1. Field
Embodiments of the present invention generally relate to substrate processing and, more particularly, to methods of processing substrates via physical vapor deposition (PVD).
2. Description of the Related Art
Integrated circuits have evolved into complex devices that can include millions of components (e.g., transistors, capacitors and resistors) on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit density. The demands for greater circuit density necessitate a reduction in the dimensions of the integrated circuit components. As the dimensions decrease, processing of the integrated chip substrates become increasingly more challenging.
For example, in conventional substrate processing, thin layers of material are applied to the inner surfaces of substrate features prior to filling the feature with conductive material. Ideally, the thin layer would be uniform throughout the feature, with minimal overhang (excessive material on surfaces proximate the opening of the feature), which can reduce the size of the feature opening, or close the opening completely (undesirably leaving an air gap trapped within the feature).
Typical processes commonly used for fabricating integrated circuits having features with a high aspect ratio (e.g., of the height of the feature to the width of the feature) include depositing material in a bottom of the features and re-sputtering the material to facilitate redistribution from the bottom to the sidewalls of the feature. This is done using high energy ions directed toward the substrate. Unfortunately, this method causes damage to the underlying layers and to the substrate itself, particularly at the corners, or bevel, and bottom of the feature. This results in significant line resistance increase and reliability degradation. As the dimensions of the integrated circuit components decrease, the aspect ratio increases, which further increases the above problems.
Therefore, there is a need in the art for improved methods for processing substrates.
Methods for processing substrates are provided herein. In some embodiments, a method for processing substrates includes providing to a process chamber a substrate comprising an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
In some embodiments, a computer readable medium, having instructions stored thereon which, when executed by a controller, causes a process chamber having a substrate disposed therein to be processed by a method, wherein the substrate comprises an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
Embodiments of the present invention, briefly summarized above and discussed in greater detail below, can be understood by reference to the illustrative embodiments of the invention depicted in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The figures are not drawn to scale and may be simplified for clarity. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the present invention generally relate to methods of protecting substrate features during high energy processes. The inventive methods advantageously reduce damage to substrate features during, for example, high-energy PVD processes, by utilizing a selectively deposited titanium nitride mask layer to protect vulnerable areas where sputter etch is not desired. The inventive methods may advantageously reduce line resistivity and opportunity for electromigration, thus increasing the reliability of the finished devices.
The method 100 begins at 102, where a substrate 200 is provided comprising an exposed dielectric layer 212 having a feature 210 formed therein, as depicted in
In some embodiments, the dielectric layer 212 may be formed over a dielectric layer 214. A conductive feature 216 may be formed in an upper region of the dielectric layer 214 such that an upper surface of the conductive feature 216 may be exposed by the feature 210 formed in the dielectric layer 212. For example, a via/trench etching process may be performed to define the feature 210 in the dielectric layer 212, thereby exposing an upper surface of the conductive feature 216. The conductive feature 216 may be fabricated from any suitable conductive material. For example, for a copper interconnect, the conductive feature 216 may be a copper layer embedded in the dielectric layer 214. In some embodiments, the conductive feature 216 may be fabricated from a metal, such as copper, aluminum, tungsten, or the like, alloys thereof, or combinations thereof.
The dielectric layer 212 and the dielectric layer 214 may be fabricated from the same or different materials. In some embodiments, the dielectric materials may comprise silicon oxide (SiO2), silicon nitride (SiN), a low-K material, or the like. The low-k material may be carbon-doped dielectric materials (such as carbon-doped silicon oxide (SiOC), BLACK DIAMOND® dielectric material available from Applied Materials, Inc. of Santa Clara, Calif., or the like), an organic polymer (such as polyimide, parylene, or the like), organic doped silicon glass (OSG), fluorine doped silicon glass (FSG), or the like. As used herein, low-k materials are materials having a dielectric constant less than about that of silicon oxide, which is about 3.9.
The feature 210 is generally defined by sidewalls 201 and bottom surfaces 203. For example, the feature 210 may be a via, a trench, a dual damascene feature, or the like, and may be formed through any suitable process such as an etch process. Although shown as a single feature, multiple features may be simultaneously processed in accordance with the teachings disclosed herein. Although the feature 210 may generally have any dimensions, in some embodiments, the feature 210 is a high aspect ratio feature. For example, in some embodiments, the feature may have a ratio of a height of the feature to a width of the feature of at least about 4:1, In some embodiments, the feature 210 may have a width of less than about 45 nm. The substrate 200 may also include different and/or additional material layers. In addition, other features, such as trenches, vias, or the like, may be formed in one or more layers of the substrate 200.
Next, at 104, a titanium nitride mask layer 218 may be selectively deposited atop portions of the substrate 200 that are desired to be protected. For example, in some embodiments, the titanium nitride mask layer 218 may be selectively deposited atop the substrate including the corners and bottom surface of the feature 210, as depicted in
The titanium nitride mask layer 218 may be deposited via a PVD process in a suitable process chamber, such as the process chamber 400 described below with respect to
In some embodiments, the nitrogen containing gas is nitrogen (N2). In some embodiments, the nitrogen containing gas may be provided at a flow rate of between about 5 to about 200 sccm. In some embodiments the deposition gas mixture may also include an inert gas, such as argon (Ar). The inert gas may be provided at a flow rate of between about 4 to about 200 sccm. In some embodiments, the pressure within the process chamber 400 may be maintained at between about 0.5 mT and about 75 mT.
For a metallic cathode deposition process (e.g., where the nitrogen containing gas does not form titanium nitride directly on the target) having a high deposition rate, the nitrogen containing gas flow may be between about 45 to about 75 sccm. The resulting titanium nitride mask layer 218 may have a low resistivity in the range of between about 50 to about 80 micro ohm-cm. A normalized etch rate on this film may be about 2.5 times the etch rate of a pure titanium (Ti) film.
For a poisoned cathode deposition process (e.g., where the nitrogen containing gas forms titanium nitride directly on the target) with low deposition rate, the nitrogen containing gas flow may be between about 75 to about 200 sccm. The resulting titanium nitride mask layer 218 may have a higher resistivity in the range of between about 90 to about 250 micro ohm-cm, depending on the substrate temperature. A normalized etch rate on this film may be about 4 times that of a pure titanium (Ti) film.
In some embodiments, a source power may be applied to the target 442 during processing to maintain a plasma formed from the deposition gas mixture. In some embodiments, the source power may comprise a DC power of up to about 60 Kw, or in some embodiments, about 40 Kw. The DC power may be varied throughout the process to facilitate selective deposition of the titanium nitride mask layer 218. Alternatively, in some embodiments, an RF signal may be supplied at a power up to about 2 kW at a frequency of between about 2 MHz to about 60 MHz, or in some embodiments, about 13.56 Mhz.
In some embodiments, to facilitate selective deposition of the ejected atoms of the target material on the substrate 200, a bias power in the form of RF power may be applied to the substrate support pedestal 452. In some embodiments, up to about 2000 W of RF power may be supplied at a frequency of between 2 to about 60 MHz, or in some embodiments, about 13.56 MHz. Alternatively, two RF power sources 456, 456A may be utilized, providing a dual frequency substrate bias. Up to about 2000 W of RF power of a first RF bias signal may be provided at a frequency of between about 2 to about 60 MHz. Up to about 2000 W of RF power of a second RF bias signal may be provided at a frequency of between about 2 to about 60 MHz. In some embodiments, for protection of via facets with little or no titanium nitride mask layer 218 deposited at the bottom of the via (such as depicted in
Next, at 106, a barrier layer 220 is deposited atop the titanium nitride mask layer 218 and into the substrate feature 210, as depicted in
The barrier layer 220 may be deposited via a PVD process in a suitable process chamber, such as the process chamber 400 described below with respect to
In some embodiments, the barrier layer 220 may be deposited in a high bottom coverage process by applying up to 60kW of DC power to the target 442 to maintain a plasma formed from the deposition gas mixture and facilitate sputtering of the target 442 material to the substrate 200. In some embodiments, RF power may be applied to the substrate support pedestal 452 during processing. In some embodiments, up to about 2000_W of an RF signal may be supplied at a frequency of between 2 to about 60 MHz, or about 13.56 MHz.
Next, at 108, the barrier layer 220 is etched to redistribute at least a portion of the barrier layer 220 onto the sidewalls of the feature 210, as depicted in
To facilitate etching the barrier layer 220, two RF sources 456, 456A may provide separate substrate bias signals simultaneously. In some embodiments, between about 100 W to about 2 kW of a first RF substrate bias signal having a frequency of about 60 MHz may be provided to facilitate forming the plasma. In some embodiments, between about 50 W to about 2 kW of a second RF substrate bias signal having a frequency of about 2 MHz or 13.56 MHz may be provided to facilitate directing the ions towards the substrate.
Optionally, and as depicted in
Next, at 114, a conductive material 224 may be deposited atop the barrier layer 220, as depicted in
Upon completion of the deposition of the conductive material 224 at 114, the process ends and the substrate 200 may be further processed as required for a particular application.
The inventive methods described herein may be performed in a PVD chamber as described below.
In some embodiments, the process chamber 400 contains a substrate support pedestal 452 for receiving the substrate 200 thereon, and a sputtering source, such as a target 442. The substrate support pedestal 452 may be located within a grounded enclosure wall 450, which may be a chamber wall (as shown) or a grounded shield (not shown).
The target 442 may be supported on a grounded conductive aluminum adapter 444 through a dielectric isolator 446. The target 442 comprises a material to be deposited on the substrate 200 during sputtering, such as titanium when depositing a titanium nitride mask layer 218 in accordance with embodiments of the present invention.
The substrate support pedestal 452 has a material-receiving surface facing the principal surface of the target 442 and supports the substrate 200 to be processed in planar position opposite to the principal surface of the target 442. The substrate support pedestal 452 may support the substrate 200 in a central region 440 of the processing chamber 400. The central region 440 is defined as the region above the substrate support pedestal 452 during processing (for example, between the target 442 and the substrate support pedestal 452 when in a processing position).
The substrate support pedestal 452 is vertically movable through a bellows 458 connected to a bottom chamber wall 460 to allow the substrate 200 to be transferred onto the substrate support pedestal 452 through a load lock valve (not shown) in the lower portion of processing the chamber 400 and thereafter raised to a deposition, or processing position as depicted in
A controllable DC power source 448 may be coupled to the chamber 400 to apply a negative voltage, or bias, to the target 442. In some embodiments, an RF power supply 478 may be coupled to the chamber 400 to induce a bias on the target 442. An RF power supply 456 may be coupled to the substrate support pedestal 452 in order to induce a negative DC bias on the substrate 200. In some embodiments, an additional RF power supply 456A may also be coupled to the substrate support pedestal to facilitate providing a dual frequency substrate bias. In addition, in some embodiments, a negative DC self-bias may form on the substrate 200 during processing. In other applications, the substrate support pedestal 452 may be grounded or left electrically floating.
A rotatable magnetron 470 may be positioned proximate a back surface of the target 442. The magnetron 470 includes a plurality of magnets 472 supported by a base plate 474. The base plate 474 connects to a rotation shaft 476 coincident with the central axis of the chamber 400 and the substrate 200. The magnets 472 produce a magnetic field within the chamber 400, generally parallel and close to the surface of the target 442 to trap electrons and increase the local plasma density, which in turn increases the sputtering rate. The magnets 472 produce an electromagnetic field around the top of the chamber 400, and magnets 472 are rotated to rotate the electromagnetic field which influences the plasma density of the process to more uniformly sputter the target 442. In some embodiments, the magnets can also be arranged to produce a magnetic field which extends to the substrate, which influences the plasma density of the process in a region proximate the substrate to more uniformly resputter the materials on the substrate.
The chamber 400 further includes a grounded bottom shield 480 connected to a ledge 484 of the adapter 444. A dark space shield 486 is supported on the bottom shield 480 and is fastened to the shield 480 by screws or other suitable manner. The metallic threaded connection between the bottom shield 480 and the dark space shield 486 allows the two shields 480, 486 to be grounded to the adapter 444. The adapter 444 in turn is sealed and grounded to the aluminum chamber sidewall 450. Both shields 480, 486 are typically formed from hard, non-magnetic stainless steel. In some embodiments, the shields 480, 486 may contain heating elements for active temperature control. In some embodiments, the shields can be formed from non conducting materials such as ceramic.
The bottom shield 480 extends downwardly in an upper tubular portion 494 of a first diameter and a lower tubular portion 496 of a second diameter. The bottom shield 480 extends along the walls of the adapter 444 and the chamber wall 450 downwardly to below a top surface of the substrate support pedestal 452 and returns upwardly until reaching a top surface of the substrate support pedestal 452 (e.g., forming a u-shaped portion 498 at the bottom). A cover ring 402 rests on the top of the upwardly extending inner portion of the bottom shield 480 when the substrate support pedestal 452 is in its lower, loading position but rests on the outer periphery of the substrate support pedestal 452 when it is in its upper, deposition position to protect the substrate support pedestal 452 from sputter deposition. An additional deposition ring (not shown) may be used to shield the periphery of the substrate 200 from deposition.
The process chamber 400 may also be adapted to provide a more directional sputtering of material onto a substrate 200. In one embodiment, directional sputtering may be achieved by positioning a collimator 410 between the target 442 and the substrate support pedestal 452 to provide a more uniform and symmetrical flux of deposition material to the substrate 200.
The collimator 410 may rest on the ledge portion of the bottom shield 480, thereby grounding the collimator 410. The collimator 410 may be a metal ring and may include an outer tubular section and at least one inner concentric tubular section, for example, three concentric tubular sections 412, 414, 416 linked by cross struts 420, 418. The outer tubular section 416 rests on the ledge portion 406 of the bottom shield 480. The use of the bottom shield 480 to support the collimator 410 simplifies the design and maintenance of the chamber 400. At least the two inner tubular sections 412, 414 are of sufficient height to define high aspect ratio apertures that partially collimate the sputtered particles. Further, the upper surface of the collimator 410 acts as a ground plane in opposition to the biased target 442, which facilitates keeping plasma electrons away from the substrate 200.
In some embodiments, a magnet 454 may be disposed about the chamber 400 for selectively providing a magnetic field between the substrate support pedestal 452 and the target 442. For example, as shown in
A controller 430 is coupled to various components of the process chamber 400 and comprises a central processing unit (CPU) 432, a memory 434, and support circuits 436 for the CPU 432. The controller 430 may control the substrate processing apparatus 100 directly, or via computers (or controllers) associated with particular process chamber and/or the support system components. The controller 430 may be one of any form of general-purpose computer processor that can be used in an industrial setting for controlling various chambers and sub-processors. The memory, or computer-readable medium, 434 of the CPU 432 may be one or more of readily available memory such as random access memory (RAM), read only memory (ROM), floppy disk, hard disk, flash, or any other form of digital storage, local or remote. The support circuits 436 are coupled to the CPU 432 for supporting the processor in a conventional manner. These circuits include cache, power supplies, clock circuits, input/output circuitry and subsystems, and the like. Inventive methods as described herein may be stored in the memory 434 as software routine that may be executed or invoked to control the operation of the process chamber 400 in the manner described herein. The software routine may also be stored and/or executed by a second CPU (not shown) that is remotely located from the hardware being controlled by the CPU 432.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.