Hereinafter, with reference to the drawings, a preferred embodiment of the present invention will be discussed in detail.
The substrate processing apparatus SP is an apparatus (a so-called coater-and-developer) for forming an anti-reflective film and a photoresist film on substrates such as semiconductor wafers by coating and for performing a development process on the substrates after being subjected to a pattern exposure process. The substrates to be processed by the substrate processing apparatus SP of the present invention are not limited to semiconductor wafers, but may include glass substrates for liquid crystal display devices, and the like.
The substrate processing apparatus SP of the present preferred embodiment consists of five processing blocks which are arranged in side-by-side relation, i.e., an indexer block 1, a BARC (Bottom Anti-Reflective Coating) block 2, a resist coating block 3, a development block 4, and an interface block 5. An exposure unit (or stepper) EXP for performing an exposure process on a resist-coated substrate is connected to the interface block 5. In other words, the substrate processing apparatus SP is disposed adjacently to the exposure unit EXP. The substrate processing apparatus SP and the exposure unit EXP of this preferred embodiment are connected via LAN lines to a host computer 100.
The indexer block 1 is a processing block for transferring unprocessed substrates received from the outside of the substrate processing apparatus SP outwardly to the BARC block 2 and the resist coating block 3, and for transferring processed substrates received from the development block 4 to the outside of the substrate processing apparatus SP. The indexer block 1 includes a rest table 11 for placing thereon a plurality of (in this preferred embodiment, four) carriers C in juxtaposition, and a substrate transfer mechanism 12 for taking an unprocessed substrate W out from each of the carriers C and for storing a processed substrate W into each of the carriers C. The substrate transfer mechanism 12 includes a movable base 12a which is movable horizontally (in the Y direction) along the rest table 11, and a holding arm 12b for holding a substrate W in a horizontal position on the movable base 12a. The holding arm 12b is capable of moving upwardly and downwardly (in the Z direction) over the movable base 12a, pivoting within a horizontal plane and moving back and forth in the direction of the pivot radius. Thus, the substrate transfer mechanism 12 can cause the holding arm 12b to gain access to each of the carriers C, thereby taking an unprocessed substrate W out from each carrier C and storing a processed substrate W into each carrier C. The carriers C may be of the following types: an SMIF (Standard Mechanical InterFace) pod, and an OC (Open Carrier) which exposes stored substrates W to the atmosphere, besides a FOUP (Front Opening Unified Pod) which stores substrates W in an enclosed or sealed space.
The BARC block 2 is provided in adjacent relation to the indexer block 1. A partition 13 for closing off the communication of atmosphere is provided between the indexer block 1 and the BARC block 2. The partition 13 is provided with a pair of vertically arranged substrate rest parts PASS1 and PASS2 on which a substrate W is placed for the transfer between the indexer block 1 and the BARC block 2.
The upper substrate rest part PASS 1 is used for the transfer of a substrate W from the indexer block 1 to the BARC block 2. The substrate rest part PASS 1 includes three support pins. The substrate transfer mechanism 12 of the indexer block 1 places an unprocessed substrate W taken out from one of the carriers C onto the three support pins of the substrate rest part PASS1. A transfer robot TRI of the BARC block 2 described later receives the substrate W placed on the substrate rest part PASS1. The lower substrate rest part PASS2, on the other hand, is used for the transfer of a substrate W from the BARC block 2 to the indexer block 1. The substrate rest part PASS2 also includes three support pins. The transfer robot TR1 of the BARC block 2 places a processed substrate W onto the three support pins of the substrate rest part PASS2. The substrate transfer mechanism 12 receives the substrate W placed on the substrate rest part PASS2 and stores the substrate W into one of the carriers C. Pairs of substrate rest parts PASS3 to PASS10 described later are similar in construction to the pair of substrate rest parts PASS1 and PASS2.
The substrate rest parts PASS1 and PASS2 extend through part of the partition 13. Each of the substrate rest parts PASS1 and PASS2 includes an optical sensor (not shown) for detecting the presence or absence of a substrate W thereon. Based on a detection signal from each of the sensors, a judgment is made as to whether or not the substrate transfer mechanism 12 and the transfer robot TR1 of the BARC block 2 stand ready to pass and receive a substrate W to and from the substrate rest parts PASS1 and PASS2.
Next, the BARC block 2 will be described. The BARC block 2 is a processing block for forming an anti-reflective film by coating at the bottom of a photoresist film to reduce standing waves or halation occurring during exposure. The BARC block 2 includes a bottom coating processor BRC for coating the surface of a substrate W with the anti-reflective film, a pair of thermal processing towers 21 for performing a thermal process which accompanies the formation of the anti-reflective film by coating, and the transfer robot TR1 for passing and receiving the substrate W to and from the bottom coating processor BRC and the pair of thermal processing towers 21.
In the BARC block 2, the bottom coating processor BRC and the pair of thermal processing towers 21 are arranged on opposite sides of the transfer robot TR1. Specifically, the bottom coating processor BRC is on the front side of the substrate processing apparatus SP, and the pair of thermal processing towers 21 are on the rear side thereof. Additionally, a thermal barrier not shown is provided on the front side of the pair of thermal processing towers 21. Thus, the thermal effect of the pair of thermal processing towers 21 upon the bottom coating processor BRC is avoided by arranging the bottom coating processor BRC apart from the pair of thermal processing towers 21 and by providing the thermal barrier.
As shown in
As shown in
Thus, stacking the coating units BRC1 to BRC3 and the thermal processing units (the hot plates HP1 to HP6, the cool plates CP1 to CP3, and the adhesion promotion parts AHL1 to AHL3 in the BARC block 2) in tiers provides smaller space occupied by the substrate processing apparatus SP to reduce the footprint thereof. The side-by-side arrangement of the pair of thermal processing towers 21 is advantageous in facilitating the maintenance of the thermal processing units and in eliminating the need for extension of ducting and power supply equipment necessary for the thermal processing units to a much higher position.
The transfer robot TR1 further includes a base 8 fixedly mounted on an apparatus base (or an apparatus frame). A guide shaft 9c is mounted upright on the base 8, and a threaded shaft 9a is rotatably mounted and supported upright on the base 8. A motor 9b for rotatably driving the threaded shaft 9a is fixedly mounted to the base 8. An elevation base 10a is in threaded engagement with the threaded shaft 9a, and is freely slidable relative to the guide shaft 9c. With such an arrangement, the motor 9b rotatably drives the threaded shaft 9a, and the elevation base 10a is thereby guided by the guide shaft 9c to move up and down in a vertical direction (in the Z direction).
An arm base 10b is mounted on the elevation base 10a pivotably about a vertical axis. The elevation base 10a contains a motor 10c for pivotably driving the arm base 10b. The pair of (upper and lower) holding arms 6a and 6b described above are vertically provided on the arm base 10b. Each of the holding arms 6a and 6b is independently movable back and forth in a horizontal direction (in the direction of the pivot radius of the arm base 10b) by a slide driving mechanism (not shown) mounted to the arm base 10b.
With such an arrangement, the transfer robot TR1 is capable of causing each of the pair of holding arms 6a and 6b to independently gain access to the substrate rest parts PASS1 and PASS2, the thermal processing units provided in the thermal processing towers 21, the coating units provided in the bottom coating processor BRC, and the substrate rest parts PASS3 and PASS4 described later, thereby passing and receiving substrates W to and from the above-discussed parts and units, as shown in
Next, the resist coating block 3 will be described. The resist coating block 3 is provided so as to be sandwiched between the BARC block 2 and the development block 4. A partition 25 for closing off the communication of atmosphere is also provided between the resist coating block 3 and the BARC block 2. The partition 25 is provided with the pair of vertically arranged substrate rest parts PASS3 and PASS4 on which a substrate W is placed for the transfer between the BARC block 2 and the resist coating block 3. The substrate rest parts PASS3 and PASS4 are similar in construction to the above-discussed substrate rest parts PASS1 and PASS2.
The upper substrate rest part PASS3 is used for the transfer of a substrate W from the BARC block 2 to the resist coating block 3. Specifically, a transfer robot TR2 of the resist coating block 3 receives the substrate W which is placed on the substrate rest part PASS3 by the transfer robot TR1 of the BARC block 2. The lower substrate rest part PASS4, on the other hand, is used for the transfer of a substrate W from the resist coating block 3 to the BARC block 2. Specifically, the transfer robot TR1 of the BARC block 2 receives the substrate W which is placed on the substrate rest part PASS4 by the transfer robot TR2 of the resist coating block 3.
The substrate rest parts PASS3 and PASS4 extend through part of the partition 25. Each of the substrate rest parts PASS3 and PASS4 includes an optical sensor (not shown) for detecting the presence or absence of a substrate W thereon. Based on a detection signal from each of the sensors, a judgment is made as to whether or not the transfer robots TR1 and TR2 stand ready to pass and receive a substrate W to and from the substrate rest parts PASS3 and PASS4. A pair of (upper and lower) cool plates WCP of a water-cooling type for roughly cooling a substrate W are vertically provided under the substrate rest parts PASS3 and PASS4, and extend through the partition 25 (See
The resist coating block 3 is a processing block for applying a resist onto a substrate W which is coated with the anti-reflective film by the BARC block 2 to form a resist film thereon. In this preferred embodiment, a chemically amplified resist is used as the photoresist. The resist coating block 3 includes a resist coating processor SC for forming the resist film by coating on the anti-reflective film serving as the undercoating film, a pair of thermal processing towers 31 for performing a thermal process which accompanies the resist coating process, and the transfer robot TR2 for passing and receiving a substrate W to and from the resist coating processor SC and the pair of thermal processing towers 31.
In the resist coating block 3, the resist coating processor SC and the pair of thermal processing towers 31 are arranged on opposite sides of the transfer robot TR2. Specifically, the resist coating processor SC is on the front side of the substrate processing apparatus SP, and the pair of thermal processing towers 31 are on the rear side thereof. Additionally, a thermal barrier not shown is provided on the front side of the pair of thermal processing towers 31. Thus, the thermal effect of the pair of thermal processing towers 31 upon the resist coating processor SC is avoided by arranging the resist coating processor SC apart from the pair of thermal processing towers 31 and by providing the thermal barrier.
As shown in
As shown in
Each of the heating parts PHP1 to PHP6 is a thermal processing unit including, in addition to an ordinary hot plate for heating a substrate W placed thereon, a temporary substrate rest part for placing a substrate W thereon in an upper position spaced apart from the hot plate, and a local transfer mechanism 34 (See
The local transfer mechanism 34 is provided on the opposite side of the above-discussed hot plate and the temporary substrate rest part from the transfer robot TR2, that is, on the rear side of the substrate processing apparatus SP. The temporary substrate rest part has both an open side facing the transfer robot TR2 and an open side facing the local transfer mechanism 34. The hot plate, on the other hand, has only an open side facing the local transfer mechanism 34, and a closed side facing the transfer robot TR2. Therefore, both of the transfer robot TR2 and the local transfer mechanism 34 can gain access to the temporary substrate rest part, but only the local transfer mechanism 34 can gain access to the hot plate. The heating parts PHP1 to PHP6 are generally similar in construction (
A substrate W is transferred into each of the above-discussed heating parts PHP1 to PHP6 having such a construction in a manner to be described below. First, the transfer robot TR2 places a substrate W onto the temporary substrate rest part. Subsequently, the local transfer mechanism 34 receives the substrate W from the temporary substrate rest part and transfers the substrate W to the hot plate. The hot plate performs a heating process on the substrate W. The local transfer mechanism 34 takes out the substrate W after being subjected to the heating process in the hot plate, and transfers the substrate W to the temporary substrate rest part. During the transfer, the substrate W is cooled down by the cooling function of the local transfer mechanism 34. After that, the transfer robot TR2 takes out the substrate W after being subjected to the heating process and transferred to the temporary substrate rest part.
In this manner, the transfer robot TR2 passes and receives the substrate W to and from only the temporary substrate rest part held at room temperature in each of the heating parts PHP1 to PHP6, but does not pass and receive the substrate W directly to and from the hot plate. This avoids the temperature rise of the transfer robot TR2. Since the hot plate has only the open side facing the local transfer mechanism 34, it is possible to prevent the heat atmosphere leaking out from the hot plate from affecting the transfer robot TR2 and the resist coating processor SC. The transfer robot TR2 passes and receives a substrate W directly to and from the cool plates CP4 to CP9.
The transfer robot TR2 is precisely identical in construction with the transfer robot TR1. Therefore, the transfer robot TR2 is capable of causing each of a pair of holding arms thereof to independently gain access to the substrate rest parts PASS3 and PASS4, the thermal processing units provided in the thermal processing towers 31, the coating units provided in the resist coating processor SC, and the substrate rest parts PASS5 and PASS6 described later, thereby passing and receiving substrates W to and from the above-discussed parts and units.
Next, the development block 4 will be described. The development block 4 is provided so as to be sandwiched between the resist coating block 3 and the interface block 5. A partition 35 for closing off the communication of atmosphere is also provided between the resist coating block 3 and the development block 4. The partition 35 is provided with the pair of vertically arranged substrate rest parts PASS5 and PASS6 on which a substrate W is placed for the transfer between the resist coating block 3 and the development block 4. The substrate rest parts PASS5 and PASS6 are similar in construction to the above-discussed substrate rest parts PASS1 and PASS2.
The upper substrate rest part PASS5 is used for the transfer of a substrate W from the resist coating block 3 to the development block 4. Specifically, a transfer robot TR3 of the development block 4 receives the substrate W which is placed on the substrate rest part PASS5 by the transfer robot TR2 of the resist coating block 3. The lower substrate rest part PASS6, on the other hand, is used for the transfer of a substrate W from the development block 4 to the resist coating block 3. Specifically, the transfer robot TR2 of the resist coating block 3 receives the substrate W which is placed on the substrate rest part PASS6 by the transfer robot TR3 of the development block 4.
The substrate rest parts PASS5 and PASS6 extend through part of the partition 35. Each of the substrate rest parts PASS5 and PASS6 includes an optical sensor (not shown) for detecting the presence or absence of a substrate W thereon. Based on a detection signal from each of the sensors, a judgment is made as to whether or not the transfer robots TR2 and TR3 stand ready to pass and receive a substrate W to and from the substrate rest parts PASS5 and PASS6. A pair of (upper and lower) cool plates WCP of a water-cooling type for roughly cooling a substrate W are vertically provided under the substrate rest parts PASS5 and PASS6, and extend through the partition 35 (See
The development block 4 is a processing block for performing a development process on a substrate W after being subjected to an exposure process. The development block 4 is also capable of cleaning and drying a substrate W after being subjected to an immersion exposure process. The development block 4 includes a development processor SD for applying a developing solution onto a substrate W after pattern exposure to perform the development process, a cleaning processor SOAK for performing a cleaning process and a drying process on a substrate W after being subjected to the immersion exposure process, a pair of thermal processing towers 41 and 42 for performing a thermal process which accompanies the development process, and the transfer robot TR3 for passing and receiving a substrate W to and from the development processor SD, the cleaning processor SOAK and the pair of thermal processing towers 41 and 42. The transfer robot TR3 is precisely identical in construction with the above-discussed transfer robots TR1 and TR2.
As shown in
The cleaning processor SOAK includes a front surface cleaning unit SOAK1 and a back surface cleaning unit SOAK2. As shown in
The spin chuck 421 is fixed on the upper end of a rotary shaft 425 which is rotated by an electric motor not shown. The spin chuck 421 is provided with a suction passage (not shown). With the substrate W placed on the spin chuck 421, exhausting air from the suction passage allows the lower surface of the substrate W to be vacuum-held on the spin chuck 421, whereby the substrate W is held in a horizontal position.
A first pivoting motor 460 is provided on one side of the spin chuck 421. A first pivoting shaft 461 is connected to the first pivoting motor 460. A first arm 462 is coupled to the first pivoting shaft 461 so as to extend in a horizontal direction, and a cleaning nozzle 450 is provided on a distal end of the first arm 462. The first pivoting motor 460 drives the first pivoting shaft 461 to rotate, thereby pivoting the first arm 462, whereby the cleaning nozzle 450 moves to over the substrate W held by the spin chuck 421.
A tip of a cleaning supply pipe 463 is connected in communication with the cleaning nozzle 450. The cleaning supply pipe 463 is connected in communication with a cleaning liquid supply source R1 and a surface preparation liquid supply source R2 through a valve Va and a valve Vb, respectively. By controlling the opening and closing of the valves Va and Vb, it is possible to select a processing liquid to be supplied to the cleaning supply pipe 463 and adjust the amount of liquid to be supplied. Specifically, a cleaning liquid is supplied to the cleaning supply pipe 463 by opening the valve Va, and a surface preparation liquid is supplied to the cleaning supply pipe 463 by opening the valve Vb.
The cleaning liquid supplied from the cleaning liquid supply source R1 or the surface preparation liquid supplied from the surface preparation liquid supply source R2 is fed through the cleaning supply pipe 463 to the cleaning nozzle 450. This allows the cleaning liquid or the surface preparation liquid to be supplied from the cleaning nozzle 450 to the upper surface of the substrate W. As the cleaning liquid, for example, deionized water, a solution of a complex (ionized) in deionized water and the like may be used. As the surface preparation liquid, for example, hydrofluoric acid and the like may be used. A two-fluid nozzle which mixes droplets into a gas to eject the mixture may be used as the cleaning nozzle 450. Another construction may be employed where a brush is used to clean the upper surface of the substrate W while deionized water serving as the cleaning liquid is applied to the surface of the substrate W.
A second pivoting motor 470 is provided on a side of the spin chuck 421 which is different from the above-discussed side. A second pivoting shaft 471 is connected to the second pivoting motor 470. A second arm 472 is coupled to the second pivoting shaft 471 so as to extend in a horizontal direction, and a drying nozzle 451 is provided on a distal end of the second arm 472. The second pivoting motor 470 drives the second pivoting shaft 471 to rotate, thereby pivoting the second arm 472, whereby the drying nozzle 451 moves to over the substrate W held by the spin chuck 421.
A tip of a drying supply pipe 473 is connected in communication with the drying nozzle 451. The drying supply pipe 473 is connected in communication with an inert gas supply source R3 through a valve Vc. By controlling the opening and closing of the valve Vc, it is possible to adjust the amount of inert gas to be supplied to the drying supply pipe 473.
The inert gas supplied from the inert gas supply source R3 is fed through the drying supply pipe 473 to the drying nozzle 451. This allows the inert gas to be supplied from the drying nozzle 451 to the upper surface of the substrate W. As the inert gas, for example, nitrogen gas (N2) and argon gas (Ar) may be used.
When supplying the cleaning liquid or the surface preparation liquid to the upper surface of the substrate W, the cleaning nozzle 450 is positioned over the substrate W held by the spin chuck 421 whereas the drying nozzle 451 is retracted to a predetermined position. When supplying the inert gas to the upper surface of the substrate W, on the other hand, the drying nozzle 451 is positioned over the substrate W held by the spin chuck 421 whereas the cleaning nozzle 450 is retracted to a predetermined position, as shown in
The substrate W held by the spin chuck 421 is surrounded by a processing cup 423. A cylindrical partition wall 433 is provided inside the processing cup 423. A drainage space 431 for draining the processing liquid (the cleaning liquid or the surface preparation liquid) which has been used for the processing of the substrate W is formed inside the partition wall 433 so as to surround the spin chuck 421. A collected liquid space 432 for collecting the processing liquid which has been used for the processing of the substrate W is formed between the outer wall of the processing cup 423 and the partition wall 433 so as to surround the drainage space 431.
A drainage pipe 434 for guiding the processing liquid to a drainage processing apparatus (not shown) is connected to the drainage space 431, and a collection pipe 435 for guiding the processing liquid to a collection processing apparatus (not shown) is connected to the collected liquid space 432.
A splash guard 424 for preventing the processing liquid from the substrate W from splashing outwardly is provided over the processing cup 423. The splash guard 424 has a configuration rotationally symmetric with respect to the rotary shaft 425. A drainage guide groove 441 of a dog-legged sectional configuration is formed annularly in the inner surface of an upper end portion of the splash guard 424. A collected liquid guide portion 442 defined by an outwardly downwardly inclined surface is formed in the inner surface of a lower end portion of the splash guard 424. A partition wall receiving groove 443 for receiving the partition wall 433 in the processing cup 423 is formed near the upper end of the collected liquid guide portion 442.
The splash guard 424 is driven to move upwardly and downwardly in a vertical direction by a guard elevation driving mechanism (not shown) including a ball screw mechanism and the like. The guard elevation driving mechanism moves the splash guard 424 upwardly and downwardly between a collection position in which the collected liquid guide portion 442 surrounds the edge portion of the substrate W held by the spin chuck 421 and a drainage position in which the drainage guide groove 441 surrounds the edge portion of the substrate W held by the spin chuck 421. When the splash guard 424 is in the collection position (the position shown in
The remaining constituents of the back surface cleaning unit SOAK2 are the same as the constituents of the front surface cleaning unit SOAK1, and the constituents identical to those of the front surface cleaning unit SOAK1 are represented by the same reference signs as in
Referring again to
The thermal processing tower 42 which is farther from the indexer block 1, on the other hand, includes the six heating parts PHP7 to PHP12 and a cool plate CP14 which are arranged in stacked relation. Like the above-discussed heating parts PHP1 to PHP6, each of the heating parts PHP7 to PHP12 is a thermal processing unit including a temporary substrate rest part and a local transfer mechanism.
The local transfer mechanism 720 includes a holding plate 724 for holding a substrate W in a substantially horizontal position. The holding plate 724 is moved upwardly and downwardly by a screw feed driving mechanism 725, and is moved back and forth by a belt driving mechanism 726. The holding plate 724 is provided with a plurality of slits 724a so as not to interfere with the movable support pins 721 and the fixed support pins 723 when the holding plate 724 moves to over the heating plate 710 and moves into the temporary substrate rest part 719.
The local transfer mechanism 720 further includes a cooling element for cooling a substrate W in the course of the transfer of the substrate W from the heating plate 710 to the temporary substrate rest part 719. As illustrated in
The above-discussed local transfer mechanism 720 is provided at the rear of (i.e., on the (+Y) side relative to) the heating plate 710 and the temporary substrate rest part 719 in the substrate processing apparatus SP. A transfer robot TR4 of the interface block 5 is disposed on the (+X) side relative to the heating plate 710 and the temporary substrate rest part 719, and the transfer robot TR3 of the development block 4 is disposed on the (−Y) side relative to the heating plate 710 and the temporary substrate rest part 719. In an upper portion of an enclosure 727 covering the heating plate 710 and the temporary substrate rest part 719, i.e., a portion of the enclosure 727 which covers the temporary substrate rest part 719, an opening 719a is provided on the (+X) side for allowing the transfer robot TR4 to enter the temporary substrate rest part 719, and an opening 719b is provided on the (+Y) side for allowing the local transfer mechanism 720 to enter the temporary substrate rest part 719. In a lower portion of the enclosure 727, i.e., a portion of the enclosure 727 which covers the heating plate 710, no openings are provided on the (+X) and (−Y) sides (i.e., the surfaces of the enclosure 727 facing the transfer robot TR3 and the transfer robot TR4), and an opening 719c is provided on the (+Y) side for allowing the local transfer mechanism 720 to enter the heating plate 710.
Loading and unloading of a substrate W to/from the above-discussed heating part PHP7 are performed in such a manner as discussed below. First, the transfer robot TR4 of the interface block 5 holds an exposed substrate W, and places the substrate W onto the fixed support pins 723 of the temporary substrate rest part 719. Subsequently, the holding plate 724 of the local transfer mechanism 720 moves to under the substrate W, and then moves slightly upwardly to receive the substrate W from the fixed support pins 723. The holding plate 724 which holds the substrate W moves backwardly out from the enclosure 727, and then moves downwardly to a position opposed to the heating plate 710. At this time, the movable support pins 721 of the heating plate 710 are in a lowered position, and the top cover 722 is in a raised position. The holding plate 724 which holds the substrate W moves to over the heating plate 710. After the movable support pins 721 move upwardly and receive the substrate W in a receiving position, the holding plate 724 moves backwardly out from the enclosure 727. Subsequently, the movable support pins 721 move downwardly to place the substrate W onto the heating plate 710, and the top cover 722 moves downwardly to cover the substrate W. In this state, the substrate W is subjected to the heating process. After the heating process, the top cover 722 moves upwardly, and the movable support pins 721 move upwardly to lift the substrate W. Next, after the holding plate 724 moves to under the substrate W, the movable support pins 721 move downwardly to pass the substrate W to the holding plate 724. The holding plate 724 which holds the substrate W moves backwardly out from the enclosure 727, and then moves upwardly to transfer the substrate W to the temporary substrate rest part 719. In the course of the transfer, the substrate W supported by the holding plate 724 is cooled by the cooling element of the holding plate 724. The holding plate 724 brings the substrate W which has been cooled (to approximately room temperature) onto the fixed support pins 723 of the temporary substrate rest part 719. The transfer robot TR4 takes out the substrate W and transfers it.
The transfer robot TR4 passes and receives the substrate W to and from only the temporary substrate rest part 719, but does not pass and receive the substrate W to and from the heating plate 710. This avoids the temperature rise of the transfer robot TR4. Further, the opening 719c through which the substrate W is placed onto and removed from the heating plate 710 is formed only on the side of the local transfer mechanism 720. This prevents the heat atmosphere leaking out through the opening 719c from raising the temperatures of the transfer robot TR3 and the transfer robot TR4 and also from affecting the development processor SD and the cleaning processor SOAK.
As discussed above, the transfer robot TR4 of the interface block 5 can gain access to the heating parts PHP7 to PHP12 and the cool plate CP14, but the transfer robot TR3 of the development block 4 cannot gain access thereto. The transfer robot TR3 of the development block 4 gains access to the thermal processing units incorporated in the thermal processing tower 41.
The pair of vertically arranged substrate rest parts PASS7 and PASS8 in proximity to each other for the transfer of a substrate W between the development block 4 and the interface block 5 adjacent thereto are incorporated in the topmost tier of the thermal processing tower 42. The upper substrate rest part PASS7 is used for the transfer of a substrate W from the development block 4 to the interface block 5. Specifically, the transfer robot TR4 of the interface block 5 receives the substrate W which is placed on the substrate rest part PASS7 by the transfer robot TR3 of the development block 4. The lower substrate rest part PASS8, on the other hand, is used for the transfer of a substrate W from the interface block 5 to the development block 4. Specifically, the transfer robot TR3 of the development block 4 receives the substrate W which is placed on the substrate rest part PASS8 by the transfer robot TR4 of the interface block 5. Each of the substrate rest parts PASS7 and PASS8 includes both an open side facing the transfer robot TR3 of the development block 4 and an open side facing the transfer robot TR4 of the interface block 5.
Next, the interface block 5 for connection to the exposure unit EXP will be described. The interface block 5 is a block provided adjacently to the development block 4. The interface block 5 receives a substrate W with the resist film formed thereon by the resist coating process from the resist coating block 3 and transfers the substrate W to the exposure unit EXP. Also, the interface block 5 receives an exposed substrate W from the exposure unit EXP and transfers the exposed substrate W to the development block 4. The interface block 5 of this preferred embodiment includes a transfer mechanism 55 for passing and receiving a substrate W to and from the exposure unit EXP, an edge exposure part EEW for exposing the periphery of a substrate W with the resist film formed thereon, and the transfer robot TR4 for passing and receiving a substrate W to and from the heating parts PHP7 to PHP12 and cool plate CP14 provided in the development block 4 and the edge exposure part EEW.
The edge exposure part EEW includes an edge exposure unit EEW1. As shown in
Further, as shown in
The elevation table 210 can be moved upwardly and downwardly along a vertical direction by an elevation driving mechanism which is not shown and includes, e.g., an air cylinder. On the upper surface of the elevation table 210, a plurality of (in this preferred embodiment, six) support pins 218 stand along one circumference. Each of the support pins 218 consists of a support portion 218a for supporting a lower-surface periphery of a substrate W from therebeneath and a pin portion 218b which protrudes from the upper surface of the support portion. The elevation table 210 of the reversing unit REV, unlike the spin chuck 427 of the back surface cleaning unit SOAK2 for rotating the substrate W, does not need so much to firmly hold the substrate W, and therefore all the six support pins 428 are fixed onto the elevation table 210. In other words, the pin portions 218b of the elevation table 210 are members to simply control the horizontal position of the substrate W.
A pair of reversing chucks 230 on the right and left sides are provided along the direction of the radius of a disk-like rotation base 235. The reversing chucks 230 are moved slidingly by a slide driving mechanism incorporated in the rotation base 235 as illustrated by the arrow AR11 of
The rotation base 235 can be rotated along the direction as illustrated by the arrow AR12 of
In order for the reversing unit REV to reverse the front and back surfaces of the substrate W, first, the elevation table 210 moves upwardly to a load/unload position at a level higher than the reversing chucks 230. Receiving the substrate W on the support pins 218 from a transfer mechanism 55 described later at the load/unload position, the elevation table 210 moves downwardly to a passing position where it passes the substrate W to the reversing chucks 230. The passing position is a position where the reversing chucks 230 which are still opposingly along the horizontal direction and the substrate W held by the elevation table 210 are in the same level. Further, when the elevation table 210 moves downwardly to the passing position, the reversing chucks 230 have moved so as to make a space which is wide enough for the substrate W to pass therebetween.
In a state where the elevation table 210 is down to the passing position, the pair of reversing chucks 230 start moving slidingly to decrease the distance therebetween and then the respective grasping parts 231 of the reversing chucks 230 come into grasping the edge portions of the substrate W. The substrate W is thereby held by the reversing chucks 230. The elevation table 210 further moves downwardly to an escape position still lower than the passing position. The escape position is a position where the reversing chucks 230 and the elevation table 210 do not collide with each other in the following reversing step.
Next, the rotation base 235 rotates 180 degrees (makes a half turn) to reverse the front and back surfaces of the substrate W. After that, the elevation table 210 moves upwardly again from the escape position to the passing position to receive the substrate W onto the support pins 218 and the pair of reversing chucks 230 slidingly move to increase the distance therebetween. Then, receiving the substrate W after being reversed, the elevation table 210 further moves upwardly to the load/unload position and the transfer mechanism 55 receives the substrate W after being reversed from the support pins 218. Since the support pins 218 serve to support the edge portions of the substrate W, if the front surface of the substrate W which has a pattern thereon becomes a lower surface after the reverse operation, there is no possibility that the support pins 218 might damage the pattern.
With reference to
As shown in
A hand support base 55b is mounted on the movable base 55a. The hand support base 55b is movable upwardly and downwardly in a vertical direction (along the Z axis) and pivotable about a vertical axis by an elevation mechanism and a pivot mechanism incorporated in the movable base 55a. A pair of holding arms 59a and 59b for holding a substrate W are mounted on the hand support base 55b so as to be arranged vertically. The pair of holding arms 59a and 59b are movable back and forth in the direction of the pivot radius of the hand support base 55b independently of each other by a slide driving mechanism incorporated in the movable base 55a.
The holding arm 59a holds the substrate W so that the substrate W should be fit in the recessed portion 592. At that time, the substrate W is held by four points with its edge portions brought into a point contact with the edge lines of the guide members 593. In other words, the holding arm 59a is a low-contact type transfer arm for supporting the edge portions of the substrate W with four points in contact therewith. Therefore, even when the transfer mechanism 55 carries the substrate W whose front surface faces down, since the front surface is out of contact with the holding arm 59a, there is no possibility of damaging the pattern and the like formed thereon.
With the above construction, the transfer mechanism 55 serves to pass and receive the substrate W to/from the exposure unit EXP, pass and receive the substrate to/from the substrate rest parts PASS9 and PASS10, pass and receive the substrate W to/from the reversing unit REV and store the substrate W into or take the substrate W out from a send buffer SBF for sending the substrate W. The send buffer SBF serves to temporarily store the substrate W before exposure when the exposure unit EXP is unable to receive the substrate W and it includes a cabinet capable of storing a plurality of substrates W in tiers.
Further, as shown in
The manner in which the transfer mechanism 55 passes and receives the substrate W to/from the reversing unit REV is the same as that for the back surface cleaning unit SOAK2. Since the elevation table 210 of the reversing unit REV does not rotate, however, such a stopping mechanism as the above-discussed encoder is not needed.
On the other hand, the front surface cleaning unit SOAK1 performs vacuum adsorption on the lower surface center of the substrate W by the spin chuck 421. When the transfer mechanism 55 passes and receives the substrate W to/from the front surface cleaning unit SOAK1, as shown in
Further, the exposure unit EXP described later supports the lower surface center of the substrate W by three support pins 911. The three support pins 911 are disposed within the range of the spin chuck 421 in a plan view. Therefore, when the transfer mechanism 55 passes and receives the substrate W to and from the exposure unit EXP, as shown in
Thus, the transfer mechanism 55 can pass and receive the substrate W to/from any one of the various transfer targets whose manners of holding the substrate W are different. Though the description of the holding arm 59a has been presented above, as a matter of course, the description of the holding arm 59b is the same as that of the holding arm 59a.
A downflow of clean air is always supplied into the indexer block 1, the BARC block 2, the resist coating block 3, the development block 4, and the interface block 5 described above to thereby avoid the adverse effects of raised particles and gas flows upon the processes in the blocks 1 to 5. Further, a slightly positive pressure relative to the external environment of the substrate processing apparatus SP is maintained in each of the blocks 1 to 5 to prevent entry of particles and contaminants from the external environment into the blocks 1 to 5.
The indexer block 1, the BARC block 2, the resist coating block 3, the development block 4 and the interface block 5 as described above are units into which the substrate processing apparatus SP of this preferred embodiment is divided in mechanical terms. The blocks 1 to 5 are assembled to individual block frames, respectively, which are in turn connected together to construct the substrate processing apparatus SP.
On the other hand, this preferred embodiment employs another type of units, that is, transfer control units regarding the transfer of substrates, aside from the blocks which are units based on the above-discussed mechanical division. The transfer control units regarding the transfer of substrates are referred to herein as “cells.” Each of the cells includes a transfer robot responsible for the transfer of substrates, and a transfer target part to which the transfer robot transfers a substrate. Each of the substrate rest parts described above functions as an entrance substrate rest part for receiving a substrate W into a cell or as an exit substrate rest part for sending a substrate W out from a cell. The transfer of substrates W between the cells is also carried out through the substrate rest parts. The transfer robots which are constituents in the cells include the substrate transfer mechanism 12 of the indexer block 1 and the transfer mechanism 55 of the interface block 5.
The substrate processing apparatus SP of this preferred embodiment includes six cells: an indexer cell, a BARC cell, a resist coating cell, a development cell, a post-exposure bake cell, and an interface cell. The indexer cell includes the rest table 11 and the substrate transfer mechanism 12, and is consequently similar in construction to the indexer block 1 which is one of the units based on the mechanical division. The BARC cell includes the bottom coating processor BRC, the pair of thermal processing towers 21 and the transfer robot TR1. The BARC cell is also consequently similar in construction to the BARC block 2 which is one of the units based on the mechanical division. The resist coating cell includes the resist coating processor SC, the pair of thermal processing towers 31, and the transfer robot TR2. The resist coating cell is also consequently similar in construction to the resist coating block 3 which is one of the units based on the mechanical division. The resist coating cell may be provided with a cover film coating processor for forming a cover film on the resist film so as to prevent the resist from dissolving during exposure.
On the other hand, the development cell includes the development processor SD, the thermal processing tower 41 and the transfer robot TR3. Since the transfer robot TR3 cannot gain access to the heating parts PHP7 to PHP12 or the cool plate CP 14 of the thermal processing tower 42 as discussed above, the development cell does not include the thermal processing tower 42. Further, since the transfer mechanism 55 of the interface block 5 gains access to the front surface cleaning unit SOAK1 and the back surface cleaning unit SOAK2 of the cleaning processor SOAK, the cleaning processor SOAK is not also included in the development cell. In these respects, the development cell is different from the development block 4 which is one of the units based on the mechanical division.
The post-exposure bake cell includes the thermal processing tower 42 positioned in the development block 4, the edge exposure part EEW and the transfer robot TR4 which area positioned in the interface block 5. In other words, the post-exposure bake cell extends across the development block 4 and the interface block 5 which are units based on the mechanical division. In this manner, since the heating parts PHP7 to PHP12 for performing the post-exposure bake process and the transfer robot TR4 constitute one cell, the exposed substrates W can be quickly transferred into the heating parts PHP7 to PHP12, to be subjected to the thermal process. It is preferable to adopt such an arrangement in a case of using a chemically amplified resist which needs to be subjected to a heating process as soon as possible after pattern exposure.
The substrate rest parts PASS7 and PASS8 included in the thermal processing tower 42 are provided to transfer a substrate W between the transfer robot TR3 of the development cell and the transfer robot TR4 of the post-exposure bake cell.
The interface cell includes the transfer mechanism 55 for passing and receiving a substrate W to and from the exposure unit EXP, the reversing unit REV and the cleaning processor SOAK. The interface cell includes the cleaning processor SOAK positioned in the development block 4 and does not include the transfer robot TR4 or the edge exposure part EEW, and is different in construction from the interface block 5 which is one of the units based on the mechanical division. The substrate rest parts PASS9 and PASS10 under the edge exposure part EEW are provided to transfer a substrate W between the transfer robot TR4 of the post-exposure bake cell and the transfer mechanism 55 of the interface cell.
Next, the exposure unit EXP will be described. The exposure unit EXP performs the exposure process on a substrate W which is resist-coated in the substrate processing apparatus SP. The exposure unit EXP of this preferred embodiment is an immersion exposure apparatus compatible with an “immersion exposure method” which substantially shortens the wavelength of exposure light to improve resolution and substantially widen the depth of focus. The exposure unit EXP performs the exposure process, with the space between a projection optical system and the substrate W filled with a liquid having a high refractive index (e.g., deionized water having a refractive index n=1.44).
A pair of rest tables 91 and 92 are provided near a side portion of the exposure unit EXP which is in contact with the interface block 5 of the substrate processing apparatus SP. The substrate processing apparatus SP and the exposure unit EXP are connected to each other so that the transfer mechanism 55 of the interface block 5 is capable of passing and receiving a substrate W to and from the rest tables 91 and 92. The rest table 91 is used to pass and receive an exposed substrate W, and the rest table 92 is used to pass and receive an unexposed substrate W. The above-described three support pins 911 stand on the upper surface of each of the rest tables 91 and 92. In addition to the transfer mechanism 95, a transfer mechanism not shown for passing and receiving a substrate W directly to and from the exposure area EA is also provided within the exposure unit EXP. The transfer mechanism 95 passes a resist-coated substrate W which is received from the rest table 92 to this transfer mechanism, and places an exposed substrate W which is received from the transfer mechanism onto the rest table 91.
A housing part 99 for housing a dummy substrate DW is provided in the exposure unit EXP. The dummy substrate DW is used in the immersion-compatible exposure unit EXP to prevent deionized water from entering the inside of the stage 98 during an alignment process for adjusting the exposure position of a pattern image, such as stage position calibration and the like. The dummy substrate DW is approximately identical in shape and size with a normal substrate W (for semiconductor device fabrication). The material of the dummy substrate DW may be the same as that of the normal substrate W (for example, silicon), but has only to prevent contaminants from dissolving out in a liquid during the immersion exposure process. The dummy substrate DW may have a surface with water repellency. An example of the technique for making the surface of the dummy substrate DW water-repellent is a coating process using a water-repellent material such as a fluorine compound, a silicon compound, an acrylic resin, polyethylene and the like. Alternatively, the dummy substrate DW itself may be made of any one of the above-discussed water-repellent materials. When the alignment process is not performed, such as when the normal exposure process is performed, the dummy substrate DW is not needed and therefore is held in the housing part 99. The housing part 99 may have a multi-tier cabinet structure capable of storing a plurality of dummy substrates DW.
The transfer mechanism 95 performs loading and unloading of the dummy substrate DW to/from the housing part 99. Specifically, the arm portion 95b moves to one end of the guide portion 95a which is on the (+X) side and makes upward and downward movements and bending and stretching movements to thereby perform loading and unloading of the dummy substrate DW to/from the housing part 99. Also, the transfer mechanism 95 transfers the dummy substrate DW between the housing part 99 and the substrate processing apparatus SP. Specifically, the transfer mechanism 95 transfers the dummy substrate DW which is taken out from the housing part 99 to the rest table 91 to place it onto the rest table 91, and transfers the dummy substrate DW placed on the rest table 92 to the housing part 99 to house it into the housing part 99. The transfer mechanism 55 of the substrate processing apparatus SP is capable of receiving the dummy substrate DW placed on the rest table 91 and placing the dummy substrate DW held thereon onto the rest table 92.
Next, a control mechanism for a substrate processing system of this preferred embodiment will be described.
The single main controller MC at the first level is provided for the entire substrate processing apparatus SP, and is principally responsible for the management of the entire substrate processing apparatus SP, the management of a main panel MP, and the management of the cell controllers CC. The main panel MP functions as a display for the main controller MC. Various commands and parameters may be entered into the main controller MC from a keyboard KB. The main panel MP may be in the form of a touch panel so that a user can give inputs into the main controller MC from the main panel MP.
The cell controllers CC at the second level are individually provided in corresponding relation to the six cells (the indexer cell, the BARC cell, the resist coating cell, the development cell, the post-exposure bake cell and the interface cell). Each of the cell controllers CC is principally responsible for the control of the transfer of substrates and the management of the units in the corresponding cell. Specifically, the respective cell controllers CC for the cells send and receive information in such a manner that a first cell controller CC for a first cell sends information indicating that a substrate W is placed on a predetermined substrate rest part to a second cell controller CC for a second cell adjacent to the first cell, and the second cell controller CC for the second cell having received the substrate W sends information indicating that the substrate W is received from the predetermined substrate rest part back to the first cell controller CC. Such transmission of information is carried out through the main controller MC. Each of the cell controllers CC gives the information indicating that a substrate W is transferred into the corresponding cell to a transfer robot controller TC, which in turn controls the corresponding transfer robot to circulatingly transfer the substrate W in the corresponding cell in accordance with a predetermined procedure. The transfer robot controller TC is a control part implemented by the operation of a predetermined application in the corresponding cell controller CC.
Examples of the unit controllers at the third level include a spin controller and a bake controller. The spin controller directly controls the spin units (the coating units, the development units and the cleaning unit) provided in a cell in accordance with an instruction given from the corresponding cell controller CC. Specifically, the spin controller controls, for example, a spin motor for a spin unit to adjust the number of revolutions of a substrate W. The bake controller directly controls the thermal processing units (the hot plates, the cool plates, the heating parts and the like) provided in a cell in accordance with an instruction given from the corresponding cell controller CC. Specifically, the bake controller controls, for example, a heater incorporated in a hot plate to adjust a plate temperature and the like.
The exposure unit EXP, on the other hand, is provided with a controller EC which is a separate control part independent of the above-discussed control mechanism of the substrate processing apparatus SP. In other words, the exposure unit EXP does not operate under the control of the main controller MC of the substrate processing apparatus SP, but operates under its own control. The controller EC for the exposure unit EXP is similar in hardware construction to a typical computer. The controller EC controls the exposure process in the exposure area EA, and also controls the operation of the transfer mechanism 95.
The host computer 100 ranks as a control mechanism in level higher than the three-level control hierarchy provided in the substrate processing apparatus SP and than the controller EC for the exposure unit EXP. The host computer 100 includes a CPU for performing various computation processes, a ROM or read-only memory for storing a basic program therein, a RAM or readable/writable memory for storing various pieces of information therein, a magnetic disk for storing control applications and data therein and the like, and is similar in construction to a typical computer. Typically, a plurality of substrate processing apparatuses SP and a plurality of exposure units EXP of this preferred embodiment are connected to the host computer 100. The host computer 100 provides a recipe containing descriptions about procedures and processing conditions to each of the substrate processing apparatuses SP and the exposure units EXP connected thereto. The recipe provided from the host computer 100 is stored in a storage part (e.g., a memory) of the main controller MC in each of the substrate processing apparatuses SP and the controller EC in each of the exposure units EXP.
Next, the operation of the substrate processing apparatus SP of this preferred embodiment will be described. First, brief description will be presented on a procedure for the circulating transfer of a normal substrate W in the substrate processing apparatus SP. The procedure described below is in accordance with the descriptions of the recipe received from the host computer 100.
First, unprocessed substrates W stored in a carrier C are transferred from the outside of the substrate processing apparatus SP into the indexer block 1 by an AGV (Automatic Guided Vehicle) and the like. Subsequently, the unprocessed substrates W are transferred outwardly from the indexer block 1. Specifically, the substrate transfer mechanism 12 in the indexer cell (or the indexer block 1) takes an unprocessed substrate W out from a predetermined carrier C, and places the unprocessed substrate W onto the upper substrate rest part PASS1. After the unprocessed substrate W is placed on the substrate rest part PASS1, the transfer robot TR1 of the BARC cell uses one of the holding arms 6a and 6b to receive the unprocessed substrate W. The transfer robot TR1 transfers the received unprocessed substrate W to one of the coating units BRC1 to BRC3. In the coating units BRC1 to BRC3, the substrate W is spin-coated with the coating solution for the anti-reflective film.
After the completion of the coating process, the transfer robot TR1 transfers the substrate W to one of the hot plates HP1 to HP6. By heating the substrate W in the hot plate, the coating solution on the substrate W is dried to form the anti-reflective film thereon, which serves as the undercoat. After that, by the transfer robot TR1, the substrate W is taken from the hot plate and transferred to one of the cool plates CP1 to CP3, to be cooled down. In this step, one of the cool plates WCP may be used to cool down the substrate W. The cooled substrate W is placed onto the substrate rest part PASS3 by the transfer robot TR1.
Alternatively, there may be a case where the unprocessed substrate W placed on the substrate rest part PASS1 is transferred to one of the adhesion promotion parts AHL1 to AHL3 by the transfer robot TR1. In the adhesion promotion parts AHL1 to AHL3, the substrate W is thermally processed in a vapor atmosphere of HMDS, whereby the adhesion of the resist film to the substrate W is promoted. By the transfer robot TR1, the substrate W after being subjected to the adhesion promotion process is taken out and transferred to one of the cool plates CP1 to CP3, to be cooled down. Since no anti-reflective film is formed on the substrate W after being subjected to the adhesion promotion process, the cooled substrate W is directly placed onto the substrate rest part PASS3 by the transfer robot TR1.
A dehydration process may be performed prior to the application of the coating solution for the anti-reflective film. In this case, the transfer robot TR1 transfers the unprocessed substrate W placed on the substrate rest part PASS1 first to one of the adhesion promotion parts AHL1 to AHL3. In the adhesion promotion parts ALL1 to AHL3, a heating process (dehydration bake) merely for dehydration is performed on the substrate W without supplying the vapor atmosphere of HMDS. By the transfer robot TRI, the substrate W after being subjected to the heating process for dehydration is taken out and transferred to one of the cool plates CP1 to CP3, to be cooled down. The cooled substrate W is transferred to one of the coating units BRC1 to BRC3 by the transfer robot TR1. In the coating units BRC1 to BRC3, the substrate W is spin-coated with the coating solution for the anti-reflective film. After that, the substrate W is transferred to one of the hot plates HP1 to HP6 by the transfer robot TR1. By heating the substrate W in the hot plate, the anti-reflective film is formed thereon, which serves as the undercoat. Still after that, by the transfer robot TR1, the substrate W is taken out from the hot plate and transferred to one of the cool plates CP1 to CP3, to be cooled down. Then, the cooled substrate W is placed onto the substrate rest part PASS3 by the transfer robot TR1.
After the substrate W is placed onto the substrate rest part PASS3, the transfer robot TR2 of the resist coating cell receives the substrate W to transfer it to one of the coating units SC1 to SC3. In the coating units SC1 to SC3, the substrate W is spin-coated with the resist. Since the resist coating process requires precise substrate temperature control, the substrate W may be transferred to one of the cool plates CP4 to CP9 immediately before being transferred to the coating units SC1 to SC3.
After the completion of the resist coating process, the substrate W is transferred to one of the heating parts PHP1 to PHP6 by the transfer robot TR2. In the heating parts PHP1 to PHP6, by heating the substrate W, a solvent component is removed from the resist and a resist film is formed on the substrate W. After that, by the transfer robot TR2, the substrate W is taken out from the one of the heating parts PHP1 to PHP6 and transferred to one of the cool plates CP4 to CP9, to be cooled down. Then, the cooled substrate W is placed onto the substrate rest part PASS5 by the transfer robot TR2.
After the substrate W with the resist film formed thereon by the resist coating process is placed onto the substrate rest part PASS5, the transfer robot TR3 of the development cell receives the substrate W and places it onto the substrate rest part PASS7 without any processing. Then, the transfer robot TR4 of the post-exposure bake cell receives the substrate W placed on the substrate rest part PASS7 and transfers it into the edge exposure unit EEW1. In the edge exposure unit EEW1, the peripheral edge portion of the substrate W is exposed to light. After being subjected to edge exposure, the substrate W is placed onto the substrate rest part PASS9 by the transfer robot TR4. The transfer mechanism 55 of the interface cell receives the substrate W placed on the substrate rest part PASS9 and transfers it into the exposure unit EXP. In this step, the transfer mechanism 55 uses the holding arm 59a to transfer the substrate W from the substrate rest part PASS9 to the rest table 92 of the exposure unit EXP. The resist-coated substrate W which is placed on the rest table 92 is brought into the exposure area EA via the transfer mechanism 95 and then subjected to the pattern exposure process.
Since the chemically amplified resist is used in this preferred embodiment, an acid is created in the exposed portion of the resist film formed on the substrate W by a photochemical reaction. In the exposure unit EXP, since the substrate W is subjected to the immersion exposure process, it is possible to achieve a high resolution with virtually no change of the conventional light source and the exposure process. The substrate W after being subjected to the edge exposure process may be transferred by the transfer robot TR4 to the cool plate CP14, to be cooled down, before being transferred into the exposure unit EXP.
The exposed substrate W after being subjected to the pattern exposure process is transferred via the transfer mechanism 95 to the rest table 91. By the transfer mechanism 55, the substrate W placed on the rest table 91 is taken out and returned from the exposure unit EXP to the interface cell again. After that, the exposed substrate W is transferred into the front surface cleaning unit SOAK1 by the transfer mechanism 55. In this step, the transfer mechanism 55 uses the holding arm 59b to transfer the substrate W from the exposure unit EXP to the front surface cleaning unit SOAK. In some cases, a liquid adheres to the substrate W after being subjected to the immersion exposure process. Since the holding arm 59a is used for the transfer of the unexposed substrate W and the holding arm 59b is exclusively used for the transfer of the exposed substrate W, however, this eliminates at least the possibility that the liquid should adhere to the holding arm 59a, to prevent the liquid from being transferred to the unexposed substrate W.
In the front surface cleaning unit SOAK1, a cleaning process using the cleaning nozzle 450 and a drying process using the drying nozzle 451 are performed on the substrate W. By the transfer mechanism 55, the substrate W after being subjected to the cleaning and drying processes is taken out from the front surface cleaning unit SOAK1 and placed onto the substrate rest part PASS10. In this step, the transfer mechanism 55 uses the holding arm 59a to transfer the substrate W from the front surface cleaning unit SOAK1 to the substrate rest part PASS 10. After the exposed substrate W is placed onto the substrate rest part PASS10, the transfer robot TR4 of the post-exposure bake cell receives the substrate W and transfers it to one of the heating parts PHP7 to PHP12. The processing operation in the heating parts PHP7 to PHP12 is as discussed above. In the heating parts PHP7 to PHP12, the post-exposure bake process is performed so as to cause a reaction such as crosslinking, polymerization and the like of the resist resin to proceed with a product formed by the photochemical reaction during exposure used as an acid catalyst and thereby locally change the solubility of only an exposed portion of the resist resin to the developing solution. The substrate W after being subjected to the post-exposure bake process is transferred by the local transfer mechanism 720 having the cooling mechanism, to be cooled down, and the above-discussed chemical reaction thereby stops. Subsequently, by the transfer robot TR4, the substrate W is taken out from the one of the heating parts PHP7 to PHP12 and placed onto the substrate rest part PASS8.
After the substrate W is placed onto the substrate rest part PASS8, the transfer robot TR3 of the development cell receives the substrate W and transfers it to one of the cool plates CP10 to CP13. In the cool plates CP10 to CP13, the substrate W after being subjected to the post-exposure bake process is further cooled down and precisely adjusted to a predetermined temperature. After that, the transfer robot TR3 takes the substrate W out from the one of the cool plates CP10 to CP13 and transfers it to one of the development units SD1 to SD3. In the development units SD1 to SD3, the development process proceeds with the developing solution which is applied onto the substrate W. After the completion of the development process, by the transfer robot TR3, the substrate W is transferred to one of the hot plates HP7 to HP11 and then transferred to one of the cool plates CP10 to CP13.
After that, the substrate W is placed onto the substrate rest part PASS6 by the transfer robot TR3. The substrate W on the substrate rest part PASS6 is placed onto the substrate rest part PASS4 by the transfer robot TR2 of the resist coating cell without any processing. Further, the substrate W on the substrate rest part PASS4 is placed onto the substrate rest part PASS2 by the transfer robot TRI of the BARC cell without any processing and is thereby stored in the indexer block 1. Then, the processed substrate W placed on the substrate rest part PASS2 is stored into a predetermined carrier C by the substrate transfer mechanism 12 of the indexer cell. After that, the carrier C in which a predetermined number of processed substrates W are stored is transferred to the outside of the substrate processing apparatus SP. Thus, a series of photolithography processes are completed.
As discussed above, the exposure unit EXP of this preferred embodiment is provided to perform the immersion exposure process, and uses a dummy substrate DW to prevent deionized water from entering the inside of the stage 98 during the alignment process for adjusting the exposure position of the pattern image. Specifically, the dummy substrate DW is fitted in a stage recessed portion of the stage 98 for the execution of the alignment process. This prevents the liquid from entering the inside of the stage 98, but creates a likelihood that the liquid should adhere to the dummy substrate DW to remain in the form of droplets on the dummy substrate DW. When left unremoved, such droplets dry to become a source of contamination or impair the water repellency of the dummy substrate DW. Further, if the back surface of the dummy substrate DW is contaminated, the contamination is transferred to the stage recessed portion to cause a possibility of raising such various problems as discussed above.
For this reason, in this preferred embodiment, the dummy substrate DW which the exposure unit EXP has, especially the back surface of the dummy substrate DW, is cleaned in the substrate processing apparatus SP. Herein, a “front surface” of a dummy substrate DW refers to a main surface facing upward during the alignment process in the exposure unit EXP. A “back surface” of a dummy substrate DW refers to a main surface opposite to the front surface, which is in direct contact with the stage recessed portion during the alignment process. Further, a front surface of a normal substrate W refers to a main surface on which a pattern is formed and a back surface thereof refers to a surface opposite to the front surface. An upper surface (lower surface) of a dummy substrate DW or a substrate W refers to a surface facing upward (downward) and there cases where the back surface serves to be an upper surface and where the back surface serves to be a lower surface.
By the transfer mechanism 55, the dummy substrate DW placed on the rest table 91 is taken out from the exposure unit EXP into the substrate processing apparatus SP and transferred to the reversing unit REV (in Step S2). The reversing operation in the reversing unit REV is as discussed above, and the dummy substrate DW is reversed so that its back surface may become an upper surface. Then, the dummy substrate DW is transferred by the transfer mechanism 55 from the reversing unit REV to the back surface cleaning unit SOAK2, and is subjected to the back surface cleaning process in the back surface cleaning unit SOAK2 (in Step S3).
Herein, a processing operation in the back surface cleaning unit SOAK2 will be described. In the back surface cleaning unit SOAK2, first, for loading of the dummy substrate DW, the splash guard 424 moves downwardly and the transfer mechanism 55 places the dummy substrate DW onto the spin chuck 427. Holding the edge portions of the dummy substrate DW with the six support pins 428, the spin chuck 427 keeps the dummy substrate DW in a horizontal position with its back surface facing upward.
Next, the splash guard 424 moves to the above-discussed drainage position, and the cleaning nozzle 450 moves to over the center of the dummy substrate DW. After that, the rotary shaft 425 starts rotating. With rotation of the rotary shaft 425, the dummy substrate DW held by the spin chuck 427 is rotated. Then, the valve Va is opened to apply the cleaning liquid from the cleaning nozzle 450 onto the upper surface (the back surface, herein) of the dummy substrate DW. In this preferred embodiment, deionized water is applied as the cleaning liquid to the back surface of the dummy substrate DW. The back surface cleaning process on the dummy substrate DW thereby proceeds to wash away particles and the like adhering to the back surface of the dummy substrate DW. The liquid splashed from the rotating dummy substrate DW by centrifugal force is guided by the drainage guide groove 441 into the drainage space 431, and is drained through the drainage pipe 434.
After a lapse of a predetermined time, the rotation speed of the rotary shaft 425 decreases. This decreases the amount of deionized water serving as the leaning liquid to be spattered by the rotation of the dummy substrate DW to form a film of deionized water on the entire back surface of the dummy substrate DW in such a manner that a puddle of deionized water remains on the dummy substrate DW. Alternatively, a film of deionized water may be formed on the entire back surface of the dummy substrate DW by stopping rotation of the rotary shaft 425.
Next, the supply of the deionized water serving as the cleaning liquid is stopped. The cleaning nozzle 450 is retracted to a predetermined position, and the drying nozzle 451 moves to over the center of the dummy substrate DW. After that, the valve Vc is opened to apply an inert gas from the drying nozzle 451 to near the center of the upper surface of the dummy substrate DW. In this step, nitrogen gas is discharged as the inert gas. The water or moisture in the center of the back surface of the dummy substrate DW is thereby forced toward the peripheral edge portion of the dummy substrate DW. As a result, the film of deionized water remains only in the peripheral edge portion of the back surface of the dummy substrate DW.
Next, the number of rotation of the rotary shaft 425 increases again, and the drying nozzle 451 gradually moves from over the center of the back surface of the dummy substrate DW toward over the peripheral edge portion thereof. A great centrifugal force is thereby exerted on the film of deionized water remaining on the back surface of the dummy substrate DW, and the inert gas can be applied onto the entire back surface of the dummy substrate DW, whereby the film of deionized water on the dummy substrate DW can be reliably removed. As a result, the dummy substrate DW is dried with reliability.
Next, the supply of the inert gas is stopped. The drying nozzle 451 is retracted to a predetermined position, and the rotation of the rotary shaft 425 is stopped. After that, the splash guard 424 moves downwardly and the support pins 428 release the edge portions of the dummy substrate DW, and the transfer mechanism 55 thereby transfers the dummy substrate DW outwardly from the back surface cleaning unit SOAK2. This completes the processing operation in the back surface cleaning unit SOAK2. It is preferable that the position of the splash guard 424 during the cleaning and drying processes should be appropriately changed depending on the need for the collection and drainage of the processing liquid.
The dummy substrate DW after being subjected to the back surface cleaning process is transferred to the reversing unit REV by the transfer mechanism 55, and reversed therein so that its back surface should face downward (in Step S4). The dummy substrate DW which is reversed again is transferred from the reversing unit REV to the front surface cleaning unit SOAK1 by the transfer mechanism 55 and is subjected to the front surface cleaning process in the front surface cleaning unit SOAK1 (in Step S5).
In the front surface cleaning unit SOAK1, the transfer mechanism 55 places the dummy substrate DW onto the spin chuck 421 for loading of the dummy substrate DW and the spin chuck 421 holds the dummy substrate DW in a horizontal position by adsorption. The cleaning operation in the front surface cleaning unit SOAK1 after that is the same as that in the back surface cleaning unit SOAK2. The front surface cleaning unit SOAK1, however, performs the front surface cleaning process using the cleaning nozzle 450 and the drying process using the drying nozzle 451 on the front surface of the dummy substrate DW, to thereby clean off the liquid for immersion exposure which adheres to the dummy substrate DW. In the front surface cleaning unit SOAK1 or the back surface cleaning unit SOAK2, even for cleaning a normal exposed substrate W, the same operation as the above one for the dummy substrate DW is performed.
By the transfer mechanism 55, the dummy substrate DW after being subjected to the cleaning and drying processes in the front surface cleaning unit SOAK1 is transferred to the exposure unit EXP (in Step S6), and placed onto the rest table 92. When the above-discussed cleaning process is performed immediately after the alignment process, the dummy substrate DW placed on the rest table 92 is housed into the housing part 99 by the transfer mechanism 95. When the above-discussed cleaning process is performed immediately before the alignment process, the dummy substrate DW placed on the rest table 92 is transferred to the exposure area EA by the transfer mechanism 95. If the exposure unit EXP possesses a plurality of dummy substrates W, the above-discussed cleaning process is performed on all of the dummy substrates W.
Thus, since the back surface of the dummy substrate DW which the exposure unit EXP has is cleaned by the back surface cleaning unit SOAK2 in the substrate processing apparatus SP, the back surface of the dummy substrate DW is kept clean and this consequently prevents the stage recessed portion from being contaminated during the alignment process in the exposure unit EXP. Further, keeping the back surface of the dummy substrate DW clean reduces contamination of not only the stage 98 but also other mechanisms in the exposure unit EXP, such as the transfer mechanism 95.
Further, if the liquid adheres to the dummy substrate DW during the alignment process in the exposure unit EXP, since the dummy substrate DW is transferred to the substrate processing apparatus SP and cleaned therein, it is possible to prevent the dummy substrate DW from being contaminated. Then, since the dummy substrate DW after being cleaned is returned to the exposure unit EXP and the alignment process in the exposure unit EXP can be performed by using the clean dummy substrate DW, it is possible to reduce the contamination of the mechanisms in the exposure unit EXP, such as the stage 98.
When the dummy substrate DW is water-repellent, there are cases where the water repellency of the dummy substrate DW is impaired due to contamination. By removing the contaminants in the above-discussed cleaning process, however, the water repellency of the substrate surface is restored. As a result, with the dummy substrate DW, it is possible to surely hold the immersion liquid also during the alignment process. This also significantly reduces the costs, as compared with the case where dummy substrates DW with less water repellency should be replaced one by one.
The substrate processing apparatus SP and the exposure unit EXP perform the operation control independent of each other as discussed above. For the cleaning of the dummy substrate DW, it is therefore necessary to previously transmit information on the start of cleaning of the dummy substrate to the substrate processing apparatus SP and the exposure unit EXP. In this preferred embodiment, the cleaning request part 108 in the exposure unit EXP sends a cleaning request signal CS1 to the substrate processing apparatus SP, as shown in
While the preferred embodiment of the present invention has been described hereinabove, various changes and modifications other than those described above may be made therein without departing from the spirit of the invention. For example, although the cleaning request is issued from the exposure unit EXP in the above-discussed preferred embodiment, contrary to this, the cleaning request may be issued from the substrate processing apparatus SP. Specifically, the unloading request part 106 in the substrate processing apparatus SP sends an unloading request signal CS2 requesting unloading of the dummy substrate DW to the exposure unit EXP (
Alternatively, the host computer 100 ranking as the higher level controller may give an instruction for cleaning the dummy substrate DW. Specifically, the host computer 100 sends a cleaning start signal CS3 to both the substrate processing apparatus SP and the exposure unit EXP. In the exposure unit EXP having received the cleaning start signal CS3, the transfer control part 109 controls the transfer mechanism 95 to transfer the dummy substrate DW to the substrate processing apparatus SP. In the substrate processing apparatus SP having received the cleaning start signal CS3, on the other hand, the cleaning control part 105 controls the transfer mechanism 55, the reversing unit REV, the front surface cleaning unit SOAK1 and the back surface cleaning unit SOAK2 to perform the cleaning process on the dummy substrate DW.
The timing to perform the cleaning process on the dummy substrate DW is not limited to immediately before and/or after the alignment process. For example, the substrate processing system may be scheduled to perform the cleaning process on the dummy substrate DW at predetermined regular time intervals. Specifically, as shown in
The timing to perform the cleaning process on the dummy substrate DW at regular time intervals may be set at, for example, regular maintenance of the substrate processing system. If the cleaning process on the dummy substrate DW is performed as one of the maintenance processes at the regular maintenance, since there is no apprehension of interference with the photolithography process for normal substrates, this facilitates the control of cleaning and transfer. Execution of the cleaning process on the dummy substrate DW immediately before the alignment process, however, allows execution of the alignment process using the clean dummy substrate DW just after being cleaned, and execution of the cleaning process on the dummy substrate DW immediately after the alignment process allows a source of contamination to be surely removed before the adhered liquid dries.
The front surface cleaning unit SOAK1 and the back surface cleaning unit SOAK2 both for cleaning the dummy substrate DW are disposed in the development block 4 in the above-discussed preferred embodiment, but either or both of these units may be disposed in the interface block 5. With this arrangement, the reversing unit REV may be disposed in the development block 4. In a case of this arrangement, the operations of the photolithography process on the substrate W and the cleaning process on the dummy substrate DW are the same as those in the above preferred embodiment. Also in such a case, like in the above-discussed preferred embodiment, it is possible to reduce contamination of the mechanisms in the exposure unit EXP such as the stage 98 by cleaning the dummy substrate DW in the exposure unit EXP. Further, if the front surface cleaning unit SOAK1 and the back surface cleaning unit SOAK2 are disposed in the interface block 5, since the interface cell serving as a transfer control unit can be entirely accommodated in the interface block 5 serving as a unit based on the mechanical division, it is possible to facilitate the transfer control in the entire substrate processing apparatus SP.
Though the front surface cleaning process on the dummy substrate DW is performed after the back surface cleaning process in the above-discussed preferred embodiment, the back surface cleaning process may be performed after the front surface cleaning process in reverse order. Specifically, the transfer mechanism 55 receives the dummy substrate DW from the exposure unit EXP and transfers it direct to the front surface cleaning unit SOAK1, and the front surface cleaning process is thereby first performed. Subsequently, the dummy substrate DW is transferred to the reversing unit REV, to be reversed so that its back surface should face upward, and thereafter transferred to the back surface cleaning unit SOAK2, to be subjected to the back surface cleaning process. After that, the dummy substrate DW is transferred to the reversing unit REV again, to be reversed so that its back surface should face downward, and thereafter transferred to the exposure unit EXP by the transfer mechanism 55. Whether the front surface cleaning process or the back surface cleaning process is performed first may be determined depending on the purpose in cleaning the dummy substrate DW. In order to surely clean the back surface of the dummy substrate DW, it is preferable to perform the back surface cleaning process after the front surface cleaning process, and if the cleanness of the front surface is important, it is preferable to perform the front surface cleaning process after the back surface cleaning process.
It is not always necessary to perform both the front surface cleaning process and the back surface cleaning process on the dummy substrate DW, but only either of these cleaning processes may be performed. If only the back surface cleaning process is performed on the dummy substrate DW by using the back surface cleaning unit SOAK2 and the reversing unit REV, since the contamination on at least the back surface is surely cleaned off, it is possible to prevent the stage recessed portion of the stage 98 from being contaminated during the alignment process in the exposure unit EXP. Further, if only either of the front surface cleaning process and the back surface cleaning process is performed, it is possible to cut the time needed for the cleaning process on the dummy substrate DW.
Though the front surface cleaning process on the dummy substrate DW is performed in the front surface cleaning unit SOAK1 and the back surface cleaning process is performed in the back surface cleaning unit SOAK2 in the above-discussed preferred embodiment, both the front surface cleaning process and the back surface cleaning process may be performed in the back surface cleaning unit SOAK2. The back surface cleaning unit SOAK2, which holds the edge portions of the dummy substrate DW with the spin chuck 427, can perform the cleaning process on the dummy substrate DW even with its back surface facing upward or downward.
In the above-discussed preferred embodiment, there may be a case where a normal substrate W is reversed in the reversing unit REV and subjected to the back surface cleaning process in the back surface cleaning unit SOAK2. Further, a normal substrate W may be subjected to both the front surface cleaning process and the back surface cleaning process or may be subjected to only either of these cleaning processes. In the case where both the front surface cleaning process and the back surface cleaning process are performed on a normal substrate W, either of these cleaning processes may be performed first.
Instead of performing the cleaning process on the dummy substrate DW in the front surface cleaning unit SOAK1 or after performing the cleaning process, the surface preparation may be performed by supplying a chemical solution to the dummy substrate DW. The front surface cleaning unit SOAK1 supplies, e.g., hydrofluoric acid as a chemical solution. If the dummy substrate DW is a silicon wafer, like the normal substrate W, a silicon oxide film (a natural oxide film) is formed on the front surface of the dummy substrate DW and the front surface thereby becomes hydrophilic. Supplying hydrofluoric acid as a chemical solution to the front surface of the dummy substrate DW peels the silicon oxide film off to expose a silicon body, and this makes the front surface of the dummy substrate DW water repellent. In summary, supplying the chemical solution imparts (or restores) water repellency to the front surface of the dummy substrate DW. Specifically, while the dummy substrate DW held by the spin chuck 421 is rotated, the valve Vb is opened to feed hydrofluoric acid from the surface preparation liquid supply source R2 to the cleaning nozzle 450 and the cleaning nozzle 450 discharges the hydrofluoric acid onto the front surface of the dummy substrate DW. The chemical solution to be supplied to the dummy substrate DW is not limited to hydrofluoric acid. There may be a case where a material such as a fluorine compound, an acrylic resin or the like is supplied to the dummy substrate DW, depending on the material of the dummy substrate DW, and a coating process for imparting water repellency is performed in the front surface cleaning unit SOAK1.
Further, cleaning units designed specifically for cleaning a normal substrate W and a dummy substrate DW, respectively, may be provided. There may be a case, for example, where the cleaning unit for a normal substrate W is provided in the development block 4 and the cleaning unit for a dummy substrate DW is provided in the interface block 5. In particular, since a substrate W coated with a chemically amplified resist, immediately after being exposed, is highly susceptible to an alkaline atmosphere, if a chemical solution is supplied in a cleaning unit, it is preferable to provide another cleaning unit designed specifically for a dummy substrate DW.
There may be another case where aside from the dummy substrate DW, a cleaning substrate to be used only for cleaning a stage is prepared in the exposure unit EXP and the back surface of the cleaning substrate is cleaned in the substrate processing apparatus SP. The cleaning substrate is housed in the housing part 99 of the exposure unit EXP separately from the dummy substrate DW. Like the dummy substrate DW, the cleaning substrate is transferred to the substrate processing apparatus SP at an appropriate timing and at least its back surface is cleaned in the back surface cleaning unit SOAK2. This back surface cleaning process is performed in exactly the same manner as the back surface cleaning process for the dummy substrate DW discussed in the above-discussed preferred embodiment. During the process of cleaning the stage 98, by fitting the cleaning substrate whose back surface is kept clean in the stage recessed portion, the contaminants such as particles adhering to the stage recessed portion adhere to the back surface of the cleaning substrate, to be collected. This makes it possible to easily clean contamination of the stage 98 without stopping the exposure unit EXP. The back surface of the cleaning substrate which has adsorbed the contaminants after the cleaning process is cleaned again in the back surface cleaning unit SOAK2.
The construction of the substrate processing apparatus SP of the present invention is not limited to the configuration shown in
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-123566 | Apr 2006 | JP | national |