The present disclosure relates generally to the field of semiconductors. More particularly, the present disclosure relates to a system and method of operating one or more (e.g. an array) of nonvolatile memory (“NVM”) cells.
As is well known in the art, non-volatile memory (NVM) cells may have bits stored therein that may be read, such as by means of a sense amplifier. In general, the sense amplifier determines the logical value stored in the cell by comparing the output of the cell with a reference level. If the current output is above the reference, the cell is considered erased (with a logical value of 1) and if the current output is below the reference, the cell is considered programmed (with a logical value of 0). In terms of threshold voltage of the cell itself, programming a cell increases the threshold voltage of the cell, whereas erasing decreases the threshold voltage.
Different curent levels are associated with different logical states, and a NVM cell's current level may be correlated to the amount of charge stored in a charge storage region of the cell. The cell prior to the storing of any charge within a charge storage region may be referred to as “native” or in its “initial” state.
Generally, in order to determine whether an NVM cell is at a specific state, for example erased, programmed, or programmed at one of multiple possible program states within a multi-level cell (“MLC”), the cell's current level is compared to that of a reference cell whose current level is preset at a level associated with the specific state being tested for.
In the simplest case, a “program verify” reference cell with a current set at level defined as a “program verily” level may be compared to a cell being programmed (i.e. charged) in order to determine whether a charge storage area of the cell has been sufficiently charged so as to be considered “programmed.”
In the case where the cell is an MLC, the cell may have several possible program states, and one or more program reference cells, each with one or more different current levels corresponding to each of the NVM cell's possible program states, may be used to determine the state of the MLC.
For reading a cell, the current levels of one or more “read verify” reference cells may be compared to the current of the cell being read. An “erase verify” reference cell with a current set at a level defined as an “erase verify” level may be compared against a memory cell during an erase operation in order to determine when the memory cell's charge storage area has been sufficiently discharged so as to consider the cell erased.
Enough margins should be kept between the different reference levels so that the logical state interpretation is free of mistakes under the differrent operation conditions (e.g. temperature and voltages changes and retention of the stored charge). In the simplest case it is common to define the margin between the read level and the erase verify level as the “erase margin” and the margin between the read level and the program verify level as the “program margin”. The margin between the initial NVM cell level and the lowest reference level, usually the erase verify level, is reffer to as ‘cycle margin’ (“CM”). Other margins and levels may be defined for different purposes. In a MLC NVM, few margins and levels are defined to assure a correct operation and interpretation of the different levels.
The positioning of the different reference levels is accomplished using data extracted from the NVM array during manufacturing. That is, during the manufacturing process, after fabrication, an NVM array may be tested to determine the native current levels of each of its cells. The preseting of the reference level is made using this data.
As
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other advantageous or improvements.
The present invention is a system, method and circuit for operating an array of memory cells. According to some embodiments of the present invention, NVM cells of an array may be tested to determine a native threshold voltage distribution across the array and, if so desired or required, across array segments. A lowest reference voltage level for each array segment may be determined, where the lowest reference voltage level may be used to test or verify the logical state of the NVM cells associated with the lowest threshold voltage (e.g. erase state). The lowest reference voltage for each segment may be determined to be equal to or greater or lower than the highest native threshold voltage of any cell within the given array segment.
As part of the present invention, the lowest reference voltage determined for each segment may be stored in a reference voltage table associated with the NVM array. According to some embodiments of the present invention, other segment-specific reference voltage levels may be stored in a “reference voltage table”, such that the table may contain entries with values correlated to, or associated with, reference voltage levels associated with each array segment. The reference voltage levels correlated to, or associated with, a given array segment may be, for example, program verify voltage level for that segment, read verify voltage level for that segment, etc. That is, the table may contain one or more entries for each one of a plurality of array segments, where the one or more entries per array segment may be correlated to one or more reference voltages for the given segment.
According to some embodiments of the present invention, an entry in a reference voltage table may indicate the absolute reference voltage associated with a specific logical state of a specific array segment (e.g. erase verify reference voltage for segment 1D=3.5V). In some other embodiments of the present invention, an entry in the table may indicate an offset value between a global reference voltage and a local reference voltage associated with a specific logical state of a specific array segment. For example, if a global erase verify reference voltage level is set to, or selected to be, 3.2V, but the erase verify reference voltage level (being the “local’ reference voltage”) for segment 1D has been determined to be 3.5V, the table entry associated with an erase verify reference voltage for segment 1D may indicate an offset voltage of 0.3V.
As part of the present invention, a NVM cell within an array of NVM cells may be operated using an entry in a reference voltage table associated with the array. When attempting to verify a logical state of a NVM cell in a specific array segment, a table entry associated with the given logical state, within the given array segment, may be read. The entry may be correlated to a reference voltage associated with the given logical state in the given array segment. The entry may either indicate a specific reference voltage associated with the given logical state within the given array segment, or the entry may indicate an offset value between a global reference voltage and a local reference voltage associated with the given logical state of in the given array segment. For example, if a global erase verify voltage level is set to 3.2V, but the erase verify voltage level for segment 1D has been determined to be 3.5V, the table entry associated with an erase verify reference voltage for segment 1D may indicate an offset voltage value of 0.3V.
According to some embodiments of the present invention, an electric circuit may provide an electric signal having a voltage, or current, level to operate either a NVM cell in an NVM array or to operate a reference cell associated with the array, or a segment thereof, wherein the provided voltage, or current, level may be correlated to an entry in the table. According to some embodiments of the present invention, the electric circuit may be an input offset circuit which may offset a voltage, or current, level of a signal provided by a charge pump or by other power supply circuit. In some embodiments of the present invention, the electric circuit may be part of a charge pump or part of another power supply circuit. The electric circuit may be used to either supply a signal to NVM cells in an NVM array or to reference cells associated with the NVM array or selected segments thereof.
According to some embodiments of the present invention, the global reference cells may include multiple sets of reference cells, wherein, according to some aspects, each set of the multiple sets of reference cells may be used for operating a different memory array segment. Accoridng to other aspects, each set of the multiple sets of reference cells may he used for operating a different state of memory array cells.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the figures and by study of the following detailed description.
Exemplary embodiments are illustarted in referenced figures. It is intended that the embodiments and figures disclosed herein are to be considred illustrative rashter than restrictive. Aspects of the present invention may best be understood by reference to the following detailed description when read with the accompanying figures, in which:
In the drawings, like numerals describe substantially similar components throughout the serial views.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The present invention is a system, method and circuit for operating an array of memory cells. According to some embodiments of the present invention, NVM cells of an array may be tested to determine a native threshold voltage distribution across the array and across array segments. A lowest reference voltage level for each array segment may be determined, where the lowest reference voltage level may be used to test or verify the logical state of the NVM cells associated with the lowest threshold voltage (e.g. erase state). The lowest reference voltage for each segment may be determined to be equal to or greater or lower than the highest native threshold voltage of any cell within the given array segment.
As part of the present invention, the lowest reference voltage determined for each segment may be stored in a reference voltage table associated with the NVM array. According to some embodiments of the present invention, other segment-specific reference voltage levels may be stored in a reference voltage table, such that the table may contain entries with values correlated to reference voltage levels associated with each array segment (e.g. program verify voltage level for the given segment, read verify voltage level for the segment, etc.). Additionally or alternatively, the reference voltage table may contain pointers to point at different sets of reference cells that were precharged during their manufacturing process to output different reference signals, whether currents or voltages. That is, the reference voltage table may contain one or more entries for each of a plurality of array segments, where the one or more entries per segment may be correlated to one or more reference voltages for the given segment.
In some embodiments of the present invention, an entry in a reference voltage table may indicate the absolute reference voltage associated with a specific logical state of a specific array segment (e.g. erase verify reference voltage for segment 1D=3.5V). In some other embodiments of the present invention, an entry in the table may indicate an offset value between a global reference voltage and a local reference voltage associated with a specific logical state of a specific array segment For example, if a global erase verify voltage level is set to 3.2V, but the erase verify reference voltage level for segment 1D has been determined to be 3.5V, the table entry associated with an erase verify reference voltage for segment 1D may indicate an offset voltage of 0.3V. In different embodiements the table may contain a pointer to a reference cell set.
As part of the present invention, a NVM cell within an array of a NVM cells may be operated using an entry in a reference voltage table associated with the array. When attempting to verify a logical state of a NVM cell in a specific array segment, a table entry associated with the given logical state, within the given array segment, may be read. The entry may be correlated to a reference voltage associated with the given logical state in the given array segment. The entry may either indicate a specific reference voltage associated with the given logical state within the array segment, or the entry may indicate an offset value between a global reference voltage and a local reference voltage associated with the given logical state in the given array segment. For example, if a global erase verify voltage level is set to 3.2V, but the erase verify voltage level for segment 1D has been determined to be 3.5V, the table entry associated with an erase verify reference voltage for segment 1D may indicate an offset voltage value of 0.3V.
According to some embodiments of the present invention, an electric circuit may provide an electric signal having a voltage level to operate either a NVM cell in an NVM array or to operate a reference cell associated with the array, wherein the provided voltage level may be correlated to an entry in the table. According to some embodiments of the present invention, the electric circuit may be an input offset circuit which may offset a voltage level of a signal provided by a charge pump or by another power supply circuit. In some embodiments of the present invention, the electric circuit may be part of a charge pump or part of another power supply circuit. The electric circuit may be used to either supply a signal to NVM cells in a NVM array or to reference cells associated with the NVM array.
Reference is now made to
When attempting to verify the logical state of any of the NVM cells of the array 201, circuit 200 may use its electrical signal source (e.g. charge pump) to produce a word-line signal. According to the prior art, either the same word-line signal is applied to both the word-line of the NVM cells to be operated and to the word-lines of reference cells against which the NVM cells are compared, or a fixedly offset word-line signal is applied to either the word-line of the NVM cells to be operated or to the word-lines of global reference cell(s) against which the NVM cells may be compared. According to some embodiments of the present invention, either or both the array word-line and the reference cell word-line signals are adapted by an offset circuit 203, thereby enabling a dynamic offest by a selected offset value. An offset circuit 203 according to some embodiments of the present invention may either increase or decrease the voltage of the word-line signal provided by the circuit 200. The offset circuit 203 may provide, or apply, its output to either the NVM array 201 word-line, as exemplified in
A sense amplifier 205 may receive an output current from both the NVM cell being operated and the output current of global reference cell(s) 204 against which the NVM cell is being compared. The sense amplifier 205 may provide an output to decoder 200 indicating thereby to circuit 200 whether the NVM cell, or the reference cell, is charged to a higher thresold voltage and hence conducts higher current. Based on the output of the sense amplifier 205 as the NVM cell is compared against several reference cells 204, circuit 200 may determine the logical state of the NVM cell being tested.
According to some embodiments of the present invention, an offset table circuit 202, which may include an offset table, may receive a signal from the decoder 200, identifying which NVM cell is being operated. In response to the decoder 200 signal, the offset table circuit 202 may then provide a signal to the offset circuit 203 indicating to offset circuit 203 what amount of word-line signal offset to perform. The segment offset table circuit 202 may be programmed (e.g., offset table compiled) during the manufacturing of the NVM array 201. According to some embodiments of the present invention, the segment offset table circuit 202 may be integrated into the decoder 200, while in other embodiments of the present invention the segment offset table circuit 202 is a separate circuit in communication with the decoder 200. As mentioned hereinbefore, a lowest reference voltage determined for each segment, segment-specific reference voltage levels, and/or offset values between global values and/or local values, which are associated with specific respective logical states of a specific array segment, may be stored in segment offset table 202 (being the “reference voltage table” mentioned hereinbefore) associated with the NVM array 201.
Although
Turning now to
The three exemplary circuits shown in
Decoders 500, 600 and 700, segment offset tables 502, 602 and 702, offset circuits 503, 603 and 703, sense amplifiers 505, 605 and 705 function substantially in the same manner as decoder 200, segment offset table 202, offset circuit 203 and sense amplifier 205, respectively. Global reference cell(s) 504 and 604 function substantially in the same manner as, global reference cell(s) 204.
According to some embodiments of the present invention, global reference cells 706 may include multiple (n) sets of reference cells, designated 707 (“Ref cells set 1”) to 708 (“Ref cells set n”). The n sets of reference cells may be devised based on different criterions, as described hereafter.
Accoridng to some aspects of this embodiment, the n sets of reference cells may be devised as “segment-oriented”, which means that each set of the n sets of reference cells may be associated with, or dedicated to, a different segment of memory array 701. Namely, each specific set of the n sets of reference cells may provide the various voltage levels (program verify voltage level, read verify voltage level, etc.) required for operating each cell within the segment associated with the specific set. For example, reference cells constituting reference cells set 1 (707) may each relate to a different logical state (e.g., program verify voltage level, read verify voltage level, etc.) of a segment consisting of cells “1A” to “8A” in memory array 701). Reference cells constituting cells set n (708), on the other hand, may each relate to a different logical state (e.g., program verify voltage level for a given segment, read verify voltage level for a given segment, etc.) of a segment consisting of cells “1D” to “8D” in memory array 701. Put otherwise, if there are n segments and n reference cells sets, then reference cells set 1 (707) may provide signals “Read/Seg1”, “Program/Seg1”, etc. Likewise, reference cells set 2 may provide signals “Read/Seg2”, “Program/Seg2”, etc. Likewise, reference cells set 3 may provide signals “Read/Seg3”, “Program/Seg3”, and so on.
Accoridng to some other aspects of this embodiment, the n sets of reference cells may be “state-oriented”, which means that each one of the n sets 707 to 708 may be associated with, or dedicated to, a different logical state of the array cells. For example, reference cells constituting cells set 1 (707) may be associated with a program verify voltage level, whereas reference cells constituting cells set n (708) may be associated, for example, with a read verify voltage level.
The reference cells constituting reference set 1 (707) may each be associated with a different segment. For example, if reference cells set 1 (707) is associated with a read verification voltage level, then a first reference cell within set 1 (707) may be associated with the read verification voltage level of a first segment of array 701 (“Read 1/Segment 1”), a second reference cell within set 1 (707) may be associated with the read verification voltage level of a second segment of array 701 (“Read 1/Segment 2”), and so on.
Likewise, if reference cells set n (708) is associated with a program verification voltage level, then a first reference cell within set n (708) may be associated with the program verification voltage level of a first segment of array 701 (“Program n/Segment 1”), a second reference cell within set n (708) may be associated with the program verification voltage level of a second segment of array 701 (“Program n/Segment 2”), and so on.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims, and claims hereafter introduced, be construed as including all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
Number | Name | Date | Kind |
---|---|---|---|
3881180 | Gosney, Jr. | Apr 1975 | A |
3895360 | Cricchi et al. | Jul 1975 | A |
3952325 | Beale et al. | Apr 1976 | A |
4016588 | Ohya et al. | Apr 1977 | A |
4017888 | Christie et al. | Apr 1977 | A |
4145703 | Blanchard et al. | Mar 1979 | A |
4151021 | McElroy | Apr 1979 | A |
4173766 | Hayes | Nov 1979 | A |
4173791 | Bell | Nov 1979 | A |
4247861 | Hsu et al. | Jan 1981 | A |
4257832 | Schwabe et al. | Mar 1981 | A |
4281397 | Neal et al. | Jul 1981 | A |
4306353 | Jacobs et al. | Dec 1981 | A |
4342102 | Puar | Jul 1982 | A |
4342149 | Jacobs et al. | Aug 1982 | A |
4360900 | Bate | Nov 1982 | A |
4373248 | McElroy | Feb 1983 | A |
4380057 | Kotecha et al. | Apr 1983 | A |
4388705 | Sheppard | Jun 1983 | A |
4389705 | Sheppard | Jun 1983 | A |
4404747 | Collins | Sep 1983 | A |
4435786 | Tickle | Mar 1984 | A |
4448400 | Harari | May 1984 | A |
4471373 | Shimizu et al. | Sep 1984 | A |
4494016 | Ransom et al. | Jan 1985 | A |
4507673 | Aoyama | Mar 1985 | A |
4521796 | Rajkanan et al. | Jun 1985 | A |
4527257 | Cricchi | Jul 1985 | A |
4586163 | Koike | Apr 1986 | A |
4613956 | Paterson et al. | Sep 1986 | A |
4630085 | Koyama | Dec 1986 | A |
4663645 | Komori et al. | May 1987 | A |
4665426 | Allen et al. | May 1987 | A |
4667217 | Janning | May 1987 | A |
4672409 | Takei et al. | Jun 1987 | A |
4725984 | Ip et al. | Feb 1988 | A |
4733105 | Shin et al. | Mar 1988 | A |
4742491 | Liang et al. | May 1988 | A |
4758869 | Eitan et al. | Jul 1988 | A |
4760555 | Gelsomini et al. | Jul 1988 | A |
4761764 | Watanabe | Aug 1988 | A |
4769340 | Chang et al. | Sep 1988 | A |
4780424 | Holler et al. | Oct 1988 | A |
4839705 | Tigelaar et al. | Jun 1989 | A |
4847808 | Kobatake | Jul 1989 | A |
4857770 | Partovi et al. | Aug 1989 | A |
4870470 | Bass, Jr. et al. | Sep 1989 | A |
4916671 | Ichiguchi | Apr 1990 | A |
4941028 | Chen et al. | Jul 1990 | A |
4961010 | Davis | Oct 1990 | A |
4992391 | Wang | Feb 1991 | A |
5021999 | Kohda et al. | Jun 1991 | A |
5027321 | Park | Jun 1991 | A |
5029063 | Lingstaedt et al. | Jul 1991 | A |
5042009 | Kazerounian et al. | Aug 1991 | A |
5075245 | Woo et al. | Dec 1991 | A |
5081371 | Wong | Jan 1992 | A |
5086325 | Schumann et al. | Feb 1992 | A |
5094968 | Schumann et al. | Mar 1992 | A |
5104819 | Freiberger et al. | Apr 1992 | A |
5117389 | Yiu | May 1992 | A |
5120672 | Mitchell et al. | Jun 1992 | A |
5142495 | Canepa | Aug 1992 | A |
5142496 | Van Buskirk | Aug 1992 | A |
5159570 | Mitchell et al. | Oct 1992 | A |
5168334 | Mitchell et al. | Dec 1992 | A |
5172338 | Mehrotra et al. | Dec 1992 | A |
5175120 | Lee | Dec 1992 | A |
5204835 | Eitan | Apr 1993 | A |
5214303 | Aoki | May 1993 | A |
5237213 | Tanoi | Aug 1993 | A |
5241497 | Komarek | Aug 1993 | A |
5260593 | Lee | Nov 1993 | A |
5268861 | Hotta | Dec 1993 | A |
5276646 | Kim et al. | Jan 1994 | A |
5280420 | Rapp | Jan 1994 | A |
5289412 | Frary et al. | Feb 1994 | A |
5293563 | Ohta | Mar 1994 | A |
5295092 | Hotta et al. | Mar 1994 | A |
5295108 | Higa | Mar 1994 | A |
5305262 | Yoneda | Apr 1994 | A |
5311049 | Tsuruta | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5324675 | Hayabuchi | Jun 1994 | A |
5334555 | Sugiyama et al. | Aug 1994 | A |
5335198 | Van Buskirk et al. | Aug 1994 | A |
5338954 | Shimoji | Aug 1994 | A |
5345425 | Shikatani | Sep 1994 | A |
5349221 | Shimoji | Sep 1994 | A |
5350710 | Hong et al. | Sep 1994 | A |
5352620 | Komori et al. | Oct 1994 | A |
5357134 | Shimoji | Oct 1994 | A |
5359554 | Odake et al. | Oct 1994 | A |
5361343 | Kosonocky et al. | Nov 1994 | A |
5366915 | Kodama | Nov 1994 | A |
5375094 | Naruke | Dec 1994 | A |
5381374 | Shiraishi et al. | Jan 1995 | A |
5393701 | Ko et al. | Feb 1995 | A |
5394355 | Uramoto et al. | Feb 1995 | A |
5399891 | Yiu et al. | Mar 1995 | A |
5400286 | Chu et al. | Mar 1995 | A |
5402374 | Tsuruta et al. | Mar 1995 | A |
5412601 | Sawada et al. | May 1995 | A |
5414693 | Ma et al. | May 1995 | A |
5418176 | Yang et al. | May 1995 | A |
5418743 | Tomioka et al. | May 1995 | A |
5422844 | Wolstenholme et al. | Jun 1995 | A |
5424567 | Chen | Jun 1995 | A |
5424978 | Wada et al. | Jun 1995 | A |
5426605 | Van Berkel et al. | Jun 1995 | A |
5434825 | Harari et al. | Jul 1995 | A |
5436478 | Bergemont et al. | Jul 1995 | A |
5436481 | Egawa et al. | Jul 1995 | A |
5440505 | Fazio et al. | Aug 1995 | A |
5450341 | Sawada et al. | Sep 1995 | A |
5450354 | Sawada et al. | Sep 1995 | A |
5455793 | Amin et al. | Oct 1995 | A |
5467308 | Chang et al. | Nov 1995 | A |
5477499 | Van Buskirk et al. | Dec 1995 | A |
5495440 | Asakura | Feb 1996 | A |
5496753 | Sakurai et al. | Mar 1996 | A |
5508968 | Collins et al. | Apr 1996 | A |
5518942 | Shrivastava | May 1996 | A |
5521870 | Ishikawa | May 1996 | A |
5523251 | Hong | Jun 1996 | A |
5523972 | Rashid et al. | Jun 1996 | A |
5530803 | Chang et al. | Jun 1996 | A |
5534804 | Woo | Jul 1996 | A |
5537358 | Fong | Jul 1996 | A |
5544116 | Chao et al. | Aug 1996 | A |
5553018 | Wang et al. | Sep 1996 | A |
5553030 | Tedrow et al. | Sep 1996 | A |
5557221 | Taguchi et al. | Sep 1996 | A |
5557570 | Iwahashi | Sep 1996 | A |
5559687 | Nicollini et al. | Sep 1996 | A |
5563823 | Yiu et al. | Oct 1996 | A |
5568085 | Eitan et al. | Oct 1996 | A |
5579199 | Kawamura et al. | Nov 1996 | A |
5581252 | Thomas | Dec 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5590068 | Bergemont | Dec 1996 | A |
5590074 | Akaogi et al. | Dec 1996 | A |
5592417 | Mirabel | Jan 1997 | A |
5596527 | Tomioka et al. | Jan 1997 | A |
5599727 | Hakozaki et al. | Feb 1997 | A |
5600586 | Lee et al. | Feb 1997 | A |
5606523 | Mirabel | Feb 1997 | A |
5608679 | Mi et al. | Mar 1997 | A |
5612642 | McClinyock | Mar 1997 | A |
5617357 | Haddad et al. | Apr 1997 | A |
5623438 | Guritz et al. | Apr 1997 | A |
5627790 | Golla et al. | May 1997 | A |
5633603 | Lee | May 1997 | A |
5636288 | Bonneville et al. | Jun 1997 | A |
5644531 | Kuo et al. | Jul 1997 | A |
5654568 | Nakao | Aug 1997 | A |
5656513 | Wang et al. | Aug 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5661060 | Gill et al. | Aug 1997 | A |
5663907 | Frayer et al. | Sep 1997 | A |
5672959 | Der | Sep 1997 | A |
5675280 | Nomura | Oct 1997 | A |
5677869 | Fazio et al. | Oct 1997 | A |
5683925 | Irani et al. | Nov 1997 | A |
5689459 | Chang et al. | Nov 1997 | A |
5694356 | Wong et al. | Dec 1997 | A |
5696929 | Hasbun et al. | Dec 1997 | A |
5708608 | Park et al. | Jan 1998 | A |
5712814 | Fratin et al. | Jan 1998 | A |
5712815 | Bill et al. | Jan 1998 | A |
5715193 | Norman | Feb 1998 | A |
5717581 | Canclini | Feb 1998 | A |
5717632 | Richart et al. | Feb 1998 | A |
5717635 | Akatsu | Feb 1998 | A |
5726946 | Yamagata et al. | Mar 1998 | A |
5748534 | Dunlap et al. | May 1998 | A |
5751037 | Aozasa et al. | May 1998 | A |
5751637 | Chen et al. | May 1998 | A |
5754475 | Bill et al. | May 1998 | A |
5760445 | Diaz | Jun 1998 | A |
5760634 | Fu | Jun 1998 | A |
5768192 | Eitan | Jun 1998 | A |
5768193 | Lee et al. | Jun 1998 | A |
5771197 | Kim | Jun 1998 | A |
5774395 | Richart et al. | Jun 1998 | A |
5777919 | Chi-Yung et al. | Jul 1998 | A |
5781476 | Seki et al. | Jul 1998 | A |
5781478 | Takeuchi et al. | Jul 1998 | A |
5784314 | Sali et al. | Jul 1998 | A |
5787036 | Okazawa | Jul 1998 | A |
5793079 | Georgescu et al. | Aug 1998 | A |
5801076 | Ghneim et al. | Sep 1998 | A |
5805500 | Campardo et al. | Sep 1998 | A |
5808506 | Tran | Sep 1998 | A |
5812449 | Song | Sep 1998 | A |
5812456 | Hull et al. | Sep 1998 | A |
5812457 | Arase | Sep 1998 | A |
5815435 | Van Tran | Sep 1998 | A |
5822256 | Bauer et al. | Oct 1998 | A |
5825683 | Chang et al. | Oct 1998 | A |
5825686 | Schmitt-Landsiedel et al. | Oct 1998 | A |
5828601 | Hollmer et al. | Oct 1998 | A |
5834851 | Ikeda et al. | Nov 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5836772 | Chang et al. | Nov 1998 | A |
5841700 | Chang | Nov 1998 | A |
5847441 | Cutter et al. | Dec 1998 | A |
5861771 | Matsuda et al. | Jan 1999 | A |
5862076 | Eitan | Jan 1999 | A |
5864164 | Wen | Jan 1999 | A |
5867429 | Chen et al. | Feb 1999 | A |
5870334 | Hemink et al. | Feb 1999 | A |
5870335 | Khan et al. | Feb 1999 | A |
5875128 | Ishizuka et al. | Feb 1999 | A |
5877537 | Aoki | Mar 1999 | A |
5880620 | Gitlin et al. | Mar 1999 | A |
5886927 | Takeuchi | Mar 1999 | A |
RE36179 | Shimoda | Apr 1999 | E |
5892710 | Fazio et al. | Apr 1999 | A |
5903031 | Yamada et al. | May 1999 | A |
5910924 | Tanaka et al. | Jun 1999 | A |
5920503 | Lee et al. | Jul 1999 | A |
5920507 | Takeuchi et al. | Jul 1999 | A |
5926409 | Engh et al. | Jul 1999 | A |
5930195 | Komatsu et al. | Jul 1999 | A |
5933366 | Yoshikawa | Aug 1999 | A |
5933367 | Matsuo et al. | Aug 1999 | A |
5936888 | Sugawara | Aug 1999 | A |
5940332 | Artieri | Aug 1999 | A |
5946258 | Evertt et al. | Aug 1999 | A |
5946558 | Hsu | Aug 1999 | A |
5949714 | Hemink et al. | Sep 1999 | A |
5949728 | Liu et al. | Sep 1999 | A |
5963412 | En | Oct 1999 | A |
5963465 | Eitan | Oct 1999 | A |
5966603 | Eitan | Oct 1999 | A |
5969989 | Iwahashi | Oct 1999 | A |
5969993 | Takeshima | Oct 1999 | A |
5973373 | Krautschneider et al. | Oct 1999 | A |
5982666 | Campardo | Nov 1999 | A |
5986940 | Atsumi et al. | Nov 1999 | A |
5990526 | Bez et al. | Nov 1999 | A |
5991202 | Derhacobian et al. | Nov 1999 | A |
5999444 | Fujiwara et al. | Dec 1999 | A |
5999494 | Holzrichter | Dec 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6005423 | Schultz | Dec 1999 | A |
6011725 | Eitan | Jan 2000 | A |
6018186 | Hsu | Jan 2000 | A |
6020241 | You et al. | Feb 2000 | A |
6028324 | Su et al. | Feb 2000 | A |
6030871 | Eitan | Feb 2000 | A |
6034403 | Wu | Mar 2000 | A |
6034896 | Ranaweera et al. | Mar 2000 | A |
6037627 | Kitamura et al. | Mar 2000 | A |
6040610 | Noguchi et al. | Mar 2000 | A |
6044019 | Cernea et al. | Mar 2000 | A |
6044022 | Nachumovsky | Mar 2000 | A |
6063666 | Chang et al. | May 2000 | A |
6064226 | Earl | May 2000 | A |
6064251 | Park | May 2000 | A |
6064591 | Takeuchi et al. | May 2000 | A |
6074916 | Cappelletti | Jun 2000 | A |
6075402 | Ghilardelli et al. | Jun 2000 | A |
6075724 | Li et al. | Jun 2000 | A |
6078518 | Chevallier | Jun 2000 | A |
6081456 | Dadashev | Jun 2000 | A |
6084794 | Lu et al. | Jul 2000 | A |
6091640 | Kawahara et al. | Jul 2000 | A |
6094095 | Murray et al. | Jul 2000 | A |
6097639 | Choi et al. | Aug 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6108240 | Lavi et al. | Aug 2000 | A |
6108241 | Chevallier | Aug 2000 | A |
6117714 | Beatty | Sep 2000 | A |
6118207 | Ormerod et al. | Sep 2000 | A |
6118692 | Banks | Sep 2000 | A |
6122198 | Haddad et al. | Sep 2000 | A |
6128226 | Eitan et al. | Oct 2000 | A |
6128227 | Kim | Oct 2000 | A |
6130572 | Ghilardelli et al. | Oct 2000 | A |
6130574 | Bloch et al. | Oct 2000 | A |
6133095 | Eitan et al. | Oct 2000 | A |
6134156 | Eitan | Oct 2000 | A |
6137718 | Reisinger | Oct 2000 | A |
6147904 | Liron | Nov 2000 | A |
6150800 | Kinoshita et al. | Nov 2000 | A |
6154081 | Pakkala et al. | Nov 2000 | A |
6156149 | Cheung et al. | Dec 2000 | A |
6157242 | Fukui | Dec 2000 | A |
6157570 | Nachumovsky | Dec 2000 | A |
6163048 | Hirose et al. | Dec 2000 | A |
6163484 | Uekubo | Dec 2000 | A |
6169691 | Pasotti et al. | Jan 2001 | B1 |
6175523 | Yang et al. | Jan 2001 | B1 |
6181597 | Nachumovsky | Jan 2001 | B1 |
6181605 | Hollmer et al. | Jan 2001 | B1 |
6185143 | Perner et al. | Feb 2001 | B1 |
6188211 | Rincon-Mora et al. | Feb 2001 | B1 |
6192445 | Rezvani | Feb 2001 | B1 |
6195196 | Kimura et al. | Feb 2001 | B1 |
6198342 | Kawai | Mar 2001 | B1 |
6201282 | Eitan | Mar 2001 | B1 |
6201737 | Hollmer et al. | Mar 2001 | B1 |
6205056 | Pan et al. | Mar 2001 | B1 |
6205059 | Gutala et al. | Mar 2001 | B1 |
6208200 | Arakawa | Mar 2001 | B1 |
6208557 | Bergemont et al. | Mar 2001 | B1 |
6214666 | Mehta | Apr 2001 | B1 |
6215148 | Eitan | Apr 2001 | B1 |
6215697 | Lu et al. | Apr 2001 | B1 |
6215702 | Derhacobian et al. | Apr 2001 | B1 |
6218695 | Nachumovsky | Apr 2001 | B1 |
6219277 | Devin et al. | Apr 2001 | B1 |
6219290 | Chang et al. | Apr 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6222768 | Hollmer et al. | Apr 2001 | B1 |
6233180 | Eitan et al. | May 2001 | B1 |
6240032 | Fukumoto | May 2001 | B1 |
6240040 | Akaogi et al. | May 2001 | B1 |
6246555 | Tham | Jun 2001 | B1 |
6252442 | Malherbe | Jun 2001 | B1 |
6252799 | Liu et al. | Jun 2001 | B1 |
6256231 | Lavi et al. | Jul 2001 | B1 |
6261904 | Pham et al. | Jul 2001 | B1 |
6265268 | Halliyal et al. | Jul 2001 | B1 |
6266281 | Derhacobian et al. | Jul 2001 | B1 |
6272047 | Mihnea et al. | Aug 2001 | B1 |
6275414 | Randolph et al. | Aug 2001 | B1 |
6281545 | Liang et al. | Aug 2001 | B1 |
6282133 | Nakagawa et al. | Aug 2001 | B1 |
6282145 | Tran et al. | Aug 2001 | B1 |
6285246 | Basu | Sep 2001 | B1 |
6285574 | Eitan | Sep 2001 | B1 |
6285589 | Kajitani | Sep 2001 | B1 |
6285614 | Mulatti et al. | Sep 2001 | B1 |
6292394 | Cohen et al. | Sep 2001 | B1 |
6297096 | Boaz | Oct 2001 | B1 |
6297143 | Foote et al. | Oct 2001 | B1 |
6297974 | Ganesan et al. | Oct 2001 | B1 |
6304485 | Harari et al. | Oct 2001 | B1 |
6307784 | Hamilton et al. | Oct 2001 | B1 |
6307807 | Sakui et al. | Oct 2001 | B1 |
6320786 | Chang et al. | Nov 2001 | B1 |
6324094 | Chevallier | Nov 2001 | B1 |
6326265 | Liu et al. | Dec 2001 | B1 |
6330192 | Ohba et al. | Dec 2001 | B1 |
6331950 | Kuo et al. | Dec 2001 | B1 |
6335874 | Eitan | Jan 2002 | B1 |
6337502 | Eitan et al. | Jan 2002 | B1 |
6339556 | Watanabe | Jan 2002 | B1 |
6343033 | Parker | Jan 2002 | B1 |
6346442 | Aloni et al. | Feb 2002 | B1 |
6348381 | Jong | Feb 2002 | B1 |
6348711 | Eitan | Feb 2002 | B1 |
6351415 | Kushnarenko | Feb 2002 | B1 |
6353356 | Liu | Mar 2002 | B1 |
6353554 | Banks | Mar 2002 | B1 |
6353555 | Jeong | Mar 2002 | B1 |
6356469 | Roohparvar et al. | Mar 2002 | B1 |
6359501 | Lin et al. | Mar 2002 | B2 |
6374337 | Estakhri | Apr 2002 | B1 |
6385086 | Mihara et al. | May 2002 | B1 |
6396741 | Bloom et al. | May 2002 | B1 |
6400209 | Matsuyama et al. | Jun 2002 | B1 |
6400607 | Pasotti et al. | Jun 2002 | B1 |
6407537 | Antheunis | Jun 2002 | B2 |
6410388 | Kluth et al. | Jun 2002 | B1 |
6417081 | Thurgate | Jul 2002 | B1 |
6418506 | Pashley et al. | Jul 2002 | B1 |
6426898 | Mihnea et al. | Jul 2002 | B1 |
6429063 | Eitan | Aug 2002 | B1 |
6433624 | Grossnikle et al. | Aug 2002 | B1 |
6436766 | Rangarajan et al. | Aug 2002 | B1 |
6436768 | Yang et al. | Aug 2002 | B1 |
6438031 | Fastow | Aug 2002 | B1 |
6438035 | Yamamoto et al. | Aug 2002 | B2 |
6440797 | Wu et al. | Aug 2002 | B1 |
6442074 | Hamilton et al. | Aug 2002 | B1 |
6445030 | Wu et al. | Sep 2002 | B1 |
6449190 | Bill | Sep 2002 | B1 |
6452438 | Li | Sep 2002 | B1 |
6456528 | Chen | Sep 2002 | B1 |
6456533 | Hamilton et al. | Sep 2002 | B1 |
6458656 | Park et al. | Oct 2002 | B1 |
6458677 | Hopper et al. | Oct 2002 | B1 |
6469929 | Kushnarenko et al. | Oct 2002 | B1 |
6469935 | Hayashi | Oct 2002 | B2 |
6472706 | Widdershoven et al. | Oct 2002 | B2 |
6477085 | Kuo | Nov 2002 | B1 |
6490204 | Bloom et al. | Dec 2002 | B2 |
6496414 | Kasa et al. | Dec 2002 | B2 |
6510082 | Le et al. | Jan 2003 | B1 |
6512701 | Hamilton et al. | Jan 2003 | B1 |
6519180 | Tran et al. | Feb 2003 | B2 |
6519182 | Derhacobian et al. | Feb 2003 | B1 |
6522585 | Pasternak | Feb 2003 | B2 |
6525969 | Kurihara et al. | Feb 2003 | B1 |
6528390 | Komori et al. | Mar 2003 | B2 |
6529412 | Chen et al. | Mar 2003 | B1 |
6532173 | Lioka et al. | Mar 2003 | B2 |
6535020 | Yin | Mar 2003 | B1 |
6535434 | Maayan et al. | Mar 2003 | B2 |
6537881 | Rangarajan et al. | Mar 2003 | B1 |
6538270 | Randolph et al. | Mar 2003 | B1 |
6541816 | Ramsbey et al. | Apr 2003 | B2 |
6552387 | Eitan | Apr 2003 | B1 |
6555436 | Ramsbey et al. | Apr 2003 | B2 |
6559500 | Torii | May 2003 | B2 |
6562683 | Wang et al. | May 2003 | B1 |
6566194 | Ramsbey et al. | May 2003 | B1 |
6566699 | Eitan | May 2003 | B2 |
6567303 | Hamilton et al. | May 2003 | B1 |
6567312 | Torii et al. | May 2003 | B1 |
6570211 | He et al. | May 2003 | B1 |
6574139 | Kurihara | Jun 2003 | B2 |
6577514 | Shor et al. | Jun 2003 | B2 |
6577532 | Chevallier | Jun 2003 | B1 |
6577547 | Ukon | Jun 2003 | B2 |
6583005 | Hashimoto et al. | Jun 2003 | B2 |
6583479 | Fastow et al. | Jun 2003 | B1 |
6584017 | Maayan et al. | Jun 2003 | B2 |
6590811 | Hamilton et al. | Jul 2003 | B1 |
6593606 | Randolph et al. | Jul 2003 | B1 |
6594181 | Yamada | Jul 2003 | B1 |
6608526 | Sauer | Aug 2003 | B1 |
6614295 | Tsuchi | Sep 2003 | B2 |
6614686 | Kawamura | Sep 2003 | B1 |
6614692 | Eliyahu et al. | Sep 2003 | B2 |
6617179 | Kim | Sep 2003 | B1 |
6617215 | Halliyal et al. | Sep 2003 | B1 |
6618290 | Wang et al. | Sep 2003 | B1 |
6624672 | Confaloneri et al. | Sep 2003 | B2 |
6627555 | Eitan et al. | Sep 2003 | B2 |
6630384 | Sun et al. | Oct 2003 | B1 |
6633496 | Maayan et al. | Oct 2003 | B2 |
6633499 | Eitan et al. | Oct 2003 | B1 |
6633956 | Mitani | Oct 2003 | B1 |
6636440 | Maayan et al. | Oct 2003 | B2 |
6639271 | Zheng et al. | Oct 2003 | B1 |
6639837 | Takano et al. | Oct 2003 | B2 |
6639844 | Liu et al. | Oct 2003 | B1 |
6639849 | Takahashi et al. | Oct 2003 | B2 |
6642148 | Ghandehari et al. | Nov 2003 | B1 |
6642573 | Halliyal et al. | Nov 2003 | B1 |
6642586 | Takahashi | Nov 2003 | B2 |
6643170 | Huang et al. | Nov 2003 | B2 |
6643177 | Le et al. | Nov 2003 | B1 |
6643178 | Kurihara | Nov 2003 | B2 |
6643181 | Sofer et al. | Nov 2003 | B2 |
6645801 | Ramsbey et al. | Nov 2003 | B1 |
6649972 | Eitan | Nov 2003 | B2 |
6650568 | Iijima | Nov 2003 | B2 |
6653190 | Yang et al. | Nov 2003 | B1 |
6653191 | Yang et al. | Nov 2003 | B1 |
6654296 | Jang et al. | Nov 2003 | B2 |
6664588 | Eitan | Dec 2003 | B2 |
6665769 | Cohen et al. | Dec 2003 | B2 |
6670241 | Kamal et al. | Dec 2003 | B1 |
6670669 | Kawamura | Dec 2003 | B1 |
6674138 | Halliyal et al. | Jan 2004 | B1 |
6677805 | Shor et al. | Jan 2004 | B2 |
6680509 | Wu et al. | Jan 2004 | B1 |
6686242 | Willer et al. | Feb 2004 | B2 |
6690602 | Le et al. | Feb 2004 | B1 |
6700818 | Shappir et al. | Mar 2004 | B2 |
6714469 | Rickes et al. | Mar 2004 | B2 |
6717207 | Kato | Apr 2004 | B2 |
6723518 | Papsidero et al. | Apr 2004 | B2 |
6731542 | Le et al. | May 2004 | B1 |
6738289 | Gongwer et al. | May 2004 | B2 |
6744692 | Shiota et al. | Jun 2004 | B2 |
6765259 | Kim | Jul 2004 | B2 |
6768165 | Eitan | Jul 2004 | B1 |
6788579 | Gregori et al. | Sep 2004 | B2 |
6791396 | Shor et al. | Sep 2004 | B2 |
6794249 | Palm et al. | Sep 2004 | B2 |
6831872 | Matsuoka | Dec 2004 | B2 |
6836431 | Chang | Dec 2004 | B2 |
6871258 | Micheloni et al. | Mar 2005 | B2 |
6885585 | Maayan et al. | Apr 2005 | B2 |
6912160 | Yamada | Jun 2005 | B2 |
6917544 | Maayan et al. | Jul 2005 | B2 |
6928001 | Avni et al. | Aug 2005 | B2 |
6937523 | Eshel | Aug 2005 | B2 |
6963505 | Cohen | Nov 2005 | B2 |
6967872 | Quader et al. | Nov 2005 | B2 |
6996692 | Kouno | Feb 2006 | B2 |
7149240 | McDonough et al. | Dec 2006 | B2 |
7184313 | Betser et al. | Feb 2007 | B2 |
20010006477 | Banks | Jul 2001 | A1 |
20020004878 | Norman | Jan 2002 | A1 |
20020004921 | Muranaka et al. | Jan 2002 | A1 |
20020064911 | Eitan | May 2002 | A1 |
20020132436 | Eliyahu et al. | Sep 2002 | A1 |
20020140109 | Keshavarzi et al. | Oct 2002 | A1 |
20020145465 | Shor et al. | Oct 2002 | A1 |
20020191465 | Maayan et al. | Dec 2002 | A1 |
20020199065 | Subramoney et al. | Dec 2002 | A1 |
20030001213 | Lai | Jan 2003 | A1 |
20030021155 | Yachareni et al. | Jan 2003 | A1 |
20030072192 | Bloom et al. | Apr 2003 | A1 |
20030076710 | Sofer et al. | Apr 2003 | A1 |
20030117841 | Yamashita | Jun 2003 | A1 |
20030131186 | Buhr | Jul 2003 | A1 |
20030134476 | Roizin et al. | Jul 2003 | A1 |
20030142544 | Maayan et al. | Jul 2003 | A1 |
20030145176 | Dvir et al. | Jul 2003 | A1 |
20030145188 | Cohen et al. | Jul 2003 | A1 |
20030155659 | Verma et al. | Aug 2003 | A1 |
20030190786 | Ramsbey et al. | Oct 2003 | A1 |
20030197221 | Shinozaki et al. | Oct 2003 | A1 |
20030202411 | Yamada | Oct 2003 | A1 |
20030206435 | Takahashi | Nov 2003 | A1 |
20030208663 | Van Buskirk et al. | Nov 2003 | A1 |
20030209767 | Takahashi et al. | Nov 2003 | A1 |
20030214844 | Iijima | Nov 2003 | A1 |
20030218207 | Hashimoto et al. | Nov 2003 | A1 |
20030218913 | Le et al. | Nov 2003 | A1 |
20030222303 | Fukuda et al. | Dec 2003 | A1 |
20030227796 | Miki et al. | Dec 2003 | A1 |
20040012993 | Kurihara | Jan 2004 | A1 |
20040013000 | Torii | Jan 2004 | A1 |
20040014290 | Yang et al. | Jan 2004 | A1 |
20040021172 | Zheng et al. | Feb 2004 | A1 |
20040027858 | Takahashi et al. | Feb 2004 | A1 |
20040151034 | Shor et al. | Aug 2004 | A1 |
20040153621 | Polansky et al. | Aug 2004 | A1 |
20040157393 | Hwang | Aug 2004 | A1 |
20040222437 | Avni et al. | Nov 2004 | A1 |
20050117395 | Maayan et al. | Jun 2005 | A1 |
20050140405 | Do et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
0 656 628 | Jun 1995 | EP |
0751560 | Jun 1995 | EP |
0693781 | Jan 1996 | EP |
0 822 557 | Feb 1998 | EP |
0 843 398 | May 1998 | EP |
0580467 | Sep 1998 | EP |
0461764 | Jul 2000 | EP |
1 071 096 | Jan 2001 | EP |
1073120 | Jan 2001 | EP |
1 091 418 | Apr 2001 | EP |
1126468 | Aug 2001 | EP |
0740307 | Dec 2001 | EP |
1164597 | Dec 2001 | EP |
1 207 552 | May 2002 | EP |
1 223 586 | Jul 2002 | EP |
1 365 452 | Nov 2003 | EP |
001217744 | Mar 2004 | EP |
1297899 | Nov 1972 | GB |
2157489 | Mar 1985 | GB |
54-053929 | Apr 1979 | JP |
60-200566 | Oct 1985 | JP |
60201594 | Oct 1985 | JP |
63-249375 | Oct 1988 | JP |
3-285358 | Dec 1991 | JP |
04-226071 | Aug 1992 | JP |
04-291962 | Oct 1992 | JP |
05021758 | Jan 1993 | JP |
06151833 | May 1994 | JP |
06-232416 | Aug 1994 | JP |
07193151 | Jul 1995 | JP |
08-106791 | Apr 1996 | JP |
08-297988 | Nov 1996 | JP |
09-017981 | Jan 1997 | JP |
09162314 | Jun 1997 | JP |
10-106276 | Apr 1998 | JP |
10 334676 | Dec 1998 | JP |
11-162182 | Jan 1999 | JP |
11-354758 | Dec 1999 | JP |
2001-085646 | Mar 2001 | JP |
2001-118392 | Apr 2001 | JP |
2001-156189 | Jun 2001 | JP |
2002-216488 | Aug 2002 | JP |
3358663 | Oct 2002 | JP |
WO 8100790 | Mar 1981 | WO |
WO 9615553 | May 1996 | WO |
WO 9625741 | Aug 1996 | WO |
WO 9803977 | Feb 1998 | WO |
WO 9931670 | Jun 1999 | WO |
WO 9957728 | Nov 1999 | WO |
WO 0046808 | Aug 2000 | WO |
WO 0165566 | Sep 2001 | WO |
WO 0165567 | Sep 2001 | WO |
WO 0184552 | Nov 2001 | WO |
WO 0243073 | May 2002 | WO |
WO 03032393 | Apr 2003 | WO |
WO 03036651 | May 2003 | WO |
WO 03054964 | Jul 2003 | WO |
WO 03063167 | Jul 2003 | WO |
WO 03063168 | Jul 2003 | WO |
WO 03079370 | Sep 2003 | WO |
WO 03079446 | Sep 2003 | WO |
WO 03083916 | Oct 2003 | WO |
WO 03088258 | Oct 2003 | WO |
WO 03088259 | Oct 2003 | WO |
WO 03088260 | Oct 2003 | WO |
WO 03088261 | Oct 2003 | WO |
WO 03088353 | Oct 2003 | WO |
WO 03100790 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070153575 A1 | Jul 2007 | US |