This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2016-226168, filed on Nov. 21, 2016, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a technique for forming a silicon nitride film along an inner wall surface of a recess which constitutes a pattern formed on a surface of a substrate.
In a semiconductor manufacturing process, there is a case where a silicon nitride film (hereinafter sometimes abbreviated as “SiN film”) is formed as, for example, an underlying film of a sacrificial film, on a substrate on which a recess constituting a pattern is formed. For example, a film formation processing apparatus that forms a SiN film by ALD (Atomic Layer Deposition) has been used.
In this film formation processing apparatus, a film formation process is performed inside a processing chamber by rotating (revolving) a mounting table about an axis line so that a substrate mounting region formed in the mounting table sequentially passes through a first region and a second region inside the processing chamber. In the first region, a dichlorosilane (DCS) gas is supplied from an injection portion of a first gas supply part so that Si is adsorbed onto the substrate. An unnecessary DCS gas is exhausted from an exhaust port formed so as to surround the injection portion. A nitrogen (N2) gas or an ammonia (NH3) gas, which is a reaction gas, is supplied to the second region and excited therein. The Si adsorbed onto the substrate is nitrided by active species of the reaction gas to form a SiN film.
A dense SiN film is formed using ALD. However, depending on the application, for example, when the SiN film is used as an underlying film of a sacrificial film, the denseness of the SiN film should be further enhanced. In addition, when an aspect ratio is increased due to miniaturization of a pattern, a gas cannot be sufficiently supplied to a lower side of a recess constituting the pattern. Thus, there may be a case where it is difficult to make the film quality of the SiN film uniform in the longitudinal direction of the recess. When the film quality of the SiN film in the longitudinal direction of the recess becomes uneven as described above, the etching rate of the SiN film in the longitudinal direction of the recess is not made uniform in a subsequent etching process of the sacrificial film. Therefore, for example, in a case where a wiring material is embedded after the sacrificial film is removed with the SiN film failing to sufficiently play the role of the underlying film, there is a concern that the electrical characteristics of a device may be adversely affected.
Some embodiments of the present disclosure provide a technique capable of, when forming a silicon nitride film along an inner wall surface of a recess constituting a pattern formed on a surface of substrate, enhancing the uniformity of a film quality of the silicon nitride film in a longitudinal direction of the recess while making the silicon nitride film dense.
According to one embodiment of the present disclosure, there is provided a film formation processing method for forming, in a vacuum atmosphere, a silicon nitride film along an inner wall surface of a recess constituting a pattern formed on a surface of a substrate, which includes: forming the silicon nitride film on the substrate by repeating, plural times, a process of supplying a raw material gas containing silicon to the substrate and subsequently, supplying an ammonia gas to the substrate to generate a silicon nitride on the substrate; and subsequently, modifying the silicon nitride film by activating a hydrogen gas and an ammonia gas and supplying the activated hydrogen gas and the activated ammonia gas to the substrate.
According to another embodiment of the present disclosure, there is provided a film formation processing apparatus for forming, in a vacuum atmosphere, a silicon nitride film along an inner wall surface of a recess constituting a pattern formed on a surface of a substrate, which includes: a vacuum container in which a mounting part for mounting the substrate thereon is installed; a raw material gas supply part configured to supply a raw material gas containing silicon to the substrate; a reaction gas supply part configured to supply an ammonia gas to the substrate; a modification gas supply part configured to supply a hydrogen gas and an ammonia gas to the substrate; an exhaust mechanism configured to evacuate an interior of the vacuum container; and a control part configured to execute: forming the silicon nitride film on the substrate by repeating, plural times, a process of supplying the raw material gas containing silicon to the substrate and subsequently supplying the ammonia gas to the substrate to generate a silicon nitride on the substrate; and subsequently, modifying the silicon nitride film formed on the substrate by activating the hydrogen gas and the ammonia gas in the vacuum atmosphere and supplying the activated hydrogen gas and the activated ammonia gas to the substrate.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present disclosure, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, systems, and components have not been described in detail so as not to unnecessarily obscure aspects of the various embodiments.
Hereinafter, a configuration of a film formation processing apparatus according to an embodiment of the present disclosure will be described with reference to
As shown in
On the upper surface of the rotary table 2, as shown in
The film formation processing apparatus includes a raw material gas unit 3 constituting a raw material gas supply part. As shown in
As shown in
The exhaust port 321 and the purge gas discharge port 311 are annularly opened in the peripheral edge of the lower surface of the raw material gas unit 3 so as to surround the fan-shaped region 330 and face the upper surface of the rotary table 2. The purge gas discharge port 311 is positioned outward of the exhaust port 321. A region inward of the exhaust port 321 above the rotary table 2 constitutes an adsorption region R1 where the adsorption of the raw material gas onto the surface of the wafer W is performed. An exhaust mechanism (not shown) is connected to the exhaust port 321. A supply source (not shown) of a purge gas, for example, an argon (Ar) gas, is connected to the purge gas discharge port 311.
During the film formation process, the discharge of the raw material gas from the gas discharge ports 331, the exhaust of the raw material gas from the exhaust port 321 and the discharge of the purge gas from the purge gas discharge port 311 are performed together. Thus, the raw material gas and the purge gas discharged toward the rotary table 2 are directed to the exhaust port 321 along the upper surface of the rotary table 2 and are exhausted from the exhaust port 321. By performing the discharge and exhaust of the purge gas in this way, the atmosphere in the adsorption region R1 is separated from the external atmosphere so that the raw material gas can be limitedly supplied to the adsorption region R1. In addition to such a role of separating the atmosphere, the purge gas also plays a role of removing excessive raw material gas adsorbed onto the wafer W.
Subsequently, a reaction region R2 to which a plasmarized NH3 gas is supplied will be described. As shown in
Each of the gas injectors 71 and 72 is inserted substantially horizontally from the side wall surface of the vacuum container 11 (the container body 13) toward the rotational center of the rotary table 2. The interior of each of the gas injectors 71 and 72 is hollow. A flow path through which a gas flows in the length direction thereof is formed in the interior of each of the gas injectors 71 and 72. A plurality of gas discharge holes (not shown) is formed in the side surfaces of the gas injectors 71 and 72 in a mutually spaced-apart relationship over a range where an NH3 gas can be supplied to the entire surface of the wafer W mounted on each of the mounting regions 21. The gas injectors 71 and 72 are connected to an NH3 gas supply source 54 via opening/closing valves V3 and V4, and flow rate adjustment parts 541 and 542, respectively. A supply source (not shown) of an inert gas, for example, an Ar gas, is connected to each of the gas injectors 71 and 72 and is configured to supply an Ar gas whose flow rate is adjusted, at a predetermined timing.
Next, a configuration of a plasma formation part 6 (6A) which constitutes a plasmarization mechanism for plasmarizing an NH3 gas will be described. The plasma formation part 6A is configured in the same manner as the plasma formation parts 6 (6B and 6C) installed in first and second modification regions r1 and r2 to be described later, and therefore, description will be made with reference to
The antenna part 60 is configured as a radial line slot antenna (RLSA (registered trademark of Tokyo Electron Limited)) that includes a dielectric window 61, a slot plate 62, a dielectric plate 63 and a cooling jacket 64. The dielectric window 61 is to shorten the wavelength of microwaves. The peripheral edge portion of the dielectric window 61 is supported by a member existing around the opening formed in the top plate 12. A large number of slot holes 621 are formed in the slot plate 62. The dielectric plate 63 is installed on the slot plate 62.
In
Furthermore, as shown in
In addition, the film formation processing apparatus includes a first modification region r1 and a second modification region r2 which perform a modification process with respect to the SiN film. As shown in
Respective devices installed in the first modification region r1 and the second modification region r2 have a common configuration. Thus, the first modification region r1 will be described by way of example with reference to
The first gas discharge ports 703 are formed in the inner peripheral surface of the opening formed in the top plate 12 which supports the dielectric window 61, so that a gas can be supplied toward a region under the dielectric window 61 installed in the antenna part 60 of the plasma formation part 6 (6B) to be described later. The first gas discharge ports 703 are arranged at multiple positions in a mutually spaced-apart relationship along one side of the peripheral side of the rotary table 2 in the first modification region r1. The first gas discharge ports 703 communicate with a first gas supply path 184 formed to extend along the one side of the peripheral side of the first modification region r1.
The second gas discharge ports 704 are formed at multiple positions (for example, two positions) in a mutually spaced-apart relationship along a vertex-side region of a substantially triangular shape, which is opposite the one side of the peripheral side where the first gas discharge ports 703 are formed. The second gas discharge ports 704 communicate with a common second gas supply path 185 formed in the vertex-side region of the first modification region r1.
In this example, the modification process includes a first modification process performed during the cycle of the film formation process (to be described later) and a second modification process performed after the cycle of the film formation process. A hydrogen (H2) gas is used as the modification gas in the first modification process. An H2 gas and an NH3 gas are used as the modification gas in the second modification process. To this end, the first gas supply path 184 is connected to an H2 gas supply source 55 via an opening/closing valve V61 and a flow rate adjustment part 551 and is also connected to an NH3 gas supply source 54 via an opening/closing valve V62 and a flow rate adjustment part 561. Similarly, the second gas supply path 185 is connected to the H2 gas supply source 55 via an opening/closing valve V71 and a flow rate adjustment part 552 and is also connected to the NH3 gas supply source 54 via an opening/closing valve V72 and a flow rate adjustment part 562. Thus, the H2 gas and the NH3 gas are discharged into the vacuum container 11 from the first gas discharge ports 703 and the second gas discharge ports 704, while being mixed with each other in the middle of respective pipes at the downstream sides of the valves V61 and V71, respectively.
Furthermore, as shown in
The second modification region r2 is configured similarly to the first modification region r1. Further, a configuration of the plasma formation part 6 (6C) that constitutes a plasmarization mechanism for plasmarizing the modification gas is similar to the configuration of the plasma formation part 6A. An exhaust port 190C for the modification gas is formed at the downstream side of the second modification region r2 in the rotational direction.
In the first modification region r1 and the second modification region r2, the modification gas is discharged from the first gas discharge ports 703 formed at the peripheral side of the rotary table 2 and the second gas discharge ports 704 formed at the central side of the rotary table 2 in the direction intersecting with the revolution direction of the mounting regions 21. In the first modification region r1, the modification gas flows toward the exhaust port 190B formed at the upstream side in the rotational direction in a direction away from the reaction region R2. In the second modification region r2, the modification gas flows toward the exhaust port 190C formed at the downstream side in the rotational direction in a direction away from the reaction region R2.
Hereinafter, an example of a film formation processing method of the present disclosure, which is carried out using the above-described film formation processing apparatus, will be described with reference to
In the film formation processing method of the present disclosure, first, a step of forming a SiN film on the wafer W is executed by repeating, multiple times, a process of supplying a raw material gas to the wafer W and then supplying an NH3 gas to the wafer W, thereby producing a nitride of Si on the wafer W. In this step, first, the gate valve of the loading/unloading port 101 is opened. The wafer W is loaded into the vacuum container 11 by an external transfer mechanism. Then, the wafer W is delivered onto one of the mounting regions 21 of the rotary table 2 using lift pins (not shown) (step S1). The delivery of the wafer W is performed by intermittently rotating the rotary table 2, whereby the wafers W are mounted on all the mounting regions 21. Subsequently, the transfer mechanism is moved back and the gate valve of the loading/unloading port 101 is closed. At this time, the interior of the vacuum container 11 is exhausted to a predetermined pressure in advance by the exhaust mechanism 57 and the exhaust mechanism of the raw material gas unit 3. In addition, a purge gas is supplied from the purge gas discharge port 311.
Thereafter, the rotary table 2 is rotated in a clockwise direction and the wafer W is heated by the heater 46 while maintaining a preset rotation speed (step S2). If it is determined by a temperature sensor (not shown) that the temperature of the wafer W has reached a predetermined set temperature, for example, 475 degrees C., the supply of a raw material gas (DCS gas) from the gas discharge ports 331 of the raw material gas unit 3, the supply of an NH3 gas and an Ar gas from the gas injectors 71 and 72 installed in the reaction region R2, and the supply of an H2 gas from the first gas discharge ports 703 and the second gas discharge ports 704 formed in the first modification region r1 and the second modification region r2 are started, respectively. In addition, simultaneously with the start of the supply of these gases, microwaves are supplied from the antenna part 60 of the plasma formation part 6 (6A to 6C).
While the supply of the respective gases and the formation of plasma are performed in this manner, an internal pressure of the vacuum container 11 is kept at a predetermined pressure having a range of, for example, 66.5 Pa (0.5 Torr) to 665 Pa (5 Torr), specifically 266 Pa (2 Torr) in this example. In the raw material gas unit 3, the DCS gas and the Ar gas are discharged from the gas discharge ports 331 and the purge gas discharge port 311 at predetermined flow rates, respectively, and are exhausted from the exhaust port 321. As a result, the DCS gas flows inside the adsorption region R1 which is a limited region extending up to the exhaust port 321 surrounding the gas discharge ports 331. When the wafer W reaches the adsorption region R1 with the rotation of the rotary table 2, the DCS gas as a raw material gas containing silicon is supplied and adsorbed onto the surface of the wafer W (step S3). Subsequently, the rotary table 2 is further rotated, the wafer W is moved outward of the adsorption region R1 and the purge gas is supplied to the surface of the wafer W so that the adsorbed surplus DCS gas is removed.
In the first modification region r1, the H2 gas is plasmarized and the flow of the H2 gas oriented to the exhaust port 190B is formed. When the wafer W reaches the first modification region r1 with the rotation of the rotary table 2, the first modification process is performed by the active species of the H2 gas contained in the plasma. Dangling bonds in the SiN film are bonded to H, whereby the SiN film is modified into a dense film (step S4).
In the reaction region R2, the NH3 gas is plasmarized and the flow of the NH3 gas oriented to the exhaust port 190A is formed. When a respective wafer W reaches the reaction region R2 with the rotation of the rotary table 2, active species such as radicals including N (nitrogen) generated from the NH3 gas and constituting plasma of the NH3 gas are supplied to the surface of the respective wafer W. Thus, the active species of the NH3 gas are supplied to the wafer W and reacts with the raw material existing on the wafer W to form a nitride layer (SiN layer) (step S5).
In the second modification region r2, the H2 gas is plasmarized, and the flow of the H2 gas oriented to the exhaust port 190C is formed. When the wafer W reaches the second modification region r2 with the rotation of the rotary table 2, the first modification process is performed by the active species of the H2 gas contained in the plasma so that the SiN film is modified to a dense film (step S6).
The cycle of the processes respectively performed in the adsorption region R1, the first modification region r1, the reaction region R2 and the second modification region r2 is defined as one film forming cycle. Then, in step S7, the supply of the DCS gas, the supply of the active species of the H2 gas, the supply of the active species of the NH3 gas and the supply of the active species of the H2 gas are sequentially repeated until it is determined that the film forming cycle has been repeated a predetermined number of times, whereby SiN is deposited on the surface of the wafer W to form a SiN layer.
In step S7, when it is determined that the film forming cycle has been repeated the predetermined number of times, namely when the film thickness of the SiN film is increased and the SiN film having a desired film thickness is formed, the film formation process is terminated. For example, the discharge and exhaust of the respective gases in the raw material gas unit 3 is stopped. Furthermore, the supply of the NH3 gas and the supply of the electric power in the reaction region R2, and the supply of the H2 gas in the first modification region r1 and the second modification region r2 are stopped, respectively.
Subsequently, a step (second modification process) of activating the H2 gas and the NH3 gas, supplying the activated gases to the wafer W and modifying the SiN film is performed. For example, the second modification process is started in a state in which the internal pressure of the vacuum container 11 and the temperature of the rotary table 2 are made the same as those in the film formation process and in which the rotary table 2 is rotated (step S8). Then, in the first modification region r1 and the second modification region r2, the H2 gas and the NH3 gas as second modification gases are supplied and the electric power is supplied to the plasma formation parts 6B and 6C, thereby performing the second modification process (step S9). The supply of the NH3 gas and the Ar gas in the raw material gas unit 3 and the reaction region R2 and the supply of the electric power to the plasma formation part 6A remain stopped.
In the first modification region r1 and the second modification region r2, a mixed gas of the H2 gas and the NH3 gas is supplied from the first gas discharge ports 703 and the second gas discharge ports 704, respectively. That is to say, in this example, the H2 gas and the NH3 gas are simultaneously supplied to the wafer W. Then, the H2 gas and the NH3 gas are activated (plasmarized) by the microwaves of the plasma formation parts 6B and 6C, whereby active species of the H2 gas and active species of the NH3 gas are generated. Then, the dangling bonds in the SiN film are bonded to H by the active species, whereby the SiN film is modified into a dense film. Since the DCS gas contains chlorine (Cl), when the DCS gas is used as a raw material gas, there is a possibility that a chlorine component is incorporated as an impurity into the SiN film to be formed. Therefore, by activating the mixed gas of the H2 gas and the NH3 gas in the first and second modification regions r1 and r2, the chlorine component contained in the thin film is desorbed by the action of H radicals, whereby the SiN film is modified into a more pure (dense) nitride film.
The reason for using the plasma of the H2 gas and the NH3 gas in the second modification process is to make sure that, even for a pattern having a large aspect ratio, the H radicals-based modification process proceeds almost uniformly in the vertical direction of the recess 81. In the surface structure of the wafer W shown in
According to the example described later, it is recognized that in the modification process using the plasma of the H2 gas, a vertical direction quality of the SiN film 83 formed in the recess 81 is uneven and specifically, the modification process does not proceed in the bottom position D as compared with the top position A. This is presumably because the H radicals generated by the plasmarization of the H2 gas have a short lifetime and the H radicals hardly move into the bottom position D of the recess 81 in a pattern having a large aspect ratio.
On the other hand, it is recognized that when the modification process is performed by the plasma of the H2 gas and the NH3 gas as in the present disclosure, the uniformity of the film quality in the vertical direction of the recess 81 is improved as compared with the example described later. The reason for this is presumed as follows. That is to say, by the plasmarization of the NH3 gas, N radicals, H radicals, NH radicals, NH2 radicals and the like are generated. The NH2 radicals and the NH radicals are further decomposed to generate H radicals. Therefore, in a region near the bottom position D of the recess 81, the NH3 gas is decomposed to generate H radicals, whereby the H radicals move into the bottom position D. Thus, it is considered that the modification process proceeds sufficiently even at the bottom position D and the uniformity of the film quality in the vertical direction of the recess 81 is improved.
In parallel with the modification process using the H radicals, a nitridation process of the SiN film is also performed with the N radicals generated by plasmarizing the NH3 gas. Therefore, the nitridation process in the film formation process can be compensated. In the first modification process, when the H2 gas and the NH3 gas are used as the modification gases, the amount of N radicals in one film forming cycle increases, and the nitridation process proceeds more easily than the modification process using the H radicals. Therefore, only the H2 gas is used as a modification gas in the modification process. Even if the NH3 gas is mixed with the H2 gas, it is preferable that the NH3 gas is smaller in amount than the H2 gas.
An example of process conditions in the second modification process is as follows. The total supply amount of the H2 gas supplied from the first gas discharge ports 703 and the second gas discharge ports 704 is 1,000 ml/min (sccm), the total supply amount of the NH3 gas is 4,250 ml/min, the internal pressure of the vacuum container 11 is 266 Pa, the temperature of the rotary table 2 is 475 degrees C., and the rotation speed of the rotary table 2 is 20 rpm.
After the second modification process is executed for a preset time based on the above operation, the supply of the H2 gas and the NH3 gas, the supply of the electric power to the plasma formation parts 6B and 6C and the heating of the wafer W by the heater 46 are stopped to terminate the second modification process. Then, when the temperature of the wafer W drops to a preset temperature, the wafers W are sequentially unloaded from the loading/unloading port 101 in the reverse sequence of that in the loading operation (step S10).
According to the present embodiment, after the SiN film is formed along the inner wall surface of the recess 81 constituting the pattern formed on the surface of the wafer W, the H2 gas and the NH3 gas are activated (plasmarized). The activated gases are supplied to the wafer W to modify the SiN film. When the NH3 gas is used, it is inferred that active species (H radical) of hydrogen are generated after the NH3 gas moves to the lower side in the recess 81. Therefore, if the NH3 gas is used as a modification gas in addition to the H2 gas, it is possible to make the degree of modification of the SiN film uniform in the vertical direction of the recess 81 and to enhance the uniformity of the film quality of the SiN film in the vertical direction of the recess 81 while making the SiN film dense.
In this way, the film quality of the SiN film is made uniform in the vertical direction of the recess 81. Therefore, in a subsequent process, when a sacrificial film is embedded in the recess 81 in which the SiN film is formed, and when the sacrificial film is etched, it is possible to make the degree of etching of the SiN film uniform in the vertical direction of the recess 81. Thus, the dimensional accuracy of the SiN film is increased. For example, in a case where a wiring material is embedded after removing the sacrificial film, it is possible to improve the electrical characteristics of a device.
In the second modification process, the ratio (NH3 gas/H2 gas) of the total supply amount of the NH3 gas to the total supply amount of the H2 gas is set to, for example, 0.1 to 2.0. For example, as described above, when simultaneously discharging the H2 gas and the NH3 gas to the process atmosphere, the ratio of the flow rate of the NH3 gas to the flow rate of the H2 gas is set to, for example, 0.1 to 2.0. If the ratio is smaller than 0.1, the modification process at the bottom position D of the recess 81 does not proceed. If the ratio is larger than 2.0, there is a concern that the nitridation process will proceed with priority over the modification process. In some embodiments, the ratio may be set to 1.0 or less. This is because if the proportion of the NH3 gas in the mixed gas exceeds 50%, there is a possibility that NH groups are incorporated into the SiN film, thereby suppressing improvement of the denseness of the SiN film.
In the above example, the first modification process is performed in the film forming cycle. However, the first modification process may be not performed. In the case where the first modification process is not performed, in the film formation process, the supply of the gases to the first modification region r1 and the second modification region r2 and the supply of the electric power to the plasma formation parts 6B and 6C are stopped. Other processes are performed in the same manner as the above-described film formation process.
Although the aforementioned film formation processing apparatus has been described to include the first modification region r1 and the second modification region r2, the film formation processing apparatus may be configured to include at least one of the first modification region r1 and the second modification region r2. Furthermore, the present disclosure is not limited to the configuration in which the dedicated plasma formation part (plasmarization mechanism) 6 is installed in each of the reaction region and the modification region. For example, a process region that serves as both the reaction region and the modification region may be formed and a plasmarization mechanism may be used in combination. In this case, in the process of forming the SiN film, the NH3 gas is supplied from the process region and is activated by the plasmarization mechanism. In the modification process, the H2 gas and the NH3 gas are supplied from the process region and are activated by the plasmarization mechanism.
Furthermore, in the step of performing the second modification process, the process conditions such as the internal pressure of the vacuum container 11, the temperature of the wafer W and the rotation speed of the rotary table 2 are the same as those of the process of forming the SiN film. Therefore, it is possible to suppress a decrease in throughput. Further, such process conditions may be changed. In the process of performing the second modification process, electric power may be supplied to the plasma formation part 6A even in the reaction region R2 to form plasma. This is because the H2 gas and the NH3 gas may sometimes flow out from the first modification region r1 and the second modification region r2 into the reaction region R2 and because the modification process may be performed by the active species of the H2 gas and the NH3 gas even in the reaction region R2.
The configurations of the reaction gas supply part and the modification gas supply part are not limited to the above examples. For example, the reaction gas supply part may be a single gas injector. Similar to the modification gas supply part, the first and second gas discharge ports 703 and 704 may be formed in the plasma formation part 6A to supply the NH3 gas. In addition, the modification gas supply part may be configured by a gas injector just like the reaction gas supply part.
Furthermore, the raw material gas unit 3 does not necessarily need to include the purge gas discharge port 311. For example, an additional exhaust port may be formed outside the exhaust port 321. The NH3 gas and the H2 gas may be exhausted from a region other than the adsorption region R1 through the additional exhaust port so that the atmosphere in the adsorption region R1 is separated from the external atmosphere.
Furthermore, the film formation processing apparatus for carrying out the method of the present disclosure is not limited to the above configuration.
Subsequently, an NH3 gas as a reaction gas is supplied from an NH3 gas supply source 942, and high frequency is supplied from a high frequency power supply part 96 to the gas supply part 95. As a result, capacitively coupled plasma is generated by an upper electrode constituting the gas supply part 95 and a lower electrode constituting the mounting part 92. Thus, the NH3 gas is activated, and the raw material existing on the wafer W is nitrided by the active species of the NH3 gas to form a SiN layer which is a nitride layer. Subsequently, the supply of the NH3 gas and the supply of the high frequency are stopped, and the interior of the vacuum container 91 is exhausted to discharge the NH3 gas. The process of forming the SiN layer by the supply of the DCS gas and the supply of the NH3 gas is repeated plural times to form a SiN film having a predetermined film thickness.
Thereafter, a H2 gas and an NH3 gas are supplied as modification gases from a H2 gas supply source 943 and the NH3 gas supply source 942 to the vacuum chamber 91 kept in the vacuum atmosphere. The high frequency is supplied to the gas supply part 95 to activate the H, gas and the NH3 gas. The H2 gas and the NH3 gas thus activated are supplied to the wafer W to perform a step of modifying the SiN film. The step of forming the SiN film on the wafer W and the step of modifying the SiN film are executed by a control part 90. In
Furthermore, the film formation processing apparatus for carrying out the method of the present disclosure may be, for example, a vertical type film formation processing apparatus in which a wafer boat holding plural sheets of wafers is loaded into a reaction vessel from below. In this apparatus, a portion of the reaction vessel in the circumferential direction is formed as a plasma formation chamber so as to laterally protrude along the longitudinal direction of the reaction vessel extending in the vertical direction. An electrode is attached to a side wall of the plasma formation chamber extending in the vertical direction. High frequency is applied to the electrode to generate capacitive plasma. In some embodiments, a supply nozzle of a raw material gas, a supply nozzle of a reaction gas and a supply nozzle of a modification gas may be installed inside the plasma formation chamber. Further, the interior of the reaction vessel is set to a vacuum atmosphere. The wafer boat is heated and rotated. In this state, a process of forming a SiN layer by supplying a raw material gas and then supplying a reaction gas is repeated plural times to form a SiN film having a predetermined thickness. Subsequently, a H2 gas and an NH3 gas are supplied as modification gases to the reaction vessel kept in the vacuum atmosphere. These gases are activated. The gases thus activated are supplied to the wafer W to perform a process of modifying the SiN film.
In the step of modifying the SiN film after the formation of the SiN film, one and the other of the activated H2 gas and the activated NH3 gas may be sequentially supplied to the wafer W. In this case, the ratio of the total supply amount of the H2 gas and total supply amount of the NH3 gas may be adjusted, for example, by setting the flow rates of the H2 gas and the NH3 gas to be the same and adjusting the supply time of the H2 gas and the supply time of the NH3 gas to the wafer W. In some embodiments, the step of modifying the SiN film may include supplying one of the activated H2 gas and the activated NH3 gas to the wafer W, supplying the other to the wafer W and simultaneously supplying both to the wafer W.
Using the film formation processing apparatus shown in
(Formation Condition of SiN film)
Using the film formation processing apparatus shown in
(Condition of Second Modification Process of Example 1)
After the film formation process, in Example 1, the supply of the DCS gas, the NH3 gas, and the Ar gas was stopped, and the H2 gas and the NH3 gas were supplied as a second modification gas to the first modification region r1 and the second modification region r2 at flow rates of 4,520 ml/min and 1,000 ml/min. Similar to the film formation process, the internal pressure of the vacuum container 11 was set to 267 Pa, the temperature of the wafer W was set to 475 degrees C., and the rotation speed of the rotary table 2 was set to 20 rpm. A modification process was performed for 300 seconds.
(Condition of Second Modification Process of Comparative Example 1)
In Comparative Example 2, after the film formation process, the supply of the DCS gas, the NH3 gas and the Ar gas was stopped, and the H2 gas was supplied to each of the first modification region r1 and the second modification region r2 at a flow rate of 1,000 sccm. In addition, the internal pressure of the vacuum container 11 was set to 66.5 Pa (0.5) Torr, the temperature of the wafer W was set to 475 degrees C., and the rotation speed of the rotary table 2 was set to 20 rpm. A modification process was performed for 300 seconds.
In the evaluation of the film quality, a wet etching rate (WER [Å/min]) based on a hydrofluoric acid having a concentration of 0.5% by weight was measured at four positions, namely the top position A, the recess upper position B, the recess lower position C and the bottom position D of the recess 81 shown in
In the results of Comparative Example 1 (
In the results of Comparative Example 2 (
In Example 1, as shown in
In Comparative Example 2, in order to improve the modification effect, the internal pressure of the vacuum container 11 in the second modification process is set lower than in the film formation process. However, in Example 1, the second modification process is performed by setting the internal pressure of the vacuum container 11 in the second modification process to be the same as that in the film formation process. Thus, according to the method of the present disclosure, the modification effect can be sufficiently obtained even with the same pressure as that in the film formation process. Therefore, the modification process can be performed while suppressing the decrease in throughput.
According to the present disclosure in some embodiments, a silicon nitride film is formed along an inner wall surface of a recess constituting a pattern formed on a surface of a substrate. Thereafter, a hydrogen gas and an ammonia gas are activated. The gases thus activated are supplied to the substrate. Dangling bonds of the silicon nitride film are bonded by the active species of the hydrogen gas, thereby making the silicon nitride film dense and modifying the silicon nitride film. When the ammonia gas is used, it is inferred that the active species of hydrogen are generated after the ammonia gas enters the lower side in the recess. Therefore, if the ammonia gas is used as a modification gas in addition to the hydrogen gas, it is possible to make the degree of modification of the silicon nitride film uniform in the vertical direction of the recess. This makes it possible to enhance the uniformity of a film quality of the silicon nitride film in the vertical direction of the recess while making the silicon nitride film dense.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosures. Indeed, the embodiments described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosures. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosures.
Number | Date | Country | Kind |
---|---|---|---|
2016-226168 | Nov 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4854266 | Simson et al. | Aug 1989 | A |
5281274 | Yoder | Jan 1994 | A |
5620523 | Maeda et al. | Apr 1997 | A |
5744049 | Hills et al. | Apr 1998 | A |
5849088 | Dedontney et al. | Dec 1998 | A |
5906354 | Gilbert et al. | May 1999 | A |
6279503 | Choi et al. | Aug 2001 | B1 |
6340501 | Kamiyama et al. | Jan 2002 | B1 |
6634314 | Hwang et al. | Oct 2003 | B2 |
6933245 | Lee et al. | Aug 2005 | B2 |
7153542 | Nguyen et al. | Dec 2006 | B2 |
8034723 | Ohizumi et al. | Oct 2011 | B2 |
8092598 | Baek et al. | Jan 2012 | B2 |
8343594 | Hasebe et al. | Jan 2013 | B2 |
8372202 | Kato et al. | Feb 2013 | B2 |
8465591 | Kato et al. | Jun 2013 | B2 |
8465592 | Kato et al. | Jun 2013 | B2 |
8518183 | Honma et al. | Aug 2013 | B2 |
8673079 | Kato et al. | Mar 2014 | B2 |
8673395 | Kato et al. | Mar 2014 | B2 |
8721790 | Kato et al. | May 2014 | B2 |
8746170 | Orito et al. | Jun 2014 | B2 |
8808456 | Kato et al. | Aug 2014 | B2 |
8835332 | Kato et al. | Sep 2014 | B2 |
8840727 | Kato et al. | Sep 2014 | B2 |
8845857 | Ohizumi et al. | Sep 2014 | B2 |
8854449 | Aikawa et al. | Oct 2014 | B2 |
8882915 | Kato et al. | Nov 2014 | B2 |
8882916 | Kumagai et al. | Nov 2014 | B2 |
8906246 | Kato et al. | Dec 2014 | B2 |
8951347 | Kato et al. | Feb 2015 | B2 |
8961691 | Kato et al. | Feb 2015 | B2 |
8962495 | Ikegawa et al. | Feb 2015 | B2 |
8992685 | Kato et al. | Mar 2015 | B2 |
9023738 | Kato et al. | May 2015 | B2 |
9040434 | Kato | May 2015 | B2 |
9053909 | Kato et al. | Jun 2015 | B2 |
9103030 | Kato et al. | Aug 2015 | B2 |
9111747 | Yamawaku et al. | Aug 2015 | B2 |
9136133 | Oshimo et al. | Sep 2015 | B2 |
9214333 | Sims et al. | Dec 2015 | B1 |
9714467 | Kato et al. | Jul 2017 | B2 |
20020195056 | Sandhu et al. | Dec 2002 | A1 |
20030228770 | Lee et al. | Dec 2003 | A1 |
20040052972 | Schmitt | Mar 2004 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060177579 | Shin et al. | Aug 2006 | A1 |
20060196538 | Kubista et al. | Sep 2006 | A1 |
20060269693 | Balseanu et al. | Nov 2006 | A1 |
20070215036 | Park et al. | Sep 2007 | A1 |
20070218701 | Shimizu et al. | Sep 2007 | A1 |
20070218702 | Shimizu et al. | Sep 2007 | A1 |
20080124945 | Miya et al. | May 2008 | A1 |
20080207007 | Thridandam et al. | Aug 2008 | A1 |
20080208385 | Sakamoto et al. | Aug 2008 | A1 |
20080216864 | Sexton et al. | Sep 2008 | A1 |
20080242116 | Clark | Oct 2008 | A1 |
20090272402 | Kim et al. | Nov 2009 | A1 |
20090324826 | Kato et al. | Dec 2009 | A1 |
20090324828 | Kato et al. | Dec 2009 | A1 |
20100050942 | Kato et al. | Mar 2010 | A1 |
20100050943 | Kato et al. | Mar 2010 | A1 |
20100050944 | Kato et al. | Mar 2010 | A1 |
20100055297 | Kato et al. | Mar 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100055314 | Kato et al. | Mar 2010 | A1 |
20100055315 | Honma | Mar 2010 | A1 |
20100055316 | Honma | Mar 2010 | A1 |
20100055319 | Kato et al. | Mar 2010 | A1 |
20100055320 | Honma | Mar 2010 | A1 |
20100055347 | Kato et al. | Mar 2010 | A1 |
20100055351 | Kato et al. | Mar 2010 | A1 |
20100116210 | Kato et al. | May 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100132614 | Kato et al. | Jun 2010 | A1 |
20100132615 | Kato et al. | Jun 2010 | A1 |
20100136795 | Honma | Jun 2010 | A1 |
20100151131 | Obara et al. | Jun 2010 | A1 |
20100227046 | Kato et al. | Sep 2010 | A1 |
20100227059 | Kato et al. | Sep 2010 | A1 |
20100260935 | Kato et al. | Oct 2010 | A1 |
20100260936 | Kato et al. | Oct 2010 | A1 |
20110039026 | Kato et al. | Feb 2011 | A1 |
20110048326 | Kato et al. | Mar 2011 | A1 |
20110086516 | Lee et al. | Apr 2011 | A1 |
20110100489 | Orito et al. | May 2011 | A1 |
20110104395 | Kumagai et al. | May 2011 | A1 |
20110126985 | Ohizumi et al. | Jun 2011 | A1 |
20110139074 | Kato et al. | Jun 2011 | A1 |
20110151122 | Kato et al. | Jun 2011 | A1 |
20110155056 | Kato et al. | Jun 2011 | A1 |
20110155057 | Kato et al. | Jun 2011 | A1 |
20110159187 | Kato et al. | Jun 2011 | A1 |
20110159188 | Kato et al. | Jun 2011 | A1 |
20110159702 | Ohizumi et al. | Jun 2011 | A1 |
20110214611 | Kato et al. | Sep 2011 | A1 |
20110236598 | Kumagai et al. | Sep 2011 | A1 |
20120009802 | Lavoie et al. | Jan 2012 | A1 |
20120075460 | Aikawa et al. | Mar 2012 | A1 |
20120076937 | Kato et al. | Mar 2012 | A1 |
20120222615 | Kato et al. | Sep 2012 | A1 |
20120267341 | Kato et al. | Oct 2012 | A1 |
20130059415 | Kato et al. | Mar 2013 | A1 |
20130122718 | Kato et al. | May 2013 | A1 |
20130251904 | Kato et al. | Sep 2013 | A1 |
20130337635 | Yamawaku et al. | Dec 2013 | A1 |
20130337658 | Ikegawa et al. | Dec 2013 | A1 |
20140017909 | Kato | Jan 2014 | A1 |
20140170859 | Yamawaku et al. | Jun 2014 | A1 |
20140174351 | Aikawa | Jun 2014 | A1 |
20140199856 | Kato et al. | Jul 2014 | A1 |
20140206133 | Koezuka et al. | Jul 2014 | A1 |
20140213068 | Kato et al. | Jul 2014 | A1 |
20140220260 | Yamawaku et al. | Aug 2014 | A1 |
20140237530 | Delorme | Aug 2014 | A1 |
20140273527 | Niskanen et al. | Sep 2014 | A1 |
20140273530 | Nguyen et al. | Sep 2014 | A1 |
20140345523 | Kikuchi et al. | Nov 2014 | A1 |
20140349032 | Kato et al. | Nov 2014 | A1 |
20150011087 | Oshimo et al. | Jan 2015 | A1 |
20150024143 | Kumagai et al. | Jan 2015 | A1 |
20150031218 | Karakawa | Jan 2015 | A1 |
20150078864 | Sato et al. | Mar 2015 | A1 |
20150079807 | Tamura et al. | Mar 2015 | A1 |
20150184293 | Kato et al. | Jul 2015 | A1 |
20150184294 | Kato et al. | Jul 2015 | A1 |
20150187560 | Kim et al. | Jul 2015 | A1 |
20150214029 | Hane et al. | Jul 2015 | A1 |
20150225849 | Kato et al. | Aug 2015 | A1 |
20160079054 | Chen | Mar 2016 | A1 |
20170218510 | Kato et al. | Aug 2017 | A1 |
20170263437 | Li et al. | Sep 2017 | A1 |
20180308681 | Harada et al. | Oct 2018 | A1 |
20180350668 | Cheng et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1269046 | Oct 2000 | CN |
101076878 | Nov 2007 | CN |
4287912 | Oct 1992 | JP |
3144664 | Mar 2001 | JP |
2001254181 | Sep 2001 | JP |
2006278497 | Oct 2006 | JP |
2007247066 | Sep 2007 | JP |
2007281082 | Oct 2007 | JP |
201016136 | Jan 2010 | JP |
2010283357 | Dec 2010 | JP |
201161218 | Mar 2011 | JP |
2012079762 | Apr 2012 | JP |
2012079762 | Apr 2012 | JP |
2013055243 | Mar 2013 | JP |
2013161874 | Aug 2013 | JP |
2013165116 | Aug 2013 | JP |
2014165402 | Sep 2014 | JP |
2015165549 | Sep 2015 | JP |
5882777 | Feb 2016 | JP |
5882777 | Mar 2016 | JP |
2006065014 | Jun 2006 | WO |
2006088062 | Aug 2006 | WO |
2013137115 | Sep 2013 | WO |
Entry |
---|
Machine Translation of JP-2012079762-A (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20180142350 A1 | May 2018 | US |