
| 8545856 | Boyden et al. | Oct 2013 | B2 |
| 8546853 | Tian et al. | Oct 2013 | B2 |
| 8558286 | Tian et al. | Oct 2013 | B2 |
| 8563402 | Henley | Oct 2013 | B2 |
| 8587915 | Anthony et al. | Nov 2013 | B2 |
| 8629076 | Worsley et al. | Jan 2014 | B2 |
| 8638106 | Gianchandani et al. | Jan 2014 | B2 |
| 8643064 | Tian et al. | Feb 2014 | B2 |
| 8653497 | Tran | Feb 2014 | B2 |
| 8710944 | Stautner et al. | Apr 2014 | B2 |
| 8721959 | Dry | May 2014 | B2 |
| 8745761 | Mirkin et al. | Jun 2014 | B2 |
| 8748504 | Elimelech et al. | Jun 2014 | B2 |
| 8753417 | DellaCorte et al. | Jun 2014 | B1 |
| 8753813 | Mirkin et al. | Jun 2014 | B2 |
| 8804358 | Dotsenko | Aug 2014 | B1 |
| 8835387 | Chiang et al. | Sep 2014 | B2 |
| 8846191 | Hougham et al. | Sep 2014 | B2 |
| 8847424 | Rebsdorf et al. | Sep 2014 | B2 |
| 8851170 | Ayodele et al. | Oct 2014 | B2 |
| 8872290 | Hoofman et al. | Oct 2014 | B2 |
| 8881806 | Xie et al. | Nov 2014 | B2 |
| 8906515 | Tomantschger et al. | Dec 2014 | B2 |
| 8911878 | Tomantschger et al. | Dec 2014 | B2 |
| 8916248 | McCrea et al. | Dec 2014 | B2 |
| 8922081 | Hull et al. | Dec 2014 | B2 |
| 8926933 | Zhang et al. | Jan 2015 | B2 |
| 8937255 | Dotsenko | Jan 2015 | B1 |
| 8961853 | Mirkin et al. | Feb 2015 | B2 |
| 9019679 | Anthony et al. | Apr 2015 | B2 |
| 9022118 | Burns | May 2015 | B2 |
| 9034079 | Deckman et al. | May 2015 | B2 |
| 9036319 | Anthony et al. | May 2015 | B2 |
| 9042999 | Stevenson et al. | May 2015 | B2 |
| 9046081 | Rebsdorf et al. | Jun 2015 | B2 |
| 9050251 | Boyden et al. | Jun 2015 | B2 |
| 9051829 | Xie et al. | Jun 2015 | B2 |
| 9054094 | Anthony et al. | Jun 2015 | B2 |
| 9054162 | Fischer et al. | Jun 2015 | B2 |
| 9056047 | Boyden et al. | Jun 2015 | B2 |
| 9060931 | Boyden et al. | Jun 2015 | B2 |
| 9129728 | Edbury et al. | Sep 2015 | B2 |
| 9140283 | Lukowski, Jr. | Sep 2015 | B2 |
| 9165979 | Tran | Oct 2015 | B2 |
| 9174842 | Nair et al. | Nov 2015 | B2 |
| 9196781 | Tian et al. | Nov 2015 | B2 |
| 9215894 | Kizer et al. | Dec 2015 | B2 |
| 9273302 | Chiang et al. | Mar 2016 | B2 |
| 9372397 | Mirkin et al. | Jun 2016 | B2 |
| 9373592 | Anthony et al. | Jun 2016 | B2 |
| 9405164 | Xu | Aug 2016 | B2 |
| 9431368 | Enquist et al. | Aug 2016 | B2 |
| 9453814 | Tran | Sep 2016 | B2 |
| 9520180 | Mukhanov et al. | Dec 2016 | B1 |
| 9564414 | Enquist et al. | Feb 2017 | B2 |
| 9647194 | Dotsenko | May 2017 | B1 |
| 20020038687 | Anderson et al. | Apr 2002 | A1 |
| 20020053573 | Bowen et al. | May 2002 | A1 |
| 20020055578 | Wu et al. | May 2002 | A1 |
| 20020093104 | Goldmann | Jul 2002 | A1 |
| 20020157785 | Anderson et al. | Oct 2002 | A1 |
| 20030062149 | Goodson et al. | Apr 2003 | A1 |
| 20030085024 | Santiago et al. | May 2003 | A1 |
| 20030164231 | Goodson et al. | Sep 2003 | A1 |
| 20030192449 | Fiske et al. | Oct 2003 | A1 |
| 20040082482 | Rey | Apr 2004 | A1 |
| 20040089442 | Goodson et al. | May 2004 | A1 |
| 20040214377 | Starkovich et al. | Oct 2004 | A1 |
| 20040240831 | Loni et al. | Dec 2004 | A1 |
| 20040251901 | Tsuda et al. | Dec 2004 | A1 |
| 20050014313 | Workman et al. | Jan 2005 | A1 |
| 20050098299 | Goodson et al. | May 2005 | A1 |
| 20050106384 | Sambasivan et al. | May 2005 | A1 |
| 20050115045 | Koenigsmann et al. | Jun 2005 | A1 |
| 20050205241 | Goodson et al. | Sep 2005 | A1 |
| 20060014309 | Sachdev et al. | Jan 2006 | A1 |
| 20060056759 | Farah | Mar 2006 | A1 |
| 20060249705 | Wang et al. | Nov 2006 | A1 |
| 20070087198 | Dry | Apr 2007 | A1 |
| 20070222352 | DeVincentis et al. | Sep 2007 | A1 |
| 20080089637 | Farah | Apr 2008 | A1 |
| 20080170982 | Zhang et al. | Jul 2008 | A1 |
| 20080218980 | Tracewell et al. | Sep 2008 | A1 |
| 20090152664 | Klem et al. | Jun 2009 | A1 |
| 20090201016 | Hattersley et al. | Aug 2009 | A1 |
| 20100035052 | Farah | Feb 2010 | A1 |
| 20100089584 | Burns | Apr 2010 | A1 |
| 20100089586 | Stanecki | Apr 2010 | A1 |
| 20100096137 | Nguyen et al. | Apr 2010 | A1 |
| 20100101783 | Vinegar et al. | Apr 2010 | A1 |
| 20100101784 | Vinegar et al. | Apr 2010 | A1 |
| 20100101794 | Ryan | Apr 2010 | A1 |
| 20100108310 | Fowler et al. | May 2010 | A1 |
| 20100108379 | Edbury et al. | May 2010 | A1 |
| 20100111846 | Boyden et al. | May 2010 | A1 |
| 20100113614 | Boyden et al. | May 2010 | A1 |
| 20100113615 | Boyden et al. | May 2010 | A1 |
| 20100147521 | Xie et al. | Jun 2010 | A1 |
| 20100147522 | Xie et al. | Jun 2010 | A1 |
| 20100155070 | Roes et al. | Jun 2010 | A1 |
| 20100187404 | Klem et al. | Jul 2010 | A1 |
| 20100187408 | Klem et al. | Jul 2010 | A1 |
| 20100206570 | Ocampos et al. | Aug 2010 | A1 |
| 20100224368 | Mason | Sep 2010 | A1 |
| 20100236686 | Sambasivan et al. | Sep 2010 | A1 |
| 20100252698 | Dye et al. | Oct 2010 | A1 |
| 20100257871 | Venkatasubramanian et al. | Oct 2010 | A1 |
| 20100258265 | Karanikas et al. | Oct 2010 | A1 |
| 20100258290 | Bass | Oct 2010 | A1 |
| 20100258291 | Everett de St. Remey et al. | Oct 2010 | A1 |
| 20100258309 | Ayodele et al. | Oct 2010 | A1 |
| 20100270669 | Medeiros | Oct 2010 | A1 |
| 20100286791 | Goldsmith | Nov 2010 | A1 |
| 20100304063 | McCrea et al. | Dec 2010 | A1 |
| 20100304065 | Tomantschger et al. | Dec 2010 | A1 |
| 20100304171 | Tomantschger et al. | Dec 2010 | A1 |
| 20100308276 | Dry | Dec 2010 | A1 |
| 20100315000 | DeVincentis et al. | Dec 2010 | A1 |
| 20100317140 | Brailove et al. | Dec 2010 | A1 |
| 20110042084 | Bos et al. | Feb 2011 | A1 |
| 20110128010 | Gianchandani et al. | Jun 2011 | A1 |
| 20110133871 | Stautner et al. | Jun 2011 | A1 |
| 20110181184 | DeVincentis et al. | Jul 2011 | A1 |
| 20110280280 | Kochergin | Nov 2011 | A1 |
| 20110290786 | Hu et al. | Dec 2011 | A1 |
| 20110297815 | Tian et al. | Dec 2011 | A1 |
| 20110297915 | Tian et al. | Dec 2011 | A1 |
| 20110303897 | Tian et al. | Dec 2011 | A1 |
| 20110303898 | Tian et al. | Dec 2011 | A1 |
| 20110309236 | Tian et al. | Dec 2011 | A1 |
| 20110309238 | Tian et al. | Dec 2011 | A1 |
| 20110318562 | Dry | Dec 2011 | A1 |
| 20120000810 | Dry | Jan 2012 | A1 |
| 20120003463 | Dry | Jan 2012 | A1 |
| 20120009391 | Dry | Jan 2012 | A1 |
| 20120037789 | Tian et al. | Feb 2012 | A1 |
| 20120037887 | Tian et al. | Feb 2012 | A1 |
| 20120043455 | Tian et al. | Feb 2012 | A1 |
| 20120049045 | Tian et al. | Mar 2012 | A1 |
| 20120049311 | Tian et al. | Mar 2012 | A1 |
| 20120056074 | Tian et al. | Mar 2012 | A1 |
| 20120056075 | Tian et al. | Mar 2012 | A1 |
| 20120056076 | Tian et al. | Mar 2012 | A1 |
| 20120056160 | Tian et al. | Mar 2012 | A1 |
| 20120056289 | Tian et al. | Mar 2012 | A1 |
| 20120058624 | Henley | Mar 2012 | A1 |
| 20120128783 | Boyden et al. | May 2012 | A1 |
| 20120135867 | Thom et al. | May 2012 | A1 |
| 20120229130 | Hattersley et al. | Sep 2012 | A1 |
| 20120237789 | Wang et al. | Sep 2012 | A1 |
| 20120251835 | Dry | Oct 2012 | A1 |
| 20120259072 | Hougham et al. | Oct 2012 | A1 |
| 20120274209 | DeVincentis et al. | Nov 2012 | A1 |
| 20120305717 | Dye et al. | Dec 2012 | A1 |
| 20120321906 | McCrea et al. | Dec 2012 | A1 |
| 20130035411 | Hougham et al. | Feb 2013 | A1 |
| 20130040820 | Selvamanickam et al. | Feb 2013 | A1 |
| 20130099881 | Deyhim et al. | Apr 2013 | A1 |
| 20130143058 | McCrea et al. | Jun 2013 | A1 |
| 20130154272 | Rebsdorf et al. | Jun 2013 | A1 |
| 20130161959 | Rebsdorf et al. | Jun 2013 | A1 |
| 20130193194 | Yang et al. | Aug 2013 | A1 |
| 20130196170 | Tomantschger et al. | Aug 2013 | A1 |
| 20130261001 | Hull et al. | Oct 2013 | A1 |
| 20130292691 | Henley et al. | Nov 2013 | A1 |
| 20140163664 | Goldsmith | Jun 2014 | A1 |
| 20140175591 | Tian et al. | Jun 2014 | A1 |
| 20140197419 | Henley et al. | Jul 2014 | A1 |
| 20140302995 | Malshe et al. | Oct 2014 | A1 |
| 20140303287 | Li et al. | Oct 2014 | A1 |
| 20140307305 | Deri et al. | Oct 2014 | A1 |
| 20150057396 | Fraivillig | Feb 2015 | A1 |
| 20150111673 | Tomantschger et al. | Apr 2015 | A1 |
| 20150147573 | Zhang et al. | May 2015 | A1 |
| 20150268311 | Yu et al. | Sep 2015 | A1 |
| 20150308018 | Zhang et al. | Oct 2015 | A1 |
| Number | Date | Country |
|---|---|---|
| 1473769 | Nov 2004 | EP |
| Entry |
|---|
| Likharev, et al., “RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clock frequency digital systems”, IEEE Trans. Appl. Supercond., vol. 1, pp. 3-28, Mar. 1991. |
| Gupta, et al., “High-speed interchip data transmission technology for superconducting multi-chip modules”, IEEE Trans. Appl. Supercond., vol. 11, pp. 731-734, Jun. 2001. |
| Kang, et al., “Design of RSFQ Digitizer on a Multichip Module”, IEEE Trans. Appl. Supercond., vol. 12, pp. 1848-1851, Sep. 2002. |
| Hashimoto, et al., “Transmission of single flux quantum between superconductor chips”, Appl. Phys. Left, vol. 86, pp. 072502-1-072502-3, Feb. 2005. |
| Yokoyama, et al., “Robust superconducting die attach process”, IEEE Trans. Appl. Supercond., vol. 7, pp. 2631-2634, Jun. 1997. |
| Yohannes, et al., “Characterization of HYPRES' 4.5 kNcm2 & 8 kA/cm2 Nb/A1Ox/Nb fabrication processes”, IEEE Trans. Appl. Supercond., vol. 15, pp. 90-93, Jun. 2005. |
| Kaplan, et al., “High-Speed Experimental Results for an Adhesive-Bonded Superconducting Multi-Chip Module”, IEEE Transactions on Applied Superconductivity, vol. 17, pp. 971-974, Jun. 2007. |
| Number | Date | Country | |
|---|---|---|---|
| 60840379 | Aug 2006 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 14449410 | Aug 2014 | US |
| Child | 15583414 | US | |
| Parent | 11840931 | Aug 2007 | US |
| Child | 13448436 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 13448436 | Apr 2012 | US |
| Child | 14449410 | US |