Method of forming oxide dispersion strengthened alloys

Information

  • Patent Grant
  • 8821786
  • Patent Number
    8,821,786
  • Date Filed
    Wednesday, December 15, 2010
    14 years ago
  • Date Issued
    Tuesday, September 2, 2014
    10 years ago
Abstract
A method of forming an oxide-dispersion strengthened alloy and a method for forming an oxide-alloy powder where the oxide-nanoparticles are evenly distributed throughout the powder. The method is comprised of the steps of forming an oxide-nanoparticles colloid, mixing the oxide-nanoparticles colloid with alloy-microparticles forming an oxide-alloy colloid, drying the oxide-alloy colloid solution to form an oxide-alloy powder, applying pressure to the oxide-alloy powder, and heating the oxide-alloy powder to a sintering temperature. The oxide-nanoparticles are sized to be between 1-10 nanometers in diameter. The ratio of oxide-nanoparticles to alloy-microparticles should be 1-5% by weight. Heating of the oxide-alloy powder can use a spark plasma sintering process.
Description
FIELD OF THE INVENTION

The present invention is related to a method of forming materials with oxide dispersions. More specifically, the present invention relates to a method of forming alloys with oxide dispersions for material strengthening.


BACKGROUND OF THE INVENTION

One physical attribute that provides flexibility in metals is the presence of dislocations within the lattice structure of the metal thus allowing the metal to flex and bend. A bending force causes the dislocation to propagate through the metal. Such a characteristic has several drawbacks. First, the ability of the dislocation to propagate through the metal reduces the ability of the metal to resist bending and shear forces. Further, the ability of a metal to bend becomes more pronounced at higher temperatures. Secondly, repetitive or excessive bending can cause the dislocations to aggregate and cause metal embrittlement. It is known in the field of material science that if an oxide material is added to a metal alloy where the oxide particles have the proper size, quantity, and a substantially uniform dispersion, then these oxide particles can interrupt the propagation of a dislocation through the metal lattice. As a result, the metal is strengthened and will better resist bending forces at high temperatures. This attribute is especially important in applications such as the hot end of a jet turbine. The turbine discs are exposed to the hot exhaust gasses that are weakened by the high operating temperatures. It is preferable to operate turbines at the highest possible temperature to achieve the highest possible operating efficiencies. Thus, any method to produce a stronger turbine disc, which provides for a higher operating temperature, is highly desirable.


For years, people skilled in the relevant art have known of the advantages of oxide dispersion strengthened alloys. However, it is also known that the current state-of-the-art has not developed technology to form an alloy with evenly dispersed oxide particles of a nanometer size required to interrupt the dislocation propagation. Mixing the oxide-nanoparticles into a molten alloy has failed to result in an even dispersion of oxide particles of the proper size and thus has failed to achieve the sought after theoretical strength increases. This is because oxide particles are immiscible with a molten alloy but will clump when added. What is needed is a method of forming an oxide dispersion strengthened alloy with nano-sized oxide particles where the oxide particles are evenly distributed throughout the alloy lattice structure.


SUMMARY OF THE INVENTION

In a first aspect of the invention, a method of forming an oxide-dispersion strengthened alloy is disclosed. In a first step, a quantity of oxide-nanoparticles is mixed in with a liquid to form a colloidal suspension that has the oxide-nanoparticles evenly suspended in the liquid. Preferably, substantially all of the oxide-nanoparticles are suspended and do not clump into larger oxide-nanoparticle groups.


In a next step, the oxide-nanoparticle colloid solution is mixed with a second quantity of alloy-microparticles. This mixture forms an oxide-alloy colloid. The oxide-nanoparticles adhere to the alloy-microparticles. Preferably, most of the oxide-nanoparticles adhere to the alloy-microparticles and not to other oxide-nanoparticles.


In a further step, the oxide-alloy colloid mixture is dried. Drying can occur through any common drying techniques, such as evaporation, vacuum techniques, freezing, centrifugal, and chemical drying. Once the liquid is removed from the oxide-alloy colloid, remaining is an oxide-alloy powder with a substantially uniform distribution of oxide nanoparticles on alloy-microparticles. In another step, the oxide-alloy powder is heated to a temperature that results in sintering of the alloy particles. A number of heating techniques are contemplated, including applying outside heat to the oxide-alloy powder or generating an internal heat by passing an electrical current through the powder.


In one embodiment of the present invention, the oxide-nanoparticles are between 1 and 10 nanometers in diameter. Preferably, the particles are 5 nanometers or smaller in diameter. In another embodiment, the oxide-nanoparticles comprise 1-5% by weight of the resulting oxide-alloy powder. In yet another embodiment, the alloy-microparticles contain nickel. Further, the alloy-microparticles can contain greater than 50% nickel. In another embodiment of the present invention, the oxide-nanoparticles are formed from either alumina (Al203), silica (Si02), or Yttria (Y203), or any combination thereof. In a further embodiment of the invention, the oxide-alloy powder is subjected to an axial pressure before or during heating or both before and during heating. The pressure is preferably asserted by an axial die, but other techniques are contemplated, including a graphite die. In yet another embodiment of the invention, the oxide-alloy powder is heated by a SPS (spark plasma sintering) process where DC current is pulsed through the oxide-alloy powder. This electric current causes the pressed oxide-alloy powder to heat rapidly, internally, and substantially evenly. The oxide-alloy is heated until it reaches a sintering temperature. In one embodiment of the invention, the SPS process uses a graphite die to apply pressure to the oxide-alloy powder.


In another embodiment of the present invention, before heating and applying pressure to the oxide-alloy powder, the powder is ball-milled. Ball-milling produces a powder that has an enhanced distribution of oxide-nanoparticles within the alloy powder and forms nano-oxide regions within the alloy-microparticles.


In a second aspect of the invention, a method of forming an oxide-alloy powder is disclosed, wherein the oxide particles are nanoparticle sized and are substantially evenly distributed throughout the powder. In a first step, a quantity of oxide-nanoparticles is mixed with a liquid to form a colloidal solution wherein the oxide-nanoparticles are evenly suspended in the solution. Preferably, substantially all of the oxide-nanoparticles are individually suspended in the solution and do not clump into larger oxide-nanoparticle groups.


In a second step, the oxide-nanoparticle colloid solution is mixed with a second quantity of alloy-microparticles. This mixture forms a new oxide-alloy colloid. The oxide-nanoparticles adhere to the alloy-microparticles. Preferably, most of the oxide-nanoparticles adhere to the alloy-microparticles and not to the other oxide-nanoparticles.


In a third step, the oxide-alloy colloid mixture is dried. Drying can occur through any common drying techniques, such as evaporation, vacuum techniques, and chemical drying. Once the liquid is removed from the oxide-alloy colloid, remaining is an oxide-alloy powder. In one embodiment of the present invention, the oxide-nanoparticles are between 1 and 10 nanometers in diameter. Preferably, the oxide-nanoparticles are 5 nanometers or smaller in diameter. In another embodiment, the oxide-nanoparticles comprise 1-5% by weight of the resulting oxide-alloy powder. In another embodiment of the present invention, before heating and applying pressure to the oxide-alloy powder, the powder is ball-milled, which produces an enhanced distribution of oxide-nanoparticles within the alloy.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is better understood by reading the following detailed description of an exemplary embodiment in conjunction with the accompanying drawings.



FIG. 1 illustrates a flow chart of a method of forming a oxide dispersion strengthened alloy in accordance with the principles of the present invention.



FIG. 2 illustrates a flow chart of a method of creating an alloy powder with evenly distributed oxide-nanoparticles in accordance with the principles of the present invention.



FIG. 3A illustrates the lattice structure of an alloy with a dislocation in accordance with the principles of the present invention.



FIG. 3B illustrates the lattice structure of an alloy with a dislocation moved over one lattice plane in accordance with the principles of the present invention.



FIG. 3C illustrates the lattice structure of an alloy with a dislocation blocked by an oxide dispersion region in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description of the invention is provided as an enabling teaching of the invention which includes the best, currently known embodiment. One skilled in the relevant art will recognize that many changes can be made to the embodiment described, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptions to the present inventions are possible and can even be desirable in certain circumstances, and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof. The scope of the present invention is defined by the claims. The terms “nanoparticle,” “nanoparticle powder,” and “nano powder” are generally understood by those of ordinary skill to encompass the same concept as described herein.



FIG. 1 illustrates a flow chart of steps for a method of forming an oxide dispersion strengthened alloy 100, according to the present invention. The method begins at a step 110. At the step 110, a colloid of oxide-nanoparticles is formed. The oxide-colloid is formed by adding nanoparticles, preferably 1-5 nanometers in their greatest dimension, to a liquid that has the properties that the nanoparticles can be suspended, prevents clumping of the nanoparticles, and that the liquid can readily be removed. Preferably, the liquid does not react with the oxide-nanoparticles. The quantity of liquid added to the nanoparticles is preferably sufficient to suspend the oxide-nanoparticles and the quantity of alloy-microparticles to be later added. It will be appreciated that the oxide-nanoparticles can be added to the liquid or the liquid can be added to the oxide-nanoparticles, or a combination of the two.


Alternatively, both the oxide-nano particles and the liquid can be concurrently added to a mixing vessel. The oxide-nanoparticles can be any suitable material that does not react with the alloy-microparticles or liquid. Material such as Alumina (Al203), Silica (Si02), or Yttria (Y203) that do not react with alloy metal can be used. Preferably, Yttria-nanoparticles are used. The quantity of oxide-nanoparticles used should be measured in proportion to the dry weight of the alloy-microparticles. Preferably, a quantity of oxide-nanoparticles should be selected so that the oxide-nanoparticles comprise 1-5% by weight of the resulting oxide-alloy powder.


In the step 120, the oxide-nanoparticle colloid is mixed with the alloy-microparticle powder. Within the scope contemplated by this invention is either the oxide-nanoparticles colloid being added to the alloy-microparticle powder or the alloy-microparticle powder being added to the oxide-nanoparticle colloid. The resulting mixture should be mixed until the oxide-nanoparticles are evenly distributed with the alloy-microparticles, resulting in an oxide-alloy colloid. It is expected that this is because of Van der Waal forces. The oxide-nanoparticles adhere to the alloy˜microparticles. This adherence of the oxide-nanoparticles to the alloy-microparticles prevents clumping of oxide-nanoparticles and provides a substantially even distribution of oxide-nanoparticles throughout the colloid. Mixing can be accomplished by any standard means including stirring, shaking, tumbling, ultrasound, and pouring.


In the step 130, the oxide-alloy colloid is dried. In this step, substantially all of the liquid is removed such that only the alloy-microparticles with an even distribution of oxide-nanoparticles remain. This step 130 occurs after the mixing of the oxide-nanoparticles and the alloy microparticles. Evaporative drying is preferred, but other techniques are contemplated, such as heat drying, vacuum drying, freeze drying, centrifugal drying, chemical drying, or spray gun drying.


In the method of forming an oxide-alloy metal, there is an optional step for the ball milling of the dried oxide-alloy powder before compression and heating to form the oxide-dispersion strengthened alloy. In the step 132, a decision is made whether to ball mill the dried oxide-alloy powder. If the decision is taken to mill the oxide-alloy powder, then step 135 is performed. If the oxide-alloy powder is not to be milled, then the method continues on to step 140.


In the step 135, the optional processing by ball milling the dried oxide-alloy powder is disclosed. The pounding of the milling-balls is expected to embed the oxide-nanoparticles into the alloy as the microparticles are ground together and broken apart. This ball-milling is expected to further improve the uniformity of distribution of oxide-nanoparticles at the microstructure level within the alloy-microparticles.


In the step optional step 140, pressure is applied to the oxide-alloy powder. Preferably, the pressure is an axial pressure of thousands of pounds per square inch, applied by a mold, preferably a graphite mold. Pressures of 30-50 tons per square inch are typical. The pressure can be applied through a hydraulic press, preferably a punch press. However, other means of applying pressure are contemplated. The pressure can be applied before or during heating. Further, the pressure can be varied during the sintering step 150, preferably increasing the pressure as heat is applied. To handle these pressures, the mold for holding the oxide-alloy powder needs to be able to handle the applied pressures and, if sintering occurs within the same mold, the sintering temperature. The step 140 is optional. The oxide-alloy powder can be sintered without the application of pressure, but preferably pressure is applied to the oxide-alloy powder during sintering.


In the step 150, the oxide-alloy powder is heated to a sintering temperature. The heat can be applied externally or though a SPS (spark plasma sintering) process. The SPS technique pulses high current, preferably though the graphite press molds, and also through the oxide-alloy powder. One advantage of the SPS technique is the uniformity of applying heat. The powder, being electrically heated, heats substantially evenly from inside. The second advantage of the SPS process is the speed of the sintering process. A turbine disc can be formed in minutes as opposed to hours as is typical with a forging process.



FIG. 2 illustrates the steps for the method of forming an alloy microparticle powder with evenly dispersed oxide-nanoparticles. The method begins in step 210 with the forming of an oxide-nanoparticle colloide, which is as described above in step 110 of FIG. 1. The step 220 of mixing the oxide-nanoparticle colloid with alloy-microparticles is as described above in step 120 of FIG. 1. The step 230 of drying the oxide-alloy colloid is as described above in step 130 of FIG. 1. The step 232 of making the decision to optionally ball-mill the oxide-alloy powder is as described above in step 132 of FIG. 1. The optional step 235 of ball-milling the dried oxide-alloy powder is as described above in step 135 for FIG. 1. The process ends at step 240 at either the completion of the ball-milling step 235 or upon a decision in step 232 not to ball-mill the oxide-alloy powder.



FIG. 3A illustrates one mechanism within a lattice structure by which a metal deforms or bends. A metal 300 is typically formed in a crystalline lattice structure with layers of interconnected atoms 310. Some of the lattice layers don't run the entire length of the lattice and terminate between other layers, creating a distortion of the other layers. These layers are referred to as dislocation layers. The dislocation layer 313 is shown terminated between two of the lattice layers, 312 and 313 respectively. The lattice layers 312 and 314 are shown adjacent to the dislocation layer 313 and distorted by the dislocation layer 313. When a shear or bending force 320 is applied to the lattice structure 300, the dislocation layer 313 can propagate as a wave through the metal. One manner by which the displacement wave front shifts through the lattice is for the distortion layer of the lattice to shift and connects to the adjacent layer. FIG. 3B shows the lattice structure after a displacement of one lattice plane. As shown in FIG. 3B, the dislocation layer 313 shifts to the right by one lattice plane width. The distorted plane 314 in FIG. 3A becomes the non-distorted plane 314′ in FIG. 3B. The dislocation layer 313 in FIG. 3A shifts and joins the adjacent layer on the right, becoming a distorted layer 312′ in FIG. 3B. Upper part of the distorted lattice layer 312 become the propagated dislocation layer 312′ in FIG. 3B. The lattice layer 311 in FIG. 3A becomes a distorted layer as shown by 311′ in FIG. 3B.



FIG. 3C illustrates the metal lattice structure of an oxide dispersion enhanced metal. When a shear force 330 is placed on metal 300″, the propagation wave will travel until it encounters the oxide dispersion 340. This oxide dispersion impedes the propagation of the displacement wave. This resistance to displacement strengthens the metal to shear and bending forces.


An exemplary use of the present invention's method for producing an oxide-dispersion strengthened alloy is in the fabrication of a jet turbine disc. First a quantity of oxide-nanoparticle powder is selected for forming the turbine disc, preferably Yttria. The quantity is selected such that the formed disc contains 1-5% Yttria by weight. The Yttria nanoparticles are mixed with a liquid to form a colloid of Yttria nanoparticles. The nanoparticles and liquid are mixed and stirred to prevent the nanoparticles from clumping and forming larger particles. To this Yttria-nanoparticle colloid, an alloy-mircoparticle powder is added. Common alloys used in the fabrication of a turbine disc are nickel super-alloys, such as the Rolls Royce RR1000 or General Electric GE R80. RR1000 is comprised of 50-60% nickel, 14-15% chromium, 14-19% cobalt, 4-5% molybdenum, 3% aluminum, and about 4% titanium. The RR1000 alloy is added as an alloy-microparticle powder to the Yttria-nanoparticle colloid. This produces an Yttria-alloy colloid where Yttria-nanoparticles attach to the surface of the alloy-microparticles. Next, the Yttria-alloy colloid solution is then dried. This forms a powder with a uniform distribution of oxide-nanoparticles on the surface of the microparticles. Next, the Yttria-alloy powder is ball-milled. The optional ball-milling process further improves the uniformity of distribution of oxide-nanoparticles within the oxide-alloy powder. The powder is then placed into a graphite mold and subjected to a high pressure of up to 50 tons per square inch. DC electricity is pulsed through the graphite mold and through the oxide-alloy powder, heating it internally to a sintering temperature. The advantage of electrical heating is that the heating occurs substantially evenly throughout the powder and can be quickly heated. It is expected that the resulting disc is stronger at high operating temperatures than a forged disc formed from an alloy without uniform oxide dislocations. This example is exemplary of the two significant advantages to using the present inventive method to obtain an oxide-dislocation strengthened alloy. First, there is not a cost-effective alternative for creating an alloy with uniformly distributed oxide dispersions having the small geometry needed to stop dislocations from propagating through the alloy. The second advantage is that, in using this method, high strength metal structures can be formed in a cost-effective manner. For example, the forming of a turbine disc is currently accomplished with a forging process, which is both time consuming and expensive. By using an oxide dislocation strengthened powder along with a spark plasma sintering process, a turbine disk can be formed in minutes instead of hours, a small fraction of the time used for prior art methods.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made and equivalents may be substituted for elements in the embodiments chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method of forming an oxide-dispersion strengthened alloy comprising the steps: a. mixing a first quantity of oxide-nanoparticles with a liquid forming a colloid of oxide-nanoparticles, wherein the oxide-nanoparticles are 1-5 nanometers in the largest dimension;b. mixing the colloid of oxide-nanoparticles with a second quantity of alloy-microparticles forming an oxide-alloy colloid, wherein the oxide-nanoparticles are substantially uniformly distributed throughout the colloid, and wherein substantially all of the oxide-nanoparticles adhere to the alloy-microparticles and not to the oxide-nanoparticles;c. drying the oxide-alloy colloid, forming an oxide-alloy powder; andd. heating the oxide-alloy powder to a sintering temperature.
  • 2. The method of claim 1, wherein the first quantity of oxide-nanoparticles is between 1% and 5% by weight of the oxide-alloy powder.
  • 3. The method of claim 1, wherein the alloy-microparticles contain nickel.
  • 4. The method of claim 1, wherein the alloy-microparticles contain greater than 50 wt % nickel.
  • 5. The method of claim 2, wherein the first quantity of oxide-nanoparticles is selected from at least one of Alumina, Silica, and Yttria.
  • 6. The method of claim 2, further comprising the step of applying pressure to the oxide-alloy powder.
  • 7. The method of claim 6, wherein the pressure is applied axially with of a force of between 30 and 50 tons per square inch.
  • 8. The method of claim 6, wherein the heating of the alloy powder is performed by a spark plasma process.
  • 9. The method of claim 8, wherein the pressure is applied to the oxide-alloy powder with a graphite die.
  • 10. The method of claim 1, further comprising the step of ball-milling the oxide-alloy powder.
  • 11. A method of forming an oxide-alloy powder comprising the steps: a. mixing a first quantity of oxide-nanoparticles with a liquid forming a colloid of oxide-nanoparticles, wherein the oxide-nanoparticles are 1-5 nanometers in the largest dimension;b. mixing the colloid of oxide-nanoparticles with a second quantity of alloy-microparticles forming an oxide-alloy colloid, wherein the oxide-nanoparticles are substantially uniformly distributed throughout the colloid, and wherein substantially all of the oxide-nanoparticles adhere to the alloy-microparticles and not to oxide-nanoparticles; andc. drying the oxide-alloy colloid, forming an oxide-alloy powder.
  • 12. The method of claim 11, wherein the first quantity of oxide-nanoparticles is between 1% and 5% by weight of the oxide-alloy powder.
  • 13. The method of claim 12, further comprising the step of ball-milling the oxide-alloy powder.
  • 14. The method of claim 12, wherein the first quantity of oxide-nanoparticles is selected from at least one of Alumina, Silica, and Yttria.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.

US Referenced Citations (421)
Number Name Date Kind
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kieman Jun 1969 A
3457788 Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5192130 Endo et al. Mar 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6168694 Huang et al. Jan 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6506995 Fusaro, Jr. et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Pesiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 R.M. Martens et al. Apr 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277266 Layman et al. Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger Nov 2008 A1
20080277271 Layman et al. Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20100089002 Merkel Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Yin et al. Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20120045373 Biberger Feb 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20130213018 Yin et al. Aug 2013 A1
Foreign Referenced Citations (42)
Number Date Country
1 134 302 Sep 2001 EP
1 619 168 Jan 2006 EP
1 307 941 Feb 1973 GB
56-146804 Nov 1981 JP
61-086815 May 1986 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
6-272012 Sep 1994 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-336688 Nov 2002 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2007-46162 Feb 2007 JP
2007-203129 Aug 2007 JP
493241 Jan 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 0292503 Nov 2002 WO
WO 2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-200813045 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2011081833 Jul 2011 WO
Non-Patent Literature Citations (82)
Entry
Bateman, James E. et al. “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed., Dec. 17, 1998, 37, No. 19, pp. 2683-2685.
Langner, Alexander et al., “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc., Aug. 25, 2005, 127, pp. 12798-12799.
Liu, Shu-Man et al., “Enhanced Photoluminescence from Si Nano-organosols by Functionalization with Alkenes and Their Size Evolution,” Chem. Mater., Jan. 13, 2006, 18,pp. 637-642.
Fojtik, Anton, “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B., Jan. 13, 2006, pp. 1994-1998.
Li, Dejin et al., “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J.Am. Chem. Soc., Apr. 9, 2005, 127,pp. 6248-6256.
Neiner, Doinita, “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc., Aug. 5, 2006, 128, pp. 11016-11017.
Fojtik, Anton et al., “Luminescent Colloidal Silicon Particles,” Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
Netzer, Lucy et al., “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc., 1983, 105, pp. 674-676.
Chen, H.-S. Et al., “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4, Jul. 3, 2001, pp. 62-66.
Kwon, Young-Soon et al. “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211, Apr. 30, 2003, pp. 57-67.
Liao, Ying-Chih et al., “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc., Jun. 27, 2006, 128, pp. 9061-9065.
Zou, Jing et al., “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters, Jun. 4, 2004, vol. 4, No. 7, pp. 1181-1186.
Tao, Yu-Tai, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc., May 1993, 115, pp. 4350-4358.
Sailor, Michael et al., “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater, 1997, 9, No. 10, pp. 783-793.
Li, Xuegeng et al., “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir, May 25, 2004, pp. 4720-4727.
Carrot, Geraldine et al., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules, Sep. 17, 2002, 35, pp. 8400-8404.
Jouet, R. Jason et al., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater., Jan. 25, 2005, 17, pp. 2987-2996.
Yoshida, Toyonobu, “The Future of Thermal Plasma Processing for Coating,” Pure & Appl. Chem., vol. 66, No. 6, 1994, pp. 1223-1230.
Kim, Namyong Y. et al., “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc., Mar. 5, 1997, 119, pp. 2297-2298.
Hua, Fengiun et al., “Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation” Langmuir, Mar. 2006, pp. 4363-4370.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle ,K-1 li P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M. Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al.,“Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
Han et al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al. “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,” Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973 published on Mar. 1, 1976, entitled “Catalyst for Ammonia Synthesis Contains Oxides of Aluminum, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Journal of the American Ceramic Society 71: C-399-C401.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3—5 vol.% Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2 and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn—O Type Shell on SnO2 and TiO2 Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77.
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81.
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leaman.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US