Copy of Search Report in corresponding PCT Application No. PCT/US02/22609, mailed Oct. 8, 2002. |
G. Amblard et al., “Diffusion Phenomenon and Loss of Adhesion in Chemically Amplified Negative Resists”, Microelectronic Engineering, 17, pp. 275-278 (1992). |
P. Buck et al., “Performance of the ALTA® 3500 scanned-laser mask lithography system”, Proceedings of the SPIE Conference on Photomask ad X-Ray Mask Technology V, Kawasaki, Japan, SPIE vol. 3412, pp. 67-78 (Apr. 1998). |
K. Kohji et al., “Improvement of Post Exposure Delay Stability of Chemically Amplified Positive Resist”, Proceedings of the SPIE Symposium on Photomask and X-Ray Mask Technology VI, Yokohama, Japan, SPIE vol. 3748, pp. 62-68 (Sep. 1999). |
K. Kemp et al., “Effects of DUV Resist Sensitivities on Lithographic Process Window”, SPIE, vol. 3049, pp. 955-962 (1997). |
K. Kemp et al., “Effects of DUV Resist Sensitivities on Lithographic Process Window”, SPIE, vol. 3183, pp. 49-56 (1997). |
C. A. Mack et al., “Matching Simulation and Experiment for Chemically Amplified Resists”, Proceedings of the SPIE Conference on Optical Microlithography XII, SPIE vol. 3679, pp. 183-192. |
Z. Masnyj et al., “Evaluation of Negative DUV Resist UVN30 for Electron Beam Exposure of NGL Masks”, SPIE, vol. 3997, pp. 525-529 (2000). |
U. Okoroanyanwu et al., “Impact of Optical Absorption on Process Control for Sub-0.15-μm Device Patterning Using 193-nm Lithography”, SPIE, vol. 3998, pp. 781-790 (2000). |
C. P. Soo et al., “Enhancement or Reduction of Catalytic Dissolution Reaction in Chemically Amplified Resists by Substrate Contaminants”, IEEE Transactions of Semiconductor Manufacturing, vol. 12, No. 4, pp. 462-469 (Nov. 1999). |
M. Zuniga et al., “Application of a General Reaction/Diffusion Resist Model to Emerging Materials with Extension to Non-Actinic Exposure”, SPIE, vol. 3049, pp. 256-268 (1997). |