The invention relates to a flexible circuit. More specifically, the invention relates to a flexible circuit that incorporates rigid components such as resistors, capacitors, wireless-enabled microprocessors, or other integrated circuit components. The invention further relates to a method of making the flexible circuit.
Flexible circuits have many uses, including as sensors adapted to be worn in contact with the skin of a user. For example, a wearable, flexible circuit can be used as a sensor in medical applications, providing physiological metrics in real time, such as heartrate, temperature, blood pressure, and blood oxygenation. In addition, being able to collect physiological data noninvasively and transmit that data wirelessly would enable big-data machine learning algorithms to autonomously identify sick and healthy patients. With rigid devices, the lack of flexibility can cause issues with data acquisition, since the interface between the non-flexible device and flexible skin is not ideal. For example, wrist-worn general wellness devices, such as fitness watches, can suffer from inaccurate heart rate measurements due to movement of the device relative to the skin.
Attempts have been made to manufacture flexible sensors and circuits to address the problems associated with non-flexible devices. In one example, a flexible circuit was created using a mold having recesses defining a conductive path, where the recesses are filled with a conductive elastomer then coated with a plain elastomer to support the conductive layer. In this example, rigid circuit components, if present, are placed directly onto the conductive elastomer material before the plain elastomer is added and the elastomers cured. However, the contact resistance between the integrated circuit components and conductive elastomer can be prohibitively high, particularly after stretching the device. Other attempts have used liquid conductors or meandering wires rather than a conductive elastomer, but these techniques can require expensive manufacturing processes, such as the sputter deposition of copper. While these examples demonstrate flexible circuits, the ability to incorporate non-flexible circuit components is marginal and the costs of these techniques can be prohibitive to commercial-scale manufacturing. Therefore, it would be advantageous to develop a flexible circuit that incorporates non-flexible integrated circuit components and a low-cost method of manufacturing the circuits.
According to embodiments of the present invention is a flexible circuit comprising a conductive polymer layered with a polymer base. In one embodiment, rigid circuit components are connected directly to the conductive polymer through elongated electrical contacts, which allow an electrical connection between the conductive polymer and the rigid component with negligible contact resistance. To manufacture the flexible circuit, the conductive polymer is placed in the recesses of a mold, which define the electrical pathway of the circuit. The rigid integrated circuit components, with the elongated electrical contacts, are then placed into contact with the conductive polymer. In some embodiments, a conductive epoxy is used in the junction between the electrical contact of the component and the conductive polymer. A flexible polymer base is then poured over the mold and cured. Once cured, the flexible circuit comprising the conductive polymer, integrated circuit components, and flexible base is removed from the mold. In alternative embodiments, the method of manufacture allows multiple layers to be combined in a single circuit, with the conductive elements of each layer electrically connected, such as through the use of a via, enabling the manufacture of complex circuits. The main advantage of this approach over other methods is that it's low-cost and produces a highly flexible and stretchable device which is ideal for comfort and usability when worn next to the skin.
According to certain embodiments, the flexible circuit 100 comprises a conductive polymer 101, a flexible base 102, and at least one integrated circuit component 103.
In the example embodiments shown in
The flexible base 102 in the example embodiments is polydimethylsiloxane. As will be described in further detail, the flexible base 102 is comprised of a curable polymer which is initially applied in the manufacturing process as a liquid. As such, while polydimethylsiloxane is used as the flexible base 102 in the examples depicted in
To create the flexible circuit 100, a molding process is used.
At step 202, as shown in
In step 203, as shown in
In step 204, the polymer base 102 is poured over the mold, at least partially encapsulating the integrated circuit components 103. When cured, the polymer base 102 bonds to the conductive polymer 101, allowing the circuit 100 to be removed from the mold 210 as a unitary circuit.
As discussed in step 203, in certain embodiments the integrated circuit component 103 is pressed into the conductive polymer 101 to create an indentation in the conductive polymer 101.
In an alternative manufacturing method, a multilayer approach is used. As shown in
As further detailed in
In yet another alternative manufacturing method, the mold 210 has recesses 211 passing through the depth of the mold 210. In a process similar to screen printing, the conductive polymer 101 can be deposited onto the surface of the flexible polymer base 102. The integrated circuit components 103 can then be added in a manner similar to the processes described in step 203, with another layer of polymer base 102 used to cover the conductive polymer 101.
While the disclosure has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modification can be made therein without departing from the spirit and scope of the embodiments. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit under 35 U.S.C. § 119 of Provisional Application Ser. No. 62/499,868, filed Feb. 6, 2017, and Provisional Application Ser. No. 62/602,364, filed Apr. 20, 2017, each of which is incorporated herein by reference.
This invention was made with government support under U.S. Army No. W81XWH-16-C-0186. The government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/017095 | 2/6/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/145106 | 8/9/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5431571 | Hanrahan et al. | Jul 1995 | A |
5531020 | Durand | Jul 1996 | A |
7129584 | Lee | Oct 2006 | B2 |
7935892 | Nishikawa | May 2011 | B2 |
20020105092 | Coyle | Aug 2002 | A1 |
20040087033 | Schembri | May 2004 | A1 |
20050156297 | Farnworth et al. | Jul 2005 | A1 |
20080191174 | Ehrensvard | Aug 2008 | A1 |
20100244235 | Kapusta et al. | Sep 2010 | A1 |
20120051005 | Vanfleteren | Mar 2012 | A1 |
20130223034 | Rathburn | Aug 2013 | A1 |
20130322032 | Shigetaka | Dec 2013 | A1 |
20140178644 | Nystrom et al. | Jun 2014 | A1 |
20150063977 | Barrette | Mar 2015 | A1 |
20160249461 | Gilman | Aug 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT Application PCT/US2018/017095 dated Apr. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20200022255 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62499868 | Feb 2017 | US | |
62602364 | Apr 2017 | US |