1. Field of the invention
The present invention relates to a method for fabricating a semiconductor device, and more particularly to a method for fabricating a semiconductor device in which high dielectric material HfO2/HfSixOy is employed, wherein “X” is 0.4˜0.6 and “Y” is 1.5˜2.5.
2. Description of the Prior Art
According to Moore's law, semiconductor devices have been realized with the linewidth decrease of a MOSFET device and the thickness decrease of a SiO2 film. That is, improving the integration rate and the capability of semiconductor devices through such decreases in size have been achieved, first of all, by decreasing the linewidth of a MOSFET device and the physical thickness of a SiO2 film which is used as a gate oxide film.
However, when a SiO2 film having a thickness of 20 Å or less is used in the prior art, leakage current increases due to quantum mechanic tunneling of electrons, so that application of a device is impossible. Particularly, in a case of storage devices such as a memory and so forth, leakage current increase in a gate oxide film has a decisively bad effect upon the reliability guarantee of the devices, so development of new materials has been required.
Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide a method for fabricating a semiconductor device using high dielectric material HfO2 thicker than SiO2 as a gate oxide film, and thereby proving a semiconductor device capable of preventing leakage current caused by direct tunneling of SiO2.
In order to accomplish this object, there is provided a method for fabricating a semiconductor device using high dielectric material, the method comprising the steps of: forming an Hf thin film on a silicon substrate; oxidizing the Hf thin film by performing an oxidizing process; and performing an annealing process after the oxidizing process, thereby forming a gate oxide film comprising an HfSixOy thin film and an HfO2 thin film on the silicon substrate, in which “X” is 0.4˜0.6 and “Y” is 1.5˜2.5.
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following description and drawings, the same reference numerals are used to designate the same or similar components, and so repetition of the description on the same or similar components will be omitted.
According to a method for fabricating a semiconductor device using a dielectric material according to the present invention, as shown in
Then, as shown in
Subsequently, an HfO2 thin film 23a and an HfSixOy thin film 27, wherein “X” is 0.4˜0.6 and “Y” is 1.5˜2.5, are annealed at a temperature of about 500° C. in N2 ambient, thereby forming a gate oxide film 29 of a semiconductor device.
Next, although they are not shown in drawings, an electrode (not shown) using a metal such as Al, Pd, etc. is formed on the gate oxide film 29.
A phenomenon, in which the thickness of the HfSixOy thin film 27 decreases while the thickness of the HfO2 thin film 23a increases through such an annealing process, can be understood well with reference to
In other words, it is understood that a structural potential is formed by selective reaction of HfO2 and HfSixOy during an oxidation and annealing. That is, owing to the diffusion of Si and O after annealing, the thickness of HfO2 increases, while the thickness of the HfSixOy is reduced.
Also, as shown in
In order to show that not an SiO2 layer but an HfSixOy layer is generated as an amorphous layer between an HfO2 film and an Si substrate,
In comparison with the refractive indexes of SiO2 and HfO2 which have been generally known, the refractive index of the HfO2 layer of oxidized thin film is similar to a reported refractive index of HfO2, while the refractive index of the interface layer thereof shows a difference from a reported refractive index of SiO2. This implies that an amorphous interface layer shown in the TEM images comprises not only SiO2 but is a compound of Hf-silicate or SiO2, HfO2, Hf, etc., as understood by an AES analysis,.
As described above, with a semiconductor device fabricated using high dielectric material according to the present invention, the reliability of the device can be improved owing to the use of high dielectric material HfO2, while it is difficult to use a SiO2 film of 0.1 μm or less, which is the conventional gate oxide film, as a semiconductor device. That is, since thick HfO2 is used so as to enable the effect of thin SiO2 to be obtained, leakage current can be reduced. Furthermore, the number of net dies per wafer can increase, so that the integration rate of a device can be improved.
Also, in a case of constructing a transistor with a semiconductor device fabricated according to the present invention, driving current can increase due to more electric charge in an inversion region, and a short channel effect and sub-threshold current can be reduced because electric charge is easily controlled.
In addition, a transistor can be stably operated with a low threshold voltage.
Although a preferred embodiment of the present invention has been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0027466 | Apr 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6072207 | Yoshimori et al. | Jun 2000 | A |
6080592 | Paz de Araujo et al. | Jun 2000 | A |
6580137 | Parke | Jun 2003 | B1 |
6624093 | Lyman et al. | Sep 2003 | B1 |
6642066 | Halliyal et al. | Nov 2003 | B1 |
6700171 | Landheer et al. | Mar 2004 | B1 |
6713846 | Senzaki | Mar 2004 | B1 |
6797599 | Visokay et al. | Sep 2004 | B1 |
6818553 | Yu et al. | Nov 2004 | B1 |
20030207549 | Jenq | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040219754 A1 | Nov 2004 | US |