1. Technical Field
The present invention relates to integrated circuit device packaging in general, and in particular to multichip module packages. Still more particularly, the present invention relates to a multichip module package having a stacked chip arrangement.
2. Description of the Related Art
When it comes to integrated circuit device packaging, it is always desirable and sometimes imperative to have a relatively high device packaging density. Device packaging density can be defined as the number of devices per unit package volume. To such end, multichip modules (MCMs) packages are increasingly attractive for a variety of reasons. For example, MCM packages, which contain more than one chip per package, decrease the interconnection length between chips, thereby reducing signal delays and access times. In addition, MCM packages can also improve system operational speed that is previously limited by long connection traces on a printed circuit board.
The most common MCM package is the “side-by-side” MCM package in which two or more chips are mounted next to each other (i.e., side-by-side to each other) on a common substrate. Interconnections among chips and conductive traces on the common substrate are electrically made via bond wires. Side-by-side MCM packages, however, suffer from low package efficiency because the area of common substrate also increases as the number of chips mounted thereon increases. Three-dimensional device packaging in the form of chip stacking provides a solution to the above-mentioned problem. Chip stacking, which is accomplished by stacking chips on top of each other, is the most effective method of packaging integrated circuit device at a device level. Unfortunately, the physical designs and performance requirements of most chips are not conducive to chip stacking. Thus, even though chip stacking is very appealing in terms of the high device packaging density it can provide, chip stacking is not a well-received method in the semiconductor industry for packaging integrated circuit devices. Consequently, it is desirable to provide an improved method for stacking chips within a MCM package.
In accordance with a preferred embodiment of the present invention, a first chip is bonded to a substrate. A passivation layer is then deposited on a top surface of the first chip. After a first adhesive layer has been deposited on top of the passivation layer, an interposer is placed on the adhesive layer. Next, a second adhesive layer is deposited on the interposer. Finally, a second chip is bonded to the interposer via the second adhesive layer.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the drawings and, in particular, to
The active circuit area of first chip 12 is covered by a passivation layer 25. Preferably, the thickness of passivation layer 25 is approximately 25-30 microns. An adhesive layer 26 is interposed between and connects passivation layer 25 and an interposer 27. Preferably, adhesive layer 26 has a thickness of approximately 25-30 microns.
Interposer 27 is preferably made of a material similar in properties to first chip 12 and second chip 13 in order to avoid thermal expansion mismatch over temperature variations. For example, if first chip 12 and second chip 13 are made of bulk silicon, interposer 27 should also be made of silicon. Interposer 27 must be of a planar dimension to allow clearance and access to the bond pads along the edges of first chip 12. Interposer 27 also serves as a pedestal for supporting second chip 13. Thus, interposer 27 should have a thickness sufficient to provide clearance for bond wire loop height off the bond pads of first chip 12. As an example, interposer 27 has a preferable thickness of approximately 225-275 microns.
An adhesive layer 28 is interposed between and connects interposer 27 and bondable surface 23 of second chip 13. Preferably, adhesive layer 28 has a thickness of approximately 30-40 microns.
Several bond wires 14 are bonded to and between respective bonding pads on first chip 12 and substrate 11. Bond wires 14 includes outwardly projecting loops 15 having a defined loop height between active circuit surface 22 and the maximum extent of loops 15. The thickness of interposer 27 should be greater than the loop height to displace bondable surface 23 of second chip 13 in a non-contacting relationship about and with respect to bond wires 14. Similarly, several bond wires 16 are bonded to and between respective bonding pads on second chip 12 and substrate 11. Bond wires 16 includes outwardly projecting loops 17 having a defined loop height between active circuit surface 22 and the maximum extent of loops 17.
With reference now to
After applying a layer of bonding material on the top surface of the interposer, as shown in block 36, a second chip is then be added to the top surface of the interposer, as depicted in block 37. The bonding material is preferably a low-temperature thermoplastic that is re-workable such that the second chip can easily be removed from the interposer if the second chip turns out to be defective. After the second chip has been mounted onto the interposer, the second chip is then wire-bonded, as shown in block 38, and tested for functionality. The entire MCM can then be completed with appropriate testings, as depicted in block 39.
As has been described, the present invention provides an improved method for stacking a second chip on top of a first chip within a MCM package. The key features of the present invention include the application of a protective passivation layer to the active circuit area of the first chip (i.e. the bottom chip), the use of an interposer having a similar material as the first and second chips, and the use of a re-workable adhesive to bond the second chip (i.e., the top chip) to the interposer so, if necessary, the second chip can be removed without affecting the first chip.
Although only two chips are shown to be stacked within a MCM in the present disclosure, it is possible to stack more than two chips using the same methodology to achieve a stack of three or more chips within a single MCM.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10/102324 | Mar 2002 | US | national |
This application claims priority from U.S. patent application Ser. No. 10/102,324 filed on Mar. 20, 2002, and entitled “Method for Stacking Chips Within a Multichip Module Package,” which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US03/08552 | 3/19/2003 | WO |