The present invention generally relates to method and apparatus for cleaning substrate. More particularly, relates to controlling the bubble cavitation generated by ultra or mega sonic device during the cleaning process to achieve a stable or controlled cavitation on the entire substrate, which removes fine particles efficiently without damaging the device structure on the substrate.
Semiconductor devices are manufactured or fabricated on semiconductor wafers using a number of different processing steps to create transistor and interconnection elements. Recently, the transistors are built from two dimensions to three dimensions such as finFET transistors and 3D NAND memory. To electrically connect transistor terminals associated with the semiconductor wafer, conductive (e.g., metal) trenches, vias, and the like are formed in dielectric materials as part of the semiconductor device. The trenches and vias couple electrical signals and power between transistors, internal circuit of the semiconductor devices, and circuits external to the semiconductor device.
In forming the finFET transistors and interconnection elements on the semiconductor wafer may undergo, for example, masking, etching, and deposition processes to form the desired electronic circuitry of the semiconductor devices. In particular, multiple masking and plasma etching step can be performed to form a pattern of finFET, 3D NAND flash cell and or recessed areas in a dielectric layer on a semiconductor wafer that serve as fin for the transistor and or trenches and vias for the interconnection elements. In order to removal particles and contaminations in fin structure and or trench and via post etching or photo resist ashing, a wet cleaning step is necessary. Especially, when device manufacture node migrating to 14 or 16 nm and beyond, the side wall loss in fin and or trench and via is crucial for maintaining the critical dimension. In order to reduce or eliminate the side wall loss, it is important to use moderate, dilute chemicals, or sometime de-ionized water only. However, the dilute chemical or de-ionized water usually is not efficient to remove the particles in the fin structure, 3D NAND hole and or trench and via. Therefore the mechanical force such as ultra or mega sonic is needed in order to remove those particles efficiently. Ultra sonic or mega sonic wave will generate bubble cavitation which applies mechanical force to wafer structure, the violent cavitation such as transit cavitation or micro jet will damage those patterned structures. To maintain a stable or controlled cavitation is key parameters to control the mechanical force within the damage limit and at the same time efficiently to remove the particles. In the 3D NAND hole structure, the transit cavitation may not damage the hole structure, but however, the cavitation saturated inside hole will stop or reduce the cleaning effects.
Mega sonic energy coupled with nozzle to clean semiconductor wafer is disclosed in U.S. Pat. No. 4,326,553. The fluid is pressurized and mega sonic energy is applied to the fluid by a mega sonic transducer. The nozzle is shaped to provide a ribbon-like jet of cleaning fluid vibrating at ultra/mega sonic frequencies for the impingement on the surface.
A source of energy vibrates an elongated probe which transmits the acoustic energy into the fluid is disclosed in U.S. Pat. No. 6,039,059. In one arrangement, fluid is sprayed onto both sides of a wafer while a probe is positioned close to an upper side. In another arrangement, a short probe is positioned with its end surface close to the surface, and the probe is moved over the surface as wafer rotates.
A source of energy vibrates a rod which rotates around it axis parallel to wafer surface is disclosed in U.S. Pat. No. 6,843,257 B2. The rod surface is etched to curve groves, such as spiral groove.
It is needed to have a better method for controlling the bubble cavitation generated by ultra or mega sonic device during the cleaning process to achieve a stable or controlled cavitation on the entire wafer, which removes fine particles efficiently without damaging the device structure on the wafer.
One method of the present invention is to achieve a damage free ultra/mega-sonic cleaning on a wafer with patterned structure by maintaining a stable bubble cavitation. The stable bubble cavitation is controlled by setting a sonic power supply with power P1 at a time interval shorter than τ1, and setting the sonic power supply with power P2 at a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where power P2 is equal to zero or much smaller than power P1, τ1 is a time interval that the temperature inside bubble raises to a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature.
Another method of the present invention is to achieve a damage free ultra/mega sonic cleaning on a wafer with patterned structure by maintaining a stable bubble cavitation. The stable bubble cavitation is controlled by setting a sonic power supply with frequency f1 at a time interval shorter than τ1, and setting the sonic power supply with frequency f2 at a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the temperature inside bubble raises to a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature.
Another method of the present invention is to achieve a damage free ultra/mega-sonic cleaning on a wafer with patterned structure by maintaining a stable bubble cavitation with bubble size less than space in patterned structure. The stable bubble cavitation with bubble size less than space in patterned structure is controlled by setting a sonic power supply at power P1 for a time interval shorter than τ1, and setting the sonic power supply at power P2 for a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where P2 is equal to zero or much smaller than P1, τ1 is a time interval that the bubble size increases to a critical size equal to or larger than the space in patterned structures; and τ2 is a time interval that the bubble size decreases to a value much smaller than the space in patterned structure.
Another method of the present invention is to achieve a damage free ultra/mega-sonic cleaning on a wafer with patterned structure by maintaining a stable bubble cavitation with bubble size less than space in patterned structure. The stable bubble cavitation with bubble size less than space in patterned structure is controlled by setting a sonic power supply with frequency f1 for a time interval shorter than τ1, and setting the sonic power supply with frequency f2 for a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the bubble size increases to a critical size equal to or larger than the space in patterned structures; and τ2 is a time interval that the bubble size decreases to a value much smaller than the space in patterned structure.
A method of the present invention is to achieve a damage free ultra/mega-sonic cleaning on a wafer with patterned structure by maintaining a controlled transit cavitation. The controlled transit cavitation is controlled by setting a sonic power supply with power P1 at a time interval shorter than and setting the sonic power supply with power P2 at a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where power P2 is equal to zero or much smaller than power P1, τ1 is a time interval that the temperature inside bubble raises higher than a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature. The controlled transit cavitation will provide the higher PRE (particle removal efficiency) with minimized damage to patterned structures.
Another method of the present invention is to achieve a damage free ultra/mega sonic cleaning on a wafer with patterned structure by maintaining controlled transit cavitation. The controlled transit cavitation is controlled by setting a sonic power supply with frequency f1 at a time interval shorter than τ1, and setting the sonic power supply with frequency f2 at a time interval longer than τ2, and repeat above steps till the wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the temperature inside bubble raises higher than a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature. The controlled transit cavitation will provide the higher PRE (particle removal efficiency) with minimized damage to patterned structures.
The idea gas equation can be expressed as follows:
p0v0/T0=pv/T (1),
where, p0 is pressure inside bubbler before compression, v0 initial volume of bubble before compression, T0 temperature of gas inside bubbler before compression, p is pressure inside bubbler in compression, v volume of bubble in compression, T temperature of gas inside bubbler in compression.
In order to simplify the calculation, assuming the temperature of gas is no change during the compression or compression is very slow and temperature increase is cancelled by liquid surrounding the bubble. So that the mechanical work wm did by sonic pressure PM during one time of bubbler compression (from volume N unit to volume 1 unit or compression ratio=N) can be expressed as follows:
Where, S is area of cross section of cylinder, x0 the length of the cylinder, p0 pressure of gas inside cylinder before compression. The equation (2) does not consider the factor of temperature increase during the compression, so that the actual pressure inside bubble will be higher due to temperature increase. Therefore the actual mechanical work conducted by sonic pressure will be larger than that calculated by equation (2).
If assuming all mechanical work did by sonic pressure is partially converted to thermal energy and partially converted mechanical energy of high pressure gas and vapor inside bubble, and such thermal energy is fully contributed to temperature increase of gas inside of bubbler (no energy transferred to liquid molecules surrounding the bubble), and assuming the mass of gas inside bubble staying constant before and after compression, then temperature increase ΔT after one time of compression of bubble can be expressed in the following formula:
ΔT=Q/(mc)=βwm/(mc)=βSx0p0ln(x0)/(mc) (3)
where, Q is thermal energy converted from mechanical work, β ratio of thermal energy to total mechanical works did by sonic pressure, m mass of gas inside the bubble, c gas specific heat coefficient. Substituting β=0.65, S=1E-12 m2, x0=1000 μm=1E-3 m (compression ratio N=1000), p0=1 kg/cm2=1E4 kg/m2, m=8.9E-17 kg for hydrogen gas, c=9.9E3 J/(kg ° k) into equation (3), then ΔT=50.9° k.
The temperature T1 of gas inside bubbler after first time compression can be calculated as
T1=T0+ΔT=20° C.+50.9° C.=70.9° C. (4)
When the bubble reaches the minimum size of 1 micron as shown in
T2=T1−δT=T0+ΔT−δT (5)
Where δT is temperature decrease after one time of expansion of the bubble, and δT is smaller than ΔT.
When the second cycle of bubble cavitation reaches the minimum bubble size, the temperature T3 of gas and or vapor inside bubbler will be
T3=T2+ΔT=T0+ΔT−δT+ΔT=T0+2ΔT−δT (6)
When the second cycle of bubble cavitation finishes, the temperature T4 of gas and/or vapor inside bubbler will be
T4=T3−δT=T0+2ΔT−δT−δT=T0+2ΔT−2δT (7)
Similarly, when the nth cycle of bubble cavitation reaches the minimum bubble size, the temperature T2n-1 of gas and or vapor inside bubbler will be
T2n-1=T0+nΔT−(n−1)δT (8)
When the nth cycle of bubble cavitation finishes, the temperature T2n of gas and/or vapor inside bubbler will be
T2n=T0+nΔT−nδT=T0+n(ΔT−δT) (9)
As cycle number n of bubble cavitation increase, the temperature of gas and vapor will increase, therefore more molecules on bubble surface will evaporate into inside of bubble 6082 and size of bubble 6082 will increase too, as shown in
From equation (8), implosion cycle number ni can be written as following:
ni=(T1−T0−ΔT)/(ΔT−δT)+1 (10)
From equation (10), implosion time can be written as following:
Where, t1 is cycle period, and f1 frequency of ultra/mega sonic wave.
According to formulas (10) and (11), implosion cycle number ni and implosion time τi can be calculated. Table 1 shows calculated relationships among implosion cycle number ni, implosion time τi and (ΔT−δT), assuming Ti=3000° C., ΔT=50.9° C., T0=20° C., f1=500 KHz, f1=1 MHz, and f1=2 MHz.
In order to avoid damage to patterned structure on wafer, a stable cavitation must be maintained, and the bubble implosion or micro jet must be avoided.
In step 5, the time τ1 must be shorter than in order to avoid bubble implosion, and τi can be calculated by using equation (11).
In step 6, the temperature of gas inside bubble is not necessary to be cooled down to room temperature or liquid temperature; it can be certain temperature above room temperature or liquid temperature, but better to be significantly lower than implosion temperature Ti.
According to equations 8 and 9, if (ΔT−δT) can be known, the can be calculated. But in general, (ΔT−δT) is not easy to be calculated or measured directly. The following method can determine the implosion time τi experimentally.
Step 1 to 4 can be repeated again to narrow down the range of implosion time τi. After knowing the implosion time τi, the time τi can be set at a value smaller than 0.5τi for safety margin. One example of experimental data is described as following.
The patterned structures are 55 nm poly-silicon gate lines. Ultra/mega sonic wave frequency was 1 MHz, and ultra/mega-sonic device manufactured by Prosys was used and operated in a gap oscillation mode (disclosed by PCT/CN2008/073471) for achieving better uniform energy dose within wafer and wafer to wafer. Other experimental parameters and final pattern damage data are summarized in Table 2 as follows:
It was clear that the τ1=2 ms (or 2000 cycle number) introduced as many as 1216 damage sites to patterned structure with 55 nm feature size, but that the τ1=0.1 ms (or 100 cycle number) introduced zero (0) damage sites to patterned structure with 55 nm feature size. So that the τi is some number between 0.1 ms and 2 ms, more detail tests need to be done to narrow its range. Obviously, the cycle number related to ultra or mega sonic power density and frequency, the larger the power density, the less the cycle number; and the lower the frequency, the less the cycle number. From above experimental results, we can predict that the damage-free cycle number should be smaller than 2,000, assuming the power density of ultra or mega sonic wave is larger than 0.1 wattsorcm2, and frequency of ultra or mega sonic wave is equal to or less than 1 MHz. If the frequency increases to a range larger than 1 MHz or power density is less than 0.1 watts/cm2, it can be predicted that the cycle number will increase.
After knowing the time τ1, then the time τ2 can be shorten based on similar DEO method described above, i.e. fix time τ1, gradually shorten the time τ2 to run DOE till damage on patterned structure being observed. As the time τ2 is shorten, the temperature of gas and or vapor inside bubbler cannot be cooled down enough, which will gradually shift average temperature of gas and vapor inside bubbler up, eventually it will trigger implosion of bubble. This trigger time is called critical cooling time. After knowing critical cooling time τc, the time τ2 can be set at value larger than 2τc for the same reason to gain safety margin.
Similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
In step 6, the temperature of gas inside bubble can not be cooled down to room temperature due to power P2, there should be a temperature difference ΔT2 existing in later stage of τ2 time zone, as shown in
In step 6, the temperature of gas inside bubble is not necessary to be cooled down to room temperature, it can be any temperature, but better to be significantly lower than implosion temperature Ti. In the step 5, bubble size can be slightly larger than dimension of patterned structures as long as bubble expansion force does not break or damage the patterned structure. The time τ1 can be determined experimentally by using the following method:
Step 1 to 4 can be repeated again to narrow down the range of damage time Td. After knowing the damage time τd, the time τ1 can be set at a value smaller than 0.5 τd for safety margin.
All cleaning methods described from
Since thermal transfer is not exactly uninform in the features, more and more bubble implosion will keep occurring after the temperature reaching to Ti. The bubble implosion intensity will become higher and higher while the implosion temperature T increasing. However, the bubble implosion is controlled under the implosion intensity that would result in the patterned structures damage by controlling the temperature Tn below the temperature Td (controlling time of Δτ), wherein Tr, is the bubbles maximum temperature obtained by sonic power keeping working on the bubbles after the cycles of n, and Td is the temperature of the accumulation of certain amount bubbles implosion with a high intensity (or power) to result in the patterned structure damage. In a cleaning process, the control of bubble implosion intensity is achieved by the control of the time Δt after the first bubble implosion start, so as to achieve a desired cleaning performance and efficiency, and prevent the intensity too high to cause the patterned structure damage.
Another embodiment of wafer cleaning method using an ultra/mega sonic device to achieve a damage free ultra/mega sonic cleaning on a wafer with patterned structure by maintaining controlled transit cavitation is provided according to the present invention. The controlled transit cavitation is controlled by setting a sonic power supply with frequency f1 at a time interval shorter than τ1, and setting the sonic power supply with frequency f2 at a time interval longer than τ2, and repeating above steps till the wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the temperature inside bubble raises higher than a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature. The controlled transit cavitation will provide the higher PRE (particle removal efficiency) with minimized damage to patterned structures. The critical implosion temperature is the lowest temperature inside bubble, which will cause the first bubble implosion. In order to further increase PRE, it is needed to further increase temperature of the bubbles, therefore a longer time τ1 is needed. Also the temperature of bubble can be increased by shorting the time of τ2. The frequency of ultra or mega sonic is another parameter to control the level of implosion. Normally, the higher the frequency is, the lower level or intensity of the implosion is.
As described above, the present invention provides a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device. The method comprises: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
In an embodiment, the present invention provides an apparatus for cleaning substrate using ultra/mega sonic device. The apparatus includes a chuck, an ultra/mega sonic device, at least one nozzle, an ultra/mega sonic power supply and a controller. The chuck holds a substrate. The ultra/mega sonic device is positioned adjacent to the substrate. The at least one nozzle injects chemical liquid on the substrate and a gap between the substrate and the ultra/mega sonic device. The controller sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting the ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
In another embodiment, the present invention provides an apparatus for cleaning substrate using ultra/mega sonic device. The apparatus includes a cassette, a tank, an ultra/mega sonic device, at least one inlet, an ultra/mega sonic power supply and a controller. The cassette holds at least one substrate. The tank holds said cassette. The ultra/mega sonic device is attached to outside wall of said tank. The at least one inlet is used for filling chemical liquid into said tank to immerse said substrate. The controller sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
In another embodiment, the present invention provides an apparatus for cleaning substrate using ultra/mega sonic device. The apparatus includes a chuck, an ultra/mega sonic device, a nozzle, an ultra/mega sonic power supply and a controller. The chuck holds a substrate. The ultra/mega sonic device coupled with the nozzle is positioned adjacent to the substrate. The nozzle injects chemical liquid on the substrate. The controller sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
The embodiments disclosed from
Generally speaking, an ultra/mega sonic wave with the frequency between 0.1 MHz˜10 MHz may be applied to the method disclosed in the present invention.
Although the present invention has been described with respect to certain embodiments, examples, and applications, it will be apparent to those skilled in the art that various modifications and changes may be made without departing from the invention.
This application is a divisional application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/334,923, entitled METHODS AND APPARATUS FOR CLEANING SUBSTRATES, filed Mar. 20, 2019, which is a U.S. National Stage Entry under 35 U.S.C. § 371 of International Patent Application No. PCT/CN2016/099428, filed Sep. 20, 2016 and titled METHODS AND APPARATUS FOR CLEANING SUBSTRATES, the entire disclosures of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7247977 | Goodson | Jul 2007 | B2 |
7306002 | Kim et al. | Dec 2007 | B2 |
7495371 | Goodson | Feb 2009 | B2 |
7598654 | Goodson | Oct 2009 | B2 |
7814919 | Sakurai et al. | Oct 2010 | B2 |
8310131 | Goodson | Nov 2012 | B2 |
8936032 | Goodson | Jan 2015 | B2 |
9159311 | Goodson | Oct 2015 | B2 |
9901962 | Suzuki | Feb 2018 | B2 |
11581205 | Wang | Feb 2023 | B2 |
20010013355 | Busnaina | Aug 2001 | A1 |
20020185164 | Tetsuka | Dec 2002 | A1 |
20020195133 | Miranda et al. | Dec 2002 | A1 |
20090025761 | Matsumoto | Jan 2009 | A1 |
20090173358 | Sinha | Jul 2009 | A1 |
20110041871 | Fan | Feb 2011 | A1 |
20120097195 | Wang et al. | Apr 2012 | A1 |
20140216508 | Korbler | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1712144 | Dec 2005 | CN |
101087007 | Dec 2007 | CN |
101879511 | Nov 2010 | CN |
103736690 | Apr 2014 | CN |
104576455 | Apr 2015 | CN |
H06296942 | Oct 1994 | JP |
H10235303 | Sep 1998 | JP |
2002289565 | Oct 2002 | JP |
2007165695 | Jun 2007 | JP |
2013021160 | Jan 2013 | JP |
1020150113177 | Oct 2015 | KR |
WO-9814985 | Apr 1998 | WO |
Entry |
---|
International Search Report and Written Opinion for International PCT Application No. PCT/CN2016/099428, dated Jun. 22, 2017. |
International Preliminary Report on Patentability for International PCT Application No. PCT/CN2016/099428, dated Mar. 26, 2019. |
Number | Date | Country | |
---|---|---|---|
20220037172 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16334923 | US | |
Child | 17347011 | US |