The present invention relates to a printed board assembly, comprising a copper coated substrate with electronic components mounted thereon. The substrate with components are sandwiched between resin coated foils thus embedding the components. The invention also relates to a method of manufacturing such a printed board assembly.
EP 0 813 355 (A2) to International Business Machines Inc. relates to a printed circuit board construction with stacked capacitive planes. The entire stack is then covered with epoxy glass to which copper foil is then applied. EP 0 813 355 (A2) does not provide for embedding anything other than flat capacitive planes, having an etched outer surface to which the epoxy adheres and bonds the copper foil.
Similarly, DE-A 196 34 016 (A1) to Taiyo Ink Mfg. Co. Ltd. describes coating a printed circuit board having circuit patterns etched therein with resin and laying a similar etched copper layer thereon which is in turn coated with resin. This reference, as that described above, does not describe anything other than the embedding of flat etched copper sheets.
A printed board assembly is provided comprising a substrate coated with an electrically conducting material, such as etched copper, electrical components being mounted on said substrate, said substrate with components being covered on both sides with resin coated conducting foil, the resin of said resin coated foil facing the substrate and burying said components, said foil being etched with a circuit pattern, a non-conducting material being disposed in the areas between said electrical components.
The present invention enables more components to be packed more compactly within and on the carrier, thereby making it possible to improve the electrical performance and to integrate the electrical shielding in the carrier. The mechanical stability and strength of the entire assembly is also improved.
According to one embodiment of the printed board assembly according to the present invention, said components are chip resistors and that said carrier is coated between said chip resistors with a sequential built-up (SBU) lacquer. The lacquer is applied in the areas between the chip resistors sequentially until it reaches the level of the top surfaces of the chip resistors, whereupon the resin coated foil is easily applied to the essentially flat surface. This is a very simple and low cost method of integrating chip resistors into the carrier.
According to another embodiment of the printed board assembly according to the present invention said carrier is covered in the areas between said components with a preimpregnated non-conducting resin mat or prepreg covered with a laminate, both provided with holes for said components. This enables the principle of the invention to be applied when higher components than chip resistors are mounted on the substrate. There is either sufficient resin to fill out any remaining space between these higher electronic components, or alternatively, these small remaining spaces can be coated with SBU lacquer before the resin coated foil is applied thereon.
A method is also provided for manufacturing such a printed board assembly, comprising the steps of: mounting electronic components on a substrate coated with patterned copper; covering only the areas of the copper coated substrate between the mounted components with a non-conducting material approximately up to the level of the mounted components, sandwiching the substrate, components and non-conducting material between two sheets of resin coated conducting foil, the resin on said foils facing the substrate and burying said components, and etching circuit patterns in the exposed copper surfaces of the resin coated conducting foils. This is a very economical way of achieving vertical packing of many components in a way which is advantageous structurally and electrically.
a–e) show the sequence of steps in manufacturing a printed board assembly of the present invention in accordance with one embodiment of the invention.
a–e) show the sequence of steps in manufacturing a printed board assembly of the present invention in accordance with another embodiment of the invention.
The electronic components 5, which in this case can be integrated circuit components etc., are then mounted in the openings in the prepreg 3 and laminate 4. This is shown in step 1(c).
The subassembly comprising the copper coated substrate 1, the prepreg 3 and the laminate 4 are then sandwiched between two resin coated copper foils 8 so that the resin 7 faces inwards. The result is shown in
It may be the case that the resin 7 does not fill the spaces under and around the electronic components 5. In that case a lacquer, which may be an SBU (sequentially built-up) lacquer 9 is applied over the electronic components. This variant is shown in
At least one of the foils 8 is then etched to form another printed circuit layer and microvia holes 10 are made connecting the foil 8 layer to the electronic components. This assembly is shown in
Another embodiment of the invention is shown in
a) shows a standard copper-coated substrate 1. A photosensitive dielectric material 11 is painted onto the copper 2 on one side, and openings are made therein, (
This subassembly is then sandwiched, as in the example above, between two resin coated copper foils 8 so that the resin 7 faces inwards. The result is shown in
As in the example above, at least one of the foils 8 is then etched to form a printed circuit layer and microvia holes 10 are made connecting the chip resistors 12 with the foil layer 8. This assembly is shown in
It is of course also possible to repeat the process and build up even more layers on top of the foil layer 8.
Number | Date | Country | Kind |
---|---|---|---|
9803392 | Oct 1998 | SE | national |
This application for patent is a divisional application of application Ser. No. 09/412,697, filed Oct. 5, 1999, now U.S. Pat. No. 6,552,265, which claims priority to Sweden 9803392-1, filed Oct. 6, 1998.
Number | Name | Date | Kind |
---|---|---|---|
4306925 | Lebow et al. | Dec 1981 | A |
5191174 | Chang et al. | Mar 1993 | A |
5527741 | Cole et al. | Jun 1996 | A |
Number | Date | Country | |
---|---|---|---|
20030221864 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09412697 | Oct 1999 | US |
Child | 10369873 | US |